Harmonisierung von Bodendaten
Anhang zum Schlussbericht von PMSoiL

Author(s):
Walthert, Lorenz; Bridler, Lucas; Keller, Armin; Lussi, Micha; Grob, Urs

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010801994

Rights / License:
In Copyright - Non-Commercial Use Permitted
Harmonisierung von Bodendaten

im Projekt

Predictive mapping of soil properties for the evaluation of soil functions at regional scale (PMSoil)
des Nationalen Forschungsprogramms Boden (NFP68)

Anhang zum Schlussbericht von PMSoil

Lorenz Walthert, Lucas Bridler, Armin Keller, Micha Lussi, Urs Grob

Eidgenössische Forschungsanstalt WSL und Agroscope ART

April, 2016
Inhaltsverzeichnis

1. Einführung .. 1
2. Beprobungsstandorte ... 3
 2.1 Mehrfach vorhandene Standorte .. 3
 2.2 Standorte in Gewässern und auf Fels .. 3
 2.3 Landnutzung an den Standorten ... 5
 2.3.1 Stichproben im Wald ... 5
 2.3.2 Arealstatistik der Nicht-Wald Standorte .. 5
3. Bodenprofile .. 6
 3.1 Aufschlusstiefe .. 6
 3.2 Gründigkeit ... 7
 3.2.1 Horizontbezeichnungen und Gründigkeit .. 8
 3.2.2 Gründigkeit bei Felsuntergrund ... 9
 3.2.3 Vernässungs-Untertyp-R und Gründigkeit ... 10
4. Horizonte .. 12
 4.1 Grenzen und Lücken/Überlappungen .. 12
 4.2 Horizontmächtigkeit und Profiltiefe .. 12
5. Proben ... 13
 5.1 Probengrenzen .. 13
 5.2 Proben und Horizonte .. 13
6. Physikalische Bodeneigenschaften ... 14
 6.1 Skelettgehalt .. 14
 6.1.1 Mengengerüst und Datenerfassungsmethoden ... 14
 6.1.2 Skelettgehalt und Geologie im Kanton Zürich ... 15
 6.2 Textur-Messwerte .. 16
 6.2.1 Mengengerüst und Datenerfassungsmethoden ... 16
 6.2.2 Erste Datensichtung und Datenbereinigung ... 17
 6.2.3 Werteveerteilungen in Boxplots .. 18
 6.2.4 Werteveerteilungen in Texturdreiecken ... 19
 6.2.5 Textur in Abhängigkeit des Humusgehaltes .. 20
 6.3 Textur-Schätzwerte ... 24
 6.3.1 Mengengerüst und Datenerfassungsmethode ... 24
 6.3.2 Erste Datensichtung und Datenbereinigung ... 24
6.3.3 Werteverteilungen in Boxplots .. 25
6.3.4 Werteverteilungen in Texturdreiecken .. 27
6.3.5 Vergleich Mess- und Schätzwerte ... 28
6.4 Bodendichte ... 29
7. Chemische Messwerte... 29
 7.1 Säuregrad (pH, CEC(\(H^+\)) und CEC(Al)) ... 29
 7.1.1 Wertebereiche/-verteilungen ... 29
 7.1.2 Korrelationen zwischen pH und CEC(\(H^+\)) sowie zwischen pH und CEC(Al) ... 34
 7.2 Kationenaustauschkapazität CECeff und Basensättigung 41
 7.2.1 Wertebereiche/-verteilungen von CECeff .. 41
 7.2.2 Korrelationen zwischen pH und Basensättigung 42
 7.3 Stickstoff und organischer Kohlenstoff (SOC, Humus) 49
 7.3.1 Wertebereiche/-verteilungen SOC ... 49
 7.4 Vergabe von Codes bei der Harmonisierung chemischer Bodendaten 52
 7.4.1 Veränderte Daten ... 52
 7.4.2 Unbrauchbare Daten .. 52
8. Literatur .. 53
9. Anhang .. 54
1. Einführung

Der vorliegende Bericht ist ein Anhang zum Schlussbericht (Papritz et al., 2016) im Projekt „Predictive mapping of soil properties for the evaluation of soil functions at regional scale“ (PMSoil), das im Rahmen des Nationalen Forschungsprogramms Boden (NFP68) unter der Leitung von Andreas Papritz (ETH-Z) durchgeführt wurde. Das Ziel von Workpackage A bestand hauptsächlich darin, Daten von verschiedenen Datenquellen zu beschaffen, zu harmonisieren und diese für das Projekt PMSoil in möglichst guter Qualität verfügbar zu machen. Das Subkapitel zum Workpackage A im Schlussbericht von PMSOIL (Papritz et al., 2016) orientiert über die Ziele, die Methoden und die wichtigsten Resultate der Datenharmonisierung.

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Anzahl Standorte</th>
<th>Anzahl Bodenprofile</th>
<th>Anzahl Horizonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>3922</td>
<td>3922</td>
<td>15282</td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>181</td>
<td>298</td>
<td>1790</td>
</tr>
<tr>
<td>3 ZH KABO_FMP</td>
<td>8493</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4 BE BOKA_P</td>
<td>2405</td>
<td>2405</td>
<td>10998</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>1046</td>
<td>1046</td>
<td>7538</td>
</tr>
<tr>
<td>6 BE KABO_FMP</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>30</td>
<td>30</td>
<td>183</td>
</tr>
<tr>
<td>total</td>
<td>16077</td>
<td>7701</td>
<td>35791</td>
</tr>
</tbody>
</table>
Die Datenkontrolle erfolgte auf verschiedenen Ebenen. Zuerst wurden Eigenschaften an den Beprobungsstandorten geprüft, dann folgte die Datenkontrolle auf der Ebene der Bodenprofile und der Bodenhorizonte. Schliesslich wurden ausgewählte physikalische und chemische Eigenschaften von Bodenproben geprüft. Aus Kapazitätsgründen mussten wir uns im Workpackage A auf die Kontrolle der folgenden wichtigen Standorts- und Bodeneigenschaften beschränken:

Standort: Koordinaten, Landnutzung
Bodenprofil: Aufschlussstiefe, Vernässung, Gründigkeit (Wurzelraum)
Horizont/Probe: Ober- und Untergrenzen
Physikalische Bodeneigenschaften: Skeletthalt, Textur und Dichte
Chemische Bodeneigenschaften: pH-Wert, Azidität, Kationenaustauschkapazität (CEC), Basensättigung und organischer Kohlenstoffgehalt

Die Datenkontrolle erfolgte meistens graphisch, wobei jeweils Wertebereiche von verschiedenen Datensätzen verglichen oder Korrelationen zwischen verschiedenen voneinander abhängigen Bodenparametern untersucht wurden. Bei der Beurteilung der Datenqualität stützten wir uns auf Erfahrungen mit einer grossen Anzahl von Waldbodenproben aus der ganzen Schweiz (Datenquelle 5 CH WSL; Tab. 1), wo die Qualitätskontrolle der Daten in der Vergangenheit ebenfalls häufig graphisch erfolgte. So zeigten bei diesem Datensatz Korrelationen zwischen Bodenparametern, z.B. pH versus CEC(H) oder pH versus CEC(Al), typische Muster, oft erklärbar mit dem Entwicklungsgrad (z.B. Säurepufferbereich) oder mit den Stoffgehalten der untersuchten Böden. In Workpackage A wurde geprüft, ob die Korrelationen bei den Böden der übrigen Datenquellen ähnlich und damit plausibel verlaufen wie bei der Datenquelle 5 CH WSL. Bei abweichenden Mustern in den Korrelationen wurde nach möglichen Erklärungen gesucht.

Die Datenquelle 5 CH WSL als Referenz für die Datenkontrolle in PMSoil zu verwenden scheint aus folgenden Gründen vertretbar zu sein: i) die Berichtverfasser kennen die Qualität dieses Datensatzes recht gut, ii) die Qualität der Bodendaten wurde bei dieser Datenquelle durch verschiedene Massnahmen kontrolliert. Diese Massnahmen umfassen die folgenden Punkte (Walthert et al., 2002; Walthert et al., 2010):

- Teilnahme an Ringversuchen
- Einsatz von Referenzmaterialien (zertifizierte und nicht zertifizierte Standards)
- Eichung mit Standardlösungen
- Mehrfachbestimmungen (2 bis 3 fach)
- laufende Kontrolle der Datenqualität (z.B. mit Korrelationen zwischen Bodenparametern)
- Wiederholung von Extraktion und/oder Messung bei ungenügender Datenqualität

und iii) Bodendaten der Datenquelle 5 CH WSL konnten bereits mehrmals erfolgreich in internationalen ISI-Zeitschriften publiziert werden (z.B. Walthert et al., 2010; Walthert et al., 2013; Nussbaum et al., 2014), was darauf hindeutet, dass diesen Bodendaten vertraut wird. Anschliessend werden die Resultate der Datenkontrolle für jeden geprüften Parameter dokumentiert. Die Methoden, welche zur Erfassung der einzelnen Parameter angewandt wurden, werden im Bericht nur knapp beschrieben, wenn möglich werden jedoch die entsprechenden Literaturquellen angegeben.

Bis zum Kapitel 6 „Physikalische Bodeneigenschaften“ wurden alle Daten-Mutationen in der Datenbank mit „true“ oder „false“ in Zusatzspalten dokumentiert, die Mutationen weiter hinten im
Bericht wurden mit Zahncodes in Zusatzspalten der Datenbank gekennzeichnet. Es wurden in der Regel keine Daten aus der Datenbank gelöscht, sondern nur Codes vergeben. Diese Codes lassen sich bei Datenbank-Abfragen als Filter verwenden. Durch Anwendung dieser Filter konnte in PMSoil ein um viele Fehler bereinigter Datensatz für die digitale Bodenkartierung bereitgestellt werden. Im Anhang gibt Tabelle A1 einen Überblick über die im Rahmen der Datenkontrolle vorgenommenen Korrekturen.

2. Beprobungsstandorte

2.1 Mehrfach vorhandene Standorte

2.2 Standorte in Gewässern und auf Fels

Tabelle 2: Bodenbedeckungsobjekte des topographischen Landschaftsmodells SwissTLM3D.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fels</td>
<td>Mehr als 80 % der Fläche mit anstehendem Fels. In der Regel vegetationslos.</td>
</tr>
<tr>
<td>Fließgewässer</td>
<td>Bäche, Flüsse, Kanäle (Momentaufnahme zum Zeitpunkt des Bildfluges).</td>
</tr>
<tr>
<td>Gebüschwald</td>
<td>Eine dicht bewaldete Fläche, die mit gleich- oder verschiedenartigen Sträuchern (hölzerne Pflanzen, welche sich bereits am Boden verästeln) bestockt ist.</td>
</tr>
<tr>
<td>Lockergestein</td>
<td>Bedeckungsgrad > 20 % Geröll.</td>
</tr>
<tr>
<td>Gletscher</td>
<td>Überwiegend mit Eis oder ewigem Schnee bedeckte Flächen.</td>
</tr>
<tr>
<td>Stehende Gewässer</td>
<td>Dauernd oder periodisch bedeckte offene Wasserflächen, wie Seen, Stauseen, Teiche usw.</td>
</tr>
<tr>
<td>Feuchtgebiet</td>
<td>Ein Feuchtgebiet ist ein Gebiet, das im Übergangsbereich von trockenen zu dauerhaft feuchten Ökosystemen liegt. Der Begriff des Feuchtgebiets umfasst verschiedene Lebensraumtypen wie Sumpf, Moor, Bruchwald, Feuchtwiese, Aue oder Ried.</td>
</tr>
<tr>
<td>Wald</td>
<td>Eine bewaldete Fläche, die mit gleich- oder verschiedenartigen Bäumen dicht bestockt ist.</td>
</tr>
<tr>
<td>Wald offen</td>
<td>Eine wenig dicht bewaldete Fläche mit einer Bodenvegetation.</td>
</tr>
</tbody>
</table>

Es wurde geprüft, ob es Standorte in den drei unplausiblen Objekten Fels, Fließgewässer oder stehende Gewässer gibt. Von den insgesamt 15232 Standorten wurden 2877 mindestens einem der in Tabelle 2 aufgelisteten Objekte zugewiesen. Es zeigte sich, dass 30 Standorte fälschlicherweise in Gewässern liegen (Abb. 1). Diese 30 Standorte wurden in der Datenbank mit dem Prädikat „true“ gelabelt, alle anderen mit dem Prädikat „false“.

![Diagramm](image)

Abbildung 1: Mit SwissTLM3D zugeordnete Bodenbedeckung von allen Standorten (a), plausible und unplausible zugeordnete Standorte (b) und Anteil Gewässer und Fels der unplausiblen Standorten (c).

Sechs Standorte lagen gemäss SwissTLM3D auf Fels. Eine genauere Prüfung ergab, dass sich diese Standorte zwar in felsigem Gebiet befinden, dass dort aber Nischen für die Bildung tiefgründiger Böden vorhanden sind. Daher wurden die Koordinaten dieser Standorte als plausibel betrachtet.
2.3 Landnutzung an den Standorten

Hier wurde geprüft, wie gut die aus digitalen Karten stammende Landnutzungsinformation mit der im Feld erfassten Landnutzung übereinstimmt, wie verlässlich also die Angaben zur Landnutzung in den Karten sind. Diese Tests sollen zeigen, ob man an Profilorten, wo die Landnutzung nicht im Feld erfasst wurde, entsprechende Informationen aus Karten entnehmen kann.

2.3.1 Stichproben im Wald

Die Güte der Übereinstimmung zwischen Wald gemäss Waldmaske SilvaProtect (Bundesamt für Umwelt BAFU) und Wald gemäss Feldansprache wurde mit rund 1150 Stichproben der WSL und knapp 90 Stichproben im Kanton Bern getestet, die gemäss Feldansprache als Wald deklariert waren.

Abbildung 2: Übereinstimmung zwischen der Definition von Wald im Feld und jener durch SilvaProtect an Waldstichproben der WSL-Bodendatenbank (CH WSL) (a) und der Bodenkartierung im Kanton Bern (BE BOKA) (b).

2.3.2 Arealstatistik der Nicht-Wald Standorte

Abbildung 3: Übereinstimmung der Landnutzung nach Arealstatistik und nach Felderfassung (blau). Acker (a) permanentes Grasland (b) Spezialkulturen (c) und sonstiges (d).

Vor allem bei Acker (90 % Übereinstimmung) und bei permanentem Grasland (76 % Übereinstimmung) stimmte die Arealstatistik recht gut mit der Felderfassung überein, allerdings wurde nur zwischen vier Kategorien unterschieden. Fehlende Angaben zur Landnutzung können also im Projekt PMSoil mit befriedigender Qualität aus der Arealstatistik bezogen werden.

3. Bodenprofile

Dieser Abschnitt zeigt, in welchem Ausmass und in welcher Qualität wichtige, für die digitale Bodenkartierung benötigte Profilinformationen verfügbar sind. Zuerst wurde bei allen Bodenprofilen geprüft, ob die Aufschlusstiefe korrekt in der Datenbank vorhanden ist. Anschliessend wurde nach einer Methode gesucht, mit der sich die Gründigkeit, also die Mächtigkeit des Wurzelraumes, in den Bodenprofilen abschätzen lässt.

3.1 Aufschlusstiefe

Tabelle 3: Mengengerüst der vorhandenen Aufschlusstiefen (P: Profile, FMP: Flächenmischproben).

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Anzahl Aufschlusstiefe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>0</td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>155</td>
</tr>
<tr>
<td>3 ZH KABO_FMP</td>
<td>0</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>2405</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>1047</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>0</td>
</tr>
</tbody>
</table>

Bei den Datenquellen 2 ZH KABO und 5 CH WSL stimmten die Aufschlusstiefen vollständig mit den Untergrenzen überein. Bei 64 der 2405 Bodenprofile der Datenquelle 4 BE BOKA stimmte die Aufschlusstiefe jedoch nicht überein. Abbildung 4 zeigt die Verteilung der absoluten Differenzen.

Abbildung 4: Verteilung der absoluten Differenzen zwischen Aufschlusstiefe und Untergrenze des untersten Horizontes bei der Datenquelle 4 BE BOKA.

Wir wollten die Gründe für die Abweichungen bei den größten Ausreißern anhand von Angaben auf den Profilblättern ausfindig machen, aber leider waren zu den betroffenen Datensätzen keine Profilblätter vorhanden. Die Aufschlusstiefe wurde bei allen 64 Profilen an die Untergrenze des untersten Horizontes angepasst. Die korrigierten Aufschlusstiefen wurden in der Bodendatenbank aktualisiert jedoch nicht codiert.

3.2 Gründigkeit

Die Gründigkeit entspricht der Mächtigkeit des Wurzelraumes, unabhängig davon, ob tatsächlich Wurzeln vorhanden sind. Die Gründigkeit ist ein wichtiger Faktor bei der Quantifizierung der in einem Boden durch die Pflanzen erschliessbaren Wasser- und Nährstoffmenge. Wir gehen davon aus, dass der Wurzelraum nur dann nach unten begrenzt ist, wenn Fels oder starke Vernässung das Wurzelwachstum verhindern. Ob eine beobachtete Bodenvernässung das Wurzelwachstum vollständig unterbindet ist nicht einfach zu beurteilen. Hinweise auf wurzelfeindliche starke
Vernässung bzw. auf lang andauernde, anaerobe Bedingungen lassen sich aus den hydromorphen Merkmalen im Boden ableiten.

Wurzeln werden bei der Profilsansprache in der Regel nach genetischen Horizonten an der Profilwand erfasst, wobei die Anzahl der Wurzeln nach Stärkeklassen geschätzt wird. Die beobachtete Durchwurzelungstiefe entspricht der Untergrenze des untersten Horizontes, in dem Wurzeln festgestellt wurden.

3.2.1 Horizontbezeichnungen und Gründigkeit

Die meisten Pflanzenarten können stark vernässte, anaerobe Horizonte nicht durchwurzeln (Kutschera und Lichtenegger, 2002). Solche Horizonte werden konventionell mit dem Index r bezeichnet, wobei r für reduktiv steht. Weitere Indices, welche auf weniger starke Vernässung hinweisen sind cn, g und gg nach landwirtschaftlichem Klassierungssystem (Brunner et al., 1997). Entsprechende Horizontindices bzw. –Bezeichnungen nach dem WSL-Klassierungssystem für Waldböden (Walthert et al., 2004) sind Gr für permanent reduktive Horizonte und cn, Sd, Sw, Go und Go,r für weniger starke Vernässung. Wir gehen davon aus, dass nur reduktive Horizonte (mit dem Index r oder der Bezeichnung Gr) nicht durchwurzelbar sind, wohingegen die weniger stark vernässten Horizonte durchwurzelt werden können. In stark vernässten Böden mit limitiertem Tiefenwachstum der Wurzeln entspricht die Gründigkeit jeweils der Obergrenze des (obersten) reduktiven Horizontes.

In der Abbildung 5 ist der Zusammenhang zwischen Vernässungsgrad und beobachteter Durchwurzelungstiefe von 1888 Profilen der Datenquellen 4 BE BOKA und 5 CH WSL dargestellt. Diese Gegenüberstellung soll zeigen, ob i) die als reduktiv klassierten, also permanent anaeroben Horizonte, wirklich wurzelfrei sind und ob ii) solche stark vernässten Böden tatsächlich weniger tief durchwurzelt sind als schwach vernässte Böden. Es geht also darum, abzuklären, ob der an der Profilwand erfasste Vernässungsgrad eine plausible ökologische Konsequenz hat. Für diese Gegenüberstellung wurde pro Bodenprofil nur ein Horizont berücksichtigt, und zwar jener mit der stärksten Vernässung. In Bodenprofilen, welche mehrere gleich stark vernässte Horizonte haben, wurde jeweils nur der oberste berücksichtigt.

Abbildung 5: Beobachtete Durchwurzelungstiefe und Obergrenze von hydromorphen Horizonten in Profilen, welche einen (r)- und/oder einen (g)-Horizont enthalten (a), mit einem gg-Horizont (b) und mit einem r-Horizont (c).
Wie erwartet nimmt die beobachtete Durchwurzelungstiefe mit zunehmendem Vernässungsgrad ab, d.h. je höher ein hydromorpher Horizont im Boden reicht desto geringer ist die Durchwurzelungstiefe (Abb. 5). Diese Beziehung ist jedoch nicht sehr deutlich ausgeprägt, am straffsten ist sie in Böden mit einem permanent reduktiven r Horizont. Hier ist aber auch klar erkennbar, dass zahlreiche Profile im permanent reduktiven Horizont Wurzeln haben, was unplausibel ist. Dies deutet darauf hin, dass der Vernässungsgrad in diesen Profilen überschätzt wurde. Zusammenfassend wird festgehalten, dass die an der Profilwand erfasste Vernässung in den Horizonten nur ungenaue Rückschlüsse auf eine Limitierung des Wurzelraumes durch Sauerstoffarmut erlaubt.

3.2.2 Gründigkeit bei Felsuntergrund

Der Zusammenhang zwischen der beobachteten Durchwurzelungstiefe und der Tiefe des Felsuntergrundes konnte in 117 Bodenprofilen der Datenquellen 4 BE BOKA und 5 CH WSL untersucht werden (Abb. 6).

![Diagramm](image)

Abbildung 6: Beobachtete Durchwurzeltiefe und Obergrenze des Felsuntergrundes (R).

3.2.3 Vernässungs-Untertyp-R und Gründigkeit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>schwach grundnass</td>
<td>Obergrenze r 120 cm – 90 cm u.T. / Grundwasserspiegel selten unterhalb 120 cm u.T.</td>
</tr>
<tr>
<td>R2</td>
<td>mässig grundnass</td>
<td>Obergrenze r 90 cm – 60 cm u.T., Grundwasserspiegel selten unterhalb 90 cm u.T.</td>
</tr>
<tr>
<td>R3</td>
<td>stark grundnass</td>
<td>Obergrenze r 60 cm – 30 cm u.T., Grundwasserspiegel selten unterhalb 60 cm u.T.</td>
</tr>
<tr>
<td>R4</td>
<td>sehr stark grundnass</td>
<td>Obergrenze r 30 cm – 10 cm u.T., Grundwasserspiegel selten unterhalb 30 cm u.T.</td>
</tr>
<tr>
<td>R5</td>
<td>sumpfig</td>
<td>r oberhalb 10 cm u.T., Grundwasserspiegel selten unterhalb 10 cm u.T.</td>
</tr>
</tbody>
</table>

In Abbildung 7 wird geprüft, ob es in Böden, bei denen sowohl der Vernässungsgrad als auch die beobachtete Durchwurzelungstiefe bekannt ist (Tab. 5), einen Zusammenhang gibt zwischen der Gründigkeit abgeleitet aus dem Vernässungsgrad gemäss Tabelle 4 und der beobachteten Durchwurzelungstiefe. Es ist zu beachten, dass die Zuordnung der Profile zu den R-Untertypen durch jene Bodenkundler erfolgte, welche die Bodenprofile erfasst haben.

Tabelle 5: Bodenprofile mit Angaben zum Vernässungsgrad und zur beobachteten Durchwurzelungstiefe. Diese Daten waren nur für die Datenquellen 1, 4 und 5 verfügbar.

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode (Referenz)</th>
<th>Anzahl Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>Brunner et al., 1997, Kap. 5.2-3.</td>
<td>529</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>Brunner et al., 1997, Kap. 5.2-3.</td>
<td>636</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>Walthert et al., 2004</td>
<td>142</td>
</tr>
</tbody>
</table>
Wie erwartet nimmt die beobachtete mittlere Durchwurzelungstiefe mit zunehmender Bodenvernässung ab, dies gilt besonders von R4 nach R5. Vor allem bei starker Vernässung ist selbst die mittlere Durchwurzelungstiefe deutlich grösser als die mittlere Gründigkeit. In den Untertypen R1-R3 sind zudem zahlreiche Profile viel tiefer durchwurzelt als man aufgrund der Gründigkeit vermuten würde. Hier wurde die Vernässung bei der Profilansprache wohl deutlich überschätzt. Zusammenfassend wird festgehalten, dass die in R-Untertypen klassierte Vernässung nur ungenaue Rückschlüsse auf eine Limitierung des Wurzelaumes durch Sauerstoffarmut erlaubt. Viele Nassböden wurden offensichtlich als zu nass klassiert.
4. Horizonte

Hier ging es vorwiegend um die Überprüfung der Lage der Horizonte in den Profilen. Es wurde nach Lücken oder Überlappungen von Horizonten gesucht und getestet, ob die Summe der Horizontmächtigkeiten in den Bodenprofilen mit der Profiltiefe übereinstimmt.

4.1 Grenzen und Lücken/Überlappungen

In einem ersten Schritt wurde geprüft, ob die Horizonte plausible Ober- und Untergrenzen haben und ob es Lücken und/oder Überlappungen gibt. Dabei gab es folgende Anpassungen in der Datenbank:

- Bei 4 Horizonten der Datenquelle 2 ZH KABO war die Horizontobergrenze <= Horizontuntergrenze und wurde gelöscht.

4.2 Horizontmächtigkeit und Profiltiefe

Danach wurde für jedes Profil überprüft, ob die Summe der Horizontmächtigkeiten der Profiltiefe entspricht (Abb. 8).

Bei den beiden Profilen der Datenquelle 2 ZH KABO waren die Gründe fehlerhafte Horizontgrenzen.
Bei der Datenquelle 4 BE BOKA waren ausschliesslich Auflagehorizonte betroffen, bei denen die Fehler vom Import stammen. Folgende Änderungen wurden anschliessend in der Datenbank vorgenommen:

- Bei den beiden Profilen der Datenquelle 2 ZH KABO wurden die Horizontgrenzen angepasst.
- Die 63 Profile der Datenquelle 4 BE BOKA wurden durch erneutes Importieren korrigiert.
5. Proben

5.1 Probengrenzen
Hier wurde zunächst geprüft, ob die Probengrenzen plausibel sind. Die dabei entdeckten Fehler wurden wie folgt behoben:

- Bei 1 Probe der Datenquelle 2 ZH KABO mussten die Probengrenzen korrigiert werden.
- Bei 13 Proben der Datenquelle 4 BE BOKA wurden die Fehler durch erneuten Import korrigiert.

5.2 Proben und Horizonte
Für jede Probe wurde überprüft, ob sie ganz im entsprechenden Horizont enthalten ist. Die Abbildung 9 zeigt die Verteilung der unplausiblen Proben.

Abbildung 9: Proben, welche die Horizontgrenzen überlappen.

Bei den 697 Proben der Datenquelle 2 ZH KABO war der Grund für die Überlappungen zum einen, dass nach fixen Tiefenstufen beprobt wurde. Beim Grossteil der Daten ist das Verhältnis sehr klein, was auf geringe Überlappungen zurückzuführen ist. Bei den 54 Proben der Datenquelle 4 BE BOKA sind die Verhältnisse deutlich grösser. Diese grossen Überlappungen sind wiederum auf den fehlerhaften Import zurückzuführen. Es wurden folgende Änderungen in der Datenbank gemacht:
Bei allen 697 Proben (175 Bodenprofile) der Datenquelle 2 ZH KABO wurde die Verknüpfung mit den Horizonten aufgelöst.
Bei den 54 unplausiblen Proben der Datenquelle 4 BE BOKA wurde der Fehler mit erneutem Import behoben.

6. Physikalische Bodeneigenschaften

6.1 Skelettgehalt

6.1.1 Mengengerüst und Datenerfassungsmethoden

Die Methoden sind nicht attribuiert in der Datenbank vorhanden, d.h. es gibt keine methodischen Angaben zur Schätzung des Skelettgehaltes. Der geschätzte Skelettgehalt kommt in der Datenbank in zwei unterschiedlichen Formen vor: Zum einen wurde dieser in % im Bodenprofil geschätzt und in eine Kies- und in eine Stein-Fraktion aufgeteilt. Zum anderen wurden die Skelettgehalte in Klassen geschätzt (Tab. 6).

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Anzahl Horizonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>in % geschätzt (als Summe von Kies und Stein)</td>
<td>15041</td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>in % geschätzt (als Summe von Kies und Stein)</td>
<td>1046</td>
</tr>
<tr>
<td>3 ZH KABO_FMP</td>
<td>es sind keine Schätzwerte vorhanden</td>
<td>0</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>in % geschätzt (als Summe von Kies und Stein)</td>
<td>9368</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>in Klassen geschätzt</td>
<td>63</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>in Klassen geschätzt</td>
<td>5568</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>in Klassen geschätzt</td>
<td>0</td>
</tr>
</tbody>
</table>

Zunächst wurden die Skelettgehalte vergleichbar gemacht. Von den in Klassen geschätzten Skelettgehalten wurde jeweils die Klassenmitte berechnet. Bei den übrigen Horizonten wurde die Schätzung in % verwendet. Die vereinheitlichten Schätzwerte wurden in der Tabelle 08a_field_values im Attribut Notation mit dem Wert skeleton_harm gespeichert.
6.1.2 Skelettgehalt und Geologie im Kanton Zürich

Leider gibt es in unserem Datensatz keine Bodenproben aus stark skeletthaltigen geologischen Substraten wie etwa aus Kalksedimenten. In der Tiefe von 0 bis 30 cm beträgt der Median des Skelettgehaltes über alle geologischen Substrate hinweg weniger als 15 % (Abb. 10). Zudem variiert der Skelettgehalt zwischen den verschiedenen geologischen Substraten nur wenig. Beide Befunde sind erstaunlich. Die maximalen Skelettgehalte nehmen bei allen geologischen Substraten mit der Tiefe zu, was plausibel ist. Allerdings bleiben die Medianwerte der einzelnen Substrate mit zunehmender Tiefe nahezu konstant, was uns erstaunt. Insgesamt sind wir überrascht, dass so viele Böden relativ wenig Skelett enthalten. Es ist unklar, ob der Skelettgehalt in vielen Böden unterschätzt wurde.

Es wurden keine Schätzwerte des Skelettgehaltes in der Datenbank korrigiert.

6.2 Textur-Messwerte

Die Textur entspricht dem prozentualen Anteil der Korngrössenklassen Ton (< 2 𝜇m), Schluff (2 𝜇m - 50 𝜇m) und Sand (50 𝜇m - 2 mm) in einer Bodenprobe.

6.2.1 Mengengerüst und Datenerfassungsmethoden

Die Methoden sind attribuiert in der Datenbank vorhanden (Tab. 8).
Tabelle 8: Mengengerüst und Textur-Analysemethoden.

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Referenz</th>
<th>Anzahl Tonwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>Nicht vorhanden</td>
<td>-</td>
<td>219</td>
</tr>
<tr>
<td>1 ZH BOKA</td>
<td>Sedimentation; vgl. AC-Methode KO-2</td>
<td>ART-Archiv</td>
<td>4975</td>
</tr>
<tr>
<td>1 ZH BOKA</td>
<td>Sedimentation; vgl. Referenzmethode KOM</td>
<td>ELF, 1996</td>
<td>1144</td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>Sedimentation</td>
<td>ELF, 1996; Ribi, 2014</td>
<td>1013</td>
</tr>
<tr>
<td>3 ZH KABO_M</td>
<td>Sedimentation</td>
<td>ELF, 1996; Ribi, 2014</td>
<td>1320</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>Nicht vorhanden</td>
<td>-</td>
<td>803</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>Sedimentation; vgl. AC-Methode KO-2</td>
<td>ART-Archiv</td>
<td>1811</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>Sedimentation; vgl. Referenzmethode KOM</td>
<td>ELF, 1996</td>
<td>429</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>Sedimentation</td>
<td>Walthert et al., 2004, S. 702</td>
<td>5632</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>Sedimentation</td>
<td>Walthert et al., 2004, S. 702</td>
<td>176</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Referenz</th>
<th>Anzahl Schluffwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>Nicht vorhanden</td>
<td>-</td>
<td>219</td>
</tr>
<tr>
<td>1 ZH BOKA</td>
<td>Sedimentation; vgl. AC-Methode KO-2</td>
<td>ART-Archiv</td>
<td>4976</td>
</tr>
<tr>
<td>1 ZH BOKA</td>
<td>Sedimentation; vgl. Referenzmethode KOM</td>
<td>ELF, 1996</td>
<td>1149</td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>Sedimentation</td>
<td>ELF, 1996; Ribi, 2014</td>
<td>1013</td>
</tr>
<tr>
<td>3 ZH KABO_M</td>
<td>Sedimentation</td>
<td>ELF, 1996; Ribi, 2014</td>
<td>1320</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>Nicht vorhanden</td>
<td>-</td>
<td>785</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>Sedimentation; vgl. AC-Methode KO-2</td>
<td>ART-Archiv</td>
<td>1812</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>Sedimentation; vgl. Referenzmethode KOM</td>
<td>ELF, 1996</td>
<td>432</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>Sedimentation</td>
<td>Walthert et al., 2004, S. 702</td>
<td>5632</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>Sedimentation</td>
<td>Walthert et al., 2004, S. 702</td>
<td>176</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Sandwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>Berechnung</td>
<td>-</td>
</tr>
</tbody>
</table>

6.2.2 Erste Datensichtung und Datenbereinigung

Vor der graphischen Kontrolle der Texturdaten wurden die folgenden, offensichtlichen Fehler bei den Texturdaten in der Datenbank bereinigt und codiert:

Unbrauchbare Daten

- **Code 1** Die Proben hatten eine unplausible Summe an Sand, Schluff und Ton ($\geq 105\%$).
- **Code 2** Die Proben hatten eine unplausible Summe des Ton- und Schluffgehaltes ($> 100\%$).
- **Code 3** Bei den Proben waren nur Werte von einer der drei Korngrößenklassen vorhanden.
- **Code 4** Die Proben hatten eine unplausible Summe an Sand, Schluff und Ton ($\leq 95\%$).

Veränderte Daten

- **Code 1** Die Proben enthielten eine etwas zu große Summe der Texturwerte bis maximal 101.2 %. Hier wurde jeweils der Schluff Anteil reduziert.
- **Code 2** Die Proben enthielten eine etwas zu kleine Summe der Texturwerte bis minimal 99.99 %. Hier wurde jeweils der Schluff Anteil erhöht.
- **Code 3** Bei den Proben wurde der Sandanteil angepasst, so dass die Summe 100 % ergab.
• **Code 4** Bei den Proben machte der Humusgehalt einen Teil der Summe von 100 % aus. Er wurde prozentual auf Ton, Sand und Schluff verteilt. Hier war der Humusanteil \(\leq 10 \% \).

• **Code 5** Bei den Proben machte der Humusgehalt einen Teil der Summe von 100 % aus. Er wurde prozentual auf Ton, Sand und Schluff verteilt. Hier war der Humusanteil \(> 10 \% \).

6.2.3 Werteveerteilungen in Boxplots

Nach der im vorangehenden Kapitel beschriebenen Bereinigung der Texturdaten wurden die Werteveerteilungen der Korngrössenklassen für jede Datenquelle untersucht (Abb. 11).

Abbildung 11: Messwert-Verteilungen der 3 Korngrössenklassen.

Im Vergleich zur Datenquelle 5 CH WSL scheinen bei allen Datenquellen sowohl die Mediane als auch die Extremwerte bei allen Kornungsklassen plausibel zu sein. Aufgrund der Werteveerteilungen in den Boxplots drängten sich keine weiteren Korrekturen in der Datenbank auf.
6.2.4 Werteverteilungen in Texturdreiecken

Als weiterer Plausibilisierungsschritt wurde die Textur in Körnungsdreiecken visualisiert und beurteilt (Abb. 12).

Bei 4 BE BOKA und abgeschwächt auch bei 1 ZH BOKA fällt auf, dass viele Datenpunkte nahe beim Nullpunkt (bei 100 % Sand) liegen. Es wurde vermutet, dass dies im Zusammenhang mit einem erhöhten Humusgehalt steht. Daher wurden zwei zusätzliche Streudiagramme erstellt, eines für
Proben mit einem Humusgehalt von weniger als 10 % und eines für stark humose Proben mit mehr als 10 % Humusgehalt (Abb. 13).

Abbildung 13: Texturdreiecke für 1 ZH BOKA und 4 BE BOKA aufgeteilt nach Humusgehalt.

Unbrauchbare Daten

- **Code 5** Die Proben enthielten 100 % Sand, wobei es sich meistens um Torfböden handelt.
- **Code 6** Gemäss Messwert lag der Schluff Anteil bei diesen Proben bei 0 % und der Tonanteil zwischen 10 und 50 %. Gemäss Feldprotokoll enthielten die Proben Schluff.
- **Code 7** Zwei Proben enthielten einen unplausibel hohen Schluff Anteil von über 90 %.

6.2.5 Textur in Abhängigkeit des Humusgehaltes

Nach Ausschluss der unplausiblen Datensätze (Codes 5-7 im voranstehenden Kapitel) sollten die Texturdaten unter Berücksichtigung des Humusgehaltes noch etwas vertieft untersucht werden. Es wurde geprüft ob und wie sich die Anordnung der Proben im Texturdreieck in Abhängigkeit des Humusgehaltes verändert. Hierfür wurden die Proben in Bezug auf ihren Humusgehalt in drei Klassen eingeteilt (Abb. 14-16).
Abbildung 14: Texturdreiecke von Proben mit einem Humusgehalt < 10 \%.
Humusgehalt $\geq 10\%$ und $\leq 30\%$

Abbildung 15: Texturdreiecke von Proben mit einem Humusgehalt von 10-30 %
Der Schwerpunkt der Proben verschiebt sich mit zunehmendem Humusgehalt bei allen Datenquellen ausser bei 5 CH WSL in Richtung der Diagonale, welche 0 % Sand repräsentiert. Absolut sandfreie Proben auf der Diagonalen bewerteten wir als verdächtig, was in der Datenbank wie folgt dokumentiert wurde:

Verdächtige Daten

- **Code 8** alle Proben der Datenquellen 1 ZH BOKA und 4 BE BOKA mit einem Humusgehalt > 30 % und gleichzeitig mit einem Sandgehalt von 0 %.

Bei den humusreichen Proben der Datenquelle 4 BE BOKA fällt zudem auf, dass relativ viele Proben mit einem Tongehalt von mehr als 60 % vorkommen (Abb. 15-16). Es wurde nicht abgeklärt, ob es sich dabei um fehlerhafte Daten handelt oder ob dies auf spezielle Bodenverhältnisse (z.B. grosses Moos) zurückzuführen ist.
6.3 Textur-Schätzwerte

Zuerst wurden die Texturdaten visuell auf Plausibilität geprüft und die auffälligsten Fehler/Ausreisser korrigiert. Darauf wurden mit diesen bereinigten Schätzwerten die Mess- und Schätzwerte verglichen.

6.3.1 Mengengerüst und Datenerfassungsmethode

Textur-Schätzwerte sind nur für die Datenquellen 1, 2, 4 und 5 vorhanden (Tab. 9). Die Textur wurde im Feld mittels Fühlprobe bestimmt (Brunner et al., 1997).

| Tabelle 9: Mengengerüst der Textur-Schätzwerte. |
|---------------|----------------|----------------|
| Datenquelle | Anzahl Werte (Ton) | Anzahl Werte (Schluff) | Anzahl Werte (Sand) |
| 1 ZH BOKA | 13450 | 13461 | 0 |
| 2 ZH KABO_P | 1146 | 1734 | 1713 |
| 3 ZH KABO_M | 0 | 0 | 0 |
| 4 BE BOKA | 9374 | 9317 | 9278 |
| 5 CH WSL | 5621 | 5621 | 5621 |
| 7 ZH WSL | 0 | 0 | 0 |

6.3.2 Erste Datensichtung und Datenbereinigung

Zuerst wurde geprüft, ob die Summe der drei Korngrößenklassen in jeder Probe 100 % ergibt. Danach wurde abgeklärt, ob es Horizonte mit mehreren Schätzwerten pro Korngrößenklasse (Ton, Schluff oder Sand) gibt. Diesbezügliche Fehler in der Datenbank wurden wie folgt bereinigt:

Unbrauchbare Daten

- **Code 10** Bei diesen Horizonten sind nur Schätzwerte von einer der drei Korngrößenklassen vorhanden.
- **Code 11** Bei diesen Horizonten beträgt die Summe von Ton und Schluff mehr als 100 %.
- **Code 12** Bei diesen Horizonten beträgt die Summe der drei Korngrößenklassen entweder mehr als 105 % oder weniger als 95 %.

Veränderte Daten

- **Code 7** Bei diesen Horizonten wurde der Sandanteil in Ergänzung zu 100 % berechnet.
- **Code 8** Bei diesen Horizonten wurde der Tonanteil in Ergänzung zu 100 % berechnet.
- **Code 9** Bei diesen Horizonten wurde der Schluffanteil in Ergänzung zu 100 % berechnet.
6.3.3 Werteverteilungen in Boxplots

Nach Bereinigung der Datenbank (Codes 7-12 im obigen Kapitel 6.3.2) wurden die Werteveverteilungen der Korngrössenklassen für jede Datenquelle untersucht (Abb. 17-19).

Abbildung 17: Schätzwert-Verteilungen von Ton.

6.3.4 Werteverteilungen in Texturdreiecken

Wie bei den Textur-Messwerten wurden auch die Textur-Schätzwerte in Texturdreiecken visualisiert und untersucht (Abb. 20).

Abbildung 20: Texturdreiecke der Schätzwerte.

Da sich die Datenpunkte der vier Datenquellen in hohem Masse überlappen (Abb. 20), bewerten wir die Plausibilität der Schätzwerte generell als gut. Alle vier Datenquellen haben eine Probenhäufung bei 10-30 % Tongehalt und bei 20-40 % Schluffgehalt. Die Datenquellen 1 ZH BOKA und 4 BE BOKA haben im Gegensatz zu den beiden anderen Datenquellen einige Proben, die ziemlich tonreich (20-40 %) sind und gleichzeitig nahezu keinen Schluff enthalten (Abb. 20). Diese Kombination ist unplausibel. Die 10 Texturklassen der Datenquelle 5 CH WSL decken nur den häufig vorkommenden mittleren Bereich des Texturdreiecks ab. Extrem sandige und extrem schluffige Böden können damit nicht abgebildet werden.

6.3.5 Vergleich Mess- und Schätzwerte

Für diesen Vergleich wurden alle Proben der Datenquellen 1, 4 und 5 verwendet, bei denen die Textur sowohl als Mess- als auch als Schätzwert verfügbar war. Dabei wurden nur die in den vorangehenden Kapiteln bereinigten Mess- und Schätzwerte verwendet und anhand von Streudiagrammen verglichen (Abb. 21).

6.4 Bodendichte

7. Chemische Messwerte

7.1 Säuregrad (pH, CEC(H⁺) und CEC(Al))

7.1.1 Wertebereiche/-verteilungen

pH-Wert

Analysemethoden: Bei 1 ZH BOKA wurde ein Teil der Proben mit der CaCl₂-Methode gemessen (n=5135) und ein Teil mit der H₂O-Methode (n=1119). Bei 2 ZH KABO und 3 ZH KABO, sowie bei 5 CH WSL und 7 ZH WSL wurde nur die CaCl₂-Methode verwendet (Tab. 10). Bei 4 BE BOKA wurde ein Teil der Proben mit der CaCl₂-Methode gemessen (n=2607), ein Teil mit der H₂O-Methode (n=1061) und ein Teil mit beiden Methoden (n=283).
Tabelle 10: Angaben zur pH-Bestimmung.

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Agens</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>potentiometrisch</td>
<td>0.02 M CaCl₂</td>
<td>Jäggli et al., 1998, S. 176</td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>potentiometrisch</td>
<td>0.01 M CaCl₂</td>
<td>ELF, 1996; Ribi, 2008</td>
</tr>
<tr>
<td>3 ZH KABO_M</td>
<td>potentiometrisch</td>
<td>0.01 M CaCl₂</td>
<td>ELF, 1996; Ribi, 2008</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>potentiometrisch</td>
<td>0.02 M CaCl₂</td>
<td>Jäggli et al., 1998, S. 176</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>potentiometrisch</td>
<td>0.01 M CaCl₂</td>
<td>Walthert et al., 2004, S. 697</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>potentiometrisch</td>
<td>0.01 M CaCl₂</td>
<td>Walthert et al., 2004, S. 697</td>
</tr>
</tbody>
</table>

Waldböden (Datenquellen 5 und 7) sind im Median saurer als Landwirtschaftsböden (Abb. 22), was uns als plausibel erschien.

Mutation in Datenbank: Der Ausreisser wurde in der Datenbank korrigiert (ohne Codierung).

Azidität CEC(H⁺)

Die Methoden zur Bestimmung der H-Azidität sind in Tabelle 11 dokumentiert.

Tabelle 11: Angaben zur Bestimmung der austauschbaren H-Azidität.

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Agens</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>keine Daten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>Titration</td>
<td>0.1 M BaCl</td>
<td>Azi_H = Azi_tot – Azi_Al</td>
<td>FAC, 1989, 204 ff</td>
</tr>
<tr>
<td>3 ZH KABO_M</td>
<td>Titration</td>
<td>0.1 M BaCl</td>
<td>Azi_H = Azi_tot – Azi_Al</td>
<td>FAC, 1989, 204 ff</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>Titration</td>
<td>1 M KCl</td>
<td>Azi_H = Azi_tot – Azi_Al</td>
<td>Walthert et al., 2004, S. 697</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>Titration</td>
<td>1 M KCl</td>
<td>Azi_H = Azi_tot – Azi_Al</td>
<td>Walthert et al., 2004, S. 697</td>
</tr>
</tbody>
</table>

Abbildung 23: Darstellung der CEC(H⁺)-Wertebereiche und –Verteilungen der verschiedenen Datenquellen.

Abbildung 24: Darstellung der CEC(H⁺)-Wertebereiche und –Verteilungen der verschiedenen Datenquellen ohne die unplaublichen Werte bei 2 ZH KABO und ohne Datensatz 4 BE BOKA.
Azidität CEC(Al)

Die Methoden zur Bestimmung der Al-Azidität sind in Tabelle 12 dokumentiert.

Tabelle 12: Angaben zur Bestimmung der austauschbaren Al-Azidität.

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Agens</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>keine Daten</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>Titration</td>
<td>0.1 M BaCl</td>
<td>FAC, 1989, 204 ff</td>
<td></td>
</tr>
<tr>
<td>3 ZH KABO_M</td>
<td>Titration</td>
<td>0.1 M BaCl</td>
<td>FAC, 1989, 204 ff</td>
<td></td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>keine Daten</td>
<td>-</td>
<td>Es ist nur Gesamt-azidität verfügbar</td>
<td>-</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>Elementaranalyse</td>
<td>1 M NH₄Cl</td>
<td>-</td>
<td>Walthert et al., 2004, S. 697</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>Elementaranalyse</td>
<td>1 M NH₄Cl</td>
<td>-</td>
<td>Walthert et al., 2004, S. 697</td>
</tr>
</tbody>
</table>

Abbildung 26: Darstellung der CEC(Al)-Wertebereiche und –Verteilungen der verschiedenen Datenquellen ohne die unplausiblen Werte bei 2 ZH KABO.

7.1.2 Korrelationen zwischen pH und CEC(H⁺) sowie zwischen pH und CEC(Al)

pH und CEC(H⁺) - Datenquelle 2 ZH KABO

Analysemethode: siehe vorheriges Kapitel (Wertebereiche)

Aufgrund der Bodenbeprobung in drei Bahnen konnten/mussten die jeweils drei CEC(H⁺)-Messwerte aus demselben Bodenhorizont vorgängig hinsichtlich Plausibilität überprüft werden. Diese Prüfung zeigte, dass die dreifach vorhandenen CEC(H⁺)-Werte teilweise stark voneinander abwichen. Um das Mass der Streuung zu quantifizieren und damit eine Grundlage zur Ausreisser Beurteilung zu erhalten, wurde in allen Horizonten mit drei Messwerten jeweils der Variationskoeffizient von CEC(H⁺) berechnet. Das 75%-Quantil der Variationskoeffizienten aller Horizonte wurde als Grenzwert für die Ausreisser Definition gesetzt. Als Ausreisser wurden all jene Werte bezeichnet, welche zu einem Variationskoeffizienten von mehr als 58.9% in einem Horizont führten (entspricht dem 75 %

Beim pH-Wert war die Streuung in den drei beprobten Bahnen jeweils gering, daher wurden beim pH-Wert keine Ausreisser bestimmt.

Interpretationen zu den Daten: Von 5231 Proben hatten nach Ausschluss der CEC(H⁺)-Ausreisser (wie oben beschrieben) 1087 Proben sowohl einen Messwert für CEC(H⁺) als auch einen pH-Wert und konnten demnach verglichen werden. Abbildung 28 zeigt die Korrelation von CEC(H⁺) mit dem pH-Wert ohne Ausreisser. Im Vergleich zur Korrelation von pH und CEC(H⁺) ohne Ausschluss der Ausreisserproben (Abb. 27) ist die Korrelation nun ähnlich gut wie bei der Datenquellen 5 CH WSL (Abb. 34). Allerdings hat 2 ZH bei pH Werten unter 4.0 höhere CEC(H⁺)-Werte als 5 CH WSL. Vermutlich hat es bei 5 CH WSL im Gegensatz zu 2 ZH KABO viele saure aber humusarme Unterbodenhorizonte mit tiefem pH Wert aber relativ wenig austauschbaren Protonen.

Abbildung 27: Korrelation von CEC(H⁺) und pH (CaCl₂) bei 2 ZH KABO ohne Ausschluss von Ausreissern.

Abbildung 28: Korrelation von CEC(H⁺) und pH (CaCl₂) bei 2 ZH KABO ohne Ausreisser. Zur Definition von Ausreissern siehe Text.
pH und CEC(Al) - Datenquelle 2 ZH KABO

Analysemethoden: siehe vorheriges Kapitel (Wertebereiche)

Abbildung 29: Korrelation von CEC(Al) und pH (CaCl₂) bei 2 ZH KABO ohne Ausschluss von Ausreissern

pH und CEC(H⁺) - Datenquelle 3 ZH KABO

Analysemethoden: siehe vorheriges Kapitel (Wertebereiche)

Datenprüfung und Labeling von Ausreisern: Bei diesem Datensatz erfolgte die Bodenbeprobung nicht nach unterschiedlichen Bahnen. Somit mussten keine Variationskoeffizienten berechnet werden. Die CEC(H⁺)-Werte sehen plausibel aus und haben keine groben Ausreisser.

![Abbildung 31: Korrelation von CEC(H⁺) und pH (CaCl₂) bei 3 ZH KABO](image)

pH und CEC(Al) - Datenquelle 3 ZH KABO

Analysemethoden: siehe vorheriges Kapitel (Wertebereiche)

pH und CEC(H⁺) - Datenquelle 4 BE BOKA

Analysemethoden: siehe vorheriges Kapitel (Wertebereiche)
Datenprüfung und Interpretationen zu den Daten: Bei dieser Datenquelle sind keine Werte für CEC(Al) verfügbar, daher können nur die beiden Parameter pH-Wert und CEC(H⁺) verglichen werden. Von 3482 Proben hatten 404 einen Messwert von CEC(H⁺) und 2607 einen Messwert von pH (CaCl₂) und 1061 von pH (H₂O). Es wurden nur die Messwerte für pH (CaCl₂) ausgewertet, damit die Ergebnisse mit den anderen Datenquellen vergleichbar sind. Bei 181 Proben waren sowohl Werte für CEC(H⁺) als auch für pH (CaCl₂) für die Gegenüberstellung verfügbar (Abb. 33). Im Vergleich zur Datenquelle 5 CH WSL (Abb. 34) hat 4 BE BOKA über den gesamten pH-Bereich immer wieder sehr hohe CEC(H⁺)-Werte, insbesondere im pH-Bereich 6-7 sowie 3-4. Wie bereits im Kapitel 7.1.1 erwähnt, wurde bei 4 BE BOKA jeweils nur die Gesamtazidität gemessen, die Messwerte aber als CEC(H⁺) deklariert. Daher sind die CEC(H⁺)-Gehalte so hoch. Es wird empfohlen, CEC(H⁺) der Datenquelle 4 BE BOKA in PMSoil nicht zu verwenden.

pH und CEC(Al) - Datenquelle 4 BE BOKA

Bei diesem Datensatz gibt es keine Werte für CEC(Al).
pH und CEC(H⁺) sowie pH und CEC(Al) - Datenquelle 5 CH WSL

Analysemethoden: siehe vorheriges Kapitel (Wertebereiche)

Datenprüfung und Labeling von Ausreissern: Dieser Datensatz wurde als Referenz zur Beurteilung der Datenqualität der anderen Datenquellen verwendet. Ausreisser im Datensatz wurden bereits im Verlaufe der verschiedenen Qualitätssicherungsmassnahmen an der WSL eruiert und durch geeignete Massnahmen (Nachextraktion und/oder Nachmessung) eliminiert.

\[\text{Abbildung 34: Korrelation von CEC(H⁺) und pH (CaCl}_2\text{) bei 5 CH WSL.} \]

\[\text{Abbildung 35: Korrelation von CEC(Al) und pH (CaCl}_2\text{) bei 5 CH WSL.} \]

pH und CEC(H⁺) sowie pH und CEC(Al) - Datenquelle 7 ZH WSL

Analysemethoden: siehe vorheriges Kapitel (Wertebereiche)

Datenprüfung und Interpretationen zu den Daten: Dieser Datensatz wurde mit den gleichen Methoden erfasst wie der Datensatz 5 CH WSL. Ausreisser im Datensatz wurden bereits im Verlaufe der verschiedenen Qualitätssicherungsmassnahmen an der WSL eruiert und durch geeignete Massnahmen (Nachextraktion und/oder Nachmessung) eliminiert.

Von 182 Proben hatten 139 einen Messwert für CEC(H⁺) und 182 einen pH-Messwert. Bei 139 Proben waren jeweils beide für die Korrelation benötigten Parameter verfügbar. Von 182 Proben hatten 180

Abbildung 36: Korrelation von CEC(H⁺) und pH bei 7 ZH WSL

Abbildung 37: Korrelation von CEC(Al) und pH bei 7 ZH WSL

Fazit zu Wertebereichen und Korrelationen von pH, CEC(H⁺) und CEC(Al)

Mit Ausnahme der Datenquelle 4 BE BOKA wird die Datenqualität von pH, CEC(H⁺) und CEC(Al) nach dem Ausschluss von Ausreissern als brauchbar für PMSoil bewertet. Vorhandene Abweichungen in den Wertebereichen der drei Bodenparameter zwischen den Datenquellen lassen sich summarisch erklären und erscheinen daher plausibel zu sein. Hingegen wird empfohlen, CEC(H⁺) der Datenquelle 4 BE BOKA in PMSoil nicht zu verwenden, da dieser Parameter erstens die Gesamtazidität (CEC(H⁺) und CEC(Al)) repräsentiert und zweitens viele unplaßibel hohe Werte im Datensatz vorhanden sind.
7.2 Kationenaustauschkapazität CECeff und Basensättigung

7.2.1 Wertebereiche/-verteilungen von CECeff

Die Methoden zur Bestimmung der effektiven Kationenaustauschkapazität (CECeff) sind in Tabelle 13 dokumentiert.

Tabelle 13: Angaben zur Bestimmung der effektiven Kationenaustauschkapazität.

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Agens</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>keine Daten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>Elementanalyse</td>
<td>0.1 M BaCl₂ / 1 M NH₄Cl</td>
<td>CEC lässt sich als bulk oder als Summe der austauschbaren Kationen bestimmen</td>
<td>FAC, 1989, S. 199 ff</td>
</tr>
<tr>
<td>3 ZH KABO_M</td>
<td>Elementanalyse</td>
<td>0.1 M BaCl₂ / 1 M NH₄Cl</td>
<td>CEC lässt sich als bulk oder als Summe der austauschbaren Kationen bestimmen</td>
<td>FAC, 1989, S. 199 ff</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>keine Daten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>Elementanalyse</td>
<td>1 M NH₄Cl / 1 M KCl</td>
<td>Summe der austauschbaren Kationen plus H-Azidität</td>
<td>Walthert et al., 2004, S. 698</td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>Elementanalyse</td>
<td>1 M NH₄Cl / 1 M KCl</td>
<td>Summe der austauschbaren Kationen plus H-Azidität</td>
<td>Walthert et al., 2004, S. 698</td>
</tr>
</tbody>
</table>

Datenprüfung: In der Abbildung 38 sind bei den Datenquellen 2 ZH KABO und 3 ZH KABO die als Ganzes gemessenen CECeff-Werte dargestellt, also nicht die aus den einzelnen Kationen berechnete CECeff. Die Mediane der vier dargestellten Datenquellen haben ähnliche Werte, wobei sie bei den Datenquellen 3 ZH KABO und 5 CH WSL einen größeren Wertebereich einnehmen.

Abbildung 38: Wertebereiche und -verteilungen von CEC(eff) der verschiedenen Datenquellen. Bei 2 ZH KABO und 3 ZH KABO wurde die CECeff als Ganzes (Bulk) gemessen.

Die in Abb. 39 dargestellte CECeff entspricht bei den Datenquellen 2 ZH KABO und 3 ZH KABO der Summe der einzeln gemessenen Kationen K, Ca, Mg, Na, Mn, Al und H. Bei den Datenquellen 5 CH
WSL und 7 ZH WSL sind die in den Abbildungen 38 und 39 dargestellten Daten identisch. Die Wertebereiche von 2 ZH KABO, 3 ZH KABO und 7 ZH WSL sind sehr ähnlich, vereinzelte Proben der Datenquelle 5 CH WSL erreichen jedoch 2-3 mal so grosse Werte.

Abbildung 39: Wertebereiche und -verteilungen von CEC(eff) der verschiedenen Datenquellen. Bei 2 ZH KABO und 3 ZH KABO entspricht die CECeff der Summe der einzeln gemessenen Kationen.

Interpretationen zu den Daten und Korrekturen: Die vereinzelt sehr hohen CECeff-Werte bei der Datenquelle 5 CH WSL lassen sich mit der Analysemethode erklären. Im Gegensatz zu Bariumchlorid wird bei der Extraktion der Proben mit Ammoniumchlorid leicht lösliches Karbonat aufgelöst, was die austauschbaren Ca-Gehalte und demnach auch die CECeff bei solchen Proben erhöht. Bei 7 ZH WSL sind offenbar keine Proben mit leicht löslichem Karbonat vorhanden. Die im Vergleich zu den Landwirtschaftsböden der Datenquellen 2 und 3 etwas grösseren 75%-Quantile in den Waldböden dürften durch zahlreiche Waldproben mit relativ hohem Humusgehalt verursacht sein. Bei den Datenquellen 2 und 3 gibt es wesentlich mehr Daten zur Ceff als Ganzes gemessen als zur CECeff als Summe der einzeln gemessenen Kationen. Aufgrund der beobachteten Wertebereiche und -verteilungen scheinen vorerst beide CECeff in PMSoil brauchbar zu sein. Aufgrund der Wertebereiche und -verteilungen liessen sich keine Ausreisserproben eruieren. In Kapitel 7.2.2 wird jedoch ersichtlich, dass nicht beide CECeff für die Berechnung der Basensättigung geeignet sind.

7.2.2 Korrelationen zwischen pH und Basensättigung

Datenquelle 2 ZH KABO

Analysemethoden: Die Basensättigung (BS) und die Summe der basischen Kationen (BC) sind in der Datenbank nicht vorhanden. Wo es die Datenlage erlaubte, berechneten wir BC als BC=CECeff-CEC(H⁺)-CEC(Al). Die Basensättigung berechneten wir als BS=(BC/CECeff)*100. Wo CECeff sowohl als Ganzes (bulk) als auch als Summe der einzeln gemessenen basischen Kationen verfügbar war, verwendeten wir für die Berechnung der Basensättigung die als bulk gemessene CECeff.

Datenprüfung und Korrekturen: Zuerst musste ein analytisch-rechnerisches Problem gelöst werden. Die Summe von CEC(H⁺) und CEC(Al) war bei zahlreichen Proben grösser als CECeff, welche als
Ganzes gemessen wurde. Daraus resultierten auch unplašible (negative) Werte für BC und für die Basensättigung (Abb. 40).

![Abbildung 40: Korrelation zwischen pH-Wert und Basensättigung, wobei die BS hier auf der als Ganzes gemessenen CECeff beruht.](image)

![Abbildung 41: Gegenüberstellung von CEC(eff) als Ganzes gemessen und der Summe der sauren Kationen CEC(H⁺) und CEC(Al).](image)
Aufgrund dieser methodischen Unschärfe wurde BC alternativ berechnet als Summe der Kationen Ca, K, Mg und Na und CECeff als Summe von Ca, K, Mg, Na, Mn, H⁺ und Al (Fe war nicht vorhanden in der Datenbank). Die in einem weiter oben beschriebenen Arbeitsschritt als Ausreisser gelabelten Werte von CEC(H⁺) und CEC(Al) wurden nicht in die Berechnungen einbezogen. Negative Werte bei den Kationen wurden durch 0 ersetzt und in der Datenbank gelabelt (Code 6). Anzahl der mit 0 ersetzten negativen Werte: Ca 9, K 19, Mg 37, Mn 62, Na 48. Mit den alternativ berechneten BC und CECeff konnte nun auch die Basensättigung bestimmt werden, ohne dass negative Werte oder Werte grösser als 100% resultierten (Abb. 42). Die alternativ berechneten CECeff, BC und BS wurden nicht in die Datenbank importiert, weil es sich dabei um abgeleitete Parameter handelt.

![Abbildung 42: Korrelation zwischen pH-Wert und Basensättigung, wobei die BS hier auf der berechneten CECeff und BC beruht.](image)

Interpretationen zu den Daten: Der in Abb. 42 dargestellte Punkteschwarm liegt weitestgehend innerhalb des Punkteschwarms der Referenzdatenquelle 5 CH WSL (Abb. 48). Daher wurden bei der Basensättigung der Datenquelle 2 ZH KABO keine Ausreisser deklariert.

Datenquelle 3 ZH KABO

Bei der Prüfung der Basensättigung der Datenquelle 3 ZH KABO wurde analog vorgegangen wie bei 2 ZH KABO. Nachfolgend werden nur Sachverhalte beschrieben, welche ausschliesslich für die Datenquelle 3 ZH KABO gelten.

Datenprüfung und Korrekturen: Basierend auf der als Ganzes gemessenen CECeff (Bulk) entstanden zahlreiche negative und damit unplausible Werte zur Basensättigung (Abb. 43).

![Abbildung 43: Korrelation zwischen pH-Wert und Basensättigung, wobei die BS hier auf der als Ganzes gemessenen CECeff beruht.](image)

Abbildung 44: Gegenüberstellung von CEC_{eff} als Ganzes gemessen und der Summe der sauren Kationen CEC(H⁺) und CEC(Al).

Abbildung 45: Gegenüberstellung von CEC_{eff} und der Summe der sauren Kationen CEC(H⁺) und CEC(Al) mit Proben der Referenzdatenquelle 5 CH WSL.

Aufgrund dieser methodischen Unschärfen wurde BC alternativ berechnet als Summe der Kationen Ca, K, Mg und Na und CEC_eff als Summe von Ca, K, Mg, Na, Mn, H⁺, Al und Fe. Die in einem weiter oben beschriebenen Arbeitsschritt als Ausreisser gelabelten Werte von CEC(H⁺) und CEC(Al) wurden nicht in die Berechnungen einbezogen. Negative Werte bei den Kationen wurden durch 0 ersetzt und in der Datenbank gelabelt (Code 6). Anzahl der mit 0 ersetzen negativen Werte: Ca 9, K 8, Mg 53, Fe 126, Mn 28, Na 489. Mit den alternativ berechneten BC und CEC_eff konnte nun auch die Basensättigung bestimmt werden, ohne dass negative Werte oder Werte größer als 100%
resultierten (Abb. 46). Die alternativ berechneten CECeff, BC und BS wurden nicht in die Datenbank importiert, weil es sich dabei um abgeleitete Parameter handelt.

Abbildung 46: Korrelation zwischen pH-Wert und Basensättigung, wobei die BS hier auf der berechneten CECeff und BC beruht.

Interpretationen zu den Daten: Der in Abb. 46 dargestellte Punkteschwarm liegt weitestgehend innerhalb des Punkteschwars der Referenzdatenquelle 5 CH WSL (Abb. 48). Daher wurden bei der Basensättigung der Datenquelle 3 ZH KABO keine Ausreisser deklariert. Auffällig ist jedoch, dass die Abnahme der Basensättigung zwischen pH 4.5 und pH 3.5 bei 3 ZH KABO etwas flacher verläuft als bei 5 CH WSL.

Datenquelle 4 BE BOKA

Analysemethoden: Es sind keine Angaben zur Bestimmungsmethode der Basensättigung verfügbar. Datenprüfung und Interpretationen zu den Daten: Von 3482 Proben in der Datenbank war bei 405 Proben ein Wert für die Basensättigung angegeben, bei 182 davon wurde auch ein pH-Wert gemessen. Die Korrelation von pH und Basensättigung zeigt, dass der Zusammenhang nicht optimal ist (Abb. 47). Im alkalischen Bereich gibt es zahlreiche Basensättigungswerte zwischen 50 und 80% und nur sehr wenige bei 100%, was nicht plausibel ist. Die Basensättigung der Datenquelle 4 BE BOKA sollte in PMSoil nur mit der nötigen Vorsicht verwendet werden.

Abbildung 47: Korrelation zwischen pH-Wert und Basensättigung.
Datenquelle 5 CH WSL

Analysemethoden: Berechnung der Basensättigung: BS=BC/CEC*100

Abbildung 48: Korrelation zwischen pH-Wert und Basensättigung aller Proben der Datenquelle 5 CH WSL.

Abbildung 49: Korrelation zwischen pH-Wert und Basensättigung der Proben mit Humusgehalt < 10%.
Datenquelle 7 ZH WSL

Analysemethoden: Berechnung der Basensättigung: BS=BC/CEC*100

Fazit CECeff und Basensättigung

Die Datenqualität der Parameter CECeff und Basensättigung wird mit Ausnahme von 4 BE BOKA bei allen Datenquellen als ausreichend für den Gebrauch in PMSoil bewertet.

Eine paarweise Gegenüberstellung der beiden CECeff, als bulk gemessen oder als Summe der einzelnen Kationen berechnet, fehlt in diesem Bericht. Dieser Vergleich könnte zeigen, wie stark die
beiden CECeff voneinander abweichen und ob bei der Datenquelle 3 ZH KABO die CECeff (bulk) verwendet werden kann, wenn die als Summe der einzelnen Kationen berechnete CECeff fehlt.

7.3 Stickstoff und organischer Kohlenstoff (SOC, Humus)

7.3.1 Wertebereiche/-verteilungen SOC

Die Methoden zur Bestimmung von Corg sind in Tabelle 14 dokumentiert.

Tabelle 14: Angaben zur Bestimmung des organischen Kohlenstoffgehaltes (Corg).

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Methode</th>
<th>Agens</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>Oxidation</td>
<td>Kaliumdichromat / Schwefelsäure</td>
<td>Methodencode: Corg</td>
<td>ART-Archiv; ELF, 1996</td>
</tr>
<tr>
<td>2 ZH KABO_P</td>
<td>Oxidation</td>
<td>Kaliumdichromat / Schwefelsäure</td>
<td>Methodencode: Corg</td>
<td>ELF, 1996</td>
</tr>
<tr>
<td>3 ZH KABO_M</td>
<td>Oxidation</td>
<td>Kaliumdichromat / Schwefelsäure</td>
<td>Methodencode: Corg</td>
<td>ELF, 1996</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>Oxidation</td>
<td>Kaliumdichromat / Schwefelsäure</td>
<td>Methodencode: Corg</td>
<td>ART-Archiv; ELF, 1996</td>
</tr>
<tr>
<td>5 CH WSL</td>
<td>Trockenverbr.</td>
<td>-</td>
<td>Karbonat wird mit rauchender</td>
<td>Walthert et al., 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salzsäure ausgetrieben</td>
<td></td>
</tr>
<tr>
<td>7 ZH WSL</td>
<td>Trockenverbr.</td>
<td>-</td>
<td>Karbonat wird mit rauchender</td>
<td>Walthert et al., 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salzsäure ausgetrieben</td>
<td></td>
</tr>
</tbody>
</table>

Datenprüfung, Interpretationen zu den Daten und Korrekturen: Bei 5 CH WSL waren die SOC-Gehalte in der Datenbank sehr hoch (Max=484) und es war keine Masseinheit angegeben. Bei so hohen Gehalten muss es sich um die Einheit g/kg handeln. Die SOC-Gehalte wurden folglich in der Datenbank durch 10 geteilt und in % angegeben.

Bei 1 ZH BOKA, 2 ZH KABO, 3 ZH KABO und 4 BE BOKA war in der Datenbank der Humusgehalt angegeben. Diese Werte wurden für die Darstellung der Boxplots (Abb. 52) zu SOC-Gehalten umgerechnet (SOC=Humusgehalt/1.72). Bei 2 ZH KABO und 3 ZH KABO waren zusätzlich zu den Humusgehalten teilweise auch die SOC-Gehalte in der Datenbank vorhanden. Die von uns berechneten SOC-Gehalte stimmen mit denjenigen in der Datenbank überein, was zeigt, dass unsere Umrechnung von Humusgehalt nach SOC korrekt ist.

Bei 1 ZH BOKA hatten 4 Proben einen SOC-Gehalt grösser als 50% und bei 4 BE BOKA waren 2 Werte grösser als 50%. Ein SOC-Gehalt grösser als 50 % ist nicht plausibel, da organische Substanz einen Kohlenstoffgehalt von maximal 50% hat. Diese sechs Proben mit zu hohem SOC-Gehalt wurden in der Datenbank markiert (Code 14) und in den Boxplots (Abb. 52) nicht dargestellt.
Mit Ausnahme von 2 ZH KABO haben die Datenquellen grundsätzlich recht ähnliche SOC-Werteverteilungen (Abb. 52). Bei 2 ZH KABO sind die SOC-Gehalte durchschnittlich rund dreimal kleiner als bei den übrigen Datenquellen. Es ist möglich, dass bei diesen Daten ein Umrechnungsfehler vorliegt, der z.B. beim Import der Daten in die Datenbank erfolgte. Es können auch Fehler beim Umrechnen von Humusgehalt in SOC und umgekehrt oder Fehler beim Umrechnen von Masseinheiten (z.B. g/kg in %) passiert sein. Das sind jedoch nur Vermutungen, möglicherweise sind die Gehalte wirklich so tief. Bei 5 CH WSL kann der relativ grosse Anteil an humusreichen Proben damit begründet werden, dass es sich bei diesem Probenkollektiv ausschliesslich um Waldböden handelt, die oft relativ humusreiche Oberböden haben.

An ausgesuchten Stichproben wurde untersucht, ob Proben mit hohen gemessenen SOC-Gehalten aus Horizonten stammen, die bei der Profilansprache im Feld ebenfalls als humusreich deklariert wurden. Hierfür wurden bei den Datenquellen 1 ZH BOKA, 2 ZH KABO, 3 ZH KABO und 4 BE BOKA einige Proben mit sehr grossen SOC-Gehalten überprüft (Tab. 15). In der Tabelle 15 sind auch jene Proben mit zu hohem Humusgehalt enthalten, das ist jedoch für den groben Vergleich zwischen Laborwert und Schätzwert im Feld nicht nachteilig. Bei den Datenquellen 1 ZH BOKA und 4 BE BOKA stammen alle Proben mit sehr hohen gemessenen Humusgehalten aus organischen Auflagen (Torf), was plausibel ist. Bei 2 ZH KABO stammen die humusreichsten Proben stets aus dem obersten Teil des Oberbodens, was plausibel ist. Hingegen ist es erstaunlich, dass bei dieser Datenquelle keine organischen Auflagen mit entsprechend hohem Humusgehalt in der Datenbank vorhanden sind. Bei 3 ZH KABO konnte kein Vergleich zwischen Labor und Feld gemacht werden, weil der Feldschätzwert fehlt.
Tabelle 15: Tiefe und Horizontbezeichnung von Proben mit hohem Humusgehalt aus verschiedenen Datenquellen.

<table>
<thead>
<tr>
<th>Datenquelle</th>
<th>Proben Nr.</th>
<th>Humusgehalt (%)</th>
<th>SOC-Gehalt (%)</th>
<th>Tiefe (cm)</th>
<th>Horizontbezeichnung (Feldansprache)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ZH BOKA</td>
<td>1_8582_UR179</td>
<td>1</td>
<td>92</td>
<td>0-15</td>
<td>Th</td>
</tr>
<tr>
<td></td>
<td>1_8782_WR084</td>
<td>4</td>
<td>90.1</td>
<td>55-65</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td>1_8582_UR179</td>
<td>3</td>
<td>89</td>
<td>40-55</td>
<td>Tgg</td>
</tr>
<tr>
<td></td>
<td>1_8284_RT004</td>
<td>2</td>
<td>88.3</td>
<td>30-50</td>
<td>T1f</td>
</tr>
<tr>
<td>2 ZH KABO</td>
<td>2_7270</td>
<td>14196</td>
<td>30.06</td>
<td>0-5</td>
<td>A1Eh</td>
</tr>
<tr>
<td></td>
<td>2_7270</td>
<td>14166</td>
<td>22.51</td>
<td>0-5</td>
<td>A1hE</td>
</tr>
<tr>
<td></td>
<td>2_7270</td>
<td>14141</td>
<td>19.7</td>
<td>0-8</td>
<td>A1E,h</td>
</tr>
<tr>
<td></td>
<td>2_8612</td>
<td>27045</td>
<td>16.63</td>
<td>0-4</td>
<td>E Ah1</td>
</tr>
<tr>
<td>3 ZH KABO</td>
<td>3_6131</td>
<td>7088</td>
<td>85.9</td>
<td>40-60</td>
<td>Keine Info</td>
</tr>
<tr>
<td></td>
<td>3_6131</td>
<td>7461</td>
<td>82.8</td>
<td>40-60</td>
<td>Keine Info</td>
</tr>
<tr>
<td></td>
<td>3_6131</td>
<td>7087</td>
<td>75</td>
<td>0-20</td>
<td>Keine Info</td>
</tr>
<tr>
<td></td>
<td>3_6131</td>
<td>7460</td>
<td>73.8</td>
<td>0-20</td>
<td>Keine Info</td>
</tr>
<tr>
<td></td>
<td>3_7957</td>
<td>26214</td>
<td>41.3</td>
<td>0-20</td>
<td>Keine Info</td>
</tr>
<tr>
<td>4 BE BOKA</td>
<td>4_35-In-081</td>
<td>3</td>
<td>93.3</td>
<td>50-200</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td>4_53-Bb-018</td>
<td>3</td>
<td>86.8</td>
<td>40-140</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td>4_53-Bb-018</td>
<td>2</td>
<td>83.1</td>
<td>20-40</td>
<td>Tf,(r)</td>
</tr>
<tr>
<td></td>
<td>4_26-In-034</td>
<td>4</td>
<td>82.4</td>
<td>97-120</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td>4_35-In-076</td>
<td>5</td>
<td>82.3</td>
<td>110-130</td>
<td>Tf,r</td>
</tr>
</tbody>
</table>

Fazit SOC-Gehalte

Die Güte der SOC-Messwerte konnte nicht abschließend beurteilt werden, weil hierfür wichtige Vergleichsdaten fehlen. Von einem Gebrauch der SOC-Daten in PMSoil wird aber trotzdem nicht abgeraten.
7.4 Vergabe von Codes bei der Harmonisierung chemischer Bodendaten

Anschliessend sind als Überblick alle bei der Kontrolle der chemischen Daten vergebenen und in der Datenbank eingetragenen Codes aufgelistet:

7.4.1 Veränderte Daten

- **Code 6** Die Gehalte der Parameter CEC_Al und CEC_H waren bei den betroffenen Proben negativ und wurden in der DB auf Null gesetzt.

7.4.2 Unbrauchbare Daten

- **Code 13** Diese Messwerte verursachten einen zu hohen Variationskoeffizient beim Vergleich dreier Messwerte von Proben gleicher Tiefe aus drei Bahnen eines Bodenprofils (sie wurden als Ausreisser deklariert).
- **Code 14** Diese SOC-Messwerte waren grösser als 50 % und demnach unplausibel.
- **Code 15** Der Messwert entspricht der totalen Azidität (H + Al) und nicht der H-Azidität, wie fälschlicherweise in der DB vermerkt war.
8. Literatur

FAC, 1989: Methoden für Bodenuntersuchungen. Schriftenreihe FAC Nr. 5 (ISSN-154X).

Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene. Bern-Liebefeld. 266 S.

Papritz et al., 2016: Schlussbericht PMSoil.

9. Anhang

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Anzahl total</th>
<th>Anzahl kontrolliert</th>
<th>Anzahl Codierte Fehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standorte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fälschlicherweise in Gewässer liegend</td>
<td>16077</td>
<td>15232</td>
<td>30</td>
</tr>
<tr>
<td>Profile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plausibilität von Vernässungsgrad und Durchwurzelungstiefe</td>
<td>7701</td>
<td>1307</td>
<td>keine Codierung</td>
</tr>
<tr>
<td>Horizonte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Überlappung von Probe und Horizont</td>
<td>41443</td>
<td>41443</td>
<td>765</td>
</tr>
<tr>
<td>Proben-Physik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textur Messwerte</td>
<td>16500</td>
<td>16500</td>
<td>768</td>
</tr>
<tr>
<td>Textur Schätzwerte</td>
<td>29587</td>
<td>29587</td>
<td>*224</td>
</tr>
<tr>
<td>Vergleich Mess- und Schätzwerte</td>
<td>10448</td>
<td>10448</td>
<td>keine Codierung</td>
</tr>
<tr>
<td>Proben-Chemie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>28945</td>
<td>28945</td>
<td>41</td>
</tr>
<tr>
<td>CEC(H)</td>
<td>9970</td>
<td>9970</td>
<td>333</td>
</tr>
<tr>
<td>CEC(Al)</td>
<td>9623</td>
<td>9623</td>
<td>510</td>
</tr>
<tr>
<td>CEC(eff) (Messung einzelner Kationen)</td>
<td>9393</td>
<td>9393</td>
<td>**640</td>
</tr>
<tr>
<td>CECb(eff) (Messung als bulk CEC)</td>
<td>11364</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Corg</td>
<td>20503</td>
<td>20503</td>
<td>6</td>
</tr>
</tbody>
</table>

* Code 9-12 (unbrauchbare Daten)
** Codierung von negativen Gehalten bei Ca, Mg, K, Na, Fe und Mn