Anthropanes: a New Class of Potential Monomers for the Synthesis of Two-Dimensional Polymers

Author(s): Servalli, Marco

Publication Date: 2016

Permanent Link: https://doi.org/10.3929/ethz-a-010832536

Rights / License: In Copyright - Non-Commercial Use Permitted
Anthraphanes: a New Class of Potential Monomers for the Synthesis of Two-Dimensional Polymers

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by
MARCO SERVALLI
MSc, ETH Zurich Chemistry

born on 10.07.1986
citizen of Bioggio (TI), Switzerland

accepted on the recommendation of
Prof. Dr. A. Dieter Schlüter, examiner
Prof. Dr. Joost VandeVondele, co-examiner
Prof. Dr. Peter Walde, co-examiner
Dr. Michael Wörle, co-examiner

2016
Abstract

Since the isolation of graphene in 2004, a single atom-thick molecular sheet of carbon, the research field on this revolutionary natural 2D material has literally exploded, revealing its peculiar and outstanding properties such as its enormous tensile strength and electrical conductivity. These interesting properties are the result of the molecular structure of graphene and particularly its confinement in two dimensions. Graphene is thus expected to gain a huge societal impact. Considerable interest has also arisen for other 2D materials such as hexagonal boron nitride (h-BN), with its structure analogous to graphene, and inorganic metal chalcogenides such as MoS\textsubscript{2}, WS\textsubscript{2}, MoSe\textsubscript{2} and NbSe\textsubscript{2}. However, the aforementioned 2D materials are mostly of inorganic nature and therefore lack the versatility that organic chemistry can offer, in terms of functionalities and chemical modification.

The synthesis of organic 2D polymers by mild recipes was first achieved in 2012 and since then, considerable interest in the field has developed. They are defined as free-standing, macromolecular sheets with one-monomer-unit thickness and a periodical internal structure. However, their synthesis can be very challenging, in fact, four years later, the reported cases of successfully synthesised 2D polymers can still be counted on the fingers of one hand. The biggest synthetic challenge relies in having a controlled growth reaction confined into two dimensions and a periodical polymeric structure. The two successful methods for synthesising 2D polymers rely into the pre-organisation and polymerisation of the monomers in layered single crystals and pre-organisation and polymerisation at the air/water interface.

As the field of 2DPs is still in its infancy, there is a need for new monomer and polymer systems, to widen the field and to better understand the potential properties and applications of these new materials. In particular, it is desirable to have a versatile monomer structure, which can be employed for both the single crystal and the air/water interface approach, so that a direct comparison of the two methods can be done in terms of feasibility, structural perfection of the polymer obtained and its characterisation. For this purpose, a novel anthracene-based monomer’s family was designed and synthesised: the “anthraphanes” 1, 2 and 3. These monomers all share the same basic skeletal structure, but according to their functionalities they can be in principle used for the single crystal approach and/or the air/water interface approach.

Chapter 1 provides a general introduction to 1D and 2D polymers and reviews the currently available synthetic 2D polymer systems, as well as the methods to prepare them. General criteria for designing monomers for the synthesis of 2D polymers will also be discussed.
ABSTRACT

Figure 1. Anthraphane monomers used in this thesis. The photoreactive anthracene units are displayed in red colour.

Chapter 2 presents the anthraphane monomer 1, a trifunctional, anthracene-based, shape-persistent hydrocarbon macrocycle intended to be used for the single crystal approach. The anthraphane design represents the basic structure for this new family of monomers. The synthesis of the monomer will be presented along with its packing behaviour in the single crystals, with a thorough discussion on how to steer the crystal packing of anthraphane into the desired direction. Finally some SCSC reactions of anthraphane will be presented together with a study on the thermal stability of the anthraphane dimers.

Chapter 3 deals with the desymmetrisation of the anthraphane structure 1 to obtain amphiphiles suitable for the air/water interface approach. The synthesis of the novel monomers 2a and 2b will be presented and their spreadability at the air/water interface will be investigated. A polymerisation reaction of 2b forming a mechanically coherent two-dimensional covalent monolayer sheet will be shown, together with first preliminary insights into the internal structure of the polymer.

Chapter 4 presents an engineered structure of anthraphane 1 for the SCSC approach, based on substituted 1,8-diazaanthracene photoreactive units. With the experience gained with the crystallisation of the anthraphane monomer, diazaanthraphane 3 was designed to pack in the single crystals exclusively into the desired fashion, with the reactive units in close proximity. Synthesis of the monomer and first insights into its packing behaviour and photoreactivity will be presented.

This thesis not only provides access to new versatile monomers, but also highlights the challenges and problems associated with the synthesis of 2DPSs and their relation with the monomer design.
Riassunto

Sin dalla scoperta e isolazione del grafene nel 2004, uno strato monoatomico di atomi di carbonio, la ricerca e l’interesse per questo rivoluzionario materiale 2D sono letteralmente esplosi, elucidando le sue peculiari ed eccezionali proprietà come il suo enorme carico di rottura e conduttività elettrica. Queste interessanti proprietà derivano della struttura molecolare del grafene e in particolare il suo confinamento in due dimensioni. In futuro ci si può quindi aspettare che il grafene avrà un importante impatto sociale.

Interesse considerevole è anche stato dedicato ad altri materiali 2D come il boro nitruro esagonale (h-BN), isostrutturale al grafene, e gli inorganici calcogenidi di metalli come MoS$_2$, WS$_2$, MoSe$_2$ e NbSe$_2$. I materiali 2D sopracitati sono tuttavia principalmente di natura inorganica e mancano della versatilità che la chimica organica offre, in termini di funzionalità e modifica chimica.

La sintesi di polimeri 2D organici tramite metodi dolci è stata ottenuta nel 2012 e da quel momento, si è sviluppato un interesse considerevole in questo campo. I polimeri 2D sono definiti come fogli molecolari autoportanti, aventi una struttura interna periodica e uno spessore corrispondente allo spessore dell’unità monomerica di cui sono composti. La sintesi di questi materiali può essere tuttavia molto ardua, infatti, quattro anni dopo, i casi di polimeri 2D riportati in letteratura si possono ancora contare sulle dita di una mano. La più grande sfida sintetica consiste nell’avere una polimerizzazione controllata e confinata in due dimensioni e nell’ottenere una struttura polimerica cristallina. I due metodi affermati per sintetizzare polimeri 2D contano sulla preorganizzazione e polimerizzazione dei monomeri in cristalli singoli stratificati e sulla preorganizzazione e polimerizzazione all’interfaccia aria/acqua.

Siccome i polimeri 2D sono ancora alla loro infanzia, occorre designare nuovi sistemi monomerici e polimerici, per ampliare questo campo di ricerca e meglio capire le proprietà e applicazioni potenziali di questi nuovi materiali. In particolare, è desiderabile avere delle strutture monomeriche versatili, che possano essere impiegate sia per l’approccio nei cristalli singoli, sia all’interfaccia aria/acqua, così che una comparazione diretta tra i due metodi può essere fatta in termini di fattibilità, perfezione strutturale del polimero ottenuto e la sua conseguente caratterizzazione. A tal fine, una nuova famiglia di monomeri basata sull’antracene è stata designata e sintetizzata: gli “antrafani” 1, 2 and 3. Questi monomeri condividono la stessa unità strutturale, ma in base ai loro gruppi funzionali possono essere utilizzati per l’approccio nei cristalli singoli e/o all’interfaccia aria/acqua.
Il Capitolo 1 fornisce un’introduzione generale sui polimeri 1D e 2D e recensisce i polimeri 2D e i metodi sintetici correntemente disponibili nella letteratura scientifica. Criteri generici per il design dei monomeri vengono anche discussi.

Il Capitolo 2 introduce il monomero antrafano 1, un macrociclo idrocarburo trifunzionale, basato sull’antracene e concepito per l’approccio in cristalli singoli. Il design dell’antrafano rappresenta la struttura basilare di questa nuova famiglia di monomeri. La sintesi di 1 viene presentata assieme ai suoi vari impaccamenti in cristalli singoli, seguita da una meticolosa discussione su come guidare l’impaccamento cristallino di 1 nella direzione desiderata. Infine verranno presentate delle reazioni cristallo-singolo-a-cristallo-singolo, seguita da uno studio sulla stabilità termica dei dimeri di antrafano.

Il Capitolo 3 tratta la desimmetrizazione dell’antrafano 1 per ottenere un sistema anfifilico destinato all’approccio all’interfaccia aria/acqua. La sintesi dei monomeri 2a e 2b viene dunque presentata, seguita da uno studio sulla loro dispersione all’interfaccia aria/acqua. Il monomero 2b verrà dunque polimerizzato, formando un monostrato molecolare covalente e bidimensionale, caratterizzato da autoportanza. Studi preliminari sulla struttura interna del polimero verranno anche presentati.

Il Capitolo 4 presenta una nuova struttura derivata dall’antrafano 1, progettata appositamente per l’approccio in cristalli singoli: il diazaantrafano 3, basato sui fotoreattivi 1,8-diazaantraceni. Con l’esperienza accumulata nella cristallizzazione di 1, il diazaantrafano 3 è stato progettato per impaccarsi esclusivamente nel modo desiderato, con le unità fotoreattive in diretta prossimità. La sintesi del monomero e i primi studi nella sua cristallizzazione e fotoreattività saranno mostrati.

Questa tesi non solo fornisce accesso a nuovi monomeri versatili, ma evidenzia anche le difficoltà e i problemi associati alla sintesi di polimeri 2D, e la loro relazione con il design dei monomeri.