Conference Poster

PCE-based imprecise Sobol’ indices

Author(s):
Schöbi, Roland; Sudret, Bruno

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010802600

Rights / License:
In Copyright - Non-Commercial Use Permitted
Problem Statement & Context

A computational model is defined as a mapping:

\[x \in \mathbb{D} \subseteq \mathbb{R}^N \rightarrow y = M(x) \in \mathbb{R} \]

- \(x \) is modelled by an imprecise random vector \(X \), which accounts for both aleatory uncertainty (natural variability) and epistemic uncertainty (lack of knowledge).
- The elements of \(X \) are assumed statistically independent.
- The computational model is considered as a black-box.

Goal: Sensitivity analysis – estimate the influence of each component \(X_i \in X \) on the random response \(Y = M(X) \).

PCE-based Sobol' Indices

Considering a **probabilistic** input vector \(X \), then a Polynomial Chaos Expansion (PCE) meta-model surrogates \(M \):

\[Y = M(X) \approx \sum_{\alpha \in \mathcal{A}} a_{\alpha} \psi_{\alpha}(X) \]

- \(\psi_{\alpha}(X) \): multivariate orthonormal polynomials with respect to \(X \).
- \(a_{\alpha} \): coefficients of the polynomials.
- \(\mathcal{A} \): set of \(\alpha \) indices determined by an appropriate truncation scheme.

Sparse PCE: obtained with least-angle regression (LARS).

Then, PCE-based Sobol’ indices read:

\[S_{\alpha}(P) = \frac{\sum_{\alpha_{\mathcal{A}}} a_{\alpha}^2 / \sum_{\alpha_{\mathcal{A}}} a_{\alpha}^2}{\sum_{\alpha \in \mathcal{A}} a_{\alpha}} \]

- \(\mathcal{I}_{\alpha_{\mathcal{A}}} = \{ \alpha \in \mathcal{A} : \alpha_k > 0 \text{ for all } k \in \{1, \ldots, i\}, \alpha_k = 0 \text{ otherwise} \} \)
- Postprocessing of PCE coefficients \(\rightarrow \) cheap.
- Variance decomposition of probabilistic variability.

⇒ Extension to imprecise probabilities?

Augmented PCE

Definition: Augmented input vector \(V = (C, \Theta) \) with \(C_i = F_{X_i}(X_i, \Theta_i) \) and hence \(C_i \sim \mathcal{U}(0,1) \). Then:

\[W = M(F_X(C, \Theta)) \quad \text{def} \quad M^{aug}(V) \]

Consider \(\Theta \), as uniform distributions, PCE meta-model for \(W \) as a function of \(V \):

\[W \approx M^{PCE}(V) = \sum_{\alpha \in \mathcal{A}} a_{\alpha} \psi_{\alpha}(V) \]

where \(\psi_{\alpha}(V) \) are multivariate orthonormal polynomials with respect to \(V \).

PCE-based Imprecise Sobol’ Indices

Reordering to a PCE in terms of \(C \) (aleatory uncertainty):

\[W(\Theta) = \sum_{\alpha \in \mathcal{A}} a_{\alpha} \psi_{\alpha}(C) \]

where \(a_{\alpha} \) is a combination of \(a_{\alpha} \) and \(\psi_{\alpha}(\Theta) \). Then, bounds of the Sobol’ indices:

\[S_{\alpha}(P) = \min_{\Theta_{\mathcal{A}}} \frac{\sum_{\alpha_{\mathcal{A}}} a_{\alpha}^2 / \sum_{\alpha_{\mathcal{A}}} a_{\alpha}^2}{\sum_{\alpha \in \mathcal{A}} a_{\alpha}} \]

\[S_{\alpha}(P) = \max_{\Theta_{\mathcal{A}}} \frac{\sum_{\alpha_{\mathcal{A}}} a_{\alpha}^2 / \sum_{\alpha_{\mathcal{A}}} a_{\alpha}^2}{\sum_{\alpha \in \mathcal{A}} a_{\alpha}} \]

⇒ Postprocessing of augmented PCE ⇒ cheap optimizations.

Parametric P-box

Definition: CDF \(F_{X_i} \) (aleatory uncertainty) with interval-valued distribution parameters \(\Theta \) (epistemic uncertainty).

e.g. an imprecise Gaussian variable

\[X \sim \mathcal{N}(\mu_x, \sigma_x), [\mu_x, \sigma_x] \]

- \(\Theta = \{\mu_x, \sigma_x\} \)

Example: Simply Supported Truss

Problem: assess deflection \(u(x) \) of truss (Hurtado, 2013):

- Loads \(P_i \), \(i = 1, \ldots, 7 \) independent.
- \(\mu P_i \in [55, 100] \text{ kN}, \sigma P_i \in [13, 17] \text{ kN} \).

Augmented PCE: \(N = 100 \) LHS samples.

Results:

- Computation of first order indices
- High accuracy in estimates of Sobol’ indices

Conclusions:

- The augmented input space allows for a distinction between aleatory and epistemic uncertainty in \(X \).
- **Imprecise Sobol’ indices** allow for a distinction between aleatory and epistemic uncertainty in sensitivity analysis.
- **Augmented PCE** makes sensitivity analysis tractable for expensive-to-evaluate models with random input described by parametric p-boxes.

Imprecise Sobol’ Indices

Idea: Separation of sources of uncertainty within Sobol’ indices:

- Aleatory uncertainty ⇒ value of conventional Sobol’ indices
- Epistemic uncertainty ⇒ interval-valued indices