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„Psychical continuity is nothing but the preservation of form in the flux of metabolic 

changes taking place in a sentient organism“ 

 

Edward Douglas Fawcett (1866-1960) 
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Abstract 

Metabolism is an essential process for all living creatures. It describes the chemical 

conversion of consumed nutrients into biomass precursors, redox equivalents and 

energy, and the release of waste products. The metabolic potential of each cell is 

represented by a network of metabolites connected via reactions catalyzed by 

enzymes encoded in its genome. Living cells adjust their metabolic reaction rates, 

known as fluxes, in response to the external conditions, internal status and cellular 

requirements. Hence, metabolic fluxes reflect actual cellular behavior, and their 

assessment is crucial for understanding and controlling metabolic processes of 

biotechnological and biomedical relevance.  

Metabolic fluxes cannot be measured directly, and have to be indirectly 

inferred from measurable quantities, e.g. gene expression, protein abundance, or 

temporal profiles of metabolite concentration changes. The most explicit experimental 

technique for flux elucidation are stable isotope tracing experiments, highly 

informative when alternative reactions lead to distinct labeling patterns in metabolic 

intermediates. These labeling patterns are detectable by nuclear magnetic resonance 

spectroscopy or mass spectrometry, and have to be interpreted either manually, with 

analytic equations, or incorporated into mathematical models in order to retrieve 

information on the underlying metabolic fluxes. 

Existing flux analysis methods are divided into global 13C metabolic flux 

analysis, which is based on iterative fitting of flux distributions to the labeling data; 

and local analysis based on calculating flux ratios from labeling data with ad hoc 

analytic equations. The former is generally applicable, but it requires comprehensive 

measurements, provides multiple equally plausible flux solutions and is 

computationally costly. The latter, on the contrary, is rapid and easy to apply, 

provides unique relative flux estimates, but is limited to few nodes and experimental 

conditions. Therefore, there is a demand for a fast, robust and generally applicable 

method that is scalable to large datasets, conceivably obtained from parallel 

experiments. 

In this work, we present SUMOFLUX, a conceptually novel generalized 

method for targeted 13C metabolic flux ratio analysis. This method exploits machine 

learning to predict flux ratios of interest from measurable data, using an in silico 
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training dataset generated with surrogate modelling. SUMOFLUX is applicable to 

virtually any type of network, substrate and measured data that can be simulated; and 

the actual estimation is very rapid once the flux ratio predictor is built. In Chapter 2, 

we developed the SUMOFLUX workflow, performed a proof-of-principle experiment 

to resolve key flux ratios in central carbon metabolism of Escherichia coli, and 

demonstrated that SUMOFLUX estimates were in good agreement with results 

obtained with both local and global 13C flux analysis methods. Additionally, we 

illustrated the scalability and ease of experimental design with SUMOFLUX on a 

cohort of 121 Bacillus subtilis transcription factor mutants.  

A remarkable advantage of the targeted approach is its applicability in 

complex systems even in case of poorly determined networks and little amount of 

data. This benefit became especially apparent in Chapter 3, where we investigated 

amino acid metabolism in mycobacteria in defined media and in the infection setup 

with macrophage-like THP-1 cells. By formulating specific flux ratios characterizing 

amino acid utilization, we classified amino acids by their role for central metabolism 

in Mycobacterium smegmatis and Mycobacterium tuberculosis growing in composite 

media. Investigation of M. tuberculosis behavior in the complex infection setup, 

where inter-species and media exchange fluxes are unknown, was possible through 

extensive simulations of feasible flux distributions in the phagosome-bacterial 

network. It revealed that during infection, biosynthesis of several amino acids 

decreased compared to bacterial growth in rich media. This implies that in the scarce 

nutritional conditions inside the phagosome, the pathogen is forced to utilize any 

nutrient it encounters. These results underline the adaptability of mycobacterial 

metabolism and partially explain recurrent failures of multiple drug treatments.  

We further exploited the speed and flexibility of SUMOFLUX in Chapter 4, 

coupling it with rapid labeling data acquisition by untargeted high-throughput 

metabolomics platform FIA-TOF (flow injection – time of flight), that enabled to 

perform several hundred flux analyses per day. Substantial gain in speed came with 

challenges of missing and overlapping isotopologue data, which we partially solved 

by adopting rigorous filtering and quality check procedures. We validated the high-

throughput flux analysis protocol with a set of E. coli knockout mutants with known 

flux phenotypes, which SUMOFLUX succeeded to predict. The developed protocol 

allowed us to perform a fluxomics screen of 60 E. coli strains with mutations in 

enzyme phosphorylation sites to generate hypotheses on the functional role of this 
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post-translational modification, which yet has not been extensively studied in 

prokaryotes. Our flux screening revealed the deactivating function of isocitrate 

dehydrogenase phosphorylation reported earlier, and proposed several novel 

functionally relevant phosphorylation events. The developed high-throughput flux 

profiling protocol brings 13C fluxomics to a new level comparable with the scale of 

other omics techniques. 

In summary, the developed targeted 13C flux ratio approach offers an 

unprecedented medley of advantages. First, due to the generalization power of 

machine learning, its application is not limited to a specific organism, experimental 

conditions, type of input data or flux ratios. Second, the embedded surrogate 

modeling allows to reduce assumptions on the metabolic network structure, and to 

perform analysis of poorly determined systems. Third, estimating local ratios and in 

silico testing ensures extraction of most flux information even from small amount of 

measurements. Finally, once the flux ratio predictors are built, their application is 

rapid and scalable for high-throughput analysis. Taken together, this approach is able 

to address local questions in complex setups, such as bacterial co-cultures, higher 

cells in complex media or host-microbe systems, and is best suited for targeted 

hypotheses validation and high-throughput flux screening. We believe that our 

approach, alone or in combination with global flux analysis methods, will open up 

new horizons in 13C fluxomics, and advance future biological discoveries in cellular 

metabolism and its regulation. 
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Zusammenfassung 

Der Stoffwechsel oder Metabolismus ist ein unverzichtbarer Prozess für jedes 

Lebewesen. Es beschreibt die chemische Umwandlung aufgenommener Nahrung in 

Biomassebausteine, Redox-Äquivalente, Energie und Abfallprodukte. Das 

metabolische Potential einer Zelle kann durch ein Netzwerk dargestellt werden, in 

dem die verschiedenen Metabolite durch chemische Reaktionen miteinander 

verbunden sind. Diese chemischen Reaktionen wiederum werden durch Enzyme 

katalysiert, die im Genom der Zelle codiert sind. Lebende Zellen passen ihre 

metabolischen Reaktionsraten, auch metabolische Flüsse genannt, an die 

vorgefundenen Umweltbedingungen, den intrazellulären Status und die zellulären 

Anforderungen an. So gesehen widerspiegeln metabolische Flüsse das eigentliche 

Zellverhalten und deren Bestimmung ist daher essentiell um metabolische Prozesse 

von biotechnologischer und biomedizinischer Wichtigkeit zu verstehen und zu 

kontrollieren. 

Metabolische Flüsse können nicht direkt gemessen werden und müssen 

deshalb indirekt von messbaren Grössen, wie beispielsweise Genexpression, 

Proteinlevels, oder Veränderungen der Metabolitkonzentrationen abgeleitet werden. 

Experimentelle Ansätze, die mit stabilen Massenisotopen markierte Substrate 

verwenden, werden speziell für Flussbestimmunen eingesetzt. Dabei werden die 

Massenisotope der verschiedenen Metabolite mittels Kernspinresonanzspektroskopie 

oder Massenspektrometrie quantifiziert und miteinander verglichen. Die 

Interpretation der resultierenden Massenisotopenverteilungen erfolgt entweder 

manuell, mittels analytischen Formeln oder eines mathematischen Modells und gibt 

Aufschluss über die metabolischen Flüsse, die den gemessenen Isotopenverteilungen 

zu Grunde liegen. 

Metabolische Flussanalysen können in globale 13C Flussanalysen, welche 

iterativ diejenige Flussverteilung suchen, die die gemessenen Isotopenverteilungen 

am besten reflektiert und lokale 13C Flussanalysen, die das Verhältnis mehrerer Flüsse 

zueinander mittels spezifisch dafür hergeleiteten analytischen Formeln bestimmen. 

Erstere sind allgemein anwendbar, benötigen aber umfangreiche Messdaten, 

resultieren in mehreren möglichen Lösungen und sind rechnerisch aufwendig. Im 

Gegensatz dazu sind lokale Flussanalysen rechnerisch schnell, einfach anzuwenden, 
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und resultieren in einer einzigen Lösung. Allerdings ist deren Anwendung auf einige 

wenige metabolische Knoten und experimentelle Voraussetzungen beschränkt. Daher 

besteht die Nachfrage für eine schnelle, robuste und allgemein anwendbare Methode, 

mit deren Hilfe auch die heutzutage typisch grossen Datensätze paralleler 

Experimente analysiert werden können.  

In dieser Arbeit stellen wir SUMOFLUX, eine konzeptionell neue und 

allgemein anwendbare Methode für 13C Flussanalyse spezifischer Flussverhältnisse 

vor. Diese Methode basiert auf Maschinellem Lernen um bestimmte metabolische 

Flussverhältnisse von gemessenen Daten vorauszusagen. Dazu wird zuerst ein in 

silico Datensatz modelliert –„Surrogate Modelling“. SUMOFLUX kann auf jeden 

Netzwerktyp, jedes Substrat und alle möglichen Messdaten angewandt werden und ist 

nach dem Erstellen der sogenannten „Predictors“ mittels in silico Modellierung 

rechnerisch sehr schnell. Im 2. Kapitel führen wir SUMOFLUX ein und zeigen dass 

die berechneten metabolischen Flüsse in Escherichia coli mit den Resultaten globaler 

und lokaler 13C Flussanalysen im Einklang sind. Weiter demonstrieren wir die 

Skalierbarkeit unserer Methode durch ihre Anwendung auf 121 

Transkriptionsfaktorenmutanten in Bacillus subtilis und wir illustrieren, wie die 

Methode auch für die Optimierung des Experimentaldesigns verwendet werden kann.  

Ein bemerkenswerter Vorteil unseres Ansatzes ist seine mögliche Anwendung 

auf komplexe Systeme, auch wenn nur wenige Daten von Messungen und zum 

metabolischen Netzwerk verfügbar sind. Diesen Vorteil nutzten wir im 3. Kapitel 

aus, in dem wir den Aminosäurestoffwechsel von Mykobakterien unter axenischen 

Wachstumsbedingungen und während der Infektion von Makrophagen untersuchten. 

Wir teilten Aminosäuren aufgrund ihrer in vitro Aufnahme durch Mycobacterium 

tuberculosis und Mycobacterium smegmatis und ihrer metabolischen Verwendung, 

charakterisiert durch die errechneten Flussverhältnisse, in verschiedene Klassen ein. 

Untersuchungen des metabolischen Verhaltens von M. tuberculosis während der 

Infektion von Makrophagen, wenn weder der Stoffaustausch mit dem 

Wachstumsmedium noch derjenige zwischen den beiden Organismen bekannt sind, 

waren mittels extensiver SUMOFLUX Simulationen aller möglicher Stoffflüsse im 

kombinierten metabolischen Netzwerk von Makrophagen und dem Pathogen möglich. 

Diese Simulationen zeigten, dass die zum Wachstum normalisierte Biosynthese 

bestimmter Aminosäuren während der Infektion im Vergleich zu in vitro 

Bedingungen reduziert wird. Aus diesen Daten schlossen wir, dass einerseits nur 
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bestimmte Aminosäuren für die im Phagosom replizierenden Tuberkelbakterien 

zugänglich sind und dass andererseits auch Aminosäuren zur Energiegewinnung 

verstoffwechselt werden. Unsere Resultate unterstreichen die Anpassungsfähigkeit 

des mykobakteriellen Metabolismus und erklären zum Teil die wiederholten 

Misserfolge vergangener Versuche chemotherapeutisch den Stoffwechsel dieses 

Pathogens zu inhibieren.  

Im 4. Kapitel nutzten wir die hohe Geschwindigkeit und Flexibilität von 

SUMOFLUX um mittels FIA-TOF (flow injection - time of flight) 13C Daten mit 

hohen Durchsatz zu messen und zu analysieren. Dies resultierte in mehreren Hundert 

Flussanalysen pro Tag. Diese hohe Messgeschwindigkeit ist der Tatsache zu 

verdanken, dass vollends auf chromatographische Trennung verzichtet wird, da die 

Proben direkt ins Massenspektrometer injiziert werden, was zu fehlenden und 

überlappenden Isotopologen führt. Dieses Problem lösten wir durch die Entwicklung 

von spezifischen Datenfiltern und Qualitätskontrollen eines jeden Massensignals. Wir 

validierten die Kombination von SUMOFLUX mit FIA-TOF erfolgreich mittels 

Analyse von mehreren E. coli Mutanten mit bekannten Flussverteilungen. 

Anschliessend wandten wir das entwickelte Protokoll auf 60 E. coli 

Phosphorylierungsmutanten an um die Rolle dieser in Prokaryoten wenig 

untersuchten posttranslationellen Modifizierung zu untersuchen. Unsere Flussanalyse 

bestätigte die bereits beschriebene Inhibition der Isocitratedehydrogenase durch deren 

Phosphorylierung und identifizierte verschiedene neue funktionelle 

Proteinphosphorylierungen. Der entwickelte Ansatz zur Flussanalyse mit hohem 

Durchsatz stellt 13C Fluxomics messtechnisch endlich auf Augenhöhe mit anderen 

Omics-Analysen. 

Die Vorteile der entwickelten Methode lassen sich wie folgt zusammenfassen: 

Erstens, dank der allgemeinen Gültigkeit Maschinellen Lernens ist die Anwendung 

unserer Methode weder auf spezifische Organismen, experimentelle Bedingungen, 

Inputdaten noch bestimmte Flussverhältnisse limitiert. Zweitens, die eingebettete in 

silico Modellierung erlaubt a priori Annahmen zur metabolischen Netzwerkstruktur 

zu reduzieren und Flussanalysen auch für schlecht annotierte Netzwerke 

durchzuführen. Drittens, Berechnungen von lokalen Flussverhältnissen und deren 

extensive in silico Prüfung maximiert die Menge an Flussinformationen bei einem 

Minimum an notwendigen Messdaten. Letztlich, sobald die Modellierung 

abgeschlossen ist und die „Predictors“ berechnet sind, ist Integration der Messdaten 
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sehr rasch und kann mit dem Durchsatz modernster Messmethoden Schritt halten.  

Zusammenfassend lässt sich sagen, dass unser Ansatz fähig ist, lokale 

Flussverhältnisse in einem komplexen Setup zu beantworten, wie beispielsweise 

bakterielle Co-Kulturen, höhere Zellen in heterogenen Wachstumsmedien, und Wirts-

Gast-Wechselwirkungen. Er eignet sich am besten zur Beantwortung gezielter 

Fragestellungen und Screens mit hohem Messdurchsatz. Wir sind überzeugt, dass der 

hier entwickelte Ansatz alleine, oder in Kombination mit globalen Flussanalysen, eine 

neue Ära von 13C Fluxomics Analysen einläutet und künftig einen Beitrag zur 

Erforschung des Stoffwechsels und dessen Regulation leisten wird.  
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CELLULAR METABOLISM AND ITS APPLICATIONS 
Metabolism is an essential process for all living organisms. It consists of chemical 

transformations of molecules that sustain main cellular processes, such as growth, 

reproduction, maintenance, elimination of toxic compounds and response to external 

stimuli. These transformations, called metabolic reactions, are catalyzed by enzymes – 

proteins encoded in the cellular genome. Although some reactions can occur 

spontaneously, enzymes increase reaction rates manifold by lowering the activation 

energy. Metabolic reactions are assigned to two major processes – catabolism and 

anabolism. Catabolic reactions break organic molecules down into simpler units 

(pyruvate, lactate, acetate) to release energy in the form of ATP and reduced electron 

carriers (NADPH and NADH). Anabolic reactions construct complex molecules 

necessary for growth and maintenance (amino acids, nucleic acids, lipids) from smaller 

units, and require energy and reducing power of NADH and NADPH. 

Catabolic and anabolic processes constitute central carbon metabolism, 

consisting of about sixty reactions highly conserved among different organisms from 

microbes to human1.  The central metabolic network includes three major pathways: 

glycolysis, pentose phosphate (PP) pathway and tricarboxylic acid (TCA) cycle. 

Glycolysis converts glucose to pyruvate in several enzymatic steps with concurrent 

formation of two molecules of ATP. In pentose phosphate pathway, intermediates of 

glycolysis are converted into pentoses that serve as nucleotide precursors, and NADPH 

is released for biosynthetic needs. Tricarboxylic acid cycle is used by all aerobic 

organisms to generate energy and amino acid precursors by oxidizing acetyl-CoA into 

carbon dioxide. In total, 36 molecules of ATP can be produced from one molecule of 

glucose in central carbon metabolism. Nowadays, based on genome sequencing and 

sequence similarities, metabolic networks of thousands of organisms have been 

described, spanning all kingdoms of life2,3.  

Whereas metabolic potential of a cell is encoded in its genome, the rates of 

metabolic reactions, or fluxes, result from a complex interplay of diverse molecular 

processes including gene transcription, protein translation and post-translational 

regulation. Therefore, metabolic fluxes represent the functional readout of the cellular 

physiologic or pathologic state. Over the past decades, technological advances resulted 

in exponential increase of knowledge about DNA, RNA, proteins and metabolites, and 

gave rise to genomics4-6, transcriptomics7,8, proteomics9,10 and metabolomics11-14. 
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Among these omics disciplines, metabolomics initially received insufficient attention, 

since it was considered being the “dull workhorse process” of the cell, solely reflecting 

the processes governed by cellular genome, transcriptome and proteome15. This 

conception was based on the fact that the majority of metabolic reactions are catalyzed 

by enzymes16, most of which are proteins encoded in the genome, which thus 

determines the metabolic potential of the cell.  Metabolism is strikingly conserved 

across all domains of life, with central metabolic pathways being present in all known 

organisms17. However, the operation and activity of these pathways vary drastically 

depending on the organism and conditions, which could not be explained by 

transcriptional regulation alone18, underlining the active control of metabolism that 

often occurs post-translationally, enabling rapid adaptations to the changing conditions 

and needs of the organism19,20. Hence, investigation of metabolism became an 

important aspect of systems biology, which aims at understanding cellular processes as 

a complex interplay of many components of a living system15,21-23. 

Originally, metabolism was studied at the macroscopic level of the whole 

organism. For example, estimates were reported for the conservation of energy in the 

human body24,25 and changes in inorganic, carbohydrate and oxygen intermediates in 

urine and blood upon perturbations26,27. Besides, since the first enzyme was purified28, 

enzymatic reactions were studied in vitro by following the kinetics of reaction 

intermediates29,30. Undoubtedly, kinetic information is essential to understand how a 

steady-state flux through a pathway can be maintained and how it can be changed from 

one rate to another. However, the discrepancies between in vitro enzyme kinetics and 

in vivo system behavior might be too large to deduce the information about metabolic 

fluxes from in vitro experiments31.  

With the development of experimental, analytical and computational methods, 

it became possible to probe in vivo metabolic fluxes32-36, measure a vast variety of 

intracellular metabolites37-40, and build genome-scale metabolic models for 

investigation and prediction of cellular behavior41-45. These techniques greatly 

advanced the fields of metabolic engineering, biomedical sciences and drug discovery.  

Genetic engineering of bacteria has been used in modifying plant-microbe-pest 

interactions, biodegradation of xenobiotics and toxic waste transformations, production 

of chemicals and fuels, mineral processing, wastewater treatment applications46,47. 

With the development of molecular biological techniques for DNA recombination, 

metabolic pathway modification became directed as opposed to random mutagenesis 
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and subsequent selection48. Integrative metabolic pathway analysis and genome scale 

modeling became powerful methods for the systematic improvement of cellular 

properties in a broad range of contexts and applications48-53. 

Another broad area of metabolic engineering applications is in the field of 

biomedicine and drug discovery48,54. Metabolic dysregulation plays a role in various 

diseases, such as obesity55, diabetes56 and cancer57,58. Genome scale modeling, omics 

measurements and metabolic flux analysis revealed the role of proliferative adaptation 

in causing the cancer-specific Warburg effect59, predicted drug targets inhibiting cancer 

migration60 and proliferation61,62, explained metabolic changes caused by mutations in 

oncogenes63-65, and proposed combinatorial therapies based on synthetic lethality 

predictions66. Despite the extensive knowledge about cancer metabolism, therapies 

often fail due to constant metabolic adaptations of tumor cells to the treatments67-69.  

Similar to the vast applications in metabolic diseases, combination of omics 

techniques with metabolic flux analysis methods proved fruitful in investigating 

metabolism of pathogens and host-pathogen interactions. Metabolic enzymes are 

attractive drug targets, and genome-scale metabolic modeling is widely used to predict 

essential and synthetically lethal genes in various pathogens70-74. However, microbial 

resistance to antibiotics remains a serious threat for human health75,76. A large-scale in 

vivo screen of Salmonella enterica mutants77 and multi-omics studies in 

mycobacteria78-80 revealed robustness of bacterial metabolism, reflected in redundancy 

of the majority of the enzymes and rapid adaptation capability. This observation 

suggests that bacteria have evolved to consume multiple nutrients from their host during 

infection despite its elaborate defense mechanisms, which has been proposed in several 

studies77,81-83. Although first attempts in modeling host-pathogen81,84 and host-

microbiome85,86 interactions at a genome scale succeeded in predicting macroscopic 

parameters, such as biomass and ATP production or species co-occurrence, significant 

improvements in estimation and analysis of interspecies fluxes and metabolic 

adaptations of both the host and the bacteria have to be achieved in order to understand 

the behavior of this complex system and propose new therapeutic and prophylactic 

approaches to treat and prevent infectious diseases86-90. 
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EARLY METHODS FOR IN VIVO FLUX PROFILING 
Already in the first half of the XX century isotope labeling techniques were used to 

probe cellular metabolism in vivo32,91. The early studies of central carbon metabolism 

were performed by administering [1-14C] and [6-14C] glucose to the cells and measuring 

the 14C yield in CO2 and triose phosphate derivatives such as lactate and fatty acids92,93. 

Glucose recycling through the pentose phosphate pathway was manually calculated 

taking into account the possibility of multiple cycles94. A general model for glycolysis, 

the PP pathway and the Entner-Doudoroff pathway was proposed along with equations 

estimating specific reaction activities34. This approach was used to estimate exchange 

fluxes though transaldolase reactions95, study the effect of diet and hormones on the PP 

pathway in rat adipose tissue96,97, and the PP pathway activity in different tissues in 

rodents33 and in human98. The manual data analysis process included crude 

simplifications due to limited measurements (mostly CO2, lactate, glycogen and 

glycerol were available), and insufficient network topology information (for example, 

TCA cycle activity was estimated solely based on 14C incorporation in excreted CO2, 

ignoring other CO2 producing reactions)98. Moreover, these studies were impeded by 

the difficulty of conducting experiments, deficit and high price of the labeled substrates, 

and health concerns due to exposure to radioactivity99.  

In parallel to radioactive glucose 14C isotopes, stable 13C isotopes were also 

exploited to study malonate metabolism in mice100 and carbon transport in plants101. 

With the advances of stable isotopes’ chemical production and detection with nuclear 

magnetic resonance (NMR) spectroscopy and mass-spectrometry (MS) techniques, 
13C labeling superseded the radioactive labeling experiments99,102. Central carbon 

metabolism of Escherichia coli and higher cells were investigated by manual inspection 

of 13C labeling patterns detected by NMR and label “scrambling”102. Linear equations 

formulated for each labeled atom were solved manually in an iterative procedure in 

terms of the known specific activities of the substrates added to the cell suspension by 

the investigator103. This process was prone to errors and an assay for complex models 

could take a year to perform. Computational power was only sufficient to solve 

stoichiometric equation systems of up to 50x50 in size104. Few computers were capable 

of inverting a stoichiometric matrix of size 130x130, and even if the system was solved 

programmatically, the speed advantage gained by using the computer came with a loss 

of manual trial-and-error fitting103. 
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EVOLUTION OF METABOLIC FLUX ANALYSIS: FINDING THE 

MISSING CONSTRAINT 
Further developments of metabolic flux analysis methods went hand in hand with the 

rapid advances in experimental, analytical and computational technologies. Since 

molecular techniques for DNA manipulation became available, there was a boom in 

metabolic engineering, causing the demand for rational approaches to optimal strain 

design46,47,105. Metabolic control theory106 was proposed to identify enzymes having the 

most influence on the metabolic fluxes given kinetic parameters and metabolite 

concentrations105. However, enzyme amplification in the anabolic pathway of the 

desired product not necessarily leads to the increase of its production, since primary 

metabolism is usually robust to large flux changes at the branch points107. Therefore, it 

was necessary to develop rational methods to estimate metabolic fluxes in order to 

predict optimal yields and strategies to achieve them47,107. Although the 13C labeling 

experiments could provide in vivo flux estimates, they were expensive, labor intensive 

and limited in the number of possible measurements and therefore resolvable fluxes. 

Instead, metabolic balancing approaches based on the steady state assumptions were 

used to calculate metabolic fluxes given the stoichiometric matrix, biomass 

composition, uptake, secretion and growth rates. For example, such approaches were 

applied to study citrate production in Candida lipolytica108, environmental adaptations 

in Clostridium acetobutylicum109, Acinetobacter calcoaceticus110, and lysine 

fermentation by Corynebacterium glutamicum111. Additionally, procedures for 

singularity, sensitivity and consistency analysis in metabolic networks were proposed 

to identify principal nodes which have to be modified in order to drain primary 

metabolism towards the desired product formation111. 

Computational models and linear optimization algorithms112,113 enabled 

automatic analysis of the effect of stoichiometric constraints on the metabolic behavior 

of an organism in a given environment. For example, linear programming was used to 

examine the interactions between stoichiometric constraints and the requirement for 

efficiency in conversion of glucose to fat in adipocytes114. Most of the studied metabolic 

networks were underdetermined, since the number of fluxes exceeded the number of 

metabolites, and some reactions were bidirectional or formed futile cycles. Hence, there 

was a need for additional constrains or optimization principles in order to determine the 

flux distributions115.  
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Introducing additional measurements. The easiest way to reduce the number of 

degrees of freedom in the metabolic network is to include additional flux 

measurements. Usually, these constraints were added by measuring CO2 or adding 

cofactor balancing equations (ATP, NAD(P)H, O2, CO2, NH3)115-117. Unfortunately, 

some of the cofactor balances cannot be closed, due to inability to precisely measure 

cellular ATP maintenance, or due to existence of transhydrogenase converting NADPH 

to NADH. The latter issue can be solved by lumping these cofactors into one pool116. 

However, there are only a few degrees of freedom that can be reduced with cofactor 

balancing, and the system might still remain underdetermined. Generally, a method was 

proposed to determine which fluxes have to be additionally measured in order to 

minimize the errors in the estimated fluxes118,119. 

 

Objective functions. Searching for a flux distribution which solves a given 

optimization problem is called flux balance analysis (FBA). Optimization for growth 

as a representation of natural selection process was initially proposed for prokaryotic 

organisms45. Growth is modeled with a biomass vector, for which the biomass 

coefficients have to be determined experimentally116,117,120,121, as biomass composition 

may differ in different bacterial strains, cell lines and culture conditions116. Nowadays, 

however, generalized biomass vectors are usually used for flux estimation.  

The maximization of biomass is not well suited to study prokaryotes which did 

not undergo evolutionary pressure, such as genetic knockouts. In such cases, it was 

proposed to predict flux distributions by minimizing the mutant’s metabolic adjustment 

compared to the parent wild type flux distribution122. However, it was demonstrated 

that after several generations, the flux distributions of the knockouts approach those 

predicted by optimizing biomass123,124. Although there is a unique optimal value for the 

optimization function, multiple flux distributions could lead to the solution, potentially 

representing alternative evolutionary strategies125. 

Alternative widely used objective functions, especially used to model higher 

cell metabolism, include maximization of ATP or NAD(P)H production or 

minimization of the Euclidean norm of fluxes126. For optimal strain design, the desired 

compound production is optimized. In this case, FBA solutions represent the maximal 

theoretical yield, and can be used to analyze discrepancies between the optimal solution 

and experimental measurements48,127. In this way, maximum yields were calculated for 

riboflavin producing B. subtilis128 and ethanol producing yeast129. With FBA, it is 
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possible to study the influence of different optimization functions on the flux 

distribution in the metabolic network130, and the roles of different metabolites in 

sustaining different optimization requirements by computing their shadow prices130,131. 

FBA is sensitive to assumptions on biomass composition, cofactor balancing120, 

constraints and objective function. Therefore, instead of predicting exact network 

behaviors, it is useful to analyze the states which the system theoretically can achieve 

and which it cannot under given conditions70,132. By maximizing ATP production and 

analyzing the network constraints, FBA was used to explain methanol secretion in yeast 

and acetate secretion in E. coli133, differences in lactate consuming and lactate 

producing higher cells134, and investigate genetic knockout effect on the mitochondrial 

ATP production135. Minimization of the Euclidean norm of fluxes was used as an 

optimization function to compare hybridoma cells metabolism in two culture media116. 

Flux distributions obtained by solving different optimization problems can be 

validated with the flux estimates from 13C labeling data. In hybridoma cells, for 

example, flux solutions obtained by maximizing ATP or NADH maximization resulted 

in better concordance with 13C flux estimates compared to the flux solution obtained by 

minimizing the sum of fluxes136. In a large study on the optimality of microbial 

metabolism, it was found that five objective functions are consistent with 44 in vivo 

flux distributions of different bacteria estimated with 13C labeling: ATP, biomass, 

acetate and carbon dioxide yields and minimum sum of absolute fluxes137. However, 

instead of following a single optimization strategy, bacterial metabolic fluxes were 

close to Pareto surface describing three of the optimization functions – ATP and 

biomass maximization and optimal resource allocation. It was proposed and further 

supported by evolution experiments, that bacteria having suboptimal flux distributions 

achieve evolutionary benefit by their ability to rapidly  switch between conditions137.  

 

Thermodynamic constraints. The second law of thermodynamics can be used to 

constrain the direction of all network fluxes by calculating the sign of the change in the 

Gibbs free energy for each reaction138. The change in the Gibbs free energy depends on 

the temperature, concentrations of substrates and products, and change in the Gibbs free 

energies in a reference state, which can be estimated using group contribution139,140 or 

component contribution141 methods. In the absence of quantitative metabolomics 

measurements, thermodynamic assignment of reaction directionality can be made by 

assuming an accommodating range of reactant concentration (0.02 – 20 mM)142. The 
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flux distributions generated using thermodynamic constraints involve neither fluxes 

through any thermodynamically unfavorable loops, nor fluxes through 

thermodynamically unfavorable reactions given the concentration ranges found in the 

cell139. Whereas the majority of E. coli reactions were found to be thermodynamically 

optimized, a few unfavorable reactions with estimated positive Gibbs free energy 

changes were identified as potential bottlenecks in the production of growth140. 

Concurrently, the reactions with large negative Gibbs free energy changes were 

suggested as potential targets of active allosteric or genetic regulation139,143. 

Perturbation analysis by varying energy values and metabolite concentrations proved 

to be useful for the determination of the thermodynamically feasible activity ranges for 

the metabolites140 and identification of critical reactions for which fluxes are largely 

undetermined by the FBA approach144. Thermodynamic approaches were applied to 

evaluate thermodynamic and kinetic quality of different pathways in central 

metabolism145 and genome-scale network of E. coli146. Although thermodynamic-based 

flux analysis improves flux predictions and provides crucial information on the kinetic 

properties and reaction capabilities in the model, its application is hampered by the lack 

of detailed information on enzyme kinetics, quantitative measurements and 

thermodynamic properties under different environmental conditions147.  

 

Integration of Omics data. With the development of large scale genomics, 

transcriptomics, proteomics and metabolomics techniques, flux analysis in metabolic 

networks was brought to a new level44,148. Since the publication of the first E. coli 

genome sequence4, large-scale network topology reconstructions became possible with 

gene homology analysis by mapping genes to enzymes and reactions they can 

catalyze149-153. Nowadays, hundreds of genome annotations are available, and the 

process of genome-scale model reconstructions has been standardized42,154,155 and 

facilitated with a number of automatic tools43,156-158. These models are gradually 

refined, as new genome annotations and functional characterizations of enzymes 

emerge159,160. 

While genomic information determines the topology of a metabolic network, 

transcript and protein expression data can be included as constraints to shrink the 

solution space and to build condition specific models161,162. For instance, gene 

expression profile can impose binary activity constraints, i.e. if a gene is expressed 

below a certain threshold, the reaction is inactive163,164.  In a more flexible way, 
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expression values can be converted to continuous flux bounds165 or used to discriminate 

flux solutions between conditions using differential analysis thresholds166. Based on 

gene expression and proteomics data, specific human tissue models167, cancer 

models168 and host-pathogen interaction models84 have been developed.  

Apart from being translated into direct constraints on metabolic reactions, 

expression data can be exploited to incorporate mechanisms of transcriptional 

regulation or protein allocation into the models. First genome-scale transcriptional 

regulatory and metabolic network of E. coli was used not only to improve flux 

predictions, but at the same time to indicate knowledge gaps and identify novel 

components and regulatory interactions by analyzing discrepancies between model 

predictions and experimental outcomes169. Steady state regulatory FBA incorporating 

Boolean regulatory constraints allowed to quantify the extent to which transcriptional 

regulation determined metabolic behavior in E. coli and identify redundantly expressed 

genes170. Integrative omics-metabolic analysis, which incorporates measured 

proteomics and metabolomics data into flux rate constraints with kinetic equations, was 

shown to improve metabolic flux estimates in E. coli and human erythrocytes171. 

Combined models of metabolism and molecular expression include proteomic 

constrains to predict gene expression along with growth rate and fluxes accounting for 

metabolic costs of proteins41,172,173. Including cellular networks beyond metabolism, 

such as gene product expression coupled to metabolism, protein translocation in the 

cellular membrane, protein structures of metabolic enzymes, and transcriptional 

regulation, enable novel predictions on different cellular levels49, and bring us closer to 

developing whole-cell models161. However, it is important to note that although 

different omics measurements provide additional layers of information for flux 

analysis, their incorporation into flux constraints relies on numerous assumptions. 

Therefore, the estimated flux distributions should be validated experimentally, for 

example, with stable isotope labeling techniques174.   

 

Global 13C metabolic flux analysis. Despite being the most direct experimental 

technique for flux elucidation, for a long time 13C labeling experiments were only 

occasionally used to validate metabolic fluxes predicted by FBA, mostly due to high 

cost of tracers and limited availability of metabolite measurements121,136. Developments 

of NMR spectroscopy and mass spectrometry analytic techniques expanded the number 

of measurable metabolites and enabled the investigation of larger models40,175-177. 
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Compared to FBA, 13C metabolic flux analysis offers additional independent 

constraints, therefore allows to omit energy and cofactor balance equations and enables 

quantification of both flux directions of bidirectional reaction steps178. Combined, 

metabolite balancing and 13C tracer experiments could offer a much more powerful flux 

analysis approach. Thus, a general modeling framework for 13C metabolic flux analysis 

(13C-MFA) was proposed, which was based on principles of metabolic balancing, 

included bidirectional reaction steps and modeled carbon flow with atom transition 

equations178,179. The system of carbon transition equations could no longer be handled 

with linear methods, because bimolecular reactions had to be described with quadratic 

equations. Also, the system could not be solved manually, since 25 fluxes between 20 

pools were represented with 3200 isotopomer fluxes between 600 isotopomer pools35. 

Further technical improvements included representation of atomic equations with the 

so-called cumomers, leading to networks with cascade structure that could be solved 

linearly180. As an alternative to cumomer equations, genetic algorithms181 and the 

elementary metabolite unit framework based on a highly efficient decomposition 

method that identifies the minimum amount of information needed to simulate isotopic 

labeling within a reaction network were proposed, which considerably reduced the 

computation time182. Increase in available computational powers led to the 

development of efficient 13C-MFA platforms facilitating metabolic flux analysis in 

different organisms183-186.   

It was shown that 13C-MFA produces more precise flux estimates in riboflavin 

producing B. subtilis187, E. coli188 and S. cerevisiae189. Moreover, fast calculations and 

analytical expressions for metabolic flux analysis sensitivities enable experimental 

design by comparing different experimental setups (labeling techniques, measured 

metabolites) with respect to the achievable flux information190-195.  

Although 13C-MFA provides a global flux estimate for the given metabolic 

network, often there are multiple equally plausible solutions, and global optimum 

cannot be guaranteed35. In practice, the parameter fitting is often performed several 

hundred times, and the best fit among all solutions is reported64,196,197, what further 

increases computational time hindering large-scale applications of global 13C-MFA. 

Moreover, with increased network complexity, the number of measurements required 

for constraints also increases, leading to infeasibility of accurate flux estimates in 

complex systems, such as multi-nutrient environments or co-cultures.  
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Local 13C flux ratio analysis. As an alternative to global 13C-MFA, targeted flux ratio 

analysis methods were developed based on analytic equations connecting a specific flux 

ratio, usually between two or more reactions forming a single metabolite, and 

measurable mass isotopologues198,199. These targeted approaches require only few 

measurements and are easy to apply, interpret and compare estimates across samples. 

These advantages enabled large-scale 13C flux ratio profiling of B. subtilis and E. coli 

transcription factor mutants200,201 and enzymatic knockouts of yeast202. Flux ratio 

estimates can serve as additional constraints for FBA to provide global flux 

solutions203,204 also in genome-scale networks205. Flux ratio equations require manual 

derivation based on strong assumptions on the network structure198. Therefore, to date 

only a handful of analytic formula exist, and they are applicable in restricted cases for 

specific organisms. Although an automated procedure was proposed to derive flux 

ratios using graph algorithms206, it was limited to reactions producing the same junction 

metabolite resolvable by linear means, and did not find broad application.  

 

 
  

 

 

 

 

 

Figure 1. Schematic comparison of global and local stationary 13C metabolic flux analysis 
approaches. 
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NON-STATIONARY FLUX ANALYSIS APPROACHES 
The stationary flux analysis approaches are based on a strong assumption of metabolic 

and isotopic steady state. Although this assumption is valid in most experiments with 

prokaryotes growing in minimal media with one or two carbon sources, it might not 

hold true in case of sequential substrate utilization, or slow growing organisms and 

mammalian cells. A parallel branch of flux analysis methods aims at estimating 

metabolic fluxes in metabolic or isotopic non-stationary conditions. FBA and metabolic 

balancing have been successfully extended to dynamic systems by incorporating time-

series metabolomics measurements and kinetic models207. The key assumption that 

must hold for dynamic flux analysis approaches is the maintenance of the pseudo-

steady state, which means that the time-scale for process dynamics must be longer than 

the time-scale for intracellular equilibration with the extracellular environment207. 

These approaches proved useful to iteratively fine-tune metabolic flux estimations by 

incorporating dynamic measurements into kinetic models to simulate bioprocesses and 

generate hypotheses on optimal conditions and system behavior, which in turn has to 

be validated experimentally.   

The 13C-MFA method was extended to INST-MFA (isotopically non-stationary 

MFA)208, which is performed in a transient labeling state, enabling short-time 

experiments. Compared to 13C-MFA, INST-MFA provides more information, 

especially in case of missing structural information, multiple carbon sources and 

growth on C1 substrates209. Moreover, statements about the magnitude of some non-

measurable pool sizes can be made208. Comparison of INST-MFA with stationary 
13C-MFA on the data of Corynebacterium glutamicum grown in fed-batch cultivation 

revealed that only the isotopic non-stationary approach led to confidential flux 

estimations under studied conditions210. However, INST-MFA is much more 

challenging to perform and interpret than other flux analysis techniques. It requires 

extensive knowledge on the reaction activity and kinetic parameters, large 

computational powers to solve the systems of ordinary differential equations, and 

accurate measurements of metabolite concentrations.  

In principle, non-stationary flux analysis methods are complementary to the 

steady state approaches. Stationary analysis supplies cornerstones of dynamic 

modelling, as it describes system behavior around steady state. Resolving bidirectional 

fluxes may provide an additional input into the kinetic model. Kinetic models have 
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more parameters to depend on – reversible enzymatic mechanisms have to be taken into 

account35,209. The constraints obtained with targeted non-stationary flux analysis 

methods, in turn, can be used to improve the global flux predictions using steady state 

approach211. 

Targeted 13C flux ratio analysis performed in a dynamic system offers reduction 

of necessary measurements, simpler kinetic model, and independence from the network 

structure not involving the flux ratio of interest211. Since only the first seconds to 

minutes of label propagation are monitored, this approach allows to considerably 

reduce experiment duration and consumption of labeled media. Moreover, it enables to 

elucidate flux propagation through linear pathways, which are not accessible by 

stationary methods, therefore should be preferred in case such flux ratio formalism is 

applicable to the system of interest.  

 

MACHINE LEARNING APPROACHES FOR FLUX ANALYSIS 
Machine learning is a conceptually different way of data analysis based on inferring a 

predictive model from a set of known inputs and corresponding outputs, in order to 

generalize and provide output estimates for new input samples. Machine learning 

applications in systems biology are emerging212,213. With the increasing number of 

omics datasets, the use of machine learning for predicting disease progression214,215, 

regulatory events213 or drug response216-218 becomes more and more widespread. 

In the field of metabolomics, machine learning was used to predict metabolic 

pathways from genomic data219, kinetic parameters of the models220,221, or extract 

informative features distinguishing metabolic phenotypes222. Since there is a lack of 

experimental data from 13C flux analysis, machine learning has not been extensively 

applied in fluxomics studies. The first attempt to predict fluxes from the information 

on organism, condition and genetic modification in bacteria was performed by training 

a predictive model on a dataset collected from 120 literature sources223. In another 

study, analogous input information was combined with basal gene expression levels to 

sequentially predict gene and protein expression, metabolite abundance and metabolic 

fluxes in E. coli224. Although in both studies machine learning predictors provided 

reasonable results for the test datasets, their application might be limited to closely 

related bacterial species, since the input information is restricted to a predefined set of 

strains and media composition.  
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The main drawback of machine learning is that it can only extract information 

from the provided training sample, therefore cannot predict fundamentally new 

outcomes. It is also important to consider that machine learning algorithms have to be 

adequately validated on a dataset not included in training or tuning their parameters. 

Due to the lack of data, it is not always possible to obtain large non-intersecting training 

and testing datasets, therefore some of the validation results might be overoptimistic225. 

Machine learning is a powerful tool for large-scale data analysis, however, its 

application is far from mechanical212. Successful application of machine learning 

requires careful formulation of the prediction task, choice of input parameters and 

prediction method, and appropriate procedures for tuning, testing and diagnosis of the 

predictors.  

 

FRONTIERS AND PERSPECTIVES OF FLUX ANALYSIS IN 

COMPLEX SYSTEMS 
Ideally, metabolism should be studied in vivo at a genome-scale and single cell 

levels54,174,226,227. In reality, the complex problem of metabolic operation of a living 

system is reduced to a subset of questions which can be tested in controlled laboratory 

experiments with available measurement techniques. The development of new 

experimental, measurement and data analysis methods slowly but gradually enables to 

increase the complexity of laboratory studied systems, in order to move a step closer to 

understanding in vivo processes.  

Whereas genome-wide transcriptomics and proteomics data are widely used to 

constrain genome-scale models for flux balance analysis148,171,173, 13C flux analysis has 

not yet achieved this advanced level228. The first genome-scale 13C-MFA in E. coli 

proved that reducing the network by eliminating a priori blocked reactions and 

exploiting the elementary metabolic unit decomposition allows to solve the flux 

analysis problem computationally and obtain a better fit compared to the core 

metabolism model229. In this study, only 17 measured amino acids were used to fit the 

fluxes, hence some improvements in decreasing the uncertainties of the genome-scale 

model may be achieved by including more measurements or combining data from 

parallel labeling experiments229,230. However, if alternative pathways produce identical 

intermediate carbon transitions, additional measurements and tracer labeling schemes 

would not be able to resolve such pathway ambiguity. In this case, combination of 
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targeted 13C flux analysis with metabolite balancing or dynamic labeling experiments 

might be a better solution. 

One of the traits of the in vivo systems that is often omitted in vitro is the inter-

cellular interaction. Most studies of bacterial pathogens or cancer cells aimed at 

discovery of new therapeutic treatments investigate the system behavior in the defined 

(sometimes even minimal) media, what often leads to discrepancies between the 

expected and the observed in vivo behavior of the candidate knockout strain231 or 

mutated cancer cells232. Although in vitro host-pathogen interaction systems have been 

established77,233,234, the inter-species flux analysis is hindered by the difficulty of the 

accurate material separation and quantification. Whereas it is possible to detect gene 

expression changes in multi-organism system with dual RNA-seq techniques235,236, 

metabolomics measurements and thus more direct flux estimations are infeasible due 

to the universality of metabolic compounds. In a study of host-pathogen interactions 

during early infection, 13C flux spectral analysis was performed using measurements of 

protein bound amino acids derived after separating bacteria from macrophages by 

centrifugation81. The combined metabolic network of host and pathogen central 

metabolism was used to predict potential nutrient fluxes by sampling thousands of flux 

distributions assuming different single, double and triple amino acid exchange fluxes 

and ranking the solutions by residual valine. Although this study pioneered inter-

species 13C flux analysis, there is a considerable imbalance between the computational 

effort and its outcome due to the limited amount of measurements and large system 

uncertainty, which could be potentially reduced by applying a less computationally 

intensive targeted flux ratio analysis approach. While measuring the protein-bound 

amino acids or recently proposed peptide237 or RNA238 labeling patterns is a promising 

approach to separate metabolic material in co-cultures, such data is only reliable 

assuming a steady state for fluxes and labeling patterns237. In case the label exposure 

time is short compared to the organism doubling time, these measurements represent 

an integration of previous labeling states, which has to be either included in the model 

or at least interpreted with caution. As an alternative, it was proposed to model the 

mixed metabolic measurements in the bacterial co-culture by adding a species fraction 

coefficient as an additional parameter of the optimization239, which proved applicable 

to a simple co-culture of two E. coli strains. Such approach might become the first step 

to analyze interactions between the gut bacteria, which recently receive more and more 

attention88,240,241. 
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Further simplification of a complex inter-cellular behavior is studying one 

organism’s metabolism in a complex media mimicking the interaction space. High-

coverage untargeted metabolomics38 can be used to measure all potential substrate and 

product exchange rates to be used as FBA constraints, or refine condition-specific 

metabolic models to predict intracellular states242. Parallel labeling experiments with 

different substrates labeled at a time can provide additional information on substrate 

utilization and enable more precise flux estimates197,226,234,243. 

Finally, although flux analysis at the single cell level still sounds somewhat 

futuristic, it is inevitable to understand metabolic phenotypes of subcellular populations 

in order to fight cancer68 or pathogen76 drug resistance. Nowadays, when the design of 

FRET (Förster resonance energy transfer) biosensors providing quantitative dynamic 

measurements of a specific metabolite at a single-cell level is facilitated244, and 

advances in different mass spectrometry techniques enable metabolomics 

measurements in ultra-small volumes245, application of single-cell fluxomics becomes 

more and more plausible226,246. Since analyzing single cell fluxes would require high-

throughput fitting to potentially small amount of measurements lacking physiological 

parameters, targeted flux analysis methods would be among the first candidates to 

tackle this exciting challenge226. 

 

 
THESIS OUTLINE 
The main contribution of this thesis was the development of a fast and generalized 

method for targeted 13C flux ratio analysis, SUMOFLUX, which is applicable to 

virtually any metabolic system, steady state conditions and type of 13C measurements.  

In Chapter 2, we develop the general workflow of SUMOFLUX, which 

consists of surrogate modelling of the labeling experiment in order to train and test 

machine learning predictors for targeted flux ratios given the metabolic network, 

substrate(s) label, available measurements and noise. As a proof of principle, we apply 

SUMOFLUX to resolve key flux ratios in a small set of Escherichia coli knockout 

strains, and demonstrate that our predictions are in agreement with estimates of 

classical analytic formulas and global 13C-MFA approach. We underline the generality 

and scalability of SUMOFLUX by resolving a novel flux ratio for glyoxylate shunt 

using the same data, and by performing flux ratio analysis in a large cohort of Bacillus 
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subtilis transcription factor mutants. Lastly, we illustrate the suitability of SUMOFLUX 

workflow for sensitivity analysis and optimization of experimental design.  

In Chapter 3, we exploit SUMOFLUX to study amino acid metabolism of 

mycobacteria in complex environments. Amino acids play an important role during 

tuberculosis infection, but their co-metabolism and availability inside the host are 

scarcely understood. We first characterize amino acid utilization patterns of the model 

organism Mycobacterium smegmatis in glucose and amino acid two-substrate media by 

estimating specific catabolism and biosynthesis ratios with SUMOFLUX. Next, we 

perform co-utilization analysis in a more complex system of M. tuberculosis growing 

in rich medium and in the host-pathogen infection setup. We conclude that 

mycobacteria are rapidly adapting to co-feed, and are prepared to take up nutrients as 

soon as encounter them, which seems to occur even in the coarse phagosome 

environment.  

In Chapter 4, we take advantage of the speed and generality of SUMOFLUX 

to develop a fast protocol for high-throughput flux profiling by applying it to the data 

measured with FIA-TOF (flow injection analysis – time of flight) mass spectrometer. 

With the proposed experimental and data analysis workflow, hundreds of samples can 

be analyzed within a day. Using a set of E. coli knockout strains with known flux 

phenotypes, we establish a data pre-processing procedure, which includes peak filtering 

and quality check, and demonstrate that SUMOFLUX can predict expected flux 

phenotypes given these data. We apply the proposed workflow to a large cohort of 

E. coli phosphorylation mutants to generate hypotheses on the functional role of 

enzyme phosphorylation. The developed high-throughput flux profiling workflow 

paves the way for large-scale comparative 13C fluxomics.   
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ADDITIONAL PROJECTS 
These projects were also part of this work, but they are not included in this thesis. 

 

Integration of metabolomics and transcriptomics reveals a complex diet of 

Mycobacterium tuberculosis during early macrophage infection. 

Michael Zimmermann*, Maria Kogadeeva*, Martin Gengenbacher, Gayle McEwen, 

Hans Joachim Mollenkopf, Nicola Zamboni, Stefan Hugo Ernst Kaufmann, and Uwe 

Sauer. 

Manuscript under revisions 

* Equally contributed to this work 

 

Contribution of MK: Analyzed and interpreted the data, wrote parts of the manuscript. 

 

 

L-Arginine modulates T cell metabolism and enhances survival and anti-tumor 

activity. 

Roger Geiger, Jan C. Rieckmann, Tobias Wolf, Camilla Basso, Yuehan Feng, Tobias 

Fuhrer, Maria Kogadeeva, Paola Picotti, Felix Meissner, Matthias Mann, Nicola 

Zamboni, Federica Sallusto, Antonio Lanzavecchia. 

Cell 167 (2016): 829-842. 

 

Contribution of MK: analyzed the data from metabolome and flux experiments 

 

 

Next-Generation “-omics” approaches reveal a massive alteration of host RNA 

metabolism during bacteriophage infection of Pseudomonas aeruginosa. 

Anne Chevallereau, Bob G. Blasdel, Jeroen De Smet, Marc Monot, Michael 

Zimmermann, Maria Kogadeeva, Uwe Sauer, Peter Jorth, Marvin Whiteley, Laurent 

Debarbieux, Rob Lavigne. 

PLoS Genetics 12, no. 7 (2016): e1006134. 

 

Contribution of MK: analyzed the data from metabolome experiments 
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High coverage metabolomics analysis reveals phage-specific alterations to 

Pseudomonas aeruginosa physiology during infection. 

Jeroen De Smet, Michael Zimmermann, Maria Kogadeeva, Pieter-Jan Ceyssens, 

Wesley Vermaelen, Bob Blasdel, Ho Bin Jang, Uwe Sauer, and Rob Lavigne. 

The ISME journal (2016). 

 

Contribution of MK: analyzed the data from metabolome experiments 

 

 

Absolute proteome composition and dynamics during dormancy and resuscitation 

of Mycobacterium tuberculosis. 

Olga T. Schubert, Christina Ludwig, Maria Kogadeeva, Michael Zimmermann, George 

Rosenberger, Martin Gengenbacher, Ludovic C. Gillet, Ben C. Collins, Hannes L. Röst, 

Stefan H.E. Kaufmann, Uwe Sauer, Ruedi Aebersold 

Cell host & microbe 18, no. 1 (2015): 96-108. 

 

Contribution of MK: Analyzed and interpreted the data, wrote parts of the manuscript. 

 

 

Regulation of yeast central metabolism by enzyme phosphorylation. 

Ana Paula Oliveira, Christina Ludwig, Paola Picotti, Maria Kogadeeva, Ruedi 

Aebersold, and Uwe Sauer. 

Molecular Systems Biology 8, no. 1 (2012): 623. 

 

Contribution of MK: Contributed to data analysis. 
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ABSTRACT 
Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex 

interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo 

intracellular fluxes using stable isotopic tracers is essential if we are to understand 

metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies 

on complex simulation and iterative fitting; processes that necessitate a level of 

expertise that ordinarily preclude the non-expert user. To overcome this, we have 

developed SUMOFLUX, a methodology that is broadly applicable to the targeted 

analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine 

learning, we trained a predictor to specialize in estimating flux ratios from measurable 
13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, 

user-friendly, applicable to experimental design and robust in terms of experimental 

noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's 

properties realistically pave the way to high-throughput flux analyses.  

 

 

INTRODUCTION 
Metabolic fluxes describe the in vivo flow of organic matter through the biochemical 

reaction network, as defined by enzymes and transporters. An improved knowledge of 

metabolic fluxes is crucial if we are to understand how cells utilize nutrients, and how 

they regulate metabolism in the face of dynamic environmental conditions, or in 

stressed pathologic states1-4. Metabolic fluxes, as an emergent property of cellular 

systems, are prohibitively hard to predict using proteomics or metabolomics data, and 

are not, per-se, measurable. Hence, the task of assessing metabolic fluxes indirectly 

represents something of an analytic and mathematic tour-de-force.  

The most informative approach to estimate metabolite fluxes involves stable 

isotope labeling. Cells grown in the presence of 13C-enriched substrates incorporate 

heavy isotopes throughout their metabolic networks according to carbon fluxes and 

produce characteristic 13C patterns in metabolites and products. Some of these can be 

measured by mass spectrometry or nuclear magnetic resonance and can ultimately be 

used to deduce fluxes using two basic approaches. The first is global isotopomer 

balancing, which seeks to estimate all metabolic fluxes by iterative fitting5-10. The 

power of this approach is that it integrates all available data simultaneously in order to 
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estimate metabolic fluxes across the entire system. The downside is that this approach 

is ill suited for high-throughput analyses as it necessitates quantification of all uptake 

and production rates, and analyzes each sample individually. In addition, the fitting 

procedure is mathematically cumbersome, and for complex or poorly calculable 

problems, can require extensive computation time. Finally, troubleshooting heavily 

relies on expert knowledge8. 

The alternative approach is to use flux ratio analysis, which focuses on the 

resolution of local fluxes, centered on metabolic nodes of particular interest11-16. For 

this purpose, flux ratio analysis adopts a targeted strategy in which relative (fractional) 

information on contributions from alternative pathways are calculated from a small 

subset of 13C-data using predefined analytic formulas. The advantage of this approach 

is that it is mathematically simple, rapid, well suited for large scale analyses16, and 

easily used by the non-expert user. However, this process suffers from the time-

consuming procedure of deriving analytic formulas for each flux ratio of interest. These 

formulas, manually derived for each metabolic network, tracer, and environment, 

generally incorporate a mix of human intuition together with tacit assumptions 

regarding flux. Over the past 20 years, only a dozen have been derived to describe the 

central metabolism of microbes growing on single carbon sources. In practice, most 

experimental conditions cannot be addressed due to the lack of validated flux ratio 

predictors. In response to these limitations, automated tools have been developed to 

estimate flux ratios17,18, although, thus far, these have been limited to linear cases and 

consequently have failed to find any broader application.  

Here we present SUMOFLUX, a conceptually novel method to analyze, in a 

targeted fashion, flux ratios based on 13C-data. Our workflow circumvents concerns 

over the relevance and limitations of flux analyses by exploiting machine learning. A 

machine learning predictor is trained using in silico 13C-data, generated by surrogate 

modeling. The combination of surrogate modeling and machine learning permits the 

rapid estimation of flux ratios for virtually any metabolic network, label configuration, 

or available measurement. We now illustrate the proposed workflow for both canonical 

and novel flux ratios for central carbon metabolism. The speed and generality provided 

by machine learning makes SUMOFLUX particularly useful for optimizing 

experimental design, selecting metabolites to be measured, and merging data from 

several experiments. Moreover, we believe that the SUMOFLUX workflow provides a 

real prospect of high-throughput flux analyses. 
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RESULTS 
Surrogate modeling and the workflow of 13C-flux ratio analysis. In 13C-metabolic 

flux ratio analysis, the goal is to estimate a flux ratio of interest. Typically, this is a 

number that indicates the relative fraction of a specific metabolite flowing through a 

chosen reaction or pathway. Flux ratios are estimated based on a stoichiometric model, 

knowledge of the 13C-configuration of all of the relevant substrates, and the labeling 

patterns of metabolites as measured by mass spectrometry (or nuclear magnetic 

resonance). We formulated the derivation of flux ratio estimates from 13C data as a 

nonlinear regression task to be solved using machine learning. By definition, the flux 

ratio of interest is the dependent variable that we aim to predict; measured 13C isotope 

labeling patterns of intracellular metabolites are the independent variables, or the input 

features for the algorithm. A random forest predictor19 is then trained to build a 

functional relationship between the 13C data and flux ratios using a training dataset. To 

build a generalized predictor, the training dataset should comprise hundreds, if not 

thousands of representative examples for which a flux ratio and 13C data are available. 

Unfortunately, such a dataset is not accessible experimentally. First, because flux 

estimates are not amenable to direct measurement. Second, in the majority of cases it 

is impossible to select, or to construct, a cohort of cells with a phenotypic diversity that 

adequately represents the wide variety of fluxes and flux ratios that might exist. To 

overcome this fundamental problem, we have used surrogate modeling (hence the term 

SUMOFLUX). We built, in silico, a synthetic cohort of representative data points. Each 

data point is defined by a complete set of fluxes that fulfill the stoichiometric constraints 

of the metabolic network. This allows us to calculate a ratio (or any other derivative 

value) for the fluxes of interest, and to simulate the 13C-labeling patterns of each 

metabolite, which is made possible because each flux distribution leads to a unique 

intracellular labeling pattern20. It is therefore possible to construct an in silico dataset 

comprising thousands of data points, with flux ratios spanning the feasible range, and 

corresponding metabolite 13C-labeling patterns. The synthetic in silico dataset is used 

to train, cross-validate, and then test the flux ratio predictor. 

 The full SUMOFLUX workflow for flux ratio estimation consists of five steps 

(Figure 1). First, a reference dataset of several thousand flux maps is sampled from that 

space of flux maps that fulfills certain stoichiometric constraints (mass balances) of the 

metabolic network. Extracellular flux constrains can be further refined by the 
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availability of substrates and a working knowledge of the major secreted products. 

Second, the 13C-labeling patterns of the metabolites included in the network are 

simulated independently for each reference data point. Label propagation is then 

simulated using the existing algorithms9, given the 13C-label of the substrate(s), and the 

map of the atom transition within the network. At this point, the simulated 13C data, 

does not, as yet, reflect actual measurements. Third, to capture measurement data, we 

select only those 13C features that are analytically accessible, and then superimpose 

noise values corresponding to those measured. Fourth, flux ratios of interest are 

calculated for all of the data points within the reference dataset, as the dependent 

variable in regression analyses. Fifth, we divide the reference dataset into independent 

training and test subsets, using the former to train a random forest with which to predict 

the calculated flux ratios from simulated 13C data. We then assess the predictor’s 

performance on the test dataset by calculating the mean absolute error of the predictions 

made. If the performance is insufficient (e.g. mean absolute error MAE > 0.05), we 

iteratively optimize our experimental strategy by changing the substrate label, or 

available measurements, then repeat the training. If the performance is judged to be 

satisfactory, we finally use the predictor to estimate flux ratios using real experimental 

data. To provide prediction intervals, we use quantile regression forests, which give a 

non-parametric and accurate estimates of conditional quantiles based on the full 

conditional  distribution of the dependent variable21.  

 

 

 

 

Figure 1. SUMOFLUX workflow for targeted 13C flux ratio analysis. Input data are depicted in the 
dashed-line rectangles. 
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The most time consuming aspect of the workflow is the simulation of 13C data 

in the reference dataset, which scales according to the number of samples and carbon 

atoms in the metabolites. For the model of central carbon metabolism with 39 reactions 

and 21 measured metabolites and fragments (Figure S1, Tables S1 and S2), 0.2 seconds 

are needed to simulate the labeling patterns for a single data point. Using a 

parallelization technique, this process can be accelerated to simulate the several 

thousand data points necessary for training and testing within a few minutes. Without 

parallelization, the simulation procedure for 20,000 data points takes ~1.5 hours, 

whereas the flux sampling and random forest training steps require less than a minute. 

Overall, the SUMOFLUX workflow requires information on the stoichiometry 

of the metabolic network, and the carbon atom arrangement for all of the metabolites 

within the network. The choice of 13C-tracer depends on the flux ratio of interest8,22, 

but in practice is primarily constrained by commercial availability and costs. Hence, it 

is quite common to test flux calculability using multiple configurations of tracers23-25, 

which can be easily accomplished using the SUMOFLUX workflow due to its rapid 

computational time. In the following sections, we demonstrate the performance, 

generality, and scalability of SUMOFLUX, as well as its versatility in terms of feature 

selection and experimental design.  

 

Analyses of flux ratios for central carbon metabolism. We chose to demonstrate 

SUMOFLUX by deriving estimates of the flux ratios for central carbon metabolism 

using the model organism, Escherichia coli. Its metabolic network includes the highly 

conserved pathways of glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose 

phosphate (PP) pathway. Furthermore, it includes alternative pathways such as the 

Entner-Doudoroff pathway and the glyoxylate shunt that convey additional metabolic 

elements that might complicate flux estimates. As a reference, we considered the study 

of glucose metabolism in E. coli as described by flux ratio analyses using manually 

derived analytic equations15. We used our method to estimate five key flux ratios based 

on the labeling patterns measured by gas chromatography mass spectrometry (GC-MS) 

of proteinogenic amino acids upon silylation. We then sampled a reference dataset of 

60,000 flux distributions using the E. coli central carbon metabolism network 

(Figure S1, Table S1), and simulated the labeling patterns of 21 intracellular 

metabolites and their fragments (Table S2), assuming growth on either 100% 

[1-13C] glucose, or a mix of 20% [U-13C] glucose and 80% naturally labeled glucose.  
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 Several parameters had to be defined prior to predictor training. The 

performance of the random forest depends on the number of decision trees in the forest 

(ntree), and the number of input features used at each tree node (mtry). To choose these 

parameters we used five-fold cross-validation on the training dataset. We tested 16 

combinations of ntree and mtry values for the five E. coli flux ratios. The combination 

of 100 prediction trees (ntree) with 20 mtry features delivered a good balance between 

predictor accuracy and computation time (Figure S2a). These two parameters were then 

applied throughout the study. The number of simulated points used for training also 

influences predictor accuracy and computation time. Our tests demonstrated that 

~10,000 simulated points were generally adequate in terms of generating a sufficiently 

accurate estimate of the key flux ratios in the E. coli dataset; thereafter, any further 

increase in the number of data points provided no tangible improvement in accuracy 

(Figure S2b). We took these results into account when extracting the training sets for 

the predictors (see Materials and Methods for details). 

 We trained predictors for the five E. coli flux ratios on the simulated training 

dataset and then assessed their performance on an independent simulated test dataset. 

In all cases, the mean absolute error was < 0.1 (Figure 2, second column). For 

comparison, we also applied the analytic formulas manually derived for the E. coli 

study15 (Table S3) to the same simulated test dataset. For all tested flux ratios, 

SUMOFLUX outperformed the analytic formulas in terms of mean absolute error on 

the test dataset (Figure 2, fourth column). This possibly reflects the fact that the flux 

estimates for the test dataset were obtained through sampling of the entire solution 

space, and do not comply with the some of the implicit simplifications and assumptions 

for the  network, fluxes, and reaction reversibility, which are generally used to derive 

the analytic formulas15. For example, in calculating the fraction of oxaloacetate from 

phosphoenolpyruvate, the flux through the glyoxylate shunt was assumed to be zero, 

whereas in the test set it possessed a wide range of values (Figure 2e). Furthermore, the 

analytic formula for estimating the malic enzyme flux ratio provides only a lower bound 

value (Figure 2d). We also compared flux estimates generated by the two approaches 

using the real experimental 13C data from this study (Figure 2, third column, and Table 

S4); both produced concordant estimates (Pearson correlation coefficient, PCC > 0.89 

for all ratios). 
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Figure 2. Comparison of SUMOFLUX and analytic formula estimates for flux ratios in E. coli 
central carbon metabolism. From left to right: a schematic representation of the flux ratio; density plot 
representing SUMOFLUX estimates versus the true flux ratios for in silico data; comparison of the 
SUMOFLUX and analytic formula estimates for the experimental data; density plot representing analytic 
formula estimates versus the true flux ratios for in silico data. Vertical error bars in the third panel 
represent [10%-90%] SUMOFLUX prediction quantiles, horizontal error bars represent standard 
deviation obtained with the analytic formula estimate. (a) Glycolysis versus PPP. (b) Pyruvate fraction 
from the E-D pathway. (c) PEP fraction from gluconeogenesis. (d) Pyruvate fraction from the malic 
enzyme flux. (e) Oxaloacetate fraction from anaplerosis from PEP. Ratios (a)-(c) were estimated from 
[1-13C] glucose experiment, ratios (d) and (e) were estimated from 20% [U-13C] and 80% naturally 
labeled glucose experiment. 6PG – 6-phosho-D-gluconate; αKG – α-ketoglutarate; AcCoA – acetyl-
CoA; E-D – Entner-Doudoroff pathway; F6P – fructose-6-phosphate; Fum – fumarate; G6P – glucose-
6-phosphate; Gox – glyoxylate; ICT – isocitrate; KDPG - 2-Keto-3-deoxy-6-phosphogluconate; MAE – 
mean absolute error; Mal – malate; PCC – Pearson correlation coefficient; PEP – phosphoenolpyruvate; 
PGA – phosphoglycerate; PPP – pentose phosphate pathway. 
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To further demonstrate the scalability and generality of SUMOFLUX, we 

applied the same approach and parameters to estimate four flux ratios using the GC-

MS data for amino acids collected for 121 Bacillus subtilis transcription factor mutants 

grown on a mixture of 80% [1-13C] glucose and 20% [U-13C] glucose16. Again, the 

random forest predictor outperformed the analytic formulas for the in silico test dataset 

(Figure S3). For three flux ratios, the two approaches provided consistent estimates for 

the experimental data (PCC > 0.65). However, the malic enzyme ratio could not be 

resolved with sufficient precision using either method. Presumably, the mixture of 

tracers chosen was poorly suited to this task.   

In order to highlight the scope of SUMOFLUX applicability in context of global 
13C flux analysis methods, we compared it with the classical 13C-metabolic flux analysis 

by global isotopomer balancing (13C-MFA) approach, which seeks for a global flux 

solution that provides the best fit to the experimental data – measured metabolite 

labeling patterns and physiological parameters. We applied 13C-MFA to the data for the 

same eight E. coli strains and added glucose uptake rates15 as an additional input. With 

INCA software9, we calculated the best flux fit and flux confidence intervals using 

parameter continuation procedure (Table S5). SUMOFLUX and 13C-MFA differ in the 

demand for input information and produce different outcomes (flux ratios vs. net 

fluxes). To compare, we calculated flux ratios from the net fluxes estimated by 
13C-MFA and directly compared those to SUMOFLUX results. Confidence intervals 

on flux ratios for 13C-MFA were obtained by repeating the optimization procedure 1000 

times for each strain. Because it employs less input data, SUMOFLUX is expected to 

be worse than 13C-MFA. In general, however, the flux ratio estimates obtained with the 

two methods were in good agreement (PCC>0.83 for all ratios calculated for the best 

fit to either [1-13C] data, [U-13C] data, or combined dataset, Figure S4). Surprisingly, in 

several cases the confidence intervals of 13C-MFA flux ratio estimates were much larger 

than the prediction quantiles of SUMOFLUX and the accuracy of flux ratio estimates 

depended on the experimental dataset used for the fitting, perhaps pointing to the 

presence of inconsistent or overly noisy data that decrease the precision of 13C-MFA 

estimates. This example illustrates the complementarity of the two approaches. 
13C-MFA provides global flux solutions, but in some cases the targeted approach 

performs better in resolving local fluxes.     
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Collectively, the E. coli and B. subtilis results demonstrate that SUMOFLUX is 

broadly applicable to real experimental data with an accuracy that is comparable, if not 

better, than that of manually derived formulas. Even though there is no guarantee that 

a specific flux ratio can be accurately estimated for a given metabolic network, tracer, 

or experimental data, SUMOFLUX does allow for rapid verification and ad-hoc 

experimental design. Beyond the speed and ease with which predictors can be generated 

for calculating metabolic flux ratios from 13C data, SUMOFLUX offers additional 

benefits of robust prediction, the option to vary and optimize experimental design, and 

the estimation of novel ratios that we explore in the next sections. 

 

SUMOFLUX is robust in terms of experimental noise and reversible reactions. 

Excessive measurement noise and underestimation of exchange flux of bidirectional 

reactions are two frequent causes of inaccurate flux estimates. We set out to assess their 

influence on SUMOFLUX by performing an in silico experiment using E. coli, varying 

the values of the superimposed measurement noise by up to 0.10, i.e. 10-fold higher 

than that routinely obtained with careful peak integration. We also used exchange flux 

values of up to 100-fold that of the net flux value, i.e. a model approximation of full 

equilibration of the reactants. To exclude potential prediction accuracy differences 

arising from different training and test datasets, we used one set of flux vectors, divided 

into training and test subsets. Addition of four different noise levels and variation of 

four exchange flux magnitude values resulted in 16 datasets, which differ only in these 

two parameters. We again trained the predictors for each of the datasets using the 

training subset and calculated the mean absolute error (MAE) on an independent test 

subset. As a rule of thumb, we consider a ratio to be accurately predictable if the 

MAE < 0.05. This criterion was met by the Entner-Doudoroff, glycolysis/PP pathway, 

and anaplerosis ratio predictors, within the normal ranges for noise (~ 0.01) and 

exchange flux (~10 times the net flux value) (Figure 3a). The other two tested predictors 

were less precise, and are better suited for the analysis of substantial flux changes. 

Alternatively, different tracers and measurement techniques could be tested, as outlined 

below, to achieve more accurate analyses. We also performed robustness analyses of 

the analytic equations, and found that only the formula for the Entner-Doudoroff 

pathway was sufficiently robust in terms of noise and flux exchange that were within 

the normal ranges (Figure S5). The remaining four formulas were either extremely 



 

 

Chapter 2 

59 

sensitive to noise (gluconeogenesis ratio), or were poorly suited to the entire range of 

flux maps. 

 

 

 

Another important aspect that can be assessed with this type of analysis is to 

what extent erroneous assumptions in the training dataset affect the accuracy of the flux 

estimates in the test dataset. We used the simulated data described above to test the 

effects of noise and exchange flux magnitude values separately. First, we fixed the 

exchange flux magnitude to 1, and calculated the accuracy of the flux ratio predictors 

trained and tested on 16 combinations of train and test subsets with the four 

independently added noise levels. Notably, we observed that for all ratios 

Figure 3. SUMOFLUX is robust in terms of experimental noise and exchange flux magnitude.  
(a) Mean absolute errors on the testing dataset of five flux ratio predictors applied to in silico data with 
different amount of measurement noise and exchange flux magnitude. The dashed rectangle indicates 
the normal range of noise (0.01) and exchange flux magnitude (10 times the net flux). (b) Mean absolute 
errors on the testing datasets with different noise levels of five flux ratio predictors trained on datasets 
with different amount of measurement noise. The exchange flux magnitude was set to 1 for all datasets. 
(c) Mean absolute errors on the testing dataset with different exchange flux magnitudes of five flux ratio 
predictors trained on datasets with different values of exchange flux magnitude. The noise level was set 
to 0.01 for all datasets.  E-D – Entner-Doudoroff pathway, MAE – mean absolute error; PPP – pentose 
phosphate pathway. 
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underestimating the level of noise in the data was detrimental for the flux ratio 

prediction accuracies. On the contrary, overestimating the noise in the training data 

resulted in better flux estimates in the less noisy test datasets compared to the test data 

with the same levels of noise as in training (Figure 3b). In practice, it is always desirable 

to only superimpose a realistic level of noise to in silico data, as the addition of noise 

inevitably decreases the prediction accuracy. However, it is advisable to adopt a 

conservative over-estimate noise to avoid overfitting.  

Adequate magnitude of exchange fluxes appears to be even more important for 

predictor accuracy. We observed that both under- and over-estimated exchange flux 

magnitude values resulted in lower accuracy compared to the accuracy on the test 

dataset corresponding to the training (Figure 3c, diagonal values). Remarkably, in these 

simulated datasets we set one exchange value as upper bound for all reversible fluxes 

in the model, which presumably has a greater effect on prediction accuracy than an 

exchange flux magnitude of a single reaction. In biological systems, we expect large 

differences in the reversible flux magnitudes of different enzymes, and it is beneficial 

to include this information in the model, when available.  

One way to control whether the simulated data used for training and testing 

adequately represents the experimental data, is to compare the distributions of inter-

quantile ranges of the flux ratio estimates for the experimental data to the ones of the 

test data. In our examples, the distributions of the inter-quantile ranges of the flux 

estimates for under-estimated noise or inappropriately estimated exchange flux 

estimates are significantly different (p < 0.01, Wilcoxon-Mann-Whitney test, 

Figure S6). In practice, it is advisable to compare the inter-quantile range distributions 

of the flux ratio predictions for in silico and experimental data, although statistical tests 

should be used with caution due to very different sample sizes.   

In summary, SUMOFLUX provides flux ratio predictors that are generally 

robust to noise and exchange fluxes, both of which are major confounding factors in 

labeling experiments. This robustness is dependent on flux ratio, labeling strategy, and 

the available measurements used for prediction, and can easily be assessed, if required, 

in each particular case. 

 

Estimation of a novel flux ratio for the glyoxylate shunt. The glyoxylate shunt plays 

an essential role in bacterial adaptation to alternative carbon sources, such as acetate 

and fatty acids, as it replenishes the TCA cycle with C2 carbon fragments. Hence, this 
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pathway has an important anaplerotic function besides phosphoenolpyruvate 

carboxylase. No analytic formulas were developed to resolve the relative contribution 

of the glyoxylate shunt due to the complexity of carbon rearrangement at this branch 

point, the additional complication introduced by multiple cycling in the TCA cycle, and 

the similarity of the labeling patterns of the relevant metabolites. Here, we opted to 

tentatively resolve this pathway using SUMOFLUX, and the 13C-data available from 

GC-MS analyses of protein-bound amino acids in E. coli15. Using the same simulated 

dataset described above, we trained two more predictors to estimate flux contributions 

to the formation of oxaloacetate, one derived from the glyoxylate shunt, and the other 

from the TCA cycle (Figure 4a). The accuracy of the predictors achieved for the in 

silico test dataset was acceptable (MAE < 0.07) (Figure 4b, c). Collectively, these two 

novel ratio predictors, and the one previously trained to estimate the anaplerotic 

reaction from phosphoenolpyruvate to oxaloacetate (Figure 2e), allowed us to 

comprehensively assess the metabolic source of oxaloacetate. The prediction intervals 

of the estimates for the experimental data were in the range of 10% due to the difficulty 

of precisely resolving the glyoxylate shunt based on the available data. Nevertheless, 

the estimated values reflect those expected from the literature. Specifically, the 

differences between strains were consistent with their genotype (Figure 4d, S7, Table 

S6). The estimated glyoxylate shunt contribution for wild type bacteria was 16 ± 10 %, 

with the highest glyoxylate shunt ratio (32 ± 15 %) estimated for the Δpgi mutant, 

which is consistent with other studies26,27. In contrast, both the double Δmdh Δsdh 

mutant and the ΔfumA mutant, in which the pathway from succinate to malate is 

disrupted, had an almost zero glyoxylate shunt and TCA cycle activity, with the major 

contribution to the oxaloacetate pool being the flux derived from phosphoenolpyruvate. 

The Δzwf mutant, with a compromised oxidative pentose phosphate pathway, exhibited 

the highest fraction for the TCA cycle flux (49 ± 18 %), which reflects a compensatory 

response to ensure NADPH equilibrium via isocitrate dehydrogenase26. The glyoxylate 

shunt example shows how novel quantitative flux predictors can be rapidly generated 

using our approach.   
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Experimental design. In the context of metabolic analyses, a priori experimental 

design aims at identifying the best settings from simulated data with which to accurately 

estimate the fluxes of interest. In global isotopomer balancing and fitting, numerical 

simulations have been frequently used to optimize tracer selection for one specific flux 

state, e.g. that of an unperturbed wild-type strain23-25. In targeted flux ratio analysis with 

manually derived analytic equations, simulation-assisted experimental design is not 

possible, as each equation is formulated for a specific experimental condition chosen 

by the researcher, and no simulation procedure is employed to assess its accuracy. In 

contrast, the speed and simplicity of SUMOFLUX facilitates the rapid testing of altered 

metabolic models, tracer choices, or data sets for the derivation of a flux ratio of 

interest. This enables us to systematically, yet rapidly, identify the optimal 

experimental strategy from those available.  

 We demonstrated this feature of SUMOFLUX by testing different settings for 

the B. subtilis labeling experiment. Using the same reference flux dataset as above, we 

simulated the 13C metabolite labeling patterns for eight different glucose labeling 

strategies. For each label, we simulated the measurements that could be obtained using 

four different measurement techniques: GC-MS analyses of amino acids, liquid 

chromatography LC-MS of intact intracellular metabolites, LC-MS/MS analyses of 

intact metabolites and their fragments28 (Table S7), and all individual MS/MS traces 

used in multiple reaction monitoring of metabolites (Table S8). For each of the 32 

Figure 4. SUMOFLUX resolves a novel flux ratio in central carbon metabolism of E. coli. (a) A 
schematic representation of the glyoxylate shunt, TCA cycle and anaplerosis from PEP flux fractions. 
(b) Density plot representing SUMOFLUX estimates for the flux fraction from glyoxylate shunt versus 
the true flux ratios for in silico data. (c) Density plot representing SUMOFLUX estimates for the flux 
fraction from the TCA cycle versus the true flux ratios for in silico data. Both ratios were resolved for 
experiment with 20 % [U-13C] and 80 % naturally labeled glucose. (d) Predictions for the three flux 
fractions for the experimental data. αKG – α-ketoglutarate; AcCoA – acetyl-CoA; Fum – fumarate; Gox 
– glyoxylate; ICT – isocitrate; MAE – mean absolute error; Mal – malate; PEP – phosphoenolpyruvate; 
TCA – tricarboxylic acid cycle. 
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experimental setups, we rapidly trained random forest predictors for the malic enzyme, 

gluconeogenesis, and glycolysis/PP pathway flux ratios, and assessed their 

performance in silico on the test dataset. To compensate for the different number of 

features and avoid over-fitting, we introduced a feature selection procedure using cross-

validation on the training dataset prior to training (see Materials and Methods for 

details). As expected, flux calculability depends on the flux ratio of interest, the tracer, 

and the measurement platform (Figure 5). For the malic enzyme and glycolysis ratios, 

LC-based methods are preferable to GC-MS. Tracers such as [6-13C], [5,6-13C], or 

[4,5,6-13C] glucose offer the best overall accuracy (MAE < 0.05). Any of these tracers 

could be selected to quantify the three flux ratios in a single experiment. For specific 

flux ratios, the average error was reduced to about MAE 0.02-0.03 by selecting specific 

tracers. However, when taking into account the cost of tracers, a labeling experiment 

using 50% [U-13C] and 50% naturally labeled glucose might be seen as a compromise 

between prediction accuracy and cost. This analysis underlines the ease with which an 

experimental design targeted to address specific biological questions can be 

implemented using the SUMOFLUX workflow. 

 

 

 

Figure 5. Optimizing experimental design to improve the estimation of three flux ratios in Bacillus 
subtilis central carbon metabolism. Mean absolute errors on the test dataset of three flux ratio 
predictors applied to in silico data simulated with different experimental setups. GC-MS – gas 
chromatography mass spectrometry, LC-MS – liquid chromatography mass spectrometry; LC-MS/MS - 
liquid chromatography-tandem mass spectrometry; LC-MRM – liquid chromatography with multiple 
reaction monitoring information;  MAE – mean absolute error; PPP – pentose phosphate pathway. 
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DISCUSSION 
We have developed a generalized method for targeted analysis of 13C metabolic flux 

ratios, that builds on surrogate modeling (SUMOFLUX), i.e. uses a synthetic dataset to 

train a machine learning predictor to estimate a given flux ratio directly from 13C-data. 

Synthetic datasets are constructed in silico on the sole basis of four easily accessible 

inputs: a stoichiometric model of metabolism, a list of possible metabolic substrates 

and their byproducts, a configuration of the 13C-substrate, and a list of measurable 

metabolites with measurement error. These inputs are sufficient to generate a 

representative synthetic dataset covering a broad range of fluxes and flux ratios. A 

random forest predictor is then trained on this dataset to capture the relationship 

between simulated 13C-data and the flux ratio of interest that holds true for all of the 

simulated data points. Therefore, the same predictor can be used to estimate flux ratios 

for normal cells, as well as for knockout mutants without the need for additional 

information on physiological parameters or their uptake/consumption rates. Due to the 

fact that the SUMOFLUX predictor targets only a single flux ratio at a time, it is very 

efficient in assessing calculability and eventually estimating flux values from real data. 

This feature is particularly relevant when tackling complex fluxes29,30, as dozens of 

different experimental designs can be trialed within a few hours. If necessary, 

measurement data from parallel experiments using different 13C tracers can be 

combined and passed as input features into the SUMOFLUX workflow. This approach 

has been proven to improve flux estimates in certain cases31,32. The surrogate modeling 

of cells grown in rich media with multiple substrates is made possible because carbon 

labeling experiments can be simulated for large or even genome-wide networks33, 

inclusive of all the key metabolic pathways. Overall, SUMOFLUX is generally 

applicable to virtually any combination of metabolic model (organism), medium 

composition, isotopic tracer, or measurement technique. 

 The crucial step in SUMOFLUX is the construction of the synthetic data used 

for predictor training. To obtain representative data, it is extremely important that the 

surrogate model is based on realistic assumptions of the metabolic network and 

experimental measurement accuracy. Prior knowledge can be integrated into the 

sampling procedure to limit the space of flux distributions and potentially improve the 

predictor’s performance. Network simplification and constraining bear some risks. The 

metabolic model should encode all possible metabolic reactions such that 13C-patterns 
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can be correctly assigned to the underlying flux states. If a reaction is omitted from the 

surrogate model, the predictor will provide biased estimates. Although the omission of 

reactions from a model leads to better accuracy in silico, that step would only be 

justified if the reaction was proven to be inactive under all conditions tested, e.g. by 

biochemical assay or enzyme quantification. Unless such information is available, it is 

recommended that all reactions be included in the model in order to achieve robust 

predictor training. For similar reasons, it is equally important to provide a real-life or 

conservative error model of the measurement data. According to in silico testing, 

overestimating noise in the simulated dataset does not lead to overestimating 

predictor’s accuracy, on the contrary to underestimating noise. In our experience, a 

valid sanity check is to verify that the simulated data distribution covers the measured 

mass isotopomer fractions by comparing the distributions of simulated and 

experimental data. Another indicator of potential discrepancies between the simulated 

and experimental data is the difference between the distributions of interquantile ranges 

of the flux ratio predictions, which can be tested with a nonparametric test, such as 

Wilcoxon-Mann-Whitney. With these simple procedures, errors in the metabolic 

model, substrate composition, or experimental measurement can be detected. 

 Targeted flux ratio analysis using SUMOFLUX is best suited to the assessment 

of flux ratio with high accuracy, on selected metabolic nodes, or when mid to large 

throughput is necessary. High-throughput is made possible by the speed of the approach 

and by the fact that only 13C-data are required. Once trained, the predictor can be 

applied to estimate flux ratios for all tested samples simultaneously. A further 

optimization of experimental measurement time can be explored by including feature 

selection during training to identify the most informative as well as negligible 13C-

features. SUMOFLUX complements the alternative global isotopomer balancing and 

iterative fitting method (13C-MFA), which requires measurements of 

uptake/consumption rates, and more detailed analyses of each dataset, but provides net 

flux estimates for all reactions in the model. Our short comparison with the data of 

eight E. coli strains demonstrated that the two approach deliver consistent flux ratio 

estimates. In some instances, the confidence of SUMOFLUX estimates was better. 

Hence, it could be used before 13C-MFA to increase its performance. In this case, 

multiple flux ratios could be estimated independently to obtain experimental 

information on different degrees of freedom prior to applying global 13C flux analysis 

methods34. 
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 In principle, the concept of SUMOFLUX can be extended to isotopically non-

stationary data. The simulation of dynamic 13C-data can be completed with the 

inclusion of metabolite concentrations in the sampling procedure with simulation of 13C 

dynamics at predefined time points to be matched in the experiment. The training of 

flux predictors from isotopically non-stationary data can use the same procedure 

outlined for stationary data, even though it is substantially more demanding because of 

the requirement to sample an increased number of degrees of freedom and measurable 

labeling features. However, it must be stressed that non-stationary labeling experiments 

are much more labor-intensive and data demanding, and can be performed only at low 

throughput35. For practical reasons, the traditional approach of flux estimation by both 

global35,36 or local37 iterative fitting is better suited to the analysis of small-scale non-

stationary labeling experiments.  

 Overall, the concepts underlying the proposed SUMOFLUX workflow are 

easily transferrable and can be applied alone, or in combination with other methods, to 

address different flux analyses questions. We believe that SUMOFLUX has the 

potential to become a core tool in the analysis of metabolic fluxes, and opens new 

possibilities for high-throughput flux profiling of a wide variety of metabolic systems. 
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EXPERIMENTAL PROCEDURES 
 

Network construction. Metabolic network with carbon atom transitions and the lists 

of input and output metabolites are defined by the user and are represented in the mat-

file format required by the INCA software9. In order to reduce the dependency on the 

biomass vector coefficients, a separate output flux is defined for each of the biomass 

precursors, therefore biomass precursors are also added to the list of outputs. The 

substrates are defined as unbalanced compounds and do not participate in the 

stoichiometric equation system. 

 

Flux sampling and ratio calculation. In the flux sampling procedure, the definitions 

of net, exchange, forward and backward fluxes are used38. By default, the lower and 

upper bounds for reversible reactions are set to [-100 100], for irreversible reactions to 

[0 100], and the major uptake flux is set to 10. First, the initial net flux solution is found 

by minimizing the sum of squared fluxes with stoichiometric constraints, inequality 

constraints on the output fluxes, and flux bounds using the MATLAB solver fmincon. 

Second, a cohort of net flux vectors is generated with Monte Carlo sampling by adding 

linear combinations of null vectors of the stoichiometric matrix with random 

coefficients to the initial flux solution. Third, for each net flux, an exchange flux value 

is randomly generated in the order of magnitude relative to the net flux defined by the 

user (by default 1), and forward and backward flux values are calculated accordingly. 

Optionally, to achieve uniform coverage of values for a particular flux ratio or set of 

ratios, the ratio range is split into segments (for example, [0 0.1], [0.1 0.2] ... [0.9 1]), 

and the flux sampling procedure is repeated for each segment with the end points set as 

flux ratio constraints in the first step. The flux ratio of interest is calculated for each of 

the flux vectors with a formula defined by the user.  

 
13C labeling patterns simulation and measured data simulation. Given the label of 

the substrate(s) and the list of metabolites and fragments, metabolite labeling patterns 

are simulated for each flux solution using the INCA software9. The INCA ‘simulate’ 

procedure is integrated into the SUMOFLUX workflow and is called internally for each 

of the sampled flux vectors. In case parallel computing is available, this procedure is 

parallelized. 
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The measurement data is simulated by extracting the measured compounds 

from the simulated data matrix and adding uniform noise to the measurements (0.01 by 

default). After adding noise, the mass distribution vectors for each metabolite are 

normalized. 

 

Prediction procedures. Preparing the training and test samples and building the 

predictor. For each prediction task, a subset of data points is extracted from the entire 

simulated dataset to ensure that the dependent variable (flux ratio of interest) is 

uniformly distributed on the feasible range. The flux ratio values of the whole dataset 

are binned into segments (for example, [0 0.1], [0.1 0.2] … [0.9 1]), and from each bin 

an equal amount of samples is drawn without replacement. This simulated subset is 

randomly divided in proportion 2:1 to form the training and test subsets. The MATLAB 

randomforest package (https://code.google.com/archive/p/randomforest-matlab/) 

modified to perform quantile regression21 is used to build the predictor. The 

regRF_train function is called with ntree trees and mtry variables for the node split (by 

default, ntree=100 and mtry=20) to train the predictor on the training dataset. The 

predictor’s estimates on the test dataset are obtained with the function regRF_predict, 

and the performance is assessed by calculating the mean absolute error between the 

estimates and the known simulated flux ratio values. 

 

Cross-validation procedure. The five-fold cross-validation procedure is performed in 

the following way: the training dataset is randomly divided into five parts of equal size. 

One of the parts is the validation subset and is used to assess the predictor performance, 

whereas the other four are used to train the predictor with a certain set of parameters. 

The procedure is repeated until all subsets were used as validation subsets once, and 

the error is averaged across all the subsets.   

 

Prediction quantile calculation. The prediction quantile calculation is based on the 

quantile regression forest algorithm21. To calculate prediction quantiles for a new data 

point, regRF_predict function is called with extra_options parameters 

(extra_options.predict_all=true, extra_options.nodes=1). For each tree in the forest, the 

terminal node where the new data point propagated is recorded. The same procedure is 

repeated for all data points in the training dataset. For each data point in the training 

dataset, a weight is calculated based on how many times this data point and the new 
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data point propagated to the same terminal node. The data points in the training dataset 

are sorted by the value of the dependent variable (flux ratio of interest), and the weights 

cumulative function is calculated. This function is used to estimate the prediction 

median (50%-quantile) and to report the [10% 90%] prediction interval. 

 

Feature selection. If the number of features (measured labeling patterns) is large, the 

predictor’s performance on the test dataset might decrease due to overfitting to the 

training dataset. To reduce the chance of overfitting, feature selection is performed 

using the cross-validation procedure. First, the predictor is trained based on all available 

features, and its performance is assessed with cross-validation. Second, the features are 

ranked according to the feature importance value calculated during training by 

regRF_train function. Third, the predictor is trained based on [50%, 25%, 10%, 5%] of 

the most important features. The mean absolute error is calculated with cross-

validation. The percentage of features with the smallest MAE is selected for the further 

training. 

 

Noise and exchange flux magnitude sensitivity analysis. To assess the sensitivity of 

the flux ratio predictors to noise and exchange flux magnitude, a set of 60’000 net fluxes 

was sampled, and the exchange flux values were randomly generated using each of the 

tested parameters as the upper bound: [0.1 1 10 100]. Isotope labeling was simulated 

for each of the four flux datasets as described previously. For each dataset, random 

noise was added using each of the tested parameters as the upper bound: 

[0 0.01 0.05 0.1]. The same separation into training and test subsets was used for all 16 

simulated datasets. The training and testing was performed on the subsets with 

matching parameters. To assess the effect of the mismatched training and testing 

parameters, datasets with fixed noise level (0.01) and four different exchange flux 

magnitude values, or datasets with fixed exchange flux magnitude (1) and four different 

noise levels were used. The interquantile range distributions of the testing datasets were 

compared using right-tailed Wilcoxon-Mann-Whitney rank sum test (ranksum function 

in MATLAB).   

 
13C Metabolic flux analysis (MFA). 13C-MFA was performed with INCA software9 

in MATLAB 2013a (MathWorks Inc). The measured labeling data and glucose uptake 

rates15 were used as inputs to the model. Three sets of data were used to constrain the 
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model: the data from [1-13C] experiment only, the data from [U-13C] experiment only, 

and the combined dataset from both experiments. Each experimental strain was 

analyzed separately. Best fit flux solution and 95% flux confidence intervals were 

calculated with the parameter continuation procedure (‘continuate’). The [10% 90%] 

quantiles of the flux ratio distributions were estimated from the 1000 solutions found 

with the optimization procedure (‘estimate’) for each experimental strain.  

 

Experimental data 

Experimental data for E. coli and B. subtilis central carbon metabolism studies were 

downloaded from the supplementary materials available for the corresponding 

papers15,16.  

 

Code availability 

MATLAB code for SUMOFLUX and example scripts are available at 

http://www.imsb.ethz.ch/research/zamboni/resources.html. All scripts are compatible 

with MATLAB 2013a (MathWorks Inc).  
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ABSTRACT 
The quest for finding the Achilles’ heel of pathogenic mycobacteria to be exploited 

therapeutically continues after decades of efforts. Accumulated evidence suggests that 

during infection, mycobacteria have access to a variety of nutrients, among which 

amino acids play an important role. Understanding the metabolic adjustments necessary 

for amino acids utilization could provide targets for drug discovery. To characterize 

amino acid utilization in mycobacteria, we use 13C tracing experiments and analyze 

metabolic fluxes in Mycobacterium smegmatis growing in glucose and amino acid 

containing media, and in Mycobacterium tuberculosis infecting macrophage-like 

THP-1 cells. Since global 13C metabolic flux analysis in composite media is restricted 

by the complexity of the metabolic networks and the lack of measurement data to be 

used as constraints, we perform targeted 13C flux ratio analysis with a recently 

developed SUMOFLUX workflow. Due to the combination of machine learning used 

to build flux ratio predictors, and surrogate modelling used to simulate a comprehensive 

training dataset, SUMOFLUX offers the possibility to estimate any calculable flux ratio 

from the given labeling data even in case of poorly determined networks. With 

SUMOFLUX, we calculated relative fractions of amino acid biosynthesis and 

catabolism, and resolved key central carbon metabolism ratios in M. smegmatis 

growing in defined co-feed media. All amino acids were consumed by the bacteria and 

affected metabolic fluxes in central metabolism, with glutamate having the largest 

impact and catabolic fraction. We investigated the speed of metabolic adaptation to the 

glucose and glutamate co-feed with dynamic medium shift experiments, and discovered 

that M. smegmatis rearranges the fluxes in central metabolism within seconds after 

glutamate supplementation. In order to quantify amino acid exchange fluxes between 

M. tuberculosis and its host during infection, we applied SUMOFLUX to resolve amino 

acid biosynthesis fractions from the labeling patterns of protein-bound amino acids 

derived from bacterial and THP-1 cells.  This analysis revealed that during infection, 

biosynthesis fraction of most amino acids decreased compared to growth in rich 

medium, suggesting not only their availability for bacterial uptake, but sparsity of other 

carbon sources for their intracellular production. Overall, our results indicate that 

mycobacteria can rapidly adapt to nutrient availability in their environment and 

consume sparsely available amino acids as soon as they become available, which might 
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explain the failures of targeted therapeutic interventions, and underline the need for a 

complex therapies aiming at several targets simultaneously. 

 

 

INTRODUCTION 
Mycobacteria have been investigated for decades, since the species Mycobacterium 

tuberculosis and Mycobacterium leprae are among the most widespread deadly human 

pathogens threatening global health. Laboratory studies on these bacteria are hampered 

by the fact that bacteria reside in various states (acute or chronic infections), grow at 

slow rates, and are difficult to culture since humans are their only natural host. Despite 

advances of mycobacterial research, we are still far from understanding the in vivo host-

pathogen interactions, necessary to control and defeat the disease1-5.  

Upon infection, M. tuberculosis resides in alveolar macrophages, where it is 

exposed to various host defense mechanisms, like an acidic environment and sparse 

nutrient supply3,6-8. M. tuberculosis can autonomously produce most of the essential 

metabolites, which is believed to be one of its virulence strategies9. The role of 

metabolic pathways and substrates has been largely studied by infection experiments 

with auxotrophic mutants6. These studies highlighted the relevance of gluconeogenic 

carbon sources inside the host10-14, among those cholesterol being the major one15,16. 

Later studies revealed the concomitant essentiality of glycolysis17. Furthermore, there 

is growing evidence that apart from carbohydrates, mycobacteria have access to amino 

acids derived from the host18-20. Metabolomics experiments focusing on carbon co-

utilization in M. tuberculosis21 and proteomics analysis of central carbon metabolism 

of its non-pathogenic relative Mycobacterium smegmatis22 revealed the ability of 

mycobacteria to adjust to simultaneous utilization of multiple carbon sources, which 

might be the key to its virulence success. 

Despite accumulating knowledge on mycobacterial ability to co-metabolize 

carbohydrates and amino acids, there is a lack of quantitative understanding of the 

underlying metabolic adaptations. In this work, we set out to quantify metabolic fluxes 

in M. smegmatis, which shares many metabolic traits with its pathogenic relatives23,24, 

during co-utilization of glucose and amino acids. The most direct experimental setup 

to quantify metabolic fluxes is 13C labeling, in which the label propagation from the 

substrate to the metabolic intermediates is detected by mass spectrometry or nuclear 
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magnetic resonance spectroscopy. With the classical 13C metabolic flux analysis 

(13C-MFA), the global flux distribution through the network is fitted to the labeling 

data, constrained by measured substrate uptake, secretion and growth rates. In a 

composite media, however, application of 13C-MFA becomes challenging due to 

several reasons. First, with the number of substrates, the degrees of freedom of the 

network increase, thus more measurements are required to determine fluxes. Second, 

there is no guarantee that the labeling patterns contain sufficient information to estimate 

the underlying fluxes. For example, if one substrate is labeled and the other is not, and 

they fuel different parts of the metabolic network, most of the detected metabolites will 

be either fully labeled or unlabeled, and only the intermediates at the convolution point 

of the substrates’ catabolic pathways will have distinct labeling patterns. Therefore, it 

would be necessary to perform several labeling experiments in parallel, with different 

tracers targeting elucidation of different parts of the metabolic network25. Third, 
13C-MFA requires a closed carbon balance provided by additional measurements of 

physiological parameters, which are not always feasible. 

Due to these challenges, the application of 13C-MFA for flux estimation in 

composite media provides in most cases only qualitative information. For example, 

when multiple equally plausible flux solutions exist26, or fluxes can be accurately fitted 

in a subnetwork of the studied metabolic network27, the outcome of the flux analysis 

can be interpreted only in a conditional and comparative manner. In the to date most 

comprehensive 13C labeling experiment with M. tuberculosis infecting macrophage-

like THP-1 cells, 13C flux spectral analysis based on 13C-MFA was applied to 

investigate bacterial amino acid consumption during early infection28. To predict which 

substrates M. tuberculosis consumed from the host, thousands of flux solutions 

generated for metabolic networks with different substrate configurations were fitted to 

the labeling patterns of host- and pathogen-derived amino acids. Despite extensive 

calculations, the outcome of the flux spectrum scanning was qualitative, stating that the 

model that included alanine, serine and acetate as substrates provided the best fit. 

Manual inspection of the labeling data was required to expand the potential substrate 

list to glutamate and aspartate28. In several other co-metabolism studies, the labeling 

patterns of metabolic intermediates were solely manually compared to infer the 

contribution of each substrate to their formation21,29. 

Given the complexity and uncertainty of active metabolic networks in 

composite media, it might be beneficial to choose a local 13C flux analysis method to 
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quantify specific nodes in the network rather than all fluxes at once25. For example, the 

targeted 13C flux ratio analysis method SUMOFLUX (Chapter 2) has the potential to 

tackle the challenges posed by complex media conditions. First, SUMOFLUX exploits 

machine learning to build flux ratio predictors given the metabolic network, substrate 

label and available measurements. The predictors are trained on a large dataset 

simulated with surrogate modelling that consists of thousands of stoichiometrically 

feasible flux distributions and corresponding metabolite labeling patterns. Therefore, 

in case of an underdetermined network, a broad range of possible fluxes can be 

generated in the simulation procedure and further used to build a generalized flux ratio 

predictor. Second, the predictor testing procedure embedded in SUMOFLUX enables 

rapid evaluation of flux ratio resolvability given the available data and experimental 

setup. Therefore, even when only sparse measurements are provided, SUMOFLUX can 

be used to test which flux ratios can be estimated, in order to extract the most 

information from the available data. Third, due to the surrogate modelling, 

SUMOFLUX does not require additional measurements apart from the metabolite 

labeling patterns, since different configurations of physiological parameters can be 

simulated in the training dataset. 

To investigate mycobacterial adaptations to co-metabolism of carbohydrates 

and amino acids, we analyzed metabolic fluxes of M. smegmatis grown in 20 defined 

two-substrate media comprised of [U-13C] glucose and a single unlabeled amino acid. 

We exploited SUMOFLUX to quantify specified biosynthesis and catabolism fractions 

along with several ratios describing central carbon metabolism for each amino acid 

condition. The 13C flux ratio analysis allowed us to compare metabolic rearrangements 

caused by different amino acids and rank them according to their impact on central 

metabolism. We discovered that glutamate is the most utilized amino acid, and followed 

up this condition by quantifying the fluxes with 13C-MFA from parallel labeling 

experiments, which confirmed global flux rearrangements in central metabolism. 

Additionally, we probed the speed of these rearrangements by following the label 

propagation in dynamic 13C experiments. 

Since SUMOFLUX provided quantitative estimates of the flux ratios upon co-

metabolism of glucose and amino acids in M. smegmatis, we decided to apply it to 

quantify flux ratios in publicly available dataset of M. tuberculosis growing in rich 

medium and infecting macrophage-like THP-1 cells28. Comparison of our flux ratio 

estimates upon growth in defined media revealed that M. smegmatis and 
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M. tuberculosis have similar amino acid utilization patterns, with glutamate and 

histidine having a high intracellular turnover. Finally, we quantified amino acid 

biosynthesis and catabolism fractions of M. tuberculosis in the early infection setup. 

Inside the macrophage, both fractions of most amino acids decreased, indicating, on the 

one hand, sparse availability of nutrients hardly sufficient for catabolic activity, and, on 

the other hand, mycobacterial simultaneous uptake of several amino acids during 

infection. Our targeted 13C metabolic flux ratio analysis with SUMOFLUX provides 

quantitative information on complex inter-species interactions, and elucidates the 

plasticity of mycobacterial amino acid utilization, which may partially explain the 

recurrent failures of the single target treatment strategies.    

 

 

RESULTS 
M. smegmatis has different patterns of amino acids co-utilization with glucose. To 

investigate the ability of mycobacteria to co-utilize amino acids with glucose, we grew 

M. smegmatis in minimal media containing one out of the 20 amino acids (in 

concentration of 2 g L-1) with [U-13C] glucose (2 g L-1) (Figure 1a). First, to assess 

whether amino acid supplementation benefited bacterial growth, we measured bacterial 

culture density in microtiter plates over a period of 80 h and compared in to growth on 

glucose alone. In all 20 co-feed conditions, M. smegmatis grew faster and/or achieved 

a higher culture density compared to the growth in glucose media (Figures 1b and S1, 

Table S1), indicating that each amino acid was consumed and utilized by the bacteria. 

Next, to assess the metabolic impact of the substrate amino acid in each 

condition, we measured steady state 13C labeling patterns of intracellular protein-bound 

amino acids with gas chromatography – mass spectrometry (GC-MS) in the bacterial 

cultures at OD600 ~ 1. The fractional labeling of the intracellular amino acids reflects 

the carbon propagation from the carbon sources present in the media through the 

bacterial metabolic network. In all tested conditions, solely two carbon sources were 

provided: the fully labeled [U-13C] glucose and the unlabeled amino acid. Hence, the 

lower the intracellular fractional labeling of the measured amino acid, the more carbons 

were derived from the unlabeled amino acid consumed from the media, and vice versa. 
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Hierarchical clustering of the fractional labeling measured for 12 amino acids displayed 

an association between metabolic proximity of amino acids in central metabolism 

(Figure 1a) and their mode of utilization (Figure 1c). For example, amino acids 

synthesized from the tricarboxylic acid (TCA) cycle intermediates α-ketoglutarate and 

oxaloacetate had the most influence on the fractional labeling of the other amino acids. 

On the other hand, amino acids synthesized from pyruvate were almost exclusively 

incorporated directly from the media, and only slightly influenced the fractional 

labeling of the other measured amino acids.  

Figure 1. Different effects of amino acid co-metabolism in M. smegmatis. (a) Schematic 
representation of the central carbon metabolism network of M. smegmatis with entry points of the 20 
amino acids. (b) Growth rate and maximal culture density of M. smegmatis grown on combinations of 
glucose and 20 single amino acids in 96 well plate. (c) Hierarchical clustering of the amino acid fractional 
labeling measured in M. smegmatis grown on combinations of [U-13C] glucose and 20 naturally labeled 
single amino acids. (d) Schematic definition of the biosynthesis and catabolism fraction of the amino 
acids. (e) SUMOFLUX estimates of biosynthesis and catabolism fractions for each amino acid in the 
corresponding medium containing [U-13C] glucose and a naturally labeled amino acid. Error bars 
indicate 50% prediction intervals. AA – amino acid; CCM – central carbon metabolism, GLC – glucose. 
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To obtain quantitative estimates of amino acid utilization, we exploited the 

targeted 13C flux ratio analysis method SUMOFLUX (Chapter 2). Since SUMOFLUX 

can be used to predict any flux ratio that can be calculated from the network fluxes, we 

defined two ratios of interest characterizing amino acid utilization: the fraction of 

intracellular biosynthesis versus uptake from the medium; and the fraction of amino 

acid catabolism versus the direct use in protein synthesis (Figure 1d, Table S2). When 

an amino acid is added to the medium, its intracellular biosynthesis fraction will depend 

on the measured labeling in the corresponding intracellular amino acid, whereas its 

catabolism fraction will depend on the measured labeling in all the other intracellular 

amino acids. For each of the 20 amino acid co-feed media and for the glucose medium 

we built a metabolic model (Figure 1a, Table S3), simulated the training and testing 

datasets, trained the predictors and tested their performance in silico (see Materials and 

Methods or Chapter 2 for details). In general, all predictors provided accurate estimates 

of the corresponding biosynthesis or catabolism ratios (mean absolute error, 

MAE < 0.1) (Figures S2 and S3). Only four predictors had a lower accuracy, the 

biosynthesis and catabolism predictors for glutamine (MAE = 0.11) and for arginine 

(MAE = 0.16), which was expected for amino acids that were not measured with 

GC-MS. 

SUMOFLUX estimates of biosynthesis and catabolism fractions for the 

experimental data complement the visual clustering of amino acid utilization patterns 

(Figure 1e). Indeed, relative catabolism fractions of amino acids produced in the TCA 

cycle were the highest, with more than 0.8 of the consumed amino acid being 

catabolized. With exception of alanine, which was highly catabolized, amino acids 

produced from pyruvate contributed less than 0.4 to catabolism. Serine was highly 

catabolized with very low intracellular turnover, since its intracellular biosynthesis 

fraction was less than 0.1 (Figure 1e). 

Formulating the two flux ratios, intracellular biosynthesis and catabolism, for 

each amino acid in the network, allowed us to quantify their metabolic fate. Although 

all 20 amino acids were taken up and used to sustain bacterial growth, their utilization 

patterns significantly varied. With some exceptions, amino acids entering the central 

metabolism network at the same metabolic node had similar utilization patterns. 

Biosynthetically costly amino acids were diverted mostly to biomass and less to 

catabolism, reflecting a trend to spare energy equivalents30 derived from glucose for 

other processes. 
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Central metabolic fluxes are rearranged upon availability of amino acids. Since all 

20 amino acids were not only taken up by M. smegmatis to be used for protein synthesis, 

but were further catabolized, we decided to investigate their catabolic paths and 

corresponding adjustment of central metabolic fluxes. Using the labeling data obtained 

in the co-feed experiments, we applied SUMOFLUX to estimate the flux ratios at the 

“crossroads” of major catabolic fluxes in central metabolism (Table S2). We focused 

on the three important metabolic nodes – phosphoenolpyruvate (PEP), pyruvate and 

oxaloacetate, which are responsible for the distribution of the carbon flux among 

catabolism, anabolism and energy supply of the cells31.  

First, we investigated the metabolic source of PEP, an important metabolite 

involved in glycolysis, gluconeogenesis and glucose uptake by the phosphotransferase 

system. Upon growth on glucose, PEP is derived from glycolysis in a reaction catalyzed 

by enolase (Eno), whereas upon growth on fatty acids or other gluconeogenic carbon 

sources, PEP is produced from oxaloacetate in a reaction catalyzed by PEP 

carboxykinase (Pck) (Figure 2a). PEP carboxykinase was reported to be essential in 

pathogenic mycobacteria during infection13, indicating a prevalence of gluconeogenic 

carbon sources inside the macrophage. With SUMOFLUX, we built two predictors for 

the flux fractions producing PEP from glycolysis (Eno) and gluconeogenesis (Pck). The 

accuracy of these predictors in silico was sufficiently good for a comparative analysis 

(MAE ~ 0.1, Figure S5). We found that upon growth on glucose, the relative 

contribution of glycolysis to the formation of PEP was 0.8 (Figure 2b), whereas upon 

addition of amino acids to the media the relative fraction of gluconeogenesis increased. 

The largest increase to more than 0.3 of the relative gluconeogenic flux fraction was 

caused by the addition of amino acids entering the central metabolism through the TCA 

cycle.  

Second, we resolved the relative contributions of fluxes producing pyruvate, the main 

precursor for fatty acid biosynthesis, which is particularly important for 

mycobacteria32. We resolved the fractions of the glycolytic flux from PEP catalyzed by 

the pyruvate kinase (Pyk), which has an essential role during carbon co-catabolism, 

preventing accumulation of metabolic intermediates involved in metabolic regulation20, 

and malic enzyme (Mae), which is usually dispensable on glucose. The in silico 

accuracy of the Pyk and Mae fraction predictors was sufficient for comparative analysis 

(MAE ~ 0.1, Figure S5). Similar to the PEP case, we observed that upon growth on 

glucose, pyruvate was produced mostly through glycolysis with Pyk contribution of  
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more than 0.7, whereas the Mae fraction was less than 0.2. The Entner-Doudoroff 

pathway might have a residual contribution to the pyruvate pool (Figure 2a), however, 

it cannot be resolved with the applied labeling strategy. Upon addition of amino acids 

entering the central metabolism at pyruvate node, such as alanine, tryptophan and 

valine, both the relative contributions of Pyk and Mae decreased, implying that these 

amino acids partially replenished the pyruvate pool. The relative contribution of the 

gluconeogenic flux from malic enzyme increased upon addition of amino acids entering 

the TCA cycle (Figure 2c).  

Third, we focused on the production of oxaloacetate at the crossroads of the 

TCA cycle, glyoxylate shunt, urea cycle, gluconeogenesis, fatty acid and amino acid 

biosynthesis. Oxaloacetate is mainly produced in the TCA cycle and consumed for the 

Figure 2. Amino acid co-metabolism in M. smegmatis leads to flux rearrangements in central 
carbon metabolism. (a) Schematic representation of the central carbon metabolic network of 
M. smegmatis with four amino acid entry points. (b) SUMOFLUX estimates for the fraction of Eno and 
PckA fluxes contributing to the PEP pool. (c) SUMOFLUX estimates for the fraction of Pyk and Mae 
fluxes contributing to the pyruvate pool. (d) SUMOFLUX estimates for the fraction of Ppc+Pyc and 
Mdh fluxes contributing to the oxaloacetate pool. (e) SUMOFLUX estimates for the fraction of GlcB 
and Fum fluxes contributing to the malate pool. All fractions were estimated from [U-13C] glucose and 
corresponding naturally labeled amino acid experiments. Error bars represent standard deviation of the 
estimates for four biological replicates. PEP – phosphoenolpyruvate. 
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biosynthesis of amino acids, therefore, cells have to replenish its pool through 

anaplerotic fluxes from PEP/pyruvate or the glyoxylate shunt (Figure 2a). With 

SUMOFLUX, we resolved two flux fractions contributing to the production of 

oxaloacetate: the anaplerotic flux fraction from PEP/pyruvate and the TCA cycle 

fraction coming from malate. These flux fractions were resolved with high accuracy in 

silico (MAE < 0.1 for all amino acid media, Figures S4 and S5). We found that 

anaplerotic fluxes undergo severe rearrangements upon addition of various amino acids 

(Figure 2d). Indeed, upon growth on glucose the relative contribution of anaplerosis 

was 0.3, which decreased upon addition of glutamate, glutamine and proline entering 

the TCA cycle at α-ketoglutarate and replenishing the metabolites used for biomass 

production (Figure 2d). On the contrary, addition of amino acids catabolized at the 

3-phosphoglycerate and pyruvate nodes caused increase in the relative fraction of the 

flux from PEP/pyruvate. In analogy to the pyruvate case, amino acids catabolized 

through oxaloacetate directly replenished its pool (Figure 2d), causing the decrease of 

relative contributions of both anaplerosis and TCA cycle fluxes.  

Compared to Escherichia coli and Bacillus subtilis, in which anaplerosis from 

PEP/pyruvate is the major source of oxaloacetate upon growth on glucose33,34, we 

estimated surprisingly low relative contribution of 0.3 in M. smegmatis. It has been 

shown that in slow growing E. coli the glyoxylate shunt takes over the anaplerotic 

function35. To test the hypothesis that the slow growing M. smegmatis undergoes 

similar flux adaptations with increased relative flux contribution of glyoxylate shunt, 

we estimated its fractional contribution to malate (Figure 2a). The accuracy of the 

glyoxylate shunt fraction predictors was good (MAE < 0.1, Figure S5). On glucose, the 

relative contribution of the glyoxylate shunt was ~ 0.25, and it decreased upon addition 

of any of the amino acids (Figure 2e). It can be explained either by the amino acids 

taking over the anaplerotic function by fueling metabolism either from the TCA cycle 

of from 3-phosphoglycerate and pyruvate, or by metabolic regulation taking place as 

the growth rate increased.  

In summary, SUMOFLUX provided estimates for the major flux ratios in the 

TCA cycle and PEP/pyruvate nodes in M. smegmatis upon growth in 20 glucose and 

amino acid co-feed media. Apart from replenishment of the metabolite pool at their 

entry points in central carbon metabolism, most amino acids were propagated further 

resulting in more distant flux adjustments. Amino acids entering central metabolism 

through the TCA cycle had the largest influence on the resolved central metabolic flux 



 

 

Chapter 3 

86 

ratios. Upon growth on glucose, the relative contribution of glyoxylate shunt to the 

formation of malate was 0.25, and it decreased upon addition of amino acids. The 

glyoxylate shunt is required in bacteria upon growth on acetate or fatty acids, or under 

growth limiting conditions. In the case of M. smegmatis, the relatively high glyoxylate 

shunt activity might be explained by its slow growth, or by the need to quickly adapt to 

alternative carbon sources as soon as they become available.  

 

Global metabolic flux rearrangements during co-utilization of glucose and 

glutamate. According to the SUMOFLUX estimates, glutamate is the most catabolized 

amino acid (Figure 1e), and belongs to the group of amino acids causing major flux 

rearrangements in the TCA cycle, PEP and pyruvate nodes (Figures 2b, d, e). With the 

data from the co-feed experiments, however, the fluxes in the upper glycolysis and 

pentose-phosphate (PP) pathway are unresolvable. Since glutamate is a standard major 

component of the commonly used 7H9 medium, we decided to follow up its co-

metabolism with glucose and investigate whether its supplementation also affects 

fluxes in the upper glycolysis (Figure 3a). 

In order to characterize fluxes in upper glycolysis, we performed two labeling 

experiments with a mixture of 60% [1-13C] and 40% [U-13C] glucose and a mixture of 

[1-13C] glucose and unlabeled glutamate. We used SUMOFLUX to build predictors for 

three flux ratios: the ratio between glycolysis (first step catalyzed by Pgi) and pentose-

phosphate pathway (first step catalyzed by Zwf), the fraction of glyceraldehyde 3-

phosphate produced from glycolysis, and the contribution of the Entner-Doudoroff 

pathway to the formation of pyruvate (Figure 3a). All three ratios could be resolved 

with high accuracy (MAE < 0.05, Figures S6a, b). During growth on glucose, the 

relative utilization of glucose through glycolysis was ~ 0.25, and it increased upon 

addition of glutamate to ~ 0.40 (Figure 3b). Such a low relative flux through glycolysis 

is surprising, since in E. coli or B. subtilis, for example, the relative glucose flux 

through glycolysis is ~ 0.7033,34. On the other hand, the fractional contribution of 

glycolysis to glyceraldehyde 3-phosphate on glucose was ~ 0.60, suggesting high 

activity of transaldolases and transketolases in the PP pathway, routing the carbon flow 

back to glycolysis (Figure 3a). Upon addition of glutamate, the relative contribution of 

glycolysis to glyceraldehyde 3-phosphate increased to ~ 0.80. The fractional 

contribution of Entner-Doudoroff pathway to pyruvate upon growth on glucose 

was 0.1, which corresponds to the residual flux contribution calculated in the previous 
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Figure 3. Flux ratio analysis and shift experiments demonstrate that glutamate added to the 
glucose medium is immediately taken up and affects central carbon fluxes in M. smegmatis. 
(a)  Schematic representation of the central carbon metabolic network of M. smegmatis with major 
pathways. (b) SUMOFLUX estimates for the 11 key flux ratios and fractions in central metabolism. (c) 
Label propagation in CCM metabolites upon switching from naturally labeled glucose medium to [1-13C] 
glucose medium or the mixture of [1-13C] glucose and glutamate medium. (Continue on p. 88) 
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section (Figure 2c). In concordance with the decreased relative fraction of PP pathway 

upon addition of glutamate, the relative fraction of Entner-Doudoroff pathway to the 

formation of pyruvate also decreased (Figure 3b).  

However, one should interpret the relative flux contribution changes with 

caution, as they may not always reflect the absolute flux changes. For example, while 

the flux fraction of the PP pathway decreased upon addition of glutamate, the absolute 

flux value depends on the glucose uptake, and could potentially stay the same. To 

examine whether glutamate substitution affects only the relative reaction rates or the 

absolute fluxes as well, we quantified extracellular fluxes and applied the global 
13C-MFA to fit the fluxes in central carbon metabolism. In the co-feed medium, glucose 

uptake decreased compared to the glucose medium, whereas the biomass yield on 

glucose was two times lower than upon growth on glucose and glutamate, implying a 

more efficient resource allocation during co-metabolism (Figure S7). 

We estimated the absolute fluxes with 13C-MFA36 using the stoichiometric 

model of M. smegmatis (Table S3) and the measured glucose and glutamate uptake 

rates as constrains. The flux distributions were fitted to the data from the two parallel 

experiments with unlabeled glutamate and either [1-13C] or [U-13C] labeled glucose. 

The obtained flux distributions resulted in a good fit to the measured data 

(Figures S8-S10) and were in concordance with our flux ratio estimates (Figure 4, 

Tables S4 and S5). On glucose, the Zwf flux through the PP pathway was 3.5 times 

larger than the glycolytic Pgi flux. However, the fluxes further down the glycolysis 

pathway were high, confirming the estimated high fractional contribution to the 

glyceraldehyde 3-phosphate pool (Figures 4 and 3b). The anaplerotic flux from 

PEP/pyruvate was four times smaller than the TCA flux from malate, whereas the 

glyoxylate shunt had a high absolute flux in concordance with SUMOFLUX relative 

fraction estimates. In glucose plus glutamate medium, the ratio between glycolysis and 

PP pathway indeed increased, however, both Pgi and Zwf net fluxes decreased two and 

three times, respectively (Figure 4). Glutamate replenished the TCA cycle, as was 

predicted by the flux ratio analysis, and the flux through the glyoxylate shunt was low. 

Moreover, the exchange flux between intracellular glutamate and α-ketoglutarate was 
(Continued from P. 87) (d) Label propagation in CCM metabolites upon switching of M. smegmatis from 
naturally labeled glucose medium to [U-13C] glucose medium or the mixture of [U-13C] glucose and 
glutamate medium. (e) Absolute metabolite concentration changes upon switching of M. smegmatis from 
naturally labeled glucose medium to the mixture of glucose and glutamate medium or glucose medium 
as a control. EDP – Entner-Doudoroff pathway; OAA – oxaloacetate; PEP – phosphoenolpyruvate; PPP 
– pentose phosphate pathway; TCA – tricarboxylic acid cycle. 
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high, with glutamate biosynthesis fraction ~0.86, confirming SUMOFLUX estimates 

(Figure 1e). 

 

 

  

Figure 4. Flux distributions in central carbon metabolism of M. smegmatis grown in glucose or 
glucose plus glutamate medium. (a) Schematic representation of the global flux solution through the 
CCM network of M. smegmatis grown on combination of 60% [1-13C] and 40% [U-13C] glucose, 
obtained with 13C-MFA (INCA software). (b) Schematic representation of the global flux solution 
through the CCM network of M. smegmatis grown on combination of labeled glucose and naturally 
labeled glutamate. The flux solution was obtained with 13C-MFA (INCA software) using data from two 
labeling experiments, [1-13C] glucose and glutamate and [U-13C] glucose and glutamate. The thickness 
of flux lines is scaled to the glucose uptake vector in (a). CCM – central carbon metabolism, 13C-MFA 
– 13C metabolic flux analysis. EDP – Entner-Doudoroff pathway, PPP – pentose phosphate pathway, 
TCA – tricarboxylic acid cycle. 
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The absolute flux analysis confirmed substantial changes in central metabolism 

upon addition of glutamate. Since the glucose uptake decreased, both glycolytic and PP 

pathway fluxes decreased, despite the increase of the relative fraction of the PP 

pathway. Upon growth on glucose, the estimated flux distribution resembled the 

pyruvate dissimilation route characterized by flux through the glyoxylate shunt and 

anaplerotic reactions from pyruvate26, presumably allowing bacteria to rapidly switch 

to growth on lipids, or even be able to incorporate substantial amounts of carbon 

dioxide. Reduced activity of the NAPDH-producing TCA cycle enzymes might be the 

cause of the observed relatively high activity of the PP pathway, since its first reaction 

also produces NADPH. However, upon substitution of glutamate, the absolute flux 

through PP pathway and TCA cycle NADPH-producing reactions was low. 

Presumably, M. smegmatis exploits alternative cofactor balancing mechanisms. The 

high exchange flux between glutamate and α-ketoglutarate predicted by both 

SUMOFLUX and 13C-MFA might be potentially involved in cofactor balancing, since 

M. smegmatis possesses NADP+ dependent glutamate dehydrogenase Gdh1 

(MSMEG_4699), and NAD+ dependent glutamate dehydrogenase Gdh2 

(MSMEG_5442), which convert glutamate to α-ketoglutarate and vice versa.  

 

M. smegmatis adapts to utilization of glutamate as soon as it becomes available. 

The steady state flux distributions in central carbon metabolism changed drastically 

upon addition of glutamate to the medium. The changes were observed not only locally, 

around the glutamate entry point in the TCA cycle, but also in the distant fluxes of 

upper glycolysis. Next, we set out to investigate how fast M. smegmatis adapts to the 

new environment. The adjustment speed provides further hypotheses on the regulatory 

mechanisms: slow adjustment within minutes or hours implies transcriptional 

regulation, since it involves de novo synthesis of enzymes; whereas fast adjustment on 

a second scale suggests post-translational regulation mechanisms such as protein 

modification or allosteric regulation. 

To study the speed of metabolic adaptations to glutamate supplementation in 

the medium, we performed a fast nutrient shift experiment following a previously 

developed protocol37. Labeled media was used to compare the label propagation 

through the metabolic network on glucose and on glucose glutamate co-feed. Briefly, 

M. smegmatis was grown in the medium with unlabeled glucose as a single carbon 

source, transferred to a filter, where it was washed with the new medium for 0, 10, 20, 
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40, 80, 160 and 320 seconds. We performed the shifts from unlabeled glucose to a 

mixture of [1-13C] glucose and unlabeled glutamate to focus on the fluxes in the upper 

part of central metabolism; and from unlabeled glucose to a mixture of [U-13C] glucose 

and unlabeled glutamate to focus on the fluxes around the TCA cycle. As a control, the 

shift was performed to the correspondingly labeled glucose media. We measured the 

labeled isotopes of intracellular metabolites with LC-MS/MS and compared the time 

profiles of the label propagation in glucose and glutamate medium to the ones in the 

glucose medium.   

Already within the first 20 seconds, we observed differences in label 

propagation in glucose plus glutamate medium, indicating that M. smegmatis 

rearranges its fluxes as soon as glutamate becomes available. During the shift to [1-13C] 

glucose, the label propagation in glucose-6-phosphate was the same regardless of 

glutamate presence in the medium, whereas in dihydroxyacetone phosphate and PEP 

significant changes were observed already after 80 s (Figure 3c). Since the glucose label 

is cleaved off in the PP pathway, the slower label propagation in these metabolites 

indicates a higher activity of the PP pathway. However, according to the SUMOFLUX 

and 13C-MFA estimates, the PP pathway fluxes decrease in the co-feed medium. This 

discrepancy may be explained by the changes in metabolite concentrations, which we 

explore below.  

During the shift to [U-13C] glucose, the label propagation in the upper glycolytic 

intermediates was similar between the two conditions, whereas the label propagation in 

PEP was considerably different. The label propagation in aspartate was changing 

already after the first 20 seconds (Figure 3d). The slow propagation of [13C3] aspartate 

in the glucose plus glutamate medium reflects the immediate aspartate replenishment 

from the TCA cycle and decrease of the anaplerotic flux from PEP/pyruvate, which 

combines a fully labeled C3 molecule with an unlabeled CO2 molecule.  

From the fast nutrient shift experiments, we concluded that M. smegmatis 

catabolizes glutamate as soon as it becomes available, rerouting it to fuel the TCA cycle 

and fulfil the anaplerotic demands. Differences in the label propagation in the upper 

glycolysis indicate that some slight changes might be occurring too, and probably the 

cellular response to glutamate utilization is a mixture of transcriptional and post-

translational responses. The latter might include allosteric regulation by binding of 

effector molecules to the enzymes. If such regulation takes place, we expect that the 

effector’s concentration would change fast upon glutamate supplementation. To 
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discover candidates for such putative regulators, we measured the absolute metabolite 

concentrations during the shift experiment.  

Concentrations of several metabolites were changing within seconds after 

exposure to glutamate (Figure 3e). The intracellular levels of fructose-1-phosphate 

(F1P) followed the dynamics of glutamate concentration change and increased three-

fold in the first 10 seconds of the shift. The concentration levels, however, remained 

low (~ 3mmol), hence we hypothesized that the F1P behavior is a side effect of 

concentration changes of other molecules in the upper glycolysis, causing the 

conversion of dihydroxyacetone phosphate and D-glyceraldehyde to F1P. Additionally, 

as F1P is one of the precursors of phenylalanine, tyrosine and tryptophan biosynthesis 

pathway, the observed changes might reflect global rearrangement in amino acid 

metabolism. The concentrations of aspartate and PEP were also rapidly increasing upon 

addition of glutamate. Aspartate and PEP have been reported to be allosteric regulators 

of fluxes in central metabolism of E. coli38-40, thus the observed rapid flux rerouting 

might be explained by the existence of similar regulation mechanisms in M. smegmatis. 

   

Mycobacterium tuberculosis co-utilizes multiple amino acids upon infection. In the 

previous sections, we demonstrated that M. smegmatis rapidly adapts to the amino acid 

availability in the medium, and has the capacity for their immediate consumption and 

catabolism. To investigate whether this metabolic capacity exists in the pathogen 

M. tuberculosis and is relevant for its virulence, we aimed at quantifying amino acid 

exchange fluxes between bacteria and its host during infection. 

We used the available data from a 13C labeling experiment with M. tuberculosis 

H37Rv infecting macrophage-like THP-1 cells28. In this experiment, THP-1 cells were 

pre-labeled in rich RPMI medium supplemented with [U-13C] glucose. The 

macrophages were infected with M. tuberculosis and incubated for 48 h in unlabeled 

RPMI medium. Subsequently, the protein material was separated, and the mass 

isotopologues of protein-bound amino acids of both organisms were measured with 

GC-MS. In the control experiments, THP-1 macrophages and M. tuberculosis were 

grown separately in RPMI medium supplemented with [U-13C] glucose.  

To analyze metabolic fluxes in the infection setup, we built a dual host-pathogen 

metabolic network, which consisted of the central metabolic networks of THP-1 cell 

and M. tuberculosis connected via the phagosome exchange fluxes of glucose, glycerol, 

derivatives of pyruvate and acetyl-CoA representing fatty acids, and 20 amino acids. 
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The exchange fluxes between THP-1 and the environment included uptake of glucose 

and 20 amino acids according to the composition of RPMI medium. Since none of the 

exchange fluxes is measured, and the labeling data of only 10 amino acids are available, 

the global 13C-MFA approach is not applicable to estimate metabolic fluxes28. In the 

previous study, 13C flux spectral analysis was proposed to identify the network topology 

providing the best fit to the measurement data. More than 600,000 flux optimizations 

describing networks with one, two or three active exchange fluxes between 

M. tuberculosis and THP-1 cell resulted in the best-fit model with acetate, alanine and 

serine being the substrates of M. tuberculosis inside the macrophage28. Despite the 

extensive calculations, only qualitative information on no more than three substrates at 

a time could be extracted with this approach. 

Here, we propose to quantify amino acid exchange between the bacteria and the 

host by using targeted 13C flux ratio analysis analogous to the experiments with 

M. smegmatis. For each of the 20 amino acids, the biosynthesis and catabolism fractions 

in M. tuberculosis were formulated as described in the previous sections (Figure 1d). 

In order to train SUMOFLUX predictors, we simulated a comprehensive training 

dataset consisting of > 300,000 feasible flux distributions in the dual network, covering 

a broad range of biosynthesis and catabolism fraction values. Due to these rigorous 

simulations, SUMOFLUX overcomes the challenge of poorly determined network, 

since all exchange fluxes can be sampled without prior knowledge on their magnitude. 

Moreover, this in silico dataset can be used to train all the 20 biosynthesis and 

catabolism predictors due to the broad coverage of possible flux distributions. We 

divided the simulated dataset into a training and testing subset, in order to assess 

predictors’ performance on the data not included in the training phase. Eight out of 

twenty predictors for alanine, glycine, histidine, leucine, phenylalanine, serine, 

tyrosine, and valine biosynthesis fraction had good accuracy in silico (MAE < 0.1, 

Figure S11), whereas the predictors for aspartate and glutamate had lower accuracy 

(MAE = 0.12 and MAE = 0.15, respectively). The other ten predictors performed 

poorly due to the absence of measurements of the corresponding amino acids, and were 

excluded from further analysis. The catabolism fraction predictors had low accuracy in 

silico (MAE > 0.11, Figure S12), but were retained for the purpose of comparison with 

M. smegmatis results. 

According to the SUMOFLUX estimates, glutamate, alanine, aspartate, glycine, 

phenylalanine and leucine were to a larger extent consumed from the phagosome, as 
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their biosynthesis fraction was low (Figure 5a). On the contrary, tyrosine and histidine 

had a high biosynthesis fraction, whereas serine and valine had almost equal 

contributions to amino acid pools from biosynthesis and phagosomal uptake 

(Figure 5a). Generally, these estimates are in concordance with the results of the 

spectral 13C-MFA, stating that alanine, glutamate, aspartate and serine are taken up 

from the host, whereas valine is mostly produced by the bacteria28.  

 

 
 

 

To investigate metabolic behavior of the host during infection, we build 20 

amino acid biosynthesis and catabolism predictors for the THP-1 exchange fluxes with 

the RPMI medium. Again, only predictors for the measured amino acids had acceptable 

accuracy and were applied to the experimental data (Figure S13, S14). In THP-1 cells, 

biosynthesis fraction of the essential amino acids valine, tyrosine, leucine, 

phenylalanine and histidine was negligible, indicating that they were consumed from 

Figure 5. Amino acid exchange fluxes in M. tuberculosis and macrophage-like THP-1 cells during 
infection. (a) SUMOFLUX estimates of biosynthesis and catabolism fractions for 10 amino acids in 
M. tuberculosis infecting THP-1 macrophage. (b) SUMOFLUX estimates of biosynthesis and 
catabolism fractions for 10 amino acids in THP-1 macrophage during infection. (c) Schematic 
representation of the estimated amino acid uptake and biosynthesis fractions in the infection setup.  
Thickness of arrows represents relative contribution of uptake and biosynthesis fluxes to the amino acid 
pools. Central metabolism of the THP-1 cell is not depicted for illustration purposes. Error bars indicate 
50% prediction intervals. 
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the media (Figure 5b). Since the information on the essentiality was not included in the 

dual model, i.e. all amino acid utilization reactions were reversible, these results serve 

as a validation of the adequacy of SUMOFLUX estimates. Serine was the only non-

essential amino acid with a very low biosynthesis fraction (Figure 5b). 

The results of the amino acid uptake analysis in the infection setup are 

summarized in Figure 5c. We expanded the previously reported list of amino acids 

consumed by M. tuberculosis with glycine, leucine and phenylalanine. According to 

the SUMOFLUX estimates, histidine and tyrosine had to be synthesized de novo during 

infection. However, considering the analysis of amino acid and glucose co-utilization 

performed for M. smegmatis, we recognized that a high biosynthesis fraction does not 

necessarily reflect bacterial inability to consume the amino acid from the medium. For 

example, glutamate, which is incorporated into central metabolism, had a high 

biosynthesis fraction reflecting its high turnover inside the cell (Figure 1e). Therefore, 

in order to gain additional information on amino acid consumption during infection, it 

would be necessary to compare it to amino acid utilization in the medium without 

carbon limitation. 

Hence, we set out to estimate amino acid exchange fluxes in M. tuberculosis 

growing in the rich RPMI medium in the control experiments performed in the infection 

study28. For the analysis, we used a metabolic network consisting of central carbon 

metabolic fluxes and amino acid exchange reactions with the environment. As before, 

we built 20 SUMOFLUX predictors for biosynthesis and catabolism of amino acids, 

and only ten of them were applied for the experimental data due to the lack of 

measurements to accurately resolve the other ten fractions (Figure S15, S16). In the 

rich medium, amino acid utilization patterns of M. tuberculosis were similar to those 

of M. smegmatis, with a high biosynthesis fraction of glutamate, valine and histidine 

and a low biosynthesis fraction of serine (Figure S17). Comparison with the 

biosynthesis fraction estimates during infection suggests that in the phagosome, 

M. tuberculosis has access to most amino acids, but their amount is limited. Indeed, the 

biosynthesis fraction of serine is higher during infection than in rich medium, indicating 

that its uptake was not sufficient to fulfil cellular needs. On the contrary, the 

biosynthesis fractions of glutamate, valine and alanine were higher in rich medium 

compared to the infection setup, suggesting that in the phagosome, the uptake of 

alternative carbon sources required for anabolism of amino acids is impaired. 
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In summary, targeted 13C metabolic flux ratio analysis with SUMOFLUX 

provided quantitative estimates of amino acid exchange fluxes between M. tuberculosis 

and its host during infection, which was not possible with global 13C-MFA due to the 

complexity of the network and lack of data. Moreover, SUMOFLUX estimates enabled 

comparison of amino acid utilization modes in the infection setup and during growth in 

rich medium, contributing additional information on the availability of nutrients in the 

phagosome. Taken together, our results suggest that during infection, mycobacteria 

have access to most amino acids in limited quantities. The uptake of carbohydrates and 

fatty acids seems to be insufficient to fulfill the anabolic demand, forcing mycobacteria 

to make use of any nutrient they encounter.  

 

DISCUSSION 
In this study, we investigated metabolic adaptations of mycobacteria co-utilizing amino 

acids with other carbon sources. Our results underline the complexity of metabolic 

interactions between the host and the pathogen, which are difficult to quantify even 

with the most informative direct labeling of intracellular intermediates available. The 

comparison of amino acid utilization in M. smegmatis growing in glucose plus amino 

acid media, M. tuberculosis growing in RPMI medium and M. tuberculosis infecting 

THP-1 macrophages, indicates that during infection, M. tuberculosis has access to 

many sparsely available nutrients, rather than a single carbon source fueling its 

metabolism. This hypothesis is supported by growing evidence in the literature of 

mycobacterial metabolic adaptation plasticity21. Indeed, mycobacteria have a very 

robust metabolism with multiple copies of key enzymes, therefore double knockouts 

are often required to impair its growth12,14,41. The gene and pathway essentiality might 

as well depend on the infection stage and metabolic state of the host11,15. Altogether, 

these findings emphasize the need for a system view on mycobacterial metabolism per 

se, and its interaction with the host. Although certain genes and pathways appear 

essential for the pathogen in infection experiments and are defined as potential drug 

targets, a system analysis of the complex host-pathogen interactions could provide a 

better understanding of the metabolic plasticity of the pathogen and explain the 

recurrent failures of therapeutic interventions.  

Investigating amino acid metabolism in terms of specific biosynthesis and 

catabolism fractions and focusing on key flux ratios in the central metabolism allowed 
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us to quantitatively characterize amino acid utilization patterns, group amino acids 

according to these patterns, and compare two species of mycobacteria in different 

experimental setups. Generally, amino acids metabolized in the TCA cycle (glutamate, 

histidine, aspartate) had a high turnover inside the cell, being both actively produced 

and catabolized, whereas amino acids metabolized through pyruvate (tyrosine, leucine) 

were mostly incorporated from the media and utilized for protein biosynthesis. Serine, 

as a special case, was mostly incorporated from the media and actively catabolized by 

both mycobacterial species. Such different utilization patterns might be partially 

explained by the different metabolic costs of amino acids in terms of biosynthetically 

required high-energy phosphate bonds30. Along these lines, it has been previously 

reported that E. coli can regulate metabolic production and consumption during 

starvation, in order to spare more energetically costly amino acids42.  

Our follow up experiment with glucose - glutamate co-feed in M. smegmatis 

revealed that as soon as this amino acid is supplemented, it is being taken up and 

utilized, causing distal flux rearrangements. This finding supports the hypothesis that 

mycobacterial survival strategy is to remain ready to consume any substrate that it 

encounters.  

When we compared amino acid utilization in M. tuberculosis grown in RPMI 

medium to those in the infection setup, we observed a general decrease in the 

biosynthesis ratios. At first glance, this finding is contra-intuitive, as the environment 

inside the macrophage is nutrient-limited, and M. tuberculosis is expected to be forced 

to produce more biomass precursors de novo. On the other hand, in the RPMI medium 

the carbon source is not limiting, therefore bacteria utilize glucose to produce amino 

acids, as we observed for M. smegmatis growing on combinations of glucose and single 

amino acids. It is important to note that the fractional labeling and the similarity 

between the labeling patterns of the amino acid in the media and the intracellular amino 

acid do not unambiguously reflect its utilization patterns. The effect of decreasing 

biosynthesis fractions is likely explained by the fact that intracellular M. tuberculosis 

is able to consume many amino acids and nutrients from the host, but in very small 

quantities, so that the consumed metabolites are catabolized locally and do not 

propagate further through the network. To study M. tuberculosis amino acid 

metabolism more precisely, an in vitro experimental setup with a controlled 

environment, where the substrate of study is labeled, is required. It would be interesting 

to perform co-metabolism experiments with other carbon sources such as glycerol, 
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acetate or butyrate, and to vary the amount of carbon source to mimic the sparsity of 

carbon source during infection and to compare how the biosynthetic fraction of 

different amino acids changes upon carbon limitation.  

For 13C flux analysis during co-feed or co-culture, application of a targeted 

approach such as SUMOFLUX is particularly beneficial. Addressing specific questions 

in a complex infection setup, where the measurements are sparse, the nutrient uptake 

rates are inaccessible, and even the list of substrates may not be fully defined, enables 

to extract the most information from the available data. Moreover, in case of a dynamic 

infection setup, the measured protein bound amino acids contain the carry-over labeling 

from the biomass generated before the cellular exposure to the labeled medium. In the 

SUMOFLUX workflow, we could account for these uncertainties by simulating 

thousands of different flux distributions through the network, assuming uptake of 

multiple carbon sources simultaneously, and mimicking the unlabeled biomass 

contribution to the amino acid labeling by adding a random fraction of unlabeled 

isotopes. The combination of surrogate modelling with machine learning imbedded in 

SUMOFLUX enables to reduce the number of a priori assumptions about the system, 

and predict numerous local flux ratios extracting the most information from the 

available data. These local flux ratio estimates can be used together with global flux 

analysis approaches to model mycobacterial metabolism or infection process at a 

genome-scale. Over the past years, many steps have been made to move towards 

systemic modeling of mycobacterial metabolism43-48. Although these models were 

successful at predicting intracellular physiological parameters, such as biomass, ATP 

and cofactor production, or the outcome of a specific perturbation, their main limitation 

is sensitivity to numerous parameters and constrains, which in most cases are set based 

on prior knowledge and desired outcome. Incorporation of the data from labeling 

experiments and targeted flux ratio analysis will reduce the uncertainties in the model, 

help to decrease false positive predictions of drug targets, and improve our overall 

understanding of mycobacterial metabolism and its regulation. 
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EXPERIMENTAL PROCEDURES 

Chemicals. Chemicals, where nothing else is mentioned, were purchased from Sigma 

Aldrich (Schnelldorf, Switzerland).  

Bacterial culturing. First pre-cultures of M. smegmatis were grown on 7H9 

Middlebrook medium supplemented with 0.5% glycerol and 0.1% Tween 80 adjusted 

to pH 6.6. Second pre-cultures and cultures of M. smegmatis were grown in 7H9 

Middlebrook medium without glutamate and citrate supplemented with 0.05% 

Tyloxapol. Glucose and amino acids were added to a concentration of 2 gL-1, if nothing 

else is mentioned. All cultures were grown at 37°C under constant shaking at 300 rpm. 

Growth experiment in microtiter plates. Amino acid and glucose co-metabolism 

experiment was performed in Tecan plate reader (Tecan 200 infinity, Tecan, Männedorf, 

Switzerland). Second pre-cultures in mid-exponential growth phase 

(OD600 ~ 0.4 - 1.5) were inoculated in a 48-well plate at OD600 ~ 0.1 to a total culture 

volume of 500 µL. 

Shake-flask experiments. Second pre-cultures in mid-exponential growth phase 

(OD600 ~ 0.4 - 1 for glucose cultures, OD600 ~ 0.4 - 1.5 for glucose - glutamate 

cultures) were inoculated in 500 mL shake flasks at 37°C (300 rpm). At multiple time 

points 1 mL of culture was centrifuged (RT, 16100 rpm, 3 min) and supernatant 

collected to determine uptake rates. Growth was monitored by OD600 measurement. 

For steady state experiment, samples were collected in mid-exponential growth phase 

according to metabolic sampling.  

Calculation of physiological parameters. The growth parameters were calculated in 

Matlab 2013a (MathWorks) using a customized script. Linear curves were fitted to the 

log-transformed OD measurement data with the polyfit function, and the slope 

parameter was taken as the growth rate estimate. 

Glucose and glutamate concentration measurements. Concentration of glucose in 

the supernatant was determined by HPLC (Agilent HP1100, Agilent Technologies, 

Santa Clara, CA, United States) with Aminex HPX-87 H ion exchange column 

(Bio-Rad, USA) and refractive index detector (RID-6A, Shimadzu, Japan). Mobile 

phase was 5 mM H2SO4, the temperature 45°C and the flow rate 0.6 mL/min. 
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Supernatants were centrifuged at RT, 14000 rpm, 10 min, and 20 µL was used for 

measurement. The concentration of glucose was calculated according to the calibration 

curve.  

For glutamate uptake, the supernatant of the growth experiment was analyzed by 

Agilent 6550 iFunnel Q-TOF (Agilent Technologies, Santa Clara, CA, United States). 

Supernatants were centrifuged at RT, 14000 rpm, 10 min and the supernatant were 

diluted 1:200 with Milli-Q-water for measurement. The concentration of glutamate was 

calculated according to the calibration curve. 

Labeling experiments. For labeling experiments [U-13C] glucose and [1-13C] glucose 

(Cambridge Isotope Laboratories, Andover, MA, United States) were added in 

concentration of 2 gL-1. In case of 50% [U-13C] glucose experiment, the total 

concentration of glucose was 2 gL-1.  

M. smegmatis cultures were grown until mid-exponential growth phase 

(OD600 ~ 0.4 - 1 for glucose cultures, OD600 ~ 0.4 - 1.5 for glucose plus glutamate 

cultures). Samples were vacuum filtered (HVLP 0.45 µm). Sampling volume was 

calculated according to 1 mL corresponding to biomass of OD600 = 2. The filter paper 

with the bacterial residues was immediately transferred into 3 mL of cold extraction 

solution (acetonitrile:methanol:MilliQ water, 2:2:1). After extracting for at least one 

hour, the extracts were transferred to 15 mL Falcon tubes and dried under vacuum. For 

determining absolute concentrations, 100 µL internal standard was added to the 

extraction solution. 

For analysis by LC-MS/MS, the dried samples were re-suspended in 100 µL MilliQ 

water. After centrifugation (4°C, 5000 rpm, 10 min) supernatants were transferred to 

1.5 mL Eppendorf tube and centrifuged (4°C, 14000 rpm, 10 min). 

For analysis by GC-MS, 1 mL of culture at mid-exponential growth phase 

(OD600 ~ 0.4 - 1 for glucose cultures, OD600 ~ 0.4 - 1.5 for glucose - glutamate cultures) 

was harvested. Cell pellets were collected after centrifugation (RT, 16100 rpm, 3 min) 

by removing the supernatant. After washing with 500 µL of 0.9% NaCl solution, pellets 

were re-suspended in 200 µL 6M HCl. The cell pellets were hydrolyzed for 12-24 h at 

105°C in an oven. The cell hydrolysates were dried in a heating block at 95°C under 

constant stream of air for 12-24 h. The dried hydrolysates were again dried at 105°C 
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for 10 min. Derivatization of the amino acids was achieved by suspending the dried 

hydrolysates in 20 µL DMF (Dimethylformamide) and adding it to 20 µL of 

TBDMSTFA (N-tertbutyldimethylsilyl-N-methyltrifluoroacetamide with 1% (wt/wt) 

tertbutyldimethyl-chlorosilane). The GC-MS vials were then incubated for one hour at 

85°C in a heating block49.  

Fast shift experiments. Glucose cultures were grown to mid-exponential growth phase 

OD600 ~ 0.5 - 0.7. Sampling volume was calculated corresponding to a biomass of an 

OD600 = 2. Volume of culture was vacuum filtrated. The filtrate was first washed for 

10 s with glucose medium and immediately switched to a new medium and exposed for 

0, 10, 20, 40, 80, 160 and 320 s. Samples were then transferred to 3 mL of cold 

extraction solution 40:40:20 acetonitrile:methanol:MilliQ water and processed as in 

described in metabolic sampling procedure. 

13C-MFA analysis. For the 13C-MFA analysis, INCA software was used36. The 

metabolic model for M. smegmatis was built on the basis of the provided metabolic 

model of E. coli, with additional output flux from pyruvate to simulate fatty acid 

production (Table S4). The mean and standard deviation of the measurement data for 

60% [1-13C] and 40% [U-13C] glucose was used as the input data. The glucose uptake 

rate was constrained according to the 10x measured values (Table S4).  For the glucose 

and glutamate condition, two reactions of glutamate uptake and conversion of 

glutamate to α-ketoglutarate were added. The glucose and glutamate uptake rates were 

constrained according to the 10x measured values (Table S4). The mean and standard 

deviations of the measurement data from [1-13C] glucose - glutamate and [U-13C] 

glucose - glutamate experiments were used simultaneously as input data. The 

“estimate” function of the INCA software was evoked 100 times, the distance of the 

simulated and measured data for each solution was calculated, and the solution with the 

smallest distance score was chosen as the final one.  

SUMOFLUX analysis. Network construction. M. smegmatis metabolic networks for 

each amino acid utilization with carbon atom transitions and the lists of input and output 

metabolites were defined (Table S1). In order to reduce the dependency on the biomass 

vector coefficients, a separate output flux is defined for each of the biomass precursors, 

therefore biomass precursors are also added to the list of outputs. The substrates are 

defined as unbalanced compounds and do not participate in the stoichiometric equation 
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system. The network for M. tuberculosis growing in RPMI and dual host-pathogen 

infection model were built based on the original model28 (Tables S2 and S3).   

Flux sampling and ratio calculation. In the flux sampling procedure, the definitions 

of net, exchange, forwards and backward fluxes are used50. By default, the lower and 

upper bounds for reversible reactions are set to [-100 100], for irreversible reactions to 

[0 100], and the major uptake flux is set to 10. The amino acid uptake upper bounds 

were set to 5. To achieve uniform coverage of values for a particular flux ratio or set of 

ratios, the ratio range was split into segments ([0 0.25], [0.25 0.5], [0.5 0.75], [0.75 1]), 

and the flux sampling procedure is repeated for each segment with the end points set as 

flux ratio constraints in the first step. The flux ratio of interest is calculated for each of 

the flux vectors with the corresponding formulas.  

SUMOFLUX workflow. Surrogate modelling of the labeling data, training and testing 

the predictor, feature selection, cross validation procedure and quantile calculations 

were performed as described in Chapter 2. 
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ABSTRACT 
13C metabolic flux analysis is the most informative tool to investigate the intracellular 

reaction rates that must support cellular needs under all environmental conditions. 

Unlike other omics techniques, such as transcriptomics, proteomics and metabolomics, 
13C fluxomics is still poorly suited for high-throughput, mainly due to the challenges of 

fast, extensive and sensitive labeling data acquisition. Here, we propose a general 

workflow for high-throughput 13C-fluxomics. Our workflow combines parallel deep-

well plate cultivation, untargeted metabolomics measurements with flow injection 

analysis – time of flight (FIA-TOF), and targeted flux analysis method SUMOFLUX. 

The complications of untargeted high-throughput mass spectrometry measurements, 

such as falsely annotated or missing ions, prevent application of standard 13C flux 

analysis methods. However, SUMOFLUX is able to handle FIA-TOF labeling data due 

to its flexibility in terms of input information. To improve the data quality and reduce 

the dependence on faulty measurements, we developed a universal filtering procedure 

and an alternative input data representation. The proposed workflow was validated by 

resolving central flux ratios in Escherichia coli and its gene knockout mutants with 

known flux phenotypes. We further exploited 13C flux profiling to estimate flux ratios 

in 60 E. coli strains with mutations in phosphosites and 26 corresponding gene 

knockout strains to investigate the functional role of enzyme phosphorylation. Our 

analysis confirmed the inactivating role of isocitrate dehydrogenase phosphorylation 

reported earlier, and hypothesized functions for several previously uncharacterized 

phosphorylation events. The established high-throughput flux ratio analysis workflow 

based on SUMOFLUX and untargeted metabolomics permits > 1000 flux analyses per 

day, opening up new horizons in the field of 13C fluxomics and raising it to the level of 

other omics techniques. 

 

 

INTRODUCTION 

13C metabolic flux analysis has become a primary approach to investigate intracellular 

reaction rates and their regulation, which is crucial for biological, biotechnological and 

biomedical applications1,2. In the recent years, substantial improvements have been 

achieved in the speed and sensitivity of 13C data acquisition3-6, efficacy of the flux 

estimation methods7-9, and miniaturized cell cultivation systems enabling parallel and 
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cost efficient experiments10,11. Despite these advances, only a handful of large-scale 
13C flux analysis studies investigating a few hundred strains have been reported to 

date12-15. 

The main requirement for fast and high-throughput 13C-fluxomics is a standardized,  

transferable and robust experimental and computational workflow16. Such workflow 

should incorporate: i) parallel cultivation to increase throughput; ii) rapid metabolite 

sampling to reduce degradation effects; iii) fast and sensitive measurement platform; 

iv) automated 13C information extraction from raw analytical data and 

v) computationally efficient flux analysis tools. Recently, an automated robotic-based 

platform for 13C flux profiling of microorganisms combining these five steps has been 

developed17. However, the achieved throughput was only 20 flux analyses per day due 

to the long measurement time and complex raw data analysis required for nuclear 

magnetic resonance spectroscopy used in the workflow17. Therefore, the requirement 

for a fast and sensitive metabolite measurement platform remains to be the bottleneck 

of high-throughput 13C-flux analysis. 

In order to tackle the bottleneck in 13C measurements, we propose to use flow 

injection analysis – time of flight (FIA-TOF) mass spectrometry, which has a 

throughput of > 1400 samples per day and is optimized to detect minute amounts of 

samples as obtained from cultivations in 96-well format18. With FIA-TOF platform, 

several thousands of metabolite ions per sample with the mass over charge (m/z) range 

spanning from 50 to 1000 Da/e can be detected in an untargeted manner within 1 min. 

Such decrease in measurement time comes with several challenges. First, the absence 

of a chromatographic separation inevitably leads to overlaps of ions with similar m/z. 

This problem is aggravated in the case of 13C data as each metabolite is represented 

with a set of isotopologues - identical compounds with different isotopic composition. 

Second, the untargeted nature of the measurements cannot guarantee detection of all 

the isotopologues of the same metabolite. Missing data prevent the calculation of 

normalized mass distribution vectors used as input data for 13C flux analysis. Third, 

even if all the isotopologues are detected, a single misannotated ion will distort the 

entire mass distribution vector of the metabolite. 

The standard flux analysis methods are hardly applicable to analyze 13C data 

measured with FIA-TOF. The global 13C-metabolic flux analysis requires additional 

physiological measurements and poorly handles missing or faulty isotopologues, 

whereas the local flux ratio analysis depends on the measurements of specified 
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metabolites and fragments, which is not assured by untargeted metabolomics. One 

possible way to analyze 13C FIA-TOF data is to perform multivariate analysis, which 

allows to unravel relative pathway activities, qualitative changes in pathway 

contributions, and nutrient contributions. However, it requires careful interpretation, 

and is often non-quantitative and less informative than other flux analysis methods2.  

At the same time, the previously developed targeted 13C flux ratio analysis 

method SUMOFLUX (Chapter 2) is particularly suited to deal with the challenges of 

untargeted FIA-TOF measurements. SUMOFLUX relies on surrogate modelling and 

machine learning to build predictors for specified flux ratios given the list of available 

measurements, or input features. The training and testing data for machine learning are 

simulated in silico given the metabolic network, substrate label and the measurement 

list, and are subsequently used to train the predictors and assess their performance. Due 

to the flexibility in terms of input data and an embedded data quality check procedure, 

SUMOFLUX can be combined with filtering and automatic elimination of the faulty 

measurements.  

On these grounds, we set out to establish an experimental and data analysis 

protocol for large-scale 13C flux analysis based on data acquisition with FIA-TOF mass 

spectrometer and flux analysis with SUMOFLUX. For a proof-of-principle, we 

designed a pilot experiment with Escherichia coli wild type and a set of knockout 

mutants growing on labeled glucose. We adapted a cell cultivation and extraction 

protocol in deep-well plates, and developed rigorous filtering procedures to diminish 

spectral and annotation artifacts of FIA-TOF data acquisition. We demonstrated that 

SUMOFLUX could predict expected flux phenotypes of the knockout strains given 

even small subsets of filtered isotopologues. The proposed 13C fluxomics workflow 

consists of five steps: i) 96 deep-well cultivation; ii) rapid metabolite sampling in 

96 well plates; iii) metabolite measurement with FIA-TOF mass spectrometer; 

iv) 13C data annotation and filtering v) flux ratio estimation with SUMOFLUX. Since 

SUMOFLUX estimation time is negligible (Chapter 2), the workflow time depends on 

the speed of data acquisition, which allows to perform > 1000 flux analyses per day.  

We exhibited the applicability of the established 13C fluxomics workflow to 

investigate functional roles of enzyme phosphorylation in E. coli. Phosphorylation is 

known to play a pivotal role in enzyme regulation in higher organisms, however, its 

importance in prokaryotes is poorly investigated19. Although advances in proteomics 

enabled to discover dozens of phosphorylation sites in E. coli20, their functional roles 
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still remain to be discovered21. Since recent developments in genome editing allow 

large-scale generation of mutants with modified phosphosites22,23, their high-

throughput 13C flux profiling becomes a promising tool to elucidate the role of 

phosphorylation in metabolism. Here, we applied the developed 13C flux analysis 

workflow to estimate flux ratio changes in 60 mutants with modified phosphosites and 

26 corresponding genetic knockouts grown on labeled glucose. Our analysis confirmed 

the deactivating role of isocitrate dehydrogenase phosphorylation reported before24 and 

provided hypotheses on the functional role of several previously uncharacterized 

phosphorylation events.  

 

 

RESULTS 
High-throughput targeted 13C metabolic flux analysis workflow. High-throughput 
13C metabolic flux analysis requires a combination of rapid experimental setup, data 

acquisition and a flux analysis method scalable for a large number of samples. The first 

two preconditions can be fulfilled, for example, with multiwell plate cultivation and 

untargeted metabolite measurements with flow injection analysis - time of flight (FIA-

TOF) mass spectrometer18. This method allows detection of thousands of ions based on 

their mass over charge ratio in ~ 1 min per sample due to the omission of 

chromatographic separation step. Compared to targeted mass spectrometry, analysis of 

labeling data acquired with FIA-TOF is more demanding, since the risk of overlapping 

signal from ions with similar m/z and missing signal for some of the ion mass 

isotopologues is high. However, the targeted 13C flux ratio analysis method 

SUMOFLUX developed in Chapter 2 is well suited to handle missing and overlapping 

mass isotopologues. Indeed, since SUMOFLUX relies on machine learning to build 

flux ratio predictors, it is flexible in terms of input features, and practical to test what 

flux ratios can be estimated provided limited amount of data. Moreover, SUMOFLUX 

is easily scalable to large number of samples, therefore meets the third requirement for 

high-throughput flux analysis.  

In order to assess the feasibility of high-throughput flux analysis by combining 

untargeted metabolomics with SUMOFLUX, we designed a pilot experiment using 

Escherichia coli and its genetic knockout mutants growing in labeled glucose. The aim 

of this experiment was to develop i) the experimental and data acquisition protocols, 
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ii) FIA-TOF data processing steps and iii) to apply SUMOFLUX to predict flux ratios 

in central carbon metabolism. Since the chosen knockouts were expected to show 

distinct flux phenotypes, they served as a validation for the SUMOFLUX flux ratio 

predictions. The metabolic model used for flux ratio estimation contained 34 

metabolites corresponding to 202 mass isotopologues, which were used as a reference 

in the data processing steps (Tables S1 and S2). In the next sections, we describe each 

step of the high-throughput flux analysis in more detail. 

 

Experimental workflow and data acquisition. To begin with, we aimed at developing 

an experimental and data acquisition workflow suitable for performing hundreds of flux 

analyses in parallel. The proposed workflow is based on plate cultivation and 

metabolite extraction protocols in 96-well format coupled with flow injection analysis 

– time of flight mass spectrometry (FIA-TOF)18. It consists of five steps (Figure 1a). 

First, cellular pre-cultures were grown in 96 deep-well plates in minimal media 

supplemented with either 100% [1-13C] glucose, or a mixture of 50% [U-13C] and 50% 

unlabeled glucose overnight (~ 18 h). Second, the culture plates prepared with the same 

media were inoculated at OD600 ~ 0.05 and cultivated until cell density reached 

OD600 ~ 1 (~ 5 h). Third, metabolism was quenched by centrifugation, and intracellular 

metabolites were extracted in the same plates with hot ethanol (~ 0.5 h per plate). 

Fourth, the extracts were transferred into a conical bottom 96-well plate, stored 

at -80° C, subsequently thawed, and directly measured with FIA-TOF (~ 1.5 h per 

plate). Fifth, the raw spectra of the samples were aligned and peaks were automatically 

picked with a procedure described before18. In total, 26,456 ions were detected with 

mass over charge ratio spanning the range [50 - 1000] Da/e, and intensities varying up 

to five orders of in-spectrum dynamic range. 
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Compared to the typical experimental workflow for 13C flux analysis, which 

consists of shake flask cultivation and data acquisition with liquid chromatography or 

gas chromatography - mass spectrometry, the proposed workflow offers several 

advantages. First, the cultivation in deep-well plates enables convenient handling of at 

least 96 samples at once. Second, this type of cultivation requires much less media 

(2 mL per sample versus 100 mL per sample in a shake flask), thus drastically reducing 

the experimental costs. Third, FIA-TOF platform offers manifold decrease in 

measurement time (1 min per sample versus ~ 30 min per sample) and increase in ion 

coverage. 

However, the time efficiency of the mass spectrometry measurements gained 

by omitting the chromatographic separation step and untargeted detection comes with 

additional challenges posed by detector artifacts, spectral crowding, and multiplicity of 

annotation. In the next sections, we propose a multi-step filtering procedure, which 

Figure 1. Experimental and data analysis workflows for high-throughput 13C flux ratio analysis.  
(a) Experimental workflow for strain cultivation in 96 deep-well plates. Time estimates are provided per 
plate. (b) Data analysis workflow. Input information is depicted in dashed-line rectangles. 
(c) Visualization of the filtering layers. At each further step, the filters are cumulated. 
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deals both with technical aspects of peak picking (spectral filters) and multiple ion 

annotation (ratiometric filters) (Figure 1c).  

 

Spectral filtering of FIA-TOF data. The outcome of a FIA-TOF measurement is a 

raw spectrum represented by a profile of ion counts versus m/z. In order to use the 

acquired data, ion peaks have to be picked and subsequently annotated. The peak 

picking procedure is complicated by two major problems. The first problem of the TOF 

detectors is the occurrence of detector ringing. The second problem is the convolution 

of peaks in crowded regions. Here, we propose a two-step procedure of spectral filtering 

(Figure 1b, c).  

Detector ringing artifacts are caused by the time-of-flight detector and appear 

as small signals detected on the right (heavier) side of a high-intensity peak. These 

peaks do not exist in reality, but are artifacts caused by the detector electronics, 

therefore their intensity correlates strongly with the intensity of the leading peak. We 

used a filter that eliminates all peaks on the right side of a high-intensity peak (up to 

0.3 Da/e) if their intensities have a Pearson correlation coefficient ≥ 0.9. The threshold 

was chosen to be permissive to ensure that potentially important ions in the crowded 

regions are retained (for example, glutamine m+1 peak which is close to the glutamate 

m+0 peak) (Figure 2a). As a result, 12% of picked peaks were discarded (3,192 out of 

26,456 picked peaks). 

The second issue is the overlap of peaks with similar m/z, which leads to 

mismeasurement of their intensity.  In order to correct for such overlaps or even discard 

peaks in overly crowded regions, we applied a Gaussian shape fitting procedure. 

Specifically, we attempted to reconstruct the detected spectrum with a sum of Gaussian 

functions centered on the known centroids (Figure 2b). If the goodness of fit of the 

reconstructed spectrum for a specific peak is low, or its intensity is largely influenced 

by its neighbors, the peak is discarded. Since for the 13C flux analysis only the 

compounds contained in the metabolic model are relevant, we applied the Gaussian fit 

filtering to the peaks detected at m/z corresponding to those of model isotopologues 

(Table S2). Out of the 202 model isotopologues, 158 were detected in the spectra, and 

111 passed the Gaussian fit filter with the goodness of fit threshold of 90% (Table S2, 

Materials and Methods).  
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Figure 2. Examples of the FIA-TOF data filtering steps. (a) Spectral filtering: effect of the correlation 
threshold of the ringing artifacts filter on picking the glutamate m+0 (high intensity peak) and glutamine 
m+1 (the correlating peak) peaks. (b) Spectral filtering: examples of the Gaussian fit filtering: left, good 
quality fit of the restored profile; middle, low quality fit of the restored profile; right, good quality fit of 
the restored profile, however, the peak discarded due to high influence on its intensity by the neighboring 
peaks (> 10% of the measured peak intensity). (c) Ratiometric filtering: left, example spectrum of malate 
detected in a sample from [1-13C] experiment with unexpectedly high intensity of m+4 isotopologue; 
right, the calculated mass distribution vector and ratiometric filtering threshold results in discarding the 
m+4 isotopologue (threshold of 33% of the m+0 value is depicted with the dashed line). (d) SUMOFLUX 
simulation filtering for the malate example. The m+4 and m+0 isotopologues are discarded since they 
are not covered by the simulated data distributions (threshold of > 50% of measured values to be 
outliers). 
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Annotation quality check and ratiometric filtering of FIA-TOF data. Out of the 

111 isotopologue ions of interest that passed the spectral filtering, only 27 ions had a 

unique annotation (Table S2). This means that there was only one isotopologue with 

the matching m/z value in the whole library used to relate detected m/z to those of 

known compounds. Given the fact that the annotation library was compiled from the 

KEGG database for E. coli, which contains compounds detectable only in specific 

experimental setups (such as drugs and their derivatives), as well as compound isomers 

(such as D-alanine and L-alanine), we suspected that some of the non-uniquely 

annotated compounds can be informative and thus should be retained for further 

analysis. Based on the prior knowledge about the labeling strategies that were used in 

the pilot experiment, we proposed a ratiometric filtering procedure and annotation 

quality check suitable for evaluation of the labeled metabolites. 

Two parallel labeling strategies were administered in the pilot E. coli 

experiment: 100% [1-13C] glucose and a mixture of 50% [U-13C] and 50% unlabeled 

glucose. The ratiometric filtering criterion is based on the fact that in the cells 

consuming [1-13C] glucose the probability of a high abundance of a heavy isotopologue 

(with a mass shift by more than two 13C) is low. Therefore, we calculated the ratio 

between the intensity of the heavy and natural mass isotopologues of each compound, 

and set a threshold of 0.33 to define an unreliable measurement. For example, the m+4 

isotopologue of malate was four times more abundant than its m+0 isotopologue, 

indicating that the detected signal is biased by overlapping signals, despite its unique 

annotation (Figure 2c). After the ratiometric filtering, 104 out of 110 isotopologue ions 

of interest were retained (Table S2).  

The experiment with [U-13C] glucose provides additional filtering criterion. The 

fractional labeling of each compound is expected to correspond to the fraction of 

labeled glucose in the media (0.50 ± 0.05 in our case). This criterion incorporates 

information on all detected mass isotopologues of a compound. Therefore, it is 

metabolite and not isotopologue ion specific. The 104 mass isotopologues passing the 

ratiometric filter are related to 31 metabolites, for which we calculated the fractional 

labeling. Only five metabolites passed the quality check with fractional labeling values 

in the range 0.50 ± 0.05 (Figure S1). Since the fractional labeling calculation requires 

intensity measurements of all mass isotopologues of a compound, in the case when not 

all of them were detected or passed the filtering procedures, the calculated value is a 

lower bound for the actual fractional labeling. Therefore, we decided to keep the 
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isotopologue ions corresponding to metabolites with low fractional labeling and 

incomplete set of detected isotopologues for further analysis. The fractional labeling 

information can only be used for quality check and not for filtering, because it is not 

sufficient to detect which of the isotopologues might be overlapping with isobaric ions 

in case of contradictory values. 

The ratiometric filtering and fractional labeling quality check are valuable ion 

selection criteria. However, they are only appropriate in specific experimental setups. 

In experiments with a mixed labeling strategy or multiple substrate co-metabolism, it 

is hardly possible to formulate selection rules. The strict filter of uniquely annotated 

compounds is applicable for any type of data, but might discard crucial information 

required to resolve fluxes of interest. In the next sections, we employ SUMOFLUX to 

test the effect of the filtering steps on flux ratio resolvability, and introduce an 

additional universal filtering procedure based on simulated labeling data generated in 

the SUMOFLUX workflow. 

 

Feature selection for SUMOFLUX flux ratio analysis. After the spectral and 

ratiometric filtering of the FIA-TOF data, the list of isotopologue ions retained for 
13C metabolic flux analysis consisted of 105 ions (Table S2). For classical 13C flux 

analysis, the labeling data is represented with mass distribution vectors, which indicate 

the fraction of each mass isotopologue in the total pool of the compound. Two potential 

problems affect the calculation of mass distribution vectors from the FIA-TOF data. 

First, even after filtering some of the isotopologues signals might originate from 

overlapping ions. Second, in case of missing isotopologues, the fractions of other 

isotopologues in the total compound pool will be overestimated. 

The SUMOFLUX workflow consists of five steps: i) sampling of feasible flux 

solutions given the metabolic network; ii) simulating corresponding metabolite labeling 

patterns for each flux vector given the substrate label; iii) calculating the flux ratio of 

interest from the flux vectors; iv) dividing the simulated data in two parts to train the 

flux ratio predictor and test its performance; v) finally, applying good quality predictors 

to the experimental data (Figure 1b). Due to the extensive flux sampling, the labeling 

data simulated with SUMOFLUX is supposed to encompass all possible metabolic 

phenotypes for a given experiment. Therefore, if there are discrepancies between the in 

silico and measured data, they are likely caused by the erroneous FIA-TOF 

measurements. For example, comparing the malate data measured in the [1-13C] 
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experiment (Figure 2c) with the corresponding in silico distribution reveals striking 

differences between the feasible and calculated fractions of the m+4 isotopologue 

(Figure 2d). In case more than half of the measured values were not covered by the in 

silico data, we decided to exclude mass isotopologue features from further analysis. 

However, in the example of malate, the natural m+0 isotopologue would be discarded 

as well, since the erroneous m+4 isotopologue causes the underestimation of other 

isotopologues’ fractions. 

Due to the machine learning procedure, SUMOFLUX is flexible in terms of 

input data, as virtually any vector of features can be used to train the flux ratio predictor. 

Therefore, we searched for a representation of the labeling data which would reduce 

the dependency on the erroneous features. As an alternative to the mass distribution 

vectors, we propose to calculate pairwise isotopologue ratios for each metabolite of 

interest. The advantage of this transformation is that the erroneous features will 

influence only the ratios they are involved in, while other features will remain 

unaffected (Figure 3a). Similarly, the pairwise isotopologue ratios do not depend on the 

missing isotopologues. The simulation filtering procedure described earlier is equally 

applicable to the isotopologue ratio features as to the mass distribution vectors. In the 

aforementioned example case of malate, only the features dependent on the erroneous 

m+4 isotopologue were discarded from further analysis (Figure S2). It is important to 

consider that the number of features increases, as the number of isotopologue ratios is 

larger than the length of the mass distribution vector, which may lead to predictor 

overfitting. Notably, the feature selection procedure embedded in SUMOFLUX helps 

to avoid this potential issue of overfitting (see Materials and Methods for details). 
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In silico testing the effect of data filtering on flux ratio resolvability. To verify 

whether the labeling data retained after the filtering steps is sufficient to perform flux 

ratio analysis, and whether the pairwise isotopologue ratios can be used instead of mass 

distribution vectors, we tested the resolvability of four key flux ratios in central 

metabolism of E. coli (Figure 4a). 

We tested five sets of features resulting from the different filtering steps: all 

detectable isotopologue ions contained in the model, features passing ringing artifacts 

filter, Gaussian shape filter, ratiometric filter, and uniquely annotated ions. For each set 

of features, we calculated the mass distribution vectors and isotopologue ratios, and 

subsequently built ten predictors for each of the four flux ratios. The predictors’ 

performance was assessed on in silico test datasets not involved in training by 

calculating the mean absolute error (MAE) of the estimates.  Predictors with 

MAE < 0.05 were considered to be highly accurate, and with MAE < 0.1 of acceptable 

quality. For all tested ratios, there was no difference between the quality of the 

Figure 3. Robust feature selection and its effect on flux ratio predictors’ performance in silico. (a) In 
silico simulation of an isotopologue overlapping with another compound, left; and its effect on mass 
distribution vector (MDV), middle; and isotopologue ratios (IR), right. (b) In silico testing mean absolute 
error (MAE) values of four flux ratio predictors build given either of the five sets of annotated ions 
represented with either MDV or IR. 
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predictors built using isotopologue ratios or mass distribution vectors as input 

(Figure 3b). The subset of annotated ions used for prediction, on the contrary, strongly 

affected the predictors’ quality. As the confidence in the ion annotation increased (by 

eliminating dubious ions in the filtering steps), the number of ions decreased, and the 

predictors’ quality decreased as well (Figure 3b). Only the ratio between glycolysis and 

pentose phosphate (PP) pathway could be resolved with good accuracy given the subset 

of uniquely annotated ions. For the other tested ratios, all subsets but the uniquely 

annotated ions were sufficient to achieve high or acceptable (in the case of pyruvate 

fraction from malate) prediction accuracy (Figure 3b).   

To summarize, the in silico SUMOFLUX testing revealed that isotopologue 

ratios can substitute mass distribution vectors as input for targeted flux ratio analysis. 

The set of uniquely annotated ions was sufficient to resolve only one ratio, whereas 

other filtering steps retained sufficient information to resolve all tested flux ratios in 

central metabolism. Although with SUMOFLUX simulations we demonstrated the 

feasibility of flux ratio analysis with the FIA-TOF data, our results might be optimistic 

since the actual measurements might still contain artifacts not captured by in silico data. 

Therefore, in order to state the usability of the high-throughput flux analysis protocol, 

it has to be demonstrated on experimental data with a priori expectations on the flux 

estimates. 

 

SUMOFLUX captures flux phenotypes of E. coli knockouts using FIA-TOF data. 

Next we set out to verify whether SUMOFLUX can estimate flux ratios from real high-

throughput mass spectrometry data. The five knockout strains included in the pilot 

experiment cannot catalyze specific reactions, therefore have expected flux phenotypes 

which serve as a reference for SUMOFLUX flux ratio predictions. In order to describe 

those metabolic phenotypes, we applied the four predictors described in the previous 

section, and trained four additional flux ratio predictors to complement the information 

about the branch points in central metabolism (Figure 4a). 
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As input data we used the isotopologue ratios calculated for the ions which 

passed all filtering steps but the unique annotation (Figure 1c). Additionally, the 

simulation filtering was performed before training the predictors. The eight flux ratio 

Figure 4. Metabolic flux phenotypes of E. coli gene knockouts are captured with high-throughput 
SUMOFLUX workflow. (a) Schematic representation of E. coli central carbon metabolism network and 
gene knockouts used for the proof of principle. (b) Estimated flux ratios for the wild type and knockout 
strains, error bars represent [10% 90%] prediction quantiles. (c) Correlation of flux ratio predictions 
made given the five different subsets of annotated ions. The ion subset used for predictions in (b) is 
marked with the blue rectangle.   
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predictors had good and acceptable accuracy in silico, although the accuracy of the two 

predictors for the phosphoenolpyruvate (PEP) fractions were rather low (MAE=0.14, 

Figure S3). Applied to the experimental data, the SUMOFLUX predictors were able to 

capture the expected flux phenotypes of the E. coli knockouts. Indeed, for the Δpgi and 

Δzwf mutants lacking enzymes in glycolysis and PP pathway, respectively, the ratio 

between glycolysis and PP pathway was significantly lower or higher than in wild type 

(FDR<10-12, Figure 4b, upper left). Furthermore, the fraction of pyruvate from Entner-

Doudoroff pathway was the largest in the Δpgi and the smallest in Δzwf, which has 

been shown before25 (Chapter 2). For the Δpgi and ΔsdhA mutants, the estimated 

fraction of PEP originating from gluconeogenesis was significantly higher than in wild 

type (FDR<0.05, Figure 4b, upper right), that has been observed previously 

(Chapter 2). The ΔsdhA and ΔfumA mutants lacking an enzyme in the tricarboxylic 

acid (TCA) cycle had higher fraction of oxaloacetate originating from anaplerosis from 

PEP. On the contrary, the Δzwf mutant of the PP pathway and the slow growing Δpgi 

mutant had a larger fraction of oxaloacetate originating from the TCA cycle compared 

to wild type, reflecting the compensation for cofactor production in case of Δzwf, or 

the increased glyoxylate shunt activity in case of Δpgi25,26 (Chapter 2), (Figure 4b, 

lower right). The estimates for the malic enzyme versus glycolysis fluxes contributing 

to the pyruvate pool had large prediction intervals (Figure 4b, lower left), and could not 

be used to distinguish specific flux phenotypes.  

Flux ratio estimates for the knockout strains were in agreement with the 

expectations about their metabolic phenotypes, confirming the feasibility of 13C flux 

ratio analysis using FIA-TOF data. The input features used to train the SUMOFLUX 

predictors were rigorously filtered with the four-step filtering procedure (Figure 1c). 

We therefore decided to investigate the impact of these filtering steps on flux ratio 

estimation by calculating correlation coefficients between predictions made using the 

five filtered subsets of data. Similar to the in silico testing results, the predictions based 

on uniquely annotated ions were diverging from those made with other filtered subsets 

(Figure 4c). The estimates for glycolysis and PP pathway frations and pyruvate from 

Entner-Doudoroff were in good agreement for any of the four filtering steps, whereas 

estimates for pyruvate, PEP and oxaloacetate origins were consistent between 

predictors trained on data filtered with either none and ringing artifacts filters, or 

Gaussian shape and ratiometric filters (Figure 4c). 
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Overall, in the pilot experiment with genetic knockouts of E. coli we 

demonstrated that the combination of untargeted FIA-TOF measurements with 

SUMOFLUX workflow is applicable for fast and high-throughput flux screening. The 

proposed filtering procedures helped to increase the data quality, whereas the 

representation of labeled data with isotopologue ratios reduced the potential influence 

of misannotated or missing isotopologues on the other isotopologues of the same 

compound. For all tested flux ratio predictors in central metabolism, the estimates 

obtained for the data filtered with Gaussian shape or ratiometric filters were in 

agreement, underlining i) the importance of filtering for successful flux ratio analysis 

ii) the redundancy of the experiment-specific ratiometric filter. Therefore, the proposed 

data processing procedure is not experiment specific, thus establishes the general 

applicability of the developed high-throughput 13C flux ratio analysis workflow. 

 

Large-scale flux profiling of E. coli phosphorylation mutants. Having established a 

fast high-throughput 13C flux analysis workflow with SUMOFLUX, we set out to 

demonstrate its large-scale application for functional characterization of enzyme 

phosphorylation in E. coli. Since the advances in genome editing enable targeted 

mutations of specified phosphosites23, their 13C fluxomics profiling offers a unique 

opportunity to gain insights into their functional role in cellular metabolism. 

We used a set of 60 E. coli strains with mutations in phosphosites 

(phosphomutants). The phosphoresidues serine or threonine were mutated to alanine, 

abolishing phosphorylation of the targeted amino acid (the phospho-OUT mutants). 

The phosphoresidues were additionally mutated to glutamic acid to mimic a 

constitutively phosphorylated state of the protein (the phospho-IN mutants). The wild 

type E. coli and 60 phosphomutants were grown on either [1-13C] glucose, or a mixture 

of 50% [U-13C] and 50% unlabeled glucose in 96 well plates, and intracellular 

metabolites were measured with FIA-TOF mass spectrometer, following the 

experimental and data analysis protocols developed in the previous sections.  

The mutated enzymes catalyze reactions in central carbon (Figure 5a), amino 

acid and nucleotide metabolism and sugar transport (Table S3). Most of the mutants 

did not have any growth defect, or had a minor growth decrease compared to wild type. 

The most severe growth phenotype was observed for the phospho-IN mutation in 

isocitrate dehydrogenase (Icd), an enzyme catalyzing one of the reactions in the TCA 
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cycle; and galactitol permease (GatB), an enzyme involved in galactitol transport 

(Table S3).  

 
Figure 5. High-throughput metabolic flux profiling of E. coli phosphomutants.  (a) Schematic 
representation of E. coli central carbon metabolism network and enzymes with mutated phosphosites 
(only subset of enzymes involved in central metabolism is shown). (b) Histogram representing the 
number of mutants exhibiting flux ratio changes of > 0.05 compared to the wild type values. (c) The 
phosphomutants exhibiting > 0.10 flux ratio change compared to the flux ratios of wild type. (d) An 
overview of the difference between mutant and wild type flux ratios for all profiled phosphomutants. 
The color corresponds to the magnitude of change, whereas the dot size corresponds to significance 
(false discovery rate, FDR). 
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In order to investigate metabolic flux change upon phosphorylation, we 

formulated 17 flux ratios that describe the source of metabolites produced via 

alternative reactions in the central metabolism network used for analysis (Figure 4d). 

All flux ratio predictors showed good or acceptable accuracy on the in silico testing 

dataset (Figure S4), and were subsequently applied to estimate the flux ratios for the 

phosphomutant samples. The effect of phosphorylation on the metabolic fluxes was 

quantified as the flux ratio difference between the mutant and the wild type. Since we 

did not expect major flux rearrangements for most of the mutants due to the absence of 

a growth defect, we set a permissive threshold of 0.05 to consider flux ratio to be 

changing. To distinguish between the global and local effects, we calculated how many 

flux ratios were changed for each phosphorylation event. Most of the mutants had few 

changes in metabolic ratios, one third of the mutations had no effect on central 

metabolism, and six mutants had global effects with more than five changing flux ratios 

(Figure 5b). Only nine phosphomutants had at least one large flux ratio change 

compared to wild type (> 0.1), among them the Icd and GatB phosphomutants were 

undergoing the most changes. This is little surprising given their large growth defect, 

however, the other mutants causing global or large changes did not have severe growth 

defects with the exception of aconitase (AcnB) mutants, with mutations in the enzyme 

catalyzing one of the TCA cycle steps (Figure 5c, Tables S3). 

Intuitively, if phosphorylation activates or de-activates the corresponding 

enzyme under studied conditions, the phospho-IN and phospho-OUT mutants should 

exhibit opposite flux changes. To detect such cases, we calculated Pearson correlation 

between the flux ratios of the opposite phosphorylation mutants. Only in four cases the 

flux ratio changes had negative correlation: for Icd, GatB, phosphoglycerate kinase 

Pgk, a glycolytic enzyme, and isochorismate synthase MenF (Table S4). The icd_IN 

and icd_OUT mutants demonstrated opposite flux change patterns primarily affecting 

the flux through the TCA cycle. Consistent with the fact that enzyme phosphorylation 

deactivates the Icd enzyme in the TCA cycle24, the icd_IN mutant had a decreased, and 

the icd_OUT mutant had an increased fraction of the TCA cycle contributing to the 

formation of oxaloacetate (Figures 5d, S5). Between the phospho-IN and phospho-

OUT mutations in the Pgk and GatB, the largest flux ratio changes were observed in 

the transketolase forming fructose-6-phosphate and TCA cycle fluxes (Figures 5d, S5). 

In these cases, the role of phosphorylation is not straightforward to explain, since the 

flux changes are distal to the phosphorylation site. Phosphorylation might be triggering 
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some regulatory mechanisms affecting glucose transport (as GatB is involved in the 

phosphotransferase system27) and pentose phosphate pathway activity. For the 

phosphomutants of isochorismate synthase, the correlation was too low to distinguish 

the flux change patterns (Pearson correlation -0.07, Table S4, Figure S5).  

Even if a phosphomutant exhibits a flux phenotype distinct from the wild type, 

it is often difficult to infer the direct function of phosphorylation due to the caused chain 

of distal flux rearrangements. To get additional insights into the role of 

phosphorylation, we decided to compare metabolic flux ratios of the phosphomutants 

to the corresponding gene knockout mutants. We profiled 26 knockout strains 

following the same workflow, and performed hierarchical clustering of the flux changes 

in both knockouts and phosphomutants. The clustering revealed several remarkable 

flux patterns. 

First, the icd_IN and gatB_IN mutants belong to the same cluster due to the 

strong and concordant flux ratio changes. Despite the inactivating role of Icd 

phosphorylation, the Δicd mutant did not occur in the same cluster, since the observed 

flux ratio changes were local and affected only the contribution of the TCA cycle and 

anaplerosis to the formation of oxaloacetate (Figure 6). This fact together with the 

absence of a growth defect in Δicd mutant (Table S3) indicate that Icd phosphorylation, 

apart from inactivating the enzyme, might be involved in global regulatory processes. 

The closest flux phenotype to the icd_IN and gatB_IN mutants was exhibited by the 

knockout of uridine kinase Udk, which had concordant, but minor flux ratio changes. 

At the same time, the flux phenotypes of icd_IN and gatB_IN cannot be explained 

solely by their severe growth impairment, since their flux ratio changes are not 

concordant with the other slow growing mutants, e.g. Δpgi (Figure 6, Table S3).  

Indeed, the slow growing E. coli is expected to have impaired glycolysis and 

anaplerosis28, which was the case for Δpgi but not for icd_IN and gatB_IN mutants. 

Second, the acnB_IN strain with mutation in the enzyme catalyzing a TCA 

cycle reaction converting citrate to isocitrate (Figure 5a) displayed a similar flux ratio 

phenotype as the Δicd knockout (Figure 6). Although the acnB_OUT mutant does not 

have a strong opposite flux ratio phenotype, the impairment of the TCA fluxes shown 

Figure 6. Hierarchical clustering of the flux patterns of E. coli knockouts and phosphorylation mutants. 
Hierarchical clustering was performed for the flux ratio changes to the wild type values using Pearson 
correlation coefficient as distance metric. The color corresponds to the flux ratio changes between the 
mutant and the wild type strain. The dashed lines and bold text highlight the clusters discussed in the 
main text. 
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by acnB_IN mutant concordant with Δicd knockout suggests an inactivating role of 

aconitase phosphorylation.  
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Peculiarly, similar flux ratio phenotypes were demonstrated by the 

phosphoenolpyruvate synthase pps_IN mutant and the glucose 6-phosphate 

dehydrogenase knockout Δzwf catalyzing one of the first step of the PP pathway. These 

flux phenotypes are characterized by an increased glycolytic and decreased anaplerotic 

activity (Figure 6). The phosphoenolpyruvate synthase catalyzes a gluconeogenic 

reaction forming phosphoenolpyruvate from pyruvate, and would not be expected to 

play a role upon growth on a glycolytic carbon source such as glucose. The similarity 

of flux patterns between pps_IN and Δzwf might indicate the inactivating role of Pps 

phosphorylation leading to even larger glycolytic flux ratio. On the other hand, the 

observed changes might be caused by changes in PEP concentrations, since this 

metabolite is involved in glucose transport. The pps_OUT mutant is clustered together 

with phospho-IN modifications of enolase (Eno) and pyruvate kinase (Pyk), two 

enzymes involved in lower glycolysis forming PEP and pyruvate (Figures 5a, 6). Their 

flux phenotypes are described by increase of both glycolytic and anaplerotic flux 

fractions. This observation suggests an activation function of Eno and Pyk 

phosphorylation, however, it might as well indicate a series of regulation events caused 

by changes levels of PEP and pyruvate, the known regulators of E. coli central 

metabolism29. 

In summary, we demonstrated the suitability of the high-throughput flux ratio 

profiling with SUMOFLUX on a set of E. coli phosphorylation mutants. By comparing 

the flux ratio profiles of phosphomutants to each other and knockout strains, we could 

confirm the inactivation function of isocitrate dehydrogenase phosphorylation and 

generate hypotheses for several other phosphorylation events. Overall, the established 

protocol for high-throughput large-scale flux ratio analysis raises the curtain for rapid 

flux profiling and provides an essential layer of information for integrative multi-omics 

analysis. 

 

 

DISCUSSION 
In this work, we established an experimental and data analysis workflow for high-

throughput flux ratio screening by combining the fast untargeted FIA-TOF 

measurement platform and previously developed flux ratio analysis method 

SUMOFLUX. The experimental setup is cost and time efficient. First, for the 96 deep-
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well cultivation, about 2 mL of culture medium per sample is required, thus the usage 

of expensive labeling substrate is drastically reduced compared to the shake flask 

cultivation, where 50-100 mL of culture medium per sample is used. Second, the 

metabolite extraction step in 96-well format takes less than 30 min per plate. Third, the 

measurement with FIA-TOF requires 1 min per sample, therefore one plate can be 

measured in ~ 1.5 h. The subsequent flux ratio prediction time is negligible. As soon as 

the SUMOFLUX predictor is built, it can be applied to all the samples simultaneously, 

which takes no more than a couple of minutes. Thus, with the proposed workflow, a 

thousand flux analyses can be performed in one day, which is an order of magnitude 

more than with most commonly used measurement techniques17,30.  

Such decrease in experimental time results in a decrease in data quality due to 

the untargeted nature of the measurements leading to missing or overlapping metabolite 

ions. Therefore, we proposed a two-step spectral filtering procedure, which eliminates 

faulty measurements based on the peak shapes and intensity correlation. This filtering 

is universally applicable to any type of data measured with FIA-TOF. Once the ions are 

filtered, they are annotated according to the detected mass, hence multiple annotations 

are unavoidable for the isobaric compounds. Since very few ions are annotated uniquely 

and, according to our analysis, do not contain necessary information for accurate flux 

estimates, a more permissive annotation filtering is required. In our experimental setup, 

we could apply a ratiometric filtering specific for the [1-13C] glucose labeling 

experiment, which was based on the prior assumptions on heavy isotopologue 

distributions. Although this specific annotation filtering is not applicable in other 

experimental conditions, we proved that the additional filtering step based on 

SUMOFLUX simulations, which is generally applicable to any type of data, is 

sufficient to discard unreliable measurements and lead to the concordant flux estimates.  

SUMOFLUX offers several advantages for high-throughput large-scale flux 

analysis with FIA-TOF data. First, the possibility of using different input features 

enabled us to use isotopologue ratios instead of mass distribution vectors, which 

reduced the dependence of several features on one misannotated ion. Second, the 

flexible feature selection procedure helps to deal with missing data, as non-measured 

isotopologue ratios are easily eliminated from the predictor training. Third, the 

extensive data simulation procedure spans over a large cohort of possible flux 

phenotypes, therefore might serve as an additional filtering step. We proposed to 

compare the isotopologue ratios of the experimental data to the in silico ones, since the 
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discrepancies between the measured and simulated features likely indicate 

misannotated or overlapping ions. Of course, such discrepancies can also be caused by 

errors in the model or inappropriate assumptions on substrate labeling or measurement 

noise, hence a manual inspection of the corresponding distributions is advisable. 

Fourth, apart from the obvious advantage of the fast calculation time compared to the 

global 13C flux analysis methods, SUMOFLUX provides targeted estimates of specified 

flux ratios, what simplifies the comparison between samples and statistical testing.  

One of the experimental advantage of 13C fluxomics screening is the 

independence between samples, since the flux analysis outcome for each sample 

depends solely on the ions detected in this sample. In contrast to comparative 

metabolomics profiling, for example, there is no need for careful culture density 

measurement and biomass normalization, since the ion intensities of different samples 

are not compared directly. In the experiment with phosphomutants, some of the strains 

were growing slowly, and their cell density at the time of sampling was only about 

OD600 ~ 0.15, what corresponds to < 0.05 mg of cell dry weight per well. Nevertheless, 

the metabolite measurements with FIA-TOF were sensitive enough to detect 

intracellular labeling patterns and perform flux ratio estimation for all strains involved 

in the study. This fact facilitates experimental design and administration and enables 

flux analysis in slow or non-growing cells. 

Our analysis of E. coli phosphorylation mutants indicate that some 

phosphorylation events do not only change the activity of the corresponding enzyme, 

but also have global regulatory effects on cellular metabolism. Very few enzymes 

exhibited a strong negative correlation of the flux patterns, and yet two of them 

exhibited general flux changes. The metabolic and growth phenotypes of the 

phospho-IN mutations in Icd and GatB were much more severely impaired than in the 

corresponding knockout strains. Since the studied mutation in the phosphosites only 

mimics the protein phosphorylation state, it is possible that the global effects caused by 

these mutations are not linked to phosphorylation, but are caused by protein misfolding. 

Therefore, for the selected phosphoproteins, assessing their in vivo phosphorylation 

activity might be crucial. One possibility would be to perform 13C flux profiling in 

several conditions coupled with large-scale phosphoproteomics31-33. This approach 

proved to be useful to identify key phosphorylation events governing metabolic fluxes 

in yeast34, even though fluxes were analyzed only in three conditions. With the 

developed high-throughput flux profiling approach, the analysis can be extended to 
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more media and stress conditions to detect concordant flux ratio changes and 

phosphorylation events.  

Comparison between the metabolic phenotypes of phosphomutants and 

knockout strains revealed several hypotheses on the phosphorylation function. Whether 

these events are direct or indirect, still has to be tested. To obtain a more comprehensive 

picture, it would be desirable to include in the comparison the overexpression strains 

available for E. coli35, to probe the opposite effects of the phosphorylation and 

investigate the flux changes caused by enzyme overexpression. Moreover, since it has 

been shown that some transcriptional regulatory events in E. coli have a larger impact 

on the absolute fluxes and not flux partitioning in the network14, measurement of 

absolute fluxes would provide additional information. In order to estimate absolute 

fluxes, flux balance analysis could be performed constrained by the flux ratio estimates 

obtained by 13C flux profiling, and uptake and secretion rates inferred from temporal 

FIA-TOF measurements of extracellular metabolites. Additionally, intracellular 

metabolite levels in different strains could be compared to complement the flux ratio 

comparison36 and identify potential regulatory mechanisms following enzyme 

phosphorylation, such as interactions of increased or decreased metabolites with distal 

enzymes in central metabolism.  

The proposed experimental and data analysis workflow is not limited to 

investigation of bacterial metabolism on single substrate media. Similar to the 

experimental setup described in Chapter 3, it would be possible to perform fluxomic 

profiling in multi-substrate conditions to study substrate efficiency usage and metabolic 

adaptations, screen large cohorts of strains relevant for biotechnological applications, 

or investigate drug effects and metabolic responses to thousands of compounds. The 

experimental protocol would have to be adapted for other organisms, however, it should 

be feasible since the high-throughput cultivation methods are already used for    

yeasts37-39 and higher cells10,40-43. Although cellular behavior during culturing in 

different experimental setups might vary, it has been shown, at least for E. coli and 

Corynebacterium glutamicum, that flux distributions in shake flasks and 96 deep-well 

plates are identical44,45. 

While SUMOFLUX-predicted flux ratios were consistent with the expected 

knockout flux phenotypes in the proof-of-principle experiment, the precise flux ratio 

estimation using FIA-TOF data cannot be guaranteed. Even after filtering and quality 

checks, the annotated data might contain faulty ions or high level of noise if the signal 
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is low. The simulation filtering procedure embedded in the SUMOFLUX workflow 

may fail to identify discrepant features, or eliminate essentially informative ions in case 

there are not enough experimental samples to compare the in silico and measured 

isotopologue distributions. We hence recommend to consider SUMOFLUX estimates 

from FIA-TOF data as semi-quantitative and better suited for comparative studies. Still, 

the proposed high-throughput fluxomics profiling is a valuable hypotheses generating 

procedure, which presents a general overview of the flux patterns in all examined 

samples and identifies the most promising targets for the follow-up studies.  Therefore, 

we believe that SUMOFLUX coupled to the untargeted metabolomics may drastically 

increase the speed and broaden the applicability of fluxomics, provide additional 

functional information layer and bring 13C flux screening to the high-throughput level 

of the other omics techniques.      

 

 

EXPERIMENTAL PROCEDURES 
Strains and media. For the proof-of-principle, E. coli wild type K-12 strain BW25113 

and the knockouts from the Keio collection were used46. For the experiment with 

phosphorylation mutants, a progenitor wild type strain and the phosphosites mutants 

were constructed based on a multiplex automated genome engineering method23 by 

Harris Wang, Columbia University, USA. 

Chemicals. Chemicals, where nothing else is mentioned, were purchased from Sigma 

Aldrich (Schnelldorf, Switzerland). 

Bacterial culturing. Frozen glycerol stocks of E. coli strains were used to inoculate 

agar plates of Luria-Bertani medium. Precultures were inoculated from agar plates in 

96 deep-well plates with M9 minimal medium supplemented with either 5 g L-1 

[1-13C] glucose, or a mixture of 2.5 g L-1 [U-13C] glucose and 2.5 g L-1 unlabeled 

glucose. Mid-exponentially M9 precultures at optical densities at 600 nm (OD600) of 

1-2 were then used to inoculate 96 deep-well plates with 1.2 mL M9 minimal medium 

to an OD600 of 0.05. In case of slow growing precultures, the cultures were inoculated 

to a maximal possible OD600. All cultures were grown at 37° C under constant shaking 

at 300 rpm. Mutants were grown in triplicates on the 96-well plate while wild type was 

inoculated in triplicate in each plate. 
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The M9 medium contained: Na2HPO4 2H2O 211 mM, KH2PO4 110 mM, NaCl 

42.8 mM, (NH4)2SO4 56.7 mM, MgSO4 100mM, CaCl2 10mM, FeCl3 10mM, 

500 x Thiamine-HCl 1.4 mM, ZnCl2 0.63 mM, MnSO4 0.71 mM,  CoCl2 0.76 mM, 

CuCl2 0.7 mM. The prepared media were filter sterilized. 

Metabolite sampling. Cell growth was monitored with the Tecan Sunrise Plate Reader 

by measuring OD600. When cell density reached OD600 ~ 1, the 96 deep-well plate was 

centrifuged (0° C, 4000 rpm, 2 min) and supernatant was discarded by tapping against 

a paper tissue. To each well, 180 uL of 60% EtOH at 80° C was added and the plate 

was boiled for 3 min in 80° C water bath with 2 vortexing steps. After extraction, the 

plate was centrifuged (0° C, 4000 rpm, 5 min) and supernatant was transferred to a 96-

well storage plate AB 1058 (Thermo Scientific). The plates were kept at -80° C until 

measurement.  

FIA-TOF measurement and ion annotation. Metabolites were measured by direct 

flow double injection of extracts on an Agilent 6550 series quadrupole TOF MS. Ions 

within a mass/charge ratio range of 50-1000 Da/e were measured in negative mode. 

The ions were annotated using the KEGG list of E. coli metabolites47. Only ions 

corresponding to deprotonated metabolites were considered for further analysis.  

All data analysis was conducted using Matlab (The Mathworks, Natick). 

FIA-TOF data processing. Spectral filtering. For the ringing artifacts filtering, 

Pearson correlation coefficients across all measured samples were calculated for small 

intensity peaks in the proximity of 0.3 Da/e of a high intensity peak detected earlier. 

Correlation threshold of 0.9 was set to eliminate faulty peaks. For the Gaussian shape 

filtering, a maximum of 5 peaks detected at the maximum distance of 0.1 Da/e from the 

peak of interest were used to represent the spectrum as a sum of Gaussian functions. 

Matlab function fit was called with parameters of peak locations, peak height and peak 

width. Peak locations and heights were defined in the peak picking procedure, whereas 

peak width was estimated with the Matlab function findpeaks. The difference between 

the restored and measured peak intensity, as well as the difference between the single 

Gaussian peak fitting and measured intensity was calculated. A threshold of 0.1 of the 

measured intensity was set to define poor fit or large discrepancy between the measured 

and restored intensity to eliminate faulty peaks.  
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Ratiometric filtering. For the ratiometric filtering of data detected in [1-13C] glucose 

experiment, for each detected metabolite the ratio between the m+N isotopologue 

(N>2) and m+0 isotopologue was calculated. A threshold of 0.33 was set to eliminate 

potentially overlapping heavy isotopologues. For the quality check, fractional labeling 

for the data detected in [U-13C] experiment was calculated as the fraction of labeled 

atoms in the total pool of metabolites atoms. 

SUMOFLUX analysis. Network construction. E. coli metabolic network with carbon 

atom transitions and the lists of input and output metabolites were defined (Table S3). 

In order to reduce the dependency on the biomass vector coefficients, a separate output 

flux is defined for each of the biomass precursors, therefore biomass precursors are also 

added to the list of outputs. The substrates are defined as unbalanced compounds and 

do not participate in the stoichiometric equation system.   

Flux sampling and ratio calculation. In the flux sampling procedure, the definitions of 

net, exchange, forwards and backward fluxes are used48. By default, the lower and 

upper bounds for reversible reactions are set to [-100 100], for irreversible reactions to 

[0 100], and the major uptake flux is set to 10. To achieve uniform coverage of values 

for a particular flux ratio or set of ratios, the ratio range was split into segments 

([0 0.25], [0.25 0.5], [0.5 0.75], [0.75 1]), and the flux sampling procedure is repeated 

for each segment with the end points set as flux ratio constraints in the first step. 

The flux fraction for each studied metabolite from a specific reaction was defined as 

the ratio between the flux from this reaction and sum of all producing reactions of this 

metabolite. Surrogate modelling of the labeling data, training and testing the predictor, 

feature selection, cross validation procedure and quantile calculations were performed 

as described in Chapter 2.  

Flux ratio comparison and clustering. Median predictions of the flux ratios were 

compared for each mutant and corresponding wild type strain estimates. Difference 

between the flux ratios were computed, and its significance was assessed with two-

sample unpaired t-test with unequal variances. P-values were subsequently corrected 

for multiple hypotheses testing by calculating the false discovery rate with Benjamini-

Hochberg procedure. A threshold of 0.05 was set to indicate small changes, a threshold 

of 0.1 was considered as a large change.  
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Pearson correlation coefficient of the flux ratio difference to the wild type was 

calculated for each pair of phospho-IN and phospho-OUT mutant with Matlab function 

corr.  

Hierarchical clustering was performed with Matlab function clustergram on the matrix 

of mutants and flux ratio difference to wild type. Pearson correlation was used as 

distance metric for the mutants, and Euclidean distance as a metric for the flux ratios.  
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Approach. Stable isotope tracing is the most informative and direct way to estimate 

metabolic fluxes, which is essential for understanding and controlling metabolic 

behavior and adaptation to novel environments. Metabolic fluxes have to be inferred 

from the labeling data with computational modeling or analytic equations. Existing 

global 13C metabolic flux analysis methods employ principles of constrained metabolic 

balancing to provide a flux distribution that best fits the labeling data. Therefore, 

extensive measurements of labeling data and physiological parameters, or even 

combination of parallel labeling experiments, are required to obtain the optimal flux 

distribution. Although generally applicable, these methods are poorly scalable due to 

the computational and experimental costs. Classical local 13C flux ratio analysis with 

analytic formulas, on the contrary, is easily applicable to large cohorts of data and 

requires only a few metabolite measurements. However, these formulas are based on 

strong assumptions, valid under specified experimental conditions, and require expert 

knowledge to be derived. Due to the lack of a fast, data-flexible and generally 

applicable 13C metabolic flux analysis approach, 13C fluxomics has not yet gained the 

widespread use and throughput as omics techniques1. 

In this thesis, we developed SUMOFLUX, a generalized targeted 13C metabolic 

flux ratio analysis method that combines the universality of global flux analysis and 

scalability of local flux ratio formulas. SUMOFLUX is a conceptually different 

approach that, for the first time to our knowledge, exploits machine learning to predict 

metabolic flux ratios from the 13C labeling data. Since machine learning requires a 

comprehensive training dataset, which in this case is not accessible experimentally, we 

employ surrogate modeling to generate thousands of fluxes and corresponding labeling 

patterns, what is justified by the fact that each flux vector unambiguously defines the 

labeling patterns of intracellular metabolites2. The prediction quality depends on the in 

silico training set, which should adequately describe the experimental setup. The 

training set is simulated given the information on the network structure, substrate label, 

and uptake and secretion fluxes. In case no physiological measurements are available, 

the sampling is performed to ensure a broad coverage of feasible range of exchange 

reactions and corresponding flux distributions. As a simple quality check of the in silico 

dataset, the simulated and measured isotopologue distributions can be compared in 

order to identify discrepancies, which indicate either errors in the model or inaccurate 

measurements. The latter can be corrected by omitting the discrepant features from the 

input list; the errors in the model, however, have to be curated by the user. 
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The combination of surrogate modeling with machine learning offers several 

advantages. First, SUMOFLUX allows to investigate any calculable ratio of fluxes 

given any measurable labeling data for any metabolic network and 13C tracer 

configuration that can be simulated. Since alternative reactions might produce similar 

labeling patterns of the downstream metabolites, an accurate resolvability of a flux ratio 

of interest cannot be guaranteed. However, the in silico testing procedure allows to 

assess which flux ratios of interest can be resolved under given conditions, therefore 

helps to extract the most flux information from the available data. Second, in case of 

poor in silico resolvability, alternative experimental setups can be tested to optimize 

experimental design by varying the 13C tracer or measurement data. The simulation 

time for the different setups can be reduced since already a small test dataset is 

sufficient to calculate the predictor error, which is a specific and easily interpretable 

metric. Third, combining data from parallel labeling experiments, which has been 

shown to improve flux estimation3,4, is easily implemented by merging the data 

simulated for different substrate labels. A large number of input features might cause 

predictor overfitting, but this can be circumvented with the embedded feature selection 

procedure. Fourth, once the flux ratio predictor is trained, it is rapidly applied to any 

number of samples of interest, making SUMOFLUX particularly easy to scale.  

 

High-throughput 13C flux analysis. The scalability of SUMOFLUX together with its 

flexibility in terms of input data enabled us to develop a fast high-throughput 

experimental workflow for 13C flux profiling using the untargeted metabolomics 

platform FIA-TOF (flow injection analysis – time of flight)5. With this workflow, about 

a thousand of flux ratio analyses can be routinely performed per day, assuming the 

labeled samples are available. Although the data generation with the untargeted FIA-

TOF platform is fast, it is prone to potential ion overlaps and missing values. Therefore, 

we proposed rigorous filtering procedures and feature modification, which improved 

the data quality and proved to be sufficient to capture expected flux ratio phenotypes 

for a set of E. coli knockouts strains.  

With the developed high-throughput workflow we performed functional 

profiling of a cohort of 86 E. coli strains with mutations in putative phosphorylation 

sites and corresponding knockout mutants. Comparison of flux ratio changes in central 

metabolism upon growth on glucose confirmed the reported deactivating function of 

isocitrate dehydrogenase phosphorylation, and suggested functional roles of several 
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previously uncharacterized phosphorylation events. Compared to the standard 

functional assays based on growth phenotypes or more detailed metabolomics 

analysis6, 13C flux profiling provides a more sensitive and interpretable readout of the 

functional changes. Since most phosphorylation events are functional only under 

specific circumstances, the performed screen should be expanded by including more 

experimental conditions and flux ratios in the analysis. Although the flux ratio estimates 

obtained from FIA-TOF labeling data may be semi-quantitative due to the high noise 

and overlaps in the data, the proposed high-throughput 13C flux profiling provides a 

valuable hypotheses generation tool.   

 

Complex nutritional environments. In the natural environments, microorganisms 

often encounter a variety of nutrients, which they utilize either simultaneously or 

sequentially depending on the cellular needs and capacities. Flux analysis in composite 

media is complicated by the increased network complexity and often requires more 

measurements. The targeted approach offers an advantage of extracting the valuable 

information from limited amount of data or poorly determined networks.  

We applied SUMOFLUX to characterize amino acid utilization in mycobacteria 

growing in composite media and infecting macrophage-like THP-1 cells. Although 

during infection the pathogens encounter nutrient-limited phagosomal environment7, 

there is emerging evidence that Mycobacterium tuberculosis utilizes multiple scarcely 

available nutrients, among which amino acids play an important role8. By formulating 

specific flux ratios, we quantified amino acid utilization patterns, classified them based 

on their influence on central metabolism, and compared the flux changes upon THP-1 

infection to the growth in rich medium. In contrast to the global 13C flux spectral 

analysis, which could only provide binary uptake characteristic for a couple of amino 

acids8, the targeted flux ratio analysis provided quantitative estimates for the 

biosynthesis fractions of all measured amino acids. These results underline the 

incidence of multiple carbon and nitrogen sources inside the phagosome and 

mycobacterial ability to utilize them as soon as they become available, what partially 

explains recurrent failures of targeted therapeutic interventions.  
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Outlook. In this work, we exploited SUMOFLUX to analyze flux ratios in relatively 

small models of bacterial or dual bacterial-host central carbon metabolism. In principle, 

this approach can already be expanded to resolve flux ratios in networks of larger size 

and complexity. The scalability of SUMOFLUX to genome-scale models primarily 

depends on the possibility of 13C data simulation for the training. Genome-scale 
13C metabolic flux analysis has already been performed in E. coli by reducing the 

network and using efficient data decomposition9. Although the computation time of 

genome-scale simulations to date remains a major challenge, with the advances of 

parallel computing it might be solved in the near future. However, it has been shown 

that the fluxes in the genome-scale model cannot be resolved with data from a single 

tracer experiment, thus multiple parallel labeling strategies are required to resolve 

specific branch points4. With the facilitated procedure for experimental design, 

SUMOFLUX might become the method of choice to select the optimal labeling 

strategies elucidating the key metabolic crossroads in genome-scale models.  

Optimal tracer design alone is not sufficient to resolve fluxes in alternate 

pathways with the same atom transitions. In this case, only non-stationary flux analysis 

methods that follow dynamic label propagation might reveal the flux partitioning10. 

Non-stationary methods are highly informative, especially when the isotopic steady 

state cannot be guaranteed due to transient growth or sequentially consumed nutrients, 

but are highly computationally and experimentally demanding10. In principle, the 

concept of SUMOFLUX can be extended to isotopically non-stationary data. In case a 

comprehensive training dataset consisting of dynamic isotopologue profiles and 

corresponding flux ratios is available, the flux ratio prediction for the experimental data 

can be performed at high speed and throughput analogous to the stationary case. The 

simulation of non-stationary training data is substantially more demanding because of 

the requirement to sample an increased number of degrees of freedom and measurable 

labeling features. Moreover, non-stationary labeling experiments are much more labor-

intensive and data demanding, and can be performed only at low throughput11. For 

practical reasons, the traditional approach of flux estimation by both global11,12 or 

local13 iterative fitting is better suited to the analysis of small-scale non-stationary 

labeling experiments. 

Due to its generalized nature, SUMOFLUX is also applicable to resolve fluxes 

in higher cells. Higher cells metabolism features consumption of multiple nutrients, 

therefore global flux estimation from a single labeling experiment becomes 
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impossible14. Local flux analysis methods are therefore more practical to test specific 

hypotheses, since they usually require less data and computations. Emerging 

approaches specialize in resolving flux nodes of relevance, such as detailed analysis of 

the tricarboxylic acid fluxes15, NADPH production16, or even direct assessment of 

anaplerotic fluxes in human17. The major challenge of higher cell flux analysis is that 

measured labeled compounds might represent an average of differently labeled 

molecules produced in different cellular compartments. With SUMOFLUX, this effect 

can be modeled in the training dataset by summarizing the simulated labeling patterns 

of the same metabolite produced by multiple reactions. Although in this case the 

accuracy of predictions might decrease, the in silico testing unravels the flux ratios 

which are theoretically resolvable under given conditions and those which are not.  

The high throughput workflow combining FIA-TOF data acquisition with 

SUMOFLUX analysis provides a useful tool for 13C fluxomics screening. In a similar 

fashion as for functional profiling of E. coli phosphomutants, it is readily applicable to 

study metabolic changes in central metabolism of industrial strains, or flux 

rearrangements caused by stress or drug exposure. In contrast to the commonly used 

phenotypic screening, which does not provide mechanistic information18, 13C flux 

profiling might shed light on the modes of action of uncharacterized drugs, and even 

suggest combination therapies. However, in its current form, SUMOFLUX workflow 

estimates flux ratios defined by the user, which requires prior knowledge on their 

relevance. The untargeted data acquisition with FIA-TOF, in the meantime, offers a 

powerful tool for biological discovery19. Recently, untargeted stable isotope 

metabolomics advanced drug development by elucidating altered metabolic pathways 

in exposed cell lines or patient-derived primary cells20-22. The underlying metabolic 

changes are analyzed in a qualitative way by visual inspection of changing 

isotopologues and assigning them to metabolic pathways. We believe that 

SUMOFLUX can benefit the untargeted 13C data analysis by flux ratio quantification 

in the proximity of the changing metabolites. Potentially, the high-throughput 

SUMOFLUX workflow can be integrated with data-driven metabolic subnetwork 

extraction23 for subsequent targeted 13C flux ratio analysis. Such non-targeted 

approaches have great potential to reveal hitherto overlooked metabolic flux changes 

and provide means to get closer to the full picture24. 
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Table S1. E. coli network of central carbon metabolism used throughout the study. 
 

Reaction type Reaction Stoichiometry and carbon transitions 

Uptake 
and secretion 

glc_up glucose (abcdef) -> G6P (abcdef) 
CO2up CO2in (a) -> CO2 (a) 

accoa_ac AcCoA (ab) -> Ac (ab) 
ac_out Ac (ab) -> Acetate (ab) 

co2_out CO2 (a) -> CO2out (a) 

Biomass 
precursors 

G6P_bm G6P (abcdef) -> G6Pbm (abcdef) 
PGA_bm PGA (abc) -> PGAbm (abc) 
P5P_bm P5P (abcde) -> P5Pbm (abcde) 
PEP_bm PEP (abc) -> PEPbm (abc) 
PYR_bm PYR (abc) -> PYRbm (abc) 
OGA_bm OGA (abcde) -> OGAbm (abcde) 
OAA_bm OAA (abcd) -> OAAbm (abcd) 
E4P_bm E4P (abcd) -> E4Pbm (abcd) 

Glycolysis 

pgi G6P (abcdef) <-> F6P (abcdef) 
pfk F6P (abcdef) -> FBP (abcdef) 
fba FBP (abcdef) -> DHAP (cba) + GAP (def) 
tpi DHAP (abc) <-> GAP (abc) 

gapdh GAP (abc) -> BPG (abc) 
bpg BPG (abc) -> PGA (abc) 
eno PGA (abc) -> PEP (abc) 
pyk PEP (abc) -> PYR (abc) 

Pentose 
Phosphate 
Pathway 

 

zwf G6P (abcdef) -> PG6 (abcdef) 
gnd PG6 (abcdef) -> P5P (bcdef) + CO2 (a) 
TK1 P5P (abcde) + P5P (fghij) <-> GAP (cde) + S7P (abfghij) 
TK2 P5P (abcde) + E4P (fghi) <-> GAP (cde) + F6P (abfghi) 
TA S7P (abcdefg) + GAP (hij) <-> E4P (defg) + F6P (abchij) 

Entner-Doudoroff edp1 PG6 (abcdef) -> KDPG (abcdef) 
edp2 KDPG (abcdef) -> PYR (abc) + GAP (def) 

TCA cycle 

pdh PYR (abc) -> AcCoA (bc) + CO2 (a) 
citl OAA (cdef) + AcCoA (ab) -> Cit (fedcba) 
idh Cit (abcdef) <-> OGA (abcef) + CO2 (d) 
sdh OGA (abcde) -> Suc (bcde) + CO2 (a) 
fum Suc (abcd) <-> Mal (abcd) 
mdh Mal (abcd) <-> OAA (abcd) 

Glyoxylate shunt gs1 Cit (abcdef) -> Glx (ab) + Suc (dcef) 
gs2 Glx (ab) + AcCoA (cd) -> Mal (abcd) 

Anaplerosis and 
gluconeogenesis 

mae Mal (abcd) -> PYR (abc) + CO2 (d) 
pyc PEP (abc) + CO2 (d) -> OAA (abcd) 
pck OAA (abcd) -> PEP (abc) + CO2 (d) 
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Table S2. Metabolites and metabolite fractions inferable from amino-acid measurements with 
GC-MS used in E. coli and B. subtilis studies. The metabolites and metabolite fragments were 
simulated in the in silico dataset for E. coli and B. subtilis. 
 

Metabolite Abbreviation Fragment carbon positions 
Oxoglutarate OGA15 1 2 3 4 5 
Oxoglutarate OGA25 2 3 4 5 
Oxoglutarate OGA12 1 2 

Phosphoenolpyruvate PEP13 1 2 3 
Phosphoenolpyruvate PEP23 2 3 
Phosphoenolpyruvate PEP12 1 2 
Erythrose 4-phosphate E4P14 1 2 3 4 

Biphosphoglycerate BPG13 1 2 3 
Biphosphoglycerate BPG23 2 3 
Biphosphoglycerate BPG12 1 2 

Pyruvate PYR13 1 2 3 
Pyruvate PYR23 2 3 
Pyruvate PYR12 1 2 

Oxaloacetate OAA14 1 2 3 4 
Oxaloacetate OAA24 2 3 4 
Oxaloacetate OAA12 1 2 
Acetyl-CoA AcCoA12 1 2 
Acetyl-CoA AcCoA2 2 

Ribose-5-phosphate P5P15 1 2 3 4 5 
Ribose-5-phosphate P5P25 2 3 4 5 
Ribose-5-phosphate P5P12 1 2 

 
 
Table S3. Analytic formulas used to calculate flux ratios in central carbon metabolism of E. coli 
and B. subtilis. 
 

Flux ratio Analytic formula for E. coli Analytic formula for B. subtilis 
Glycolysis / 

Pentose-phosphate 
pathway 

𝐹𝐹 =
𝐵𝐵𝐵𝐵𝐵𝐵13 − 𝑁𝑁13

0.5𝐿𝐿13 × 0.5𝑁𝑁13 − 𝑁𝑁13
 𝐹𝐹 =

𝐵𝐵𝐵𝐵𝐵𝐵13 − 𝑁𝑁13
0.5𝐿𝐿13 × 0.5𝑀𝑀13 − 𝑀𝑀13

 

Pyruvate from 
Entner-Doudoroff 

pathway 
𝐹𝐹 =

𝑃𝑃𝑃𝑃𝑅𝑅13 − 𝐵𝐵𝐵𝐵𝐵𝐵13
𝐿𝐿13 − 𝐵𝐵𝐵𝐵𝐵𝐵13

 n/a 

Oxaloacetate from 
anaplerosis 

� 𝐹𝐹
𝐹𝐹 ∗ 𝐶𝐶𝑂𝑂2

� =
𝑂𝑂𝑂𝑂𝐴𝐴14 − αKG25

�𝑃𝑃𝑃𝑃𝑃𝑃130 αKG25
0 𝑃𝑃𝑃𝑃𝑃𝑃13 𝑃𝑃𝑃𝑃𝑃𝑃130�

 � 𝐹𝐹
𝐹𝐹 ∗ 𝐶𝐶𝑂𝑂2

� =
𝑂𝑂𝑂𝑂𝐴𝐴14 − αKG25

�𝑃𝑃𝑃𝑃𝑃𝑃130 αKG25
0 𝑃𝑃𝑃𝑃𝑃𝑃13 𝑃𝑃𝑃𝑃𝑃𝑃130�

 

PEP from 
gluconeogenesis 𝐹𝐹 =

𝑃𝑃𝑃𝑃𝑃𝑃12 − 𝐵𝐵𝐵𝐵𝐵𝐵12
𝑂𝑂𝑂𝑂𝐴𝐴12 − 𝐵𝐵𝐵𝐵𝐵𝐵12

 𝐹𝐹 =
𝑃𝑃𝑃𝑃𝑃𝑃12 − 𝐵𝐵𝐵𝐵𝐵𝐵12
𝑂𝑂𝑂𝑂𝐴𝐴12 − 𝐵𝐵𝐵𝐵𝐵𝐵12

 

Pyruvate from 
malate 

 
𝐹𝐹 =

𝑃𝑃𝑃𝑃𝑅𝑅23 − 𝑃𝑃𝑃𝑃𝑃𝑃23
𝑀𝑀1 × 𝑀𝑀1 − 𝑃𝑃𝑃𝑃𝑃𝑃23

 𝐹𝐹 =
𝑃𝑃𝑃𝑃𝑅𝑅23 − 𝑃𝑃𝑃𝑃𝑃𝑃23
𝑀𝑀1 × 𝑀𝑀1 − 𝑃𝑃𝑃𝑃𝑃𝑃23

 

 
M1-one carbon molecule labeled according to the substrate labeling 
M13-last three carbon molecule labeled according to the substrate labeling 
N13-three carbon molecule naturally labeled (C13 natural abundance 1%) 
L13- first three carbon molecule fragment of the substrate propagated through glycolysis 
αKG – α-ketoglutarate 
BPG – biphosphoglycerate  
OAA – oxaloacetate 
PEP – phosphoenolpyruvate 
PYR – pyruvate 
Numbers in subscript indicate metabolic fragment 
 



 

 

Appendix I 

150 

Table S4. SUMOFLUX predictions and analytic formulas’ estimates of five flux ratios in central 
metabolism of E. coli for eight strains grown on 100% [1-13C] or 20% [U-13C] and 80% naturally 
labeled glucose; and for 121 B. subtilis strains grown on combination of 80% [1-13C] and 
20% [U-13C] glucose. Flux ratio estimates (median) and 10% and 90% prediction quantiles are 
reported. 
 
Table is available online at 
journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005109#sec022 
 
 
 
 
 
Table S5. 13C-MFA analysis of E. coli for eight strains grown on 100% [1-13C] or 20% [U-13C] and 
80% naturally labeled glucose. The best fit flux values and 95% confidence intervals for the fluxes 
estimated using parameter continuation procedure in INCA software. The prediction quantiles for the 
flux ratios were calculated from the flux ratio distributions of 1000 flux solutions found with the 
optimization procedure. 
 
Table is available online at 
journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005109#sec022 
 
 
 
 
 
Table S6. SUMOFLUX predictions for metabolic origin of oxaloacetate for eight E. coli strains 
grown on 20% [U-13C] and 80% naturally labeled glucose. Flux ratio estimates (median) and 10% 
and 90% prediction quantiles are reported. 
 

Strain Oxaloacetate from glyoxylate Oxaloacetate from TCA cycle 

MG1655 0.16 
[0.06 0.26] 

0.32 
[0.13 0.48] 

Δzwf 0.20 
[0.05 0.41] 

0.50 
[0.31 0.67] 

Δpgi 0.32 
[0.13 0.47] 

0.44 
[0.19 0.60] 

ΔpfkA 0.30 
[0.09 0.42] 

0.47 
[0.21 0.57] 

ΔpykAF 0.17 
[0.02 0.30] 

0.34 
[0.17 0.49] 

Δmae/pck 0.19 
[0.05 0.34] 

0.29 
[0.08 0.46] 

Δsdh/mdh 0.04 
[0.01 0.12] 

0.06 
[0.01 0.24] 

ΔfumA 0.05 
[0.01 0.12] 

0.16 
[0.03 0.30] 
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Table S7. Metabolites and metabolite fractions measurable with LC-MS or LC-MS/MS methods. 
The metabolites and fragments that were used for in silico experimental design. 
 

Metabolite Abbreviation Fragment 
carbon positions LC-MS LC-

MS/MS 
Oxoglutarate OGA15 1 2 3 4 5 + + 
Oxoglutarate OGA25 2 3 4 5  + 
Oxoglutarate OGA24 2 3 4  + 

Phosphoenolpyruvate PEP13 1 2 3 + + 
Phosphoenolpyruvate PEP23 2 3  + 
Biphosphoglycerate BPG13 1 2 3 + + 

Pyruvate PYR13 1 2 3 + + 
Pyruvate PYR23 2 3  + 

Oxaloacetate OAA14 1 2 3 4 + + 
Oxaloacetate OAA24 2 3 4  + 

Ribose-5-phosphate P5P15 1 2 3 4 5 + + 
Ribose-5-phosphate P5P35 3 4 5  + 
Ribose-5-phosphate P5P45 4 5  + 

Citrate Cit16 1 2 3 4 5 6 + + 
Citrate Cit12 1 2  + 

Dihydroxyacetone 
phosphate DHAP13 1 2 3 + + 

Fructose-6-phosphate F6P16 1 2 3 4 5 6 + + 
Fructose-6-phosphate F6P46 4 5 6  + 
Fructose-6-phosphate F6P56 5 6  + 

Fructose-1,6-bisphosphate FBP16 1 2 3 4 5 6 + + 
Glucose-6-phosphate G6P16 1 2 3 4 5 6 + + 
Glucose-6-phosphate G6P36 3 4 5 6  + 
Glucose-6-phosphate G6P46 4 5 6  + 
Glucose-6-phosphate G6P56 5 6  + 

Malate Mal14 1 2 3 4 + + 
Glycerate-3-phosphate PGA13 1 2 3 + + 

Succinate Suc14 1 2 3 4 + + 
Succinate Suc13 1 2 3  + 
Succinate Suc24 2 3 4  + 

 
 
 
 
 

Table S8. MRM transitions of the metabolites and metabolite fractions measurable with LC-
MS/MS methods. 
 
Table is available online at 
journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005109#sec022 
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Figure S1. Escherichia coli and Bacillus subtilis metabolic networks used in the study. (a) E. coli 
metabolic network used for the simulations. (b) B. subtilis metabolic network used for the simulations. 
Biomass precursor fluxes are depicted with a dashed arrow. 
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Figure S2. Choosing the SUMOFLUX predictor’s parameters and sample size. (a) SUMOFLUX 
performance assessment with 5-fold cross-validation (CV) with different values of ntree and mtry 
parameters. (b) SUMOFLUX performance on the test dataset for different sample sizes. 
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Figure S3. Comparison of SUMOFLUX and analytic formulas for key flux ratio estimation in 
B. subtilis central metabolism. From left to right: a schematic representation of the flux ratio; density 
plot representing SUMOFLUX estimates versus the true flux ratios for in silico data; comparison of the 
SUMOFLUX and analytic formula estimates for the experimental data; density plot representing analytic 
formula estimates versus the true flux ratios for in silico data. Vertical error bars in the third panel 
represent [10% 90%] SUMOFLUX prediction quantiles, horizontal error bars represent standard 
deviation of the analytic formula estimate. (a) Glycolysis versus PPP. (b) PEP fraction from 
gluconeogenesis. (c) Pyruvate fraction from the malic enzyme flux. (d) Oxaloacetate fraction from 
anaplerosis from pyruvate. Ratios were estimated for the experiment with 80% [1-13C] and 
20% [U-13C] glucose. 6PG – 6-phosho-D-gluconate; αKG – α-ketoglutarate; AcCoA – acetyl-CoA; F6P 
– fructose-6-phosphate; Fum – fumarate; G6P – glucose-6-phosphate; ICT – isocitrate; MAE – mean 
absolute error; Mal – malate; PCC – Pearson correlation coefficient; PEP – phosphoenolpyruvate; PGA 
– phosphoglycerate; PPP – pentose phosphate pathway. 
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Figure S4. Comparison of SUMOFLUX and 13C-MFA analysis of E. coli central metabolism. 
Comparison of the SUMOFLUX and 13C-MFA flux ratio estimates for the experimental data. Error bars 
in represent [10% 90%] prediction quantiles.  (a) 13C-MFA flux ratios were calculated for the optimal 
solutions fitted to the combined data of [1-13C] and [U-13C] glucose labeling experiments. (b) 13C-MFA 
flux ratios were calculated for the optimal solutions fitted to the data of [1-13C] glucose labeling 
experiment only. (c) 13C-MFA flux ratios were calculated for the optimal solutions fitted to the data of 
[U-13C] glucose labeling experiment only. E-D – Entner-Doudoroff pathway; PCC – Pearson correlation 
coefficient; PPP – pentose phosphate pathway. 
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Figure S5. Robustness analysis of analytic formulas in terms of noise and exchange flux magnitude. 
Mean absolute errors on the test dataset of five analytic formulas applied to in silico data with different 
amount of measurement noise and exchange flux magnitude. The dashed rectangle indicates the normal 
range of noise (0.01) and exchange flux magnitude (10 times the net flux). E-D – Entner-Doudoroff 
pathway, MAE – mean absolute error; PPP – pentose phosphate pathway. 
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Figure S6. Distributions of interquantile ranges of the flux ratio predictions might indicate 
incompatibility of training and testing datasets. (a) Histograms representing the [10% 90%] 
interquantile ranges of the pyruvate fraction from the malic enzyme flux ratio predictions on the test 
dataset. The noise level in the training dataset is varied along the y-axis, the noise level in the testing 
dataset is varied along the x-axis. The exchange flux magnitude was set to 1. The histograms in black 
represent cases of compatible training and testing datasets with the same assumptions on the noise level 
and exchange flux magnitude. (b) Histograms representing the [10% 90%] interquantile ranges of the 
pyruvate fraction from the malic enzyme flux ratio predictions on the test dataset. The exchange flux 
magnitude in the training dataset is varied along the y-axis, the exchange flux magnitude in the testing 
dataset is varied along the x-axis. The noise level was set to 0.01. The histograms in black represent cases 
of compatible training and testing datasets with the same assumptions on the noise level and exchange 
flux magnitude. WMW – p-value of the Wilcoxon-Mann-Whitney right tail test comparing the 
distributions of interquantile range of each testing dataset to the distribution of  interquantile range of the 
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testing dataset compatible with the noise and exchange level assumptions of the training dataset (diagonal 
plots in black). Low WMW values indicate that the median of the interquantile range distribution of the 
corresponding testing dataset is significantly larger than the median of the interquantile range distribution 
of the testing dataset compatible with the assumptions of the training dataset, which indicates that these 
assumptions are incompatible with the current testing set.  
 
 
 
 
 
 
 
 

 
 
Figure S7. SUMOFLUX estimates for the relative contributions of fluxes to the oxaloacetate pool 
for the published E. coli data. (a) A schematic representation of the glyoxylate shunt, TCA cycle and 
anaplerosis from PEP fluxes contributing to the formation of oxaloacetate. (b) SUMOFLUX prediction 
of the relative contributions of the anaplerotic flux from phosphoenolpyruvate, glyoxylate shunt and 
TCA cycle flux to the oxaloacetate pool for the in silico test dataset. The error bars represent 
[10% 90%] prediction quantiles. Data from experiment with 20% [U-13C] and 80% naturally labeled 
glucose. αKG – α-ketoglutarate; AcCoA – acetyl-CoA; Fum – fumarate; Gox – glyoxylate; ICT – 
isocitrate; Mal – malate; PEP – phosphoenolpyruvate; TCA cycle – tricarboxylic acid cycle. 
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Table S1. Growth rates of M. smegmatis in glucose and glucose and amino acid media. Optical 

density of bacterial cultures growing in amino acid and glucose media were monitored by Tecan plate 

reader (Tecan 200 infinity, Tecan, Männedorf, Switzerland). 

 

Medium 
Growth rate 

(mean) 

Growth rate 

(std) 

Max OD  

(mean) 

Max OD  

(std) 

Glucose 0.11 0.02 0.76 0.07 

Glucose+alanine 0.15 0.00 1.62 0.02 

Glucose+arginine 0.14 0.00 1.33 0.02 

Glucose+asparagine 0.16 0.00 1.74 0.05 

Glucose+aspartate 0.15 0.00 1.46 0.03 

Glucose+cystein 0.08 0.00 0.93 0.02 

Glucose+glutamine 0.16 0.00 1.90 0.04 

Glucose+glutamate 0.18 0.00 1.73 0.01 

Glucose+glycine 0.12 0.02 0.75 0.01 

Glucose+histidine 0.15 0.00 1.67 0.00 

Glucose+isoleucine 0.13 0.00 1.40 0.02 

Glucose+leucine 0.12 0.00 1.16 0.00 

Glucose+lysine 0.11 0.00 0.62 0.12 

Glucose+methionine 0.12 0.00 1.09 0.01 

Glucose+phenylalanine 0.12 0.00 1.11 0.04 

Glucose+proline 0.20 0.01 1.98 0.03 

Glucose+serine 0.16 0.00 1.34 0.01 

Glucose+threonine 0.14 0.00 1.27 0.00 

Glucose+tryptophan 0.10 0.00 0.99 0.00 

Glucose+tyrosine 0.11 0.00 1.14 0.07 

Glucose+valine 0.11 0.00 1.23 0.11 
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 Table S2. Flux ratio definitions for reactions in the M. smegmatis metabolic model (Table S3). 

 

Ratio name Ratio formula 

ALA biosynthesis ala_out / (ala_up+ala_out) 

SER biosynthesis ser_out / (ser_up+ser_out) 

GLU biosynthesis glu_out / (glu_up+glu_out) 

ARG biosynthesis glu_out / (arg_cat+glu_out) 

ASN biosynthesis asp_out / (asn_cat+asp_out) 

ASP biosynthesis asp_out / (asp_up+asp_out) 

GLN biosynthesis glu_out / (gln_cat+glu_out) 

HIS biosynthesis (his1_out+his2_out) / (his_up+his1_out+his2_out) 

ILE biosynthesis ile_out / (ile_up+ile_out) 

LEU biosynthesis leu_out / (leu_up+leu_out) 

MET biosynthesis asp_out / (met_cat+asp_out) 

PHE biosynthesis phe_out / (phe_up+phe_out) 

LYS biosynthesis (lys1_out+lys2_out) / (lys_up+lys1_out+lys2_out) 

PRO biosynthesis pro_out / (pro_up+pro_out) 

THR biosynthesis thr_out / (thr_up+thr_out) 

TYR biosynthesis tyr_out / (tyr_up+tyr_out) 

TRP biosynthesis trp_out / (trp_up+trp_out) 

VAL biosynthesis val_out / (val_up+val_out) 

CYS biosynthesis ser_out / (cys_cat+ser_out) 

GLY biosynthesis gly_out / (gly_up+gly_out) 

ALA catabolism ala_cat / (ALA_bm+ala_cat) 

SER catabolism (ser_cat+gly1_out) / (SER_bm+ser_cat+gly1_out) 

GLU catabolism 

(glu_cat+his2_out+pro_out) / 

(GLU_bm+glu_cat+his2_out+pro_out) 

ARG catabolism arg_cat / (ARG_bm+arg_cat) 

ASN catabolism asn_cat / (ASN_bm+asn_cat) 

ASP catabolism 

(asp_cat+thr_out+lys1_out+lys2_out) / 

(ASP_bm+asp_cat+thr_out+lys1_out+lys2_out) 

GLN catabolism gln_cat / (GLN_bm+gln_cat) 

HIS catabolism his1_cat+his2_cat / (HIS_bm+his1_cat+his2_cat) 

ILE catabolism ile_cat / (ILE_bm+ile_cat) 

LEU catabolism leu_cat / (LEU_bm+leu_cat) 

MET catabolism met_cat / (MET_bm+met_cat) 

PHE catabolism phe_cat / (PHE_bm+phe_cat) 

LYS catabolism (lys1_cat+lys2_cat) / (LYS_bm+lys1_cat+lys2_cat) 

PRO catabolism pro_cat / (PRO_bm+pro_cat) 

THR catabolism (thr_cat+ile_out) / (THR_bm+thr_cat+ile_out) 

TYR catabolism tyr_cat / (TYR_bm+tyr_cat) 

TRP catabolism trp_cat / (TRP_bm+trp_cat) 

VAL catabolism val_cat / (VAL_bm+val_cat) 

CYS catabolism cys_cat / (CYS_bm+cys_cat) 

GLY catabolism gly_cat / (GLY_bm+gly_cat) 

PEP from oxaloacetate pck / (eno+pck) 

PEP from glycolysis eno / (eno+pck) 

Pyruvate from malic enzyme mae / (pyk+edp2 + mae) 

Pyruvate from PEP pyk / (pyk+edp2 + mae) 

Oxaloacetate from TCA cycle mdh / (mdh+pyc + ppc) 

Oxaloacetate from PEP/pyruvate pyc+ppc / (mdh+pyc + ppc) 

Malate from glyoxylate shunt gs2 / (fum+gs2) 

Malate from TCA cycle fum / (fum+gs2) 

Glycolysis/PPP pgi / (pgi+zwf) 

Pyruvate from ED pathway edp2 / (edp2+pyk+mae) 

DHAP through glycolysis (fba+tpi) / (fba+tpi+gapdh+TA) 
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Table S3. M. smegmatis model of central carbon metabolism used throughout the study. Reactions 

in the sections "Glucose + amino acid" were included only for the specified models. 

 

Reaction type Reaction Stoichiometry and carbon transitions 

Uptake and secretion 

glc_up glucose (abcdef) -> G6P (abcdef) 

CO2up CO2in (a) -> CO2 (a) 

accoa_ac AcCoA (ab) -> Ac (ab) 

ac_out Ac (ab) -> Acetate (ab) 

co2_out CO2 (a) -> CO2out (a) 

Biomass precursors 

G6P_bm G6P (abcdef) -> G6Pbm (abcdef) 

PGA_bm PGA (abc) -> PGAbm (abc) 

P5P_bm P5P (abcde) -> P5Pbm (abcde) 

PEP_bm PEP (abc) -> PEPbm (abc) 

PYR_bm PSuYR (abc) -> PYRbm (abc) 

OGA_bm OGA (abcde) -> OGAbm (abcde) 

OAA_bm OAA (abcd) -> OAAbm (abcd) 

E4P_bm E4P (abcd) -> E4Pbm (abcd) 

PHE_bm  PHE (abcdefghi) -> PHEbm (abcdefghi)       

 ALA_bm  ALA (abc) -> ALAbm (abc) 

  ASP_bm  ASP (abcd) -> ASPbm (abcd) 

 GLU_bm  GLU (abcde) -> GLUbm (abcde) 

 GLY_bm  GLY (ab) -> GLYbm (ab) 

HIS_bm  HIS (abcdef) -> HISbm (abcdef) 

ILE_bm  ILE (abcdef) -> ILEbm (abcdef) 

 LEU_bm  LEU (abcdef) -> LEUbm (abcdef) 

LYS_bm  LYS (abcdef) -> LYSbm (abcdef) 

SER_bm  SER (abc) -> SERbm (abc) 

THR_bm  THR (abcd) -> THRbm (abcd) 

TYR_bm  TYR (abcdefghi) -> TYRbm (abcdefghi) 

VAL_bm  VAL (abcde) -> VALbm (abcde) 

PRO_bm  PRO (abc) -> PRObm (abc) 

CYS_bm CYS (abc) -> CYSbm (abc) 

GLN_bm GLN (abcde) -> GLNbm (abcde) 

ASN_bm ASN (abcd) -> ASNbm (abcd) 

ARG_bm ARG (abcdef) -> ARGbm (abcdef) 

MET_bm MET (abcde) -> METbm (abcde) 

TRP_bm TRP (hijklabcdef) -> TRPbm (hijklabcdef) 

Glycolysis 

pgm G1P (abcdef) <-> G6P (abcdef) 

pgi G6P (abcdef) <-> F6P (abcdef) 

pfk F6P (abcdef) -> FBP (abcdef) 

fba FBP (abcdef) -> DHAP (cba) + GAP (def) 

tpi DHAP (abc) <-> GAP (abc) 

gapdh GAP (abc) -> BPG (abc) 

bpg BPG (abc) -> PGA (abc) 

eno PGA (abc) -> PEP (abc) 

pyk PEP (abc) -> PYR (abc) 

Pentose phosphate pathway 

zwf G6P (abcdef) -> PG6 (abcdef) 

gnd PG6 (abcdef) -> P5P (bcdef) + CO2 (a) 

TK1 
P5P (abcde) + P5P (fghij) <-> GAP (cde) + S7P 

(abfghij) 

TK2 P5P (abcde) + E4P (fghi) <-> GAP (cde) + F6P (abfghi) 

TA 
S7P (abcdefg) + GAP (hij) <-> E4P (defg) + F6P 

(abchij) 

Entner-Doudoroff 
edp1 PG6 (abcdef) -> KDPG (abcdef) 

edp2 KDPG (abcdef) -> PYR (abc) + GAP (def) 

TCA cycle 

pdh PYR (abc) -> AcCoA (bc) + CO2 (a) 

citl OAA (cdef) + AcCoA (ab) -> Cit (fedcba) 

acnA Cit (abcdef) <-> Act (abcdef) 
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acnB Act(abcdef) <-> Icit (abcdef) 

idh Icit (abcdef) <-> OGA (abcef) + CO2 (d) 

sdh OGA (abcde) -> Suc (bcde) + CO2 (a) 

frdA Suc (abcd) <-> Fum (abcd) 

fum Fum (abcd) <-> Mal (abcd) 

mdh Mal (abcd) <-> OAA (abcd) 

Glyoxylate shunt 
gs1 Cit (abcdef) -> Glx (ab) + Suc (dcef) 

gs2 Glx (ab) + AcCoA (cd) -> Mal (abcd) 

Glycerate pathway gcl  Glx (ab) + Glx (cd) -> PGA (abd) + CO2 (c) 

Anaplerosis and 

gluconeogenesis 

mae Mal (abcd) -> PYR (abc) + CO2 (d) 

pck OAA (abcd) -> PEP (abc) + CO2 (d) 

ppc PEP (abc) + CO2 (d) -> OAA (abcd) 

Intermediates of aminoacid 

metabolism 

kiv_out  PYR (abc) + PYR (def) -> KIV (abcef) + CO2 (d) 

cho_out  E4P (abcd) + PYR (efg) -> CHO (fgabcde) 

Amino acid production 

ala_out  PYR (abc) -> ALA (abc) 

asp_out  OAA (abcd) -> ASP (abcd) 

val_out  KIV (abcde) -> VAL (abcde) 

leu_out  KIV (abcde) + AcCoA (fg) -> LEU (bcdefg) + CO2 (a) 

ser_out BPG (abc) -> SER (abc) 

gly_out  SER (abc) -> GLY (ab) + MTHF (c) 

his1_out  P5P (abcde) + MTHF (f) -> HIS (fedcba) 

his2_out  GLU (abcde) + MTHF (f) -> HIS (fedcba) 

thr_out  ASP (abcd) -> THR (abcd) 

lys1_out  PYR (abc) + ASP (defg) -> LYS (bcdefg) + CO2 (a) 

lys2_out  PYR (abc) + ASP (defg) -> LYS (abcefg) + CO2 (d) 

ile_out  THR (abcd) + PYR (efg) -> ILE (abcdfg) + CO2 (e) 

glu_out  OGA (abcde) -> GLU (abcde) 

pro_out  GLU (abcde) -> PRO (abcde) 

phe_out  
CHO (abcdefg) + PYR (hij) -> PHE (hijabcdef) + CO2 

(g) 

tyr_out  
CHO (abcdefg) + PYR (hij) -> TYR (hijabcdef) + CO2 

(g) 

arg_out  GLU (abcde) + urea (f) -> ARG (abcdef) 

asn_out ASP (abcd) -> ASN (abcd) 

cys_out  SER (abc) -> CYS (abc) 

gln_out  GLU (abcde) -> GLN (abcde) 

met_out ASP (abcd)+ MTHF (e) -> MET (abcde) 

trp_out  
CHO (abcdefg) + P5P (hijkl) -> TRP (hijklabcdef) + 

CO2 (g) 

Glucose+alanine ala_up  ALA_in (abc) -> ALA (abc) 

 ala_cat ALA (abc) -> PYR (abc) 

Glucose+arginine arg_up  ARG_in (abcdef) -> ARG (abcdef) 

 ARG_bm ARG (abcdef) -> ARGbm (abcdef) 

 arg_cat  ARG (abcdef) -> GLU (abcde) + urea (f) 

 glu_cat GLU (abcde) -> OGA (abcde) 

 arg_out  GLU (abcde) + urea (f) -> ARG (abcdef) 

Glucose+asparagine asn_up  ASN_in (abcd) -> ASN (abcd) 

 ASN_bm ASN (abcd) -> ASNbm (abcd) 

 asn_cat  ASN (abcd) -> ASP (abcd) 

 asp_cat ASP (abcd) -> OAA (abcd) 

 asn_out ASP (abcd) -> ASN (abcd) 

Glucose+aspartate asp_up  ASP_in (abcd) -> ASP (abcd) 

 asp_cat ASP (abcd) -> OAA (abcd) 

Glucose+cystein cys_up  CYS_in (abc) -> CYS (abc) 

 cys_cat  CYS (abc) -> SER (abc) 

 CYS_bm CYS (abc) -> CYSbm (abc) 

 ser_cat  SER (abc) -> BPG (abc) 
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 cys_out  SER (abc) -> CYS (abc) 

Glucose+glutamine gln_up  GLN_in (abcde) -> GLN (abcde) 

 GLN_bm GLN (abcde) -> GLNbm (abcde) 

 glu_cat  GLU (abcde) -> OGA (abcde) 

 gln_cat GLN (abcde) -> GLU (abcde) 

 gln_out  GLU (abcde) -> GLN (abcde) 

Glucose+glutamate glu_up  GLU_in (abcde) -> GLU (abcde) 

 glu_cat GLU (abcde) -> OGA (abcde) 

Glucose+glycine gly_up GLY_in (ab) -> GLY (ab) 

 mthf_up MTHF_in(a) -> MTHF(a) 

 GLY_bm GLY (ab) -> GLYbm (ab) 

 gly_cat  GLY (ab) + MTHF(c) -> SER (abc) 

 ser_cat  SER (abc) -> BPG (abc) 

 gly_out  SER (abc) -> GLY (ab) + MTHF (c) 

Glucose+histidine his_up HIS_in (abcdef) -> HIS (abcdef) 

 his1_cat  HIS (fedcba) -> P5P (abcde) + MTHF (f) 

 his2_cat  HIS (fedcba) -> GLU (abcde) + MTHF (f) 

Glucose+isoleucine ile_up ILE_in (abcdef) -> ILE (abcdef) 

 ile_cat ILE (abcdfg) + CO2 (e) -> OAA (abcd) + PYR (efg) 

Glucose+leucine leu_up LEU_in (abcdef) -> LEU (abcdef) 

 leu_cat LEU (bcdefg) + CO2 (a) -> KIV (abcde) + AcCoA (fg) 

 kiv_cat  KIV (abcef) + CO2 (d) -> PYR (abc) + PYR (def) 

Glucose+lysine lys_up  LYS_in (abcdef) -> LYS (abcdef) 

 lys1_cat  LYS (bcdefg) + CO2 (a) -> PYR (abc) + ASP (defg) 

 lys2_cat LYS (abcefg) + CO2 (d) -> PYR (abc) + ASP (defg) 

Glucose+methionine met_up MET_in (abcd) -> MET (abcd) 

 met_cat  MET (abcd) -> ASP (abcd) 

 MET_bm MET (abcd) -> METbm (abcd) 

 asp_cat ASP (abcd) -> OAA (abcd) 

 met_out ASP (abcd) -> MET (abcd) 

Glucose+phenylalanine phe_up PHE_in (abcdefghi) -> PHE (abcdefghi) 

 phe_cat PHE (hijabcdef) + CO2 (g) -> CHO (abcdefg) + PYR 

(hij) 

 cho_cat CHO (fgabcde) -> E4P (abcd) + PYR (efg) 

Glucose+proline pro_up PRO_in (abcde) -> PRO (abcde) 

 glu_cat  GLU (abcde) -> OGA (abcde) 

 pro_cat  PRO (abcde) -> GLU (abcde) 

Glucose+serine ser_up  SER_in (abc) -> SER (abc) 

 ser_cat  SER (abc) -> BPG (abc) 

Glucose+threonine thr_up THR_in (abcd) -> THR (abcd) 

 thr_cat  THR (abcd) -> ASP (abcd) 

 asp_cat  ASP (abcd) -> OAA (abcd) 

Glucose+tryptophan trp_up TRP_in (abcdefghijk) -> TRP (abcdefghijk)   

 TRP_bm TRP (hijklabcdef) -> TRPbm (hijklabcdef) 

 trp_cat TRP (hijklabcdef) + CO2 (g) -> CHO (abcdefg) + P5P 

(hijkl) 

 cho_cat CHO (fgabcde) -> E4P (abcd) + PYR (efg) 

 trp_out  CHO (abcdefg) + P5P (hijkl) -> TRP (hijklabcdef) + 

CO2 (g) 

Glucose+tyrosine tyr_up  TYR_in (abcdefghi) -> TYR (abcdefghi) 

 tyr_cat TYR (hijabcdef) + CO2 (g) -> CHO (abcdefg) + PYR 

(hij) 

 cho_cat CHO (fgabcde) -> E4P (abcd) + PYR (efg) 

Glucose+valine val_up  VAL_in (abcde) -> VAL (abcde) 

 val_cat VAL (abcde) -> KIV (abcde) 

 kiv_cat KIV (abcef) + CO2 (d) -> PYR (abc) + PYR (def) 
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Table S4. 13C-MFA predictions of fluxes in M. smegmatis in glucose and glucose and glutamate 

media. INCA software was used (Young 2014) to calculate fluxes. Glucose media contained 

60% [1‑13C] and 40% [U‑13C] glucose. For estimates in glucose and glutamate medium, a combination 

of two experiments with [1‑13C] glucose + glutamate and [U‑13C] glucose + glutamate media was used.  

 

Reaction Type 

Glucose+glutamate 

medium 
Glucose medium 

Flux value Flux std Flux value Flux std 

G6P <-> F6P Net  11.2 0.1 6.3 2.6 

G6P <-> F6P Exch  0.0 0.6 0.0 5.9 

F6P -> FBP Net  11.2 0.1 17.8 11.0 

FBP <-> DHAP + GAP Net  11.2 0.1 17.8 11.0 

FBP <-> DHAP + GAP Exch  5.8 0.0 0.6 17.7 

DHAP <-> GAP Net  11.2 0.1 17.8 11.0 

DHAP <-> GAP Exch  3.6 0.0 0.6 17.7 

GAP <-> PG3 Net  29.2 0.1 46.1 29.8 

GAP <-> PG3 Exch  0.0 0.0 53.9 17.7 

PG3 <-> PEP Net  29.2 0.1 46.1 29.4 

PG3 <-> PEP Exch  70.8 1.0 0.0 15.8 

PEP -> Pyr Net  37.5 0.0 52.2 17.1 

G6P -> PG6 Net  6.8 0.1 22.0 17.6 

PG6 -> Ru5P + CO2 Net  0.0 0.1 17.2 14.4 

Ru5P <-> X5P Net  0.0 0.1 11.5 9.4 

Ru5P <-> X5P Exch  100.0 0.1 52.8 96.1 

Ru5P <-> R5P Net  0.0 0.0 5.7 5.1 

Ru5P <-> R5P Exch  100.0 0.0 1.2 18.4 

X5P <-> GAP + EC2 Net  0.0 0.1 11.5 9.4 

X5P <-> GAP + EC2 Exch  100.0 0.1 62.5 17.7 

F6P <-> E4P + EC2 Net  0.0 0.0 -5.7 4.6 

F6P <-> E4P + EC2 Exch  100.0 0.0 0.0 6.1 

S7P <-> R5P + EC2 Net  0.0 0.0 -5.7 4.9 

S7P <-> R5P + EC2 Exch  100.0 0.0 2.5 17.7 

F6P <-> GAP + EC3 Net  0.0 0.0 -5.7 4.9 

F6P <-> GAP + EC3 Exch  28.6 0.0 53.3 18.3 

S7P <-> E4P + EC3 Net  0.0 0.0 5.7 4.9 

S7P <-> E4P + EC3 Exch  100.0 0.0 0.0 21.0 

PG6 -> KDPG Net  6.8 0.1 4.8 3.5 

KDPG -> Pyr + GAP Net  6.8 0.1 4.8 3.5 

Pyr -> AcCoA + CO2 Net  52.4 0.0 63.9 37.1 

OAA + AcCoA -> Cit Net  9.4 0.0 16.0 18.7 

Cit <-> ICit Net  9.4 0.0 16.0 18.7 

Cit <-> ICit Exch  0.0 0.0 0.1 17.7 

ICit <-> AKG + CO2 Net  7.0 0.0 2.9 10.2 

ICit <-> AKG + CO2 Exch  0.0 0.0 0.0 9.6 

AKG -> SucCoA + CO2 Net  20.8 0.0 2.9 9.0 

SucCoA <-> Suc Net  20.8 0.0 2.9 9.0 

SucCoA <-> Suc Exch  0.0 0.0 2.2 17.7 

Suc <-> Fum Net  23.3 0.1 16.0 16.8 

Suc <-> Fum Exch  2.2 0.1 2.0 24.4 

Fum <-> Mal Net  23.3 0.1 16.0 16.8 

Fum <-> Mal Exch  76.7 0.1 2.0 24.4 

Mal <-> OAA Net  15.5 0.1 22.1 23.8 

Mal <-> OAA Exch  8.6 0.0 0.0 17.7 

Mal -> Pyr + CO2 Net  10.3 0.0 6.9 15.7 

PEP + CO2 -> OAA Net  0.0 0.0 5.6 17.6 

Pyr + CO2 -> OAA Net  2.3 0.0 0.0 18.2 

OAA -> PEP + CO2 Net  8.4 0.0 11.8 17.8 

AcCoA -> Ac Net  40.4 0.1 34.8 60.9 

AKG -> Glu Net  86.1 0.0 0.0 3.9 

Glu -> Gln Net  0.0 0.0 0.0 1.0 
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Glu -> Pro Net  0.0 0.0 0.0 0.8 

Glu + CO2 -> Arg Net  0.0 0.0 0.0 1.1 

OAA -> Asp Net  0.0 0.0 0.0 5.7 

Asp -> Asn Net  0.0 0.0 0.0 0.9 

Pyr -> Ala Net  0.0 0.0 0.0 1.9 

PG3 -> Ser Net  0.0 0.0 0.0 3.7 

Ser <-> Gly + MEETHF Net  0.0 0.0 0.0 2.3 

Ser <-> Gly + MEETHF Exch  0.0 0.0 0.0 4.3 

Thr -> Gly + AcCoA Net  0.0 0.0 0.0 0.0 

Ser -> Cys Net  0.0 0.0 0.0 0.3 

Pyr + Asp -> Lys + CO2 Net  0.0 0.0 0.0 1.3 

Asp -> Thr Net  0.0 0.0 0.0 2.1 

Asp -> Met Net  0.0 0.0 0.0 0.6 

Pyr + Pyr -> Val + CO2 Net  0.0 0.0 0.0 1.6 

AcCoA + Pyr + Pyr -> 

Leu + CO2 + CO2 Net  
0.0 0.0 0.0 1.7 

Thr + Pyr -> Ile + CO2 Net  0.0 0.0 0.0 1.1 

PEP + PEP + E4P -> Phe 

+ CO2 Net  
0.0 0.0 0.0 0.7 

PEP + PEP + E4P -> Tyr 

+ CO2 Net  
0.0 0.0 0.0 0.5 

Ser + R5P + PEP + E4P -

> Trp + CO2 + GAP Net  
0.0 0.0 0.0 0.2 

R5P + FTHF -> His Net  0.0 0.0 0.0 0.4 

MEETHF -> METHF Net  0.0 0.0 0.0 2.0 

MEETHF -> FTHF Net  0.0 0.0 0.0 0.4 

Gluc.ext -> G6P Net  18.0 0.0 28.3 19.1 

Ac -> Ac.ext Net  40.4 0.1 34.8 60.9 

CO2 -> CO2.ext Net  96.5 0.0 100.0 17.9 

Biomass Net  0.0 0.0 0.0 4.0 

ICit -> Glx + Suc Net  2.5 0.0 13.1 9.5 

Glx + AcCoA -> Mal Net  2.5 0.0 13.1 9.5 

Pyr -> FattyAcid Net  0.0 0.1 0.0 78.8 

Glu.ext -> Glu Net  13.9 0.0 n/a n/a 

Glu -> AKG Net  100.0 0.0 n/a n/a 

 

 

 

 

 

Table S5. Flux ratios calculated for the 13C-MFA solutions from Table S4. 

 

Ratio name   Glucose medium 
Glucose+glutamate 

medium 

Glycolysis/PPP 0.22 0.62 

Pyruvate from ED pathway 0.07 0.12 

DHAP through glycolysis 0.77 0.77 

PEP from glycolysis 0.80 0.78 

PEP from oxaloacetate 0.20 0.22 

Pyruvate from PEP 0.82 0.69 

Pyruvate from malic enzyme 0.11 0.19 

Oxaloacetate from TCA cycle 0.44 0.47 

Oxaloacetate from PEP/pyruvate 0.20 0.13 

Malate from TCA cycle 0.55 0.90 

Malate from glyoxylate shunt 0.45 0.10 
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Figure S1. Single amino acids cause different growth effects in M. smegmatis. Growth curves of 

M. smegmatis grown on combinations of glucose and 20 single amino acids in 96 well plate. Culture 

density was measured and converted to OD600. Different colors in each plot depict biological replicates. 
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Figure S2. SUMOFLUX estimates single amino acid biosynthesis fractions for M. smegmatis with 

high accuracy. Density plot representing SUMOFLUX estimates versus the true flux ratios for in silico 

data; biosynthesis fraction for each amino acid was estimated for the experiment with [U-13C] glucose 

and single naturally labeled amino acid experiment. 
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Figure S3. SUMOFLUX estimates single amino acid catabolism fractions for M. smegmatis with 

good accuracy. Density plot representing SUMOFLUX estimates versus the true flux ratios for in silico 

data; catabolism fraction for each amino acid was estimated for the experiment with [U-13C] glucose and 

single naturally labeled amino acid experiment.  
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Figure S4. SUMOFLUX estimates ppc+pyc fractions to oxaloacetate pool for M. smegmatis with 

high accuracy. Density plot representing SUMOFLUX estimates versus the true flux ratios for in silico 

data; ppc+pyc flux fraction to oxaloacetate pool for each amino acid media was estimated for the 

experiment with [U-13C] glucose and single naturally labeled amino acid experiment.  
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Figure S5. SUMOFLUX estimates key flux fractions in CCM with moderate to high accuracy. Bar 

plots representing the mean absolute error (MAE) on the in silico test datasets of the CCM flux fraction 

predictors in each of the tested 21 conditions (M. smegmatis growing on a combination of .with 

[U-13C] glucose and single naturally labeled amino acid, or a mixture of 50% [U-13C] and 50% unlabeled 

glucose). The accuracy is considered high if MAE < 0.05, good is MAE < 0.1, and poor otherwise 
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Figure S6. SUMOFLUX estimates key flux ratios in CCM for M. smegmatis grown in glucose or 

glucose and glutamate media with high accuracy. (a) Density plots representing SUMOFLUX 

estimates versus the true flux ratios for in silico data for 11 flux ratios and fractions in CCM. Ratios were 

estimated using combined data from two labeling experiments: M. smegmatis grown on mixture of 

[1-13C] glucose and glutamate or [U-13C] glucose and glutamate. (b) Density plots representing 

SUMOFLUX estimates versus the true flux ratios for in silico data for 11 flux ratios and fractions in 

CCM. Ratios were estimated using combined data from the experiment with M. smegmatis grown on 

mixture of 60% [1-13C] glucose and 40% [U-13C] glucose. 
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Figure S7. Effect of glutamate in the media on the growth and carbon uptake of M. smegmatis. 

(a) Left to right: M. smegmatis growth curve and glucose concentration curve over 30 h in glucose media; 

glucose concentration versus cell concentration over time plot used to calculate glucose uptake; cell 

concentration versus glucose concentration plot used to calculate glucose yield. (b) Upper panel, left to 

right: M. smegmatis growth curve and glucose concentration curve over 30 h in glucose and glutamate 

media; glucose concentration versus cell concentration over time plot used to calculate glucose uptake; 

cell concentration versus glucose concentration plot used to calculate glucose yield. Lower panel, left to 

right: glutamate concentration versus cell concentration over time plot used to calculate glutamate 

uptake; cell concentration versus glutamate concentration plot used to calculate glutamate yield. 
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Figure S8. Comparison of experimental and simulated data corresponding to the flux solution for 

M. smegmatis growing on glucose. Measured isotope labeling patterns of intracellular amino acids, and 

corresponding in silico labeling patterns simulated for the flux solution for central carbon metabolism of 

M. smegmatis growing on 60% [1-13C] and 40% [U-13C] glucose.  
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Figure S9. Comparison of experimental and simulated data corresponding to the flux solution for 

M. smegmatis growing on [U-13C] glucose and glutamate. Measured isotope labeling patterns of 

intracellular amino acids, and corresponding in silico labeling patterns simulated for the flux solution for 

central carbon metabolism of M. smegmatis growing on [U-13C] glucose and naturally labeled glutamate. 
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Figure S10. Comparison of experimental and simulated data corresponding to the flux solution for 

M. smegmatis growing on [1-13C] glucose and glutamate. Measured isotope labeling patterns of 

intracellular amino acids, and corresponding in silico labeling patterns simulated for the flux solution for 

central carbon metabolism of M. smegmatis growing on [1-13C] glucose and naturally labeled glutamate. 
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Figure S11. SUMOFLUX estimates amino acid biosynthesis fractions for M. tuberculosis infecting 

THP1 macrophage with good accuracy for 10 amino acids. Density plot representing SUMOFLUX 

estimates versus the true flux ratios for in silico data; biosynthesis fraction for each amino acid was 

estimated for the infection setup, where THP1 macrophage was pre-labeled in RPMI media containing 

[U-13C] glucose and 20 naturally labeled amino acids. 
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Figure S12. SUMOFLUX estimates amino acid catabolism fractions for M. tuberculosis infecting 

THP1 macrophage with poor accuracy. Density plot representing SUMOFLUX estimates versus the 

true flux ratios for in silico data; catabolism fraction for each amino acid was estimated for the infection 

setup, where THP1 macrophage was pre-labeled in RPMI media containing [U-13C] glucose and 20 

naturally labeled amino acids. 
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Figure S13. SUMOFLUX estimates amino acid biosynthesis fractions for M. tuberculosis grown in 

rich RPMI media with good accuracy for 10 amino acids. Density plot representing SUMOFLUX 

estimates versus the true flux ratios for in silico data; biosynthesis fraction for each amino acid was 

estimated for the experiment with RPMI media containing [U-13C] glucose and 20 naturally labeled 

amino acids. 
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Figure S14. SUMOFLUX estimates amino acid catabolism fractions for M. tuberculosis grown in 

rich RPMI media with poor accuracy. Density plot representing SUMOFLUX estimates versus the 

true flux ratios for in silico data; catabolism fraction for each amino acid was estimated for the 

experiment with RPMI media containing [U-13C] glucose and 20 naturally labeled amino acids.  
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Figure S15. Amino acid exchange flux ratio quantification in RPMI media. (a) SUMOFLUX 

estimates of biosynthesis and catabolism fractions for 10 amino acids in M. tuberculosis H37Rv grown 

in RPMI media with [U-13C] glucose and 20 naturally labeled amino acids. (b) SUMOFLUX estimates 

of biosynthesis and catabolism fractions for 10 amino acids in THP-1 macrophage growing in RPMI 

media with [U-13C] glucose and naturally labeled amino acids. Error bars indicate 50% prediction 

interval. 
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Table S1. E. coli network of central carbon metabolism used throughout the study. 

 

Reaction type Reaction Stoichiometry and carbon transitions 

Uptake and 

secretion 

glc_up glucose (abcdef) -> G6P (abcdef) 

CO2up CO2in (a) -> CO2 (a) 

accoa_ac AcCoA (ab) -> Ac (ab) 

ac_out Ac (ab) -> Acetate (ab) 

co2_out CO2 (a) -> CO2out (a) 

Biomass 

precursors 

G6P_bm G6P (abcdef) -> G6Pbm (abcdef) 

PGA_bm PGA (abc) -> PGAbm (abc) 

P5P_bm P5P (abcde) -> P5Pbm (abcde) 

PEP_bm PEP (abc) -> PEPbm (abc) 

PYR_bm PSuYR (abc) -> PYRbm (abc) 

OGA_bm OGA (abcde) -> OGAbm (abcde) 

OAA_bm OAA (abcd) -> OAAbm (abcd) 

E4P_bm E4P (abcd) -> E4Pbm (abcd) 

PHE_bm  PHE (abcdefghi) -> PHEbm (abcdefghi)       

 ALA_bm  ALA (abc) -> ALAbm (abc) 

  ASP_bm  ASP (abcd) -> ASPbm (abcd) 

 GLU_bm  GLU (abcde) -> GLUbm (abcde) 

 GLY_bm  GLY (ab) -> GLYbm (ab) 

HIS_bm  HIS (abcdef) -> HISbm (abcdef) 

ILE_bm  ILE (abcdef) -> ILEbm (abcdef) 

 LEU_bm  LEU (abcdef) -> LEUbm (abcdef) 

LYS_bm  LYS (abcdef) -> LYSbm (abcdef) 

SER_bm  SER (abc) -> SERbm (abc) 

THR_bm  THR (abcd) -> THRbm (abcd) 

TYR_bm  TYR (abcdefghi) -> TYRbm (abcdefghi) 

VAL_bm  VAL (abcde) -> VALbm (abcde) 

PRO_bm  PRO (abc) -> PRObm (abc) 

CYS_bm CYS (abc) -> CYSbm (abc) 

GLN_bm GLN (abcde) -> GLNbm (abcde) 

ASN_bm ASN (abcd) -> ASNbm (abcd) 

ARG_bm ARG (abcdef) -> ARGbm (abcdef) 

MET_bm MET (abcde) -> METbm (abcde) 

TRP_bm TRP (hijklabcdef) -> TRPbm (hijklabcdef) 

Glycolysis 

pgm G1P (abcdef) <-> G6P (abcdef) 

pgi G6P (abcdef) <-> F6P (abcdef) 

pfk F6P (abcdef) -> FBP (abcdef) 

fba FBP (abcdef) -> DHAP (cba) + GAP (def) 

tpi DHAP (abc) <-> GAP (abc) 

gapdh GAP (abc) -> BPG (abc) 

bpg BPG (abc) -> PGA (abc) 

eno PGA (abc) -> PEP (abc) 

pyk PEP (abc) -> PYR (abc) 

Pentose 

phosphate 

pathway 

zwf G6P (abcdef) -> PG6 (abcdef) 

gnd PG6 (abcdef) -> P5P (bcdef) + CO2 (a) 

TK1 P5P (abcde) + P5P (fghij) <-> GAP (cde) + S7P (abfghij) 

TK2 P5P (abcde) + E4P (fghi) <-> GAP (cde) + F6P (abfghi) 

TA S7P (abcdefg) + GAP (hij) <-> E4P (defg) + F6P (abchij) 

Entner-

Doudoroff 

edp1 PG6 (abcdef) -> KDPG (abcdef) 

edp2 KDPG (abcdef) -> PYR (abc) + GAP (def) 

TCA cycle 

pdh PYR (abc) -> AcCoA (bc) + CO2 (a) 

citl OAA (cdef) + AcCoA (ab) -> Cit (fedcba) 

acnA Cit (abcdef) <-> Act (abcdef) 

acnB Act(abcdef) <-> Icit (abcdef) 

idh Icit (abcdef) <-> OGA (abcef) + CO2 (d) 
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sdh OGA (abcde) -> Suc (bcde) + CO2 (a) 

frdA Suc (abcd) <-> Fum (abcd) 

fum Fum (abcd) <-> Mal (abcd) 

mdh Mal (abcd) <-> OAA (abcd) 

Glyoxylate shunt 
gs1 Cit (abcdef) -> Glx (ab) + Suc (dcef) 

gs2 Glx (ab) + AcCoA (cd) -> Mal (abcd) 

Glycerate 

pathway 
gcl  Glx (ab) + Glx (cd) -> PGA (abd) + CO2 (c) 

Anaplerosis and 

gluconeogenesis 

mae Mal (abcd) -> PYR (abc) + CO2 (d) 

pck OAA (abcd) -> PEP (abc) + CO2 (d) 

ppc PEP (abc) + CO2 (d) -> OAA (abcd) 

Intermediates of 

aminoacid 

metabolism 

kiv_out  PYR (abc) + PYR (def) -> KIV (abcef) + CO2 (d) 

cho_out  E4P (abcd) + PYR (efg) -> CHO (fgabcde) 

Amino acid 

production 

ala_out  PYR (abc) -> ALA (abc) 

asp_out  OAA (abcd) -> ASP (abcd) 

val_out  KIV (abcde) -> VAL (abcde) 

leu_out  KIV (abcde) + AcCoA (fg) -> LEU (bcdefg) + CO2 (a) 

ser_out BPG (abc) -> SER (abc) 

gly_out  SER (abc) -> GLY (ab) + MTHF (c) 

his1_out  P5P (abcde) + MTHF (f) -> HIS (fedcba) 

his2_out  GLU (abcde) + MTHF (f) -> HIS (fedcba) 

thr_out  ASP (abcd) -> THR (abcd) 

lys1_out  PYR (abc) + ASP (defg) -> LYS (bcdefg) + CO2 (a) 

lys2_out  PYR (abc) + ASP (defg) -> LYS (abcefg) + CO2 (d) 

ile_out  THR (abcd) + PYR (efg) -> ILE (abcdfg) + CO2 (e) 

glu_out  OGA (abcde) -> GLU (abcde) 

pro_out  GLU (abcde) -> PRO (abcde) 

phe_out  CHO (abcdefg) + PYR (hij) -> PHE (hijabcdef) + CO2 (g) 

tyr_out  CHO (abcdefg) + PYR (hij) -> TYR (hijabcdef) + CO2 (g) 

arg_out  GLU (abcde) + urea (f) -> ARG (abcdef) 

asn_out ASP (abcd) -> ASN (abcd) 

cys_out  SER (abc) -> CYS (abc) 

gln_out  GLU (abcde) -> GLN (abcde) 

met_out ASP (abcd)+ MTHF (e) -> MET (abcde) 

trp_out  CHO (abcdefg) + P5P (hijkl) -> TRP (hijklabcdef) + CO2 (g) 
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Table S2. Simulated isotopologues contained in the E. coli central metabolism model detected in 

the FIA-TOF spectra. Filtering steps: A – detected and annotated ions; S – spectral detector ringing 

filter; G – Gaussian fitting filter; R – ratiometric filter; U – uniquely annotated ions. 

 

Model ID  Isotopologue name Formula m/z A S G R U 

ARG16_2 L-Arginine_2 C6H14N4O2 175.111 1 1 1 1 1 

ARG16_3 L-Arginine_3 C6H14N4O2 176.114 1 1 1 1 1 

E4P14_1 D-Erythrose 4-phosphate_1 C4H9O7P 200.004 1 1 1 1 1 

GLY12_1 Glycine_1 C2H5NO2 75.028 1 1 1 1 1 

GLY12_2 Glycine_2 C2H5NO2 76.031 1 1 1 1 1 

HIS16_2 L-Histidine_2 C6H9N3O2 156.068 1 1 1 1 1 

HIS16_3 L-Histidine_3 C6H9N3O2 157.072 1 1 1 1 1 

OGA15_0 2-Oxoglutarate_0 C5H6O5 145.014 1 1 1 1 1 

PEP13_0 Phosphoenolpyruvate_0 C3H5O6P 166.975 1 1 1 1 1 

PRO15_2 L-Proline_2 C5H9NO2 116.062 1 1 1 1 1 

PRO15_3 L-Proline_3 C5H9NO2 117.066 1 1 1 1 1 

Suc14_0 Succinate_0 C4H6O4 117.019 1 1 1 1 1 

Suc14_1 Succinate_1 C4H6O4 118.022 1 1 1 1 1 

Suc14_2 Succinate_2 C4H6O4 119.025 1 1 1 1 1 

Suc14_3 Succinate_3 C4H6O4 120.029 1 1 1 1 1 

TRP111_2 L-Tryptophan_2 C11H12N2O2 205.089 1 1 1 1 1 

TRP111_8 L-Tryptophan_8 C11H12N2O2 211.109 1 1 1 1 1 

ARG16_4 L-Arginine_4 C6H14N4O2 177.117 1 1 0 0 1 

ARG16_5 L-Arginine_5 C6H14N4O2 178.121 1 1 0 0 1 

ASP14_4 L-Aspartate_4 C4H7NO4 136.043 1 1 0 0 1 

E4P14_0 D-Erythrose 4-phosphate_0 C4H9O7P 199.001 1 1 0 0 1 

E4P14_4 D-Erythrose 4-phosphate_4 C4H9O7P 203.014 1 1 0 0 1 

LYS16_5 L-Lysine_5 C6H14N2O2 150.114 1 1 0 0 1 

OGA15_2 2-Oxoglutarate_2 C5H6O5 147.020 1 1 0 0 1 

OGA15_3 2-Oxoglutarate_3 C5H6O5 148.024 1 1 0 0 1 

OGA15_5 2-Oxoglutarate_5 C5H6O5 150.030 1 1 0 0 1 

PRO15_4 L-Proline_4 C5H9NO2 118.069 1 1 0 0 1 

ALA13_0 L-Alanine_0 C3H7NO2 88.040 1 1 1 1 0 

ALA13_1 L-Alanine_1 C3H7NO2 89.043 1 1 1 1 0 

ALA13_2 L-Alanine_2 C3H7NO2 90.047 1 1 1 1 0 

ALA13_3 L-Alanine_3 C3H7NO2 91.050 1 1 1 1 0 

ARG16_0 L-Arginine_0 C6H14N4O2 173.104 1 1 1 1 0 

ARG16_1 L-Arginine_1 C6H14N4O2 174.107 1 1 1 1 0 

ASN14_0 L-Asparagine_0 C4H8N2O3 131.046 1 1 1 1 0 

ASN14_1 L-Asparagine_1 C4H8N2O3 132.049 1 1 1 1 0 

ASP14_0 L-Aspartate_0 C4H7NO4 132.030 1 1 1 1 0 

ASP14_1 L-Aspartate_1 C4H7NO4 133.033 1 1 1 1 0 

ASP14_2 L-Aspartate_2 C4H7NO4 134.036 1 1 1 1 0 

BPG13_0 3-Phospho-D-glyceroyl phosphate_0 C3H8O10P2 264.951 1 1 1 1 0 

BPG13_1 3-Phospho-D-glyceroyl phosphate_1 C3H8O10P2 265.955 1 1 1 1 0 

BPG13_2 3-Phospho-D-glyceroyl phosphate_2 C3H8O10P2 266.958 1 1 1 1 0 

BPG13_3 3-Phospho-D-glyceroyl phosphate_3 C3H8O10P2 267.962 1 1 1 1 0 

Cit16_1 Citrate_1 C6H8O7 192.023 1 1 1 1 0 

Cit16_2 Citrate_2 C6H8O7 193.026 1 1 1 1 0 

Cit16_3 Citrate_3 C6H8O7 194.029 1 1 1 1 0 

Cit16_4 Citrate_4 C6H8O7 195.033 1 1 1 1 0 

Cit16_5 Citrate_5 C6H8O7 196.036 1 1 1 1 0 

Cit16_6 Citrate_6 C6H8O7 197.039 1 1 1 1 0 

DHAP13_0 Glycerone phosphate_0 C3H7O6P 168.990 1 1 1 1 0 

F6P16_0 beta-D-Fructose 6-phosphate_0 C6H13O9P 259.022 1 1 1 1 0 

F6P16_1 beta-D-Fructose 6-phosphate_1 C6H13O9P 260.025 1 1 1 1 0 

FBP16_0 beta-D-Fructose 1,6-bisphosphate_0 C6H14O12P2 338.988 1 1 1 1 0 

FBP16_1 beta-D-Fructose 1,6-bisphosphate_1 C6H14O12P2 339.992 1 1 1 1 0 

FBP16_2 beta-D-Fructose 1,6-bisphosphate_2 C6H14O12P2 340.995 1 1 1 1 0 

FBP16_6 beta-D-Fructose 1,6-bisphosphate_6 C6H14O12P2 345.008 1 1 1 1 0 
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G6P16_0 alpha-D-Glucose 6-phosphate_0 C6H13O9P 259.022 1 1 1 1 0 

G6P16_1 alpha-D-Glucose 6-phosphate_1 C6H13O9P 260.025 1 1 1 1 0 

GLN15_0 L-Glutamine_0 C5H10N2O3 145.061 1 1 1 1 0 

GLN15_1 L-Glutamine_1 C5H10N2O3 146.065 1 1 1 1 0 

GLU15_0 L-Glutamate_0 C5H9NO4 146.045 1 1 1 1 0 

GLU15_1 L-Glutamate_1 C5H9NO4 147.049 1 1 1 1 0 

GLU15_2 L-Glutamate_2 C5H9NO4 148.052 1 1 1 1 0 

GLU15_3 L-Glutamate_3 C5H9NO4 149.055 1 1 1 1 0 

GLU15_4 L-Glutamate_4 C5H9NO4 150.059 1 1 1 1 0 

GLU15_5 L-Glutamate_5 C5H9NO4 151.062 1 1 1 1 0 

GLY12_0 Glycine_0 C2H5NO2 74.024 1 1 1 1 0 

ILE16_0 L-Isoleucine_0 C6H13NO2 130.087 1 1 1 1 0 

ILE16_1 L-Isoleucine_1 C6H13NO2 131.090 1 1 1 1 0 

ILE16_2 L-Isoleucine_2 C6H13NO2 132.094 1 1 1 1 0 

ILE16_3 L-Isoleucine_3 C6H13NO2 133.097 1 1 1 1 0 

ILE16_4 L-Isoleucine_4 C6H13NO2 134.100 1 1 1 1 0 

ILE16_5 L-Isoleucine_5 C6H13NO2 135.104 1 1 1 1 0 

LEU16_0 L-Leucine_0 C6H13NO2 130.087 1 1 1 1 0 

LEU16_1 L-Leucine_1 C6H13NO2 131.090 1 1 1 1 0 

LEU16_2 L-Leucine_2 C6H13NO2 132.094 1 1 1 1 0 

LEU16_3 L-Leucine_3 C6H13NO2 133.097 1 1 1 1 0 

LEU16_4 L-Leucine_4 C6H13NO2 134.100 1 1 1 1 0 

LEU16_5 L-Leucine_5 C6H13NO2 135.104 1 1 1 1 0 

Mal14_0 (S)-Malate_0 C4H6O5 133.014 1 1 1 1 0 

Mal14_1 (S)-Malate_1 C4H6O5 134.017 1 1 1 1 0 

Mal14_2 (S)-Malate_2 C4H6O5 135.020 1 1 1 1 0 

Mal14_3 (S)-Malate_3 C4H6O5 136.024 1 1 1 1 0 

P5P15_0 alpha-D-Ribose 1-phosphate_0 C5H11O8P 229.011 1 1 1 1 0 

P5P15_1 alpha-D-Ribose 1-phosphate_1 C5H11O8P 230.015 1 1 1 1 0 

P5P15_2 alpha-D-Ribose 1-phosphate_2 C5H11O8P 231.018 1 1 1 1 0 

P5P15_3 alpha-D-Ribose 1-phosphate_3 C5H11O8P 232.021 1 1 1 1 0 

P5P15_4 alpha-D-Ribose 1-phosphate_4 C5H11O8P 233.025 1 1 1 1 0 

P5P15_5 alpha-D-Ribose 1-phosphate_5 C5H11O8P 234.028 1 1 1 1 0 

PGA13_0 3-Phospho-D-glycerate_0 C3H7O7P 185.988 1 1 1 1 0 

PGA13_1 3-Phospho-D-glycerate_1 C3H7O7P 185.988 1 1 1 1 0 

PGA13_2 3-Phospho-D-glycerate_2 C3H7O7P 186.992 1 1 1 1 0 

PGA13_3 3-Phospho-D-glycerate_3 C3H7O7P 187.995 1 1 1 1 0 

PHE19_0 L-Phenylalanine_0 C9H11NO2 164.071 1 1 1 1 0 

PHE19_1 L-Phenylalanine_1 C9H11NO2 165.075 1 1 1 1 0 

PHE19_2 L-Phenylalanine_2 C9H11NO2 166.078 1 1 1 1 0 

PHE19_4 L-Phenylalanine_4 C9H11NO2 168.085 1 1 1 1 0 

PHE19_9 L-Phenylalanine_9 C9H11NO2 173.101 1 1 1 1 0 

PRO15_1 L-Proline_1 C5H9NO2 115.059 1 1 1 1 0 

PYR13_1 Pyruvate_1 C3H4O3 88.012 1 1 1 1 0 

PYR13_3 Pyruvate_3 C3H4O3 90.018 1 1 1 1 0 

SER13_0 L-Serine_0 C3H7NO3 104.035 1 1 1 1 0 

SER13_1 L-Serine_1 C3H7NO3 105.038 1 1 1 1 0 

SER13_2 L-Serine_2 C3H7NO3 106.041 1 1 1 1 0 

THR14_0 L-Threonine_0 C4H9NO3 118.050 1 1 1 1 0 

THR14_2 L-Threonine_2 C4H9NO3 120.057 1 1 1 1 0 

THR14_4 L-Threonine_4 C4H9NO3 122.064 1 1 1 1 0 

TYR19_2 L-Tyrosine_2 C9H11NO3 182.073 1 1 1 1 0 

TYR19_3 L-Tyrosine_3 C9H11NO3 183.076 1 1 1 1 0 

TYR19_6 L-Tyrosine_6 C9H11NO3 186.086 1 1 1 1 0 

VAL15_0 L-Valine_0 C5H11NO2 116.071 1 1 1 1 0 

VAL15_1 L-Valine_1 C5H11NO2 117.075 1 1 1 1 0 

VAL15_2 L-Valine_2 C5H11NO2 118.078 1 1 1 1 0 

VAL15_3 L-Valine_3 C5H11NO2 119.081 1 1 1 1 0 

VAL15_4 L-Valine_4 C5H11NO2 120.085 1 1 1 1 0 

VAL15_5 L-Valine_5 C5H11NO2 121.088 1 1 1 1 0 
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FBP16_3 beta-D-Fructose 1,6-bisphosphate_3 C6H14O12P2 341.998 1 1 1 0 0 

HIS16_5 L-Histidine_5 C6H9N3O2 159.078 1 1 1 0 0 

LYS16_3 L-Lysine_3 C6H14N2O2 148.108 1 1 1 0 0 

LYS16_4 L-Lysine_4 C6H14N2O2 149.111 1 1 1 0 0 

Mal14_4 (S)-Malate_4 C4H6O5 137.027 1 1 1 0 0 

PHE19_6 L-Phenylalanine_6 C9H11NO2 170.091 1 1 1 0 0 

ASN14_3 L-Asparagine_3 C4H8N2O3 134.056 1 1 0 0 0 

ASN14_4 L-Asparagine_4 C4H8N2O3 135.059 1 1 0 0 0 

ASP14_3 L-Aspartate_3 C4H7NO4 135.040 1 1 0 0 0 

CYS13_0 L-Cysteine_0 C3H7NO2S 120.012 1 1 0 0 0 

DHAP13_2 Glycerone phosphate_2 C3H7O6P 170.997 1 1 0 0 0 

DHAP13_3 Glycerone phosphate_3 C3H7O6P 172.000 1 1 0 0 0 

F6P16_2 beta-D-Fructose 6-phosphate_2 C6H13O9P 261.029 1 1 0 0 0 

F6P16_3 beta-D-Fructose 6-phosphate_3 C6H13O9P 262.032 1 1 0 0 0 

F6P16_5 beta-D-Fructose 6-phosphate_5 C6H13O9P 264.039 1 1 0 0 0 

F6P16_6 beta-D-Fructose 6-phosphate_6 C6H13O9P 265.042 1 1 0 0 0 

FBP16_5 beta-D-Fructose 1,6-bisphosphate_5 C6H14O12P2 344.005 1 1 0 0 0 

G6P16_2 alpha-D-Glucose 6-phosphate_2 C6H13O9P 261.029 1 1 0 0 0 

G6P16_3 alpha-D-Glucose 6-phosphate_3 C6H13O9P 262.032 1 1 0 0 0 

G6P16_5 alpha-D-Glucose 6-phosphate_5 C6H13O9P 264.039 1 1 0 0 0 

G6P16_6 alpha-D-Glucose 6-phosphate_6 C6H13O9P 265.042 1 1 0 0 0 

HIS16_0 L-Histidine_0 C6H9N3O2 154.062 1 1 0 0 0 

HIS16_1 L-Histidine_1 C6H9N3O2 155.065 1 1 0 0 0 

MET14_2 L-Methionine_2 C5H11NO2S 150.050 1 1 0 0 0 

PHE19_8 L-Phenylalanine_8 C9H11NO2 172.098 1 1 0 0 0 

PRO15_0 L-Proline_0 C5H9NO2 114.056 1 1 0 0 0 

PYR13_0 Pyruvate_0 C3H4O3 87.008 1 1 0 0 0 

PYR13_2 Pyruvate_2 C3H4O3 89.015 1 1 0 0 0 

SER13_3 L-Serine_3 C3H7NO3 107.045 1 1 0 0 0 

THR14_3 L-Threonine_3 C4H9NO3 121.060 1 1 0 0 0 

TRP111_6 L-Tryptophan_6 C11H12N2O2 209.102 1 1 0 0 0 

TYR19_1 L-Tyrosine_1 C9H11NO3 181.069 1 1 0 0 0 

TYR19_4 L-Tyrosine_4 C9H11NO3 184.079 1 1 0 0 0 

TYR19_7 L-Tyrosine_7 C9H11NO3 187.090 1 1 0 0 0 

TYR19_9 L-Tyrosine_9 C9H11NO3 189.096 1 1 0 0 0 

Cit16_0 Citrate_0 C6H8O7 191.019 1 0 0 0 0 

ILE16_6 L-Isoleucine_6 C6H13NO2 136.107 1 0 0 0 0 

LEU16_6 L-Leucine_6 C6H13NO2 136.107 1 0 0 0 0 

LYS16_0 L-Lysine_0 C6H14N2O2 145.098 1 0 0 0 0 

LYS16_1 L-Lysine_1 C6H14N2O2 146.101 1 0 0 0 0 

LYS16_2 L-Lysine_2 C6H14N2O2 147.104 1 0 0 0 0 

LYS16_6 L-Lysine_6 C6H14N2O2 151.118 1 0 0 0 0 

PRO15_5 L-Proline_5 C5H9NO2 119.072 1 0 0 0 0 
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Table S3. E. coli strains with mutations in phosphorylation cites used in the study. Growth rate 

relative to wild type strain, wild type strain growth rate = 0.62. IN – phospho-IN mutation, OUT – 

phospho-out mutation, KO – knock out. 

 

Gene Location Protein 
Growth rate (% WT) 

IN OUT KO 

acnB 622 
bifunctional aconitate hydratase 2 and 2-

methylisocitrate dehydratase 
62.79 95.34 57.39 

adk 30 adenylate kinase - 90.58 - 

ahpC 84 alkyl hydroperoxide reductase, AhpC component 90.24 82.19 95.89 

asd 38 Aspartate-semialdehyde dehydrogenase 92.06 94.08 - 

eno 

372 & 

375 & 

379 

enolase 98.38 - - 

garL 124 5-keto-4-deoxy-D-glucarate aldolase 97.91 93.50 108.80 

gatA 70 PTS system galactitol-specific EIIA component 107.08 103.08 - 

gatB 63 galactitol PTS permease - GatB subunit 58.10 109.80 106.91 

gatY 115 D-tagatose-1,6-bisphosphate aldolase subunit GatY 86.50 93.05 85.17 

gatZ 265 D-tagatose-1,6-bisphosphate aldolase subunit GatZ 101.38 105.66 104.97 

gpm

M 
64 

2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase 
95.56 98.59 117.32 

guaA 357 GMP synthase [glutamine-hydrolyzing] 108.58 - 114.90 

hipA 150 Serine/threonine-protein kinase HipA 90.93 94.17 99.66 

hisJ 217 Histidine-binding periplasmic protein 99.65 98.47 100.20 

icd 113 Isocitrate dehydrogenase 0.00 91.80 123.29 

kdsD 2 Arabinose 5-phosphate isomerase KdsD 95.31 89.34 90.63 

manX 72 PTS system mannose-specific EIIAB component 98.40 91.84 108.10 

mdh 280 malate dehydrogenase 100.58 104.37 113.32 

menF 122 Isochorismate synthase MenF 79.04 90.82 95.31 

metK 198 S-adenosylmethionine synthase 94.80 97.16 - 

ndk 93 Nucleoside diphosphate kinase 104.46 - 93.68 

pck 
250 & 

252 
phosphoenolpyruvate carboxykinase (ATP) 96.97 104.51 99.41 

pgi 
105 & 

107 
Glucose-6-phosphate isomerase 97.05 94.62 38.34 

pgk 

192 & 

196 & 

199 

phosphoglycerate kinase 68.30 91.68 - 

pgm 144&146 Phosphoglucomutase 107.91 - 103.38 

pps 419 phosphoenolpyruvate synthetase 98.16 92.59 97.59 

pta 691 
phosphate acetyltransferase / phosphate 

propionyltransferase 
108.42 105.84 107.48 

pykF 36 pyruvate kinase I 84.37 87.44 67.29 

talB 226 transaldolase 107.23 109.95 102.61 

udk 
106 & 

108 
Uridine kinase 100.16 105.51 106.69 

uspG 128 Universal stress protein 100.36 99.97 99.09 
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Table S4. Pearson correlation between relative flux ratio changes of phopsho-IN and 

phospho-OUT mutants.  Wild type strain was used as a reference to calculate the difference between 

the flux ratios. Pearson correlation and p-values were calculated with Matlab function corr.  

 

 Mutant Pearson correlation P-value 

icd -0.57 0.02 

pgk -0.42 0.10 

gatB -0.20 0.45 

menF -0.07 0.80 

udk 0.04 0.89 

pps 0.28 0.28 

acnB 0.38 0.13 

mdh3 0.53 0.03 

pck 0.56 0.02 

gatA 0.59 0.01 

acnB1 0.60 0.01 

metK 0.67 0.00 

hipA 0.69 0.00 

uspG 0.71 0.00 

ahpC 0.73 0.00 

pta 0.75 0.00 

garL 0.77 0.00 

hisJ 0.78 0.00 

kdsD 0.79 0.00 

manX 0.79 0.00 

mdh 0.81 0.00 

pykF 0.83 0.00 

gatZ 0.87 0.00 

gpmM 0.87 0.00 

asd 0.89 0.00 

pgi 0.92 0.00 

gatY 0.93 0.00 

talB 0.95 0.00 
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Figure S1. Annotated ions quality check based on ratiometric filtering. Metabolites of interest were 

ranked according to isotopologue ratio to the m+0 isotopologue in the [1-13C] glucose experiment 

and fractional labeling in the [U-13C] glucose experiments. Isotopologue ions with a value of heavy 

isotopologue to m+0 ratio > 0.33 have been discarded. 

 

 

 

 
 

 

 

Figure S2. Robust feature selection and SUMOFLUX simulation filtering. Example of simulation 

filter comparing in silico and measured data represented as pairwise isotopologue ratios. (a) In 

silico example of overlapping ion. (b) Example of measured malate in E. coli wild type samples 

grown on [1-13C] glucose.  
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Figure S3. SUMOFLUX estimates eight flux ratios in central metabolism of E. coli with FIA-TOF 

data with high accuracy. Density plots representing SUMOFLUX estimates versus the true flux 

ratios for in silico data for eight flux ratios and fractions in central metabolism used for the proof-

of-principle. Upper panel, ratios were estimated using the data from [1-13C] glucose experiment; 

lower panel, ratios were estimated using the data from [U-13C] glucose experiment. The features 

passing the ratiometric filtering were used for the predictions. 
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Figure S4. SUMOFLUX predictors’ accuracies for the flux ratios calculated for E. coli 

phosphomutant profiling. Density plots representing SUMOFLUX estimates versus the true flux 

ratios for in silico data combined from 100% [1-13C] and a mixture of 50% [U-13C] and 50% 

unlabeled glucose experiments. The features passing the ratiometric filtering were used for the 

predictions. 
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Figure S5. Flux ratio estimates of the phospho-IN and phospho-OUT mutants showing negative 

correlation. 
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Abbreviations 

 
13C MFA 13C metabolic flux analysis 

 
13C MFRA 13C metabolic flux ratio analysis 

 6PG 6-phosphogluconate 

A AA amino acid 

 AcCoA Acetyl-CoA 

 ɑKG alpha-ketoglutarate 

 ALA alanine 

 ARG arginine 

 ASN asparagine 

 ASP aspartate 

 ATP adenosine triphosphate 

B B. subtilis Bacillus subtilis 

 BPG biphosphoglycerate 

C C carbon 

 c concentration 

 CCM central carbon metabolism 

 CDW cell dry weight 

 CoA coenzyme A 

 CYS cysteine 

D Da dalton 

 DHAP dihydroxyacetone phosphate 

 DNA deoxyribonucleic acid 

E e charge 

 E. coli Escherichia coli 

 E4P erythrose-4-phosphate 

 E-D pathway Entner-Doudoroff pathway 

 EtOH ethanol 

F F1P fructose-1-phosphate 

 F6P fructose-6-phosphate 

 FBA flux balance analysis 

 FBP fructose-1,6-bisphosphate 
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 FDR false discovery rate 

 FIA-TOF flow injection analysis - time of flight 

 FL fractional labeling 

 Fum fumarate 

G g grams 

 G6P glucose-6-phosphate 

 GAP glyceraldehyde-3-phosphate 

 GC gas chromatography 

 GLC glucose 

 GLN glutamine 

 GLU glutamate 

 GLY glycine 

 Gox glyoxylate 

 GR growth rate 

H h hour 

 HIS histidine 

 HPLC high-performance liquid chromatography 

I ICT isocitrate 

 ILE isoleucine 

 IR isotopologue ratio 

K KDPG 2-Keto-3-deoxy-6-phosphogluconate 

 KEGG Kyoto Encyclopedia of Genes and Genomes 

L L liter 

 LB Luria-Bertani 

 lb lower bound 

 LC liquid chromatography  

 LEU leucine 

 LYS lysine 

M M. smegmatis Mycobacterium smegmatis 

 M. tuberculosis Mycobacterium tuberculosis 

 m/z mass to charge ratio 

 MAE mean absolute error 

 MAL malate 
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 MDV mass distribution vector 

 MET methionine 

 mg milligram 

 min minute 

 mL  milliliter 

 mM millimolar 

 MRM multiple reaction monitoring 

 MS mass spectrometry 

 MS/MS tandem mass spectrometry 

N N nitrogen 

 NAD+ nicotinamide adenine dinucleotide oxidized form 

 NAD+/NADH nicotinamide adenine dinucleotide 

 NADH nicotinamide adenine dinucleotide reduced form 

 NADP+ nicotinamide adenine dinucleotide phosphate oxidized form 

 NADPH nicotinamide adenine dinucleotide phosphate reduced form 

 NMR nuclear magnetic resonance 

O OAA oxaloacetate 

 OD optical density 

 ODE ordinary differential equation 

P P5P pentose-5-phosphate 

 PCC Pearson correlation coefficient 

 PEP phosphoenolpyruvate 

 PGA phospho-glycerate 

 PHE phenylalanine 

 PPP  pentose phosphate pathway 

 PRO proline 

 PYR pyruvate 

R R5P ribose-5-phosphate 

 RNA Ribonucleic acid 

 RPMI medium Roswell Park Memorial Institute medium 

 RT room temperature 

 Ru5P ribulose-5-phosphate 

S s second 
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 S7P sedoheptulose-7-phosphate 

 SER serine 

T TBDMS tert-butyldimethylsilyl 

 TCA cycle tricarboxylic acid cycle 

 THR threonine 

 TOF time of flight 

 TRP tryptophan 

 TYR tyrosine 

U ub upper bound 

 uL microliter 

 VAL valine 

W WMW test Wilcoxon-Mann-Whitney test 

 wt wild-type 
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