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Online Informative Path Planning
for Active Classification on UAVs

Marija Popović, Gregory Hitz, Juan Nieto, Roland Siegwart, and Enric Galceran

ETH Zürich, Autonomous Systems Lab
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Fig. 1: By planning adaptively, our IPP approach (center) produces a weed map for
precision agriculture with over half the entropy of a “lawnmower” coverage path (left) in
the same time period. Our sensor model (right) allows better weed classifier performance
with images taken at lower altitudes. The pyramid shows the camera footprint.

Abstract. We propose an informative path planning (IPP) algorithm
for active classification using an unmanned aerial vehicle (UAV), focus-
ing on weed detection in precision agriculture. We model the presence of
weeds on farmland using an occupancy grid and generate plans accord-
ing to information-theoretic objectives, enabling the UAV to gather data
efficiently. We use a combination of global viewpoint selection and evolu-
tionary optimization to refine the UAV’s trajectory in continuous space
while satisfying dynamic constraints. We validate our approach in simu-
lation by comparing against standard “lawnmower” coverage, and study
the effects of varying objectives and optimization strategies. We plan to
evaluate our algorithm on a real platform in the immediate future.

1 Introduction

Autonomous robots are increasingly used to gather information about the Earth’s
ecosystems [6]. In agricultural monitoring, unmanned aerial vehicles (UAVs) are
capable of providing high-resolution data in a flexible, cost-efficient manner [5].
Using sensors, UAVs can survey crops to find precision treatment targets, improv-
ing yield and leading to sustainability and economic gain [2]. Unfortunately, UAVs
are often constrained by limited battery and computational capacities. Therefore,
planning for efficient data collection is key in enabling robotics in this field.

We address the problem by proposing an informative path planning (IPP)
algorithm for active classification on a UAV equipped with an image-based weed
classifier. We model the presence of weed on farmland using an occupancy grid.
We continuously plan paths online through a combination of global viewpoint
selection and evolutionary optimization, which refines the UAV’s trajectory in
continuous 3D space while satisfying dynamic constraints. The resulting infor-
mative paths abide by a limited time budget and address the key challenge of
trading off sensor resolution against coverage when flying at variable altitudes.
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Our contributions are:

• An IPP algorithm with the following properties:
– generates dynamically feasible trajectories in continuous space,
– obeys budget and sensing constraints,
– trades off sensor resolution against coverage in a principled manner by

incorporating a height-dependent sensor noise model.
• An evolutionary strategy to optimize continuous UAV paths for maximum

informativeness.
• Validation of our approach in simulation against a coverage planner.

We plan to evaluate our algorithm in field experiments in the immediate future.

2 Related Work

Most previous IPP approaches seek to minimize map uncertainty using objec-
tives derived from Shannon’s entropy [3, 13]. To exploit new data, adaptive ap-
proaches [8, 11, 14] replan paths based on specific interests. IPP can be per-
formed using combinatorial optimization over a discrete grid [1, 4, 12]. However,
the drawbacks of this representation are its limited scalability and resolution.
Alternatively, some planners work in continuous space by leveraging sampling-
based methods [13] or splines [3, 11, 15]. Similarly to Charrow et al. [3], we use
global viewpoint selection to escape local minima and optimization to refine our
trajectory.

IPP addressing UAV imaging is a relatively unexplored area. A set-up similar
to ours has been studied recently by Sadat et al. [18]. However, their method as-
sumes discrete viewpoints and prior knowledge of target regions, neglecting sensor
noise. In contrast, our approach considers a height-dependent sensor model and
incrementally replans as data are collected. Moreover, we use smooth polynomial
trajectories which guarantee feasibility of the UAV’s dynamic constraints.

3 Problem Definition

We define the general IPP problem as follows. We seek a continuous path P in
the space of all possible paths Ψ for maximum gain in some information measure:

P ∗ = argmax
P∈Ψ

I[measure(P )]

time(P )
,

s.t. time(P ) ≤ B,

(1)

where B denotes a time budget and I quantifies the objective, discussed in §4.3
for our application. The function measure(·) obtains measurements and time(·)
provides the travel time along the path. Maximizing information gain rate, as
opposed to maximizing only information, enables comparing the values of paths
over different time scales.

4 Technical Approach

In this section, we present our IPP algorithm. The main idea is to create fixed-
horizon plans maximizing an informative objective. To do this efficiently, we first
select global viewpoints and then optimize the path in continuous space using an
evolutionary method. In §4.1 and §4.2, we introduce our approaches to modeling
and path parametrization. In §4.3, we detail our planning routine, shown in Alg. 1.
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Algorithm 1 replan path procedure

1: X g,X i ← ∅ . Initialize global and intermediate viewpoints.

2: while H ≥ |X g ∪ X i| do
3: if t/B < rand() then . Tradeoff global selection objectives based on time.

4: x∗ ← Select viewpoint in L using Eq. 3
5: else
6: x∗ ← Select viewpoint in L using Eq. 4

7: M← simulate measurement(M, x) . Simulate using ML.

8: t← t + time(x∗)
9: X g ← X g ∪ x∗; X i ← X i ∪ add intermediate points(x∗)

10: X ← X g ∪ X i; X ← cmaes(X , M) . Optimize polynomial path.

4.1 Environment and Measurement Models

We represent the environment (a farmland above which the UAV flies) using a 2D
occupancy grid mapM [7], where each cell is associated with a Bernoulli random
variable representing the probability of weed occupancy. For our measurement
model, we assume a square footprint for a down-looking camera providing input
to a weed classifier. The classifier provides probabilistic weed occupancy for cells
within field of view (FoV) from a UAV configuration x. For each observed cell
mi ∈M at time t, we perform a log-likelihood update given an observation z:

logit(p(mi|z1:t,x1:t)) = logit(p(mi|z1:t−1,x1:t−1)) + logit(p(mi|zt,xt)), (2)

where the second term denotes the height-dependent sensor model capturing the
weed classifier output. Our sensor model (Fig. 1, right) matches real datasets at
low altitudes [10] and accounts for poorer classification performance with lower-
resolution images taken at higher altitudes.

4.2 Path Parametrization

To create paths abiding by the dynamic constraints of the UAV, we connect
viewpoints x ∈ X using the method of Richter et al. [17]. As in their work,
we express a 12-degree polynomial trajectory in terms of end-point derivatives,
allowing for efficient optimization in an unconstrained quadratic program.

4.3 Planning Algorithm

We use a fixed-horizon approach to plan adaptively. During the mission, we main-
tain viewpoints X within a horizon H. We alternate plan execution and replan-
ning, stopping when a time budget B is exceeded. For replanning, we adopt
a two-stage approach consisting of global viewpoint selection and optimization.
This procedure is described in Alg. 1 and illustrated in Fig. 2. The following sub-
sections detail the key steps of Alg. 1.

Global Viewpoint Selection In the first step (Lines 3-9), we sequentially se-
lect global measurement sites X g (Fig. 2b). Unlike in frontier-based exploration,
common for indoor mapping [3], choosing viewpoints using map boundaries is
not applicable in our set-up. Instead, we apply Eq. 1 over the horizon H (Line 2)
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Fig. 2: Our planner uses a lattice (a) for selecting global viewpoints (b). The trajectory
is then refined globally (c) or locally (d). The orange and maroon curves show paths
before and after optimization, respectively.

to find most informative measurement sites. To find the next viewpoint x∗ effi-
ciently, we evaluate the objective over a multiresolution lattice L (Fig. 2a). To
encourage exploration, we maximize entropy reduction in M:

I[t+ 1|t] = H(Mt)−H(Mt+1). (3)

To encourage classification, we divideM into “weed” and “non-weed” cells using
thresholds δw and δnw, leaving an unclassified subset U = {mi ∈ M| δnw <
p(mi) < δw}. This is similar to finding unknown space in conventional occupancy
mapping. We maximize the reduction of U between time-steps:

I[t+ 1|t] = |Ut| − |Ut+1|. (4)

We use an optional time-varying parameter (Line 3) to gradually bias viewpoint
selection towards Eq. 4 from Eq. 3, focusing on weed identification over time.
We then simulate a maximum likelihood (ML) measurement at x∗ (Line 7) and
interpolate intermediate viewpoints X i to add degrees of freedom to the path
(Line 9).

Optimization In the second step (Line 10), we optimize the polynomial path by
solving Eq. 1 in §3 using the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). CMA-ES is a gradient-free optimizer suitable for continuous shape
fitting with our discrete measurement model [9]. As evaluated in §5, we consider
(i) globally optimizing X (Fig. 2c) and (ii) optimizing X i only (Fig. 2d).

5 Results

Our algorithm is validated in simulation on 260 50 × 50m environments with
120 Poisson-distributed weeds. We use thresholds of δnw = 0.2 and δw = 0.75,
and use a replanning horizon H of 7 viewpoints to limit optimization complexity.
We initialize the UAV position as the map center with maximum altitude (45m).
Our methods are evaluated against traditional “lawnmower” coverage with height
fixed (8.66 m) for the same 300 s budget B. We consider map entropy, classification
rate, and mean F1-score as metrics, common for classification tasks. We simulate
sensor noise using our model in §4.1. Following a similar approach to Pomerleau
et al. [16], we compute the cumulative distribution function (CDF) of entropy
over a time histogram to summarize variability among trajectories.
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In our experiments, we study varying:

• Global viewpoint objectives: information only (Eq. 3), classification only (Eq. 4),
time-varying (§4.3)
• Optimization methods: no CMA-ES, local CMA-ES, global CMA-ES

As described in §4.3, for local CMA-ES, we consider optimizing X i to reduce
inter-segment entropy. For global CMA-ES, we optimize X , allowing points in X g
to vote on the optimization objective for the entire trajectory.

Fig. 3 compares the global viewpoint selection objectives with local CMA-ES
optimization. Our methods outperform näıve coverage as they permit variable-
altitude flight for wider FoVs. As shown in Fig. 1, our planners usually produce
paths similar to spirals, starting with descent to the unknown map center. The
curves illustrate the coverage-resolution trade-off: for the classification objective
(red curve), flying at low altitudes quickly provides accurate classification, as
shown by the rises in classification rate and F1-score. However, entropy reduction
is limited. By considering elapsed time when selecting global viewpoints (yellow
curve), we obtain high certainty with efficient classification. Fig. 4 compares the
CMA-ES optimization methods for the time-varying objective. The global method
likely performs best due to the highest number of optimized variables.
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Fig. 3: Comparison of global viewpoint selection objectives (§4.3) with local CMA-ES
optimization. The solid lines indicate means over 260 trials. The thin shaded regions de-
pict 95% confidence bounds. Using our methods, the metrics improve quickly as the UAV
flies at variable altitudes. Accounting for spent budget (time) trades off the objectives.
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Fig. 4: Comparison of optimizers for the time-varying objective. The effect of local op-
timization is marginal due to the small number of refined points. Overall, global opti-
mization performs best as the entire path can be varied.
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6 Conclusion and Scheduled Experiments

We presented an adaptive IPP strategy for active weed classification on UAVs.
Our algorithm combines global viewpoint selection with evolutionary optimiza-
tion to generate dynamically feasible paths with informative objectives. We val-
idated our strategy against a “lawnmower” coverage pattern and demonstrated
the effects of using different objectives and optimization strategies.

We aim to implement our algorithm on an AscTec Neo UAV platform. Our
experiments will take place at the ETH Lindau-Eschikon Research Station for
Plant Sciences in Switzerland. We will consider active classification of crop-weed
distributions on a 20-plot 40× 100m sugarbeet field.
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