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Abstract

This thesis is devoted to the study of evolution equations for the term structure of
forward variances, so-called variance curves. As done before in [15], it will be shown
that under the assumption of no arbitrage and some mild regularity conditions, these
processes can be understood as the (mild) solutions of certain stochastic partial differ-
ential equations satisfying the HJM drift condition, which for these models means the
absence of a drift. In this generality, such solutions are infinite dimensional Markov
processes and not very tractable for applications such as simulation or pricing. Starting
from those equations, the aim of the thesis is twofold:

First, utilizing the Frobenius theory introduced in [40], conditions on the diffusion
vector fields will be formulated such that the solutions can be parameterized by a finite
dimensional diffusion process. In this case the solution is said to admit a (generic)
finite dimensional realization. The analysis will be restricted to Markovian systems
comprised of forward variance models with stochastic volatility of forward variance.
Within this class of models, diffusion vector fields will be considered that correspond
to affine and exponentially affine realizations. This part is similar to [40] and [12],
where a similar analysis is done for forward interest rate processes and to [15], where
for variance curve models (without stochastic volatility of forward variance) the same
problem was investigated but from the perspective of consistent factor models, in which
given a parameterization and a finite dimensional diffusion process conditions were
derived such that these correspond to a finite dimensional realization. Thus, this part
can be seen as an extension and completion of the corresponding part in [15]. At the
end of this part, the relation to the recently introduced fractional Bergomi model (cf.
[5]) will be highlighted and a finite dimensional approximation scheme suggested.

Second, motivated by the recent trend of looking at term structure models that
do not admit (generic) finite dimensional realizations but are inherently infinte dimen-
sional, a weak approximation scheme based on a Malliavin-Taylor expansion introduced
in [68] will be applied to variance curve models. This expansion rests on iterative appli-
cations of Malliavin’s integration by parts formula and as such requires the smoothness
of the underlying density. For finite dimensional diffusion processes this can be checked
with the well-known Hörmander condition (cf. [63]). For infinite dimensional evolu-
tion equations this however is essentially an open problem (cf. [47] for conditions for
evolution equations with additive noise and [4] for conditions on the existence (but not
necessarily smoothness) of a density that is absolutely continuous with respect to the
Lebesgue measure of the projected solutions of more general equations). A class of
equations will be identified that correspond to generalized versions of those that admit
generic finite dimensional realizations, for which precise conditions can be given for the
smoothness of the density of the process projected to a finite dimensional subspace.
Furthermore we conjecture that this property holds as well, for a class of processes that
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are inherently infinite dimensional. This class of processes are very similar to the Con-
sistent Re-Calibration (CRC) processes introduced in [66] for forward interest rates and
thus the name will be adopted. Given the existence of this expansion, the correspond-
ing variance-optimal Malliavin weights will be derived in some cases by perturbation of
the Kolmogorov PDE as was done in finite dimensions in [70] and in infinite dimensions
in [9] albeit without the proof of existence of the expansion. With the representation
of the variance-optimal Malliavin weights two applications will be considered, namely
the pricing of put options on the log-price (which has now stochastic forward variance
and stochastic volatility of forward variance) and options on the volatility swap rate
(which correspond to options on the VIX).



Kurzfassung

Das Thema dieser Dissertation sind Evolutionsgleichungen für die Terminstruktur von
Termin Varianzen, sogenannten Varianzkurven. Wie zuvor in [15], wird gezeigt das
unter der Annahme von Arbitragefreiheit und einigen milden Regularitätsbedingungen,
diese Prozesse als (milde) Lösungen von gewissen stochastischen partiellen Differential-
gleichungen verstanden werden können, welche die HJM Drift Bedingung erfüllen, also
vorliegend die Abwesenheit eines Driftes. In dieser Allgemeinheit sind Lösungen solcher
Gleichungen unendlichdimensionale Markov Prozesse und damit nicht sehr nützlich für
Anwendungen wie Simulationen oder Bewertungen. Ausgehend von diesen Gleichun-
gen, werden in dieser Dissertation zwei Ziele verfolgt.

Als erstes werden unter Benutzung der in [40] eingeführten Frobenius Theorie Be-
dingungen on die Diffusionsvektorfelder formuliert, so dass die zugehörigen Lösungen
duch einen endlichdimensionalen Diffusionsprozess parametrisiert werden können. In
solchen Fällen wird gesagt, dass die Lösung eine (generische) endlichdimensionale Re-
alisierung zulässt. Die Analyse wird beschränkt auf Markovsche Systeme bestehend
aus einem Termin Varianz modell mit stochastischer Volatilität der Termin Varianz.
Innerhalb dieser Modell- klasse werden solche Diffusionsvektorfelder betrachtet, die zu
affinen und exponentiell-affinen Realisierungen gehören. Dieser Teil ist vergleichbar
zu [40] und [12], in welchen ähnliche Analysen für Termin Zinssätze gemacht werden
und zu [15], wo für Varianzkurven (ohne stochastischer Volatilität) dasselbe Problem
untersucht wird, allerdings aus dem Blickwinkel der konsistenten Faktormodelle. Hier-
bei werden für eine gegebene Parametrisierung und endlichdimensionalen Diffusions-
prozess Bedingungen formuliert so dass diese einer endlichdimensionalen Realisierung
entsprechen. Dieser Teil kann also als eine Erweiterung und Vervollständigung des
entsprechenden Teils in [15] angesehen werden. Dieser Teil endet mit der Darstellung
der Verbindung dieser Modelle zu dem kürzlich eingeführten fractional Bergomi Mod-
ells (cf. [5]) und der Einführung eines endlichdimensionalen Approximationsschemas.

Als zweites, motiviert von dem gegenwärtigen Trend der Betrachtung von Termin-
struktur Modellen die keine endlichdimensionalen Realisierungen zulassen und inhärent
unendlichdimensional sind, wird ein schwaches Approximationsschema, dass auf einer
Malliavin-Taylor Expansion basiert und in [68] vorgestellt wurde, untersucht und auf
Varianzkurven angewendet. Diese Expansion basiert auf Malliavins Partiellen Integra-
tionsformel und benötigt daher die Glattheit der zugehörigen Dichte. Bei endlichdi-
mensionalen Diffusionsprozessen lässt sich dies mit der bekannten Hörmander Bedin-
gung überprüfen (cf. [63]). Für unendlichdimensionale Evolutionsgleichungen ist dies
allerdings im wesentlichen ein offenes Problem (cf. [47] für Bedingungen für Evo-
lutionsgleichungen mit additivem Rauschen und für allgemeinere Gleichungen [4] für
Bedingungen für die Existenz (aber nicht notwendigerweise Glattheit) einer Dichte
der endlichdimensional projizierten Lösung, die absolutstetig bezüglich des Lebesgue
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Masses ist). Es wird eine Klasse von Prozessen identifiziert die verallgemeinerten Ver-
sionen von Prozessen entprechen, welche endlichdimensionale Realisierungen zulassen.
Für diese Prozesse werden präzise Bedingungen für die Existenz einer glatten Dichte
(des endlichdimensional projiezierten Prozesses) formuliert.Darüberhinaus wird eine
Vermutung formuliert für eine Klasse von Prozessen die inherent unendlich dimensional
sind. Diese Prozesse sind sehr ähnlich zu den in [66] für Termin Zinssätze eingeführten
Consistent Re-Calibration (CRC) Prozessen und daher wird dieser Name übernommen.
Unter der Annahme der Existenz dieser Expansion, werden die zugehörigen varianzopti-
malen Malliavin Gewichte in einigen Fällen mittels Perturbation der Kolmogorov PDG
gewonnen. Dies ist vergleichbar zu [70], in welchem endlichdimensionale Diffusionen
betrachtet wurden, und zu [9], in welchem auch undendlichdimensionale Diffusionen
betrachtet wurden, aller- dings ohne einen Beweis der Existenz der Expansion. Mit der
gewonnen Darstellung der varianzoptimalen Malliavin Gewichte werden zwei Anwen-
dungen betrachtet, nämlich die Bewertung von Put Optionen auf den log-Preis (der
in diesem Fall stochastische Termin Varianz und stochastische Volatilität der Termin
Varianz hat) und Optionen auf den Volatilitäts-Swapsatz (dies entspricht einer Option
auf den VIX).
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Chapter I

Introduction

The assumption of constant (instantaneous) volatility in the celebrated Black & Scholes
model (see [14]) was soon rejected as it is not consistent with the observed volatility
smile in the markets of plain vanilla options. This was the advent of so-called stochastic
volatility models (as given for example by the Heston model [52]) on the one hand and
volatility derivatives (see for example [20] for an overview) on the other hand. Among
the simplest volatility derivatives written on a stock-index is the variance swap. It pays
at maturity the variance notional times the difference between the realized variance of
that stock-index and the fixed variance swap rate. Its popularity for investors stems
from the possibility to have a direct exposure to realized variance (see also [3, Part
3]) and for dealers from the fact that it can be replicated in an essentially model free
way using traded plain vanilla options (see for example [22] and [21]). In May 2014
the newly issued variance swaps on the S&P 500 had a vega notional (see Section II.1)
of 85.2 million USD ([61, Table 1]) and the total gross outstanding vega notional was
1.512 billion USD ([61, Table 2]). Although these contracts are traded over the counter
(OTC) its specifications are highly standardized. Major dealers publish on a daily basis
indicative variance swap rates for a fixed tenor of time-to-maturities ranging (usually)
from one month to five years. This gives rise to a daily observed term structure of
variance swap rates and due to the relationship to the plain vanilla options through
the replication formula this term structure can be seen also on a much finer time grid.
Typically for long maturities this term structure is pretty stable while the shorter
end is strongly related to the asset’s instantaneous variance and accordingly the term
structure is upward sloping in low volatility regimes and downward sloping in high
volatility regimes. The prime theme of this thesis will be to discuss models for the
evolution of this term structure that are both, analytically tractable and rich in the
sense that empirically observed static and dynamic features of this term structure are
well reflected.

Consistent Variance Curve Models

Instead of modeling the term structure of the variance swap rates directly, we will
look at models for the evolution of the term structure of forward variances, which
corresponds to the instantaneous variance swap rates (see Definition II.2.8). The term
structure of the forward variances will be called variance curve. Looking at forward
variances instead of variance swap rates is standard and adopted for example in [7],
[15] in the context of HJM models (that will be discussed in the following) and in [36],
[2], [31] in the context of models for the market price of variance risk. The short-end of
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this curve corresponds to the (instantaneous) variance (henceforth spot-variance) of the
underlying asset’s returns. On the other hand, under the martingale measure, the entire
variance curve is determined from the spot-variance process. Using this relationship,
we will see that the variance curves implied from popular stochastic volatility models
can take only very limited shapes and in particular will (generally) not fit the variance
curves observed in the markets. Therefore we will adopt the HJM Musiela framework
for variance curves introduced in [15] in which the variance curve is modeled directly,
as opposed to the case where it is derived from the asset’s stochastic volatility process.
At each instant of time, the variance curve is understood as a function mapping the
time-to-maturity to the corresponding forward variance and the variance curve will be
assumed to be given as the mild solution of a stochastic partial differential equation
(SPDE), that is subject to the HJM-drift condition (see Proposition II.4.4), in a suitable
(usually infinite dimensional) Hilbert space H of variance curves. That is, the variance
curve at time t, denoted by ut, will be given as the solution of{

dut = d
dxut dt+

∑d
i=1 Σi(ut) dβ

i
t

u0 ∈ H,
(0.1)

where the operator d
dx generates the strongly continuous shift-semigroup {St | t ≥ 0},

Σ1, ...,Σd are smooth vector fields and β1, ..., βd are independent standard Brownian
motions, all defined on a suitable filtered probability space. Such solutions will gener-
ally correspond to infinite dimensional Markov processes in the spirit of [26] and the
spot-variance process will be derived from the short-end condition. This specification
is obviously very general but lack the analytic tractability required for real-life ap-
plications. Therefore, as a compromise between one dimensional diffusion models for
the spot-variance and infinite dimensional diffusion models for the variance curves, the
main focus in [15] (see also [32] for the corresponding situation in interest rates) was in
the construction of finite dimensional factor models. The investigated problem was the
following: given a variance curve model u as the solution of (0.1), an m-dimensional
diffusion process Z (with m ∈ N) and a smooth map G : Rm → H, what are the
conditions such that ut = G(Zt), t ≥ 0, holds true? This problem is (completely)
solved (see also [37] for a more general version) and under its conditions the resulting
variance curve process is now completely determined by a finite dimensional diffusion
process. In this situation (subject to some mild regularity conditions), the solution u
stays in the submanifold M := G(Rm) of H.

Generic Finite Dimensional Realizations

In the consistent variance curve models problem, the parameterization G of M must
be given a-priori. Also, the possible set of initial curves lies necessarily in the finite
dimensional submanifoldM as well. By employing the Frobenius theory introduced in
[40], we look at the following problem. Given (u, Y ) as the solution of

dut = d
dxut dt+

∑d
i=1 Σi(ut, Yt) dβ

i
t

dYt = a(Yt) dt+
∑d

i=1 bi(Yt) dβ
i
t

(u0, Y0) ∈ H × Rn,
(0.2)

under which conditions on Σ1, ...,Σd, a, b1, ..., bd, can we find for every u0 ∈ U , where
U is some open subset of H, a parameterization Gu0 and a finite dimensional factor
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process Z such that
(ut, Yt) = Gu0(Zt), t ≥ 0, (0.3)

holds true? Notice that in this case u0 can take values in an open subset of H, whereas
with the consistent factor-models the initial curve must lie in the a-priori chosen sub-
manifoldM (in [71] conditions for the existence of affine factor models are investigated
that share this latter property and can thus be seen as lying conceptually in between
both approaches).

We will look here at two kinds of models. The first kind will represent a straight for-
ward generalization of (affine) spot-variance models in which the vector fields Σ1, ...,Σd

will be of the constant direction type (see [10]). The second kind will correspond to a
generalization of Bergomi’s model (see [7]) in that the vector fields Σ1, ...,Σd will be
linear in the first argument. These models too will after a simple transformation be of
the first kind. We will find that these two kinds will correspond to (generic versions) of
affine and exponentially affine parameterizations. We will also look at combinations of
both models and discuss the connection of the latter models to the recently introduced
fractional Bergomi model (see [44]).

Weak Taylor Expansions

Regarding the usefulness of consistent factor models in the context of variance curve
models, Hans Bühler writes in [15, Page 11] (which was in December 2008):

The use of consistent models is justified if the market is not very liquid
and a mathematically sound interpolation scheme plus consistent dynamics
is required for risk management. However, by now variance swap quotes
on major indices are so deep that this approach is no longer justified: the
priority must now be to fit the market quotes of variance swaps first and
then superimpose them with consistent dynamics.

Accordingly he proposes in [15, Chapter 4] to extend a spot-variance process given by
a finite dimensional diffusion process by taking the entire observed forward variance
curve as an additional parameter to arrive at an exact fit (this situation is comparable
to Hull-White extensions to be discussed in Section II.3.1). Indeed, given a real-valued
process ξ̃ as a functional of a (possibly time-inhomogeneous) diffusion process and the
observed variance curve v̂0 he proposes to consider the fitted spot-variance model given
by

ξt := m(t)ξ̃t, m(t) :=
v̂0(t)

E[ξ̃t]

as in this case the model provides a perfect fit to the observed term structure of variance
swap rates. He further shows that in certain examples the model remains analytically
tractable. A problem with such models is that the spot-variance process now depends
implicitly on the inception date of the variance swap contract. For variance swap
contracts with overlapping life-times this might lead to inconsistencies. Further it is
not clear how to simulate time-series of the variance curves.

In a very similar context (but for interest rates) in [66] and [50] a solution to this
problem is provided which leads to the consistent re-calibration (CRC) models. Such
models usually do not admit generic finite dimensional realizations but are inherently
infinite-dimensional (from the Markovian perspective) and allow for the re-calibration
of variance curves that can be chosen from an open subset of an infinite dimensional
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Hilbert space. A key property of this models is that they correspond infinitesimally
to models that admit generic (affine) finite dimensional realizations. By a suitable
discretization, which corresponds to an exponential splitting scheme (see [48]), the
model allows for a very tractable simulation algorithm that utilizes the infinitesimally
(affine) finite dimensional structure.

Unfortunately, with this discretization scheme the order of weak convergence is quite
low and it is in general not possible to utilize possibly existing closed form solutions
for derivatives prices. In this thesis we will in the context of variance curve models
provide a small-diffusion (or small-parameter) expansion of arbitrary order of weak
convergence such that in many interesting cases this will be possible or at least will
allow for an efficient Monte-Carlo pricing scheme. In particular, this expansions will
allow to essentially compute expected values of functions of the variance curves in
terms of the corresponding quantities of a variance curve model that admits generic
finite dimensional realizations. We will look at parameterized systems of the form{

dXε
t = (AXε

t + V (ε,Xε
t )) dt+

∑d
i=1 Vi(ε,X

ε
t ) dβ

i
t

X0 ∈ H,
(0.4)

where for each ε ∈ R, V (ε, ·), V1(ε, ·), ..., Vd(ε, ·) are sufficiently regular vector-fields
on H and assume that X0 admits a generic finite dimensional realization. Than for
suitable linear functionals l : H → Rm, we will look at conditions such that∣∣∣E[f(l ◦Xε

T )
]
−

n∑
i=0

εi

i!

∂i

∂εi

∣∣∣
ε=0

E
[
f(l ◦Xε

T )
]∣∣∣ = o(εn), as ε→ 0, (0.5)

for functions f : Rm → Rn, n ≥ 1, that are bounded and measurable. The vehicle
to achieve this will be the weak Taylor expansion introduced in [68] in the context of
finite dimensional stochastic differential equations. This expansions rests on iterative
applications of Malliavin’s integration by parts formula and a crucial requirement is the
existence of a smooth density of the finite dimensional random variable l ◦Xε

T , which is
usually called Hypoellipticity in infinite dimensions (cf. [47, Question 1] and [4]). We
will recapture the necessary tools from Malliavin calculus required in the context of
SPDEs and show that for the system (0.2), if it admits a finite dimensional realization,
under suitable conditions on the parameter process Y , this expansion will be possible
with weak convergence of arbitrary order. Here the unperturbed system (i.e. ε = 0 in
(0.4)) will correspond to the case where Y is deterministic and constant. The situation
where (0.2) admits a generic finite dimensional realization only for the case where Y
is deterministic and constant will correspond to the CRC models. We shall conjecture
conditions such that the expansion holds.

Having this conjectured conditions such that (0.5) holds, we still need to compute
the Malliavin weights πi, i = 1, ..., n, that satisfy

∂i

∂εi

∣∣∣
ε=0

E
[
f(l ◦Xε

T )
]

= E
[
f(l ◦X0

T )πi

]
, i = 1, ..., n.

This weights can be computed in terms of Skohorod integrals (using iteratively Malli-
avin’s integration by parts) and the corresponding representations can significantly

reduce the complexity of the given problem. In particular the terms E
[
f(l ◦ X0

T )πi

]
can be computed with plain vanilla Monte-Carlo integration using the (Markovian)
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finite-dimensional structure of X0
T , whereas Xε

T for ε > 0 is in general a strictly infinite-
dimensional Markov process where standard Monte-Carlo techniques can not be em-
ployed.

However, in general this weights will not be variance optimal (cf. [42]) in the sense
that πj 6= E[πj |f(l ◦X0

T )]. Inspired by [70] and using a certain martingality conditions
given in [9] we will in some cases be able to derive explicit formulas for the terms
∂i

∂εi

∣∣∣
ε=0

E
[
f(l ◦ Xε

T )
]

and to compute the variance optimal weights by expanding the

solution of the corresponding Kolmogorov PDE (which is justified if (0.5) holds, but
also under weaker conditions). If this martingality condition does not hold, this PDE

perturbation approach leads to recursive PDEs for the terms ∂i

∂εi

∣∣∣
ε=0

E
[
f(l◦Xε

T )
]

which

are nice but would require nested Monte-Carlo simulations and are thus less tractable
when compared to the representations given by the Malliavin weights.

Applications

We will look at the system
dXε

t = −1
2u

ε
t(0) dt+

√
uεt(0) dβ1

t

duεt = d
dxu

ε
t dt+ ε

∑d
i=1 σi(u

ε
t, Y

ε
t ) dβit

dY ε
t = ε2 c0(Y ε

t ) dt+ ε
∑d

i=1 ci(Y
ε
t ) dβit,

(Xε
0, u

ε
0, Y

ε
0 ) = (x, u, y) ∈ R×H × Rm,

(0.6)

where Xε, uε and Y ε correspond to the processes for the log-price, the forward vari-
ance and the stochastic volatility of forward variance and apply the weak Taylor PDE
expansion on the log-price and functionals of the forward variance. In both cases we
will derive explicit formulas that can be used for pricing options on the log-price and
functionals of the forward variance (a functional of the forward variance is given for ex-
ample by the VIX). In the first case, the formula consists of sums of products of partial
derivatives of the Black & Scholes price with deterministic functions and in the second
case of sums of products of derivatives of the payoff with deterministic functions. The
first expansion is very similar to the situation considered in [69] where (finite dimen-
sional) stochastic volatility models are considered and [9] where a very similar variance
curve setting is considered, although in a parameterization, where the variance curves
are given as solutions to infinite dimensional stochastic differential equations with a
time-varying state-space.

Outline of the Thesis

The remainder of this thesis can be divided into three parts. In the first part, consisting
of Chapters II and III, we recapture the notion of variance curves in the context of
idealized variance swaps and give necessary and sufficient conditions for the existence
of generic finite dimensional realizations for certain variance curve models. In the
second part, consisting of Chapters IV and V, we formulate conditions such that the
weak Taylor expansion can be applied to functionals of variance curves. For this we
recapture the necessary Malliavin calculus for Hilbert space valued stochastic processes
and derive conditions related to Hypoellipticity in infinite dimensions. In the second
part, we look at Consistent Re-calibration Models for variance curves and conjecture
sufficient conditions for the applicability of the weak Taylor expansion. The final part



6 I Introduction

is given in Chapter VI, where Applications of the weak Taylor PDE expansion are
discussed.

Notations

For the notation we refer to the Appendix A



Chapter II

HJM Models for forward
variances

1 Variance Swaps

Let S denote the price process of a traded stock and by X := log(S) the corresponding
log-price process. A variance swap with variance strike K2 initiated at time t = 0 with
maturity time T ≥ 0 pays out the variance notional Nvar times the difference between
the annualized discrete quadratic variation of the log-price X over pre-defined business
days 0 = t0 < ... < tn = T and the strike K2. Formally the payoff at time T , denoted
by V SK(T, T ), is

V SK(T, T ) := Nvar

(d
n

n∑
i=1

(Xti −Xti−1)2 −K2
)
, (1.1)

where d is chosen such that d/n ≈ 1/T . If the logarithmic returns (Xti − Xti−1),
i = 1, ..., n, are assumed to have a zero mean, then the payoff is just the difference
between the annualized realized variance of the logarithmic returns and the strike K2.
As practitioners like to think in volatility terms usually the payoff is specified in terms
of vega-notional Nvega instead of the variance notional Nvar in which case the payoff is
given by

V SK(T, T ) = Nvega

( d
n

∑n
i=1(Xti −Xti−1)2 −K2

2K

)
. (1.2)

While the variance notional corresponds to the cash profit/loss if at maturity the annu-
alized realized variance exceeds the variance strike by 1 variance unit, the vega notional
corresponds to the average of the (absolute values) of the payoffs if the difference is one
volatility unit and is justified by the relationship

((K + x)2 −K2

4K

)
−
((K − x)2 −K2

4K

)
= x, for all x ≥ 0. (1.3)

In the following we denote the price of the variance swap at time t, with 0 ≤ t ≤ T , by
V SK(t, T ) and if K = 0 we just write V S(t, T ). We will mostly assume that Nvar = 1,
K = 0 and skip the annualization.
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2 Idealized Variance Swaps

It has been proven to be fruitful to assume that the payoff of a variance swap is given by
the quadratic variation [X,X] of the log-price process X accumulated from inception
to maturity. For this we assume that we are given a complete filtered probability space
(Ω,F , (Ft)t∈R+ ,P), satisfying the usual assumptions, such that on this space the log-
price process X satisfies the following conditions. Recall the notion of semimartingale
characteristics given in [53, Definition 2.6] and the notion of differential characteristics,
that is, semimartingale characteristics that are absolutely continuous (with respect to
the Lebesgue measure) given in [55, Section 2].

Assumption 2.1. The log-price X satisfies both,

• it is a real-valued, locally square integrable semimartingale, and

• its semimartingale characteristics are absolutely continuous with respect to the
Lebesgue measure.

Remark 2.2. In this case the predictable quadratic variation 〈X,X〉 is absolutely con-
tinuous and there is a predictable process ∂t〈X,X〉 that is unique up to a dP⊗ dt-null
set such that

〈X,X〉t =

∫ t

0
∂t〈X,X〉s ds, ∀t ≥ 0.

Moreover, [X,X] − 〈X,X〉 is a local martingale and a true martingale whenever X is
square integrable.

Proof. This follows from [55, Section 2] and [53, Proposition 4.5].

This class covers almost all continuous time models that are considered in mathe-
matical finance. We denote again by V S(t, T ) the price of a variance swap at time t
issued at time 0 with maturity at T . We also consider another related (but artificial)
product, namely the predictable variance swap which differs from the usual variance
swap in that it pays out the predictable quadratic variation with price at time t denoted
by V SP (t, T ). This is summarized in the following Definition.

Definition 2.3. The payoff of the idealized (predictable) variance swap at maturity is
given by the (predictable) quadratic variation at T , that is, for T ≥ 0 fixed but arbitrary,
we have

V S(T, T ) := [X,X]T , and V SP (T, T ) := 〈X,X〉T .

For each fixed maturity T , the price-process of the Variance swap is given by the process

[0, T ] 3 t 7→ V S(t, T )

and at each time t, the term structure of Variance swap prices is given by the curve

[t,∞) 3 T 7→ V S(t, T ).

The terminology is also applied for predictable variance swaps.

Remark 2.4. To assume that the variance swap pays out the quadratic variation instead
of the discrete quadratic variation as in (1.1) is standard (see for example [15] and [54]
for discussions of this aspect) and motivated by the higher tractability in continuous
time models.
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As the predictable variance swap is an artifical instrument, we are free to define its
price process. The following will be very convenient.

Definition 2.5. The price process of the predictable variance swap is given by

V SP (t, T ) := V S(t, T ) + 〈X,X〉t − [X,X]t, t ∈ [0, T ]. (2.1)

In accordance with Remark 2.2 we arrive at the following Proposition.

Proposition 2.6. The variance swap price process is a (local) martingale, if and only
if, the predictable variance swap is a (local) martingale.

This Proposition will be very convenient in the following, as it will be crucial for
the HJM-Musiela Theory to assume that the term structure of variance swap prices,
that is, T 7→ V S(t, T ) is absolutely continuous with respect to the Lebesgue measure,
which would immediately rule out any non-continuous log-price processesX. But as it is
sufficient to consider the predictable variance swap price processes a much larger class of
log-price processes X is possible, namely those satisfying the conditions of Assumption
2.1. Now assuming that P is a martingale measure for the market of variance swaps,
that is, the price processes of the variance swaps (and due to Proposition 2.6 also the
predictable variance swaps) are martingales under P. In this case it follows from [28]
and Remark 2.2 that for t ∈ [0, T ]

V S(t, T ) := E[[X,X]T |Ft] = E[〈X,X〉T |Ft] + [X,X]t − 〈X,X〉t (2.2)

and together with (2.1) that

V SP (t, T ) = E[〈X,X〉T |Ft] = 〈X,X〉t + E[〈X,X〉T − 〈X,X〉t|Ft]

=

∫ t

0
∂s〈X,X〉s ds+

∫ T

t
E[∂s〈X,X〉s|Ft] ds. (2.3)

Finally we introduce the predictable variance swap rate V P (t, T ) defined as the second
term in (2.3), that is,

V P (t, T ) := E[〈X,X〉T − 〈X,X〉t|Ft] =

∫ T

t
E[∂s〈X,X〉s|Ft] ds, (2.4)

which corresponds to the price of a zero strike predictable variance swap at inception
time t and maturity at time T . Let V (t, T ) denote the corresponding variance swap
rate.

Proposition 2.7. We have V (t, T ) = V P (t, T ) for all t, T with 0 ≤ t ≤ T .

Proof. This again follows from Remark 2.2, as

V (t, T ) := E[[X,X]T − [X,X]t|Ft] = E[〈X,X〉T − 〈X,X〉t|Ft] = V P (t, T ).

Thus we see that the variance swap rate is actually the same for the variance swap
and the predictable variance swap and at each time t prior to maturity T we have the
well-known additive decompositions of the prices given by

V SP (t, T ) = 〈X,X〉t + V (t, T ), V S(t, T ) = [X,X]t + V (t, T ),
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such that the price of the (predictable) variance swap at time t is the sum of the (pre-
dictable) quadratic variation up to time t and the variance swap rate V(t,T), explaining
why variance swaps are usually quoted by the variance swap rate. As the term struc-
ture of variance swap rates given by (2.4) is absolutely continuous we can introduce
the spot-variance process and the forward-variance process (see also Remark 2.2) as
follows.

Definition 2.8. The spot-variance process is given by ξt := ∂t〈X,X〉t, for t ≥ 0, and
the forward variance process (v(t, T ))t∈[0,T ] by

v(t, T ) := ∂TV (t, T ) = E[ξT |Ft], t ∈ [0, T ]. (2.5)

Notice the similarity of these quantities to the short rate and forward rate in the
interest rates theory (see for example [34]). In particular the short-end condition holds
true, that is,

ξt = v(t, t), ∀t ≥ 0. (2.6)

Finally we arrive at the representation of the predictable variance swaps and variance
swap rates in terms of the spot variance process and the forward variance process given
by

V SP (t, T ) =

∫ t

0
ξs ds+

∫ T

t
v(t, s) ds, (2.7)

V (t, T ) =

∫ T

t
v(t, s) ds. (2.8)

3 Stochastic Volatility Models

From Representations (2.5) and (2.7) we see that the prices of predictable variance
swaps are fully determined by the spot variance process ξ corresponding to the log-price
process X. If the spot variance process is assumed to be a non-negative semimartingale,
the pair (X,

√
ξ) is usually called stochastic volatility model.

Definition 3.1. Given a log-price X as in Assumption 2.1, a stochastic volatility
model is called any pair (X, η) such that η is a locally square integrable semimartingale
satisfying ∂t〈X,X〉t = η2

t− for all t ≥ 0. In this case, the process η is called the
stochastic volatility process corresponding to X.

We need also the following definition, which corresponds to the case where only
the spot-variance process is explicitly given. Here a corresponding log-price can be
constructed, which in general will not be uniquely determined but has to satisfy a
certain compatibility condition.

Definition 3.2. Given a locally square integrable semimartingale η, a semimartingale
X will be called compatible log-price model for the stochastic volatility η, if (X, η) is
a stochastic volatility model in the sense of Definition 3.1.

Remark 3.3. Note that as any semimartingale defined as in [53, Definition 4.21] is
adapted and càdlàg, the process t 7→ ηt− is adapted and càglàd and in particular
predictable (see [53, Proposition 2.6]). Accordingly it qualifies as local characteristic,
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see Remark 2.2. Moreover, as the processes (ηt)t≥0 and (ηt−)t≥0 only disagree on a
Lebesgue null-set, we have ∫ t

0
ηs ds =

∫ t

0
ηs− ds, ∀t ≥ 0

and so it is only a minor abuse of notation to set ∂t〈X,X〉t = η2
t for all t ≥ 0. This is

justified by the fact that we are ultimately interested in the price process of predictable
variance swaps as given in (2.7) where only the integrated versions of the spot-variance
and forward variance are used.

In the following we will assume that η is in fact square integrable. In this case
the spot-variance process ξ := η2 has the canonical decomposition (see [53, Definition
I.4.22]) given by

ξ = ξ0 +M +A, (3.1)

such that M is a martingale and A is a predictable process of finite variation that is P
integrable. Then the forward variance is given by (see Definition 2.8)

v(t, T ) = E[ξT |Ft] = ξt + E[AT −At|Ft], t ∈ [0, T ] (3.2)

and we see that for each fixed time t, with 0 ≤ t ≤ T , the shape of the term-structure of
the forward variance T 7→ v(t, T ) depends basically only on the finite-variation process
A.

3.1 Spot-Variance Processes with Affine Drift

Now we will consider the important case where the finite variation part A is of the (Hull-
White extended) affine form, which includes the popular class of (time-inhomogeneous)
affine processes (see [30] and [33] respectively).

Definition 3.4. A spot-variance process ξ is said to have an affine drift, if the process
A in the canonical decomposition (3.1) satisfies

At = αt+ κ

∫ t

0
ξs ds, t ≥ 0,

where α and κ are real constant. If α is a continuous deterministic function, such that
the process A satisfies

At =

∫ t

0
(αs + κξs) ds, t ≥ 0, (3.3)

the spot-variance ξ is said to have an Hull-White extended affine drift.

Proposition 3.5. If the spot-variance process ξ has an affine drift, then for each fixed
time t the term structure of the forward variance is (time-homogeneous) affine in the
spot-variance with representation given by

v(t, T ) = Φ(T − t) + Ψ(T − t)ξt t ∈ [0, T ], (3.4)

where Φ(x) := α
κ (Ψ(x) − 1) and Ψ(x) := eκx for all x ≥ 0. If ξ has an Hull-White

extended affine drift, the term structure of the forward variances have at each time t a
(time-inhomogeneous) affine representation given by

v(t, T ) = Φ̃(t, T ) + Ψ(T − t)ξt t ∈ [0, T ], (3.5)
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where Φ̃(t, T ) :=
∫ T
t Ψ(T − s)αs ds.

Moreover, the process α can be used to match any differentiable initial forward
variance curve v0 by choosing ξ0 = v0(0) to satisfy the short-end condition (2.6) and
by setting

αt :=
d

dt
v0(t)− κv0(t), ∀t ≥ 0. (3.6)

In this case the forward variance can be represented by

v(t, T ) = v0(T ) + Ψ(T − t)
(
ξt − v0(t)

)
, t ∈ [0, T ]. (3.7)

Proof. The Representation (3.5) follows from (3.2) applied to (3.3) which gives

E[ξT |Ft] = ξt +

∫ T

t
(αs + κE[ξs|Ft]) ds, T ≥ t,

and accordingly for each fixed t, the term structure T 7→ v(t, T ) is a solution of the
semi-linear ODE {

d
dT fT = κfT + αT , T ≥ t,
ft = ξt,

which is solved by (3.5) and for constant α this reduces to (3.4). For the second claim,
comparing Representations (3.7) and (3.5) we see that the claim follows if for the choice
α as in (3.6) we have Φ̃(t, T ) = v0(T )−Ψ(T − t)v0(t), but this follows from integration
by parts, as

Φ̃(t, T ) =

∫ T

t
eκ(T−s)(

d

dt
v0(s)− κv0(s)) ds = v0(T )− eκ(T−t)v0(t).

In particular, by choosing ξ0 = v0(0) we see that v(0, T ) = v0(T ) for all T ≥ 0 and
hence the claim.

Now assume that the spot-variance process ξ has an Hull-White extended affine
drift with representation given by (3.3). Then it follows from the Representation (3.5)
and Itô’s product rule that

v(t, T ) = v(0, T ) + Φ̃(t, T )− Φ̃(0, T ) + Ψ(T − t)ξt −Ψ(T )ξ0

= v(0, T )−
∫ t

0
Ψ(T − s)As ds+

∫ t

0
Ψ(T − s) dξs (3.8)

= v(0, T ) +

∫ t

0
Ψ(T − s) dMs. (3.9)

Note that the Representation (3.9) is independent of the drift term A and in particular
the same irrespective whether ξ has a plain affine drift or an Hull-White extended affine
drift. However, the difference is in the initial curve v(0, ·). From the Representations
(3.4) and (3.5) we see that the initial curve is given by

v(0, T ) =

∫ T

0
eκ(T−s)αs ds+ Ψ(T )ξ0,

that is, for constant α it is necessarily an element of the parameterized family of curves
given by {

R+ 3 x 7→ eκx
(α
κ

+ ξ0

)
− α

κ

∣∣∣α, κ, ξ0 ∈ R
}
, (3.10)
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where we considered ξ0 also as a parameter, whereas if α is assumed to be a continuous
curve that can be used as a parameter, then any continuously differentiable initial curve
is possible by choosing α as in (3.6).

Example 3.6 (Heston Model). Consider the Hull-White extended Heston model (see
[52]) given as the solution of

dXt = −1
2ξt dt+

√
ξt dβ

1
t

dξt = κ (θt − ξt) dt+ ρ
√
ξt dβ

2
t

X0 = x, ξ0 = ξ,

where κ and ρ are positive constants and θ is a continuous deterministic process satis-
fying 2κθt > ρ2 for all t ≥ 0 and β1 and β2 are possibly correlated Brownian motions
with correlation ζ ∈ [−1, 1]. Then according to Proposition 3.5 the forward variances
have the representation

v(t, T ) =

∫ T

t
e−κ(T−s)κθs ds+ e−κ(T−t)ξt

and given any continuously differentiable initial curve v0 we can set θ such that κθt =
d
dtv0(t) + κv0(t) holds for all t ≥ 0. Then if also ξ0 = v0(0) we have v(0, T ) = v0(T ) for
all T ≥ 0 and

v(t, T ) = v(0, T ) + e−κ(T−t)(ξt − v0(t))

= v(0, T ) +

∫ T

0
e−κ(T−s)ρ

√
ξs dβ

2
s , (3.11)

where v(0, T ) = v0(T ).

The Representation (3.11) is the first example of a (classic) HJM-model (see [51]), in
that for each fixed but arbitrary T ≥ 0, the forward variance v(t, T ) can be represented
by an Itô-process. In particular it can start at an arbitrary (continuously differentiable)
initial curve v0(T ). Note that the Representations (3.8) and (3.9) are included in more
general, semimartingale driven HJM models as considered for example in [56]. If we
choose Mt =

∫ t
0 σs dβs we are in the considered (classic) HJM setting, as the forward

variances then have the representation

v(t, T ) = v(0, T ) +

∫ t

0
eκ(T−s)σs dβs. (3.12)

In the next section we will look at general (classic) HJM models.

4 HJM Theory

In the previous sections we defined the (idealized) payoff of a (predictable) variance
swap by the (predictable) quadratic variation of the log-price. Under the Assumption
2.1 we saw that the price of a predictable variance swap as given in Representation (2.7)
is determined by the spot-variance, given as the weak time derivative of the predictable
quadratic variation. The forward variances are given by the term-structure equation,
see Definition 2.8. This setting is very tractable, in particular for spot-variance models
with affine drift (see Definition 3.4), but as for short-rate models for the market of
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zero-coupon bonds, lacks the flexibility to model realistic market movements and in
particular to start at an arbitrary initial curve. In the following we will take the HJM
perspective (see [51]) by starting with a general model for the forward variances v.
Given a model for the forward variances v, the spot-variance ξ is then determined by
the short-end condition (see (2.6)) ξt := v(t, t), t ≥ 0, which is well-defined under some
mild conditions on the forward variance process. Then we can define (as in (2.7)) for
each T ≥ 0 the variance swap rate and predictable variance swap price processes for
each fixed T > 0 by

V (t, T ) :=

∫ T

t
v(t, s) ds, t ≤ T (4.1)

V SP (t, T ) :=

∫ t

0
ξs ds+ V (t, T ), t ≤ T. (4.2)

Remark 4.1. Equation (4.2) very closely resembles the corresponding situation in the
HJM theory for interest rates as introduced in [51]. In fact, if we assume that v is a
model for the forward (interest) rate, then the first term corresponds to the logarithm
of the bank account process and the second term to the logarithm of the zero coupon
bond price process multiplied by −1.

For the definition of the variance swap price process we need the concept of a
compatible log-price (generalizing the Definition 3.2, cf. also [35]).

Definition 4.2. Let ξ be a predictable process modeling the spot-variance. Then a
semimartingale X satisfying the conditions of Assumption 2.1 is said to be a compatible
log-price process for the spot-variance ξ, if ∂t〈X,X〉t = ξt for all t ≥ 0 (see Remark
2.2).

If X is a compatible log-price process X we arrive via (2.1) at the representation
for the variance swap price process by defining

V S(t, T ) := [X,X]t − 〈X,X〉t + V SP (t, T ), t ≤ T. (4.3)

For the case of a continuous log-price process X, this is basically the same setup as in
[15]. Finally, following [28] and using the Representation (4.3) (cf. Remark 2.2), we
can make the following Definition regarding the absence of arbitrage.

Definition 4.3. The market of variance swaps is free of arbitrage, if and only if, there
exists a probability measure Q equivalent to P, such that the predictable variance swap
price processes t 7→ V SP (t, T ), t ∈ [0, T ], T ≥ 0, is a (local) martingales. The measure
Q is then called an equivalent (local) martingale measure (E(L)MM). If under P the
variance swap price processes is a (local) martingales, it will be called (local) martingale
measure ((L)MM).

4.1 Term Structure Movements and Drift Condition

In this subsection we closely follow [34, Chapter 6] and [32, Chapter 4]. We denote
by (Ω,F , (Ft)t∈R+ ,P) a given complete filtered probability space satisfying the usual
conditions and such that β is a d-dimensional (Ft)-Brownian motion, for some d ∈ N
and P some given probability measure which not necessarily is a LMM. We assume
further that we are given an initial term structure v(0, ·) and mappings α and σ that
satisfy the following conditions (see Appendix A for the notation).



4 HJM Theory 15

(HJM1) α is a measurable mapping from (∆ × Ω,B(∆) ⊗ F) into (R,B(R)) and
σ is a measurable mapping from (∆ × Ω,B(∆) ⊗ F) into (Rd,B(Rd)), where
∆ := {(t, T ) ∈ R2 | 0 ≤ t ≤ T}.

(HJM2) For each T > 0, σ(·, T ) ∈ LlocT (R) and α(·, T ) is predictable and Lebesgue
integrable.

(HJM3) As functions of T , v(t, T ), α(t, T ) and σ(t, T ) are a.s. continuous.

Then, for each fixed but arbitrary T > 0, we assume that the forward variance process
evolves according to the Itô process given by

v(t, T ) = v(0, T ) +

∫ t

0
α(s, T ) ds+

d∑
j=1

∫ t

0
σj(s, T ) dβjs , t ∈ [0, T ]. (4.4)

Now we can immediately formulate the well-known HJM-drift condition for forward
variance models.

Proposition 4.4. P is an LMM in the sense of Definition 4.3, if and only if,

α(t, T ) = 0, for all T, dP⊗ dt-a.s. (4.5)

In this case the predictable variance swap price process evolves according to

V Sp(t, T ) = V Sp(0, T ) +
d∑
j=1

∫ t

0
σ̃j(s, T ) dβjs ,

where V Sp(0, T ) :=
∫ T

0 v(0, s) ds and σ̃j(t, T ) :=
∫ T
t σj(t, u) du for all t ≤ T . If further

σ(·, T ) ∈ L2
T (R) then P is a martingale measure.

Proof. As this is a well-known result, we only sketch the proof. Conditions (HJM1)-
(HJM3) enable us to use the ordinary and stochastic Fubini Theorem, see for example
[34, Theorem 2.3.2]. By denoting the spot variance process ξt := v(t, t), t ≥ 0, we get∫ T

t
v(t, u) du =

∫ T

0
v(0, u) du+

∫ t

0
α̃(s, T )− ξs ds+

d∑
j=1

∫ t

0
σ̃j(s, T ) dβjs ,

where α̃(t, T ) :=
∫ T
t α(t, u) du and σ̃j(t, T ) :=

∫ T
t σj(t, u) du for t ≤ T and accordingly

from (4.2) we arrive at the representation

V SP (t, T ) =

∫ T

0
v(0, u) du+

∫ t

0
α̃(s, T ) ds+

d∑
j=1

∫ t

0
σ̃j(s, T ) dβjs .

Thus P is a LMM, if and only if, for all T ≥ 0,
∫ t

0 α̃(s, T ) ds is indistinguishable from
zero, which is equivalent to α̃(t, T ) = 0 for all T ≥ 0, dP ⊗ dt-a.s. Thus (4.5) follows
from differentiation.

In this generality HJM models are not very useful for applications. It should rather
be seen as a general framework to formulate the drift-condition for forward variance
models. In the following we will discuss a very popular class of HJM models.
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4.2 Linear Models

In the following we assume that P is a MM (recall Definition 4.3). A very tractable
choice for the forward variances is then given by so-called linear models, which are mod-
els that for each fixed but arbitrary T are solutions to the linear stochastic differential
equation given by

v(t, T ) = v(0, T ) +

∫ t

0
v(s, T ) dMs(T ), t ∈ [0, T ], (4.6)

where for each T , t 7→Mt(T ) is a continuous local martingale with representation

Mt(T ) =

d∑
j=1

∫ t

0
Σj(s, T ) dβjs ,

for Σ1, ...,Σd satisfying the conditions (HJM1)-(HJM3). Solutions to such models
can be represented by (see [65, Proposition IX.2.3])

v(t, T ) = v(0, T )Et(M(T )) (4.7)

= v(0, T ) exp
( d∑
j=1

∫ t

0
Σj(s, T ) dβjs −

1

2

d∑
j=1

∫ t

0
Σ2
j (s, T ) ds

)
.

The situation is particularly tractable if

Σj(t, T ) = σj(T − t), j = 1, ..., d, (4.8)

for smooth deterministic functions σ1, ..., σd, since in this case the corresponding for-
ward variance process in Musiela’s parameteriaton (to be introduced in the next section)
given by t 7→ v(t, t+ ·) becomes a time-homogeneous Markov process.

Example 4.5 (Constant Diffusion). The simplest (non-trivial) choice is d = 1 and σ
being a constant. In this case the forward variance process and the variance swap rate
can be represented as

v(t, T ) = v(0, T )Et(σβ), V (t, T ) = V (0, T )Et(σβ), ∀0 ≤ t ≤ T.

The spot-variance process ξt := v(t, t) = v(0, t)Et(σβ) can be represented for a strictly
positive and differentiable initial curve v(0, t) by

ξt = v(0, 0) exp
(∫ t

0

( 1

v(0, s)

d

ds
v(0, s)− 1

2
σ2
)
ds+

∫ t

0
σ dβs

)
.

In particular, if v(0, T ) := aebT , then the spot-variance process reduces to the solution
of

dξt = bξt dt+ σξt dβt, ξ0 = a, (4.9)

and accordingly follows a geometric Brownian motion and in particular has an affine
drift in the sense of Section 3.1. Hence Proposition 3.5 applies and we have the inter-
esting special case in which a linear forward variance model admits an affine drift. We
can show this also by a direct computation as,

v(t, T ) = v(0, T ) +

∫ t

0
σv(s, T ) dβs = v(0, T )Et(σβ)

= a exp(bT ) exp
(
−
∫ t

0

1

2
σ2 ds+

∫ t

0
σ dβs

)
= exp(b(T − t))ξt.

We summarize this in the following Proposition.
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Proposition 4.6. Let v be the solution of the linear SDE given in (4.6) with d = 1
and Σ(t, T ) = σ. If the initial curve v(0, t) is of the form v(0, t) = a exp(bt) then the
forward variance model v admits an affine realization.

Example 4.7 (The Bergomi model). In the Bergomi model (see [7]) the diffusion coef-
ficients σ1, ..., σd are given by σi(x) = ωe−κix for x ≥ 0 and for all i = 1, ..., d. In this
case we have

Mt(T ) =
d∑
j=1

∫ t

0
ωe−κj(T−s) dβjs =

d∑
j=1

ωe−κj(T−t)Zjt , (4.10)

where each Zj is a solution to

Zjt = −κjZjt dt+ dβjt , Z0 = 0 (4.11)

and accordingly (independent) Ornstein-Uhlenbeck processes. From (4.7) the forward
variances in the Bergomi model have the representation

v(t, T )

v(0, T )
= exp

( d∑
j=1

e−κj(T−t)Zjt −
d∑
j=1

ω2

4κj
(e−2κj(T−t) − e−2κjT )

)
(4.12)

= exp
( d∑
j=1

e−κj(T−t)Zjt −
d∑
j=1

ω2

2
e−2κj(T−t)E[(Zjt )

2]
)
, (4.13)

where the second equation corresponds to representation used in [7].

Remark 4.8. Note the contrast to HJM models for forward interest rates in which
models with linear diffusion coefficients generally do not exist. That is, by denoting
the forward rare at time t for time-of-maturity T by f(t, T ), it can be shown (see [34,
Section 6.4.1] and the references therein) that the equation corresponding to (5.9) with
Mt(T ) = σβt, for some σ > 0, given by

df(t, T ) =
(
σf(t, T )

∫ T

t
σf(t, u) du

)
dt+ σf(t, T ) dβt,

can not admit a finite valued solution. This apparently lead to the development of the
LIBOR market model, see again [34, Section 6.4.1] for a discussion of this aspect.

5 HJM Musiela Theory

From now on we will assume that P is a LMM (see Definition 4.3). In this case, if
(HJM1)− (HJM3) hold true, it follows from Proposition 4.4, that for each fixed but
arbitrary T ≥ 0, the forward variance process v(·, T ) can be represented as

v(t, T ) = v(0, T ) +

d∑
j=1

∫ t

0
σj(s, T ) dβjs , t ∈ [0, T ]. (5.1)

Now we will switch to the HJM Musiela perspective by considering the forward variance
process in Musiela’s parametrization (see [62])

u(t, x) := v(t, t+ x), ∀(t, x) ∈ R+ × R+

and state conditions (following [40, Section 4]) such that the process ut := u(t, ·) takes
values in a Hilbert space H that satisfies the conditions (H1) and (H2) in [40], namely
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(H1) H is a separable Hilbert space continuously embedded in C(R+,R) (that is, for
every x ∈ R+, the pointwise evaluation evx : u 7→ u(x) is a continuous linear
functional on H) and 1 ∈ H (the constant function 1).

(H2) The family {St | t ∈ R+} of right-shifts Stu = u(t+ ·) forms a strongly continuous
semi-group S in H with infinitesimal generator denoted by d

dx .

Remark 5.1. Unless otherwise stated, we shall think of the Hilbert space H that was
introduced in [32, Chapter 5], which consists of absolutely continuous functions h on
R+ equipped with the norm

‖h‖2H := |h(0)|2 +

∫
R+

|h′(x)|2w(x) dx, (5.2)

where w : R+ → [1,∞) is a non-decreasing weighting function. Notice that we do not
need an integrability condition on the weighting function as in [32, Condition (5.1)] as
the additional condition (H3) necessary for the regularity of the HJM-drift for forward
interest rates is not required here (cf. [32, Remark 5.1.1]). Hence, possible choices
include the constant function w(x) = 1 for all x ∈ R+ and w(x) = eαx for some α > 0.
According to [32, Theorem 5.1.1] and [32, Corollary 5.1.1.] the space satisfies (H1)
and (H2), the elements are bounded and it holds that

D(d/dx) = {h ∈ H |h′ ∈ H}.

If the weighting function w needs to be emphasized, we will write Hw.

In the following we will consider a slightly more general situation than necessary, by
looking at models given by

f(t, T ) = f(0, T ) +

∫ t

0
α(s, T ) ds+

d∑
j=1

∫ t

0
σj(s, T ) dβjs , t ∈ [0, T ]. (5.3)

Lemma 5.2. If r∗ := f(0, ·), αt(ω) := α(t, ω, · + t) and σjt (ω) := σj(t, ω, · + t), j =
1, ..., d, satisfy the conditions

(C1) r∗ ∈ H, and

(C2) α and σj, j = 1, ..., d are H-valued predictable processes satisfying

P
[ ∫ t

0
‖αs‖H ds <∞

]
= 1, ∀t ≥ 0,

and σj ∈ Lloc(H), for j = 1, ..., d.

Then for each t ≥ 0, rt := f(t, t+ ·) can be represented as

rt = S(t)r∗ +

∫ t

0
S(t− s)αs ds+

d∑
j=1

∫ t

0
S(t− s)σjs dβjs ,

and is a mild solution in H of{
drt = ( d

dxrt + αt) dt+
∑d

j=1 σ
j
t dβ

j
t

r0 = r∗.

If also σj ∈ L2(H), j = 1, ..., d, then the mild solution can be chosen to be continuous.
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Proof. This is [32, Section 4.2] and [26, Poposition 7.3].

Thus, if u∗ := v(0, ·) and σt(ω) := σ(t, ω, · + t) satisfy the conditions (C1) and
(C2), then for each t ≥ 0, u satisfies

ut = S(t)u∗ +

d∑
j=1

∫ t

0
S(t− s)σjs dβjs (5.4)

and accordingly is a mild solution of{
dut = d

dxut dt+
∑d

j=1 σ
j
t dβ

j
t

u0 = u∗.
(5.5)

Proposition 5.3. Fix some T > 0. If σj ∈ L2
T (H), j = 1, ..., d, σj ∈ D(d/dx) dP⊗dt-

almost surely on Ω× [0, T ] and d
dxσj ∈ L

2
T (H), j = 1, ..., d, then for any u∗ ∈ D(d/dx),

(5.4) is also a strong solution of (5.5).

Proof. The existence of a continuous mild solution follows from the above and that this
is also a strong solution follows from [26, Proposition 6.4].

5.1 Spot-Variance Models with Affine Drift

We continue the discussion of spot-variance models with affine drift as given in Section
3.1. The following proposition follows immediately from Lemma 5.2. We consider the
Hilbert Space H given in Remark 5.1 with weighting function w(x) = eαx for some
fixed α ≥ 0.

Proposition 5.4. Let ut := v(t, t+ ·) and u∗ := v(0, ·), where v is given by (3.12) with
σ ∈ Lloc(R). If v(0, ·) ∈ H and 2κ < −α, then u is a mild solution of{

dut = d
dxut dt+ σte

κ· dβt

u0 = u∗.
(5.6)

If u∗ ∈ D(d/dx) and σ ∈ L2(R) the solution is also a strong solution.

Proof. It follows from (5.2), that eκ· ∈ D((d/dx)n) ⊂ H for n = 0 (and then also for
all n ≥ 0) if and only if 2κ < −α. In this case the process σ̃ := (σte

κ·)t≥0 is in Lloc(H)
as σ ∈ Lloc(R) which gives Condition (C2) and thus according to Lemma 5.2 the first
claim. For the second claim, note that σ̃ is in L2(H) whenever σ ∈ L2(R) and that
in this case also d

dx σ̃ = κσ̃ ∈ L2(H). Hence the second claim follows from Proposition
5.3.

Let the conditions of Proposition 5.4 be satisfied and denote by u the strong solution
of (5.6) for u0 = u∗ ∈ D(d/dx). Also consider the representation given in (3.7) which
in Musiela’s parametrization ũt := v(t, t+ ·) corresponds to

ũt = Stu
∗ + eκ·(ξt − u∗(t)), (5.7)

where ũ0 := u∗ and ξt = ũt(0) is the spot-variance. Notice that this representation
consists of the sum of an deterministic process in H given by t 7→ Stu

∗, where at
each time t, x 7→ Stu

∗(x) = u∗(t + x) and a process given by t 7→ eκ·(ξt − u∗(t))
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where eκ· is a constant element in H and t 7→ (ξt − u∗(t)) is a real-valued stochastic
process. Accordingly at each time t, eκ·(ξt − u∗(t)) takes values in the linear one-
dimensional space given by the span of eκ· and consequently ũt given by (5.7) stays in
the 2-dimensional submanifold with boundary of H given by

Mu∗ := {Stu∗ + eκ·z|(t, z) ∈ R+ × R} ⊂ D(d/dx).

Proposition 5.5. Let u∗ ∈ D(d/dx) and σ ∈ L2(R), such that ξ is a strong solution
to

dξt = (αt + κξt) dt+ σt dβt, ξ0 = u∗(0),

with α given by (3.6). Then ũ given by (5.7) is a strong solution to (5.6) and accordingly
ũ = u by uniqueness of strong solutions.

Proof. From the Definition of α given in (3.6) and Itô’s product rule, it follows that
ξ̃t := ξt − u∗(t) is a strong solution to

dξ̃t = κξ̃t dt+ σt dβt, ξ̃0 = 0 (5.8)

and accordingly from the definition of the semi-flow St, the linearity of the (stochastic)
integral and the boundedness of d

dx on Mu∗ , we get

ũt = Stu
∗ + eκ·ξ̃t = u∗ +

∫ t

0

d

dx
Ssu

∗ ds+ eκ·ξ̃t

= u∗ +

∫ t

0

d

dx
Ssu

∗ ds+

∫ t

0
κeκ·ξ̃s ds+

∫ t

0
σse

κ· dβs

= u∗ +

∫ t

0

( d
dx
Ssu

∗ +
d

dx
eκ·ξ̃s

)
ds+

∫ t

0
σse

κ· dβs

= u∗ +

∫ t

0

d

dx
ũs ds+

∫ t

0
σse

κ· dβs,

which gives the claim.

Thus, the SPDE (5.6) admits for every u0 ∈ D(d/dx) a generic finite dimensional
realization (see next chapter). Such models are also called generic affine realizations
as for initial curves from the set (3.10) (which corresponds to an affine submanifold of
H) the term structure of the model given by (3.5) is affine in the spot-variance.

5.2 Linear models

We continue the discussion of linear models started in Section 4.2. We assume that in
(4.6) the diffusion coefficients are of the form (4.8), that is, we look at forward variance
processes with representation

v(t, T ) = v(0, T ) +

d∑
j=1

∫ t

0
v(s, T )σj(T − s) dβjs . (5.9)

As in the last subsection, we want to derive conditions such that this equation can
be represented in Musiela’s parametrization ut := v(t, t + ·) as a stochastic partial
differential equation in the Hilbert space H, for some weighting function w. Before we
proceed we introduce the pointwise multiplication operator m which acts on two given
functions f, g : R+ → R by pointwise multiplication, that is,

m(f, g) : R+ → R, x 7→ m(f, g)(x) = f(x)g(x). (5.10)
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Lemma 5.6. Let σ be absolutely continuous. Then the multiplication operator given
by (5.10) satisfies m(σ, h) ∈ H for all h ∈ H if and only if σ ∈ H. In this case for any
fixed σ ∈ H we have m(σ, ·) ∈ L(H,H).

Proof. Necessity of the first claim follows from m(σ, 1) = σ. For the sufficiency, first
note that the product of absolutely continuous functions is again absolutely continuous.
Further, we have from (5.2)

‖m(σ, h)‖2H = |σ(0)h(0)|2 +

∫
R+

∣∣∣σ(x)′h(x) + σ(x)h′(x)
∣∣∣2w(x) dx

≤ |σ(0)h(0)|2 + 2

∫
R+

(∣∣∣σ(x)′h(x)
∣∣∣2 +

∣∣∣σ(x)h′(x)
∣∣∣2)w(x) dx

=: |σ(0)h(0)|2 + I1 + I2,

where

I1 = 2

∫
R+

∣∣∣σ(x)′
(
h(0) +

∫ x

0
h′(y) dy

)∣∣∣2w(x) dx

≤ 4

∫
R+

(∣∣∣σ(x)′h(0)
∣∣∣2 +

∣∣∣σ(x)′
∫
R+

h′(x) dx
)∣∣∣2)w(x) dx

= 4(|h(0)|2 + ‖h′‖2L1(R+))

∫
R+

|σ′(x)|2w(x) dx

= 4(|h(0)|2 + ‖h′‖2L1(R+))(‖σ‖
2
H − |σ(0)|2) <∞,

as ‖h′‖2L1(R+) ≤ C1‖h‖2H , where C1 is a constant that depends only on w according to

[32, Equation (5.3)]. Similarly, for I2 we have

I2 = 4(|σ(0)|2 + ‖σ′‖2L1(R+))(‖h‖
2
H − |h(0)|2) <∞,

which gives the first claim. Now fix σ ∈ H with ‖σ‖2H =: M , then we see from the
above that

‖m(σ, h)‖2H ≤ (9M + 8C1M)‖h‖2H ,

whence the second claim.

Remark 5.7. For a different proof of Lemma 5.6 see [71, Lemma 4.2].

Now assume that u∗ := v(0, ·) satisfies Condition (C1). Then it is easy to see that
the Equation (5.9) corresponds formally in Musiela’s parametrization to{

dut = d
dxut dt+

∑d
j=1m(σj , ut) dβ

j
t

u0 = u∗,
(5.11)

but unlike to the models considered in Section 5.1 we can not apply Lemma 5.2 directly,
as the forward variance processes in (5.9) are given by solutions to SDEs and not by
Itô-processes as in Section 5. In particular, we can not check Condition (C2) without
knowing the process u. Therefore we proceed here by showing first that (5.11) admits
a unique continuous mild solution. In a second step we will then show that condition
(C2) is satisfied and apply Lemma 5.2.
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Lemma 5.8. Let σj ∈ H, j = 1, ..., d. Then for any u∗ ∈ H, (5.11) has a unique
continuous weak solution u such that for any T > 0 there exists a positive constant
C := C(T ) and

E[ sup
t∈[0,T ]

‖ut‖2H ] ≤ C(1 + ‖u∗‖2H). (5.12)

Proof. The follows immediately from Proposition I.3.2 and Lemma 5.6.

Corollary 5.9. If u∗ := v(0, ·) satisfies Condition (C1), then ut := v(t, ·), where
v(t, T ) denotes the solution of (5.9), is a continuous mild solution of (5.11).

Proof. By setting v(t, T ) := u(t, T − t) where u denotes the mild solution of (5.11) we
get

v(t, T ) = Stu
∗(T − t) +

d∑
i=1

∫ t

0
St−sm(σj , us)(T − t) dβjs

= u0(T ) +
d∑
i=1

∫ t

0
σj(T − s)us(T − s) dβjs

= v(0, T ) +
d∑
i=1

∫ t

0
σj(T − s)v(s, T ) dβjs ,

which is (5.9). Now in the notation of Lemma 5.2 we have pointwise

σjt (ω)(x) := σj(x)v(t, ω, t+ x) = m(σj , ut(ω))(x)

and using (5.12) it follows that u ∈ L2
T (H) and hence also m(σj , u) ∈ L2

T (H) which is
(C2). Hence the claim follows from Lemma 5.2.

Thus we have shown that the solution v of (5.9) is in Musiela’s parametrization a
continuous mild solution of (5.11). On the other hand, we know from (4.7) that (5.9)
is solved by

v(t, T ) = exp
(

log(v(0, T )) +

d∑
j=1

∫ t

0
σj(T − s) dβjs −

1

2

d∑
j=1

∫ t

0
σ2
j (T − s) ds

)
.

Now if we define J̃(t, T ) := log(v(t, T )) then it follows from the first part of Lemma 5.2
that for each J∗ := log(v(0, t+ ·)) ∈ H, Jt := J̃(t, t+ ·) is a mild solution of{

dJt = ( d
dxJt −

1
2

∑d
j=1m(σj , σj)) dt+

∑d
j=1 σj dβ

j
t

J0 = J∗,
(5.13)

as m(σj , σj) and σj satisfy Condition (C2), on each bounded interval [0, T ] and each
j = 1, ..., d. The process J can be decomposed as follows.

Lemma 5.10. Let J2 be the mild solution to the deterministic Cauchy problem{
dJ2

t = ( d
dxJ

2
t − 1

2

∑d
j=1m(σj , σj)) dt

J2
0 = J∗.

(5.14)

Then J1 := J − J2, is a mild solution to{
dJ1

t = d
dxJ

1
t dt+

∑d
j=1 σj dβ

j
t

J1
0 = 0,

(5.15)
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Proof. This follows from [26, Proposition A.4].

For the second part of Lemma 5.2 we have the following Condition.

Lemma 5.11. If σ1, ..., σd satisfies∫ T

0
‖Stσj‖2H dt <∞, j = 1, ..., d,

then the mild solution J of (5.13) and J1 of (5.15) can be chosen to be continuous on
[0, T ].

Proof. This is [26, Theorem 5.2].

For h ∈ H we consider the pointwise exponential map on H given by

x 7→ exp(h)(x) := exp(h(x)). (5.16)

By construction it seems to be obvious that the process t 7→ exp(Jt) agrees with t 7→ ut.
However, as the process J (given as the mild solution of (5.13)) is not an Itô-process,
we can not apply the Itô formula. We will show that the result still holds true by an
application of [74, Theorem 2.2], but need first the following Lemmas.

Lemma 5.12. Let w be an arbitrary weighting function. Then exp(H) ⊂ H.

Proof. For h ∈ H arbitrary we have

‖eh‖2H = = |eh(0)|2 +

∫
R+

∣∣∣h′(x)eh(x)
∣∣∣2w(x) dx

≤ |eh(0)|2 +

∫
R+

∣∣∣h′(x)
(
eh(0) +

∫ x

0
(eh(y))′ dy

)∣∣∣2w(x) dx

≤ |eh(0)|2 + 2

∫
R+

(∣∣∣h′(x)eh(0)
∣∣∣2 +

∣∣∣h′(x)

∫ x

0
(eh(y))′ dy

∣∣∣2)w(x) dx

≤ |eh(0)|2(1 + 2‖h‖2H) + 2

∫
R+

∣∣∣h′(x)

∫ x

0
(eh(y))′ dy

∣∣∣2w(x) dx

≤ |eh(0)|2(1 + 2‖h‖2H) + 2
∣∣∣ ∫ x

0
(eh(y))′ dy

∣∣∣2‖h‖2H
≤ |eh(0)|2(1 + 2‖h‖2H) + 2‖(eh(·))′‖2L1(R+)‖h‖

2
H .

Thus the claims follows upon showing that ‖(eh(·))′‖L1(R+) <∞, but this follows from
the boundedness of h ∈ H, as

‖(eh(·))′‖L1(R+) =

∫
R+

|(eh(x))′| dx =

∫
R+

eh(x)|h′(x)| dx

=

∫
R+∩h′≥0

eh(x)h′(x) dx−
∫
R+∩h′<0

eh(x)h′(x) dx

=

∫
h(R+∩h′≥0)

ey dy −
∫
h(R+∩h′<0)

ey dy <∞.
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Lemma 5.13. Let w be an arbitrary weighting function. Then for all f, g ∈ H we have

exp(f + g) = m(exp(f), exp(g)).

Proof. From Lemmas 5.6 and 5.12 we know that both sides of the equation are well-
defined elements in H. Hence, as the claim holds pointwise, we get immediately that
‖ exp(f + g)−m(exp(f), exp(g))‖2H = 0 and thus the claim.

Lemma 5.14. The exponential map exp : H → H+, where H+ := exp(H), is a
diffeomorphism.

Proof. We show first that for every h0 the Frèchet derivative D exp(h0) exists and is
given by m(exp(h0), ·). It suffices to show this for h0 = 0. We have∥∥∥exp(εh)− 1− εh

ε

∥∥∥2

H
=
∣∣∣exp(εh(0))− 1− εh(0)

ε

∣∣∣2
+

∫
R+

∣∣∣(exp(εh(x))− 1− εh(x))′

ε

∣∣∣2w(x) dx =: I1 + I2.

By Taylor’s Theorem, the first term I1 vanishes as ε → 0 for all h ∈ BH , where BH
denotes the unit-sphere in H. For the second term, it holds true that

I2 =

∫
R+

∣∣∣exp(εh(x))εh′(x)− εh′(x)

ε

∣∣∣2w(x) dx

=

∫
R+

(h′(x))2(exp(εh(x))− 1)2w(x) dx

≤
(∫

R+

(h′(x))2w(x) dx
)(

exp(εh(0)) +

∫
R+

d

dy
exp(εh(y)) dy − 1

)2

= (‖h‖2Hw − |h(0)|2)
(

exp(εh(0)) +

∫
εh(R+)

exp(z) dz − 1
)2
→ 0,

as ε → 0, again uniformly for all h ∈ BH and hence the first claim holds. Next, for
any h0 ∈ H, the derivative D exp(h0) = m(exp(h0), ·) is an isomorphism, with inverse
given by

[D exp(h0)]−1 = m(exp(−h0), ·),

hence it follows from the Inverse Mapping Theorem (see for example [62, 2.5.2 Inverse
Mapping Theorem]) that exp : H → H+ is a diffeomorphism. It is obvious that the
inverse is given by the pointwise logarithm log : H+ → H, log(h)(x) := log(h(x)) with
derivative given according to the Inverse Mapping Theorem by

D log(h0) =
[
D exp(log(h0))

]−1
= m(exp(− log(h0), ·) = m(

1

h0
, ·),

for every h0 ∈ H+.

Now we can finally show the desired result.

Proposition 5.15. Let u denote the unique continuous mild solution of (5.11) and let
ũ be the process given by t 7→ ũt := eJt. Then u = ũ on [0, T ].
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Proof. We know from Lemma 5.14 that exp : H → H+ is diffeomorphism and we have
that exp(D(d/dx)) = H+ ∩ D(d/dx) as d

dx exp(h) = m(exp(h), ddxh) ∈ H by Lemma

5.6 whenever h ∈ D(d/dx). Also we have exp∗(
d
dx) = d

dx (where exp∗(
d
dx) denotes the

push forward of d
dx , see [74]) as

exp∗

( d
dx

)
(h) = D exp(log(h))

d

dx
log(h) = m(h,

d

dx
log(h))

= m(h,m(
1

h
,
d

dx
h)) =

d

dx
h.

Hence the conditions of [74, Theorem 2.2] are satisfied and we have that ũ = eJ is a
continuous mild solution to{

dũt = ( d
dx ũt −

1
2

∑d
j=1 exp∗m(σj , σj)(ũt) + χ(ũt)) dt+

∑d
j=1(exp∗ σj)(ũt) dβ

j
t

ũ0 = exp(J0),

where exp∗ σj(h) = m(σj , h) and

χ(h) :=
1

2

d∑
j=1

D2 exp(log(h))(σi, σi) =
1

2

d∑
j=1

exp∗m(σj , σj)(h).

Thus ũ satisfies (5.11) and the claim follows from uniqueness.

Example 5.16 (The Bergomi model revisited). In the Bergomi model (see Example 4.7)
in Musiela’s parametrization the diffusion coefficients are given by σj = ωe−κj · for
j = 1, ..., d where κ > 0 and accordingly the corresponding equation (5.15) is given by{

dJ1
t = d

dxJ
1
t dt+

∑d
j=1 ωe

−κj · dβjt
J1

0 = 0,
(5.17)

which corresponds to the type of equation given in (5.6). It follows from Proposition
5.4 that whenever e−κ· ∈ H, (5.17) admits a strong solution on [0, T ] for each T > 0.
Moreover, by setting as in (5.7) and (5.8),

J̃1
t :=

d∑
j=1

e−κj ·Zjt (5.18)

with each Zj , j = 1, ..., d being strong solutions of

dZjt := −κjZjt dt+ ω dβjt , (5.19)

it follows just as in Proposition 5.5 that (5.18) is a strong solution of (5.17) and hence
J1 = J̃1 on [0, T ]. And finally we get from Lemmas 5.10, 5.13 and Proposition 5.15
that

ut = m(exp(J2
t ), exp(J1

t )) = m(exp(J2
t ), exp(

d∑
j=1

e−κj ·Zjt )). (5.20)

Now it is easy to see, that

{m(eJ
2
t , e

∑d
j=1 e

−κj ·zj )|(t, z1, ..., zd) ∈ R+ × Rd} ⊂ D(d/dx)

and that accordingly u is in this case a strong solution to (5.11) whenever u∗ ∈ D(d/dx).
Note that in this case (5.11) admits a generic finite dimensional realization to be
introduced in the next chapter. For reasons that are similar to those given at the end
of Section 5.1 such models will be called exponential affine realizations.
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Chapter III

Finite dimensional Realizations

At the end of the last chapter we saw that the SPDEs (II.5.6) and (II.5.11) (with
the diffusion coefficients given as in Example II.5.16) admit generic finite dimensional
realizations in that the solutions for any initial curve within an open set of H could be
represented by a smooth parametrization of finite dimensional Itô processes as given in
(II.5.7) and (II.5.19) respectively. In this chapter we will look at more general versions
of the SPDEs (II.5.6) and (II.5.11) and investigate the conditions on the diffusion
coefficients such that the SPDEs admit generic finite dimensional realizations, that is,
finite dimensional realizations for every initial curve in some open set of H. Answers
to this question for the HJM-Musiela equation for forward (interest) rate models were
first found by Tomas Björk and co-workers in a series of papers including [11] and [13]
and later on completely solved by Damir Filipović and Josef Teichmann in a series of
papers including [38] and [40]. For applications to forward variances see also [15] where
the invariance conditions (see (2.2) and (2.3)) with respect to a given finite dimensional
submanifold were cited. In the following the main reference will be [40]. In particular
we will recapture the existence of affine realizations which is very closely related to
the situation for the forward interest rates. We shall also systematically consider the
existence of finite dimensional realizations for linear SPDEs, which are generalizations
of (II.5.11), beyond the simple case that corresponds to Bergomi’s variance curve model
(see [7]). The main tool in both cases will be a version of the Frobenius Theorem which
was introduced in [38]. For this we will restrict ourselves to Markovian models albeit
with stochastic volatility (i.e. forward variance models that have local and stochastic
volatility).

1 Markovian HJMM Models

From the preceding results we see that basically every HJM model given by an infinite
system (one for each time-to-maturity T ) of forward variance equations as in (II.5.1)
can be transferred into a single equation as in (II.5.5) in an infinite dimensional Hilbert
space. For our following considerations the specification of the diffusion coefficient σ as
given in the equation (II.5.5) is too general and not very useful for applications. Also
so far we have only considered an equation for one given initial curve. On the other
hand we do not want to restrict ourselves to the purely time-homogeneous case by
sacrificing the possibility of considering a stochastic diffusion coefficient. A reasonable
compromise is given by the class of forward variance models with stochastic volatility
evolving in the state space H := H × Rm for some m ∈ N, where H satisfies the
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Assumptions (H1) and (H2) given above (we adopted this setting from [40]). On this
space H and under the standing assumption that P is a (local) martingale measure for
the market of variance swaps, we consider the (general) stochastic equation given by{

dht = (Aht + α(ht)) dt+
∑d

j=1 Σj(ht) dβ
j
t ,

h0 ∈ U := U × Rm,
(1.1)

where U is some open convex set in H, A is a linear operator on H with domain D(A)
generating a strongly continuous semigroup S and α,Σ1, ...,Σd are smooth vector fields
on H. If we understand (1.1) as a model for the forward variances with stochastic
volatility, we will set

A :=

(
d
dx 0
0 0

)
, α(h) :=

(
0

a(h)

)
, (1.2)

for some smooth map a : H → Rm, such that the drift-condition (see Proposition
II.4.4) is satisfied. In this case, the first H-valued coordinate process u of the solutions
h = (u, Y ) will be interpreted as the forward variance process and the Rm-valued second
coordinate Y as the (stochastic) volatility of the forward variance. Note that as d/dx
generates the shift-semigroup {St | t ∈ R+} by (H2), A given in (1.2) generates the
strongly continuous semigroup {St | t ∈ R+}, with t 7→ St(u, Y ) = (Stu, Y ) on H and
D(A) = D(d/dx)×Rm. Thus, setting (σi, ci) := (Σi1,Σi2), for i = 1, ..., d, we arrive at
the coordinate representation of equation (1.1) given by

dut = d
dxut dt+

∑d
j=1 σ

j(ut, Yt) dβ
j
t ,

dYt = a(ut, Yt) dt+
∑d

j=1 c
j(ut, Yt) dβ

j
t ,

(u0, Y0) ∈ U := U × Rm.
(1.3)

2 The Frobenius Theorem

In this section we give a short summary of the results of [40] (where everything can be
found in full detail) that will be used in the following. The central result will be the
Frobenius Theorem (see Theorem 2.2) that will ultimately yield equivalent conditions
for the existence of generic finite dimensional realizations for the (general) SPDE (1.1).
The analysis will be carried out in the Frèchet space D(A∞) as A will generally be
unbounded on H, but a bounded linear operator on D(A∞), which is a necessary
prerequisite for this Frobenius Theorem.

If (1.1) admits such a generic finite dimensional realization, there will be in partic-
ular (see [40, Definition 2.5]) for any h0 ∈ U ∩D(A∞) an open neighborhood V around
h0, an open set V in Rn+ and a C∞-map Γ : V ×V → U ∩D(A∞), that is an immersion
for each fixed h ∈ V, such that for any h∗ ∈ V there exists a V -valued diffusion process
Z and a strictly positive stopping time τ such that

ht∧τ = Γ(Zt∧τ , h
∗), for all t ≥ 0, (2.1)

is the unique local solution of (1.1) with h0 = h∗. The existence of a generic finite
dimensional realization around any h0 ∈ U∩D(A∞) is basically equivalent (see Theorem
2.2) to the existence of a (weak) foliation of finite dimensional submanifolds (Mh)h∈V
with boundary of H such that for any h∗ ∈ V the solution of the stochastic equation
(1.1) with initial value h∗ satisfies

ht∧τ ∈Mh∗ , for all t ≥ 0.
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In fact, in this case each leafMh∗ can be defined by the parametrization Γ(·, h∗), which
gives necessity. Sufficiency follows under some mild conditions from the Frobenius
Theorem, which is cited in Theorem 2.2.

For a given finite dimensional submanifoldM⊂ U ∩D(A) with boundary of H and
an initial curve h∗ ∈ M, necessary and sufficient conditions for the invariance of M
with respect to the (weak) solution of (1.1) with initial value h∗ ∈M, are given by the
well-known consistency conditions formulated for the drift and diffusion coefficient of
(1.1) in the Stratonovich representation

Ξ(h) := Ah+ α(h)− 1

2

d∑
j=1

DΣj(h)Σj(h) ∈ ThM, (2.2)

Σj(h) ∈ ThM, j = 1, ..., d, (2.3)

for all h ∈ M, where for the boundary elements h ∈ ∂M, Ξ(h) is inward pointing
and the Σj , j = 1, ..., d are parallel to the boundary, see [40, Theorem 1.2] and the
references therein.

Notice that (2.2) and (2.3) are purely geometric conditions on the Stratonovich
coefficients of (1.1) and we have

Dh := 〈Ξ(h),Σ1(h), ...,Σd(h)〉 ⊂ ThM, ∀h ∈M.

Accordingly, in the language of classical Frobenius Theory, D := (Dh)h∈M is a tangent
distribution of M and if there exists an integral manifold N ⊂ M of the distribution
D, then the conditions (2.2) and (2.3) will be satisfied for every h ∈ N and accordingly
N will be left invariant by (1.1) for any h0 ∈ N . Thus, at least formally, it is clear
how to proceed if there is a-priori no candidate foliation (Mh)h∈V of submanifolds with
boundary of H and the question is, whether the stochastic equation (1.1) admits a
finite dimensional realization.

If the operator A is bounded in H the classical Frobenius Theorem can be used as
in [13]. However this poses some strong restrictions on the considered Hilbert space
and hence on the diffusion coefficients of (1.1). Damir Filipović and Josef Teichmann
(see [38, Theorem 3.9]) solved this problem by introducing a Frobenius Theorem on
the Frèchet space D(A∞) by using the boundedness of A on D(A∞). By doing so,
the problem of finding a generic finite dimensional realization is shifted to the Frèchet
space D(A∞), which however under some mild conditions means no loss of generality
(see [39, Theorem 3.2]). Before citing this version of the Frobenius Theorem we need
some concepts regarding the analysis on Frèchet spaces, which we summarize in the
following Definition (which is [40, Definition 3.11], a full account can be found in [38,
Section 2] and references therein).

Definition 2.1. Let E be a Frèchet space, U an open subset. A distribution on U is a
collection of vector subspaces D = {Df}f∈U of E. A vector field X on U is said to take
values in D if X(f) ∈ D(f) for f ∈ U . A distribution D on U is said to be involutive
if, for any two locally given vector fields X, Y with values in D, the Lie bracket [X,Y ],
given by

[X,Y ](f) = DX(f)Y (f)−DY (f)X(f), f ∈ U

takes values in D.
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Theorem 2.2. Let X1, ..., Xn be smooth vectorfields that are pointwise linearly inde-
pendent on an open subset U of D(A∞), such that X1, ..., Xn−1 admit local flows and
Xn a local semiflow and let D be the distribution on U generated by X1, ..., Xn.

If
〈Ξ(f),Σ1(f), ...,Σd(f)〉 ⊂ D(f), ∀f ∈ U , (2.4)

then (1.1) admits a generic finite dimensional realization around any h∗ ∈ U if D is
involutive. In this case the map in (2.1) is given by

V × V 3 (u, h∗) 7→ Γ(u, h∗) := FlX1
u1 ◦ ... ◦ Fl

Xn
un (h∗), (2.5)

where V and V are open sets in Rn+ and D(A∞) respectively.

Proof. This follows from [40, Theorem 3.14].

If the conditions of the last Theorem are satisfied, then for every initial curve h∗ ∈ U
the underlying coordinate diffusion process Z can be found as in [34, Section 6.4] where
the invariant submanifold with boundary Mh∗ of H is given by the parametrization
Γ(·, h∗).

Definition 2.3. In the setting of Theorem 2.2, we say that (1.1) admits a minimal
finite dimensional realization, if the (constant) dimension of the distribution D agrees
on U with the dimension of the distribution (〈Ξ(h),Σ1(h), ...,Σd(h)〉)h∈U .

In the following we will investigate the existence of generic finite dimensional real-
izations for generalized versions of the SPDEs given in (II.5.6) and (II.5.11) which are
both of the form (1.1).

3 Affine realizations

In Section II.5.1 we have looked at some forward variance models implied by spot-
variance models with Hull-White extended affine drift. If the spot-variance process ξ
is a Hull-White extended diffusion with representation

ξt = ξ0 +

∫ t

0
(αs + κξs) ds+

∫ t

0
σ(ξs) dβs,

where σ is a smooth map (this is a special case of the models we considered in Section
II.5.1 and corresponds to the case where σt = σ(ξt)) , the forward variance process u
is a solution to the SPDE (II.5.6) with σt replaced by σ(ut(0)), that is,{

dut = d
dxut dt+ σ(ut(0))eκ· dβt

u0 = h,
(3.1)

and will be solved for any initial curve h ∈ D(d/dx) by

ut = Stu0 + eκ·ξ̃t, (3.2)

where ξ̃t := ξt − h(t) is a strong solution to

dξ̃t = κξ̃t dt+ σ(ξ̃t + h(t)) dβt, ξ̃0 = 0.

Note that the diffusion coefficient Σ(u) := σ(u(0))eκ· is sensitive with respect to the
forward curve only trough the linear evaluation map ev0(u) = u(0). We will now look
at generalizations of this situation by considering the Equation (1.1) and assuming that
[40, (A1)-(A3)] are satisfied:
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(A1) The diffusion coefficients Σ1, ...,Σd are pointwise linearly independent and of the
form

Σi(u, Y ) = φi(l(u), Y ), 1 ≤ i ≤ d, (3.3)

where l ∈ L(H,Rp), for some p ∈ N, φi : Rp+m → D(A∞), for i = 1, ..., d, are
smooth and pointwise linearly independent maps. Moreover,

a(u, Y ) = φ0(l(u), Y ), (3.4)

where φ0 : Rp+m → Rm is smooth.

(A2) For every q ≥ 0, the map(
l, l ◦

( d
dx

)
, ..., l ◦

( d
dx

)q)
: D
(( d

dx

))
→ Rp(q+1)

is open.

(A3) A is unbounded on H.

Remark 3.1. It follows from Assumption (A1) that basically every weak solution of
(1.1) is also a strong solution, which follows from [26, Proposition 6.4]

Lemma 3.2. Given Assumptions (A1)-(A3), the vector fields Σ1, ...,Σd, [Ξ,Σj ], j =
1, ..., d, as well as all multiple Lie Brackets on U are Banach maps and in particular
admit local flows. Ξ is not a Banach map but generates a local semi-flow.

Proof. This is [40, Lemma 3.17, Lemma 3.20 and Theorem 3.19]

Under these assumptions, Damir Filipović and Josef Teichmann found in [40] the strik-
ing result, that if the SPDE (1.1) with m = 0 admits a generic finite dimensional
realization, then it is necessarily affine:

Theorem 3.3. Let O be an open subset of U ∩D(A∞) such that on O the conditions of
Theorem 2.2 are satisfied, then there exist pointwise linearly independent vector fields
λ1, ..., λNLA−1 ∈ C∞(O, D(A∞)) such that

DLA(u, Y ) = 〈Ξ(u, Y ), λ1(Y ), ..., λNLA−1(Y )〉

and

Σj(u, Y ) ∈ 〈λ1(Y ), ..., λNLA−1(Y )〉, for all (u, Y ) ∈ O. (3.5)

Proof. This follows from [40, Theorem 4.5].

In particular if m = 0, then the vector fields λ1, ..., λNLA−1 are necessarily constant
and thus lead by Theorem 2.2 to an affine realization. In the following we will assume
that (3.5) holds for constant vector fields λ1, ..., λd as in the case of a minimal realization
(i.e., NLA = d+1, see Definition 2.3). In the next chapters we will look at more general
models.

(A4) There are linearly independent vectors λ1, ..., λd ∈ D(A∞) such that the diffusion
coefficients Σ1, ...,Σd satisfy

Σj(u, Y ) ∈ 〈λj〉, for all (u, Y ) ∈ U ∩D(A∞), j = 1, ..., d. (3.6)
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Combined with (A1) this implies that the diffusion coefficients satisfy

Σj(u, Y ) = φj(l(u), Y )λj , ∀(u, Y ) ∈ V, j = 1, ..., d, (3.7)

where l is as in (A1) and each φj is a scalar field on Rm+p. Under these assumptions
we arrive at the following coordinate representation corresponding to (1.3)

dut = d
dxut dt+

∑d
j=1 σ

j(ut, Yt) dβ
j
t ,

dYt = a(ut, Yt) dt+
∑d

j=1 c
j(ut, Yt) dβ

j
t ,

(u0, Y0) ∈ U := U × Rm,
(3.8)

where

Σj(u, Y ) =

(
σj(u, Y )
cj(u, Y )

)
= φj(l(u), Y )

(
λ1
j

λ2
j

)
, j = 1, ..., d (3.9)

and a as defined in (3.4). Now, in order to apply Theorem 2.2 to the distribution
generated by the vector fields Ξ, λ1, ..., λd on an open subset V of U ∩ D(A∞) we
have to ensure that the vector fields are pointwise linearly independent and that the
distribution is involutive. We have the following lemma (cf. [40, Remark 5.4]) that
ensures that we can replace Ξ with π := A+ α, where A and α were defined in (1.2).

Lemma 3.4. We have

〈Ξ(u, Y ), λ1, ..., λd〉 = 〈π(u, Y ), λ1, ..., λd〉, for all (u, Y ) ∈ U ∩D(A∞), (3.10)

where
π := A+ α. (3.11)

Proof. The claim follows upon showing that

Ξ(u, Y )− π(u, Y ) = −1

2

d∑
j=1

DΣj(u, Y )Σj(u, Y ) ∈ 〈λ1, ..., λd〉.

But this follows from the form of the diffusion coefficients specified in (3.7) as

DΣj(u, Y )Σj(u, Y ) = ζj(u, Y )λj ,

where ζj(u, Y ) ∈ R is given by

ζj(u, Y ) = Duφj(l(u), Y ) · Σ1
j (u, Y ) +DY φj(l(u), Y ) · Σ2

j (u, Y ).

Hence we have a candidate distribution DLA given by

DLA(h) := 〈π(h),Σ1, ...,Σd〉, h ∈ U ∩D(A∞), (3.12)

satisfying (2.4) in Theorem 2.2. If the remaining conditions of Theorem 2.2 are satisfied
then it follows from (2.5) that the solution of (3.8) for every h∗ ∈ U stays in the
submanifold with boundary of H given by the parametrization

Γ(z, h∗) = Flz0(h∗)π +

d∑
i=1

ziλi.

We will now use Lemma 3.4 in accordance with (2.2) to derive necessary conditions on
the drift a in (3.8) and the vector fields λ1, ..., λd in (3.9) such that the distribution
DLA is involutive.
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Lemma 3.5. The distribution DLA(h) = 〈π(h), λ1, ..., λd〉 on some open subset V of
U ∩D(A∞) is involutive if and only if the following two conditions are satisfied:

1. The drift coefficient a : H × Rm → Rm in (3.8) is constant in the first argument
and affine in the second, i.e. there is a linear map κ ∈ L(H × Rm,Rm) and
ā ∈ Rm such that

a(h) = ā+ κh. (3.13)

2. There is a matrix B ∈ Rd×d, such that(
d
dxλ

1
i

0

)
+

(
0
κλi

)
=

d∑
j=1

Bijλj , i = 1, ..., d. (3.14)

Proof. Recalling Definition 2.1, it follows thatDLA is involutive if and only if [π, λi](h) ∈
〈π(h), λ1, ..., λd〉 for all h ∈ V and i = 1, ..., d. This is equivalent to the existence of
d+ 1 coordinate mappings Bi0, ..., Bid such that

[π, λi](h) =

(
d
dxλ

1
i

Da(h)λi

)
= Bi0(h)

(
d
dxh

1

a(h)

)
+

d∑
j=1

Bij(h)

(
λ1
i

λ2
i

)
. (3.15)

Now, as this has to hold on the open set V, we can conclude from Assumption (A3)
as in [40, Lemma 4.2] that Bi0(h) = 0 for all h ∈ V as otherwise this would imply that
d
dx is a Banach map (which it is not by Assumption (A3) and [40, Lemma 3.2]). Thus
by looking at the first coordinate of the Equation (3.15)

d

dx
λ1
i =

d∑
j=1

Bij(h)λ1
i ,

we conclude that Bij are in fact constants. Which in turn gives that

Da(h)λi =
d∑
j=1

Bijλ2
i

and hence a is necessarily an affine map. This gives the first claim. The second claim
follows now from (3.15) applied to a given by (3.13) and recalling that Bi0(h) = 0 for
all h ∈ V and that Bij are constants.

Remark 3.6. If the conditions of Lemma 3.5 are satisfied, λ1
1, ..., λ

1
d are necessarily

quasi-exponentials, that is,

λ1 = eB·λ1(0), (3.16)

where B is the matrix given in (3.14) and λ1 := (λ1
1, ..., λ

1
d) (understood as a column

vector). The importance of quasi-exponentials for finite dimensional realizations is well-
known for forward-interest rate models and first recognized in [13], see for example [13,
Remark 5.1, Proposition 6.1].

To apply Theorem 2.2 the dimension of the distribution must be (finite and) con-
stant on V. If we assume that (3.14) holds, then this is equivalent to π being pointwise
linearly independent of λ1, ..., λd on V. Hence we have the following Lemma.
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Lemma 3.7. Assuming that the conditions of Lemma 3.5 hold, the dimension of the
distribution DLA on V is constant if and only if V does not intersect with the singular
set S given by

S := Ã−1(〈λ1, ..., λd〉)− Ã−1(

(
0
ā

)
). (3.17)

In particular, S = ∅ if and only if

κ−1ā /∈
{(
U ∩D(A∞)

)
∩
( d
dx

−1

({0})× Rm
)}
. (3.18)

Here Ã is the linear vector field on V given by

Ãh :=
(
A+ κ̃

)
h := Ah+

(
0
κh

)
, (3.19)

with A and κ given in (1.2) and (3.13) respectively.

Proof. As argued above the claim is equivalent to

πh /∈ 〈λ1, ..., λd〉 for all h ∈ V.

Accordingly the singular set is given by

S = {h ∈ U ∩D(A∞) |π(h) ∈ 〈λ1, ..., λd〉}, (3.20)

which by recalling (3.11) gives (3.17). The second claim follows from Lemma 3.5 as it
shows that

〈λ1, ..., λd〉 ⊂ Ã−1(〈λ1, ..., λd〉)

and accordingly S = ∅ if and only if Ã−1(

(
0
a

)
) = ∅. Thus the claim follows from

noting that

Ã−1(

(
0
ā

)
) = {h ∈ U ∩D(A∞) | d

dx
h1 = 0 and κh = ā}.

Lemma 3.8. If S 6= ∅, then for all h ∈ S, Mh := h + 〈λ1, ..., λd〉 satisfies the
invariance conditions of (2.2) and (2.3).

Proof. Let h ∈ S. Then Mh ⊂ S since it follows from Lemma 3.5 that 〈λ1, ..., λd〉 ⊂
Ã−1(〈λ1, ..., λd〉). Further, by Lemma 3.4 and (3.7) the validity of (2.2) and (2.3) follows
if for all f ∈ Mh we have πf ∈ 〈λ1, ..., λd〉 but this is just the defining condition of S
given in (3.20).

Theorem 3.9. If V = U ∩D(A∞) \S and the conditions of Lemma 3.5 are satisfied
then Equation (3.8) with diffusion vector fields given by (3.9) admits a generic finite
dimensional realizations around any h∗ ∈ V. In particular, there is a Rd-valued time-
inhomogeneous diffusion process Z such that

ht = Γ((t, Zt), h
∗) = Flπt (h∗) +

d∑
j=1

Zjt λj , (3.21)
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is the unique continuous local solution to (3.8) with h0 = h∗. The process Z satisfies

dZt = BTZt dt+

d∑
j=1

ρj(t, Zt)ej dβ
j
t , Z0 = 0,

where B was given in (3.14), e1, ..., ed are the standard basis vectors of Rd and

ρj(t, z) = φj(l(Γ
1((t, z), h∗)),Γ2((t, z), h∗)), j = 1, ..., d.

If V = S, the solution ht given in (3.21) can be represented by

ht = Γ̃(Z̃t, h
∗) = h∗ +

d∑
j=1

Z̃jt λj , (3.22)

where Z̃ is a Rd-valued time-homogeneous diffusion process satisfying

dZ̃t = (BT Z̃t + Π(h∗)) dt+
d∑
j=1

ρ̃j(Z̃t)ej dβ
j
t , Z̃0 = 0,

where Π(h∗) is the column vector comprised of the coordinates of π(h∗) with respect to
the basis λ1, ..., λd and

ρ̃j(z) = φj(l(Γ
1(z, h∗)),Γ2(z, h∗)), j = 1, ..., d.

Proof. We consider first the case V = U ∩ D(A∞) \ S. Then from the Assumptions
(A1)-(A4) and Lemma 3.5 and 3.7 it follows that the conditions of Theorem 2.2 are
satisfied. As for (3.21) we proceed as in [40, Theorem 5.3] and [34, Section 6.4]. For
h∗ ∈ V we can construct a submanifoldMh∗ by the parametrization Γ(·, h∗) (cf. (2.5))
given by

Γ(z, h∗) = Flπz0(h∗) +
d∑
i=1

ziλi, z = (z0, ..., zd) ∈ [0, ε)× V,

for some ε > 0 and some open neighborhood V of zero in Rd. Now, for this initial
curve h∗ we are in the setting of [34] as conditions (2.2) and (2.3) are satisfied and
accordingly can proceed as in [34, Section 6.4] to construct the coordinate process Z.
There are mappings b̃ and ρ̃ from Rd+1 into Rd+1 and Rd×d+1, respectively, that are
uniquely determined through

π(Γ(z, h∗)) = DzΓ(z, h∗) · b̃(z), (3.23)

Σj(Γ(z, h∗)) = DzΓ(z, h∗) · ρ̃j(z), j = 1, ..., d, (3.24)

for all z ∈ [0, ε)× V . Here (3.23) is equivalent to

π(Flπz0(h∗)) +

d∑
i=1

ziÃλi = Dz0Fl
π
z0(h∗)b̃0(z) +

d∑
i=1

b̃i(z)λi,

where Ã is given in (3.19). Thus using the Representation (3.14) gives

b̃0(z) ≡ 1, b̃j(z) =
d∑
i=1

ziB
ij , z ∈ [0, ε)× V j = 1, ..., d.
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In the same way, by considering the Representation (3.7), we get from (3.24) that

ρ̃j,0(z) ≡ 0, ρ̃ji(z) = δijφj(l(Γ
1(z, h∗)),Γ2(z, h∗)), i, j = 1, ..., d,

where δij = 1 if i = j and else zero. We claim that the V ⊂ Rd-valued diffusion Z is
given by Z0 = 0 and

dZjt = bj(Zt) dt+ ρj(t, Zt) dβ
j
t , j = 1, ..., d,

where the mappings b from Rd into Rd and ρ from Rd+1 into Rd are defined by

bj(z) := b̃j(z) =
d∑
i=1

ziB
ji, (3.25)

ρj(t, z) := ρ̃jj(t, z) = φj(l(Γ
1((t, z), h∗)),Γ2((t, z), h∗))

for (t, z) ∈ [0, ε)×V and j = 1, ..., d is such that (3.21) is a local solution to (3.8). Indeed,
by linearity of (stochastic) integrals, setting Γt := Γ((t, Zt), h

∗) = Flπt (h∗)+
∑d

j=1 Z
j
t λj ,

we have,

Γt = Flπt (h∗) +

∫ t

0

d∑
j=1

bi(Zs)λ
i ds+

d∑
j=1

∫ t

0
ρj(s, Zs)λj dβ

j
s

= h∗ +

∫ t

0

(
π(Flπs (h∗)) + Ã

d∑
i=1

Zisλ
i
)
ds+

d∑
j=1

∫ t

0
φj(l(Γ

1
s),Γ

2
s)λj dβ

j
s

= h∗ +

∫ t

0

(
A(Γs) + α(Γs)

)
ds+

d∑
j=1

∫ t

0
Σj(Γs) dβ

j
s

and thus the first claim follows from uniqueness of strong solutions to SPDEs. The
second claim follows from (local) uniqueness by using the Lemma 3.8 and applying the
same analysis as above for the parametrization Γ̃((z1, ..., zd), h

∗) = h∗+
∑d

j=1 zjλj and
recalling that for h∗ ∈ S we have π(h∗) ∈ S.

Remark 3.10. The Representation given in (3.21) is called generic affine realization
as by the second part of Theorem 3.9 it can be seen as a generalization of the affine
realizations given in (3.22) that occur for initial curves h∗ that lie in the singular set
S.

The coordinate representation of (3.21) for h∗ = (u∗, Y ∗) is given by{
ut = (Flπt )1(u∗) +

∑d
j=1 Z

j
t λ

1
j

Yt = (Flπt )2(u∗, Y ∗) +
∑d

j=1 Z
j
t λ

2
j ,

(3.26)

where

Flπt (u∗, Y ∗) =

(
(Flπt )1(u∗)

(Flπt )2(u∗, Y ∗)

)
=

(
Stu
∗∫ t

0 (κF lπs (u∗, Y ∗) + ā) ds

)
.

Accordingly we have in particular constructed simultaneously generic finite dimensional
realizations for ut and Yt such that both have the same d-dimensional coordinate process
Z, which was possible due to the special compatibility condition of the drift coefficient
Yt and the choice of the λ1, ..., λd given in Lemma 3.5 by the conditions (3.13) and (3.14)
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respectively. These conditions can be considerably relaxed when the forward variance
process u and the parameter process Y are assumed to be driven by independent
Brownian motions. Compare this situation to forward interest rate models with a
stochastic volatility as discussed in [12], in which the stochastic volatility process Y
is assumed to be an autonomous process. We see that under the given Assumptions
(A1)-(A4) we have strengthened [12, Proposition 5.2]) into two directions. First, the
stochastic volatility process Y can have drift and diffusion coefficients that depend on
the state of the forward variance, and second, the requirement that the vectors λ1, ..., λd
are quasi-exponentials is not only sufficient but also necessary.

However, we saw in Lemma 3.5 that in the present case the diffusion coefficient a of
Y is necessarily of the affine form given in (3.13). In the next section we will see that
this condition can be relaxed when considering an independent parameter process.

3.1 Independent Parameter process

In the previous subsection we have constructed a generic finite dimensional realization
for the joint process ht = (ut, Yt) given in (3.8) such that the drift coefficient a of Yt
and the vectors λ1, ..., λd satisfied the conditions of Lemma 3.5. Under the conditions
of Theorem 3.9 we arrived at the coordinate Representations (3.26) for ut and Yt. In
particular, we see that the m-dimensional process Yt could be represented by

Yt = (Flπt )2(u∗, Y ∗) +
d∑
j=1

Zjt λ
2
j

and thus leaves the set MY (u∗, Y ∗) given by

MY (u∗, Y ∗) :=
{

(Flπt )2(u∗, Y ∗) +
d∑
j=1

zjλ2
j

∣∣∣ t ∈ R+, z ∈ Rd
}

invariant. This restriction on the parameter process is a result of the assumption
that both process are driven by the same Brownian motions and of the choice of the
diffusion coefficients given in (3.7). Having this in mind, we will in the following look
at the system 

dut = d
dxut dt+

∑d
j=1 φj(l(ut), Yt)λ

1
j dβ

j
t ,

dYt = a(ut, Yt) dt+
∑d+m

j=d+1 c
j(ut, Yt) dβ

j
t ,

(u0, Y0) ∈ U := U × Rm.
(3.27)

We will now repeat the analysis of the previous subsection for the candidate distribution
DLA given by

DLA(h) :=
〈

Ξ(h),

(
λ1

1

0

)
, ...,

(
λ1
d

0

)
,

(
0
e1

)
, ...,

(
0
em

)〉
, h ∈ U ∩D(A∞), (3.28)

where e1, ..., em are the standard basis vectors of Rm. It is evident that DLA satisfies
(2.4). We have the following result corresponding to Lemma 3.4. Recall the definition
of the linear map A given in (1.2).

Lemma 3.11. We have

DLA(h) =
〈
Ah,

(
λ1

1

0

)
, ...,

(
λ1
d

0

)
,

(
0
e1

)
, ...,

(
0
em

)〉
, h ∈ U ∩D(A∞). (3.29)
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Proof. It follows immediately as in Lemma 3.4 that

DLA(h) =
〈
π(h),

(
λ1

1

0

)
, ...,

(
λ1
d

0

)
,

(
0
e1

)
, ...,

(
0
em

)〉
, h ∈ U ∩D(A∞),

with π given as in (3.11) by

π(h) = Ah+

(
0

a(h)

)
and thus the claim follows from a(h) ∈ Rm for all h ∈ U ∩D(A∞).

Thus we are now in a setting where we can look at the processes ut and Yt separately.
It follows in particular, that we can write (3.29) as

DLA(h) = 〈 d
dx
h1, λ1

1, ..., λ
1
d〉 × Rm, h ∈ U ∩D(A∞), (3.30)

confirming the intuition that now the system (3.27) admits a generic finite dimensional
realization if and only if the forward variance process does so for each fixed value of
Yt = y (this corresponds to the parametrized model considered in [12, Definition 2.3]).

Lemma 3.12. The distribution on DLA on U ∩D(A∞) given by (3.29) is involutive if
and only if D1

LA is involutive on U ∩D((d/dx)∞), where

D1
LA(u) = 〈 d

dx
u, λ1

1, ..., λ
1
d〉, (3.31)

which in turn is equivalent to the existence of a matrix B ∈ Rd×d such that

d

dx
λ1
i =

d∑
j=1

Bijλ1
j , i = 1, ..., d. (3.32)

Proof. As in Lemma 3.5 the equivalent condition forDLA being involutive on U∩D(A∞)
is given by[( d

dx 0
0 0

)
,

(
λ1
i

0

)]
h =

(
d
dxλ

1
i

0

)
∈
〈(λ1

1

0

)
, ...,

(
λ1
d

0

)
,

(
0
e1

)
, ...,

(
0
em

)〉
from which immediately the first claim follows and the second claim follows just as
(3.15) in Lemma 3.5.

Regarding the singular set S it follows immediately from Lemma 3.11 (cf. Lemma
3.7) that

S =
{
h ∈ U ∩D(A∞)

∣∣∣Ah ∈ 〈(λ1
1

0

)
, ...,

(
λ1
d

0

)
,

(
0
e1

)
, ...,

(
0
em

)〉}
= {h ∈ U ∩D(A∞) | d

dx
h1 ∈ 〈λ1

1, ..., λ
1
d〉}

= {h ∈ U ∩D(A∞) |h1 ∈ 〈1, λ1
1, ..., λ

1
d〉} (3.33)

as d
dx

−1
(〈λ1

1, ..., λ
1
d〉) is a d + 1 dimensional linear subspace of D((d/dx)∞) since the

kernel of d
dx consists of the 1 dimensional subspace given by the constant functions and

includes by Lemma 3.12 〈λ1
1, ..., λ

1
d〉. The following can be shown just as in Lemma 3.8.
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Lemma 3.13. For all h ∈ S,

Mh := h+
〈(λ1

1

0

)
, ...,

(
λ1
d

0

)
,

(
0
e1

)
, ...,

(
0
em

)〉
satisfies the invariance conditions of (2.2) and (2.3).

Finally we can conclude from Lemma 3.11, 3.12 and 3.13 the following special case
of Theorem 3.9 which we formulate as a corollary.

Corollary 3.14. In the setting of Theorem 3.9, for h∗ ∈ U ∩ D(A∞) \ S the (local)
solution of (3.27) can be represented by

ht = Γ((t, Zt,1, Zt,2), h∗) = FlAt (h∗) +

d∑
j=1

Zjt,1

(
λ1
j

0

)
+

m∑
j=1

Zjt,2

(
0
ej

)
, (3.34)

where the process Zt,1 and Zt,2 satisfies

dZt,1 = BTZt,1 dt+

d∑
j=1

ρj(t, Zt,1, Zt,2)ej dβ
j
t , Z0,1 = 0,

dZt,2 = a(Γ((t, Zt,1, Zt,2), h∗)) dt+

d+m∑
j=d+1

cj(Γ((t, Zt,1, Zt,2), h∗)) dβjt , Z0,2 = 0,

with B given in (3.32), e1, ..., ed are the standard basis vectors of Rd and

ρj(t, z1, z2) = φj(l(Γ
1((t, z1, z2), h∗)),Γ2((t, z1, z2), h∗)), j = 1, ..., d.

If h∗ ∈ S then (3.34) can be represented by

ht = Γ̃((Z̃t,1, Zt,2, h
∗) = h∗ +

d∑
j=1

Z̃jt,1

(
λ1
j

0

)
+

m∑
j=1

Zjt,2

(
0
ej

)
, (3.35)

where the process Z̃1 satisfies

dZ̃1,t = (Π(h∗) +BT Z̃1,t) dt+

d∑
j=1

ρj(Z̃t,1, Zt,2)ej dβ
j
t , Z̃0,1 = 0,

where Π(h∗) is the column vector comprised of the coordinates of d
dxh
∗ with respect to

the basis λ1
1, ..., λ

1
d and

ρ̃j(z1, z2) = φj(l(Γ̃
1((z1, z2), h∗)), Γ̃2((z1, z2), h∗)), j = 1, ..., d.

Proof. We arrive at the Representations (3.34) and (3.35) just as we arrived at (3.21)
and (3.22) in Theorem 3.9. We just show that (3.34) is indeed a solution of (3.27). Let
(u∗, Y ∗) := h∗ and recalling that

FlAt (h∗) =

(
Stu
∗

Y ∗

)
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if follows that h1
t satisfies (recall (3.25) and (3.32))

h1
t = Stu

∗ +
d∑
j=1

Zjt,1λ
1
j

= u∗ +

∫ t

0

( d
dx
Ssu

∗ +
d∑
j=1

d∑
i=1

Zis,1B
jiλ1

j

)
ds+

d∑
j=1

∫ t

0
ρj(s, Zs,1, Zs,2)λ1

j dβ
j
s

= u∗ +

∫ t

0

d

dx

(
Ssu

∗ +
d∑
i=1

Zis,1λ
1
i

)
ds+

d∑
j=1

∫ t

0
ρj(s, Zs,1, Zs,2)λ1

j dβ
j
s

= u∗ +

∫ t

0

d

dx
h1
s ds+

d∑
j=1

∫ t

0
φj(l(h

1
s), h

2
s)λ

1
j dβ

j
s

and as it is evident that h2
t = Yt the claim is proved.

Example 3.15 (The generic double mean reverting model). A particularly popular model
that is included in the current setup it the double mean reverting model, which was in-
troduced (to the best of our knowledge) for forward variance models in [15, Example
3.5]. A specific form of this model, called double CEV dynamics is then further inves-
tigated in [43]. In its general form it is given in terms of a paramterization by

Γ(z) := z3 + (z1 − z3)e−κ· + (z2 − z3)

{
κ
κ−c(e

−c· − e−κ·), if κ 6= c

κm(Id(·), e−κ·), if κ = c
, (3.36)

where the consistent (consistent refers here to the validity of the drift-condition) pa-
rameter process Z is given by (for notational simplicity we assume a special form of
the volatility coefficients, whilst in [15, Example 3.5] the specification is slightly more
general)

dZ1
t = κ(Z2

t − Z1
t ) dt+ σ1(Zt) dβ

1
t ,

dZ2
t = c(Z3

t − Z2
t ) dt+ σ2(Zt) dβ

2
t ,

dZ3
t = σ3(Zt) dβ

3
t .

We look first at the case κ 6= c. By defining λ1 := e−κ, λ2 := κ
κ−c(e

−c − λ1) and
λ3 := 1− λ1 − λ2 it follows that

Γ(z) =
3∑
i=1

ziλi,
d

dx
Γ(z) = κ(z2 − z1)λ1 + c(z3 − z2)λ2. (3.37)

Thus ut := Γ(Zt) satisfies (from the linearity of (stochastic) integrals)

ut = u0 +

3∑
i=1

(Zit − Zi0)λi

= u0 +

∫ t

0

(
κ(Z2

s − Z1
s )λ1 + c(Z3

s − Z2
s )λ2

)
ds+

3∑
i=1

∫ t

0
σi(Zs)λi dβ

i
s
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and using (3.37) we get

ut = u0 +

∫ t

0

d

dx
us ds+

3∑
i=1

∫ t

0
σi(Zs)λi dβ

i
s. (3.38)

We see that ut = Γ(Zt) satisfies the drift condition (cf. (II.5.5)) which confirms the
above mentioned consistency. Practically and conceptionally this models have two
drawbacks. The practical drawback comes from the fact that the possible initial curves
must lie in the set { 3∑

i=1

ziλi | z1 ≥ 0, z2, z3, κ, c > 0
}
,

where κ and c denote the parameters of the directions λ1, ..., λ3. The conceptional
drawback is that u is not a Markov process in its own filtration. In the following we
will generalize this model to overcome both drawbacks. To overcome the second one,
we consider now the model

ut = u0 +

∫ t

0

d

dx
us ds+

3∑
i=1

∫ t

0
σi(li(us))λi dβ

i
s, (3.39)

where l1, ..., l3 are linear maps as given in Assumption (A1). But now we are in the
situation of Corollary 3.14 with

m = 0, BT =

−κ κ 0
0 −c c
0 0 0

 .

Accordingly for every u∗ in some open subset of D((d/dx)∞) we can have

ut = Fl
d/dx
t u∗ +

d∑
j=1

Z̃jsλj , (3.40)

where

dZ̃1
t = κ(Z̃2

t − Z̃1
t ) dt+ σ1

(
l1(Fl

d/dx
t u∗ +

d∑
j=1

Z̃jsλj)
)
dβ1

t ,

dZ̃2
t = c(Z̃3

t − Z̃2
t ) dt+ σ2

(
l2(Fl

d/dx
t u∗ +

d∑
j=1

Z̃jsλj)
)
dβ2

t ,

dZ̃3
t = σ3

(
l3(Fl

d/dx
t u∗ +

d∑
j=1

Z̃jsλj)
)
dβ3

t ,

with Z̃1
0 , Z̃

2
0 , Z̃

3
0 = 0.

The case κ = c can be treated in just the same way by considering the directions
λ1 := e−κ, λ2 := κm(Id, e−κ) and λ3 := 1 − λ1 − λ2. Notice that the distribution
generated by d

dx , λ1, λ2, λ3 is involutive as d
dxλ2 = κλ1 − κλ2.
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4 Exponentially-Affine Realizations

We repeat now the analysis of the previous section by looking at linear models (i.e.
linear in the first component) that are generalizations of (II.5.11), and given by

dut = d
dxut dt+

∑d
j=1m(σj(Yt), ut) dβ

j
t

dYt = a(ut, Yt) dt+
∑d

j=1 c
j(ut, Yt) dβ

j
t ,

(u0, Y0) ∈ U := U × Rm,
(4.1)

where U is an open convex set in H+ ⊂ H (cf. Lemma II.5.14). Here for each
j = 1, ..., d, σj is assumed to be a smooth map from Rm into H. From Section II.5.2 it
follows that such models correspond in the time-of-maturity parametrization v(t, T ) :=
ut(T − t) to solutions of

dv(t, T ) =
∑d

j=1 σj(Yt)(T − t)v(s, T ) dβjt
dYt = a(ut, Yt) dt+

∑d
j=1 c

j(ut, Yt) dβ
j
t ,

(v(0, ·), Y0) ∈ U := U × Rm,
(4.2)

and as such can be represented by

v(t, T ) = v(0, T ) exp
( d∑
j=1

∫ t

0
σj(Ys)(T − s) dβjs −

1

2

d∑
j=1

∫ t

0
σ2
j (Ys)(T − s) ds

)
,

which motivates the following slight generalization of Proposition II.5.15. Consider the
system 

dJt = ( d
dxJt −

1
2

∑d
j=1m(σj(Ỹt), σj(Ỹt)) dt+

∑d
j=1 σj(Ỹt) dβ

j
t

dỸt = ã(Jt, Ỹt) dt+
∑d

j=1 c̃
j(Jt, Ỹt) dβ

j
t ,

(J0, Ỹ0) ∈ U l := U l × Rm,
(4.3)

where ã(J, Y ) := a(exp(J), Y ), c̃j(J, Y ) := cj(exp(J), Y ) for j = 1, ..., d and U l :=
log(U), which is well-defined as U ⊂ H+ (cf. Lemma II.5.14).

Corollary 4.1. Denote by (Jt, Ỹt) the mild solution of (4.3) with initial values given by
(log(u∗), y). Then the process (exp(Jt), Yt) is a mild solution of (4.1) for initial values
(u∗, y). In particular, (4.1) admits a generic finite dimensional realization around any
(u∗, Y ∗) ∈ U if and only if (4.3) does so around any (J∗, Ỹ ∗) ∈ U l.

Proof. This first claim follows immediately from Proposition II.5.15 by noting that the
map (exp, IdRm) : H → H+ is a diffeomorphism, where H+ := H+ × Rm and that
(recall (1.2)) (

exp
IdRm

)
∗
A = A.

The second claim is obvious.

Thus without loss of generality we can in the sequel look at the somewhat simpler
system given in (4.3), which corresponds to models that were considered in the previous
section but with the addition of a non-vanishing drift. If we assume that ã and c̃ depend
on J only through some linear map l : H → Rp for p ∈ N then the system (4.3) already
satisfies (3.3) and (3.4) and accordingly it is only a minor loss of generality to assume
that (A1)-(A3) holds, which we will do from here on.
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Lemma 4.2. If Assumptions (A1)-(A3) hold for (4.3) then c̃j, for j = 1, ..., d, is
necessarily constant in the first argument.

Proof. As the conditions of Theorem 3.3 are satisfied it follows from (3.5) that neces-
sarily

Σj(J, Y ) =

(
σj(Y )
c̃j(J, Y )

)
∈ 〈λ1(Y ), ..., λd(Y )〉, (4.4)

for some pointwise linearly independent vector fields λ1, ..., λd on some open subset V
of U l ∩D(A∞). Thus the claim follows as σj(Y ) is constant in J .

As in the previous section we assume that the vector fields λ1, ..., λd are in fact
constant linearly independent vectors in V and for notational convenience we assume
also that (A4) holds, that is

Σj(J, Y ) =

(
σj(Y )
c̃j(Y )

)
= φj(Y )

(
λ1
j

λ2
j

)
, j = 1, ..., d, (4.5)

where φ1, ..., φd are scalar fields in Rm.

Remark 4.3. Notice that we have so far only assumed that λ1, ..., λd are linearly inde-
pendent but left unspecified whether λ1

1, ..., λ
1
d or λ2

1, ..., λ
2
d share this property.

We know from Example II.5.16 (which corresponds to the Bergomi Model) that for
the choice m = 0 (i.e. in the absence of stochastic volatility process Y ) and σj = e−κj ·,
where κj is a positive constant, (4.1) admits around any u∗ ∈ U ∩D((d/dx)∗) a generic
finite dimensional realization given by (cf. (II.5.20))

ut = Γ((t, Zt), u
∗) = m(exp(FlJ

2

t (log(u∗)), exp(
d∑
j=1

e−κj ·Zjt )), (4.6)

where J2 and Zjt , j = 1, ..., d were given in (II.5.14) and (II.5.19) respectively. We look
now to the more general case in which the diffusion vector fields are allowed to be of
the form (4.5) and consider the following candidate distribution

DLA(h) := 〈Ξ(h), λ1, ..., λd〉, h ∈ V,

where V is some open subset of U l ∩D(A∞). We can conclude as in Lemma 3.4 that
in this case we have

DLA(h) = 〈π(h), λ1, ..., λd〉, h ∈ V, (4.7)

where

π(h) := Ah+ α(h), α(h) :=

(
−1

2

∑d
j=1 φ

2
j (h

2)m(λ1
j , λ

1
j )

ã(h1, h2)

)
, (4.8)

where the superscript in φ2
j indicates the exponent while in the remaining cases it

indicates the coordinates.

Proposition 4.4. Let λ1
1, ..., λ

1
d be linearly independent and p ∈ {0, ..., d} be such that{

m(λ1
j , λ

1
j ) ∈ 〈λ1

1, ..., λ
1
d〉, for j = 1, ..., p,

m(λ1
j , λ

1
j ) /∈ 〈λ1

1, ..., λ
1
d〉, for j = p+ 1, ..., d,

(4.9)



44 III Finite dimensional Realizations

where the cases p = 0 and p = d are understood as either j = 1, ..., p or j = p+ 1, ..., d
being the empty set. Let M ∈ Rp×d be such that

m(λ1
j , λ

1
j ) =

d∑
l=1

M jlλ1
l , for j = 1, ..., p. (4.10)

Further let V =: V1×V2 ⊂ (U l ×Rm)∩D(A∞) and ζij : V2 → R for (i, j) ∈ {1, ..., d}2
be the map given by

ζij(g) := −φj(g)Dφj(g) · λ2
i . (4.11)

Then the distribution DLA given in (4.7) is involutive on V if and only if each of the
following holds true:

1 There is a matrix ζ̃ ∈ Rd×(d−p−1) such that for (i, j) ∈ {1, ..., d} × {p + 1, ..., d}
ζij(h

2) = ζ̃ij for all h ∈ V.

2 There is a matrix B̃ ∈ Rd×d such that

d

dx
λ1
i =

d∑
j=1

B̃ijλ1
j −

d∑
j=p+1

ζ̃ijm(λ1
j , λ

1
j ), i = 1, ..., d. (4.12)

3 There is a map â : V2 → Rm such that the drift coefficient ã in (4.8) satisfies
ã(h) = â(h2) for all h ∈ V and

Dâ(h2) · λ2
i =

d∑
j=1

(
B̃ij +

p∑
l=1

ζil(h
2)M lj

)
λ2
j (4.13)

for all i = 1, ..., d and h ∈ V.

Proof. DLA is involutive on V if and only if [π, λi](h) ∈ 〈λ1, ..., λd〉 for all i = 1, ..., d
and h ∈ V (cf. Lemma 3.5). As we have (cf. (4.8))

[π, λi](h) =

(
d
dxλ

1
i

0

)
+

(∑d
j=1 ζij(h

2)m(λ1
j , λ

1
j )

Dã(h)λi

)
, (4.14)

where ζij is given by (4.11), this is equivalent to the existence of a coordinate mapping
B : H → Rd×d such that

[π, λi](h) =

d∑
j=1

Bij(h)λj (4.15)

for all i = 1, ..., d and h ∈ V. As the first coordinate of (4.14) is constant in the first
argument h1 of h = (h1, h2) the same must be true for the map B which in turn yields
by looking at the second coordinate of (4.14) the same condition for ã. Thus there is
a mapping â : V2 → Rm such that necessarily â(h2) := ã(h1, h2) and

Dâ(h2) · λ2
i =

d∑
j=1

Bij(h2)λ2
j (4.16)

for all h ∈ V. Using (4.10) we can write

d∑
j=1

ζij(h
2)m(λ1

j , λ
1
j ) =

d∑
l=1

( p∑
j=1

ζij(h
2)M jl

)
λ1
l +

d∑
j=p+1

ζij(h
2)m(λ1

j , λ
1
j ).
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Now using this representation in the first coordinate of (4.14) we see that a necessary
condition for (4.15) to hold is that

d

dx
λ1
i =

d∑
l=1

(
Bil(h2)−

( p∑
j=1

ζij(h
2)M jl

))
λ1
l −

d∑
j=p+1

ζij(h
2)m(λ1

j , λ
1
j ) (4.17)

for all i = 1, ..., d and h ∈ V and thus again by (4.9) it follows that necessarily
(
Bil(h2)−(∑p

j=1 ζij(h
2)M jl

))
for (i, l) ∈ {1, ..., d}2 and ζij(h

2) for (i, j) ∈ {1, ..., d}×{p+1, ..., d}
is constant in h2. Thus letting

B̃il :=
(
Bil(h2)−

( p∑
j=1

ζij(h
2)M jl

))
, for (i, l) ∈ {1, ..., d}2 (4.18)

and ζ̃ij := ζij(h
2) for (i, j) ∈ {1, ..., d}×{p+1, ..., d} shows necessity of the claims 1 and

2 and by plugging this into (4.17) gives also necessity of claim 3. On the other hand,
applying conditions 1-3 on (4.14) yields (4.15) and thus sufficiency holds as well.

Remark 4.5. An example where we will have the situation (4.9) for p ∈ {1, ..., d− 1} is
for λ1 = ea1 , λ2 = ea2 , ... for distinct a1, a2, ... such that at least one pair ai, aj exists
such that ai = 2aj .

Remark 4.6. Condition 1 in the last proposition states that φp+1, ..., φd given in (4.5)
necessarily satisfy the ODEs

− φjDφj · λ2
i = ζ̃ij , for all (i, j) ∈ {1, ..., d} × {p+ 1, ..., d}. (4.19)

Solutions φj : V2 → R for suitable V2 ⊂ Rm can be constructed as follows. For each
j ∈ {p + 1, ..., d} let γj ∈ R and lj ∈ L(Rm,R) with lj(V2) ⊂ [−γj ,∞) such that for
i = 1, ..., d, lj satisfies

− 1

2
lj(λ

2
i ) = ζ̃ij . (4.20)

Then it is easy to see that

φj : V2 → R, φj(y) :=
√
γj + lj(y) (4.21)

satisfies (4.19). It is also evident that any solution can be represented as in (4.21). In
particular, if p = 0 then it follows from 3 that â is a linear map on V2. Regarding con-
dition −1

2 lj(λ
2
i ) = ζ̃ij recall from Remark 4.3 that we have not assumed that λ2

1, ..., λ
2
d

are linearly independent neither have we made any statement whether m ≥ d or m < d.

Lemma 4.7. Let h∗ ∈ V and set

Γ(z, h∗) := Flπz0(h∗) +
d∑
i=1

ziλi. (4.22)

Then under the conditions of Proposition 4.4 and recalling Remark 4.6, the following
representation holds true

α(Γ(z, h∗))− α(Flπz0(h∗))

= −1

2

d∑
l=1

p∑
j=1

(
φ2
j (Γ

2(z, h∗)− φ2
j (Fl

π,2
z0 (h∗))

)
M jlλl

=

(∑d
j=p+1

∑d
i=1 ziζ̃ijm(λ1

j , λ
1
j )

0

)
+

(
0∑d

i=1

∑d
j=1 ziB̃

ijλ2
j

)
.
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Proof. From (4.8) we get

α(Γ(z, h∗))− α(Flπz0(h∗))

=

(
−1

2

∑d
j=1

(
φ2
j (Γ

2(z, h∗))− φ2
j (Fl

π,2
z0 (h∗))

)
m(λ1

j , λ
1
j )

â(Γ2(z, h∗))− â(Flπ,2z0 (h∗))

)
.

The first coordinate equals, using (4.10) and Remark 4.6

−1

2

d∑
l=1

p∑
j=1

(
φ2
j (Γ

2(z, h∗))− φ2
j (Fl

π,2
z0 (h∗))

)
M jlλ1

l +
d∑

j=p+1

d∑
i=1

ziζ̃ijm(λ1
j , λ

1
j ).

For the second coordinate, letting ξ(t) := Flπ,2z0 +t
∑d

i=1 ziλ
2
i and using 2 in Proposition

4.4 we get

â(Γ2(z, h∗))− â(Flπ,2z0 (h∗)) =

∫ 1

0

d

ds
â(ξ(s)) ds =

∫ 1

0
Dâ(ξ(s)) · (

d∑
i=1

ziλ
2
i ) ds

=
d∑
i=1

zi

∫ 1

0

d∑
j=1

(
B̃ij +

p∑
l=1

ζil(ξ(s))M
lj
)
λ2
j ds

=
d∑
i=1

d∑
j=1

ziB̃
ijλ2

j +
d∑
j=1

p∑
l=1

M ljλ2
j

∫ 1

0

d∑
i=1

ziζil(ξ(s)) ds.

Now for the integral using (4.11) we get form integration by parts∫ 1

0

d∑
i=1

ziζil(ξ(s)) ds = −
∫ 1

0

d∑
i=1

ziφl(ξ(s))Dφl(ξ(s)) · λ2
i ds

= −
∫ 1

0
φl(ξ(s))

d

ds
φl(ξ(s)) ds = −1

2
(φ2
l (Γ

2(z, h∗))− φ2
l (Fl

π,2
z0 (h∗)))

which gives the claim.

Remark 4.8. Condition 2 in the last proposition states that λ1p := (λ1
1, ..., λ

1
p) and

λ1(p+1) := (λ1
p+1, ..., λ

1
d), both understood as column vectors, satisfy the following linear

and Riccati ODE respectively

d

dx
λ1p = B1pλ

1p + Cp(λ
1(p+1))

d

dx
λ1(p+1) = B1(p+1)λ

1(p+1) +B2(p+1)m(λ1(p+1), λ1(p+1)) + Cp+1(λ1p),

where

m(λ1(p+1), λ1(p+1)) := (m(λ1
p+1, λ

1
p+1), ...,m(λ1

d, λ
1
d))

B1p := (B̃ij)i,j=1,...,p

Cp := (
d∑

j=p+1

B̃ijλ1
j −

d∑
j=p+1

ζ̃ijm(λ1
j , λ

1
j ))i=1,...,p

B1(p+1) := (B̃ij)i,j=p+1,...,d

B2(p+1) := (−ζ̃ij)i,j=p+1,...,d

Cp+1 := (

p∑
j=1

B̃ijλ1
j )i=p+1,...,d.
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In this case λ1p can be represented by using variation of constants as

λ1p = eB1pλ(0) + eB1p

∫ ·
0
Cpe

−B1pη dη.

In particular, we see from 2 that λ1
1, ..., λ

1
d are quasi-exponentials (cf. [13, Corollary

5.1]) if ζ̃ij = 0 for (i, j) ∈ {1, ..., d} × {p+ 1, ..., d}. In this case we are in the setting of
Remark 4.6 and φ1, ..., φd must satisfy (4.19) which hold by choosing them as in (4.21).

Theorem 4.9. If the dimension of DLA is constant on V and the conditions of Propo-
sition 4.4 are satisfied, then the system (4.3) has the representation

dJt = ( d
dxJt −

1
2

∑d
j=1 φ

2
j (Yt)m(λ1

j , λ
1
j ) dt+

∑d
j=1 φj(Yt)λ

1
j dβ

j
t

dYt = â(Yt) dt+
∑d

j=1 φj(Yt)λ
2
j dβ

j
t ,

(J0, Ỹ0) ∈ U l := U l × Rm,
(4.23)

and around any h∗ ∈ V admits a generic finite dimensional realization given by

Γ(t, Zt, h
∗) := Flπt (h∗) +

d∑
l=1

Z ltλl, (4.24)

where Z is the Rd-valued time-inhomogeneous diffusion process given as the solution of

dZ lt = bl(t, Zt) dt+

d∑
i=1

ρi(t, Zt) dβ
i
t, Z l0 = 0, l = 1, ..., d, (4.25)

with

bl(t, Zt) =

d∑
i=1

ZitB̃
il − 1

2

p∑
j=1

(
φ2
j (Γ

2(t, Zt, h
∗)− φ2

j (Fl
π,2
t (h∗))

)
M jl, l = 1, ..., d (4.26)

with B̃ and M given in 2 and (4.10) of Proposition 4.4 and

ρl(t, Zt) = φl(Γ
2(t, Zt, h

∗)), l = 1, ..., d.

Furthermore, recalling the notation V = V1×V2 ⊂ (U l×Rm)∩D(A∞) (cf. Proposition
4.4), in this case also

dut = d
dxut dt+

∑d
j=1 φj(Yt)m(λ1

j , ut) dβ
j
t

dYt = â(Yt) dt+
∑d

j=1 φ
j(Yt)λ

2
j dβ

j
t ,

(u0, Y0) ∈ U := U × Rm,
(4.27)

admits a generic finite dimensional realization around any h∗ = (u∗, Y ∗) ∈ exp(V1)×V2

and is given by

Γ̃(t, Zt, (u
∗, Y ∗)) :=

(
exp(Γ1(t, Zt, (log(u∗), Y ∗)))

Γ2(t, Zt, (log(u∗), Y ∗))

)
(4.28)
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Proof. We first show (4.24) and proceed as in the proof of Theorem 3.9. Using (3.23)
and (3.24) with π given in (4.8) we will determine the coordinate process Z. For
condition (3.23), notice that

π(Γ(z, h∗)) = π(Flπz0(h∗)) +
d∑
i=1

ziAλi + α(Γ(z, h∗))− α(Flπz0(h∗))

and accordingly from 2 in Proposition 4.4 and Lemma 4.7 we get

π(Γ(z, h∗)) = π(Flπz0(h∗))

+

d∑
l=1

[ d∑
i=1

ziB̃
il − 1

2

p∑
j=1

(
φ2
j (Γ

2(z, h∗))− φ2
j (Fl

π,2
z0 (h∗))

)
M jl

]
λl. (4.29)

Thus it follows from (3.23) that

bl(z) :=

d∑
i=1

ziB̃
il − 1

2

p∑
j=1

(
φ2
j (Γ

2(z, h∗)− φ2
j (Fl

π,2
z0 (h∗))

)
M jl, l = 1, ..., d.

Similarly, using (3.24) it follows that

ρl(z) := φl(Γ
2(z, h∗)), l = 1, ..., d.

Then by defining the coordinate process as in (4.25) and using (4.29) we see that

Flπt (h∗) +
d∑
l=1

Z ltλl

= h∗ +

∫ t

0
π(Γ(s, Zs, h

∗)) ds+
d∑
l=1

∫ t

0
φl(Γ

2(s, Zs, h
∗))λl dβ

l
s

and thus the first claim. The second claim and the Representation (4.28) follow from
Corollary 4.1.

In particular we see that, if λ1
1, ..., λ

1
d are quasi-exponentials it follows from Remark

4.8 that necessarily φ1, ..., φd are of the form (4.21) such that λ2
1, ..., λ

2
d lie in the kernel

of the corresponding linear maps l1, ..., ld. In this case the drift coefficient (4.26) in
(4.25) reduces to

bl(z0, z) =

d∑
i=1

B̃il − 1

2

p∑
j=1

γjM
jl, l = 1, ..., d

as for j = 1, ..., p it holds true that

φ2
j (Γ

2(z0, z, h
∗)− φ2

j (Fl
π,2
z0 (h∗)) = γj + lj(

d∑
i=1

ziλ
2
i ) = γj .

By comparing this result to [12, Proposition 5.2] we see that the condition that λ1, ..., λd
are quasi-exponentials is (basically) sufficient for the existence of a generic finite di-
mensional realization but not necessary. We saw also that in the considered case where
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u and Y are driven by the same Brownian motions we necessarily arrived at a situation
where Y is the solution of an autonomous SDE and hence the ad hoc chosen restriction
in [12] of considering only autonomous stochastic parameter processes Y appears in
this setting to be justified. This was not the case in the previously investigated models
that lead to generic affine realizations given in (3.9). In the next subsection we will see
that this restriction is not necessary as well in the case where both processes are driven
by independent Brownian motions (cf. orthogonal noise models in [12, Section 4]).

4.1 Independent parameter process

We repeat the analysis of the previous subsection right before Lemma 4.2 by looking
at a version of the reduced model (4.3) where the Assumptions (A1)-(A3) hold true
but the parameter process Y is driven by independent Brownian motions, i.e. we look
at 

dJt = ( d
dxJt −

1
2

∑d
j=1m(σj(Ỹt), σj(Ỹt)) dt+

∑d
j=1 σj(Ỹt) dβ

j
t

dỸt = ã(l(Jt), Ỹt) dt+
∑d+m

j=d+1 c̃
j(l(Jt), Ỹt) dβ

j
t ,

(J0, Ỹ0) ∈ U l := U l × Rm,
(4.30)

where again ã(l(J), Y ) := a(l(exp(J)), Y ), c̃j(l(J), Y ) := cj(l(exp(J)), Y ) for j =
1, ..., d and U l := log(U), which is well-defined as U ⊂ H+. Then it follows as in
Lemma 4.2 from Theorem 3.3 that necessarily there are smooth vector fields λ1, ..., λd
such that (

σj(Y )
c̃j(l(J), Y )

)
∈ 〈λ1(Y ), ..., λd(Y ), λd+1(Y ), ..., λd+m(Y )〉,

where now σj(Y ) and c̃j(l(J), Y ) can have different coordinate mappings and hence c̃
must not be constant in the first argument. As in Section 3.1 we assume that

〈λ1(Y ), ..., λd(Y ), λd+1(Y ), ..., λd+m(Y )〉 =
〈(λ1

1

0

)
, ...,

(
λ1
d

0

)
,

(
0
e1

)
, ...,

(
0
em

)〉
and that A4 holds, that is, there are scalar fields on Rm denoted by φ1, ..., φd and on
U l × Rm denoted by φd+1, ..., φd+1+m such that

σj(Y ) = φj(Y )λ1
j , j = 1, ..., d, (4.31)

c̃j(l(J), Y ) = φ̃j(J, Y )ej−d, j = d+ 1, ..., d+m. (4.32)

Letting V be an open subset of U l ∩D(A∞) we consider the following candidate distri-
bution (cf. (4.7))

DLA(h) =
〈
π(h),

(
λ1

1

0

)
, ...,

(
λ1
d

0

)
,

(
0
e1

)
, ...,

(
0
em

)〉
, h ∈ V, (4.33)

where

π(h) := Ah+ α(h), α(h) :=

(
−1

2

∑d
j=1 φ

2
j (h

2)m(λ1
j , λ

1
j )

ã(l(h1), h2)

)
. (4.34)

We arrive at the following version of Proposition 4.4. Notice that in the current setting
λ1

1, ..., λ
1
d are necessarily linearly independent.
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Proposition 4.10. Under the conditions of Propositions 4.4 with ζij in (4.11) replaced
by

ζij(g) := −φj(g)Dφj(g) · ei, (i, j) ∈ {1, ...,m} × {1, ..., d} (4.35)

the distribution DLA on V given in (4.33) is involutive, if and only if, the following two
conditions hold true

1 There is a matrix B in Rd×d such that

d

dx
λ1
i =

d∑
j=1

Bijλ1
j , i = 1, ..., d, (4.36)

2 φp+1, ..., φd in (4.31) are constant maps.

Proof. We proceed as in the proof of Proposition 4.4. By noticing that for all h ∈ V
[π, λi](h) ∈ 〈λ1, ..., λm+d〉 if and only if ([π, λi](h))1 ∈ 〈λ1

1, ..., λ
1
d〉 it suffices to look at

the first coordinate. We have

([π, λi](h))1 =

{
d
dxλ

1
i , for i = 1, ..., d,∑d

j=1 ζij(h
2)m(λ1

j , λ
1
j ), for i = d+ 1, ..., d+m,

(4.37)

which immediately gives the first claim. For the second, by using (4.10) we can again
write

d∑
j=1

ζij(h
2)m(λ1

j , λ
1
j ) =

d∑
l=1

( p∑
j=1

ζij(h
2)M jl

)
λ1
l +

d∑
j=p+1

ζij(h
2)m(λ1

j , λ
1
j )

and conclude from (4.37) and (4.9) that ([π, λi](h))1 ∈ 〈λ1
1, ..., λ

1
d〉 holds for i = d +

1, ..., d + m if and only if ζij = 0 for (i, j) ∈ {1, ...,m} × {p + 1, ..., d} from which via
the condition (4.20) (with ζ̃ij = 0) in Remark 4.6 the second claim follows.

Interestingly we see that if the distribution DLA is involutive on V then the second
condition of the previous Proposition states that the (logarithm of the) forward variance
process J in (4.30) can have a stochastic volatility component only if the corresponding
direction λ1

i is such that m(λ1
i , λ

1
i ) lies in the span of λ1

1, ..., λ
1
d. This result is stronger as

in the previous section as here e1, ..., em spans Rm as opposed to λ2
1, ..., λ

2
d (cf. Remark

4.19). On the other hand, we see that in the present case, there are no restrictions
posed on the stochastic volatility process Y . Thus we can state the following version
of Theorem 4.9 for the system (4.30).

Corollary 4.11. If the dimension of DLA is constant on V and the conditions of
Proposition 4.10 are satisfied, then the system (4.30) has the representation

dJt = ( d
dxJt −

1
2

∑d
j=1 φ

2
j (Ỹt)m(λ1

j , λ
1
j ) dt+

∑d
j=1 φj(Ỹt)λ

1
j dβ

j
t

dỸt = ã(l(Jt), Ỹt) dt+
∑d+m

j=d+1 φ̃j(Jt, Ỹt)λ
2
j dβ

j
t ,

(J0, Ỹ0) ∈ U l := U l × Rm,
(4.38)

and around any h∗ ∈ V admits a generic finite dimensional realization given by

Γ(t, Zt, h
∗) := Flπt (h∗) +

d+m∑
l=1

Z ltλl,
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where Z is the Rd-valued time-inhomogeneous diffusion process given as the solution of

dZ lt = bl(t, Zt) dt+
d+m∑
i=1

ρi(t, Zt) dβ
i
t, Z l0 = 0, l = 1, ..., d, (4.39)

with

bl(t, Zt) :=
d∑
i=1

ZitB
il − 1

2

p∑
j=1

(
φ2
j (Γ

2(t, Zt, h
∗))− φ2

j (Fl
π,2
t (h∗))

)
M jl,

for l = 1, ..., d and

bl(t, Zt) := ãl(l(Γ1(t, Zt, h
∗)),Γ2(t, Zt, h

∗))− ãl(l(Flπ,1t (h∗)), F lπ,2t (h∗)),

for l = d+ 1, ..., d+m, with ãl denoting the coordinate of ã with respect el and B and
M were given in 1 and (4.10) of Proposition 4.10 and 4.4 respectively, and

ρl(t, Zt) :=

{
φl(Γ

2(t, Zt, h
∗)), l = 1, ..., d,

φl(Γ(t, Zt, h
∗)), l = d+ 1, ..., d+m.

(4.40)

Furthermore, recalling the notation V = V1×V2 ⊂ (U l×Rm)∩D(A∞) (cf. Proposition
4.4), in this case also

dut = d
dxut dt+

∑d
j=1 φj(Yt)m(λ1

j , ut) dβ
j
t

dYt = a(l(ut), Yt) dt+
∑d+m

j=d+1 φj(ut, Yt)λ
2
j dβ

j
t ,

(u0, Y0) ∈ U := U × Rm,

admits a generic finite dimensional realization around any h∗ = (u∗, Y ∗) ∈ exp(V1)×V2

and is given by

Γ̃(t, Zt, (u
∗, Y ∗)) :=

(
exp(Γ1(t, Zt, (log(u∗), Y ∗)))

Γ2(t, Zt, (log(u∗), Y ∗))

)
.

Proof. We omit the proof as it is essentially the same as in Theorem 4.9 and only note
that the representation corresponding to (4.29) is now given by

π(Γ(z, h∗)) = π(Flπz0(h∗))

+

d∑
l=1

[ d∑
i=1

ziB
il − 1

2

p∑
j=1

(
φ2
j (Γ

2(z, h∗))− φ2
j (Fl

π,2
z0 (h∗))

)
M jl

](λ1
l

0

)

+

d+m∑
l=d+1

(
ãl(l(Γ1(z, h∗)),Γ2(z, h∗))− ãl(l(Flπ,1z0 (h∗)), F lπ,2z0 (h∗))

)( 0
el−d

)
.

We see that as in the case of an independent parameter process for generic affine
realizations discussed in Section 3.1 there are no additional restrictions on the parameter
process, which brings us to a more general setup when compared to the situation
investigated [12], where only autonomous parameter processes were considered. On
the other hand, as opposed to the case where the forward variance and the parameter
process are driven by the same Brownian motions, we see that the condition that
λ1

1, ..., λ
1
d are quasi-exponentials are not only sufficient by also necessary due to reasons

that were already discussed above after the proof of the Proposition 4.10.
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Example 4.12 (Constant Diffusion). We revisit the Example II.4.5 from Musiela’s per-
spective, by looking at the model (4.1) with m = 0 and d = 1 given by{

dut = d
dxut dt+m(σ, ut) dβt

u0 ∈ U.
(4.41)

We know from Corollary 4.11 that (essentially) this model admits a generic finite dimen-
sional realization if and only if σ is a quasi exponential. In this case we can represent
the solution by

ut = exp(Flπt (log(u0)) + Ztσ) = m(exp(Flπt (log(u0))), exp(Ztσ)), (4.42)

where π = d
dx −

1
2m(σ, σ) and by letting d

dxσ = bσ, Z is given as the solution of

dZt = bZt dt+ dβt. (4.43)

We assume now that σ is a constant vector given by σ := c1 where c is a real number
and 1 is the constant vector that satisfies m(1, u) = u for all u ∈ H. Then necessarily
b = 0 and

Flπt (log(u0)) = log(Stu0)− 1

2

∫ t

0
St−sc

2m(1, 1) ds = log(Stu0)− 1

2
c2t1 (4.44)

and accordingly

ut = Stu0 exp((−1

2
c2t+ cβt)1). (4.45)

Thus for any initial curve u0 of the form aeb· it follows that the short-variance ξt := ut(0)
follows a geometric Brownian motion given by

ξt = a+

∫ t

0
bξs ds+

∫ t

0
cξs dβs (4.46)

for which we know that the forward variance can be represented as ut = eb·ξt which
(again) gives an example of an exponentially affine realization that has also an affine
realization.

Example 4.13 (Bergomi Model). From Proposition 4.10 we see that the basic Bergomi
model considered in Example II.5.16 corresponds to the case where m = 0 and B being
a diagonal matrix.

5 Mixed Models

So far we saw that forward variance models that have diffusion coefficients that are
given by the constant direction type φ(u)λ or of multiplication type m(λ, u) can lead
to generic finite dimensional realizations. In this section we will briefly look at mixtures
of these types, namely additive and (in some sense) multiplicative mixtures. In both
cases we restrict our self to autonomous equations, that is, without stochastic volatility.
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5.1 Additive Mixtures

We look here at forward variance processes that are given as solutions of{
dut = d

dxut dt+ φ(ut)λ1 dβ
1
t +m(λ2, ut) dβ

2
t

u0 ∈ U ⊂ D((d/dx)∞).
(5.1)

The candidate distribution is given by D(h) = 〈Ξ(h), λ1,m(λ2, h)〉, for h ∈ U , where

Ξ(h) :=
d

dx
h− 1

2
Dφ(h)λ1 · (φ(h)λ1)− 1

2
m(m(λ2, λ2), h).

As the second term lies in 〈λ1〉 it is enough to replace Ξ with π where

π(h) :=
d

dx
h− 1

2
m(m(λ2, λ2), h).

Thus we are looking at

D(h) = 〈π(h), λ1,m(λ2, h)〉, h ∈ U. (5.2)

The following proposition gives equivalent conditions for the distribution D to be invo-
lutive which correspond to necessary conditions for a minimal generic finite dimensional
distribution, see Remark 2.3. Recall that we denote by 1 the element in H such that
m(1, h) = h for all h ∈ H.

Proposition 5.1. The distribution D is involutive on U if and only if there are real
numbers a, b, c such that λ2 = c1 and λ1 = aeb·.

Proof. The distribution is involutive if and only if the following three conditions are
satisfied for all h ∈ U

[m(λ2, ·), λ1](h) ∈ D(h), [π, λ1](h) ∈ D(h), [π,m(λ2, ·)](h) ∈ D(h). (5.3)

Assume that λ2 is not constant. We show first that in this case λ1 can not be con-
stant neither. The first condition in (5.3) is equivalent to m(λ2, λ1) = B1(h)λ1 +
m(λ2, B

2(h)h) for all h ∈ U , where B1 and B2 are the coordinate maps. Now if λ1

is constant, say z1 for some real number z, then this amounts to zλ2 = B1(h)z1 +
B2(h)m(λ2, h) for all h ∈ U . As there is an open subset Ũ ⊂ U on which 1 and
m(λ2, h) are linearly independent for all h ∈ Ũ it follows that necessarily B1(h)
and m(λ2, B

2(h)h) are constant in h. Accordingly it must hold that zλ2 = B1z1 +
B2(h)m(λ2, h) for all h ∈ Ũ which is impossible and hence λ1 can not be constant in
this case. But then we can find again an open subset Ũ ⊂ U on which λ1 and m(λ2, h)
are linearly independent for all h ∈ Ũ and thus it must hold both for all h ∈ Ũ ,
m(λ2, λ1) = B1λ1 +m(λ2, B

2(h)h) and m(λ2, B
2(h)h) being constant in h which again

is impossible and hence we conclude by contradiction the claim regarding λ2. For the
claim on λ1 we use the second condition in (5.3), which is (recall that we just showed
λ2 = c1) equivalent to d

dxλ1 − 1
2c

2λ1 = 〈λ1, ch〉 which gives the claim on λ1 and hence
necessity. Showing sufficiency is straight forward.

We will now show that this result regarding the condition on λ2 corresponded
already to the most general situation. Indeed, by considering the Lie-Algebra DLA on
U that is generated by the vector fields π, λ1 and m(λ2, h) (i.e. this is the distribution
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that is spanned by this vector fields and all multiple Lie brackets). Now we look for
more general conditions such that (5.1) admits a generic finite dimensional realization.
It follows from Theorem 2.2 that a necessary condition is that the dimension of the
Lie Algebra DLA is finite (i.e. the dimension of the distribution DLA(h) is bounded in
h ∈ U).

Proposition 5.2. If the dimension of DLA is finite then necessarily λ2 is a quasi-
exponential, that is,

dim
〈{ dn

dxn
λ2

∣∣∣n ∈ N
}〉

<∞.

Proof. By defining recursively [π,m(λ2, ·)]n := [π, [π,m(λ2, ·)]n−1] for n ≥ 2 with initial
condition [π,m(λ2, ·)]1 := [π,m(λ2, ·)] it follows by construction that [π,m(λ2, ·)]n(h) ∈
DLA(h) for all n ≥ 1 and h ∈ U . Now by a straight forward calculation it follows that

[π,m(λ2, ·)]n(h) = m(
dn

dxn
λ2, h), n ≥ 1, h ∈ U.

Now if the pointwise dimension of DLA is bounded in U by m ≥ 1 then necessarily
(notice that the case n = 0 is included as m(λ2, h) ∈ DLA(h))

dim 〈{m(
dn

dxn
λ2, h) |n ≥ 0}〉 ≤ m, for all h ∈ U.

In this case we can find a natural number k ≥ 1 (cf. [71, Lemma 3.6]) such that

m(
dk

dxk
λ2, h) =

k−1∑
i=0

ai(h)m(
di

dxi
λ2, h),

where a0, ..., ak−1 denote the coordinate functions. As the left hand-side is linear in h
it follows that the coordinate functions are necessarily constants and accordingly, again
by linearity, we have that necessarily

m(
dk

dxk
λ2 −

k−1∑
i=0

ai
di

dxi
λ2, h) = 0,

for all h ∈ U and hence the claim.

In fact, if we assume that λ1 6= 0 we can show that λ2 must in fact be a constant
element of H. To simplify the notation, we introduce the pointwise powers for elements
h of H by hn := m(hn−1, h) for n ≥ 2 and h1 := h.

Proposition 5.3. If the dimension of DLA is finite and λ1 6= 0 then necessarily λ2 is
a constant, i.e. λ2 = c1 where c is a real constant and 1 is the neutral element in H
with respect to pointwise multiplication.

Proof. As above we define recursively [m(λ2, ·), λ1]n := [m(λ2, ·), [m(λ2, ·), λ1]n−1] for
n ≥ 2 and [m(λ2, ·), λ1]1 := [m(λ2, ·), λ1]. Then we have [m(λ2, ·), λ1]n(h) ∈ DLA(h)
for all n ≥ 1 and h ∈ U . Now as

[m(λ2, ·), λ1]n(h) = m(λn2 , λ1), n ≥ 1,
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by the same reasoning as in the proof of Proposition 5.2 we can find a k ≥ 1 such that
necessarily

λk2 =

k−1∑
i=1

aiλ
i
2

for real numbers a1, ..., ak−1 which gives the claim.

Thus we can look at the distribution given in (5.2) which now reduces to

D(h) = 〈 d
dx
h, λ1, h〉, h ∈ U, (5.4)

as π is now given by π(h) = d
dxh−

1
2c

2h. Also note that, by denoting Id the linear map
on H given by Id(h) = h, we have

FlIdt (h) = etIdh :=
∞∑
n=0

tnIdn

n!
h =

∞∑
n=0

tn

n!
Id(h) = eth. (5.5)

Proposition 5.4. If the conditions of Proposition 5.1 hold true and the dimension of
the distribution (5.4) is constant on U , then (5.1) admits a generic finite dimensional
realization around any u∗ ∈ U such that the solution can be represented by

Γ((Zt, t), u
∗) = Z0

t λ1 + eZ
1
t Stu

∗, (5.6)

where Zt is the time-inhomogeneous diffusion with values in R2 given by

dZ0
t = bZ0

t dt+ φ(Γ((Zt, t), u
∗)) dβ1

t + cZ0
t dβ

2
t , Z0

0 = 0 (5.7)

dZ1
t = −1

2
c2 dt+ c dβ2

t , Z1
0 = 0, (5.8)

where b, c are the real constants given in Proposition 5.1.

Proof. By (2.5) we have (cf. (5.5))

Γ(z, u∗) = Flλ1z0 ◦ Fl
Id
z1 ◦ Fl

d
dx
z2 u

∗ = z0λ1 + ez1Sz2u
∗.

We find the coordinate processes in the usual way by following the steps in [34, Section
6.4]. We just show that (5.6) indeed solves (5.1). Let Z̃1

t := eZ
1
t and notice that

dZ̃1
t = cZ̃1

t dβ
2
t .

By using the linearity of (stochastic) integrals and Itô’s product formula, we get

Γ((t, Zt), u
∗) = Z0

t λ1 + Z̃1
t Stu

∗ =

∫ t

0
bZ0

sλ1 ds+

∫ t

0
φ(Γ((Zs, s), u

∗))λ1 dβ
1
s

+

∫ t

0
cZ0

sλ1 dβ
2
s + u∗ +

∫ t

0
Ssu

∗ dZ̃1
s +

∫ t

0
Z̃1
s

d

dx
Ssu

∗ ds

= u∗ +

∫ t

0

d

dx
(Z0

sλ1 + Z̃1
sSsu

∗) ds+

∫ t

0
φ(Γ((Zs, s), u

∗))λ1 dβ
1
s

+

∫ t

0
c(Z0

sλ1 + Z̃1
sSsu

∗) dβ2
s

= u∗ +

∫ t

0

d

dx
(Γ((Zs, s), u

∗)) ds+

∫ t

0
φ(Γ((Zs, s), u

∗))λ1 dβ
1
s

+

∫ t

0
cΓ((Zs, s), u

∗) dβ2
s

and hence the claim.
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5.2 Multiplicative Mixtures

Now we look at multiplicative mixtures by considering the following equation{
dut = d

dxut dt+
∑d

j=1 φ̃j(ut)m(ut, λj) dβ
j
t

u0 ∈ U,
(5.9)

where U is an open convex set in H+ ⊂ H (cf. Lemma II.5.14) and φ̃1, ..., φ̃d are scalar
fields on U . It follows just as in Corollary 4.1 that exp(Jt) is a mild solution of (5.9)
for any J0 ∈ U l where Jt is a mild solution of{

dJt = ( d
dxJt −

1
2

∑d
j=1 φ

2
j (Jt)m(λj , λj)) dt+

∑d
j=1 φj(Jt)λj dβ

j
t

J0 ∈ U l,
(5.10)

where U l := log(U) (cf. Section 4 for the notation) and φj(h) = φ̃j(exp(h)) for j =
1, ..., d. In particular, (5.9) admits a generic finite dimensional realization for every
u∗ ∈ U if and only if (5.10) does so for any J∗ ∈ U l. Thus we are looking at conditions
such that (5.10) admits a generic finite dimensional realization. As in Section 4.1 it
suffices to look at the distribution D on U l given by

D(h) := 〈π(h), λ1, ..., λd〉, h ∈ U l, (5.11)

where

π(h) :=
d

dx
h− 1

2

d∑
j=1

φ2
j (h)m(λj , λj). (5.12)

We are now in a very similar situation as in Section 4 and have a result that is analog
to that of Proposition 4.4.

Proposition 5.5. Let λ1, ..., λd be linearly independent and p ∈ {0, ..., d} be such that{
m(λj , λj) ∈ 〈λ1, ..., λd〉, for j = 1, ..., p,

m(λj , λj) /∈ 〈λ1, ..., λd〉, for j = p+ 1, ..., d,
(5.13)

and M ∈ Rp×d such that

m(λj , λj) =

d∑
l=1

M jlλl, for j = 1, ..., p. (5.14)

Further let ζij : U l → R for for (i, j) ∈ {1, ..., d}2 be the map given by

ζij(h) := −φj(h)Dφj(h) · λi. (5.15)

Then the distribution (5.11) is involutive on U l if and only if the following two condi-
tions hold true:

1 There is a matrix ζ̃ ∈ Rd×(d−p−1) such that for (i, j) ∈ {1, ..., d} × {p + 1, ..., d}
ζij(h) = ζ̃ij for for all h ∈ U l.

2 There is a matrix B̃ ∈ Rd×d such that

d

dx
λ1
i =

d∑
j=1

B̃ijλj −
d∑

j=p+1

ζ̃ijm(λj , λj), i = 1, ..., d. (5.16)
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Proof. The distribution (5.11) is involutive on U l if and only if [π, λi](h) ∈ 〈λ1, ..., λd〉
for all h ∈ U l. It follows that this is equivalent to (cf. Proposition 4.4) to the existence
of a coordinate map B : U l → Rd×d, such that

d

dx
λi =

d∑
l=1

(
Bil(h)−

p∑
j=1

ζij(h)M jl
)
λl −

d∑
j=p+1

ζij(h)m(λj , λj),

for i = 1, ..., d and all h ∈ U l. Now from (5.13), arguing as in Proposition 4.4 and
setting

B̃il := Bil(h)−
p∑
j=1

ζij(h)M jl, (i, l) ∈ {1, ..., d}2

gives the claim.

Note that Remark 4.6 applies here as well, that is, if the condition 1 of the last
proposition holds true, then φp+1, ..., φd satisfy the ODEs

−φjDφj · λi = ζ̃ij , for all(i, j) ∈ {1, ..., d} × {p+ 1, ..., d}.

Solutions are necessarily of the form

φj(h) =
√
γj + lj(h), j = p+ 1, ..., d,

where each lj ∈ L(U l,R) with lj(U
l) ⊂ [−γj ,∞) satisfying −1

2 lj(λi) = ζ̃ij . However,
unlike the situation of Remark 4.6 the vectors λ1, ..., λd are now assumed to be linearly
independent. Hence, if for one j ∈ {p + 1, ..., d}, it is assumed that ζ̃1j , ..., ζ̃dj are all
zero, then by the Rank Nullity Theorem this lj is necessarily constant and equaling
zero as well and accordingly φj must be constants. The case where ζ̃ij = 0 for all
(i, j) ∈ {1, ..., d} × {p + 1, ..., d}, which corresponds by 2 to the case where λ1, ..., λd
are quasi-exponentials, we have hence necessarily that φp+1, ..., φd are constants. Hence
if we assume that p = 0 in (5.13) we end up in the situation where all φ1, ..., φd are
constants and the equation (5.9) reduces to the equation (4.27) with m = 0.

Proposition 5.6. If the conditions of Proposition 5.5 and the dimension of the dis-
tribution (5.11) is constant on U l, then (5.10) admits a generic finite dimensional
realization around every J∗ ∈ U l and solutions can be represented by

Γ(t, Zt, J
∗) = Flπt (J∗) +

d∑
l=1

Z ltλl (5.17)

where Z is the Rd-valued time-inhomogeneous diffusion process given as the solution of

dZ lt = bl(t, Zt) dt+
∑
j=1

ρj(t, Zt) dβ
j
t , Z l0 = 0, l = 1, ..., d,

where

bl(t, z) =

d∑
i=1

ziB̃
il − 1

2

p∑
j=1

(
φ2
j (Γ(t, z, J∗))− φ2

j (Fl
π
t (J∗))

)
M jl, l = 1, ..., d
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with B̃ and M given in 2 and (5.14) and ρj(t, z) = φj(Γ(t, z, J∗)), for j = 1, ..., d. In
this case also (5.9) admits a generic finite dimensional realization around any u∗ ∈ U
with representation

Γ̃(t, Zt, u
∗) := exp

(
Γ(t, Zt, log(u∗))

)
= m

(
Flπ̃t (u∗), exp(

d∑
l=1

Z ltλl)
)
, (5.18)

where π̃ is the vector field on U given by

π̃(h) = m(h, π(log(h))) (5.19)

Proof. The claim follows again from Theorem 2.2. Regarding the Representation (5.17)
we proceed as in the proof of Theorem 4.9 and skip most details as it is essentially the
same reasoning. It follows from (2.5) that

Γ(z, J∗) = Flπz0(J∗) +

d∑
j=1

zjλj . (5.20)

By using the 1 and 2 in Proposition 5.5 and the discussion preceding this Proposition,
it follows just as in (4.29) in the proof of Theorem 4.9 that

π(Γ(z, J∗))− π(Flπz0(J∗))

d∑
l=1

[ d∑
i=1

ziB̃
il − 1

2

p∑
j=1

(
φ2
j (Γ(z, J∗))− φ2

j (Fl
π
z0(J∗))

)
M jl

]
λl

thus by choosing b and ρ as suggested the first claim follows. For the second claim,
it remains to show that the Representation (5.18) holds true with π̃ given in (5.19).
Indeed, we have

exp
(

Γ(t, Zt, log(u∗))
)

= m
[

exp
(
Flπt (log(u∗)

)
, exp

( d∑
l=1

Z ltλl

)]
.

Thus by defining Flπ̃t (u∗) := exp
(
Flπt (log(u∗)

)
the claim follows from

d

dt
F lπ̃t (u∗) = m

[
Flπ̃t (u∗), π

(
Flπt (log(u∗))

)]
.

Example 5.7. Consider the equation (5.9) with d = 2 and λ1 = exp(−b·) and λ2 =
exp(−2b·). Then in the setting of Proposition 5.5 we are in the situation where p = 1,
as m(exp(−b·), exp(−b·)) = exp(−2b·) with M11 = 1 and M12 = 0. Further according
to 2 we have necessarily ζ̃12 = ζ̃22 = 0 and by the discussion after the Proposition 5.5
we have that φ2 is necessarily a constant. Looking again at 2 we see that B̃ is a diagonal
matrix with entries −b and −2b. Thus it follows from (and under the assumptions of)
the last Proposition that the equation{

dut = d
dxut dt+ φ̃1(ut)m(ut, exp(−b·)) dβ1

t + φ̃2m(ut, exp(−2b·)) dβ2
t

u0 ∈ U,
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is solved for any initial curve u∗ ∈ U by

Γ̃(t, Zt) = m
[
Flπ̃t (u∗), exp

(
Z1
t e
−b· + Z2

t e
−2b·

)]
,

where
π̃(h) = m(h, π(log(h)))

and

π(h) =
d

dx
h− 1

2
φ̃2(exp(h))m(λ1, λ1)− 1

2
φ̃2

2m(λ2, λ2).

The coordinate processes are given by{
dZ1

t =
[
− bZ1

t − 1
2

(
φ̃2

1

(
Γ̃((t, Z1

t , Z
2
t ), log(u∗))

)
− φ̃2

1

(
Flπ̃t (u∗)

))]
dt

+φ̃1

(
Γ̃((t, Z1

t , Z
2
t ), log(u∗))

)
dβ1

t , Z1
0 = 0

(5.21)

and
dZ2

t = −2bZ2
t dt+ φ̃2 dβ

2
t , Z2

0 = 0.

The situation becomes particularly tractable by choosing (cf. Remark 4.6)

φ̃1(h) =
√

(γ + l(log(h))), γ ∈ R, l ∈ L(U ;R), (5.22)

such that l satisfies l(〈e−b·, e−2b·〉) ⊂ [−γ,∞). In this case Z1
t reduces to

dZ1
t =

[
− bZ1

t −
1

2
Z1
t l(e

−b·)− 1

2
Z2
t l(e

−2b·)
]
dt

+
√
γ + l

(
Flπt (log(u∗)) + Z1

t e
−b· + Z2

t e
−2b·)

)
dβ1

t , Z1
0 = 0

and π becomes an affine vector field. The time-of-maturity forward variance v(t, T ) :=
ut(T − t) has the representation

v(t, T ) = exp
(
Flπt (log(u∗))(T − t) + Z1

t e
−b(T−t) + Z2

t e
−2b(T−t)

)
.

Notice that this looks very much like the Bergomi model (II.5.20) but here the first
coordinate Z1

t must not follow an Ornstein-Uhlenbeck process but can be chosen to be
of the form (5.21). Also the Flow Flπt (log(u∗))(T − t) differs as Lemma II.5.10 does
not hold in the present case.

We see that both mixtures, additive and multiplicative, of the basic diffusion coef-
ficients given by φ(·)λ1 and m(λ2, ·), lead in some cases to generic finite dimensional
realization. While in the additive case the restrictions are quite strong, that is λ2 must
be a constant element in H, the restrictions in the multiplicative case are very much
case comparable to the case of a stochastic parameter as considered in Section 4.

6 Relation to the Fractional Bergomi Model

This section is a short outlook to future research. In a series of recent papers, including
[5], Jim Gatheral and co-workers suggest that the logarithm of the spot-variance (under
the physical measure) should be modeled as a fractional Brownian motion which is
justified by the empirical evidence found in [44]. Starting from this assumption and
under a change of measure with a deterministic Girsanov density (see [5, Section 3])
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they arrive at the Rough Bergomi (rBergormi) model with spot-variance process (in
the special case of t = 0 , see [5, Section 4]) given by

ut(0) = u0(t) exp
(
ωβHt −

1

2
ω2E[(βHt )2]

)
, (6.1)

where ω > 0 is a parameter and

βHt :=

∫ t

0

dβs
(t− s)γ

, (6.2)

corresponds to a truncated version of the fractional Browian motion in the representa-
tion suggested by Mandelbrot and Van Ness (see [59]) with Hurst parameter H = 1

2−γ,
which shares most properties with it (cf. [60, Section 3] and [24, Definition 1]). They
further note in [5, Page 11]

Specifically, this rBergomi model is non-Markovian in the instantaneous
variance ... but is Markovian in the (infinite-dimensional) state vector ...
ξt(u).

where in our notation ξt(u) corresponds to ut(u− t). In the following we will recapture
the Representation (6.1) and show this last point from the point of view of under-
standing variance curve models u as mild solution of the SPDE (4.1) in a suitable
Hilbert space H. Subsequently we will discuss a method to approximate this process
by linear-combinations of Bergomi-type processes.

6.1 The Markov property of the rBergomi Model

Under the conditions of Corollary 4.1 mild solutions of (4.1) can be represented as
ut = exp(Jt) where J is the mild solution of (4.3) (in both cases we assume here m = 0
and d = 1). We assume that this conditions are met for the choice σ(x) = ω 1

xγ , for
some ω > 0, on a suitable Hilbert space H. In this case we can write J (i.e. the
logarithm of the forward variance) as J = J1 + J2 (cf. Lemma II.5.10) where J1 and
J2 are given in the mild representations by

J1
t = ω

∫ t

0
St−sσ dβs, and (6.3)

J2
t = StJ0 −

1

2
ω2

∫ t

0
St−sm(σ, σ) ds,

where J1 is an infinite dimensional Ornstein-Uhlenbeck process (see [25]) and J2 is the
mild solution of a deterministic PDE. Hence J and also J1 correspond under some mild
conditions (see [26, Chapter 9]) to an infinite dimensional Markov process in H. By

noting that
J1
t (0)
ω corresponds to the (truncated) fractional Brownian motion given in

(6.2) (recall the choice σ(x) = 1
xγ ), that is,

J1
t (0) = ω

∫ t

0
St−sσ(0) dβs = ω

∫ t

0

1

(t− s)γ
dβs = ωβHt ,

we find that the spot variance is given by

ut(0) = m(exp(J1
t ), exp(J2

t ))(0) = exp(J1
t (0) + J2

t (0))

= u0(t) exp
(
ωβHt −

1

2

∫ t

0
ω2 1

(t− s)2γ
ds
)
, (6.4)
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where u0(t) := exp(J0(t)) equals the Representation given in (6.1) (notice that the
integral converges for γ < 1

2 , i.e. for positive Hurst parameters) with the property that
the forward variance curve is Markov with respect to the filtration generated by J1.

6.2 Approximation of the rBergomi Model

Finally we show (formally) how to approximate this processes with real valued Ornstein
Uhlenbeck processes by following the ideas given in [16] and [17] (see also the recent
article [49]). By defining µ(dη) := ηγ−1 dη and denoting by Lµ the Laplace transform
with respect to the measure µ, we can represent σ(x) = 1

xγ by

σ(x) = LµL−1
µ [σ](x) =

1

Γ(γ)

∫
R+

e−xη µ(dη),

and by applying Fubini’s Theorem we accordingly get for (6.3)

J1
t = ω̃

∫ t

0
St−s

(∫
R+

e−η· µ(dη)
)
dβs = ω̃

∫
R+

(∫ t

0
St−se

−η·dβs

)
µ(dη), (6.5)

where ω̃ := ω
Γ(γ) . Notice that the expression in the brackets corresponds for each η > 0

to the mild solution of

dXη
t =

d

dx
Xη
t dt+ e−η· dβt, Xη

0 = 0,

for which we know (cf. Theorem 3.9) that it can be represented by Xη
t = Zηt e

−η·, where
Zη is the Ornstein-Uhlenbeck process satisfying

dZηt = −ηZηt dt+ dβt, Z0 = 0. (6.6)

Thus we can formally write J1 as

J1
t = ω̃

∫
R+

Zηt e
−η· µ(dη). (6.7)

Using (6.7) we can represent (6.4) as (letting u0 = u)

ut = Stu exp
(
ω̃

∫
R+

Zηt e
−η· µ(dη)− 1

2

∫ t

0
ω̃2 1

(t− s)2γ
ds
)
. (6.8)

Remark 6.1. The Represetation (6.7) was found in [16] for the fractional Brownian
motion which corresponds to the process J1

t (0), as in this case the expression in the
brackets of (6.5) is given by

∫ t
0 e
−η(t−s) dβs which can immediately be recognized as the

solution of (6.6). The underlying infinite dimensional Markov process is here given by
Yt := (Zηt ; η > 0) (cf. [16, Proposition 1]).

Similarly, by starting with the representation of the mild solution of (4.1) and with
the same reasoning as above we find

ut = Stu+ ω

∫ t

0
St−sm(σ, us) dβs

=

∫
R+

StL−1
µ [u](η)e−η· µ(dη) + ω̃

∫ t

0
St−sm(

∫
R+

e−η· µ(dη), us) dβs

=

∫
R+

(
StL−1

µ [u](η)e−η· +

∫ t

0
St−sm(ω̃e−η·, us) dβs

)
µ(dη), (6.9)



62 III Finite dimensional Realizations

where for each η > 0 the expression in the brackets of (6.9) corresponds to the mild
solution of {

duηt = d
dxu

η
t dt+m(ω̃e−η·, uηt ) dβt

uη0 = L−1
µ [u](η)e−η·,

and hence according to Theorem 4.9 admits a finite dimensional realization and we can
write

ut =

∫
R+

exp
(
Flπ

η

t (log(L−1
µ [u](η)e−η·)) + Zηt ω̃e

−η·
)
µ(dη), (6.10)

where Zηt agrees with the solution of (6.6) and Flπ
η

t (L−1
µ [u](η)e−η·) denotes the flow of

(cf. (4.34))

πη(h) :=
d

dx
h− 1

2
ω̃2m(e−η·, e−η·)

at log(L−1
µ [u](η)e−η·). If we now formally approximate the measure µ(dη) by a sum

of Dirac measures µN (dη) :=
∑N

i=1 ciδdi(dη) as in [17] (see also [16, Page 99] for the
approximation of fractional Brownian motion) for suitably chosen (c1, d1), ..., (cN , dN )
we can approximate the process (6.7) by ω̃

∑N
i=1 ciZ

di
t e
−di· which plugged into (6.8)

gives a process of Bergomi-type and hence admits a finite dimensional representation.
Similarly, we can approximate (6.10) by

N∑
i=1

ci exp
(
Flπ

di

t (log(L−1
µ [u](di)e

−di·)) + Zdit ω̃e
−di·
)
,

which is just a linear combination of conventional Bergomi processes. The proof of
(weak) convergence of this approximation as N → ∞ is work in progress and will be
published soon.



Chapter IV

Weak Taylor Expansions for
SPDEs

1 Introduction

Let H be a suitable Hilbert space and consider the following parameterized family of
SPDEs {

dXε
t = (AXε

t + V (ε,Xε
t )) dt+

∑d
i=1 Vi(ε,X

ε
t ) dβ

i
t

X0 ∈ H,
(1.1)

where for each ε ∈ R, V (ε, ·), V1(ε, ·), ..., Vd(ε, ·) are sufficiently regular vector-fields on
H. For l ∈ L(H,RN ) for some N ∈ N we will be interested in the weak approximation
of l ◦ Xε

T as ε → 0. This approximation will be particularly useful if Xε admits a
finite dimensional realization only for ε = 0. In [68, Theorem 2.3] a weak Taylor
approximation is introduced that provides sufficient conditions for the process l ◦ Xε

T

such that this approximation converges at arbitrary order. The main conditions are
that l ◦ Xε

T is smooth in the Malliavin sense and that the corresponding Malliavin-
Covariance Matrix is invertible with a p-integrable inverse for every p ≥ 1. As we are
here in an infinite dimensional setting, especially the latter condition is far from trivial.
As we could not find a suitable source for conditions on the vector fields of an SPDE
such that its solution is smooth in the Malliavin sense (for Malliavin differentiability
of mild solutions of SPDEs see for example [19] and [18] (see here the Remark 2.10)
and [67]) we recapture the corresponding notions. The theory is similar the finite
dimensional case (see [63], from which also most of the notation is adopted).

2 The Malliavin Derivative

We will mainly follow [58] which in turn is mainly based on [46]. For the finite-
dimensional case, all results can be found in [63]. Let T > 0 be some finite real
number and (Ω,F , (Ft)t∈[0,T ],P) a complete filtered probability space acommodating
a d-dimensional Brownian motion (Wt)t∈[0,T ] such that the filtration (Ft)t∈[0,T ] is gen-

erated by the Brownian motion. For φ ∈ L2([0, T ];Rd) we introduce the isonormal
Gaussian process

W (φ) :=

d∑
i=1

∫ T

0
φi(t) dW i

t . (2.1)
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Let H be a separable Hilbert space. By S(H) we define the set of smooth cylindrical
H-valued random variables F

F =
n∑
j=1

fj(W (φ1), ...,W (φm))hj ,

where m,n ∈ N, φi ∈ L2([0, T ];Rd) for i = 1, ...,m and W (φi) is given by (2.1), hj ∈ H,
fj ∈ C∞p (Rm), for j = 1, ..., n. We have S(H) ⊂ Lp(Ω;H) for all p ≥ 1. The (Malliavin)
derivative of F ∈ S(H) is defined by

DtF :=

n∑
j=1

m∑
i=1

∂ifj(W (φ1), ...,W (φm))hj ⊗ φi(t), t ∈ [0, T ],

where hj ⊗ φi(t) denotes the algebraic tensor product of hj ∈ H and φ(t) ∈ Rd, which
can be identified with an element of L0

2 := L2(Rd;H), the space of Hilbert-Schmidt
operators, by

(hj ⊗ φi(t))(x) = (φi(t)(x))hj = (

d∑
l=1

φli(t)x
l)hj ∈ H, ∀x ∈ Rd

and in particular (hj ⊗ φi(t))(el) = φli(t)hj , where e1, ..., ed denote the standard basis
vectors of Rd. This way we can, like in the finite dimensional case (i.e. H = R, cf.
[63]), introduce the partial derivatives Dl

tF , defined by Dl
tF := DtFel, l = 1, ..., d, that

is

Dl
tF :=

n∑
j=1

m∑
i=1

∂ifj(W (φ1), ...,W (φm))hjφ
l
i(t), t ∈ [0, T ]. (2.2)

This way we identify H ⊗ Rd with Hd and understand the derivative operator as the
map

D : S(H) ⊂ Lp(Ω;H)→ Lp(Ω;L2([0, T ];Hd)),

that is, for each l = 1, ..., d, we consider the partial derivative operator

Dl : S(H) ⊂ Lp(Ω;H)→ Lp(Ω;L2([0, T ];H))

with Dl
tF given by (2.2). Higher derivatives are defined by iterating this procedure,

that is, for F ∈ S(H) and k ≥ 1 we define recursively

Dk
t1,...,tk

F =

m∑
i=1

∂iD
k−1
t1,...,tk−1

F ⊗ φi(tk).

Remark 2.1. As higher derivatives are denoted by superscripts just as the partial deriva-
tives, we will use the letter k for higher derivatives and the letter l for partial derivatives
to distinguish between this notions.

Proposition 2.2. For each k ≥ 1 and p > 1, the operator Dk : S(H) ⊂ Lp(Ω;H) →
Lp(Ω;L2([0, T ]k;Hd)) is closable. The domain of the (extended) derivative operator Dk

is denoted by Dk,p(H) with norm

‖F‖Dk,p(H) :=
(
E[‖F‖pH ] +

k∑
j=1

E[‖DjF‖p
L2([0,T ]j ;Hd)

]
) 1
p

(2.3)
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Proof. This is [58, page 92].

Remark 2.3. We can also take another perspective which will allow us in some cases
to directly generalize finite dimensional results (i.e. H = R), given for example in [63],
to the infinite dimensional case. As we have S(H) = S ⊗ H, where S denotes the
set of real-valued smooth cylindrical random variables, we have for any decomposition
F := F̃ ⊗ h ∈ S ⊗H = S(H) given by

F = f(W (φ1), ...,W (φm))⊗ h,

with derivative given by
DF = D(F̃ )⊗ h.

This way, we can in the setting of Proposition 2.2 understand the operator Dk as the
map

Dk : S ⊗H ⊂ Lp(Ω;R)⊗H → Lp(Ω;L2([0, T ]k;Rd))⊗H.

Lemma 2.4. Let φ : H → H̃ be a Frechét-differentiable mapping, where H̃ is an
arbitrary separable Hilbert space. Assume that there exists a q ≥ 0 and a constant
C > 0 such that

‖φ(h)‖H̃ ≤ C(1 + ‖h‖1+q
H ), ‖φ′(h)‖L(H,H̃) ≤ C(1 + ‖h‖q), for all h ∈ H.

Then, for all p > 1 and F ∈ D1,(q+1)p(H) it holds that φ(F ) ∈ D1,p(H̃) and

Dφ(F ) = φ′(F )DF.

In particular, if F ∈ D1,∞(H) then φ(F ) ∈ D1,∞(H̃).

Proof. This is [58, Lemma 4.7].

Lemma 2.5. Let p > 1 and Fn be a sequence in D1,p(H) such that Fn → F in Lp(Ω;H)
and there exists a constant C such that

sup
n
‖DFn‖Lp(Ω;L2([0,T ];Hd)) ≤ C.

Then F ∈ D1,p(H) and ‖DF‖Lp(Ω;L2([0,T ];Hd) ≤ C. Moreover, there exists a subsequence

(nk)k≥1 such that weakly DFnk → DF in Lp(Ω;L2([0, T ];Hd).

Proof. This is [64, Lemma 3.7].

The adjoint δ : dom(δ) ⊂ L2(Ω;L2([0, T ];Hd))→ L2(Ω;H) of the Malliavin deriva-
tive is called divergence operator. Its domain dom(δ) consists of all

Ψ ∈ L2(Ω;L2([0, T ];Hd))

such that there exists a constant C = C(Ψ) > 0 with

|E[〈DF,Ψ〉L2([0,T ];Hd)]| ≤ C‖F‖L2(Ω;H), for all F ∈ D1,2(H).

In this case, for Ψ ∈ dom(δ) it is defined as the unique element δ(Ψ) in L2(Ω;H)
satisfying

E[〈DF,Ψ〉L2([0,T ];Hd)] = E[〈F, δ(Ψ)〉H ], ∀F ∈ D1,2(H).
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Proposition 2.6. Let α ∈ L2(Ω;L2([0, T ];Hd)) be a predictable stochastic process with
values in Hd. Then α ∈ dom(δ) and

δ(α) =
d∑
i=1

∫ T

0
αi(s) dW i

s ,

that is, δ(α) ∈ L2(Ω;H) and it coincides with the stochastic Itô-integral.

Proof. This is [58, Proposition 4.12].

For the following we introduce the space L1,2(Hd) := D1,2(L2([0, T ];Hd)) which is
isomorphic to L2([0, T ];D1,2(Hd)) and accordingly we have the following characteriza-
tion which we state as a Lemma.

Lemma 2.7. We have α ∈ L1,2(Hd) if and only if, α ∈ L2([0, T ] × Ω;Hd), αt ∈
D1,2(Hd) for almost all t ∈ [0, T ] and

d∑
i=1

E
[ ∫ T

0

∫ T

0
‖Dtα

i
s‖2H ds dt

]
<∞ (2.4)

Proof. This follows from the isomorphy of L1,2(Hd) to L2([0, T ];D1,2(Hd)) and the
definition of ‖ · ‖D1,2(H) given in (2.3).

Proposition 2.8. Let f ∈ L1,2(H) be a predictable process. Then we have∫ T

0
f(s) ds ∈ D1,2(H)

and

Dl
t

∫ T

0
f(s) ds =

∫ T

t
Dl
tf(s) ds

for l = 1, ..., d and almost all t ∈ [0, T ].

Proof. This is [58, Proposition 4.8].

Further we have L1,2(Hd) ⊂ Dom(δ) which follows from [58, Proposition 4.15] and
[46, Proposition 3.2]. Now we can state the desired result, which can be found in [58,
Proposition 4.16] if α is in D2,2(L2([0, T ];Hd)) but is not necessarily predictable.

Proposition 2.9. If α ∈ L1,2(Hd) is a predictable process then δ(α) ∈ D1,2(H) and

Dl
t

d∑
i=1

∫ T

0
αi(s) dW i

s = αl(t) +

d∑
i=1

∫ T

t
Dl
tα
i(s) dW i

s

for l = 1, ..., d and almost all t ∈ [0, T ].

Proof. The claim follows from [46, Proposition 3.4] in the same way as in the finite
dimensional case [63, Lemma 1.3.4] follows from [63, Proposition 1.3.8]. In fact, ac-
cording to [46, Proposition 3.4], the claim holds if for almost all t, (s 7→ Dl

tαs) ∈ dom(δ)

and (t 7→
∑d

i=1

∫ T
0 Dl

tα
i
s dW

i
s) ∈ L2(Ω × [0, T ];H) for each l = 1, ..., d. Now, as

(s 7→ Dl
tαs) ∈ L2(Ω × [0, T ];Hd) is predictable it follows from Proposition 2.6 that
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s 7→ Dl
tαs ∈ dom(δ) for almost all t ∈ [0, T ]. For the second claim, it follows from the

Itô isometry and property (2.4) that

d∑
i=1

E
[ ∫ T

0

∥∥∥∫ T

t
Dl
tα
i
s dW

i
s

∥∥∥2

H
dt
]

=
d∑
i=1

E
[ ∫ T

0

∫ T

t
‖Dl

tα
i
s‖2H ds dt

]
<∞.

Remark 2.10. The previous Proposition is stated in a stronger version in [19, Propo-
sition 5.4] and [18, Proposition 4.7], where besides predictability, the equivalent con-
ditions of Lemma 2.7 excluding the integrability condition (2.4) are claimed to be
sufficient. Unfortunately no proof is provided. Also it seems to contradict [63, Lemma
1.3.4] which states that in the finite dimensional case, that is H = R, given the same
conditions as in [19, Proposition 5.4] and [18, Proposition 4.7], the conditions of Propo-
sition 2.9 are not only sufficient but also necessary.

Proposition 2.11. Let F be a random variable in Dk,α(H) with α > 1. If DiF ∈
Lp(Ω;L2([0, T ]k;Hd)) for i = 0, 1, ..., k and for some p > α, then F ∈ Dk,p(H).

Proof. This can be proved as in the finite dimensional case [63, Proposition 1.5.5] by
using the Remark 2.3.

The next result can be found in a similar version in [19, Lemma 5.3] (however, see
Remark 2.10) and [67, Theorem 3.1].

Lemma 2.12. Assume that ξ is deterministic and V, V1, , ..., Vd ∈ C∞b (H;H) in (I.3.2).
Then the conditions of Theorem I.3.2 are satisfied. Then for any t ∈ [0, T ], the mild
solution Xt is in D1,∞(H) and for l = 1, ..., d, the derivative Dl

sXt for fixed s ∈ [0, T ]
satisfies the equation in H given by{

Dl
sXt = St−sVl(Xs) +

∫ t
s St−udV (Xu)Dl

sXu du

+
∑d

i=1

∫ t
s St−udVi(Xu)Dl

sXu dW
i
u

(2.5)

for s ≤ t and Dl
sXt = 0 for s > t. For t ≥ s it is a continuous mild solution of{
dYt = (AYt + dV (Xt)Yt) dt+

∑d
i=1 dVi(Xt)Yt dW

i
t

Ys = Vl(Xs).
(2.6)

Finally we have for all p ≥ 2 and l = 1, ..., d that

sup
r∈[0,T ]

E[ sup
s∈[r,T ]

‖Dl
rXs‖pH ] <∞. (2.7)

Proof. We follow the proof of [63, Theorem 2.2.1]. Let p > 2 and t ∈ [0, T ] be arbitrary.
By the stated conditions on the vector fields V, V1, ..., Vd the equation (I.3.2) has a
unique continuous mild solution given as the limit of the Picard iterations (I.3.3) in the
space Hp. We will show by induction that for each k ≥ 0

Xk
t ∈ D1,p(H), (2.8)

ψk(t) := sup
0≤r≤t

E
[

sup
s∈[r,t]

‖DrX
k
s ‖

p
H

]
<∞, (2.9)

ψk+1(t) ≤ c1 + c2

∫ t

0
ψk(s) ds. (2.10)
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The statement is obviously true for k = 0. Now assume it holds for some k > 0. The
next iteration is given by

Xk+1
t = Stξ +

∫ t

0
St−sV (Xk

s ) ds+
d∑
i=1

∫ t

0
St−sVi(X

k
s ) dW i

s .

Applying Lemma 2.4 twice (with q = 0) we find that St−sU(Xk
s ) ∈ D1,p(H) for almost

all s ∈ [0, t] and

Dl
rSt−sU(Xk

s ) = St−sdU(Xk
s )Dl

rX
k
s ,

where U ∈ {V, V1, ..., Vd}. To apply Propositions 2.8 and 2.9 we need to show that
[0, t] 3 s 7→ St−sU(Xk

s ) ∈ L1,2(H). But this follows from Lemma 2.7 if both

E[

∫ t

0
‖St−sU(Xk

s )‖2H ds] <∞, and

E[

∫ t

0

∫ t

r
‖St−sdU(Xk

s )Dl
rX

k
s ‖2H ds dr] <∞

are satisfied. The first condition immediately follows from the assumed linear growth
condition on U , that is, by letting M := sups∈[0,t] ‖St−s‖H , we have

E[

∫ t

0
‖St−sU(Xk

s )‖2H ds] ≤ tM2C2
1 (1 + sup

s∈[0,t]
E[‖Xk

s ‖2H ]) <∞,

as Xk ∈ Hp ⊂ H2. Similarly, the second condition follows from (2.9), as U ∈ C∞b (H),
we have

E[

∫ t

0

∫ t

r
‖St−sdU(Xk

s )Dl
rX

k
s ‖2H ds dr] ≤M2C2

2 sup
0≤r≤t

E[ sup
s∈[r,t]

‖Dl
rX

k
s ‖2H ] <∞,

where C2 > 0 is given by supx∈H ‖dU(x)‖L(H;H) < C2. Hence the conditions of Lemma

2.7 are satisfied and it follows from Propositions 2.8 and 2.6 that Xk+1
t ∈ D1,2(H) and{

Dl
rX

k+1
t = St−rV

l(Xk
r ) +

∫ t
r St−udV0(Xk

u)Dl
rX

k
u du

+
∑d

i=1

∫ t
r St−udVi(X

k
u)Dl

rX
k
u dW

i
u.

(2.11)

Next we show that (2.9) and (2.10) hold for k + 1 and conclude from Proposition 2.11
that Xk+1

t ∈ D1,p(H). From an application of Hölder’s inequality we get

‖DlXk+1
t ‖p

Lp(Ω;L2([0,T ];H))
(2.12)

= E[‖DlXk+1
t ‖p

L2([0,T ];H)
] = E[

(∫ t

0
‖Dl

rX
k+1
t ‖2H dr

) p
2
]

≤ tp−2

∫ t

0
E[‖Dl

rX
k+1
t ‖pH ] dr ≤ tp−1 sup

r∈[0,t]
E[‖Dl

rX
k+1
t ‖pH ]

≤ tp−1 sup
r∈[0,t]

E[ sup
s∈[r,t]

‖Dl
rX

k+1
s ‖pH ]. (2.13)
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By using (2.11) we get

E[ sup
s∈[r,t]

‖Dl
rX

k+1
s ‖pH ] ≤ E[ sup

s∈[r,t]
‖Ss−rVl(Xk

r )‖pH ]

+ E
[

sup
s∈[r,t]

∥∥∥∫ s

r
Ss−udV (Xk

u)Dl
rX

k
u du

∥∥∥p
H

]
+

d∑
i=1

E
[

sup
s∈[r,t]

∥∥∥∫ s

r
Ss−udVi(X

k−1
u )Dl

rX
k
u dW

i
u

∥∥∥p
H

]
=: I1 + I2 + I3.

Let M := supt∈[0,T ] ‖St‖L(H;H). For the first term, using the linear growth condition
on V , we deduce

I1 ≤MpE[‖V l(Xk−1
r )‖pH ] ≤MpCp1 (1 + E[‖Xk

r ‖
p
H ]) <∞,

as Xk ∈ Hp. By denoting M0 := supx∈H ‖dV (x)‖L(H;H), which by assumption is finite,
we get for the second term by another application of Hölder’s inequality that

I2 ≤ E
[( ∫ t

r
‖St−udV (Xk

u)Dl
rX

k
u‖H du

)p]
≤MpMp

0 (t− r)pE[

∫ t

r
‖Dl

rX
k
u‖

p
H du].

For the third term, using [26, Lemma 7.2] and proceeding as with the second term, by
denoting Mi := supx∈H ‖dVi(x)‖L(H;H), i = 1, ..., d, we get

I3 ≤ C2

d∑
i=1

E
[( ∫ t

r
‖St−udVi(Xk

u)Dl
rX

k
u‖2H du

)p/2]
≤ MpM̄(t− r)pE

[ ∫ t

r
‖Dl

rX
k
u‖

p
H du

]
,

where M̄ := C2
∑d

i=1M
p
i . Putting the terms together and taking the supremum we get

ψk+1(t) = sup
0≤r≤t

E[ sup
s∈[r,t]

‖Dl
rX

k+1
s ‖pH ] ≤ C(r, k, p) + M̃

∫ t

r
E[‖Dl

rX
k
u‖

p
H ] du

≤ C(r, k, p) + M̃

∫ t

0
sup

0≤r≤u
E[ sup
s∈[r,u]

‖Dl
rX

k
s ‖

p
H ] du

= C(r, k, p) + M̃

∫ t

0
ψk(u) du (2.14)

where C(r, k, p) := MpCp1 (1 + sup0≤r≤t E[‖Xk
r ‖

p
H ]) < ∞ as Xk ∈ Hp and M̃ :=

tpMp(M̄+Mp
0 ). Note that by the second induction hypothesis (2.9) we have ψk+1(t) <

∞. Hence we have shown (2.9) and (2.10). As for (2.8), note that it follows from
ψk+1(t) <∞ and (2.13), that

‖DlXk+1
t ‖p

Lp(Ω;L2([0,T ];H))
≤ tp−1ψk+1(t) <∞,

for l = 1, ..., d and hence as Xk+1 ∈ D1,2(H) as shown above we conclude from Proposi-
tion 2.11 that Xk+1

t ∈ D1,p(H). Hence we have completed the induction and (2.8)-(2.10)
hold for all k ≥ 0. We know that Xk → X in Hp and thus in particular that Xk

t → Xt



70 IV Weak Taylor Expansions for SPDEs

in Lp(Ω;H). Thus it follows from Lemma 2.5 that we have Xt ∈ D1,p(H) if there is
some finite C > 0 such that

sup
k
‖DlXk

t ‖Lp(Ω;L2([0,T ];H) ≤ C, (2.15)

for l = 1, ..., d. As (2.14) holds for all k (as was proved with induction) we can apply
Gronwall’s Lemma and get

ψk+1(t) ≤ C(r, k, p)eM̃t (2.16)

and since supk C(r, k, p) = MpCp1 (1 + supk sup0≤r≤t E[‖Xk
r ‖

p
H ]) ≤ C < ∞ as Xk con-

verges in Hp, we have that supk ψk+1(t) ≤ CeM̃t which in particular gives (2.15)
and hence we have Xt ∈ D1,p(H) for all t ∈ [0, T ] and p > 2 and hence we have
Xt ∈ D1,∞(H). The Representation (2.5) follows from the application of the derivative
operator Dl

s to Xt. Note that Dl
sXt is a mild solution to (2.6) but at this point there

is not necessarily a continuous version. We show first (2.7). By proceeding as above
we get just as in (2.14) that

sup
0≤r≤T

E[ sup
s∈[r,T ]

‖Dl
rXs‖pH ] ≤ C(r, p) + M̃

∫ T

0
sup

0≤r≤u
E[ sup
s∈[r,u]

‖Dl
rXs‖pH ] du,

with C(r, p) := MpCp1 (1 + sup0≤r≤t E[‖Xr‖pH ]) < ∞ as X ∈ Hp. Hence we can again
apply Gronwall’s Lemma to arrive at

sup
0≤r≤T

E[ sup
s∈[r,T ]

‖Dl
rXs‖pH ] ≤ C(r, p)eM̃T <∞,

which gives (2.7). Finally, the existence of a continuous version of this mild solution
follows from [26, Proposition 7.3], as it follows now from (2.7) that for any p > 2

E
[ ∫ T

0
‖dVi(Xu)Dl

rXu‖pH du
]
≤ Cpi T sup

u∈[0,T ]
E
[
‖Dl

rXu‖pH
]
<∞,

which completes the proof.

In the following we will understand the map dV : H → L(H;H) as dV : H×H → H.
Then dV is bounded in the first argument, linear in the second and dV : C∞(H×H;H).
As in [1, Proposition 2.4.11] we will consider the partial derivatives of an W ∈ C∞(H×
H;H) defined as (we use d̃ for derivatives of functions in C∞(H ×H;H) and d for the
derivatives of functions C∞(H;H) to avoid confusion)

d̃1W (f, g)(e1) := d̃W (f, g)(e1, 0), d̃2W (f, g)(e2) := d̃W (f, g)(0, e2)

and it holds true that

d̃W (f, g)(e1, e2) = d̃1W (f, g)(e1) + d̃2W (f, g)(e2).

Applied to dV : C∞(H ×H;H) this gives

d̃dV (f, g)(e1, e2) = d2V (f)(g, e1) + dV (f)(e2). (2.17)

We will also need the following notion. We have F = (F 1, F 2) ∈ D1,∞(H ×H) if and
only if F1 ∈ D1,∞(H) and F 2 ∈ D1,∞(H). In this case it follows from the properties of
the tensor-product that DF = (DF 1, 0) + (0, DF 2). By iterating this arguments (and
notions) we arrive at the following Lemma.
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Lemma 2.13. V ∈ C∞b (H;H). With the above notations, dnV : Hn+1 → H satisfies
the conditions of Lemma 2.4 for q = 1 and accordingly for (X1, ..., Xn+1) ∈ D1,∞(Hn+1)
we have DdnV (X1, ..., Xn) ∈ D1,∞(H) and

DdnV (X1, ..., Xn+1) = d̃dnV (X1, ..., Xn+1)(DX1, ..., DXn+1)

= dn+1V (X1)(DX1, X2, ..., Xn+1)

+
∑n+1

i=2 d
nV (X1)(X2, ..., Xi−1, DXi, Xi+1, ..., Xn+1).

(2.18)

Proof. It is enough to show this for n = 1 as the proof for n ≥ 2 is just the same. Let

sup
f∈H
‖dV (f)‖L(H;H) ≤ C1 <∞, and sup

f∈H
‖d2V (f)‖L(H×H;H) ≤ C2 <∞.

The first condition is satisfied for q = 0, as

‖dV (f, g)‖H = ‖dV (f)g‖H ≤ C1‖g‖H

for all (f, g) ∈ H ×H and for the second condition, using (2.17) we have that

‖d̃dV (f, g)‖L(H×H;H) = sup
‖(e1,e2)‖H×H=1

‖d̃dV (f, g)(e1, e2)‖H

≤ sup
‖(e1,e2)‖H×H=1

(
‖d2V (f)(g, e1)‖H + ‖dV (f)(e2)‖H

)
≤ sup

‖(e1,e2)‖H×H=1

(
C2(‖g‖H‖e1‖H) + C1‖e2‖H

)
≤ C(‖g‖H),

where C := max(C1, C2). Hence we can apply the Lemma 2.4 and the Representation
(2.18) follows from (2.17).

For the next Lemma we introduce the following notation. Let 1 ≤ m ≤ n be
natural numbers, l = {l1, ..., ln} a set with n elements. Denote by P(l) the power set of
l excluding the empty set. Then we denote by Pm(l) ⊂ (P(l))m the set with elements
of the form p = {p1, ..., pm} with each pi ∈ P(l), i = 1, ...,m, such that each li ∈ l,
i = 1, ..., n, is contained in exactly one pj , j = 1, ...,m. That is,

Pm(l) =
{
{p1, ..., pm} ∈ (P(l))m

∣∣∣∀i ∈ {1, ..., n},∃!j ∈ {1, ...,m} s.t. li ∈ pj
}
. (2.19)

For example P1(l) = {p1} with p1 = {l1, ..., ln}, Pn(l) = {p1, ..., pn} with pi = li,

i = 1, ..., n and Pn−1(l) =
{{
{l1, l2}, l3, ..., ln

}
, ...,

{
l1, l2, ..., {ln−1, ln}

}}
.

Lemma 2.14. Let X be a predictable process with Xt ∈ Dn,∞(H) for all t ∈ [0, T ]. If
V ∈ C∞b (H), then we have V (Xt) ∈ Dn,∞(H) for all t ∈ [0, T ] and for any (l1, ..., ln) ∈
{1, ..., d}n and (s1, ..., sn) ∈ [0, T ]n we have the representation

Dl1,...,ln
s1,...,snV (Xt) = αl1,...,lns1,...,sn(t) + dV (Xt)D

l1,...,ln
s1,...,snXt (2.20)

for all t ∈ [s1∨ ...∨sn, T ] and Dl1,...,ln
s1,...,snV (Xt) = 0 if t ∈ [0, s1∨ ...∨sn), where αl1,...,lns1,...,sn(t)

is given by 
αl1,...,lns1,...,sn(t) := dnV (Xt)(D

l1
s1Xt, ..., D

ln
snXt)

+
∑

(p,q)∈Pn−1(LS) dn−1V (Xt)(D
p1
q1Xt, ..., D

pn−1
qn−1Xt)

...

+
∑

(p,q)∈P2(LS) d2V (Xt)(D
p1
q1Xt, D

p2
q2Xt),

(2.21)
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where it is understood that αl1s1(t) = 0. Furthermore, for each p ≥ 1 there is a finite
constant Cp such that

E[ sup
s̄n≤t≤T

‖αl1,...,lns1,...,sn(t)‖pH ] ≤ Cp
n∑
j=1

∑
(p,q)∈Pj(LS)

j∑
i=1

E[ sup
s̄n≤t≤T

‖Dpi
qiXt‖pH ], (2.22)

where s̄n := s1 ∨ ... ∨ sn and LS = {(l1, s1), ..., (ln, sn)}. Also, αl1,...,lns1,...,sn(t) ∈ D1,p(H)
and

Dln+1
sn+1

αl1,...,lns1,...,sn(t) = αl1,...,ln+1
s1,...,sn+1

(t)− d2V (Xt)(D
ln+1
sn+1

Xt, D
l1,...,ln
s1,...,snXt). (2.23)

Proof. By using Lemma 2.4 and Lemma 2.13 it can be easily shown by using induction
that, with the notation introduced above, we have

Dl1,...,ln
s1,...,snV (Xt) = dnV (Xt)(D

l1
s1Xt, ..., D

ln
snXt)

+
∑

(p,q)∈Pn−1(LS)

dn−1V (Xt)(D
p1
q1Xt, ..., D

pn−1
qn−1

Xt)

...

+
∑

(p,q)∈P2(LS)

d2V (Xt)(D
p1
q1Xt, D

p2
q2Xt)

+ dV (X)Dl1,...,ln
s1,...,snXt,

whenever t ∈ [s1 ∨ ... ∨ sn, T ] and Dl1,...,ln
s1,...,snV (Xt) = 0 if t ∈ [0, s1 ∨ ... ∨ sn). From this

all of the claims directly follow.

Lemma 2.15. Let X be a predictable process with Xt ∈ Dn,∞(H) for all t ∈ [0, T ] and
V1, ..., Vd ∈ C∞b (H;H). Then for any (l1, ..., ln) ∈ {1, ..., d}n and sn := (s1, ..., sn) ∈
[0, T ]n, s̄n := max(s1, ..., sn) and t ∈ [0, T ]

β(s̄n) := St−s̄n β̃(s̄n) := St−s̄n
n∑
i=1

D
l1,...,li−1,li+1,...,ln
s1,...,si−1,si+1,...,snVli(Xsi)1{si=s̄n}, (2.24)

is a well-defined, s̄n-measurable random variable in D1,∞(H) and{
D
ln+1

n+1β(s̄n) = St−s̄n+1D
ln+1

n+1 β̃(s̄n)

= St−s̄n+1

∑n
i=1D

l1,...,li−1,li+1,...,ln+1
s1,...,si−1,si+1,...,sn+1Vli(Xsi)1{si=s̄n+1}.

(2.25)

Proof. This follows from Lemma 2.4.

Lemma 2.16. If
∑d

i=1

∫ t
0 St−sVi(Xs) dW

i
s ∈ Dn,∞(H), then

Dl1,...,ln
s1,...,sn

d∑
i=1

∫ t

0
St−sVi(Xs) dW

i
s = β(s̄n) +

∫ t

s̄n
Dl1,...,ln
s1,...,snSt−sVi(Xs) dW

i
s . (2.26)

Theorem 2.17. In the setting of Lemma 2.12 and with the notation from Lemma 2.14
and 2.15, for every t ∈ [0, T ], the mild solution Xt of (I.3.2) is in D∞(H) and for
any n ≥ 1, ln := (l1, ..., ln) ∈ {1, ..., d}n and sn := (s1, ..., sn) ∈ [0, T ]n, the process
Yt := Dln

snXt is a continuous mild solution of the equation in H for t ≥ s̄n given by{
dYt = (AYt + αl

n

sn(t) + dV (Xt)Yt) dt+
∑d

i=1(αi,l
n

sn (t) + dVi(Xt)Yt) dW
i
t

Ys̄n = β̃(s̄n)
(2.27)

and Yt = 0 for t < s̄n.
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Proof. We will show by induction that for all n ≥ 1, we have

I1 Xt ∈ Dn,p(H) for all t ∈ [0, T ],

I2 Dln
snXt is for t ≥ s̄n a continuous mild solution of (2.27), and

I3 supsn∈[0,T ]n E
[

sups̄n≤t≤T ‖Dln
snXt‖pH

]
<∞.

We know from Lemma 2.12 that all three claims are satisfied for n = 1. So assume it
holds for some n > 1. Then Yt := Dln

snXt has the representationYt = St−s̄n β̃(s̄n) +
∫ t
s̄n St−u

(
αl
n

sn(u) + dV (Xu)Yu

)
du

+
∑d

i=1

∫ t
s̄n St−u

(
αl
n

i,sn(u) + dVi(Xu)Yu

)
dW i

u.
(2.28)

We show first that Yt ∈ D1,∞(H) by a very similar method as in Lemma 2.12, however,
we can not apply Theorem I.3.2 directly to (2.27) as the condition SI2 is not evident.
Indeed, let U ∈ {V, V1, ..., Vd}, CU := supx∈H ‖dU(x)‖L(H;H) and γ ∈ {α, α1, ....αd}
then we have

‖γlnsn(t, ω) + dU(Xt(ω))(x)‖2H ≤ ‖γl
n

sn(t, ω)‖2H + C2
U‖x‖2H

≤ C2

n∑
j=1

∑
(p,q)∈Pj(LS)

j∑
i=1

‖Dpi
qiXt(ω)‖2H + C2

U‖x‖2H ,

so unless ‖Dpi
qiXt(ω)‖2H is uniformly bounded in (ω, t) it is not evident that this condi-

tion holds. We proceed similarly to [63, Lemma 2.2.2]. Let

α(s̄n, t) := St−s̄n β̃(s̄n) +

∫ t

s̄n
St−uα

ln

sn(u) du+
d∑
i=1

∫ t

s̄n
St−uα

ln

i,sn(u) dW i
u (2.29)

and consider the sequence for k ≥ 0 defined by{
Y 0
t := α(s̄n, t)

Y k+1
t := α(s̄n, t) +

∫ t
s̄n St−udV (Xu)Y k

u du+
∑d

i=1

∫ t
s̄n St−udVi(Xu)Y k

u dW
i
u.

(2.30)

As in the proof of Lemma 2.12, we show with induction that Y k
t satisfies the corre-

sponding conditions given in (2.8)-(2.10) and additionally the condition

sup
0≤s̄n≤T

E[ sup
s̄n≤t≤T

‖Y k
t ‖

p
H ] <∞, (2.31)

however, we skip some details as the proof is very similar. Let k = 0. We start with
showing condition (2.31). By proceeding as above we see that

E[ sup
s̄n≤t≤T

‖Y 0
t ‖

p
H ] ≤M(T, p)

(
E[‖β̃(s̄n)‖pH ] +

∫ T

s̄n
E[‖αlnsn(u)‖pH ] du

+

d∑
i=1

∫ T

s̄n
E[‖αlni,sn(u)‖pH ] du

)
=: M(T, p)(I1 + I2 + I3). (2.32)
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For the first term, using (2.24) and (2.20) we get

I1 ≤ mp

n∑
i=1

E[‖Dl1,...,li−1,li+1,...,ln
s1,...,si−1,si+1,...,snVli(Xsi)‖

p
H ]1{si=s̄n}

≤ m̃p

n∑
i=1

E[‖αl1,...,li−1,li+1,...,ln
s1,...,si−1,si+1,...,sn(t) + dV (Xt)D

l1,...,li−1,li+1,...,ln
s1,...,si−1,si+1,...,snXt‖pH ]

≤ cpm̃p

( n∑
i=1

E[‖αl1,...,li−1,li+1,...,ln
s1,...,si−1,si+1,...,sn(t)‖pH ]

+ CpE[‖Dl1,...,li−1,li+1,...,ln
s1,...,si−1,si+1,...,snXt‖pH ]

)
<∞

uniformly in sn ∈ [0, T ]n as both terms consist of Malliavin derivatives up to order
n− 2 (cf. (2.21)) and n− 1 respectively, this follows from the induction hypothesis I3.
The same applies to the terms I2 and I3 by using again (2.21) and (2.22). Hence we
have shown (2.31) for k = 0. Next, for (2.8), we see that from (2.24) and the induction
hypothesis and Lemma 2.4 it follows that St−s̄n β̃(s̄n) ∈ D1,p(H). Let γ ∈ {α, α1, ....αd}.
We claim that t 7→ γl

n

sn(t) ∈ L1,2(H). Indeed, the equivalent conditions of Lemma 2.7
directly follow from (2.21) and (2.22) and the induction hypothesis. Hence Propositions
2.8 and 2.9 apply and Y 0

t ∈ D1,2(H) for almost all t ∈ [0, T ] which gives (2.8) for k = 0
and it holds that{

D
ln+1
sn+1Y

0
t = D

ln+1
sn+1St−s̄n β̃(s̄n) +

∫ t
s̄n+1 St−uD

ln+1
sn+1α

ln
sn(u) du

+St−sn+1α
ln
ln+1,sn

(sn+1) +
∑d

i=1

∫ t
s̄n+1 St−uD

ln+1
sn+1α

ln
i,sn(u) dW i

u,
(2.33)

with D
ln+1
sn+1St−s̄n β̃(s̄n) and D

ln+1
sn+1α

ln
i,sn given in (2.25) and (2.23), respectively. For (2.9)

we need to show that

ψ0(t) := sup
0≤r≤t

E[ sup
s∈[r,t]

‖Dl
rY

0
s ‖

p
H ] <∞. (2.34)

First note that, using (2.25) and (2.20) we get

D
ln+1

n+1 β̃(s̄n)

=
n∑
i=1

(
α
l1,...,li−1,li+1,...,ln+1
s1,...,si−1,si+1,...,sn+1(si) + dVli(Xsi)D

l1,...,li−1,li+1,...,ln+1
s1,...,si−1,si+1,...,sn+1Xsi

)
1{si=s̄n+1}.

and accordingly from the induction hypothesis I3, (2.22) and the boundedness of

dVli(Xsi) it follows that E[‖Dln+1
sn+1St−s̄n β̃(s̄n)‖pH ] < ∞ and again from (2.22) we get

E[‖St−sn+1α
ln
ln+1,sn

(sn+1)‖pH ] < ∞. The remaining terms in (2.33) can be handled just

as in Lemma 2.12 and thus (2.34) follows. Thus for k = 0, it remains to show (2.10),
that is, that

ψ1(t) := sup
0≤r≤t

E[ sup
s∈[r,t]

‖Dl
rY

1
s ‖

p
H ] ≤ c1 + c2

∫ t

0
ψ0(s) ds, (2.35)

holds true. First we have to show that Y 1
t ∈ D1,∞(H) for almost all t ∈ [0, T ], which

follows if, for U ∈ {V, V1, ..., Vd}, we have u 7→ (dU(Xu)Y 0
u ) ∈ L1,2(H), but this evident
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from Lemma 2.4, Lemma 2.7 and induction hypothesis. Then from Lemma 2.14, 2.15
and Propositions 2.8 and 2.9 we have

Dln+1
sn+1

Y 1
t = Dln+1

sn+1
Y 0
t +

∫ t

s̄n+1

St−uD
ln+1
sn+1

dV (Xu)Y 0
u du

+ St−sn+1dVln+1(Xsn+1)Y 0
sn+1

+

d∑
i=1

∫ t

s̄n+1

St−uD
ln+1
sn+1

dVi(Xu)Y 0
u dW

i
u.

Accordingly (2.35) follows from (2.31) for k = 0, the induction hypothesis and from
(cf. Lemma 2.13)

Dln+1
sn+1

dU(Xu)Y 0
u = d2U(Xu)(Dln+1

sn+1
Xu, Y

0
u ) + dU(Xu)Dln+1

sn+1
Y 0
u , (2.36)

where again U ∈ {V, V1, ..., Vd}. Accordingly we have shown the induction hypothesis
to be true for k = 0. Assuming (2.8)-(2.10) and (2.31) hold for some k > 0 it can be
shown in literally the same way that the claim holds for k + 1. Hence the claim holds
for all k ≥ 0. Next we use Lemma 2.5 to conclude that Yt ∈ D1,p(H) for all t ∈ [0, T ].
We show first that Y k converges in Hp. Note that we know from (2.31) that Y k ∈ Hp
for all k ≥ 0. We have by standard arguments that for k ≥ 1

‖Y k+1 − Y k‖Hp ≤ c(T, p)‖Y k − Y k−1‖Hp , (2.37)

which by the usual procedure of choosing T small enough leads to c(T, p) < 1 and
accordingly to an unique fixpoint which evidently is Y and showing also that Y ∈ Hp.
The final step in applying Lemma 2.5 is to show that

sup
k≥0

E
[( ∫ t

0
‖Dl

rY
k
t ‖2H dr

)p/2]
<∞. (2.38)

We have

E
[( ∫ t

0
‖Dl

rY
k
t ‖2H dr

)p/2]
≤ tp−2E

[ ∫ t

0
‖Dl

rY
k
t ‖

p
H dr

]
≤ tp−1 sup

r∈[0,t]
E
[
‖Dl

rY
k
t ‖p

]
and

sup
r∈[0,t]

E
[
‖Dl

rY
k
t ‖p

]
≤ sup

r∈[0,t]
E
[

sup
t∈[r,T ]

‖Dl
rY

k
t ‖p

]
= ψk(t).

Hence from the shown induction hypothesis (2.10) we can apply Gronwalls Lemma and
the claim follows, that is, from Lemma 2.5 we deduce that Yt ∈ D1,p(H) and accordingly
Xt ∈ Dn+1,p(H) for all t ∈ [0, T ] proving the first induction hypothesis I1. Now let

Zt := D
ln+1
sn+1Yt = Dln+1

sn+1Xt. For the second hypothesis I2 we need to show that Zt
satisfies (2.27) for n+ 1 and has a continuous version. By noting that

Dln+1
sn+1

(αl
n

sn(u) + dV (Xu)Yu) = αl
n+1

sn+1(u) + dV (Xu)Zu, (2.39)
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which follows from (2.20) in Lemma 2.14 and that

Dln+1
sn+1

(
β(s̄n) +

d∑
i=1

∫ t

s̄n
St−u

(
αl
n

i,sn(u) + dVi(Xu)Yu
)
dW i

s

)
= Dln+1

sn+1

(
β(s̄n) +

d∑
i=1

∫ t

s̄n
Dl1,...,ln
s1,...,snSt−sVi(Xs) dW

i
s

)
= β(s̄n+1) +

d∑
i=1

∫ t

s̄n+1

Dl1,...,ln+1
s1,...,sn+1

St−sVi(Xs) dW
i
s

= β(s̄n+1) +

d∑
i=1

∫ t

s̄n+1

(
αl
n+1

i,sn+1(u) + dVi(Xu)Zu
)
dW i

s ,

where the first and third equality follows from (2.20) and the second from Lemma 2.16.
Thus Zt is a mild solution of (2.27) for n+ 1. As in the proof of Lemma 2.12 we show
first condition I3 before showing that Z has a continuous version. We have to show
that

sup
sn+1∈[0,T ]n+1

E[ sup
s̄n+1≤t≤T

‖Dln+1
sn+1

Yt‖pH ] <∞. (2.40)

By proceeding as above, we get

E
[

sup
s̄n+1≤t≤T

‖Dln+1
sn+1

Yt‖pH
]
≤M1(T, p)E

[
‖β̃(s̄n+1)‖pH

]
+ M2(T, p)

(
E
[ ∫ T

s̄n+1

‖αln+1

sn+1(u)‖pHdu
]

+
d∑
i=1

E
[ ∫ T

s̄n+1

‖αln+1

i,sn+1(u)‖pHdu
])

+ M3(T, p)E
[ ∫ T

s̄n+1

‖Dln+1
sn+1

Yu‖pHdu
]

=: I1 + I2 + I3,

where M1(T, p),M2(T, p),M3(T, p) are constants depending on T and p. The terms I1

and I2 can be shown to be finite, uniformly in sn ∈ [0, T ]n, in the same way as in (2.32).
Thus we have

sup
sn+1∈[0,T ]n+1

E
[

sup
s̄n+1≤t≤T

‖Dln+1
sn+1

Yt‖pH
]

≤ C(T, p) +M(T, p)

∫ T

0
sup

sn+1∈[0,t]n+1

E
[

sup
s̄n+1≤u≤t

‖Dln+1
sn+1

Yt‖pH
]
dt

and I3 follows from Gronwall’s Lemma. Finally we show that the mild solution Zt of
(2.27) for n + 1 has a continuous version. This follows from [26, Proposition] upon
showing that for some p > 2

E
[ ∫ T

0

∥∥∥αi,ln+1

sn+1 (s) + dVi(Xs)Zs

∥∥∥p
H
ds
]
<∞, (2.41)

but this follows now immediately from (2.22) and the just shown induction hypothesis
I3 by noting that Zs = Dl+1

n+1Ys and thus completing the proof.
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3 Asymptotic Expansions

The next result is based on Malliavin’s Integration by Parts Formula. For F ∈ D1,2(RN )
the Malliavin Covariance Matrix γ(F ) is defined as

γ(F ) := (〈DF i, DF j〉L2([0,T ];Rd))i,j=1,...,N . (3.1)

Let G be another RN -valued random variable. If we now assume that γ(F ) is invertible
and (DF )Tγ−1(F )G ∈ dom(δ), then for any continuously differentiable function f :
RN → R we have (see [63, Proposition 6.2.1])

E[f ′(F )G] = E[f(F )δ((DF )Tγ−1(F )G)] = E[f(F )π], (3.2)

where π is called the Malliavin Weight and is given by the Skohorod-Integral

π := δ((DF )Tγ−1(F )G). (3.3)

By iterating this procedure and generalizing it to functions f that are only bounded
and measurable in [68, Definition 2.2] the weak Taylor approximation is introduced and
in [68, Theorem 2.3] sufficient conditions for the convergence are given. We summarize
both in the following Theorem.

Theorem 3.1. Let ε 7→ Fε be a random RN -valued curve and U ⊂ R be a neighborhood
around 0 such that both conditions are satisfied:

WTA 1 the curve ε 7→ Fε is smooth from U into D∞(RN ) and

WTA 2 the Malliavin Covariance Matrix γ(Fε) is invertible with det(γ(Fε))
−1 ∈ Lp(Ω)

for every p ≥ 1 for every ε ∈ U .

Then for each bounded, measurable f : RN → R and n ≥ 1, there is a weak Taylor
approximation Wn

ε (f, Fε) of order n, that is,

Wn
ε (f, Fε) :=

n∑
i=0

εi

i!
E[f(F0)πi],

such that

|E[f(Fε)−Wn
ε (f, Fε)]| = o(εn), as ε→ 0.

Proof. This is [68, Theorem 2.3].

Recalling the discussion at the beginning of this Chapter, we see that in order to
apply this Theorem for Fε = l ◦ Xε

T , where l ∈ (H,RN ) and Xε
T denotes the mild

solution of (1.1), we need to check WTA 1 and WTA 2. From Theorem 2.17 and
Lemma 2.4 we already know sufficient conditions on the vector fields of (1.1) such that
l◦Xε

T ∈ D∞(RN ). The condition that is most hard to check is the second part of WTA
2, that is, the p-integrability of γ−1(l ◦Xε

T ) whereas for the invertibility a generalized
Hörmander condition can be used that is given in [4] which in many applications is
easy to check. We assume the following special situation and conjecture the general
one below.

Theorem 3.2. If both conditions
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SWTA 1 the coefficients V, V1, ..., Vd in (1.1) are in C∞b (U ×H;H) and

SWTA 2 there are finite dimensional submanifolds M ε being left invariant by the
solution of (1.1) starting at X0 for each ε ∈ U , whose tangent spaces are generated
by Lie-bracketing from the given vector fields of (1.1) for ε 6= 0. At ε = 0 only
a lower dimensional space is generated locally around X0. Furthermore assume
that l maps the lower dimensional space of directions at X0, a finite dimensional
subspace of H, onto RN .

hold true. Then for every n ≥ 1, the solutions l ◦Xε
T admits a weak Taylor expansion

up to order n.

Proof. First note that under the conditions of SWTA 1 we immediately get WTA 1
just as in [26, Theorem 9.4]. The proof that SWTA 2 together with SWTA 1 gives
also WTA 2 in Theorem 3.1 follows the lines of the classical proof of p-integrability
of the Maliavin covariance matrix’ inverse: first notice that for any ε 6= 0 we are
locally in a situation where the classical proof can be applied on the finite dimensional
submanifold M ε, with respect to which the process is stochastically invariant, and on
which the law is locally absolutely continuous with respect Lebesgue measure, by the
generation property. Of course also the projection by l satisfies the p-integrability of
the inverse. For ε = 0 on the other hand we have a finite dimensional realization and
again by the generation property for the factor process, a smooth density exists. Hence
WTA 2 is satisfied. This can be compared to a finite dimensional situation, where, of
course, the p-integrability of the inverse of the covariance matrix is an open condition,
i.e., if the Hörmander condition holds for vector fields V, V1, . . . , Vd at a point in state
space, then it also holds for small perturbations of those vector fields at this point,
see, e.g., the Norris lemma (see [63, Lemma 2.3.3]). The twist here is somehow that
for ε = 0 the generated dimension can be considerably lower if we only look at certain
projections by l.

Conjecture 3.3. The statement of the Theorem 3.2 remains true, if instead of condi-
tion SWTA 2, we have that the inverse Malliavin covariance matrix is invertible for
all ε ∈ U and is p-integrable for all p ≥ 1 for ε = 0, given some regularity conditions.

The proof of this conjecture is work in progress and will be similar to the proof of
Theorem 3.2.



Chapter V

Consistent Recalibration Models

1 Introduction

So far we looked at generalizations of two popular models for forward variances given
by the spot-variance realizations and the Bergomi model and found necessary and
sufficient conditions for the existence of generic finite dimensional realizations. The
findings extend those in [15] into two directions. First, as the term generic suggests,
the resulting finite dimensional realizations can take initial curves from an open subset
in an infinite dimensional Hilbert space, whereas these are restricted in [15] to some
finite dimensional submanifold. Second, we included a stochastic volatility process
into both forward variance models and found conditions such that the joint system
admit generic finite dimensional realizations. Nevertheless, in both cases the resulting
forward variances evolve (after choosing the initial curve from an open set) in a fixed
finite dimensional submanifold with boundary and hence the set of curves that can be
attained by such models is limited.

In some recent research it is suggested that for some applications this is too restric-
tive. One set of examples arise from noting that the short-end of the forward variance
process determines the spot-variance process and hence determines the volatility sur-
face. Here it is suggested in a series of papers from Jim Gatheral and coworkers,
including [6], to formally extend the Bergomi model such that the resulting model ad-
mits no finite dimensional realization and hence is inherently infinite dimensional from
the point of view of Markov processes (see Section III.6 for a discussion of this model).
This extension is motivated by a superior reflection of some (empirically observed)
stylized facts. A second example includes the so-called consistent recalibration models
introduced for forward interest rates in discrete time in [66] and reconsidered in con-
tinuous time in [50]. This models build on the observed necessity to recalibrate certain
parameters of an affine realization in order to maintain a decent fit to the observed
data, which implies that the model specifications are too narrow. They suggest to
extend the model by replacing (some of) the model parameters by a finite dimensional
diffusion processes. By doing so, consistent recalibration becomes possible and hence
justifying the name. A defining characteristic of such models is the possibility to reach
any curve within an open subset of an infinite dimensional Hilbert space of curves. Or,
loosely speaking, to not admit a finite dimensional realization. The common feature of
both examples is that certain models that admit generic finite dimensional realizations
(exponentially affine in the first case and affine in the second) are extended in a way
such that the model becomes inherently infinite dimensional. However, in both cases
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(to some extent) the models can utilize the corresponding finite dimensional models.
In the first example by using an finite dimensional representation with respect to a
fractional Brownian motion and in the second case by suitably discretizing the model.

In the following we will extend the models found in the previous chapter in the
spirit of consistent recalibration models and hence adopt the name. In [50] it is shown
that the models can be approximated for small times by concatenations of models that
admit (generic) affine realizations. This allows for consistent recalibration on a discrete
grid of recalibration times such that in between this times the process can be assumed
to admit an affine realization. This is very well-suited for the simulation of curves
and for calibration (against time-series of curves) as the affine structure can be used.
However, this discretization can not be used to utilize possibly existing closed form
solutions of the finite dimensional representation for certain derivatives. This will be
possible with the weak Taylor expansion for SPDEs introduced in the last chapter.

We will see that consistent recalibration models are tailor-made for this expansions
in that we will show that from the perspective of the parameterized system (IV.1.1) this
models can be chosen such that the conditions of Conjecture IV.3.3 are satisfied. In the
next chapter we will see that the weak expansion will consist of polynomials of partial
derivatives (i.e. so-called Greeks) of the price of the unperturbed state (i.e. ε = 0),
which in the case of consistent recalibration models are expected values of functions of
the model that admits generic finite dimensional realizations.

Before introducing the type of models that we will consider, we give in the following
a short (formal) summary of the ideas and models used in [50] from the perspective
of forward variance models. In general they consider the case where the short-rate is
given by an affine function of an affine processes but consider as prime examples (i.e.
the Hull-White extended Vasiček and CIR model) short-rates which are itself given by
real-valued affine processes. Thus we restrict this summary for notational convenience
to this case. Thus, we assume that the spot-variance process ξ is given by a real-valued
(time-inhomogeneous) affine process

dξt = (θ(t) + byξt) dt+
√
ay + αyξt dβt, ξ0 = ξ,

where θ is understood as the Hull-White extension (cf. Section II.3.1) and −by, ay, αy
are non-negative real-numbers depending on the parameter y ∈W with W being some
subset of Rm. For a sufficiently regular curve u we can choose (cf. (II.3.6))

θ(t) :=
d

dt
u(t)− byu(t)

and the forward variance process then satisfies

dut =
d

dx
ut dt+ φ(ut, y)eby · dβt, u0 = u, (1.1)

where φ(u, y) :=
√
ay + αyu(0). As the solution can be represented by (cf. (II.3.7))

ut = Stu+ (ξt − u(t))eby ·

we see that for each fixed parameter value y ∈ W , the forward variance curve ut can
only attain values in

{Stu+ 〈eby ·〉 | t ∈ R+}. (1.2)

In particular, as is by now well-known, besides the initial curve u, this set of attainable
curve depends only on the mean-reversion speed by and is independent of the diffusion
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parameters ay and αy. Thus, if we want the forward variance process to be able to
reach any curve within some open subset with positive probability we see that, at least
formally, a necessary condition is that the parameter y has to be chosen as a state
process such that the mean-reversion speed by can attain infinitely many values. To
simplify notation we assume that ay = a and αy = α are constants and choose m = 1
and let by = y. Then, if we replace the parameter y by a stochastic process Yt it is
evident by construction (we will also rigorously show this later on, compare this also
to [50, Lemma 4.5]) that in general the joint process{

dut = d
dxut dt+ φ(ut)e

Yt· dβt, u0 = u,

dYt = c(Yt) dt+ c1(Yt) dβ̃t, Y0 = y,
(1.3)

for β̃ being a real-valued Brownian motion independent of β, will not admit a generic
finite dimensional realization, which in the current context is a desirable feature. Thus
by replacing the parameter y with a stochastic process we arrived at a forward variance
process (as we will show later) that is able to reach any curve in some open subset
with positive probability. However, in this generality the analytic tractability is di-
minished. Inspired from real-world applications where such models are recalibrated at
some discrete points in time (e.g. daily) in [50] it is suggested to look at the case where
the process Yt is piece-wise constant. That is, given a fixed grid of recalibration times
{0 = t0 < t1 < ... < tn < ...} and setting Ỹt :=

∑
n∈N0

Ytn1[tn,tn+1)(t) we see that for-
mally (1.3) admits on each of this intervals [tn, tn+1) on the set {(utn , Ytn) = (un, yn)}
for (un, yn) ∈ U ×W , where U is some open subset of D(d/dx), a finite dimensional
realization, as

dut =
d

dx
ut dt+ φ(ut)e

yn· dβt, t > tn, utn = un, (1.4)

is of the form (1.1) and accordingly the solution can again be represented (cf. (II.3.7))
by

ut = St−tnun + (ξnt − un(t− tn))eyn·, t ∈ [tn, tn+1), (1.5)

where the spot-variance process for this interval is given as the solution of

dξnt = (θn(t) + ynξ
n
t ) dt+ φ(ξnt ) dβt, ξntn = un(0) (1.6)

and the n-th Hull-White extension is

θn(t) :=
d

dt
un(t− tn)− ynun(t− tn). (1.7)

By repeating this steps we arrive at the suggested simulation algorithm [50, Definition
3.1], that is, starting with an initial forward variance curve u0 and initial parameter
value y0 we can construct the initial Hull-White extension θ0 according to (1.7). Then
we can determine the solution of the initial spot-variance process ξ0

t given in (1.6)
and simulate the next forward variance u1 := ut1 by (1.5). By simulating Yt1 =: y1

we get the simulated output (u1, y1). By regarding this tupel as the input for the
next simulation interval [t1, t2) we arrive in the same fashion by using (1.7), (1.6) and
(1.5) at (u2, y2) and more generally at (un, yn). Thus we have constructed a discrete
forward variance process that can change direction at every recalibration date and in
particular is not stuck to the set (1.2). This becomes more evident by reparameterizing
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the forward variance realization (1.5). Indeed, notice that the algorithm is based on
iteratively updating the Hull-White extension operator θn such that the next forward
variance curve starts where the previous one ended. Thereby the effective algorithm
consists of constructing a sequence of spot-variance processes (1.6) and to retrieve the
corresponding forward variance curve from the short-end condition as in Proposition
II.3.5. An equivalent formulation consists in constructing a sequence of the SPDEs
(1.4) and using the Frobenius Theory of Chapter III to retrieve the finite dimensional
realizations (1.5). In this case we get a reparamaterized representation of (1.5) that is
given by (cf. Theorem III.3.9)

ut = St−tnun + Znt e
yn·, t ∈ [tn, tn+1),

where the coordinate process Zn is given as the solution of

dZnt = ynZ
n
t dt+ φ(St−tnun + Znt e

yn·) dβt, Ztn = 0.

The resulting forward variance process in discrete time has the desired feature that it
can change the direction (given by eyn·, n ∈ N0) at every recalibration step. Indeed,
looking at the Representation (1.5) we see that the initial curve u can be chosen freely
within U and for each n ≥ 1 the forward curve utn satisfies

utn ∈ {Stn−tn−1utn−1 + 〈eyn−1·〉} = {Stnu+

n∑
i=1

〈Stn−tieyi−1·〉}.

We end this summary by noting that this simulation algorithm, appropriately formu-
lated, corresponds to an exponential Euler splitting scheme for the continuous-time
consistent recalibration model given in (1.3) as discussed in [50, Section 3.1.2]. Given
sufficient regularity of the vector fields in (1.3), it can be shown using [29] and [48] that
this splitting scheme converges weakly as the mesh-size tends to zero. In [50, Theorem
4.4] this is shown for the consistent recalibration version of the Vasiček model. As the
logarithm of the Bergomi forward variance model corresponds to a slightly friendlier
version of the Vasiček model essentially the same proof can be used to show weak
convergence. Also when aiming for affine realizations for forward interest rates the
short-rate process (or more generally the state processes) necessarily (see [72]) belong
to the class of affine processes which gives for the short-rate basically the choice be-
tween the processes of Vasiček or CIR type. Hence the possible choices of the diffusion
coefficients is quite limited. On the other hand, when considering affine realizations for
forward variance processes the corresponding class of processes is given by the affine
drift models (cf. Definition II.3.4) and hence the choice of the diffusion coefficients
is arbitrary (within the obvious regularity requirements). In particular these can be
chosen arbitrarily regular to meet the conditions of [48] to show weak convergence.
However, we do not pursue this further but introduce in the following the continuous-
time forward variance consistent recalibration (henceforth CRC) models and show that
these meet the conditions of Conjecture IV.3.3 which will allow us to look at the weak
Taylor approximations.

2 CRC Forward Variance Models

In the following we will look at the continuous time CRC models corresponding to
the affine and exponentially affine models from Sections III.3 and III.4 respectively.
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When looking in the latter case at the logarithm of the forward variance process then
we have in both cases models that lead to affine realizations under the conditions
stated in Chapter III. We extend this models by turning certain parameters into state
variables by replacing them with finite dimensional diffusion processes. For the small-
parameter expansion we have in mind, we look for extensions that satisfy an infinite
dimensional version of Hörmander’s theorem on a very regular space of forward curves,
i.e. on a space on which the operator d

dx generates a strongly continuous group (and
not only a strongly continuous semigroup). Examples of such spaces that also satisfy
the conditions (H1) and (H2) of Section II.5 are given by [4, Example 3] and [4,
Example 4], where (basically) the latter corresponds to the Hilbert space given in
Remark II.5.1 (which was introduced in [32, Chapter 5]) extended to the whole real
line which accordingly is too narrow to accommodate the function x 7→ ebx where b is
a strictly negative real number. As this vector will play a crucial role in the following,
we will consider the Hilbert space of [4, Example 3] which was introduced by Tomas
Björk and Lars Svensson in [13, Definition 4.1]. A major drawback of this space in
the context of forward interest models is that it does not accommodate the invariant
submanifold generated by a short-rate model that is given by the (Hull-White) extended
CIR process (for more details on this, see [38, Page 3]). This lack ultimately lead to a
series of papers by Damir Filipović and Josef Teichmann including [38] and [40] that
utilized a Frobenius Theorem on Frèchet spaces using convenient calculus (cf. also to
[73]). However, when it comes to forward variance models this problem is much less
severe. In particular, all finite dimensional realizations including the short-variance
realisations corresponding to the (Hull-White extended) Heston model (i.e. the short-
variance follows a CIR process) are accommodated by this space and thus, for our
applications, the utilization of this space means no (major) loss of generality. For fixed
real numbers β > 1 and γ > 0 this Hilbert space Hβ,γ is given by the space of infinitely
differentiable functions h on R+ satisfying the norm condition ‖h‖β,γ < ∞, where the
norm is defined as

‖h‖2β,γ :=
∞∑
n=0

β−n
∫ ∞

0

( dn
dxn

h(x)
)2
e−γx dx. (2.1)

Remark 2.1. Notice that with the choice of the Hilbert space Hβ,γ the condition (A3)
in Section III.3 is not satisfied anymore, however, this condition was needed only to
prove necessity in certain representations, such as in the proof of Theorem III.3.3. For
the sufficient conditions on the existence of generic finite dimensional realizations as
given for example in Theorem III.3.9 and III.4.9 that condition is not required.

According to [13, Proposition 4.2] this space consists of entire analytic functions and
satisfies the conditions (H1) and (H2) of Section II.5 with the additional property that
the operator d

dx is bounded on Hβ,γ . As already mentioned, it will be crucial in the
following that the function x 7→ ebx belongs to this space.

Lemma 2.2. We have eb· ∈ Hβ,γ if and only if b ∈ (−
√
β, γ2 ).

Proof. This follows immediately from the definition of the norm (2.1), as

‖eb·‖2β,γ =

∞∑
n=0

(b2
β

)n ∫ ∞
0

e(−γ+2b)x dx,

and hence the claim.
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It holds also true that for every polynomial p, the pointwise product m(p, eb·) be-
longs to Hβ,γ (see [13, Page 218]), for a suitable parameter combination β, γ. In the
next Lemma we show that the conditions of Lemma 2.2 are sufficient for this, that
is, a sufficient set of parameters β, γ can be found such that m(p, eb·) ∈ Hβ,γ for all
polynomials p (i.e. the parameters depend only on b).

Lemma 2.3. Let b ∈ (−
√
β, γ2 ). Then m(p, eb·) ∈ Hβ,γ for every polynomial p.

Proof. Let p be a polynomial of degree m. Then we have for n > m by the Leibniz rule

dn

dxn
p(x)ebx =

n∑
k=0

(
n
k

)
p(n−k)(x)bkebx = ebx

n∑
k=n−m

(
n
k

)
p(n−k)(x)bk

and by denoting p̃(x) := max(p(0)(x), ..., p(m)(x)) , C1 :=
∫∞

0 e(2b−γ)xp̃2(x) dx and C2 :=∑m
n=0 β

−n ∫∞
0

(
dn

dxn p(x)ebx
)2
e−γx dx we get

‖m(p, eb·)‖2β,γ ≤ C2 +

∞∑
n=m+1

β−n
∫ ∞

0
e(2b−γ)xm2p̃2(x)

( n∑
k=n−m

(
n
k

)
bk
)2
dx

= C2 + C1m
2

∞∑
n=m+1

(b2
β

)n( m∑
k=0

(
n
k

)
b−k
)2

and for n > 2m we get

‖m(p, eb·)‖2β,γ ≤ C3 + C1m
2(m+ 1)2b−2m

∞∑
n=2m+1

(b2
β

)n(n
m

)2

≤ C3 + C1m
2(m+ 1)2b−2m(m!)2

∞∑
n=2m+1

(b2(n2m)
1
n

β

)n
and as (n2m)

1
n → 1 for n→∞ the result follows from dominated convergence as soon

as b2

β < 1 which gives the claim.

In the following we will consider the product space Hβ,γ := Hβ,γ × Rm associated

with the norm ‖(h, y)‖Hβ,γ :=
√
‖h‖2β,γ + ‖y‖2Rm . For normed spaces X and Y we

denote by C∞b (X;Y ) the space of mappings from X into Y such that each higher
derivative exists and is bounded.

Lemma 2.4. Let φ : Hβ,γ → R be a bounded function that is in C∞b (Hβ,γ ;R). Further
let b be a bounded function in C∞b (Rd;R) such that there are positive real numbers b1, b2
and b(Rd) = [−b1, b2] ⊂ (−

√
β, γ2 ). Then the vector field V : Hβ,γ → Hβ,γ given by

V (h, y) :=

(
φ(h)eb(y)·

0

)
(2.2)

is bounded and belongs to C∞b (Hβ,γ).

Proof. First it follows from Lemma 2.3 that V (Hβ,γ) ⊂ Hβ,γ . For the second claim, we
need to show that each higher derivative exists and is bounded, that is,

sup
(h,y)∈Hβ,γ

‖DlV (h, y)‖2Ll(Hβ,γ) ≤ C(l) <∞,
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for l ≥ 0 where C(l) is some positive real number depending only on l. It is evident
that it is sufficient to show that V 1 ∈ C∞b (Hβ,γ ;Hβ,γ), where as usual V 1 denotes the
first coordinate. For l = 0 we have

‖φ(h)eb(y)·‖2Hβ,γ = |φ(h)|2‖eb(y)·‖2Hβ,γ ≤ Cφ,0Cb,0 =: C(0) <∞,

where Cφ,0 := suph∈Hβ,γ |φ(h)|2 and Cb,0 := supy∈Rm ‖eb(y)·‖2Hβ,γ = ‖eb2·‖2Hβ,γ (recall

that it follows from Lemma 2.2 that b 7→ ‖eb·‖2Hβ,γ is increasing). For l ≥ 1 it is straight
forward to show that

DlV (h, y) =
l∑

j=0

pl,j(h, y)Id(·)jeb(y)·, (2.3)

where Id(·)j ∈ Hβ,γ is the monomial x 7→ xj and pl,j : Hβ,γ → L(Hlβ,γ ,R) are bounded
mappings, that are continuously differentiable, e.g.

pl,l(h, y)(h1, y1)...(hl, yl) := φ(h)Dyb(y)(y1) · · ·Dyb(y)(yl). (2.4)

As it follows from Lemma 2.3 that under the conditions on the map b, we have
Idj(·)eb(y)· ∈ Hβ,γ for all j ≥ 0 we see that V ∈ C∞(Hβ,γ). Now, letting Cl,i :=
sup(h,y)∈Hβ,γ ‖pl,i(h, y)‖2

Ll(Hβ,γ)
the boundedness follows immediately as

sup
(h,y)∈Hβ,γ

‖DlV (h, y)‖2Ll(Hβ,γ) ≤ (l + 1)

l∑
j=0

Cl,j‖Idj(·)eb2·‖2Hβ,γ =: C(l) <∞,

which is the claim.

We can now introduce the CRC versions of the models that admit affine and ex-
ponentially affine realizations and show that these satisfy the conditions of Conjecture
IV.3.3.

2.1 Affine CRC Models

The affine CRC models that we will consider in the following are generalized versions
of the processes considered in the introduction (cf. (1.3)) and given by

du = d
dxut dt+

∑d
j=1 φj(ut)e

bj(Yt)· dβjt
dYt = c(Yt) dt+

∑d+m
j=d+1 cj(Yt) dβ

j
t

(u0, Y0) ∈ Hβ,γ ,
(2.5)

where b1, ..., bd and φ1, ..., φd are as in Lemma 2.4 and c, cd+1, ..., cd+m are in C∞b (Rm).
Then it follows from Lemma 2.2 that the joint process h = (u, Y ) taking values in Hβ,γ
is given as the strong solution of{

dht = (Aht + V (ht)) dt+
∑d+m

j=1 Vj(ht) dβ
j
t

h0 ∈ Hβ,γ ,
(2.6)

as the vector fields V, V1, ..., Vd on Hβ,γ are each in C∞b (Hβ,γ). As we will assume in the
weak Taylor expansion that the vector fields depend linearly on the expansion parameter
ε it follows that the solution h of (2.6) satisfy Condition SWTA 1 of Theorem IV.3.2.
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Notice that in (2.6) we have not chosen the most general configuration possible in
that we could have chosen φ in (2.5) to depend on the stochastic parameter process Y
as well. However, as discussed in the introduction, this would not have changed the set
of attainable curves of the corresponding model where b1, ..., bd are constants. For this
reason and also for notational convenience we are choosing this setting. It follows from
Theorem III.3.9 (recall also Remark 2.1) that for a constant parameter process Yt ≡ y
(which will correspond to the case ε = 0 in the expansion) and each b1(y), ..., bd(y)
taking distinct values, the corresponding parameterized equation{

dut = d
dxut dt+

∑d
j=1 φj(ut)e

bj(y)· dβjt
u0 ∈ Hβ,γ

(2.7)

admits a generic finite dimensional realization around each u0 = u in Hβ,γ given by (cf.
(III.3.22) with m = 0)

ut = Stu+
d∑
i=1

Zite
bi(y)·, (2.8)

with

dZt = B(y)Zt dt+

d∑
i=1

φi

(
Stu+

d∑
k=1

Zkt e
bk(y)·

)
ei dβ

i
t, Z0 = 0, (2.9)

where B(y) is the diagonal matrix with entries b1(y), ..., bd(y). Thus we arrived at
a very regular extension of forward variance processes that admit affine realizations.
In particular, as the vector-fields in (2.6) are in C∞b , it can easily be shown that the
corresponding simulation algorithm indicated in the introductorey Section 1 converges
weakly with formal order one using the setting of [29] and [48].

2.2 Exponentially Affine CRC Models

The CRC versions of forward variance models that admit exponentially affine realiza-
tions, as investigated in III.4, are formally given by

dut = d
dxut dt+

∑d
j=1 φjm(ebj(Yt)·, ut) dβ

j
t

dYt = c(Yt) dt+
∑d+m

j=d+1 cj(Yt) dβ
j
t

(u0, Y0) ∈ Hβ,γ).

(2.10)

However, it immediately follows from Lemma 2.2 that the multiplication operator can
not be defined on the full spaceHβ,γ . Indeed, letting b ∈ (γ4 ,

γ
2 ) we would have eb· ∈ Hβ,γ

but m(eb·, eb·) = e2b· /∈ Hβ,γ . Also, even if the multiplication operator were defined on
the full space Hβ,γ (or on some open subset that is left invariant by the solutions of
(2.10)) for the conditions of Theorem IV.3.2 to be satisfied, we need to have forward
variance equations that have vector fields in C∞b (as we have in (2.6)) and it is evident
due to product structure in (2.10) that this will not be the case. Therefore we restrict
our analysis to the logarithm of the forward variances (cf.(III.4.3)) as in this case we
arrive at the sufficiently regular representation, which is given by

dJt = ( d
dxJt −

1
2

∑d
j=1 φ

2
je

2bj(Yt)·) dt+
∑d

j=1 φje
bj(Yt)· dβjt

dYt = c(Yt) dt+
∑d+m

j=d+1 cj(Yt) dβ
j
t

(J0, Y0) ∈ Hβ,γ ,
(2.11)
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where the coefficients are as in (2.5) with the difference that now 2bj(Rm) ⊂ (−
√
β, γ2 )

for j = 1, ..., d (cf. Lemma 2.2) and φ1, ..., φd are real numbers. It is obvious that,
with the same reasoning as in (2.6), the joint process h = (J, Y ) is given by the strong
solution of {

dht = (Aht + V (ht)) dt+
∑d+m

j=1 Vj(ht) dβ
j
t

h0 ∈ Hβ,γ
, (2.12)

and hence as above satisfies the Condition SWTA 1 of Theorem IV.3.2. The parame-
terized version given by{

dJt = ( d
dxJt −

1
2

∑d
j=1 φ

2
je

2bj(y)·) dt+
∑d

j=1 φje
bj(y)· dβjt

J0 ∈ Hβ,γ ,
(2.13)

admits a generic finite dimensional realization around any J0 ∈ Hβ,γ and is given by
(cf. (III.4.24) with m = 0 and p = 0)

Jt := Flπt (J0) +

d∑
j=1

Zjt e
bj(y)· (2.14)

where Z is the Rd-valued time-inhomogeneous diffusion process given as the solution
of

dZt = B(y)Zt dt+
d∑
j=1

φjej dβ
j
t , Z0 = 0, (2.15)

where B(y) is the diagonal matrix with entries b1(y), ..., bd(y). Thus we arrive at a
similar situation as in Section 2.1 but now only for the logarithm of the forward vari-
ance process. We will see that this will restrict the range (and usefulness) of possible
applications.

3 Hypoellipticity

We have shown that both models (2.6) and (2.12) satisfy the condition SWTA 1 of
Theorem IV.3.2. In this section we show that both models satisfy conditions of the
Conjecture IV.3.3 as well. We will divide this problem into two parts. In the first
part we will show that for a linear map l ∈ L(Hβ,γ ;RN ) the projected model l ◦ ht
admits a density with respect to the Lebesgue measure on RN and in particular has
an Malliavin-Covariance matrix (see (IV.3.1)) that is invertible. In [4, Theorem 1]
a sufficient condition for this is given, which corresponds to an infinite dimensional
version of the Hörmander’s Theorem (cf. [63, Theorem 2.3.3] for the finite dimensional
case). Note that due to the boundedness of the operator A (given in (2.6) and (2.12))
we do not have to perform the analysis on the Frechét space dom(A∞) but can work
on Hβ,γ . The same is true for [4, Proposition 2], where again we can restrict the
analysis to Hβ,γ as we have strong solutions (again for (2.6) and (2.12)) for every initial
curve in Hβ,γ . According to [4, Theorem 1], a sufficient condition for the invertibility
of the Malliavin-Covariance Matrix (and than also for the absolute-continuity of the
probability distribution of l ◦ ht with respect to the Lebesgue measure on RN ) is given
by the following version of Hörmander’s condition:

(H) Dh0 is dense is Hβ,γ ,
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where for h0 ∈ Hβ.γ , Dh0 denotes the distribution generated by V1,..., Vd+m and all
multiple Lie brackets of Ξ, V1, ..., Vd+m at h0, (where Ξ denotes the Strato- novich drift
(see (III.2.2) of ht), that is,

Dh0 := 〈V1(h0), ..., Vd+m(h0), [Vi, Vj ](h0), ..., [Ξ, Vi](h0), ...〉. (3.1)

Before investigating this condition separately for (2.6) and (2.12), we make the following
condition on the parameter process Y appearing as the autonomous process in the
second coordinate of h.

(HY) The parameter process Y satisfies the finite dimensional Hörmander condition
for every y ∈ Rm.

3.1 Affine CRC Models

The vector-fields in (2.6) are given by

V (u, Y ) =

(
0

c(Y )

)
, Vi(u, Y ) =

(
φi(u)ebi(Y )·

0

)
, Vj(u, Y ) =

(
0

cj(Y )

)
,

for i = 1, ..., d and j = d+ 1, ..., d+m. Accordingly the Stratonovich drift Ξ is

Ξ(u, Y ) = A(u, Y ) + V (u, Y )− 1

2

d+m∑
j=1

DVj(u, Y )Vj(u, Y )

=

(
d
dxu
0

)
+

(
0

c(Y )

)
− 1

2

d∑
j=1

(
ζj(u, Y )ebj(Y )·

0

)
− 1

2

d+m∑
j=d+1

(
0

DY cj(Y ) · cj(Y )

)
where the bounded scalar-fields ζj on Hβ,γ for j = 1, ..., d are given by

ζj(u, Y ) := (Duφj(u) · φj(u)ebj(Y )·). (3.2)

We have for i = 1, ..., d that

[Ξ, Vi](u, Y )

=

(
p1
i (u, Y )ebi(Y )· − 1

2

∑d
j=1 p

2
ij(u, Y )ebj(Y )· + φi(u)p3

i (u, Y )Id(·)ebi(Y )·

0

)
,

with smooth bounded scalar-fields p1
i , p

2
ij and p3

i given by

p1
i (u, Y ) := φi(u)bi(Y )−Duφi(u) · Ξ1(u, Y ),

p2
ij(u, Y ) := Duζj(u, Y ) · V 1

i (u, Y ),

p3
i (u, Y ) := DY bi(Y ) · Ξ2(u, Y ).

Thus if φi(u) 6= 0 and p3
i (u, Y ) 6= 0 for i = 1, ..., d we have

[Ξ, Vi](u, Y ) /∈ 〈V1(u, Y ), ..., Vd(u, Y )〉

for i = 1, ..., d. By iterating this procedure we see that the distribution generated by
V1, ..., Vd and iterated Lie brackets of V1, ..., Vd with Ξ at (u, Y ) contains the distribution

D1(u, Y ) :=
〈{
V1(u, Y ), ..., Vd(u, Y ),

(
Id(·)mebj(Y )·

0

) ∣∣∣ j = 1, ..., d, m ∈ N
}〉

=
〈{(

Id(·)mebj(Y )·

0

) ∣∣∣ j = 1, ..., d, m ∈ N0

}〉
. (3.3)
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Also, due to Condition (HY) we have that

D2(u, Y ) := 〈V (u, Y ), Vd+1(u, Y ), ..., Vd+m(u, Y ), [Vj , Vk](u, Y ), ...〉 = Rm. (3.4)

As 〈D1(u, Y ) × D2(u, Y )〉 is dense in Hβ,γ it follows from 〈D1(u, Y ) × D2(u, Y )〉 ⊂
D(u, Y ) that the same is true for D(u, Y ). In particular we have in this case that
D1(u, Y ) is dense in Hβ,γ .

Proposition 3.1. For every l ∈ L(Hβ,γ ;Rk), the (probability) distribution of l ◦ ht,
where ht is the solution of (2.6), is absolutely continuous with respect to the Lebesgue
measure. In particular, the Malliavin-Covariance Matrix of l ◦ ht is invertible.

Proof. This follows from [4, Theorem 1] as Condition (H) is satisfied.

Thus we have shown the first part of the Conjecture IV.3.3. For the second part,
namely the integrability of the inverse Malliavin matrix at ε = 0 we can utilize the pa-
rameterized model (2.7) and the finite dimensional representation of the solution given
by (2.8) with coordinate process (2.9). Thus by choosing a linear map L(Hβ,γ ;RN )
(which we understand as a map on Hβ,γ) we can represent l ◦ ht = l ◦ ut as

l ◦ ut = l(Stu) +
d∑
i=1

Zit l(e
bi(y)·). (3.5)

We show first that the inverse of the Malliavin matrix of the coordinate process Z exists
and its determinant is in Lp(Ω) for all p ≥ 1. As Z is a time-inhomogeneous diffusion
we can use a slightly modified version of the classic Hörmander’s Theorem given in [23,
(1.10)] (see also [41]). For u ∈ Hα,γ we set

Uj(t, h) := φj

(
Stu+

d∑
i=1

hie
bi(y)·

)
ej , j = 1, ..., d,

and

U(t, h) := B(y)h− 1

2

d∑
j=1

φj

(
Stu+

d∑
i=1

hie
bi(y)·

) ∂

∂hj
φj

(
Stu+

d∑
i=1

hie
bi(y)·

)
ej ,

giving the diffusion vector fields on Rd and Stratonovich drift of (2.9). In the following
we understand the mappings as vector fields on Rd+1 by adding a 0-th coordinate
consisting of zeros. Then it is apparent (recall that u ∈ Hβ,γ and hence t 7→ Stu is
in C∞) that for every T > 0 the extended vector fields U,U1, ..., Ud (we use the same
notation) are in C∞b ([0, T ]× Rd) and hence we can apply the (extended) Hörmander’s
condition from [23, (1.10)] given by

〈U0(0, h), U1(0, h), ..., Ud(0, h), [Ui, Uj ](0, h), ...〉 = Rd+1, (3.6)

where U0 := e0+U and e0 denotes the zeroth basis vector. If we assume that φ1, ..., φd >
0 then U1(0, h), ..., Ud(0, h) evidently are linearly independent and hence span 0 × Rd.
Thus the claim follows as U0(0, h) has a non zero zeroth component (given by 1). We
summarize this in the following Lemma.
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Lemma 3.2. For every T > 0, the coordinate process Zt (see (2.9)), for t ∈ [0, T ],
has a smooth density that is absolutely continuous with respect to the Lebesgue measure
on Rd. In particular, the Malliavin-covariance matrix γt(Z), for t ∈ [0, T ] is invertible
and (det γ(Zt))

−1 ∈ Lp(Ω) for all p ≥ 1.

Proof. This follows from condition [23, (1.10)].

Now we look at the Malliavin-Covariance matrix of (3.5). Recalling (IV.3.1), we
see that for l ∈ L(Hβ,γ ;RN ) with coordinate maps l1, ..., lN we have

γ(l ◦ ut) = (〈D(li ◦ ut), D(lj ◦ ut)〉L2([0,T ];Rd))i,j=1,...,N . (3.7)

Thus from the chain-rule given in Lemma IV.2.4 and the Representation (3.5) we get
(notice that the Malliavin derivative of l ◦ Stu is zero, see Section IV.2)

γ(l ◦ ut) = γ
( d∑
i=1

Zit l(e
bi(y)·)

)
.

If we set L(y) := (lij(y))i=1,...,N,j=1,...,d with lij(y) := li(ebj(y)·) then we can represent

γ(l ◦ ut) = L(y)γ(Zt)L
T (y) (3.8)

and accordingly we arrive at the following proposition.

Proposition 3.3. Let B denote the dimension of V (y) := 〈eb1(y)·, ..., ebd(y)·〉. If Zt has
a Malliavin Covariance matrix that is invertible with p-integrable inverse for all p ≥ 1
then the same is true for γ(l ◦ut) if and only if N ≤ B ≤ d and the map l : V (y)→ RN
satisfies 〈l(eb1(y)·), ..., l(ebd(y)·)〉 = RN .

Proof. From (3.8) it is evident the claim follows if L(y) has rank N but this is equivalent
to the stated condition on l.

Thus for affine CRC models we have shown that, subject to the conditions of the
last proposition, the conditions of Conjecture IV.3.3 are satisfied.

3.2 Exponentially Affine CRC Models

The situation is very similar when looking at the model (2.12). The vector fields are
given by

V (u, Y ) =

(
−1

2

∑d
j=1 φ

2
je

2bj(Y )·

c(Y )

)
,

Vi(u, Y ) =

(
φie

bi(Y )·

0

)
, Vj(u, Y ) =

(
0

cj(Y )

)
,

for i = 1, ..., d and j = d + 1, ..., d + m. Accordingly the Stratonovich drift Ξ is given
by

Ξ(u, Y ) = A(u, Y ) + V (u, Y )− 1

2

d+m∑
j=1

DVj(u, Y )Vj(u, Y )

=

(
d
dxu
0

)
+

(
−1

2

∑d
j=1 φ

2
je

2bj(Y )·

c(Y )

)
− 1

2

d+m∑
j=d+1

(
0

DY cj(Y ) · cj(Y )

)
.
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Similar to above we find that for i = 1, ..., d

[Ξ, Vi](u, y) =

(
p1
i (Y )ebi(Y )· − φip3

i (u, Y )Id(·)ebi(y)·

0

)
,

where
p1
i (Y ) := φibi(Y ) p3

i (u, Y ) := Dybi(y)Ξ2(u, Y ).

Thus with the same reasoning as above we can state the following corollary to Proposi-
tion 3.1. Also when looking at (2.14) and (2.15) it is evident that the claims of Lemma
3.2 and Proposition 3.3 also hold.

Corollary 3.4. The claims of Proposition 3.1, Lemma 3.2 and Proposition 3.3 remain
true for ht given as the solution of (2.12) and Zt given as the solution of (2.15).

Thus the Conjecture IV.3.3 are satisfied for the process given in (2.12) as well.
However, for the exponentially affine CRC models the conditions are only true for the
logarithm of the forward variances.
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Chapter VI

Weak Taylor PDE Expansions

1 Introduction

So far we have introduced the Weak Taylor Expansions for SPDEs in Chapter IV and
found with the CRC models in Chapter V a class of processes satisfying the conditions
of Conjecture IV.3.3. From this we get the existence and the construction of the Weak
Taylor approximation. The construction consists in computing the iterative Malliavin
weights π0, π1, ... in terms of the Skohorod integrals, cf. (IV.3.3) for π1. However,
from (IV.3.2) it is apparent that the Representation of the Malliavin weights is not
unique. Indeed, we see in the notation of (IV.3.2) that π̃ := E[π |F ] satisfies the same
Representation (IV.3.2). Moreover, π̃ corresponds in this situation to the variance-
minimal Malliavin weight (see [42]) which is most suited for Monte-Carlo Simulations.
More importantly, we will see in the following that the variance-minimal Malliavin
weight lead in some cases to particularly nice representations that are most suited in
situations where for the case ε = 0 closed from expressions are available. Unfortunately,
the construction via Skohorod integrals leads in general not to the variance-minimal
weights. In the finite dimensional setting, in [69] the concept of push-down weights
is introduced which provides a mean of explicit calculation of the variance minimal
weights. We do not pursue this approach here, but look at a different but related
expansion based on the Kolmogorov PDE. If we denote by Xε

t the (mild) solution of
(IV.1.1) and let f ∈ C∞b (H;R), then under the condition SWTA 1 of Theorem IV.3.2
it follows that for every n ≥ 0 we have the Taylor approximation of n-th order

E[f(Xε
T ) |Xε

t = x] =

n∑
i=0

εi

i!

∂i

∂εi

∣∣∣
ε=0

E[f(Xε
T ) |Xε

t = x] + o(εn) as ε→ 0. (1.1)

By denoting vε(t, x) := E[f(Xε
T ) |Xε

t = x] and vi(t, x) := 1
i!
∂i

∂εi

∣∣∣
ε=0

E[f(Xε
T ) |Xε

t = x]

for i ≥ 0 we can state this expansion as

vε(t, x) =
n∑
i=0

εivi(t, x) + o(εn), as ε→ 0. (1.2)

This expansion formally agrees with the weak Taylor expansion from Theorem IV.3.1
but requires only the smoothness of ε 7→ vε(t, x), which follows for example from con-
dition SWTA 1 of Theorem IV.3.2. The hypoellipticity condition WTA 2 that is
required for Malliavin’s integration by parts formula is in this generality not necessary
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as the terms vi(t, x) are not expressed in terms of Malliavin weights. However, if the
condition WTA 2 is satisfied as well, then both expansions agree and we can use this
PDE expansion to derive representations of the Malliavin weights. We will utilize here a
similar expansion as in [70], where a PDE expansion for finite dimensional diffusions is
considered. However, as opposed to [70] where again the concept of push-down weights
are used to determine this coefficients, we employ a technique (formally) suggested by
[8] for a direct calculation of the coefficients.

In the following we will look at two applications of this approach. The first case is
motivated by [8] and correspond to a generalization of well-known small noise expan-
sion for diffusive stochastic volatility models (cf. [69]) where the case ε = 0 corresponds
to the situation of an Black & Scholes model with time dependent but deterministic
volatility. Here the expansion occurs around the partial derivatives (i.e. the so-called
Greeks) of the Black & Scholes price. In the second application we will look at represen-
tations of the forward variance processes that depend on a finite-dimensional stochastic
parameter process such that the unperturbed state ε = 0 corresponds to the case where
the parameter process becomes a constant. This is most suited for the CRC models
introduced in Chapter V as the unperturbed state admits in this case a generic finite
dimensional realization.

2 Implied Volatility Expansion

We consider the following generalized stochastic volatility model, where X denotes the
log-price, u the forward variance and Y a stochastic parameter.

dXε
t = −1

2u
ε
t(0) dt+

√
uεt(0) dβ1

t

duεt = d
dxu

ε
t dt+ ε

∑d
i=1 σi(u

ε
t, Y

ε
t ) dβit

dY ε
t = ε2 c0(Y ε

t ) dt+ ε
∑d

i=1 ci(Y
ε
t ) dβit,

(Xε
0, u

ε
0, Y

ε
0 ) = (x, u, y) ∈ R×H × Rm,

(2.1)

where we understand that the square-root in the log-price process Xε
t is approximated

by a smooth function (see [69] for a discussion of this) such that the joint system
Zε = (Xε, uε, Y ) on H := R × H × Rm satisfies the condition SWTA 1 of Theorem
IV.3.2 for the linear map ` ∈ L(H,R) that is given by the projection onto the first
coordinate, that is, `(x, u, y) = x for every z = (x, u, y) ∈ H. In this case we have for
every function f̃ : R→ R in C∞b that the expansion (1.1) holds true with f ∈ C∞b (H;R)
given by f := f̃ ◦ `. The expansion that we consider is conceptually very similar to the
expansion suggested in [8] where the forward variances vε are parametrized in time-of-
maturity, that is, vεt(t + x) = uεt(x) for all t, x ≥ 0. They consider the curve-valued
process T 7→ vεt(T ), where T ≥ t, in which case the state-space moves with time.
Indeed, let for each t ≥ 0, Bt be some space of functions from R≥t → R. Then it
follows that vεt ∈ Bt for each t ≥ 0. Thus, they consider the following system{

dXε
t = −1

2v
ε(t, t) dt+

√
vε(t, t) dβ1

t , Xε
0 = x ∈ R+,

dvεt = ε
∑d

i=1 σ
i(t, ·, vεt) dβit, vε(0, ·) = v ∈ B0,

(2.2)

where

σi : R≥t ×Bt → Bt, (t, vεt) 7→ (R≥t 3 T 7→ σi(t, T, vεt)) ∈ Bt.
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The state-space can be fixed to B0, when we consider the process in Musiela’s paramet-
rization by setting t 7→ uεt(T ) := vεt(T − t) which then leads formally to the SPDE
formulation (1.1) (under some mild conditions, see [32]).

2.1 Expansion of Price

Under the condition SWTA 1 of Theorem IV.3.2 the joint process Zε = (Xε, uε, Y ε) on
H satisfies the conditions of [26, Theorem 9.17] and accordingly for every f̃ ∈ C∞b (R)
and for all ε ∈ U the Kolmogorov equation with boundary condition f := f̃ ◦ `

∂tv
ε(t, (x, u, y))− 1

2Dxv
ε(t, (x, u, y))(u(0)) +Duv

ε(t, (x, u, y))( d
dxu)

+1
2D

2
xv
ε(t, (x, u, y))(u(0)) + εD2

uxv
ε(t, (x, u, y))(σ1(u, y),

√
u(0))

+ε2Dyv
ε(t, (x, u, y))c0(y) + ε2 1

2

∑d
j=1D

2
yv
ε(t, (x, u, y))c2

j (y)

+ε2 1
2

∑d
j=1D

2
uv

ε(t, (x, u, y))(σj(u, y), σj(u, y))

+ε2
∑d

i=1D
2
u,yv

ε(t, (x, u, y))(σi(u, y), ci(y)) = 0

vε(T, (x, u, y)) = f(x),

(2.3)

has a unique strict solution (see [26, (9.43)]) given by

vε(t, (x, u, y)) = E[f(Xε
T )|(Xε

t , u
ε
t, Y

ε
t ) = (x, u, y)]. (2.4)

That is vε : R+ ×H → R satisfies
vε ∈ C0,0

b ([0, T ]×H)

vε(t, ·) ∈ C∞b (H) for all t ≥ 0,

vε ∈ C1([0, T ]× R×D(d/dx)× Rm)

Equation (2.3) holds for any u ∈ D(d/dx), t ∈ [0, T ].

(2.5)

In fact, by noting that it follows from the condition SWTA 1 of Theorem IV.3.2 that
ε 7→ vε(t, (x, u, y)) is smooth it is easy to see that the following holds true.

Lemma 2.1. We have

v· ∈ C1,∞([0, T ]× R×D(d/dx)× Rm × U). (2.6)

Proof. This can be shown as in the proof of [26, Theorem 9.17].

By aggregating the operators in (2.3) we can write{
(∂t + Lε)vε(t, (x, u, y)) = 0

vε(T, (x, u, y)) = f(x),
(2.7)

where

Lε := L0 + εL1 + ε2L2
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such that for any v ∈ C2
b (H) and letting z = (x, u, y)

L0v(z) :=
1

2
(D2

xv(z)−Dxv(z))(u(0)) +Duv(z)(
d

dx
u) (2.8)

L1v(z) := D2
uxv(z)(σ1(u, y),

√
u(0)) (2.9)

L2v(z) :=
1

2

d∑
j=1

D2
uv(z)(σj(u, y), σj(u, y)) +Dyv(z)c0(y)

+
d∑
j=1

D2
uyv(z)(σj(u, y), cj(y)) +

1

2

d∑
j=1

D2
yv(z)c2

j (y). (2.10)

Lemma 2.2. Let ṽn := ∂n

∂εn

∣∣∣
ε=0

vε, then for each n ≥ 0, ṽn is the solution of (∂t + L0)ṽn + nL1ṽn−1 + n(n− 1)L2ṽn−2 = 0

ṽn(T, (x, u, y)) = ∂n

∂εn

∣∣∣
ε=0

f(x).
(2.11)

Proof. It follows from Lemma 2.1 that for each n ≥ 0 we can apply the operator ∂n

∂εn

∣∣∣
ε=0

to (2.3). Hence we have for t < T (setting vε := vε(t, (x, u, y))

∂n

∂εn

∣∣∣
ε=0

(∂t + Lε)vε = 0 (2.12)

and as the mixed partial derivatives commute

∂n

∂εn
(∂t + L0 + εL1 + ε2L2)vε

= (∂t + L0)
∂n

∂εn
vε +

∂n

∂εn
εL1vε +

∂n

∂εn
ε2L2,

where after performing the necessary calculations we get

∂n

∂εn
εL1vε = nL1 ∂

n−1

∂εn−1
vε + εL1 ∂

n

∂εn
vε

and
∂n

∂εn
ε2L2vε = n(n− 1)

∂n−2

∂εn−2
L2vε + 2nε

∂n−1

∂εn−1
L2vε + ε2L2 ∂

n

∂εn
vε.

Evaluating this terms at ε = 0 and plugging them into (2.12) gives the claim.

The functions in (1.2) satisfy vn = 1
n! ṽn and accordingly by dividing in (2.11) by n!

we see that the functions vn satisfy the PDEs given by

(∂t + L0)v0 = 0, v0(T, (x, u, y)) = f(x) (2.13)

(∂t + L0)v1 + L1v0 = 0, v1(T, (x, u, y)) = 0 (2.14)

(∂t + L0)vn + L1vn−1 + L2vn−2 = 0, vn(T, (x, u, y)) = 0, n ≥ 2. (2.15)

From (2.1) we see that v0 is (functionally) independent of y and satisfies

v0(t, (x, u)) = E[f(X0
T ) | (X0

t , u
0
t ) = (x, u)]

= E
[
f
(
x− 1

2

∫ T

t
u0
s(0) ds+

∫ t

0

√
u0
s(0) dβ1

s

)]
= E

[
f
(
x− 1

2

∫ T

t
u(s− t) ds+

∫ t

0

√
u(s− t) dβ1

s

)]
, (2.16)
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where we used in the last equation that u0
s = Ss−tu for s ≥ t is the solution to

du0
s =

d

dx
u0
s, u0

t = u, (2.17)

for every u ∈ D( d
dx). For the functions vn with n ≥ 1 we can conclude from the

representations (2.14)-(2.15) and the Feynman-Kac formula that

vn(t, (x, u, y)) =

∫ T

t
E[Hn(s, (X0

s , u
0
s, y)) | (X0

t , u
0
t ) = (x, u)] ds, (2.18)

holds true, where{
H1(t, (x, u, y)) := L1v0(t, (x, u, y))

Hn(t, (x, u, y)) := L1vn−1(t, (x, u, y)) + L2vn−2(t, (x, u, y)), n ≥ 2.
(2.19)

The following lemma will be crucial in the following as it will allow us to find explicit
solutions to (2.18) and under the conditions of the next subsection to find the variance-
minimal Malliavin weights. It can be found in [8] in a very similar form. Again, we
notice that in [8] the system (2.2) is considered and that accordingly the differential
operators (2.8)-(2.10) differ. Therefore we provide a proof.

Lemma 2.3. For all n ≥ 1 and s ≥ t it holds true that

E[Dn
xv0(s, (X0

s , u
0
s)) | (X0

t , u
0
t ) = (x, u)] = Dn

xv0(t, (x, u)).

Proof. We see that Dn
xv0(t, (x, u)) satisfies the PDE (2.13) with boundary condition

Dn
xf(x) (i.e. due to Lemma 2.6 we can apply Dn

x to (2.13)) and hence satisfies

Dn
xv0(t, (x, u)) = E[Dn

xf(X0
T ) | (X0

t , u
0
t ) = (x, u)].

Accordingly
Dn
xv0(s, (X0

s , u
0
s)) = E[Dn

xf(X0
T ) | (X0

s , u
0
s)]

and

E[E[Dn
xf(X0

T ) | (X0
s , u

0
s)] | (X0

t , u
0
t ) = (x, u)]

= E[Dn
xf(X0

T ) | (X0
t , u

0
s) = (x, Ss−tu)] = E[Dn

xf(X0
T ) | (X0

t , u
0
t ) = (x, u)]

which gives the claim.

The following lemma corresponds to the vega-gamma relationship for the log-price of
the Black & Scholes model. It will allow us in the following to replace partial derivatives
with respect to u by partial derivatives with respect to x.

Lemma 2.4. v0(t, (x, u)) satisfies the following vega-gamma relationship{
Duv0(t, (x, u))h = 1

2(D2
x −Dx)v0(t, (x, u))

∫ T
t h(s− t) ds

v0(t, (x, 0)) = f(x).
(2.20)

for every h ∈ H.

Proof. This is straight forward upon noting that on (X0
t , u

0
t ) = (x, u), X0

T is normally

distributed with mean and variance given by x − 1
2

∫ T
t u(s − t) ds and

∫ T
t u(s − t) ds

respectively, from which the claim follows upon differentiating the normal density.
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In the following we will write Et,x,u[·] := E[· | (X0
t , u

0
t ) = (x, u)]. For the computation

of the prices vi(t, (x, u, y)) the following Lemma will be useful.

Lemma 2.5. Let C ∈ C∞b (R+ ×Hα × Rm) and n ≥ 0. Then{ ∫ T
t Et,x,u[L1Dn

xv0(s,X0
s , u

0
s, y)C(s, u0

s, y)] ds

= Dn
x(D3

x −D2
x)v0(t, x, u)C1(t, u, y) +Dn

xDxv0(t, x, u)C2(t, u, y)
(2.21)

and 
∫ T
t Et,x,u[L2Dn

xv0(s,X0
s , u

0
s, y)C(s, u0

s, y)] ds

= Dn
x(D2

x −Dx)2v0(t, x, u)C3(t, u, y)

+Dn
x(D2

x −Dx)v0(t, x, u)C4(t, u, y) +Dn
xv0(t, x, u)C5(t, u, y)

(2.22)

with

C1(t, u, y) :=
1

2

∫ T

t

∫ r

t
Et,u[Sr−sσ1(u0

s, y)(0)C(s, u0
s, y)

√
u0
s(0)] ds dr

C2(t, u, y) :=

∫ T

t
Et,u[

√
u0
s(0)DuC(s, u0

s, y)(σ1(u0
s, y))] ds

C3(t, u, y) :=
1

8

d∑
j=1

∫ T

t
Et,u[

(∫ T

s
Sr−sσj(u

0
s, y)(0) dr

)2
C(s, u0

s, y)] ds

C4(t, u, y) :=
1

2

d∑
j=1

∫ T

t
Et,u[

(∫ T

s
Sr−sσj(u

0
s, y)(0) dr

)
DuC(s, u0

s, y)(σj(u
0
s, y))] ds

+
1

2

d∑
j=1

∫ T

t
Et,u

(∫ T

s
Sr−sσj(u

0
s, y)(0)) dr

)
DyC(s, u0

s, y)(cj(y))] ds

C5(t, u, y) :=
1

2

d∑
j=1

∫ T

t
Et,u[D2

uC(s, u0
s, y)(σj(u

0
s, y), σj(u

0
s, y))] ds

+
d∑
j=1

∫ T

t
Et,u[DyDuC(s, u0

s, y)(σj(u
0
s, y), cj(y))] ds

+

∫ T

t
Et,u[(

1

2
D2
yC(s, u0

s, y)c2
j (y) +DyC(s, u0

s, y)c0(y))] ds

Proof. By recalling the Definition of L1 in (2.9), we see that

L1Dn
xv0(s,X0

s , u
0
s)C(s, u0

s, y)

= Dn
xDx[Duv0(s,X0

s , u
0
s)(σ1(us, y))]C(s, u0

s, y)
√
u0
s(0)

+ Dn
xDxv0(s,X0

s , u
0
s)
√
u0
s(0)DuC(s, u0

s, y)(σ1(us, y))

and recalling (2.20)∫ T

t
Duv0(s,X0

s , u
0
s)(σ1(us, y)) =

1

2
(D2

x −Dx)v0(s,X0
s , u

0
s)

∫ T

s
Sr−sσ1(u0

s, y)(0) dr
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and finally with Lemma 2.3 and Fubini’s Theorem

∫ T

t
Et,x,u[L1Dn

xv0(s,X0
s , u

0
s)C(s, u0

s, y)] ds

= Dn
x(D3

x −D2
x)v0(t, x, u)

1

2

∫ T

t

∫ r

t
Et,u[Sr−sσ1(u0

s, y)(0)C(s, u0
s, y)

√
u0
s(0)] ds dr

+ Dn
xDxv0(t, x, u)

∫ T

t
Et,u[

√
u0
s(0)DuC(s, u0

s, y)(σ1(us, y))] ds,

which gives the first claim. Similarly

L2Dn
xv0(s,X0

s , u
0
s)C(s, u0

s, y)

=
1

2

d∑
j=1

Dn
xD

2
uv0(s,X0

s , u
0
s)C(s, u0

s, y)(σj(u
0
s, y), σj(u

0
s, y)) (2.23)

+

d∑
j=1

Dn
xDyDuv0(s,X0

s , u
0
s)C(s, u0

s, y)(σj(u
0
s, y), cj(y)) (2.24)

+
1

2
Dn
xv0(s,X0

s , u
0
s)D

2
yC(s, u0

s, y)c2
j (y) + v0(s,X0

s , u
0
s)DyC(s, u0

s, y)c0(y)

and (2.23) satisfies

1

2

d∑
j=1

Dn
xD

2
uv0(s,X0

s , u
0
s)C(s, u0

s, y)(σj(u
0
s, y), σj(u

0
s, y))

=
1

2

d∑
j=1

Dn
xD

2
uv0(s,X0

s , u
0
s)(σj(u

0
s, y), σj(u

0
s, y))C(s, u0

s, y)

+

d∑
j=1

Dn
xDuv0(s,X0

s , u
0
s)(σj(u

0
s, y))DuC(s, u0

s, y)(σj(u
0
s, y))

+
1

2

d∑
j=1

Dn
xv0(s,X0

s , u
0
s)D

2
uC(s, u0

s, y)(σj(u
0
s, y), σj(u

0
s, y))

=
1

8

d∑
j=1

Dn
x(D2

x −Dx)2v0(s,X0
s , u

0
s)

(∫ T

s
Sr−sσj(u

0
s, y)(0) dr

)2
C(s, u0

s, y)

+
1

2

d∑
j=1

Dn
x(D2

x −Dx)v0(s,X0
s , u

0
s)

(∫ T

s
Sr−sσj(u

0
s, y)(0) dr

)
DuC(s, u0

s, y)(σj(u
0
s, y))

+
1

2

d∑
j=1

Dn
xv0(s,X0

s , u
0
s)D

2
uC(s, u0

s, y)(σj(u
0
s, y), σj(u

0
s, y))
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and for (2.24)

d∑
j=1

DyDuD
n
xv0(s,X0

s , u
0
s)C(s, u0

s, y)(σj(u
0
s, y), cj(y))

=
1

2

d∑
j=1

Dn
x(D2

x −Dx)v0(s,X0
s , u

0
s)
(∫ T

s
Sr−sσj(u

0
s, y)(0)) dr

)
DyC(s, u0

s, y)(cj(y))

+
d∑
j=1

Dn
xv0(s,X0

s , u
0
s)DyDuC(s, u0

s, y)(σj(u
0
s, y), cj(y))

and finally putting all together and using Lemma 2.3∫ T

t
Et,x,u[L2v0(s,X0

s , u
0
s)C(s, u0

s, y)] ds

= Dn
x(D2

x −Dx)2v0(t, x, u)
1

8

d∑
j=1

∫ T

t
Et,u[

(∫ T

s
Sr−sσj(u

0
s, y)(0) dr

)2
C(s, u0

s, y)] ds

+ Dn
x(D2

x −Dx)v0(t, x, u)

1

2

d∑
j=1

∫ T

t
Et,u[

(∫ T

s
Sr−sσj(u

0
s, y)(0) dr

)
DuC(s, u0

s, y)(σj(u
0
s, y))] ds

+ Dn
xv0(t, x, u)

1

2

d∑
j=1

∫ T

t
Et,u[D2

uC(s, u0
s, y)(σj(u

0
s, y), σj(u

0
s, y))] ds

+ Dn
x(D2

x −Dx)v0(t, x, u)

1

2

d∑
j=1

∫ T

t
Et,u

(∫ T

s
Sr−sσj(u

0
s, y)(0)) dr

)
DyC(s, u0

s, y)(cj(y))] ds

+ Dn
xv0(t, x, u)

d∑
j=1

∫ T

t
Et,u[DyDuC(s, u0

s, y)(σj(u
0
s, y), cj(y))] ds

+ Dn
xv0(t, x, u)

∫ T

t
Et,u[(

1

2
D2
yC(s, u0

s, y)c2
j (y) +DyC(s, u0

s, y)c0(y))] ds

gives the second claim.

From (2.18) the price at first order is given by

v1(t, (x, u, y)) =

∫ T

t
Et,x,u[L1v0(s,X0

s , u
0
s)] ds,

and hence from Lemma 2.5 with n = 0 and C ≡ 1 we see that

v1(t, (x, u, y)) = (D3
x −D2

x)v0(t, x, u)C1,1(t, (u, y)), (2.25)

with C1,1(t, u, y) := C1(t, u, y) and C1(t, u, y) as in the Lemma 2.5 for C ≡ 1. We notice
that

C1,1(t, (u, y)) =
1

2

∫ T

t

∫ r

t
Et,u[Sr−sσ

1(u0
s, y)(0)

√
u0
s(0))] ds dr

=
1

2

∫ T

t
Et,u[〈ũ0(0), X0〉r − 〈ũ0(0), X0〉t] dr, (2.26)
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with ũ0
t = ∂

∂ε

∣∣∣
ε=0

uεt. For the price at second order we have according to (2.18)

v2(t, x, u, y) =

∫ T

t
Et,x,u[L1v1(s,X0

s , u
0
s, y) + L2v0(s,X0

s , u
0
s)] ds

and thus from (2.25) we can again apply Lemma (2.5) on each term, i.e. for the first
term it is n = 3 and n = 2 and C = C1,1 while for the second it is n = 0 and C = 1.
This gives{

v2(t, (x, u, y)) = (D3
x −D2

x)2v0(t, x, u)C2,1(t, (u, y))

+(D4
x −D3

x)v0(t, x, u)C2,2(t, u, y) + (D2
x −Dx)2v0(t, x, u)C2,3(t, u, y)

(2.27)

where C2,1 and C2,2 corresponds to C1 and C2 given in Lemma 2.5 for C = C1,1 and
C2,3 to C3 with C = 1. More generally, we can show the following.

Proposition 2.6. The function vn(t, (x, u, y)), for n ≥ 0, satisfies

vn(t, (x, u, y)) =

m(n)∑
i=0

Di
xv0(t, x, u)C̃i(t, u, y),

where n 7→ m(n) is an increasing sequence of natural numbers and C̃i are smooth,
deterministic functions.

Proof. This can be shown by induction in n. As shown in (2.25) and (2.27) the claim
holds for n = 0, 1, 2. Assuming it holds for some n ≥ 3, it follows from (2.19), (2.18),
2.3 and the fact that L1 and L2 commute with Dx that it is sufficient to show that

Lkv0(t, x, u)C(t, (u, y)) =

m∑
i=0

∂ixv0(t, x, u)C̄k,i(t, u, y)

for k = 1, 2, some natural number m and smooth, deterministic functions C̄k,i, i =
0, ...,m. But this follows immediately from (2.20) and the definitions of L1 and L2

given in (2.9) and (2.10).

Remark 2.7. We comment here on the functions C1,1, C2,2 and C2,3. The function
C1,1(0, (u, y)) given in (2.26) satisfies after an application of the Fubini Theorem

C1,1(0, u, y) =

∫ T

0

∫ r

0
σ1(Ssu, y)(r − s)

√
u(s) ds dr.

By noting that the process ũ0
t := ∂

∂ε

∣∣∣
ε=0

uεt satisfies

ũ0
t =

d∑
j=1

∫ t

0
St−sσj(Ssu, y) dβjs ,

we find that

C1,1(0, u, y) =

∫ T

0
〈X0, ũ0(0)〉r dr (2.28)
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and hence is the integrated quadratic covariation between the log-price process Xε and
ũ0(0). Similarly

C2,3(0, u, y)

=
1

8

d∑
j=1

∫ T

0

∫ T

0

∫ min(r1,r2)

0
σj(Ssu, y)(r1 − s)σj(Ssu, y)(r2 − s) ds dr1 dr2

=
1

4

d∑
j=1

∫ T

0

∫ r2

0

∫ r1

0
Sr1−sσj(Ssu, y)(0)Sr1−sσj(Ssu, y)(r2 − r1) ds dr1 dr2

=
1

4

∫ T

0

∫ r2

0
〈ũ0(0), ũ0(r2 − r1)〉r1 dr1 dr2

corresponds to the integrated auto-covariation of ũ0. This quantities agree with the
corresponding quantities in [8].

2.2 Malliavin Weights

We assume now that the Conjecture IV.3.3 is satisfied as well, and accordingly in this
case (2.1) admits a weak Taylor expansion. Hence each term of the expansion (1.2)
satisfies

vn(0, x, u, y) = E[f(X0
T )πn] = E[f(X0

T )E[πn |X0
T ]], (2.29)

where πn and E[πn |X0
T ] denote the n-th Malliavin weight and n-th variance-minimal

Malliavin weight, respectively. Thus using Lemma 2.2 and Proposition 2.6 for f ∈ C∞b
as above

Ex,u[f(X0
T )Ex,u[πn |X0

T ]] = n!

m(n)∑
i=0

∂ixv0(0, x, u)C̃i(0, u, y).

If we now denote the density of X0
T for (X0

0 , u
0
0) = (x, u) by p(·;x, u) we see that∫ ∞

−∞
f(z)Ex,u[πn |X0

T = z] p(z;x, u) dz

=

∫ ∞
−∞

f(z)
(m(n)∑

i=0

∂ix p(z;x, u)

p(z;x, u)
C̃i(0, u, y)

)
p(z;x, u) dz,

and hence have shown the following proposition.

Proposition 2.8. For every bounded and measurable function f and n ≥ 1, the push-
down Malliavin weight satisfies

Ex,u[πn |X0
T = z] =

m(n)∑
i=0

∂ix p(z;x, u)

p(z;x, u)
C̃i(0, u, y).

Proof. For f ∈ C∞b the claim follows from the above and for general f bounded and
measurable from a monotone class argument.
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2.3 Expansion of Implied Volatilities

As noticed above (cf. Lemma 2.20), the function at first order v0(t, x, u) corresponds to
the Black & Scholes price in terms of the log-price. In fact, recalling that on (X0

t , u
0
t ) =

(x, u), X0
T is normally distributed with mean and variance given by x− 1

2

∫ T
t u(s− t) ds

and
∫ T
t u(s − t) ds respectively, we can switch to the usual Black & Scholes parame-

terization vBS(x,
√
V (t, u)) in terms of the initial log-price x and volatility

√
V (t, u)

where

V (t, u) :=
1

T − t

∫ T

t
u(s− t) ds.

We will now consider an implied volatility expansion for (2.1) by proceeding similarly
to [69] where this was done for finite dimensional diffusions. We take f to be the payoff
of a call option with strike K (the call-option payoff is not bounded but the put payoff
is so we can proceed with the put-call parity) and recall that the implied volatility
σε := σε(T,K) is defined by the condition

vBS(x, σε) = vε(0, (x, u, y)). (2.30)

Lemma 2.9. If V (t, u) > 0, then the mapping ε 7→ σε is smooth.

Proof. Let ψ(σ) := vBS(x, σ). It is known that σ 7→ ψ(σ) is smooth and that ψ′(σ) >
0 (i.e. the vega of an call-option is strictly positive). Hence ψ has a continuously
differentiable inverse. Moreover, it follows from (2.30) that ε 7→ ψ(σε) is smooth. Hence

ε 7→ σε = ψ−1 ◦ ψ(σε) is continuously differentiable with representation ∂
∂εσ

ε =
∂
∂ε
ψ(σε)

ψ′(σε)
from which the higher order differentiability follows.

Hence for any n ≥ 0 we have

σε =

n∑
i=0

εiσi + o(εn), as ε→ 0,

where σi := 1
i!
∂i

∂εi

∣∣∣
ε=0

σε. On the other hand, it follows from (2.30) and Proposition 2.6

that
∂i

∂εi

∣∣∣
ε=0

vBS(x, σε) = vi(0, (x, u, y))

for i ≥ 0. Thus by using the Faà di Bruno formula and matching terms explicit
representations for σi, i ≥ 0, can be found. We illustrate this for first three terms. It

is evident that σ0 =
√
V (0, u) and from ∂

∂ε

∣∣∣
ε=0

vBS(x, σε) = ∂σvBS(x, σ0)σ1 and

∂2

∂ε2

∣∣∣
ε=0

vBS(x, σε) = ∂2
σvBS(x, σ0)σ1 + ∂σvBS(x, σ0)σ2

we find that

σ1 =
v1(0, x, u, y)

∂σvBS(x, σ0)
and σ2 =

v2(0, x, u, y)− ∂2
σvBS(x, σ0)σ1

∂σvBS(x, σ0)
, (2.31)

where v1 and v2 are given in (2.25) and (2.27) respectively. We give now a more explicit
representation for σ1. Recalling the Black & Scholes formula in terms of the log-price

vBS(x, σ0) = exN(d1(x, σ))−KN(d2(x, σ)),
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where N(z) =
∫ z
−∞ n(r) dr, n(r) := 1√

2π
e−

r2

2 and

d1(x, σ) =
log(ex/K)

σ
√
T

+
1

2
σ
√
T , d1(x, σ) =

log(ex/K)

σ
√
T

− 1

2
σ
√
T ,

we see that DσvBS(x, σ) = ex
√
Tn(d1(x, σ)) and

DxDσvBS(x, σ) = DσvBS(x, σ)− DσvBS(x, σ)d1(x, σ)

σ
√
T

.

Letting C ′1,1(0, (u, y)) ∈ H such that C1,1(0, (u, y)) =
∫ T

0 C ′1,1(0, (u, y))(s) ds (see (2.26))
we can apply (2.20) to (2.25) to arrive at

v1(0, x, u, y) = DxDuvBS(x,
√
V (0, u))C ′1,1(0, (u, y))

= DxDσvBS(x,
√
V (0, u))

V (0, C ′1,1(0, (u, y)))

2σ0
.

Putting all together and plugging into (2.31) gives

σ1 =
1

2

(D3
x −D2

x)vBS(x, σ0)C1,1(0, (u, y))

DσvBS(x, σ0)

=
(1

2
− log(ex/K)

σ2
0T

)V (0, C ′1,1(0, (u, y)))

2σ0
, (2.32)

where as above σ0 =
√
V (0, u).

2.4 Termstructure of ATM volatility skew

According to [5] the termstructure of at-the-money volatility skew defined as

ψ(T ) :=
∣∣∣ ∂
∂k

∣∣∣
k=0

σT,k

∣∣∣,
where k = log(ex/K), is a feature of the volatility surface that really does distinguish
between (stochastic volatility) models. They found empirically (cf. [5, Figure 1.2]) that
T 7→ ψ(T ) should be proportional to 1/T γ with γ ∈ (0, 1/2) (see Section III.6 for more
on this topic). Recalling the representation of σ1 in (2.32) we see that at first order

ψ(T ) =
∣∣∣V (0, C ′1,1(0, (u, y)))

2σ3
0T

∣∣∣ =
∣∣∣∫ T0 ∫ Ts σ1(u(s− t), y)(r − s)

√
u(s− t) ds dr

2
√
T (
∫ T

0 u(s) ds)3/2

∣∣∣.
For a flat initial curve u(x) = c for all x ≥ 0 we accordingly have

ψ(T ) =
∣∣∣∫ T0 ∫ Ts σ1(c, y)(r − s) dr ds

2T 2c

∣∣∣.
Notice that in the rBergomi model (see Section III.6) we have σ1(u, Y )(r) = u 1

rγ and
hence (formally, as we do not know whether this expansion holds for the rBergomi
model) for u = c

ψrBergomi(T ) =
∣∣∣∫ T0 ∫ T−s0

1
rγ dr ds

2T 2

∣∣∣ =
∣∣∣ 1

2(2− γ)(1− γ)

∣∣∣T−γ
agreeing with the empirically observed form.
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2.5 Example I: CRC Affine Realizations

In the case of the affine CRC models given in (V.2.5) we have σ1(u, y) = φ1(u)eb1(y)·

and accordingly

ψaffCRC(T ) =
∣∣∣∫ T0 φ(c) e

b1(y)(T−s)−1
b1(y) ds

2T 2c

∣∣∣.
2.6 Example II: CRC Exponentially Affine Realizations

For the exponentially affine CRC models given in (V.2.10) we have

σ1(u, Y ) = m(u, eb1(Y )·),

which gives for the constant initial curve u = c essentially the same ATM volatility
skew as for the affine CRC models, the only difference is that here φ(c) = c.

3 Term Structure Expansion

We saw in the last section that with the combination of (condition SWTA 1 of)
Theorem IV.3.2 and the Kolmogorov equation we could find an asymptotic expansion
around the unperturbed (i.e. ε = 0) state. This is very convenient since in the un-
perturbed state the first two coordinates of the joint system Z = (X,u, Y ) admitted a
particular simple kind of a finite dimensional realization in the sense that the forward
variance reduced to the solution of the deterministic transport equation. Accordingly
the log-price process X reduced to a 1-dimensional (time-inhomogeneous) Markov pro-
cess that in particular corresponded to the time-dependent Black & Scholes model for
which closed-form solutions for many derivatives on the log-pice exist. In this section
we will continue with this example by looking at derivatives of the forward variance
curve u (instead of the log-price X) by looking at the second and third coordinate of
(2.1). By doing so, we can use the same system for pricing and calibration (using this
asymptotic expansion) of derivatives on the log-price X (like plain vanilla call options)
and on the forward variance u (like call options on the VIX).

3.1 Expansion of Price

We look at the parameterized forward variance model with stochastic volatility (which
includes the CRC processes) given by{

duεt = d
dxu

ε
t dt+ ε

∑d
i=1 σ

i(uεt, Y
ε
t ) dβit, uε0 = u ∈ H,

dY ε
t = ε2 c0(Y ε

t ) dt+ ε
∑d

i=1 ci(Y
ε
t ) dβit, Y ε

0 = y ∈ Rm,
(3.1)

and assume that the joint process (u, Y ) in H := H × Rm satisfies the conditions of
Theorem IV.3.2 for a certain linear map l ∈ L(H,R) satisfying l(u, Y ) = l̃(u) for some
linear map in L(H,R). Then as above for a smooth function f̃ ∈ C∞b (R;R) we consider
the composite map f := f̃ ◦ l. Finally we assume that for ε = 0 and each y ∈ Rm
the first coordinate of (3.1) admits a strong solution for every u0 ∈ D(d/dx) which
is for example satisfied for the CRC processes. Then under the condition SWTA 1
of Theorem IV.3.2 the joint process Zε = (uε, Y ε) on H satisfies for each ε ∈ U the
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conditions of [26, Theorem 9.17] and accordingly the Kolmogorov equation

∂tv
ε(t, (u, y)) +Duv

ε(t, (u, y))( d
dxu)

+ε2Dyv
ε(t, (u, y))c0(y) + ε2 1

2

∑d
j=1D

2
yv
ε(t, (u, y))c2

j (y)

+ε2 1
2

∑d
j=1D

2
uv

ε(t, (u, y))(σj(u, y), σj(u, y))

+ε2
∑d

i=1D
2
u,yv

ε(t, (u, y))(σi(u, y), ci(y)) = 0

vε(T, (u, y)) = f(u),

(3.2)

has a unique strict solution for each ε ∈ U given by

vε(t, (u, y)) = E[f(uεT ) | (uεt, Y ε
t ) = (u, y)],

satisfying the corresponding properties of (2.5) and Lemma 2.1. By aggregating as
above the operators in (3.2) we can write{

(∂t + Lε)vε(t, (u, y)) = 0

vε(T, (u, y)) = f(u),

where Lε := L0 + ε2L2 are such that for any v ∈ C2
b (H) and letting z = (u, y)

L0v(z) := Duv(z)(
d

dx
u) (3.3)

L2v(z) := Dyv(z)c0(y) +
1

2

d∑
j=1

D2
yv(z)c2

j (y) (3.4)

+
1

2

d∑
j=1

D2
uv(z)(σj(u, y), σj(u, y)) +

d∑
i=1

D2
u,yv(z)(σi(u, y), ci(y)).

And from the corresponding version of Lemma 2.2 we see that the functions in (1.2)
satisfy the PDEs given by

(∂t + L0)v0 = 0, v0(T, (u, y)) = f(u) (3.5)

(∂t + L0)vn + L2vn−2 = 0, vn(T, (u, y)) = 0, n ≥ 2. (3.6)

The price at order 0 is given by

v0(t, u) = f(ST−tu), (3.7)

as for ε = 0 and u0
t = u, u0

T corresponds to the solution at time T of{
du0

s = d
dxu

0
s, s ≥ t

u0
t = u.

The price at 1-st order is defined as

v1(t, u, y) :=
∂

∂ε

∣∣∣
ε=0

E[f(uεT ) | (uεt, Y ε
t ) = (u, y)]

=
∂

∂ε

∣∣∣
ε=0

E
[
f(ST−tu+ ε

d∑
i=1

∫ T

t
ST−sσi(u

ε
s, Y

ε
s ) dβis)

]
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and be recalling that f := f̃ ◦ l we see that

∂

∂ε

∣∣∣
ε=0

E
[
f(ST−tu+ ε

d∑
i=1

∫ T

t
ST−sσi(u

ε
s, Y

ε
s ) dβis)

]
= f̃ ′(l(ST−tu))

d∑
i=1

E
[ ∫ T

t
l
(
ST−sσi(Ss−tu, y)

)
dβis

]
= 0,

due to the properties of the stochastic integral. Hence we have shown that

v1(t, u, y) = 0. (3.8)

For the prices at higher order, we have as in (2.18) that

vn(t, u, y) =

∫ T

t
L2vn−2(s, Ss−tu, y) ds, (3.9)

which follows now from the fundamental theorem of calculus and (3.6) upon noting
that for a smooth v we have ∂tv(t, u0

t ) = ∂tv(t, u0
t ) +Duv(t, u0

t )
d
dxu

0
t where on the left

hand side of the equation ∂t acts on t→ v(t, u0
t ) and on the right-hand side on the first

argument, i.e. t 7→ v(t, u). We also recall from the above that u0
s = Ss−tu and that

accordingly

v0(s, u0
s, y) = f(ST−su

0
s) = f(ST−sSs−tu) = f(ST−tu), (3.10)

which is a property reminiscent to the martingality property stated in Lemma 2.3. Now
using (3.9) and (3.10) we can compute the higher order prices. We see from (3.8) that
the price at every odd order is zero. In the following we compute the prices at second
and fourth order. At second order we have

v2(t, u, y) =

∫ T

t
L2v0(s, u0

s) ds =
1

2

d∑
j=1

∫ T

t
D2
uf(ST−su

0
s)(σj(u

0
s, y), σj(u

0
s, y)) ds

= f̃ ′′(l(ST−tu))
1

2

d∑
j=1

∫ T

t
l(ST−sσj(Ss−tu, y))2 ds =: f̃ ′′(l(ST−tu))C1(t, u, y)

and similarly at fourth order

v4(t, u, y) =

∫ T

t
L2v2(s, u0

s, y) ds

= f̃ ′′(l(ST−tu))

∫ T

t

(
DyC1(s, u0

s, y)c0(y) +
1

2

d∑
j=1

D2
yC1(s, u0

s, y)c2
j (y)

)
ds

+
1

2

d∑
j=1

∫ T

t

(
D2
uf̃
′′(l(ST−su

0
s))C1(s, u0

s, y)
)

(σj(u
0
s, y), σj(u

0
s, y)) ds

+
d∑
i=1

∫ T

t
Du,yf̃

′′(l(ST−su
0
s))C1(s, u0

s, y)(σi(u
0
s, y), ci(y)) ds

=: f̃ ′′(l(ST−tu))C2(t, u, y) + I + II,
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where I satisfies

I =
1

2

d∑
j=1

∫ T

t
D2
u

(
f̃ ′′(l(ST−su

0
s))C1(s, u0

s, y)
)

(σj(u
0
s, y), σj(u

0
s, y)) ds

=
1

2

d∑
j=1

∫ T

t

(
D2
uf̃
′′(l(ST−su

0
s))(σj(u

0
s, y), σj(u

0
s, y))

)
C1(s, u0

s, y) ds

+

d∑
j=1

∫ T

t

(
Duf̃

′′(l(ST−su
0
s))σj(u

0
s, y)

)(
DuC1(s, u0

s, y)σj(u
0
s, y)

)
ds

+
1

2

d∑
j=1

∫ T

t
f̃ ′′(l(ST−su

0
s))
(
D2
uC1(s, u0

s, y)(σj(u
0
s, y), σj(u

0
s, y))

)
ds

= f̃ (4)(l(ST−tu))
1

2

d∑
j=1

∫ T

t
l(ST−sσj(Ss−tu, y))2C1(s, u0

s, y) ds

+ f̃ (3)(l(ST−tu))

d∑
j=1

∫ T

t
l(ST−s(σj(u

0
s, y))

(
DuC1(s, u0

s, y)σj(u
0
s, y)

)
ds

+ f̃ ′′(l(ST−tu))
1

2

d∑
j=1

∫ T

t

(
D2
uC1(s, u0

s, y)(σj(u
0
s, y), σj(u

0
s, y))

)
ds

=: f̃ (4)(l(ST−tu))C3(t, u, y) + f̃ ′′′(l(ST−tu))C4(t, u, y) + f̃ ′′(l(ST−tu))C5(t, u, y)

and for II we have

II =
d∑
i=1

∫ T

t
Du,y

(
f̃ ′′(l(ST−su

0
s))C1(s, u0

s, y)
)

(σi(u
0
s, y), ci(y)) ds

=

d∑
i=1

∫ T

t

(
Duf̃

′′(l(ST−su
0
s))σi(u

0
s, y)

)(
DyC1(s, u0

s, y)ci(y)
)
ds

+
d∑
i=1

∫ T

t
f̃ ′′(l(ST−su

0
s))Du,yC1(s, u0

s, y)(σi(u
0
s, y), ci(y)) ds

= f̃ ′′′(l(ST−tu))
d∑
i=1

∫ T

t
l(ST−sσi(u

0
s, y))DyC1(s, u0

s, y)ci(y) ds

+ f̃ ′′(l(ST−tu))

d∑
i=1

∫ T

t
Du,yC1(s, u0

s, y)(σi(u
0
s, y), ci(y)) ds

=: f̃ ′′′(l(ST−tu))C6(t, u, y) + f̃ ′′(l(ST−tu))C7(t, u, y)

and hence putting all together

v4(t, u, y) = f̃ ′′(l(ST−tu))(C2(t, u, y) + C5(t, u, y) + C7(t, u, y))

= f̃ ′′′(l(ST−tu))(C4(t, u, y) + C6(t, u, y)) + f̃ (4)(l(ST−tu))C3(t, u, y).

More generally we can show as in Proposition 2.6 the following.
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Proposition 3.1. The function vn(t, (u, y)), for every odd number n ≥ 1, vn(t, (u, y)) =
0 and for every even number n ≥ 2

vn(t, (u, y)) =

m(n)∑
i=0

f̃ (i)(l(ST−tu))C̃i(t, u, y),

where n 7→ m(n) is an increasing sequence of natural numbers and C̃i are smooth,
deterministic functions.

Proof. The claim holds as shown above for n = 1, 2, 3, 4 and the general case follows
from induction.

3.2 VIX Options

As an example of derivatives on the forward variance we can consider options on the
VIX, which is given for time T by

VIXT :=

√
1

x

∫ x

0
uεT (z) dz, (3.11)

where x denotes time-to-maturity and is about 20 business days. Hence for a smooth
payoff functions f̂ we consider the pricing function

E[f̂(VIXT )] = E[f(uεT )] = E[f̃(l(uεT ))], (3.12)

where f , f̃ and l correspond to the notations used above, i.e. l is the linear mapping in
L(H; (R)) given by l(h) = 1

x

∫ x
0 h(z) dz and f̃ is the real-valued function on R+ given

by f̃(x) := f̂(
√
x) and f := f̃ ◦ l. Now under the conditions of the previous subsection

the expansion given in Proposition 3.1 can be used.
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Appendix A

Stochastic Processes in Hilbert
Spaces

We give a short overview on stochastic partial differential equations. The main refer-
ence here is [26], but also results from [27], [25], [32] and [45] are used. Throughout
we let (Ω,F , (Ft)t∈R+ ,P) denote a complete filtered probability space satisfying the
usual conditions, that is, F is P-complete, F0 contains all P-nullsets, and the filtration
(F)t∈R+ is right continuous. We also assume that we are given a d-dimensional Brow-
nian motion β = (β1, ..., βd) relative to the probability space. Also we denote by H a
separable Hilbert space and by B(H) the Borel σ-field on H. Further we denote by P
the predictable σ-field on R+ × Ω and by PT its restriction to [0, T ]× Ω (cf. [26, page
76]).

1 The Itô Integral

We follow the construction given in [26, Chapter 4] and [32, Chapter 2] for the stochastic
integral wit values in H, however as we consider finite dimensional driving noise (given
by the d-dimensional Brownian motion β) the procedure is very similar to the well-
known case of the stochastic integral taking values in Rn, see for example [57]. Let
T ∈ R+ be arbitrary but fixed. A H-valued (local) martingale is defined exactly as in
the real-valued case (see [26]) such that also the following property holds.

Proposition 1.1. The space M2
T (H) of H-valued continuous martingales M on [0, T ]

with the norm

‖M‖2M2
T (H) := E

[
sup
t∈[0,T ]

‖M(t)‖2H
]

is a Hilbert space. The closed subspace M0,2
T (H) consists of those martingales M ∈

M2
T (H) with M0 = 0.

Proof. This is [26, Proposition 3.9].

Definition 1.2. We call L2
T (H) the Hilbert space of equivalence classes of H-valued

predictable processes Φ with norm

‖Φ‖2L2T (H) := E
[ ∫ T

0
‖Φt‖2H dt

]
.
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Now denote by ET (H) the subset of L2
T (H) consisting of elementary processes Φ,

i.e. there exists a sequence 0 = t0 < t1 < ... < tk = T and a sequence of random
variables Φ0,Φ1, ...,Φk−1 such that Φm is Ftm measurable and

Φ(t) = Φm, for t ∈ (tm, tm+1], m = 0, 1, ..., k − 1.

For Φ ∈ ET (H) the stochastic integral with respect to a real-valued Brownian motion
β1 is defined by

(Φ · β1)t :=
k−1∑
m=0

Φm(β1
tm+1∧t − β

1
tm∧t), t ∈ [0, T ].

Proposition 1.3. The subset of elementary processes ET (H) is dense in L2
T (H), and

the map from ET (H) into M0,2
T (H) given by Φ 7→ Φ · β1 is an isometry.

Proof. This [26, Proposition 4.5 and 4.7]

Definition 1.4. The unique extension of the isometry to the map from L2
T (H) into

M0,2
T (H) will be called the stochastic integral of Φ with respect to β1. It will also be

denoted by

(Φ · β1)t =

∫ t

0
Φs dβ

1
s .

Definition 1.5. We call LlocT (H) the space of equivalence classes of H-valued pre-
dictable processes Φ such that

P
[ ∫ T

0
‖Φt‖2H dt <∞

]
= 1.

Proposition 1.6. Let Φ ∈ LlocT (H). Then there exists a unique H-valued continuous
local martingale M on [0, T ] that is characterized by

Mt∧τ = ((Φ1[0,τ ]) · β1)t

whenever Φ1[0,τ ] ∈ L2
T (H). Again, M is called the stochastic integral of Φ with respect

to β1 and it is written

Mt =: (Φ · β1)t =

∫ t

0
Φs dβ

1
s .

Proof. This is [32, Proposition 2.2.3].

Finally we can consider the spaces L2(H) := L2
∞(H) and Lloc :=

⋂
T∈R+

LlocT in the
obvious way, see [32, page 19].

2 Itô’s Formula

An H-valued continuous adapted process X is called an Itô process if it is of the form

Xt = X0 +

∫ t

0
bs ds+

d∑
i=1

∫ t

0
Φi
s dβ

i
s, (2.1)
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where Φi ∈ Lloc(H), for i = 1, ..., d and b is an H-valued predictable process such that

P
[ ∫ T

0
‖Φt‖H dt <∞

]
= 1

and X0 is F0 measurable.

Proposition 2.1. Let X be an Itô process as in (2.1) and let F ∈ C1,2
b ([0, T ]×H;E)

where E is another Hilbert space. Then t 7→ F (t,Xt) is an E-valued Itô process with
representation

F (t,Xt) = F (0, X0) +

d∑
i=1

∫ t

0
DxF (s,Xs)(Φ

i
s) dβ

i
s

+

∫ t

0

(
DsF (s,Xs) +DxF (s,Xs)(bs) +

1

2

d∑
i=1

DxxF (s,Xs)(Φ
i
s,Φ

i
s)
)
ds

Proof. This follows from [26, Theorem 4.17] and [32, Theorem 2.3.1].

3 Stochastic Equations

Here we will look to the stochastic equation in H given by{
dXt = (AXt + F (t,Xt)) dt+

∑d
j=1B

j(t,Xt) dβ
j
t

X0 = h0,
(3.1)

where A is the infinitesimal generator of a strongly continuous semigroup {St | t ∈ R+}
and F , Bj , j = 1, ..., d are mappings from (R+ × Ω × H,P ⊗ B(H)) into (H,B(H)).
In the following we will follow the exposition given in [32, Section 2.4] for the different
solution concepts.

Definition 3.1. Suppose that X is an H-valued predictable process and τ > 0 a stop-
ping time satisfying

P
[ ∫ t∧τ

0

(
‖Xs‖H + ‖F (s,Xs)‖H +

d∑
j=1

‖Bj(s,Xs)‖2H
)
ds <∞

]
= 1,

for all t ∈ R+. We call X

• a local mild solution to (3.1), if the following holds

Xt = St∧τh0 +

∫ t∧τ

0
S(t∧τ)−sF (s,Xs) ds

+

d∑
j=1

∫ t∧τ

0
S(t∧τ)−sB

j(s,Xs) dβ
j
s , P− a.s., ∀t ∈ R+.

• a local weak solution to (3.1), if for arbitrary ζ ∈ D(A∗)

〈ζ,Xt〉H = 〈ζ, h0〉H +

∫ t∧τ

0

(
〈A∗ζ,Xs〉H + 〈ζ, F (s,Xs)〉H

)
ds

=

d∑
j=1

∫ t∧τ

0
〈ζ,Bj(s,Xs)〉H dβjs , P− a.s.,∀t ∈ R+.
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• a local strong solution to (3.1), if X ∈ D(A), dt⊗ dP-a.s.

P
[ ∫ t∧τ

0
‖AXs‖H ds <∞

]
= 1, ∀t ∈ R+

and the integral version of (3.1)

Xt = X0 +

∫ t∧τ

0
(AXs + F (s,Xs)) ds+

d∑
j=1

∫ t∧τ

0
Bj(s,Xs) dβ

j
s

holds P-a.s. ∀t ∈ R+.

We call τ the lifetime of X, if τ =∞ the solutions are just called mild, weak and strong
respectively.

As the names suggest, a (local) strong solution is also a (local) weak solution which
in turn is also a (local) mild solution. On the other hand, it follows from [26, Theorem
6.5] that if Bi ∈ L2(H), for i = 1, ..., d, then a (local) mild solution is also a (local)
weak solution.

Theorem 3.2. Let r ∈ [0, T ] and assume that the mappings F,B1..., Bd : [r, T ]× Ω×
H → H satisfy the conditions

SI1 The mappings F,B1, ..., Bd : [r, T ]×Ω×H → H are measurable from ((Ω×[r, T ])×
H,PT × B(H)) into (H,B(H))

SI2 There exists a constant C > 0 such that{
‖F (t, ω;x)− F (t, ω; y)‖H +

∑d
i=1 ‖Bi(t, ω;x)−Bi(t, ω; y)‖H

≤ C‖x− y‖H , for all x, y ∈ H, t ∈ [r, T ], ω ∈ Ω,{
‖F (t, ω;x)‖2H +

∑d
i=1 ‖Bi(t, ω;x)‖2H ≤ C2(1 + ‖x‖2H),

for all x ∈ H, t ∈ [r, T ], ω ∈ Ω.

Then the equation for t ≥ r{
dXt = AXt + F (t,Xt) dt+

∑d
i=1Bi(t,Xt) dβ

i
t

Xr = ξ.
(3.2)

with ξ being Fr measurable has a unique continuous mild solution

Xt = St−rξ +

∫ t

r
St−sF (s,Xs) ds+

d∑
i=1

∫ t

r
St−sBi(s,Xs) dβ

i
s,

that satisfies for p ≥ 2,

sup
t∈[r,T ]

E[‖Xt‖pH ] ≤ Cp,T (1 + E[‖ξ‖ph]).

and for p > 2
E[ sup

t∈[r,T ]
‖Xt‖pH ] ≤ C̃p,T (1 + E[‖ξ‖pH ]).
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The solution is the limit of the Picard Iteration scheme, defined recursively by{
X0
t := St−rξ

Xk+1
t := St−rξ +

∫ t
r St−sF (s,Xk

s ) ds+
∑d

i=1

∫ t
r St−sBi(s,X

k
s ) dβis, k ≥ 1,

(3.3)

in the Banach space Hp, p ≥ 2, of H-valued predictable processes Y defined on the time
interval [r, T ] such that

‖Y ‖Hp =
(

sup
t∈[r,T ]

E[‖Yt‖pH ]
)1/p

<∞.

Proof. This is [26, Theorem 7.4].

In [32, Corollary 2.4.1] there is also a corresponding version of this Theorem with
local conditions yielding a local weak solution.
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[38] Damir Filipović and Josef Teichmann, Existence of invariant manifolds for stochas-
tic equations in infinite dimension, Journal of Functional Analysis 197.2, 398-432.
(2003).

[39] , Regularity of finite-dimensional realizations for evolution equations, Jour-
nal of Functional Analysis 197 (2003), no. 2, 433–446.

[40] , On the geometry of the term structure of interest rates, Proceedings of
the Royal Society London A 460, 129-167 (2004).

[41] Patrick Florchinger, Malliavin calculus with time dependent coefficients and appli-
cation to nonlinear filtering, Probability theory and related fields 86 (1990), no. 2,
203–223.
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