
ETH Library

Coherent Acoustic Perturbation of
Second-Harmonic-Generation in
NiO

Journal Article

Author(s):
Huber, Lucas; Ferrer, Andrés; Kubacka, Teresa ; Huber, Tim; Dornes, Christian; Sato, Takahiro; Ogawa, Kanade; Tono, Kensuke;
Katayama, Tetsuo; Inubushi, Yuichi; Yabashi, Makina; Tanaka, Yoshikazu; Beaud, Paul; Fiebig, Manfred ; Scagnoli, Valerio;
Staub, Urs; Johnson, Steven L.

Publication date:
2015-09-01

Permanent link:
https://doi.org/10.3929/ethz-a-010817823

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Physical Review B 92(9), https://doi.org/10.1103/PhysRevB.92.094304

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-0968-1311
https://orcid.org/0000-0003-4998-7179
https://doi.org/10.3929/ethz-a-010817823
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1103/PhysRevB.92.094304
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Coherent Acoustic Perturbation of Second-Harmonic-Generation

in NiO

L. Huber,1, ∗ A. Ferrer,1, 2 T. Kubacka,1 T. Huber,1 C. Dornes,1 T. Sato,3 K.

Ogawa,3 K. Tono,3 T. Katayama,3 Y. Inubushi,3 M. Yabashi,3 Yoshikazu

Tanaka,3 P. Beaud,2 M. Fiebig,4 V. Scagnoli,1, 5, 6 U. Staub,2 and S. L. Johnson1

1Institute for Quantum Electronics,
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Abstract

We investigate the structural and magnetic origins of the unusual ultrafast second-harmonic-

generation (SHG) response of femtosecond-laser-excited nickel oxide (NiO) previously attributed

to oscillatory reorientation dynamics of the magnetic structure induced by d-d excitations. Using

time-resolved x-ray diffraction from the (3
2

3
2

3
2) magnetic planes, we show that changes in the

magnitude of the magnetic structure factor following ultrafast optical excitation are limited to

∆ 〈Fm〉 / 〈Fm〉 = 1.5% in the first 30 ps. An extended investigation of the ultrafast SHG response

reveals a strong dependence on wavelength as well as characteristic echoes, both of which give

evidence for an acoustic origin of the dynamics. We therefore propose an alternative mechanism

for the SHG response based on perturbations of the nonlinear susceptibility via optically induced

strain in a spatially confined medium. In this model, the two observed oscillation periods can be

understood as the times required for an acoustic strain wave to traverse one coherence length of

the SHG process in either the collinear or anti-collinear geometries.
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As materials for spintronic applications, antiferromagnets (AFMs) provide the advan-

tageous property of potentially faster spin switching times compared to ferromagnets1–3.

By exploiting the exchange bias interaction that arises on an interface to a ferromagnetic

material4, AFMs could act as fast switches in future data storage devices. Due to its high

Néel temperature TN = 523 K, the AFM NiO is a promising candidate for such an applica-

tion provided that the spin order can indeed be quickly and efficiently switched.

Controlling the antiferromagnetic order in NiO appeared to become feasible after it was

reported that ultrafast optical excitation could lead to a change in the magnetic anisotropy

potential, inducing 90◦ flips in a substantial fraction of the spin population and a rotation of

the macroscopic order parameter alongside a sudden decrease in spin order5–7. Time-resolved

SHG studies on bulk NiO further suggested that the dynamics were highly sensitive to the

intensity and duration of the excitation pulse, resulting in transient redirection of spins os-

cillating in either of two distinct directions with frequencies of 1 and 55 GHz, respectively7.

This model was supported by the agreement of the observed frequencies with the frequen-

cies associated with differences in anisotropy energy to the easy axis ground state known

from neutron diffraction8. Similar mechanisms leading to spin reorientation after optical

excitation have been described for AFM compounds exhibiting a net magnetization3. These

materials, however, show a strongly temperature-dependent magnetic anisotropy that is not

seen in NiO. The observations of AFM dynamics in NiO have so far only been made us-

ing resonantly enhanced SHG of EH-type, involving a magnetic-dipole transition. This is

an elegant but indirect measure of magnetism in NiO which poses significant experimental

challenges9.

Similar optical excitation levels in absorbing solids also generate coherent strain waves

with frequency components similar to some of those observed in the SHG measurements10.

For NiO in particular, Bosco et al. observed oscillations in time-resolved linear reflectivity

measurements and Takahara et al. recently remarked at the close resemblance between

frequencies of these coherent oscillations and the higher frequency oscillations reported for

the SHG response11,12. Dynamics attributed to coherent acoustic phonons have also been

observed in the SHG response of a Fe/AlGaAs heterostructure13. It remains, however,

unclear how such coherent strain waves can adequately explain all features observed in

the SHG measurements in NiO. In particular the magnitude of the changes in SHG are

significantly larger than those seen in reflectivity, and the dependence on fluence appears to
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be substantially different. Reflectivity measurements also show no evidence of the 1 GHz

oscillations seen in SHG.

By performing additional measurements and simulations, here we demonstrate that the

dynamics observed in the SHG response to ultrafast optical excitation can be explained

self-consistently as the result of coherent strain propagation. For this we used time-resolved

x-ray diffraction to directly measure the evolution of spin order after excitation in this system

and performed extended SHG studies that validate and quantify the strain wave induced

origin of the SHG dynamics in NiO.

I. STRUCTURAL, MAGNETIC AND DOMAIN PROPERTIES IN NIO

Above its Néel temperature, NiO is paramagnetic and is found in a rock-salt crystal

structure. Below TN , Ni2+ spins align ferromagnetically within (111) planes, pointing along

one of three equivalent
{

112
}

directions. The magnetization direction of neighboring (111)

planes is antiparallel. Magnetostriction leads to small structural contractions along (111),

giving rise to four possible structural domain orientations derived from the cubic param-

agnetic structure14,15. The current model of anisotropy change following ultrafast optical

excitation in this compound assumes a partial reorientation of the
{

112
}

spin population,

either along (111) or
{

110
}

, depending on specific excitation parameters5–7.

In order to disentangle influences arising from the complex domain structure, we prepared

three different NiO specimens with (111) surface orientation that underwent different anneal-

ing and polishing processes. We prepared samples of 36, 45 and 50 µm thickness. The latter

two showed bright green color and structural domain sizes of 10-100 µm as well as single

spin domains, which was verified using birefringence microscopy and SHG measurements15.

The 36 µm sample showed evenly distributed structural domains smaller than 10 µm and

was of brownish green color hinting at a deviation from ideal stoichiometry16.

II. TIME-RESOLVED X-RAY DIFFRACTION

In order to quantify the response of the magnetic order to optical excitation, we used time-

resolved non-resonant magnetic x-ray diffraction to measure the sublattice magnetization as

a function of time after absorption of a femtosecond optical pulse. AFMs like NiO are ideal
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systems to be studied with magnetic diffraction, as the alternating magnetic moments form a

sublattice with half the periodicity of the structural lattice, giving rise to additional solitary

magnetic reflections in reciprocal space14.

The intensity of these magnetic diffraction peaks is proportional to the square of the

magnetic structure factor 〈Fm(Q)〉 where Q is the momentum transfer of the diffraction

peak17.

〈Fm(Q)〉 = −r0
ihν

mec2
〈Mm(Q)〉 . (1)

Here, me and r0 are the mass and classical radius of the electron, c is the speed of light and

hν gives the photon energy. The magnetic scattering amplitude Mm(Q) is given by

〈M(Q)〉 =
1

2
L(Q) ·A + S(Q) ·B (2)

where A and B are geometric factors that depend on the scattering geometry and on po-

larization for both the incident and scattered x-rays, S(Q) is the Fourier component at Q

of the spin density, and L(Q) is the Fourier component at Q of a function related to orbital

contributions to the magnetization18.

In 1972 Brunel and Bergevin used NiO to demonstrate for the first time the feasibil-

ity of magnetic x-ray diffraction19. Since then, the brightness of light sources increased

tremendously, but the low efficiency of magnetic scattering still impedes time-resolved mea-

surements with ps resolution at conventional light sources. For this reason the experiment

was carried out at beamline 3 of the x-ray free electron laser (XFEL) SACLA, Japan20.

The 45 µm thick (111)-oriented NiO crystal was mounted on a multi-axis diffractometer

in horizontal scattering geometry as depicted in Fig. 1(a) (π incident x-ray geometry). To

measure the intensity of magnetic diffraction from the (3
2

3
2

3
2
) planes, x-ray pulses from the

XFEL were set to an average photon energy of 7.2 keV, with a full-width-at-half-maximum

(FWHM) pulse duration below 50 fs21,22 and an estimated spectral bandwidth of 50 eV.

At a repetition rate of 10 Hz the total pulse energy was approximately 180 µJ. The Bragg

angle for the (3
2

3
2

3
2
) planes at this photon energy is 32.4◦. The x-ray footprint on the

crystal was (0.40×0.75) mm2. Polarization analysis using a magnesium oxide analyzer crystal

in πσ-configuration efficiently suppressed the charge-scattered background, allowing better

measurement of the the weak magnetic signal. In this configuration the (3
2

3
2

3
2
) reflection

gives the strongest signal relative to other magnetic reflections, yielding 0.9 photons per

XFEL-pulse, as shown in the inset of Fig. 2.

4



To test for possible contributions from the XFEL second harmonic diffracting from the

(333) structural planes, we inserted a Si filter with a nominal thickness of 100 µm into

the beam path. This thickness of Si transmits 14% of x-ray radiation at 7.2 keV, but

for any potential second harmonic contributions at 14.4 keV the transmission is 77%. We

observed a transmission of the diffracted signal of (12.2 ± 0.6)%, indicating that second

harmonic contributions from the (333) structurally allowed reflection are not significant in

this experiment.

(b)

(a)

FIG. 1. (a) The experimental diffraction setup of the horizontal scattering geometry at beamline

3 of the XFEL SACLA. An MgO crystal at a Bragg angle of 45◦ was used to select outgoing σ

radiation that was detected using an yttrium aluminium perovskite detector (YAP). (b) The spin

orientation in the antiferromagnetic phase of NiO for a single spin domain of a (111)-cut crystal

where the spin points along
{

112
}

.

To excite the sample, an amplified Ti-sapphire laser system synchronized to the XFEL

provided pump pulses centered at 800 nm wavelength with 50 fs FWHM duration. The

timing jitter of less than 1 ps exceeded our requirements in order to resolve a potential 20

ps oscillation period, corresponding to a 50 GHz response22. The pump pulses were focused

onto a (0.7×1.7) mm2 (FWHM) spot on the sample at an incidence angle of 24.4◦, which

is close to Brewster’s angle and 8◦ degrees from the x-ray beam. The incident excitation

fluence was 37 mJ/cm2, leading to an excitation density of 0.5 · 1020 cm−3 near the sample

surface. As can be seen in section 4, these pump conditions lead to large magnitude SHG

dynamics, which were interpreted as a reorientation of spins in the [111] direction5. Spatial

and temporal overlap of the pump and probe pulses were verified by measuring the x-
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ray induced optical transmission changes of a GaAs wafer temporarily inserted into the

sample position23. The intensity attenuation depth was 24 µm and 26 µm for the x-rays

and the pump beam, respectively. We measured the intensity of the (3
2

3
2

3
2
) peak at room

temperature as a function of relative pump-probe delay time over a range of −30 to 30 ps.

As shown in Fig. 2, the measured relative changes in the diffraction intensity did not exceed

a value of two times the mean error of photon counting statistics of 2% over the first 30 ps

after excitation.
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FIG. 2. The time resolved diffraction measurements on NiO are shown as blue dots. Broken blue

lines indicate two times the mean standard error of photon counting statistics, approximately 2%.

We did not observe a relative change in diffraction intensity exceeding this value. Temporal and

spatial overlap were verified using an x-ray pump / optical transmission probe experiment on GaAs

depicted as orange triangles. The inset shows a scan of the NiO Bragg angle θ in the vicinity of

the (3
2

3
2

3
2) reflection. The time scan was carried out at its peak position of θ = 32.4◦.

The absence of a change in magnetic diffraction intensity exceeding 2% stands in contrast

to the previously reported anti-collinear SHG response where a drop of more than 20% is

seen with similar excitation conditions (see Fig. 3 for comparison). The SHG intensity I2ω

should in principle obey the relationship I2ω ∝ S4, where S is the magnitude of the sublattice

magnetization9. Based on this one could infer that the magnetic order in the excited state

drops on the order of several percent. As described in appendix A, the intensity of the

magnetic diffraction depends on both the magnitude of the sublattice magnetization and on

the orientation of the spin order. In addition, there are three different spin domains that

can all contribute to the diffraction signal. Since the spin domain distribution in the probed
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volume is a priori unknown, it is not generally possible to extract a definite upper bound

for the changes in either the sublattice magnetization or the reorientation of the domains

since these effects could potentially cancel out. While the x-ray results do not necessarily

exclude the possibility of particular combinations of demagnetization and reorientation, they

themselves show no direct evidence of large amplitude magnetic sublattice changes. This

serves as a motivation to re-examine the interpretation of the previous SHG results by

extending these optical studies to explore additional parameter spaces.

III. TIME-RESOLVED SHG MEASUREMENTS

SHG has been demonstrated as a powerful tool to study ferroelectricity and antiferro-

magnetism, where the order parameter is correlated to a breaking of the inversion symmetry.

It is, however, remarkable that the method was proven to be applicable also to centrosym-

metric materials such as NiO and CoO when the generation is resonantly enhanced and a

magnetic dipole transition participates in the excitation9. In NiO this means, however, that

SHG is only efficient when using probe light of a narrow band around 1200 nm. Even then,

the generated second harmonic intensity is very weak, requiring intense probe light pulses

and long acquisition times. All previous studies were therefore carried out using a funda-

mental wavelength λ = 1200 nm and detected the SHG that was emitted in an anti-collinear

geometry, leading to the observation of oscillations in the SHG response with a frequency of

either 55 GHz or 1 GHz5–7.

Here, we extend these SHG studies with time-resolved measurements in three major re-

spects in an effort to understand these dynamics more completely. First, we carried out

measurements in both reflection and transmission geometries to test the sensitivity of the

dynamics to the phase-matching conditions of the SHG process. Second, we performed

measurements at multiple probe wavelengths to determine whether the observed oscilla-

tions change with probe frequency. Third, we measured the dynamics with different sample

thicknesses to determine any possible role of the distance between the interfaces. We also

re-investigated the pump intensity dependence of the dynamics. Our results show that the

observed dynamics depend strongly on probe wavelength, geometry and acoustic proper-

ties of the samples and appear to be consistent with simulations of the time-dependent

SHG process when allowing for a strain-induced perturbation of the linear and non-linear
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susceptibilities.

For these experiments, we employed an amplified 800 nm Ti-sapphire laser system pro-

viding 100 fs pulses at 1 kHz repetition rate. A fraction of the output beam was fed into

an optical-parametric-amplifier that generated probe pulses tunable between 1140 and 1400

nm wavelength. To allow for the investigation of dynamics extending over several nanosec-

onds, the probe beam made two round trips over a 1.3 m long delay stage. Pump and

probe beams were combined at a relative angle of 2◦ using a dichroic mirror. The 800 nm

pump and IR probe beam were then delivered to the sample with typical pulse energies

of 120 µJ and 20 µJ, respectively, and filtered for second harmonic light generated by the

optical components. As previous publications suggested a very strong dependence on the

pump intensity, we chose a pump beam area approximately 30 times larger than that of the

probe beam. With beam diameters on the sample of 770 and 145 µm (1/e2) this leads to

considerable pump and probe peak fluences of 50 and 240 mJ/cm2, respectively. Note that

the pumped area is much larger than the thickness of the NiO crystal. After the sample, a

series of polarizers and color filters filtered out both the fundamental probe and scattered

800 nm light, as well as third harmonic light and multi-photon fluorescence. The SHG was

detected using a GaAs photomultiplier tube.

A. Reflection geometry measurements

Using a probe beam wavelength of 1200 nm and detecting the SHG light in reflection

geometry, we were able to reproduce the SHG response after optical excitation as previously

reported5 in a 36 µm thick sample that shows evenly distributed small domains, as well as

in a 50 µm thick sample showing domain sizes of around 100 µm, see Fig. 3. The SHG

response at 1200 nm features a 55 GHz oscillation, showing an amplitude of about 10%

and a decay time of above 250 ps. A careful study of the observed oscillation amplitude

on fluence and excitation pulse length did, however, not show a significant deviation from

linear behavior, as shown in the right inset in Fig. 3. In Fig. 3 (b) we observed 55 and

1 GHz oscillations in the same measurement. These findings stand in contrast to earlier

publications that observed a threshold behavior depending on pulse peak power5–7.

A remarkable observation can be made when detuning the probe wavelength away from

the resonance condition at 1200 nm. This is experimentally challenging, as the SHG intensity
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(a)

(b)

FIG. 3. (a) Relative change in SHG in reflection geometry for 3 different wavelengths in the 36 µm

thick sample. Lines are shown to guide the eye and the measurement of λ = 1140 nm is scaled for

better comparison. Its smaller modulation amplitude is mainly due to an increase in fluorescence

background for shorter wavelengths. The Fourier transforms and their corresponding peaks are

shown in the left inset, together with the result for ω+ given by Eq. 12. The right inset shows

the dependence of the oscillatory amplitude on excitation density at λ = 1200 nm (error bars are

smaller than marker sizes). A linear fit is shown for comparison. (b) Measurement at λ = 1200

nm and a 800 nm pump pulse that was slightly chirped to 180 fs pulse duration. An excitation

density of 0.4 · 1020 cm−3 was used. Two oscillation periods of 18 ps and 1 ns (=̂ 55 and 1 GHz)

are observed.

is largely reduced, which prevented such detuning in earlier experiments. Nonetheless, over

an accessible wavelength range between λ = 1140 and 1300 nm, we were able to acquire

data showing a dependence of the observed oscillations on probe wavelength. This suggests

that the frequencies of the oscillations are not an intrinsic property of the material, but arise

instead from an interaction between material and the probe beam. These measurements were

carried out at room temperature and repeated at 150 K to test for temperature dependencies.
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FIG. 4. SHG response to optical excitation in collinear geometry acquired at 1200 nm. The

oscillations show a recovery in amplitude centered at 10.3 and 13.7 ns for the 36 and 50 µm sample,

respectively. This is coincident with the observation of phase discontinuities at these times, that

also occur at 5.15 and 6.85 ns. Pump probe traces show similarity to every other time segment,

while consecutive segments appear as mirrored (indicated by arrows).

Within the precision of our measurement, we did not, however, observe significant differences

in the measured frequencies.

In addition, we observed considerable differences in the SHG yield for different NiO

samples. SHG from a 1 mm thick bulk crystal was undetectable, while 36 µm and 50

µm thick samples gave observable yield in reflection geometry. As optical properties and

the domain structure in NiO vary depending on their exact stoichiometry16, this might be

caused by differences in the annealing process. It seems, however, more probable that these

differences reflect instead a thickness dependence, as the slab thicknesses are of the same

order as the ω and 2ω absorption lengths of 23 µm and 35 µm, respectively. This would

imply that the detected signal in reflection geometry consists largely of internally reflected

SHG. For this reason, we also studied collinearly generated SHG in a transmission geometry.

B. Transmission geometry measurements

Figure 4 shows the SHG response acquired in transmission geometry over a time inter-

val of 25 ns after excitation for two different slab thicknesses. Using 1200 nm as probe

wavelength, the SHG shows pronounced oscillations with a frequency of about 1 GHz, as

reported previously for some measurements performed in a reflection geometry7. No signs
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of oscillations in the 50 GHz range could be observed. The SHG yield in this configuration

is in fact up to two orders of magnitude larger than in the reflection geometry. As the

refractive index for the second harmonic n2ω ≈ 2.4 implies a Fresnel reflectivity of 17% and

the absorption length is comparable to the sample thickness for the frequencies considered

here, this implies that the major part of observed SHG in reflection geometry is in fact due

to internal reflection of the collinearly created second harmonic light. Moreover, the data

shown in Fig. 4 feature recurrences of the envelope amplitude as well as phase discontinu-

ities that are especially remarkable in the 36 µm thick sample. The observation of these

phase discontinuities suggests that the recovery of amplitudes is not caused by a beating7

but rather by a reflection.

There is also a remarkable correlation between the crystal thickness and the observed

recurrence times. The times at which the phase discontinuities occur corresponds to integer

multiples of the acoustic round trip time Tac = 2d/vs when using a speed of sound vs =

(7.1± 0.1) km/s in good agreement with ultrasound measurements24.

In Fig. 5 we also investigated the dependence of the observed dynamics on probe wave-

length in a transmission geometry in the 36 µm thick sample. A pronounced frequency and

phase dependence can be observed over a probe wavelength range between 1140 and 1400

nm. The left inset in Fig. 5 shows frequencies estimated from the Fourier transform based

on the first 5.15 ns after excitation. Phase discontinuities appear for each wavelength at

5.15 ns, after which the dynamics display mirror-symmetric behavior that manifests as an

apparent reversal of the direction of the time axis.

Although the data shown in Fig. 3 (a), 4 and 5 were taken at fluences between 40 and

50 mJ/cm2, there are large discrepancies in their modulation amplitudes. These amplitudes

varied depending on the position on the sample. A repetition of the reflection measurements

shown in Fig. 3 in the same experimental configuration as the transmission measurements

in Fig. 5 yielded the same frequencies and phases but with a modulation amplitude that

was almost one order of magnitude smaller. We therefore regard the overall scaling of the

modulation amplitude as poorly reproducible, and it may be strongly influenced by small

changes in alignment or local sample properties.
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FIG. 5. SHG response to optical excitation in transmission geometry for various probe wavelengths

in the accessible wavelength range. A common feature of all traces is a time inversion symmetry

with respect to t = 5.15 ns indicated by a broken line. A strong frequency dependence of the

induced oscillations is observed. The maximum positions of their Fourier transforms over the first

5.15 ns is shown in the inset on the left, which also shows the resulting frequencies based on the

simulation and following Eq. 12. The fit result of the real part of the refractive index is shown to

the right. Relevant areas are highlighted.

IV. MODELING THE SHG RESPONSE TO OPTICAL EXCITATION OF A SPA-

TIALLY CONFINED SEMI-TRANSPARENT CRYSTAL

For optically absorbing materials, Thomsen et al. presented a model to describe how

light-induced strain is driven by the thermal stress from a sudden increase in temperature

after optical excitation10. We will briefly review these findings for the case of thermoelastic

coupling in a semi-transparent medium in the following. Due to the absorption profile in

the crystal and the boundary conditions introduced by the surfaces, where applied stress is

compensated, the induced stress is strongly inhomogeneous in the direction normal to the

surface. In the experiment we used a pump beam diameter that was 15-20 times larger than

the crystal thickness which allows us to treat the problem in one dimension. With strain

η33, and the displacement in z direction u3, (here [111]), the equations of elasticity can be
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expressed as10

∂2u3

∂t2
− v2

s

∂2u3

∂z2
= −3Kβ

ρ

∂∆T (z)

∂z
, η33 =

∂u3

∂z
, (3)

where vs is the speed of sound, K the bulk modulus, ρ density and β the expansion coefficient

of NiO. With the boundary conditions given by the crystal surfaces and the initial condition

of zero strain before excitation, we obtain solutions for t > 0

η33(z, t) = (1−R)
αEp
A

3Kβ

ρCV v2
s

F (z, t), (4)

where R is the reflectivity at 800 nm wavelength, α is the intensity absorption coefficient,

A is the excited sample area, Ep is the pulse energy, and Cv is the specific heat at constant

volume. The function F (z, t) is the dimensionless solution to the equation of elasticity based

on the given boundary conditions, the full expression for which is given in appendix B. In

our model, we multiply Eq. 4 with an exponential decay term e−t/td to approximate the

effects of acoustic loss and heat dissipation. Since NiO is semi-transparent over the range of

relevant wavelengths, it is necessary to consider the whole volume of the thin slab, resulting

strain waves propagating from both external interfaces. The parameters employed for the

calculation are summarized in Table I. Figure 6 (a) shows several examples of strain profiles

at various times.

As strain implies local variations of interatomic distances, it affects not only the me-

chanical but also the optical properties of the crystal. Typical deformations correspond to

a relative length change of 10−4, hence the influence on optical parameters, such as the

permittivity ε, can be treated as perturbations

∆ε(z, t) = 2(n+ iκ)

[
∂n

∂η33

+ i
∂κ

∂η33

]
η33(z, t), (5)

where n and κ are the real and imaginary parts of the refractive index. Here we also

assume that the temperature changes have no direct effect on ε. Values of ∂n/∂η33 6= 0 have

previously been observed in NiO films as well as in (001)-cut bulk NiO using reflectivity and

ellipticity measurements11,12. A modulation of the linear refractive index already implies

possible consequences for the SHG response arising from changes in the SHG coherence

length.

In a similar manner, we can also parameterize possible changes in the second-order sus-
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ceptibity χ(2) with respect to changes in temperature and strain

∆χ(2)(z, t) =
∂χ(2)

∂T

∣∣∣∣
T=RT

∆T (1− e−t/tm)e−t/td

+
∂χ(2)

∂η33

∣∣∣∣
η33=0

η33(z, t).

(6)

where RT stands for room temperature, tm denotes the demagnetization time, which is in

AFM compounds typically few ps25, and td is the diffusion time constant td which lies in

the ns regime. For the sake of simplicity of our model, we do not take into account the

imaginary component of the nonlinear refractive index.

The second order susceptibility χ(2) should depend on the antiferromagnetic order pa-

rameter l, which is related to magnetoelastic lattice distortions9. This in turn depends on

the temperature, which gives us an expression for the temperature dependence

χ(2)(T ) ∝ (1− T/TN)2β, (7)

with critical exponent β = 0.3326. The local temperature changes due to optical excitation

in our experiment are on the order of several K at room temperature, justifying a linear

expansion in ∆T .

A dependence of χ(2) on strain can arise from at least two physical origins. One possibility

is a strain-induced change in the energies of the (3d)8 states of Ni2+ that may alter the double-

resonance condition of SHG in NiO. Another possibility is magnetoelastic effects that more

directly change the sublattice magnetization l. Both of these possibilities are at present

beyond our abilities to quantify, and so we simply incorporate ∂χ(2)/∂η33 as a parameter in

our model. A schematic overview of the proposed mechanism is shown in Fig. 6.

For a full quantitative simulation of the time dependent SHG in NiO, we have to deviate

from the standard treatment of stimulated Brillouin scattering10 due to the limited crystal

size and the nonlinear nature of coupling between fields. Instead, we apply a two-step time-

resolved propagation matrix calculation. In the first step the local fundamental fields inside

the crystal are determined, while in a second step the emitted SHG is calculated based on the

local source terms arising from these fields. To implement temporal and spatial variations,

the crystal volume is divided along the longitudinal direction in N slices of each a few

nanometer thickness (well below the scale of optical wavelengths) whose optical properties

are given by Eq. 5 and 6. Restricting the problem to one dimension is here permitted as
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FIG. 6. a) The optically induced strain in the weakly absorbing 36 µm thick NiO slab in real

space at four different times. Nearly step-like strain discontinuities arise from both surfaces and

propagate into the crystal at the speed of sound.

b) The proposed model allows for a local change of the refractive index and χ(2) as function of strain,

here depicted at a time t1 = 1.5 ns. Fundamental and SHG beams are hence subject to Brillouin

scattering. Collinear phase mismatch ∆k leads to spatial variations of the SHG intensity I
′
2ω, here

schematically depicted for the first collinear term, neglecting reflections. The major contributions

to the observed dynamics arise from the strain induced perturbation of this collinearly generated

second harmonic and interference with the SHG from reflections of the fundamental field. Note

that the propagation matrix method takes into account all possible reflections of fundamental light

and SHG.

the Rayleigh range is many times larger than the crystal thickness. Each slice with index m

can then be treated as a source of SHG Sm due to the induced nonlinear polarization PNL
m

Sm =− µ0
∂2

∂t2
PNL
m ,

PNL
m =− iχ(2)

m (t)(E+
ω,m(t) + E−ω,m(t))2,

(8)

where µ0 is the vacuum permeability and χ
(2)
m represents the magnetic dipole assisted non-

linear susceptibility according to Eq. 6. E
+/−
ω,m correspond to the right- and left-ward propa-
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gating fundamental fields at slice m. The small value of the second order susceptibility χ(2)

allows us to describe the SHG process in the Born approximation in which the fundamental

fields Eω are independent of the SHG. This is the main requirement for this procedure to

be applicable to acoustic perturbation of SHG. We can then apply the propagation matrix

method to derive E
+/−
ω,m at each slice position and calculate the emitted second harmonic

fields as described in appendix C.

Results of the simulation for transmitted and reflected intensities are shown in Fig. 7. On

nanosecond timescales, the SHG in reflection geometry follows the behavior of the transmit-

ted SHG, which reflects the fact that its main source is the collinear generation process and

internal reflection, with additional contributions of the SHG arising from internally reflected

fundamental light. The real part of the refractive index n(ω) used in our simulations was

obtained from a fit to the experimental data as will be discussed below. Further optical

parameters employed in these calculations are given in appendix D and Table II.

V. DISCUSSION OF THE OPTICAL RESULTS

According to our model, the dynamics in SHG are the result of the time dependent sec-

ond order polarization and light propagation inside the medium in the presence of coherent

acoustic waves. By using the propagation matrix method the model takes into account

multiple reflections of fundamental and second harmonic fields as well as the strain waves

inside the crystal. This is especially important as a major part of the SHG in the reflection

geometry arises from the internal reflection from the interface on the opposite side of the

crystal.

Although to obtain approximate quantitative accuracy the model includes many different

effects, it is possible to gain some additional insight by considering in general the effect of

strain waves on phase matching for a collinear or anti-collinear SHG process. In a uniform,

non-absorbing medium, the output intensity in the first Born approximation is related to

the effective length L by

I2ω ∝
∣∣∣∣∫ L

0

χ(2) exp(i∆kz)dz

∣∣∣∣2
=

∣∣∣∣χ(2)

∆k

∣∣∣∣2 4 sin2(∆kL/2)

(9)
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FIG. 7. Simulation of SHG in the presence of optically induced propagating strain for a fluence of

50 mJ/cm2 and a NiO crystal of 36 µm thickness. (a) Relative change in transmitted SHG. Acoustic

reflections occur every 5.15 ns and are marked as broken lines. The Fourier transform is shown in

the insets for the relevant frequency domains. In transmission there are no significant contributions

at higher frequencies (left inset). Large amplitude dynamics occur at lower frequencies around 1

GHz (right inset) where the solid line shows the curve given by ω− in Eq. 12. (b) Relative change in

reflected SHG. A large amplitude modulation at frequencies around 50 GHz is observed. The left

inset shows contributions at the frequency of Brillouin scattering of the fundamental ωB = 2nvsω/c

and the curve given by ω+ of Eq. 12. These are shown as broken and solid lines, respectively.

Spectral components at ωB are, however, not observed in our measurements. The low frequency

oscillations given by ω− in Eq. 12 are also present in reflection (right inset).

where ∆k = 2kω±k2ω, with the sign depending on whether the fundamental and SHG beams

are collinear or anti-collinear. Strain-induced modulation of the linear and nonlinear optical
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coefficients causes small, z-dependent changes in both ∆k and χ(2). If we approximate a

strain wave propagating through the crystal away from the front interface as a real-valued

step-like discontinuity in both ∆k and χ(2) that moves with the sound velocity vs, we obtain

I2ω ∝
∣∣∣∣ ∫ vst

0

(χ(2) + δχ(2)) exp(i(∆k + δ∆k)z)dz

+

∫ L

vst

χ(2) exp(i∆kz)dz

∣∣∣∣2 (10)

where we assume that beyond the discontinuity the optical constants are unperturbed, and

before the discontinuity the second-order susceptibility changes by δχ(2) and the phase mis-

match ∆k changes by δ∆k. Evaluating this to first order in δχ(2) and δ∆k yields

I2ω ∝
∣∣∣∣χ(2)

∆k

∣∣∣∣2 [4 sin2(∆kL/2)

+ 2

(
δχ(2)

χ(2)
− δ∆k

∆k

)(
2 sin2(∆kL/2)

+ cos(∆k(L− vst))− cos(∆kvst)
)] (11)

provided that for all measured times t� 2π/δ∆kvs
27. We see immediately from this expres-

sion that the intensity of the SHG is modulated in time with a frequency

ω+/− = ∆kvs = Re(2kω ± k2ω)vs (12)

where we explicitly take the real part of the expression for ∆k to extend our result to the

more realistic case where there is a small imaginary component to both kω and k2ω.

The ω− values from Eq. 12 correspond to the slow oscillations at frequencies near 1 GHz

as shown in Fig. 4 and 5, where we show values for ω− at various probe frequencies derived

from a four-parameter Sellmeier equation. The result for n(λ) is shown in the right inset in

Fig. 5 and the parameters are given in the appendix in Table II. This parameterization is

only a coarse approximation of the linear optical dispersion, since the absorption spectrum

of NiO shows strong features in the observed spectral range that are not accounted for in this

model16. Both the simulations and Eq. 11 predict that the onset phase of these oscillations

should depend on the unperturbed value of ∆k, which in turn depends sensitively on the

probe wavelength. Different sample thicknesses L also lead to different onset-phases for the

same probe wavelength, as observed in Fig. 4. The simulation can also account for the

observed temporary increase in absolute SHG above the equilibrium level, since the strain
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modulation is under some circumstances able to effectively improve the phase matching

integral for higher outcoupling.

The ω+ values from Eq. 12 correspond to the fast oscillations observed in the reflection

geometry. These values are plotted in the inset of the lower panel in Fig. 7 and match the

measured data quite well.

In order to match the magnitude of the oscillations seen in experiment, the simulations

require a large magnitude of ∂χ(2)/∂η33, leading to local changes in χ(2)(z) of several per-

cent (see Table II). The physical origin behind this coupling is unclear, but may be found

in the same magnetoelastic interaction responsible for the large temperature dependence

of χ(2)9. In principle, our observations could also be brought into agreement with a mag-

netoelastic or flexoelectric contribution to SHG due to ∂χ(2)/∂(dη
dz

) 6= 0 or higher orders28.

The exact dependence on strain, however, is outside the scope of this work as the applied

experimental techniques do not allow us to distinguish between different possible coupling

mechanisms. Further insight could be obtained using static SHG imaging of strained crystals

or by employing a strongly focused probe beam in time resolved SHG in order to disentangle

contributions arising from different depths inside the crystal.

The agreement between simulations and experimental data is not exact but they repro-

duce the observed frequencies, lead to effects of similar magnitude and give a quantitative

explanation for the phase behavior of the oscillations. The relative magnitude of the dy-

namics in the reflection compared to the transmission geometry are in general somewhat

underestimated. The experimental amplitudes are, however, also subject to uncertainties

as they strongly depended on the exact position on the sample. We found the simulation

results to be highly sensitive to small changes in the assumed linear optical properties.

This sensitivity may account for some of these discrepancies. Furthermore, the large probe

fluences used in these experiments far exceed the limit of small perturbation and will lead

to back-action on internally reflected beams which is not taken into account.

As an alternative explanation for the observed effects, in principle a strain-induced modu-

lation of n also leads to coherent Brillouin scattering of the second harmonic light according

to ωosc = 2k2ωvs. For wavelengths closer to the band-gap, the strain dependence of the

refractive index ∂n/∂η strongly increases11, which in this case could lead to a pronounced

visibility of Brillouin scattering at around 600 nm as compared to the fundamental light
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at 1200 nm. In the simulation, both ∂n/∂η 6= 0 and ∂χ(2)/∂η 6= 0 by themselves can lead

to modulations at the observed frequencies and also to a small spectral contribution at

the Brillouin scattering frequency of the fundamental beam, similar to the observations in

Fe/AlGaAs heterostructures13. However, using our model, linear Brillouin scattering alone

can not explain the large magnitude of the observed modulation in SHG of up to 30% (see

Fig. 3) as it would also lead to similarly strong modulations of the fundamental light, which

was not observed. Furthermore, this mechanism cannot describe the observation of the low

frequency oscillations.

As a final remark it might be surprising that despite the seemingly general nature of a

strain induced change of the nonlinear susceptibility, the dynamic effects observed in NiO

were not found in similar compounds such as CoO and KNiF3 which also rely on magnetic

dipole assisted SHG. This may reflect a difference in the magnetoelastic interaction in these

systems. We note, however, that in NiO these dynamics are strongly dependent on sample

thickness, absorption and dispersion in ∆k. It may be that only a narrow set of experimental

parameters leads to similar dynamics. As the SHG process in these compounds is highly

restricted by resonance conditions, the range of these parameters is quite limited.

VI. CONCLUSION

Picosecond-time-resolved non-resonant magnetic x-ray diffraction was employed as a tool

to study sublattice magnetism and suggests that the dynamics in NiO observed with SHG

may not directly reflect dynamics of the antiferromagnetic order parameter. The low diffrac-

tion efficiency hindered a more precise measurement of the dynamic change of the structure

factor but the result excludes a large drop in the spin sublattice magnitude as suggested by

previous models.

The extended SHG data presented here supplement previous investigations and reveal

some aspects that appear inconsistent with previous explanations for the ultrafast dynamics

of SHG in NiO. The threshold behavior in the presence and frequency of the SHG oscillation,

which was one of the main arguments for an interpretation in terms of dynamics of the

order parameter5–7, was not verified by the present experiments. Our SHG studies give

evidence for an acoustic origin of the dynamics, which becomes particularly apparent in

the observation of echoes that depend on the acoustic path-length, as well as the probe
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wavelength dependencies for the two observed frequency regimes.

The choice of crystal dimensions used in the current, as well as in previous SHG studies

on NiO requires careful interpretation of the observations as the semi-transparency allows

for multiple reflections. In particular, a direct connection between ultrafast induced changes

in χ(2) and l cannot readily be made. Implementing a strain dependence of the linear and

nonlinear refractive index in a full calculation of the SHG process in a spatially confined,

semi-transparent medium gives a self-consistent explanation of the observations in various

geometries and over a wide range of timescales in which the two observed frequencies can be

understood as arising from coherent acoustic perturbation that effectively projects the local

collinear and anti-collinear phase mismatch in SHG into the time domain, with observed

frequencies ω+,− = Re(2kω ± k2ω)vs. These conclusions might be tested further by a direct

measurement of the dependence of χ(2) on strain along the [111] direction.
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Appendix A: The effect of spin rotation on magnetic diffraction in a multi spin

domain crystal

From Eq. 2 we see that the magnetic scattering factor is related to a sum of projections

of S(Q) and L(Q), Fourier components of the spin density and an orbital density function.

For our measurement geometry and x-ray polarizations the scattering factor is given by

Mπσ = 2 sin2 θ [cos θ (L1 + S1) + sin θS3] . (A1)

Here, L1 and S1 are the components of L(Q) and S(Q) along the (112) direction as defined

by Blume and Gibbs18 and depicted in Fig. 1(b). S3 is the component of S(Q) in the (111)

direction. We will neglect contributions from L1, although it was found to lead to small

contributions to the equilibrium magnetic moment in NiO17. The diffracted intensity is

then

I(θ)πσ ∝ sin2 θ tan θ (S1 cos θ + S3 sin θ)2 . (A2)

As discussed in the previous section, the equilibrium sublattice spins can point along any

of three equivalent {112} directions, resulting in three possible spin domains: (112) (do-

main “A”), (121) (domain “B”), and (211) (domain “C”). Using superscripts to denote

the different spin domains with their respective ratios of the total population a, satisfying

aA + aB + aC = 1, we have in equilibrium SA1 = aAS, SB,C1 = −aB,CS/2, and SA,B,C3 = 0.

The dynamics inferred from previous interpretations of the excited state imply both

a reduction of the average spin moment and a reorientation of the spin sublattice vector

along (111), which in our treatment would lead to a decrease in the S1 component and an

increase in the S3 component. We can parameterize this change through new time-dependent

variables ξ and γ, with ξ representing the dimensionless magnitude of the average sublattice

spin and γ the reorientation toward the (111) direction. We then have SA1 = ξ aAS cos ζ,

SB,C1 = −ξ aB,CS cos γ/2 and SA,B,C3 = ξ aA,B,CS sin γ. This leads to relative changes in

the diffraction intensity for each domain type(
I(θ)πσ

I(θ)
(0)
πσ

)
A

= ξ2 (cos γ + tan θ sin γ)2 (A3)

(
I(θ)πσ

I(θ)
(0)
πσ

)
B,C

= ξ2

(
1

2
cos γ − tan θ sin γ

)2

(A4)
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In equilibrium, ξ = 1 and γ = 0. In case of spin reorientation γ should assume some non-zero

value. If the relative spin population is unknown, the contributions from different domains

given by Eqn. A3 and A4 could counteract each other.

Appendix B: Surface generated strain in a confined medium

Equation 4 gives the solution for strain induced by impulsive optical excitation. Its

dimensionless spatial and temporal evolution F (z, t) for thin crystals is then given by

F (z, t) = f(z)

(
1− 1

2
f(vsτ(t))

)
− 1

2
f(|z − vsτ(t)|)

· sgn(z − vs(t)τ(t))

+f(d)

(
1

2
f(d− z + vsτ(t))− 1

2
f(|d− z − vsτ(t)|)

)
· sgn(d− z − vsτ(t)),

(B1)

with the initial spatial distribution of thermoelastic stress

f(z′) =
eα(2d−z′) +Reαz

′

e2αd −R2
, (B2)

and the effective time τ(t)

τ(t) =

tmod(d/vs), if tmod(2d/vs) ≤ d/vs

−tmod(d/vs) + d/vs, otherwise.
(B3)

This definition of τ(t) emphasizes the time inversion symmetry with respect to the acoustic

reflections occurring at multiples of d/vs.

ρ [ g
cm3 ] vs [ms ] K [GPa] β [10−5

K ] CV [ J
cm3K

] td [ns]

6.81[8] 7050 193.8[24] 4.2[29] 0.59[30] 5.0

TABLE I. Elastic and thermal parameters of NiO used to calculate strain in the simulation. The

bulk modulus K is based on ultrasound measurements on a crystal in (111) surface orientation24.

The parameter td gives the diffusion time constant used in the simulation.
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Appendix C: Propagation matrix based calculation of SHG

The Born approximation allows us to use the propagation matrix approach31 to indepen-

dently solve for the fundamental fields inside the crystal E+
ω,M

E−ω,M

 = PM−1(t)

 E+
ω,0

E−ω,0

 . (C1)

Here, PM−1 is a 2× 2 matrix connecting the right- and leftward propagating fields at slice 0

with the fields in slice M . Fields at arbitrary slice positions can be derived by solving for the

transmitted and reflected fields E+
ω,N+1 and E−ω,0, using the boundary conditions E+

ω,0 = E0

and E−ω,N+1 = 0.

Given that the lifetime of light inside the crystal is much shorter than λ/vs, the propa-

gation matrices PM(t) can be calculated as

PM(t) =
0∏

m=M

pm(t), (C2)

where propagation through a single slice is given by

pm(t) =
1

1− r

 1 −r

−r 1

 ·
 e−

i2π∆
λ

nm(t) 0

0 e
i2π∆
λ

nm(t)

 , (C3)

with r = (nm+1(t)−nm(t))/(nm+1(t)+nm(t)), at normal incidence and nm(t) corresponds to

the time dependent refractive index of slice m, while ∆ represents the chosen slice thickness.

Surface boundaries are included by setting n0(t) = nN+1(t) = 1.

The time dependent solutions of E−ω,0(t) correspond to the familiar results of stimulated

Brillouin scattering of the fundamental beam, with the exception that we did not explicitly

take into account the change in phase of the reflected fundamental light due to surface

displacement. By knowing the fundamental field in time and space, it is then possible to

calculate the emitted second harmonic light by applying the propagation matrix approach

to each slice as a source of SHG according to Eq. 8 E+
2ω,N+1

E−2ω,N+1

 =

[
0∏

m=N

P2ω,m(t)

] E+
2ω,0

E−2ω,0

+

N∑
k=1

[
k+1∏
m=N

P2ω,m(t)

] Sk

Sk

.
(C4)
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Equation C4 can be solved for the emitted SHG fields E+
2ω,N+1 and E−2ω,0 using source terms

according to Eq. 8, as well as the boundary condition E−2ω,N+1 = E+
2ω,0 = 0.

With the definitions  A B

C D

 =
0∏

m=N

P2ω,m(t),

 S+

S−

 =
N∑
k=1

[
k+1∏
m=N

P2ω,m(t)

] Sk

Sk

,
(C5)

the solutions for SHG in transmission and reflection geometry are given by E+
2ω,N+1

E−2ω,0

 =

 S+ − B
D
S−

− 1
D
S−

 . (C6)

The bandwidth can be taken into account by a convolution of the solutions |E(+/−)
2ω (ω)|2

with the fundamental light spectra.

Appendix D: Optical parameters employed for the simulation

The absorption of NiO in the visible and near-infrared range is strongly affected by

impurities such as excess oxygen16. In order to determine an absorption spectrum for the

simulation that suits the NiO crystals measured in our experiments, we used a polynomial

fit to a known spectrum16 α0(ω) and adjusted for the specific impurity concentration by

fitting α(ω) = aα0(ω) + b to a set of three direct absorption measurements that we carried

out for λ = 600, 800 and 1200 nm, yielding α = 284, 355 and 427 cm−1, respectively.

The absorption spectrum employed for the model is shown in Fig. 8. These measurements

also yielded a real part of the refractive index of about n = 2.35 ± 0.05. Due to the lim-

ited surface quality of our samples, we were not able to measure the dispersion in a static

experiment with sufficient precision to predict the observed frequencies in the SHG response.
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