Mit welchen Klimaparametern kann man Grenzen plausibel erklären, die in NaiS (Nachhaltigkeit und Erfolgskontrolle im Schutzwald) verwendet werden um Ökogramme auszuwählen? Schlussbericht des Projektes im Forschungsprogramm "Wald und Klimawandel" des Bundesamtes für Umwelt BAFU, Bern und der Eidg. Forschungsanstalt WSL, Birmensdorf

Author(s):
Huber, Barbara; Zischg, Andreas; Frehner, Monika; Carraro, Gabriele; Burnand, Jacques

Publication Date:
2015

Permanent Link:
https://doi.org/10.3929/ethz-a-010870285
Schlussbericht des Projektes

„Mit welchen Klimaparametern kann man Grenzen plausibel erklären, die in NaiS (Nachhaltigkeit und Erfolgskontrolle im Schutzwald) verwendet werden um Ökogramme auszuwählen?“

im Forschungsprogramm „Wald und Klimawandel“

Barbara Huber, Andreas Zischg, Monika Frehner, Gabriele Carraro, Jacques Burnand

Fachliche Unterstützung durch Ludwig Z’graggen

November 2015
Autoren
Barbara Huber¹, Dr. Andreas Zischg¹, Dr. Monika Frehner², Gabriele Carraro³, Dr. Jacques Burnand⁴

¹ Abenis AG Chur, Quaderstrasse 7, 7000 Chur
² Forstingenieurbüro, Sixerstrasse 9, 7320 Sargans
³ Dionea SA, Lungolago Motta 8, 6600 Locarno
⁴ Vegetation-Landschaft-Umwelt, Zähringerstrasse 9, 8001 Zürich

Ein Projekt-Schlussbericht aus dem Forschungsprogramm «Wald und Klimawandel» von BAFU und WSL (www.wsl.ch/wald_klima)

Zitierung

Im pdf-Format zu beziehen über www.wsl.ch/wald_klima

Dank
Ohne die wertvolle Unterstützung durch Dr. Ludwig Z’graggen wäre die Durchführung dieses Projektes in dieser Form nicht möglich gewesen. Durch seine grosse Mithilfe bei der Entwicklung und Erarbeitung der klimatologischen Grundlagen, aber auch durch sein fundiertes Wissen bezüglich Standortskunde und klimatologischen Zusammenhängen trug Ludwig Z’graggen wesentlich zum Gelingen unseres Projektes bei. Wir sind ihm zu grossem Dank verpflichtet.

©Abenis AG, Chur, 2015
Inhalt

<table>
<thead>
<tr>
<th>Abkürzungen</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klimaparameter</td>
<td>5</td>
</tr>
<tr>
<td>Zusammenfassung</td>
<td>9</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
<tr>
<td>1 Einleitung</td>
<td>13</td>
</tr>
<tr>
<td>2 Material und Methoden</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Anpassungen der Standortsregionenkarte und der Karte der Waldstandorte im Walliser Haupttal</td>
<td>14</td>
</tr>
<tr>
<td>2.1.1 Anpassungen Standortsregionenkarte</td>
<td>14</td>
</tr>
<tr>
<td>2.1.2 Karte der Waldstandorte im Walliser Haupttal</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Aufbereitung der Waldstandortskartierungen der Kantone</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 Kantone AG, AR, BS, BL, FR, GE, JU, SG, TG, UR, ZG, SH</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2 Kanton Graubünden</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3 Ziehen von Höhenstufengrenzen in den Kantonen Tessin und Uri</td>
<td>22</td>
</tr>
<tr>
<td>2.2.4 Einbezug von Waldtypen der collinen Stufe aus dem Kanton Waadt</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Auswahl von Untersuchungsgebieten (AR, BS, BL, GR, SG, SH)</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Aufbereitung der Klimaparameter</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1 Lufttemperatur</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2 Thermische Kontinentalität</td>
<td>40</td>
</tr>
<tr>
<td>2.4.3 Niederschlag</td>
<td>47</td>
</tr>
<tr>
<td>2.4.4 Relative Luftfeuchtigkeit</td>
<td>47</td>
</tr>
<tr>
<td>2.4.5 Schnee</td>
<td>49</td>
</tr>
<tr>
<td>2.4.6 Trockenheitsindex</td>
<td>50</td>
</tr>
<tr>
<td>2.4.7 Globalstrahlung</td>
<td>50</td>
</tr>
<tr>
<td>2.4.8 Wind</td>
<td>51</td>
</tr>
<tr>
<td>2.4.9 Föhn</td>
<td>52</td>
</tr>
<tr>
<td>2.4.10 Potenzielle Evapotranspiration</td>
<td>62</td>
</tr>
<tr>
<td>2.5 Verwendung weiterer Standortsfaktoren</td>
<td>62</td>
</tr>
<tr>
<td>2.5.1 Karte der Substratgruppen</td>
<td>62</td>
</tr>
<tr>
<td>2.6 Literaturrecherche</td>
<td>62</td>
</tr>
<tr>
<td>2.7 Workshops, Einbindung von Experten</td>
<td>62</td>
</tr>
<tr>
<td>2.8 Hypothesenbildung</td>
<td>63</td>
</tr>
<tr>
<td>2.8.1 Samendruck</td>
<td>63</td>
</tr>
<tr>
<td>2.8.2 Karte Standortsregionen und Walliserkarte</td>
<td>65</td>
</tr>
<tr>
<td>2.8.3 Höhenstufengrenzen aus NaǐS-nahen Waldstandortskarten</td>
<td>68</td>
</tr>
</tbody>
</table>
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaIS plausibel erklären?“

2.9 Deskriptive Analysen .. 70
2.10 Projektablauf .. 70
3 Ergebnisse ... 71
3.1 Grenzen aus Standortsregionenkarte und Walliser Karte ... 71
3.1.1 Grenzen für Tannen-Hauptareal – Tannen-Nebenareal – Tannen-Reliktareal.. 71
3.1.2 Buchen-Arealgrenze ... 94
3.1.3 Obergrenze Flaumeichenareal Wallis .. 112
3.2 Höhenstufengrenzen ... 114
3.2.1 Kantone Basel-Stadt und Basel-Landschaft ... 114
3.2.2 Kantone Genf und Waadt .. 118
3.2.3 Kanton Schaffhausen .. 119
3.2.4 Kantone St. Gallen und Appenzell Ausserrhoden ... 121
3.2.5 Kanton Graubünden ... 128
4 Diskussion .. 141
5 Ausblick ... 142
6 Literatur .. 143
7 Anhang ... 154

Abkürzungen

Höhenstufen: CO (collin), SM (submontan), UM (untermontan), OM (obermontan), HM (hochmontan), SA (subalpin), OSA (obersubalpin).
Baumarten: Bu (Buche), Ta (Weisstanne), Fi (Fichte), Ei (Eichen, v.a. Traubeneiche), FEi (Flaumeiche), HBu (Hagebuche), Av (Arve), WFö (Waldföhre), Lä (Lärche).
Standortsregionen: J (Jura), M (Mittelland), 1 (nördliche Randalpen), 2a (nördliche Zwischenalpen mit Buchen), 2b (nördliche Zwischenalpen ohne Buchen), 3 (Kontinentale Hochalpen), 4 (Südliche Zwischenalpen ohne Buchen), 5aF (Südliche Randalpen mit Fichte mit Buchen), 5aFV (Südliche Randalpen mit Fichtenvorposten mit Buchen), 5b (Südliche Randalpen ohne Fichte mit Buchen).
Tannenareale: HA (Hauptareal), NA (Nebenareal), RA (Reliktareal).
Kantone: AG (Aargau), AR (Appenzell Ausserrhoden), BS (Basel-Stadt), BL (Basel-Landschaft), FR (Freiburg), GE (Genf), GR (Graubünden), JU (Jura), SG (St. Gallen), SH (Schaffhausen), TG (Thurgau), TI (Tessin), UR (Uri), VD (Waadt), VS (Wallis), ZG (Zug).
Statistische Werte: mean (arithmetisches Mittel), median (Median), sd (Standardabweichung), min (erstes Quartil, x_{0.25}), max (drittes Quartil, x_{0.75}).
Klimaparameter

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DHM25</td>
<td>Höhe über Meer (Swisstopo)</td>
<td>m</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>ETOJAN</td>
<td>Potenzielle Evapotranspiration Januar</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>ETOAPR</td>
<td>Potenzielle Evapotranspiration April</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>ETOJUL</td>
<td>Potenzielle Evapotranspiration Juli</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>ETOOKT</td>
<td>Potenzielle Evapotranspiration Oktober</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>ETOJAHR</td>
<td>Potenzielle Evapotranspiration Jahr</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FETOJAN</td>
<td>Potenzielle Evapotranspiration bei Föhn Januar</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FETOAPR</td>
<td>Potenzielle Evapotranspiration bei Föhn April</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FETOJUL</td>
<td>Potenzielle Evapotranspiration bei Föhn Juli</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FETOOKT</td>
<td>Potenzielle Evapotranspiration bei Föhn Oktober</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FETOJAHR</td>
<td>Potenzielle Evapotranspiration bei Föhn Jahr</td>
<td>mm</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNFJAN</td>
<td>Relative Luftfeuchte bei Föhn Januar</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNFAPR</td>
<td>Relative Luftfeuchte bei Föhn April</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNFJUL</td>
<td>Relative Luftfeuchte bei Föhn Juli</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNFOKT</td>
<td>Relative Luftfeuchte bei Föhn Oktober</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNFJAHR</td>
<td>Relative Luftfeuchte bei Föhn Jahr</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNHJAN</td>
<td>Föhnhäufigkeit Januar</td>
<td>Kapitel 2.4.1</td>
<td>-</td>
<td>25m</td>
<td></td>
</tr>
<tr>
<td>FOEHNHAPR</td>
<td>Föhnhäufigkeit April</td>
<td>Kapitel 2.4.1</td>
<td>-</td>
<td>25m</td>
<td></td>
</tr>
<tr>
<td>FOEHNHJUL</td>
<td>Föhnhäufigkeit Juli</td>
<td>Kapitel 2.4.1</td>
<td>-</td>
<td>25m</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>FOEHNHOKT</td>
<td>Föhnhäufigkeit Oktober</td>
<td>°C</td>
<td>-</td>
<td>kapitel 2.4.1</td>
<td>25m</td>
</tr>
<tr>
<td>FOENHJAHR</td>
<td>Föhnhäufigkeit Jahr</td>
<td>°C</td>
<td>x</td>
<td>kapitel 2.4.1</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNJAN</td>
<td>Lufttemperatur bei Föhn Januar</td>
<td>°C</td>
<td>kapitel 2.4.1</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHTAPR</td>
<td>Lufttemperatur bei Föhn April</td>
<td>°C</td>
<td>kapitel 2.4.1</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNJUL</td>
<td>Lufttemperatur bei Föhn Juli</td>
<td>°C</td>
<td>kapitel 2.4.1</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOENZOTK</td>
<td>Lufttemperatur bei Föhn Oktober</td>
<td>°C</td>
<td>kapitel 2.4.1</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FOEHNJAHN</td>
<td>Lufttemperatur bei Föhn Jahr</td>
<td>°C</td>
<td>kapitel 2.4.1</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>LFJAN</td>
<td>Relative Luftfeuchte Januar</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>LFAPR</td>
<td>Relative Luftfeuchte April</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>LFJUL</td>
<td>Relative Luftfeuchte Juli</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>LFJOKT</td>
<td>Relative Luftfeuchte Oktober</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>LFJAHR</td>
<td>Relative Luftfeuchte Jahr</td>
<td>%</td>
<td>-</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJANMEAN</td>
<td>Mittlere Lufttemperatur Januar</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJANMAX</td>
<td>Mittlere Höchstwerte Lufttemperatur Januar</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJANMIN</td>
<td>Mittlere Tiefstwerte Lufttemperatur Januar</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TAPRMEAN</td>
<td>Mittlere Lufttemperatur April</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TAPRMAX</td>
<td>Mittlere Höchstwerte Lufttemperatur April</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TAPRMIN</td>
<td>Mittlere Tiefstwerte Lufttemperatur April</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJULMEAN</td>
<td>Mittlere Lufttemperatur Juli</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJULMAX</td>
<td>Mittlere Höchstwerte Lufttemperatur Juli</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>TJULMIN</td>
<td>Mittlere Tiefstwerte Lufttemperatur Juli</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TOKTMEAN</td>
<td>Mittlere Lufttemperatur Oktober</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TOKTMAX</td>
<td>Mittlere Höchstwerte Lufttemperatur Oktober</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TOKTMIN</td>
<td>Mittlere Tiefstwerte Lufttemperatur Oktober</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJAHRMEAN</td>
<td>Mittlere Lufttemperatur Jahr</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJAHRMAX</td>
<td>Mittlere Höchstwerte Lufttemperatur Jahr</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJAHRMIN</td>
<td>Mittlere Tiefstwerte Lufttemperatur Jahr</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TABSMAX</td>
<td>Absolute Höchstwerte Temperatur</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TABSMIN</td>
<td>Absolute Tiefstwerte Temperatur</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TMAIMEAN25K</td>
<td>Mittlere Lufttemperatur Mai</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TJUNMEAN25K</td>
<td>Mittlere Lufttemperatur Juni</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TAUUMEAN25K</td>
<td>Mittlere Lufttemperatur August</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TSEPMEAN25K</td>
<td>Mittlere Lufttemperatur September</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>TAMIJASMEANK</td>
<td>Mittlere Lufttemperatur April-September</td>
<td>°C</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>NS_JJA</td>
<td>Niederschlag Juni-August (HADES 2001, verfeinert durch Projektteam)</td>
<td>mm</td>
<td>1971-1990</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>NS_AMJIAS</td>
<td>Niederschlag April-September (HADES 2001, verfeinert durch Projektteam)</td>
<td>mm</td>
<td>1971-1990</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>NSJAHR27</td>
<td>Niederschlag im Jahr (HADES 2001)</td>
<td>mm</td>
<td>1971-1990</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>SWB</td>
<td>Site Water Balance (Remund 2016)</td>
<td>mm</td>
<td>x</td>
<td></td>
<td>250m</td>
</tr>
<tr>
<td>ETA/Etp</td>
<td>Verhältnis aktueller zu potenzieller Evapotranspiration</td>
<td>1</td>
<td>x</td>
<td></td>
<td>250m</td>
</tr>
<tr>
<td>KONTJAN</td>
<td>Thermische Kontinentalität Januar</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTAPR</td>
<td>Thermische Kontinentalität April</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTJUL</td>
<td>Thermische Kontinentalität Juli</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTOKT</td>
<td>Thermische Kontinentalität Oktober</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTJAHR</td>
<td>Thermische Kontinentalität Oktober</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTABS</td>
<td>Absolute thermische Kontinentalität</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>KONTJAN1000</td>
<td>Thermische Kontinentalität auf 1000m Januar</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTAPR1000</td>
<td>Thermische Kontinentalität auf 1000m April</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTJUL1000</td>
<td>Thermische Kontinentalität auf 1000m Juli</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTOKT1000</td>
<td>Thermische Kontinentalität auf 1000m Oktober</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTJAHRI1000</td>
<td>Thermische Kontinentalität auf 1000m Jahr</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>KONTABS1000</td>
<td>Absolute thermische Kontinentalität auf 1000m</td>
<td>°C</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>JANGLOBRADW</td>
<td>Globalstrahlung Januar</td>
<td>W/m²</td>
<td>1984-1993</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>APRGLOBRADW</td>
<td>Globalstrahlung April</td>
<td>W/m²</td>
<td>1984-1993</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>JULGLOBRADW</td>
<td>Globalstrahlung Juli</td>
<td>W/m²</td>
<td>1984-1993</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>OKTGLOBRADW</td>
<td>Globalstrahlung Oktober</td>
<td>W/m²</td>
<td>1984-1993</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>GLOBRADJAHRW</td>
<td>Globalstrahlung Jahr</td>
<td>W/m²</td>
<td>1984-1993</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>LFD</td>
<td>Mittlerer letzter Frosttag</td>
<td>Tag im Jahr</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>FFD</td>
<td>Mittlerer erster Frosttag</td>
<td>Tag im Jahr</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>VEGPER</td>
<td>Frostfreie Vegetationsperiode</td>
<td>Anzahl Tage</td>
<td>x</td>
<td>x</td>
<td>25m</td>
</tr>
<tr>
<td>WJANMEAN25</td>
<td>Mittlere Windgeschwindigkeit Januar</td>
<td>m/s</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>WAPRMEAN25</td>
<td>Mittlere Windgeschwindigkeit April</td>
<td>m/s</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>WJULMEAN25</td>
<td>Mittlere Windgeschwindigkeit Juli</td>
<td>m/s</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>WOKTMEAN25</td>
<td>Mittlere Windgeschwindigkeit Oktober</td>
<td>m/s</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
<tr>
<td>WYMEAN25</td>
<td>Mittlere Windgeschwindigkeit Jahr</td>
<td>m/s</td>
<td>x</td>
<td>-</td>
<td>25m</td>
</tr>
</tbody>
</table>
Zusammenfassung

Das Ziel des Projektes war, anhand von ausgewählten Beispielen in verschiedenen Kantonen Baumartenarealgrenzen und Höhenstufengrenzen so weit als möglich mit Klimaparametern (unter Berücksichtigung weiterer Standortsfaktoren) zu erklären. In einem ersten Schritt wurden dazu neue, sehr detaillierte Kartengrundlagen (Raster 25 x 25 m) entwickelt:

- Lufttemperatur (inkl. Kartenmaterial zu Kaltluftseen)
- Thermische Kontinentalität
- Relative Luftfeuchtigkeit
- Globalstrahlung
- Verdunstung
- Föhnhäufigkeit, Föhnverdunstung

Folgende Grenzen aus der Karte der Standortsregionen (Frehner et al. 2005) wurden genauer untersucht:
- die Grenzen für Tannen-Hauptareal – Tannen-Nebenareal – Tannen-Reliktareal,
- die Buchen-Grenze 2a/2b,
- die Buchen-Grenze 4/5a (Tessin),
- die Buchen-Grenze 3/5a (Gondo, Wallis).

Ebenfalls wurden aus der Karte Waldstandorte Walliser Haupttal (Frehner et al. 2005) die Grenze vom Flumeichenareal mit Klimaparametern und aus NaIS-nahen Waldstandortskarten die Höhenstufengrenzen in ausgewählten Gebieten untersucht. Bei den Buchenarealgrenzen zeigte sich, dass in sämtlichen Gebieten die Lufttrockenheit (relative Luftfeuchte und relative Luftfeuchte bei Föhneinfluss) und z.T. zusätzlich der Sommer-Niederschlag und / oder das Verhältnis der aktuellen zur potenziellen Evapotranspiration (ETa/ETp) und die Spätfroste (ausgelöst durch Kaltluftseen oder allgemein hohe thermische Kontinentalität) begrenzende Faktoren sind. Für die Lufttrockenheit ist v.a. die Föhnhäufigkeit (und somit die Verdunstung bei Föhn) entscheidend. So ist es sehr wahrscheinlich, dass das Fehlen der Buche im Bergell, im mittleren und oberen Misox oder im Calancatal auf den Nordföhn zurückzuführen ist. Es kann vermutlich angenommen werden, dass eine jährliche Föhnhäufigkeit von mehr als ca. 13 % die Buche im Allgemeinen ausschließt, auch wenn die übrigen Faktoren für die Buche günstig wären. Des Weiteren zeigte sich, dass, wo der Sommerniederschlag in warmen Gebieten unter etwa 250 bis 300 mm fällt, die Buche unabhängig von den anderen Faktoren aussetzt.

Bei den Tannenarealgrenzen scheint es nach den vorliegenden Auswertungen so zu sein, dass bei einer jährlichen Föhnhäufigkeit von über 15 - 17 %, wie sie in den oberen Talabschnitten der Alpensüdseite vorkommt, die Tanne nur noch Reliktbestände aufweist. Dies gilt auch dann, wenn die anderen Faktoren an sich für die Tanne noch günstig wären. Auch scheint es so zu sein, dass bei einer thermischen Kontinentalität, welche auf 1000 Metern 5 Grad überschreitet, unabhängig von anderen Faktoren, die Tanne nur noch Reliktbestände aufweist.
Für die Grenze vom Hauptareal zum Nebenareal scheint eine jährliche Kontinentalität auf 1000 Metern von 3.5 - 4 Grad die plausibelste Grenze zu sein, auch wenn die übrigen Faktoren noch günstig sind. Auch eine jährliche Föhnhäufigkeit von 12 – 15 % scheint auszureichen (dies kommt allerdings nur in den oberen Tälern der Alpensüdseite vor), um die Tanne soweit zu benachteiligen, dass sie sich auf Nordhänge, tiefgründige Böden u. ä. zurückzieht. Die Abgrenzung vom Flaumeichenareal zu den Föhrenwaldgebieten im Wallis ist abhängig von dem stark zunehmenden Verhältnis von aktueller zu potenzieller Evapotranspiration (ETa/ETp), den abnehmenden mittleren Höchstwerten bei der Julitemperatur und dem zunehmenden Sommer-Niederschlag.

Unsere Resultate stellen noch keine definitiven Ergebnisse dar, sondern erste Erkenntnisse, welche falls nötig weiter verfeinert und anschliessend auf einen gemeinsamen Nenner gebracht werden sollen, um die Grenzen anhand Funktionen in die Zukunft modellieren zu können (geplanter Teil B, Projekt „Adaptierte Ökogramme“).

Die Klimaparameter sollen als Grundlage dienen, um die Verschiebung dieser Grenzen bei verschiedenen Szenarien des Klimawandels abschätzen zu können und Aussagen machen zu können, wie sich die Baumartenzusammensetzung in Zukunft ändern könnte.
Summary

The aim of the project was to explain the environmental limits of the main habitats of European beech and white fir including the limits of their altitudinal occurrence based on climatic parameters (and some other site factors) on selected sites distributed across Switzerland. In a first step, detailed digital maps were developed (spatial resolution 25 x 25 m) for the following parameters:

- Air temperature (and maps of pools of cold air [Kaltluftsee])
- Thermal continentality
- Relative humidity
- Global radiation
- Actual and potential evapotranspiration
- Frequency of Föhn occurrence and evapotranspiration due to Föhn

From the map of main forest habitat types (Karte der Standorte NaiS – Nachhaltigkeit im Schutzwald, Frehner et al. 2005) the following tree species distribution boundaries were analysed in further detail:

- the limits between white fir “main area”, white fir “side area” and white fir “relict area”,
- the limits of European beech distribution.

In addition, the main species distribution area of pubescent oak shown on the map of forest habitat types in the Valais (Frehner et al. 2005) was analysed in comparison with climatic parameters. Furthermore, the characteristics of the altitudinal distribution limits were analysed in selected regions on cantonal forest maps with a similar approach to that of NaiS maps. The basis for this analysis was a harmonized map of forest habitat types, classified after the NaiS approach (Frehner et al. 2005).

The analysis showed that the most relevant factors limiting the distribution area of European beech are low relative humidity and low relative humidity (both summarised as “air dryness”) during Föhn periods, low precipitations in summer and high ratio of actual and potential evapotranspiration (ETa/ETp). Also late frosts due to pools of cold air and/or a high thermal continentality have a limiting effect on the distribution of European beech. The air dryness is affected by the occurrence of Föhn (and evapotranspiration during Föhn occurrence). The absence of European beech in several upper valleys of the southern Alps might be explained with the occurrence of Föhn (blowing from north). Our results indicate that European beech does not occur where Föhn frequency is larger than 13%, even if other site factors would be suitable for its growth. European beech is also absent if summer precipitations in warm regions are lower than 250 – 300 mm. This is valid even if other site factors are favourable.

In regions where the annual frequency of Föhn is larger than 15 – 17% white fir occurs only in relict stands. This is for example the case in upper valleys of the southern Alps. This result seems to be independent of other site factors. In addition, white fir only occurs in relict stands if the thermal continentality exceeds 5° Celsius at 1000 m a.s.l. In order to explain the bound-
ary between the “main area” and the “side area” a threshold value of the annual continentality of 3.5 – 4° Celsius at 1000 m a.s.l. seems to be the most reasonable explanatory value. If the annual frequency of Föhn exceeds 12 – 15% (only occurring in upper valleys of southern Alps), white fir occurs only on northern slopes or deeper soils.

The boundary of pubescent oak towards Scots pine forests in the Valais is determined by an increasing ratio of the actual and potential evapotranspiration (ETa/ETp), a decreasing average maximum temperature in July, and increasing summer precipitations.

The analyses showed that most of the boundaries between the altitudinal zones in our study area (especially those between submontane and subalpine zones) are thermal limits depending on temperature and radiation. The average maximum temperature in July reveals often the strongest correlations with the boundaries. The colline level can be explained by a high ratio of the actual and the potential evapotranspiration (ETa/ETp) and lithology. The upper limit of the high montane zone shows a strong correlation with the average temperatures in January. In general, the limits of the altitudinal zones shift upwards with increasing continentality and with increasing mountain mass elevation from the edge towards the centre of the Alps. In line, the temperatures at the limits increase, too. Therefore, the temperature values developed to explain the altitudinal distribution of vegetation zones in the northern Alps (St. Gallen and Appenzell Ausserrhoden) are not suitable to explain them in the central Alps (Grisons). Here, the high continentality, the strong influence of frosts and Föhn and high radiation levels are relevant factors for the distribution of the altitudinal zones.

Our findings are provisional results concerning the factors influencing distribution limits of species and vegetation zones. They should be further refined in order to allow the calculation of altitudinal limits of tree species distribution and vegetation zones and to enable their projection into the future using different climate change scenarios (planned part B of the project “Adaptierte Ökogramme”), using the studied climatic parameters as a basis to estimate potential shifts.
1 Einleitung

Mit dem heutigen Wissen wird angenommen, dass sich im Laufe der Klimaänderung die Höhenstufen nach oben verschieben. Um wie viele Höhenmeter dies geschehen wird, ist unbekannt. Auch kann dies mit dem heutigen Stand des Wissens nicht modelliert werden, da die bestehenden Höhenstufen bei den Waldstandortskartierungen im Feld gutachtlich nach einheitlichen Kriterien (bei den NaIS\(^1\)-Standortstypen aufgrund des ökologischen Verhaltens verschiedener Baumarten und nach bestandesstrukturellen Merkmalen) festgelegt wurden und nicht aufgrund von Klimaparametern.

Projektziele

Das Ziel des Projektes ist es, für die Höhenstufengrenzen in ausgewählten Gebieten, für die Flaumeichengrenze im Wallis und für die Buchen- und Tannenarealgrenzen auf der Karte „Standortsregionen“ wesentliche Klimaparameter zu eruieren (unter Berücksichtigung weiterer Standortsfaktoren). Die Klimaparameter sollen als Grundlage dienen, um die Verschiebung dieser Grenzen bei verschiedenen Szenarien des Klimawandels abschätzen zu können.

Fragestellung

\(^1\) NaIS = Nachhaltigkeit und Erfolgskontrolle im Schutzwald (Frehner et al. 2005).
2 Material und Methoden

2.1 Anpassungen der Standortsregionenkarte und der Karte der Waldstandorte im Walliser Haupttal

Die Karte der NaIS-Standortsregionen (Abb. 1) und die Karte der Waldstandorte im Walliser Haupttal (Abb. 2) wurden in einigen Teilbereichen angepasst aufgrund neuer, detaillierterer Daten/Kartierungen, neuer Erkenntnisse und weil für die statistischen Analysen eine feinere Unterteilung der Gebiete notwendig war.

2.1.1 Anpassungen Standortsregionenkarte

Folgende Anpassungen wurden beim Tannenareal (Abb. 38) vollzogen:
- Anpassung Ta-Areal UR, Hauptareal – Nebenareal: Sehr geringe thermische Kontinentalität, verantwortlich für Vergrößerung von Hauptareal bis Gösgchenen (Anpassungen durch LZ).
- Anpassung Ta-Areal UR, Nebenareal – Reliktareal (Anpassungen durch LZ).
- Anpassung Ta-Areal TI, Hauptareal – Nebenareal (Anpassungen durch GC und LZ).
- Anpassung Ta-Areal TI, Nebenareal – Reliktareal (Anpassungen durch GC und LZ).
- Anpassung Ta-Areal VS, Hauptareal – Nebenareal (Anpassungen durch JB): Verschiebung der Grenze zugunsten des Tannenhauptareals nach Abklären der Wüchsigkeit der Tanne im angrenzenden Kt. VD.

Folgende Anpassungen wurden beim Buchenareal (Abb. 43) vollzogen:
- Anpassung Bu-Areal UR, 2a/2b (Anpassungen durch LZ).
- Anpassung Bu-Areal TI, 4/5a: Korrektur Buchengrenze in West und Nordost (durch GC).
- Anpassung Bu-Areal VS, 2a/2b: Anpassung an vorhandene Bestände (durch JB), für Analysen reale Buchenbestände aus Walliserkarte genommen.
- Anpassung Bu-Areal GR: Grenze 2a/2b z.T. angepasst aufgrund neu erstelltem Buchenlayer GR, die Grenze 2a/2b wurde vergrössert wo der Buchenlayer GR noch zusammenhängend ist. Der Buchenlayer GR besteht aus den Höhenstufen SM, UM und OM innerhalb 2a, inkl. CO (nur jene Bestände, die Buchenbestände enthalten). Kleine Anpassung von 2a im Domleschg.

2.1.2 Karte der Waldstandorte im Walliser Haupttal
Es erfolgten Anpassungen bei den Fläumeichenbeständen und den Buchenbeständen aufgrund von Lokalkenntnissen durch J. Burnand.
2.2 Aufbereitung der Waldstandortskartierungen der Kantone

Collin – submontan
Die Buche ist submontan vital, collin nimmt ihre Vitalität stark ab, das heisst, sie kann im Mittelland, im Jura und in den Regionen 1 und 2a auf feuchten und frischen, nicht extrem sauren Standorten noch etwas beigemischt sein, in den Regionen 2b und 4 fehlt sie. Wärmeliebende Baumarten (z.B. Eiche, Kastanie) sind in der collinen Stufe vitaler und häufiger als in der submontanen Stufe.

Submontan – untermontan
Submontan dominiert die Buche nicht so stark wie untermontan, submontan sind wärmeliebende Baumarten wie Kirsche und Eiche im Bestand vorhanden.

Untermontan – obermontan
Untermontan erreicht die Buche ähnliche Oberhöhen wie Tanne und Fichte, obermontan werden Fichte und Tanne 5 – 10 m höher als Buche.
Obermontan – hochmontan
Die Buche ist obermontan in Baumschicht vorhanden, hochmontan erscheint die Buche nicht mehr in der Baumschicht.

Hochmontan – subalpin
Hochmontan entstehen auf wüchsigen Standorten geschlossene Bestände mit relativ vollholzigen Bäumen und starker Konkurrenz zwischen den Bäumen. Subalpin entstehen auch auf wüchsigen Standorten nur lückige Bestände mit abholzigen Bäumen, die schmale, lange Kronen aufweisen, bei Fichte entstehen Rotten. Im ozeanischen Teil ist hochmontan neben der Fichte auch die Tanne im Bestand stark vertreten, subalpin ist die Tanne meistens nicht mehr konkurrenzkraftig im Vergleich zur Fichte, in den Waadtländer Alpen und in Derborence kann die Tanne auch stark vertreten sein.

Subalpin – obersubalpin
Subalpin dominiert die Fichte, einzelne Tannen können vor allem in den ozeanischen Gebieten beigemischt sein, in den Waadtländer Alpen und in Derborence kann die Tanne auch stark vertreten sein. Obersubalpin dominieren Arve und Lärche.

Besonderheiten:
Übergang ozeanisch – kontinental, in der Region 2a
Die Buche weist schon in tiefen Lagen ein reduziertes Wachstum im Vergleich zu Fichte auf, deshalb reicht die obermontane Stufe weiter hinunter und die untermontane/submontane Stufe fehlt zum Teil gegen die Grenze zu Region 2b.

Direkter Übergang von collin zu hochmontan in den Regionen 2b und 4
Im unteren Bereich von hochmontan (in GR unterhalb von ca. 1000 m ü. M.) gibt es Nadelholzbestände die in der Pionierphase edellaubholzreich sind. Dabei handelt es sich um einen Übergangsbereich zwischen der hochmontanen und der collinen Stufe, in GR werden in diesem Bereich 51C, 52T ausgeschieden.

Grenze collin – hochmontan in den Regionen 2b und 4
Collin erreichen Eichen, Linden, Kirsche, Esche Spitzahorn etc. die Oberschicht.

Untermontan/obermontan in den Regionen 5a und 5b
Das diese Höhenstufen im Gelände wegen des starken Einflusses der Bewirtschaftung (Buchen- niederwälder) nicht unterschieden werden können, werden sie zusammengefasst.

Hyperinsubrisch – collin mit Buche – untermontan/obermontan in Region 5a und 5b
Hyperinsubrisch sind die Laurophyllen stark vertreten mit autochthonen Laurophyllen (Ilex, Taxus, Hedera etc.) und exotischen Laurophyllen (Laurus, Cinnamomum, Ligustrum lucidum, Prunus laurocerasus, Trachycarpus etc.). Collin sind die autochthonen Laurophyllen (Ilex, Taxus, Hedera etc.) baumförmig vertreten. Eichen und Kastanien erreichen die Oberschicht. Die Buche kann auf feinerdereichen Böden beigemischt sein, da es nicht so trocken ist wie in der Region 4. Untermontan sind Ilex und Hedera nur noch in der Strauchschicht anzutreffen, die Buche dominiert.
Bemerkungen zur submontanen Stufe

Allgemeine Bemerkungen zu den Höhenstufen
Da die NaiS-Standortstypen auf die Anwendung im Waldbau optimiert sind, werden primär Merkmale aus der Baumsschicht (Baumart und Struktur) verwendet, um die Höhenstufen abzugrenzen. Daneben können aber auch Arten der Kraut- und Strauch- und Moosschicht wichtige Hinweise zu der Abgrenzung der Höhenstufen geben, eine Auswahl dieser Arten ist in Frehner et al. 2005 im Kapitel 8 angegeben.

2.2.1 Kantone AG, AR, BS, BL, FR, GE, JU, SG, TG, UR, ZG, SH
In den Kantonen AG, BS, BL, FR, TG, ZG bestehen flächendeckende Kartierungen der Waldstandorte, die an die NaiS-Klassifikation angelehnt sind (Abb. 3). In den Kantonen UR und JU wurden Teilgebiete auf gleiche Art kartiert (Abb. 3). Diese Daten wurden in eine Geodatenbank importiert und in die NaiS-Einheiten umklassifiziert (Tab. 1).
In den Kantonen AR und SG wurden die bereits bestehenden Waldtypengruppen übernommen und mit dem NaiS-Schlüssel angepasst (Abb. 3).
Die Kartierung vom Kanton GE konnte nicht in die Analyse mit einbezogen werden, da eine Zuteilung von NaiS-Einheiten nicht möglich war. Deshalb wurden für die Auswertung nur gutachterlich bestimmte Höhenstufengrenzen mit einbezogen.
Die Daten des Kantons SH erhielten wir erst Mitte Januar 2014, deshalb berücksichtigten wir bei den Auswertungen nur die Obergrenze der collinen Stufe.
Der Gesamtdatensatz berücksichtigt die Waldfläche von 12 Kantonen. Er enthält zusätzlich zu den Original-Klassen die folgenden Spalten:

<table>
<thead>
<tr>
<th>Kanton</th>
<th>Herkunft des Originaldatensatzes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaiSEinheit</td>
<td>NaiS-Einheit, falls eindeutig zuordenbar.</td>
</tr>
<tr>
<td>Tannenareal</td>
<td>Tannenareal nach NaiS.</td>
</tr>
<tr>
<td>Standortsregion</td>
<td>Standortsregion nach NaiS.</td>
</tr>
<tr>
<td>Höhenstufe</td>
<td>Aufgrund der NaiS-Einheit zugewiesene Höhenstufe: OSA … Obersubalpin SA … Subalpin HM … Hochmontan OM … Obermontan UM … Untermontan SM … Submontan CO … Collin</td>
</tr>
<tr>
<td>ursprCode2</td>
<td>Ursprünglicher Code für den Standortstyp.</td>
</tr>
<tr>
<td>NaiSTeil1</td>
<td>Falls mehrere NaiS-Einheiten einer Fläche zugeordnet wurden, findet sich hier die hauptsächliche NaiS-Einheit.</td>
</tr>
<tr>
<td>NaiSTeil2</td>
<td>Falls mehrere NaiS-Einheiten einer Fläche zugeordnet wurden, findet sich hier eine sekundäre NaiS-Einheit.</td>
</tr>
<tr>
<td>NaiSTeil3</td>
<td>Falls mehrere NaiS-Einheiten einer Fläche zugeordnet wurden, findet sich hier eine weitere NaiS-Einheit.</td>
</tr>
<tr>
<td>NaiSTeil4</td>
<td>Falls mehrere NaiS-Einheiten einer Fläche zugeordnet wurden, findet sich hier eine weitere NaiS-Einheit.</td>
</tr>
<tr>
<td>HSmax</td>
<td>Numerischer Wert für die maximale Höhenstufe der NaiS-Einheit: 7 … Obersubalpin 6 … Subalpin 5 … Hochmontan 4 … Obermontan 3 … Untermontan 2 … Submontan 1 … Collin</td>
</tr>
<tr>
<td>HSmin</td>
<td>Numerischer Wert für die minimale Höhenstufe der NaiS-Einheit. Codierung wie HSmax.</td>
</tr>
<tr>
<td>w</td>
<td>Wechselfeucht: 0 … nein, 1 … ja</td>
</tr>
<tr>
<td>SW</td>
<td>Sonderwaldstandort: 0 … nein, 1 … ja</td>
</tr>
</tbody>
</table>

Tabelle 1: Gesamtdatensatz kantonale Grundlagen.

2 Da die Standorte sich in der Natur kontinuierlich ändern, gibt es Flächen, bei denen der tatsächliche Standort zwischen zwei im Kartierschlüssel beschriebenen Standortstypen liegt. In diesem Fall wird ein Übergang zwischen zwei Standortstypen kartiert, wobei der dominierende Standortstyp vorangestellt wird und der andere in Klammer hinten angehängt wird.

3 Flächen, in denen zwei bis drei Standorte häufig wechseln, werden als Mosaik kartiert, der häufigere Standortstyp wird vorangestellt, die anderen nach einem „/“ hintenangestellt.
Abbildung 3: Höhenstufenkarte in den Kantonen AG, AR, BS, BL, FR, JU, SG, TG, UR, ZG.
2.2.2 **Kanton Graubünden**

![Abbildung 4: Höhenstufenkarte im Kanton GR (mit leichten Anpassungen durch Projektteam; siehe Kap. 2.2.2).](image)
2.2.3 Ziehen von Höhenstufengrenzen in den Kantonen Tessin und Uri

Da Kartierungen im Kanton Tessin fehlen und im Kanton Uri nur kleinflächig vorhanden sind, wurden als zusätzliche Anhaltspunkte zwischen Goldau und Locarno die Höhenstufen in ausgewählten Gebieten im Feld bestimmt.

Abbildung 5: Höhenstufenkarte in den Kantonen UR und TI.

Abbildungen 6.1 und 6.2: Höhenstufenkarten in den Kantonen TI (links) und UR (rechts).

2.2.4 Einbezug von Waldtypen der collinen Stufe aus dem Kanton Waadt

2.3 Auswahl von Untersuchungsgebieten (AR, BS, BL, GR, SG, SH)

Aufgrund der vorhandenen Lokalkenntnisse des Teams werden die Höhenstufengrenzen v.a. in den Kantonen AR, BS, BL, GR, SG und SH untersucht.

2.4 Aufbereitung der Klimaparameter

Der Hauptfokus dieses Projektes lag in der flächendeckenden Aufbereitung von Klimaparametern. Die Klimaparameter Lufttemperatur, thermische Kontinentalität, Niederschlag, relative Luftfeuchtigkeit, Schnee, Globalstrahlung und Verdunstung wurden auf den Betrachtungsmassstab der Waldstandorte gebracht. Die Flächen der Waldstandorte liegen im Bereich einer Größenordnung ab 100 bis 500 m². Um vor allem die Höhengenauigkeit der Höhenstufen detailliert abbilden zu können, war eine sehr hohe räumliche Auflösung erforderlich. Aus diesem Grund wurde entschieden, alle räumlich sehr variablen Klimaparameter auf die Auflösung des digitalen Geländemodells von Swisstopo (Maschenweite 25 m) zu bringen. Der Algorithmus für die räumliche Interpolation von den Messstandorten auf die Fläche ist für jeden Klimaparameter unterschiedlich und wird im jeweiligen Kapitel beschrieben. Neu erstellte Daten wurden auf dieser Massstabsebene erstellt, vorhandene Daten wurden wo möglich auf diese Auflösung gebracht.

2.4.1 Lufttemperatur

Tabelle 2: Schematische Darstellung der Berechnung des mittleren täglichen Höchst- und Tiefststandes sowie des mittleren Tagesmaximums und Tagesminimums.

<table>
<thead>
<tr>
<th></th>
<th>0.00h</th>
<th>7.00h</th>
<th>7.10h</th>
<th>14.30h</th>
<th>14.40h</th>
<th>23.40h</th>
<th>23.50h</th>
<th>Tagesmax.</th>
<th>Tagesmin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01.1961</td>
<td>-3.2</td>
<td>-3.4</td>
<td>-3.0</td>
<td>0.0</td>
<td>0.3</td>
<td>-7.8</td>
<td>-8.0</td>
<td>0.5</td>
<td>-7.8</td>
</tr>
<tr>
<td>02.01.1961</td>
<td>-8.0</td>
<td>-7.7</td>
<td>-8.1</td>
<td>-5.0</td>
<td>-4.6</td>
<td>-6.1</td>
<td>-6.2</td>
<td>-4.4</td>
<td>-8.1</td>
</tr>
<tr>
<td>31.07.1983</td>
<td>10.0</td>
<td>8.9</td>
<td>8.8</td>
<td>30.0</td>
<td>30.6</td>
<td>12.1</td>
<td>11.8</td>
<td>30.6</td>
<td>8.8</td>
</tr>
<tr>
<td>30.12.1990</td>
<td>8.1</td>
<td>4.6</td>
<td>5.2</td>
<td>-1.0</td>
<td>-1.3</td>
<td>-3.0</td>
<td>-3.2</td>
<td>8.1</td>
<td>-3.2</td>
</tr>
<tr>
<td>31.12.1990</td>
<td>-3.3</td>
<td>-3.4</td>
<td>-3.8</td>
<td>-4.6</td>
<td>-4.8</td>
<td>-8.2</td>
<td>-8.5</td>
<td>-3.3</td>
<td>-8.5</td>
</tr>
</tbody>
</table>

Es ist klar, dass das mittlere Tagesmaximum der Temperatur immer höher oder mindestens gleich hoch sein muss wie der mittlere tägliche Höchststand der Temperatur, ebenso ist das mittlere Tagesminimum der Temperatur immer tiefer oder gleich tief wie der mittlere tägliche Tiefststand der Temperatur, vgl. Tabelle 2. In Tabelle 2 beträgt also der mittlere Tagesgang 7.4 Grad, wobei der mittlere Tagestiefststand 5.1 Grad beträgt und um 7.10 Uhr eintritt und der mittlere Tageshöchststand 12.5 Grad beträgt und um 14.30 Uhr erfolgt. Die Differenz zwischen dem mittleren Tageshöchststand und dem mittleren Tagestiefststand, also der mittlere Tagesgang der Lufttemperatur an einem bestimmten Ort ist ein gutes Mass für die thermische Kontinentalität eines Ortes, weil er ja die mittlere strahlungsbedingte Temperaturänderung eines Ortes darstellt. Die Differenz zwischen mittlerem Tagesmaximum, welches in Tabelle 2 einen Wert von 13.6 aufweist und dem mittleren Temperaturminimum, welches in Tabelle 2 den Wert 4.1 Grad aufweist, wird mittlerer Tagesbereich der Temperatur genannt. Er beträgt in Tabelle 2 also den Wert 13.6 Grad - 4.1 Grad, also 9.5 Grad. Der mittlere Tagesbereich ist immer grösser als der mittlere (strahlungsbedingte) Tagesgang. Die Differenz zwischen dem mittleren Tagesbereich und dem mittleren Tagesgang wird aperiodische Komponente genannt. Diese beträgt im obgenannten Fall 9.5 Grad - 7.4 Grad, also 1.9 Grad. Die aperiodische Komponente ist ein Mass für die Häufigkeit der Auswechslung von unterschiedlich temperierten Luftmassen.

In der Schweiz gibt es nun Orte, die einen hohen Tagesgang der Temperatur aufweisen. Dies sind inneralpine Orte wie das Wallis, Graubünden oder das Nordtessin, wo in den Niederungen mittlere jährlich Tagesgänge von 10 Grad und mehr möglich sind. Umgekehrt sind diese Gebiete von Luftmassenwechseln relativ wenig betroffen, die aperiodische Komponente ist dort
mit 1.5 bis 2 Grad deshalb relativ klein. Demgegenüber weisen exponentierte Gipfellagen in den Voralpen nur einen sehr geringen Tagesgang der Temperatur auf, welcher 2 Grad kaum über- schreitet. Die aperiodische Komponente kann aber in diesen Lagen bis 3 Grad erreichen, weil Luftmassenwechsel in solchen Lagen sehr häufig stattfinden. Allgemein kann aber gesagt werden, dass der mittlere Tagesgang schweizweit mit einem Bereich von 2 bis über 10 Grad deutlich geringere regionale Unterschiede aufweist als die aperiodische Komponente, welche nur zwischen etwa 2 und 4 Grad schwankt.

Der Grund, weshalb in der vorliegenden Arbeit der mittlere Tagesgang berücksichtigt wurde, liegt darin, dass sich der Tiefstwert, wenn er in der Nacht auftritt, ganz anders auswirkt, als wenn dieser Tiefstwert tagsüber auftritt. Tritt Frost in der Nacht auf, so wirkt er viel schädlicher auf die Pflanze, da bekanntlich in vielen Fällen noch die Ausstrahlung dazu kommt, welche an der Pflanzenoberfläche noch tiefere Minima verursacht. Tagsüber hingegen wirkt sich eine Lufttemperatur, welche wegen einer kurzzeitigen Kaltluftadvektion unter 0 Grad sinkt, auf der Pflanzenoberfläche kaum negativ aus, da die Strahlung der Pflanzenoberfläche deutlich höhere Temperaturen besitzt. Umgekehrt korrigiert sich ein kurzzeitiger nächtlicher Föhneinbruch, welcher die Temperatur auf hohe Werte treibt, bei einem Waldbaum kaum aus, da der Baum bekanntlich nachts bezüglich der Photosynthese inaktiv ist. Wenn ein Temperaturhöchstwert hingegen mit hoher Einstrahlung gekoppelt ist, hat es für die Pflanzenwelt einen grossen Einfluss.

Mit Hilfe von jahreszeitabhängigen Gradienten wurden die Werte der Stationen auf Höhenlagen von 500, 1000 und 2000 Metern berechnet. Diese projizierten Werte wurden auf den genannten Höhen flächig interpoliert. Dabei wurden gutachterlich auf einer Landeskarte im Massstab 1:300’000 Isolinien gezeichnet. Die gutachterliche Erstellung der Isolinien für die flächige Interpolation der Temperaturen auf 500, 1000 und 2000 m war notwendig, da die
verschiedenen Kriging-Verfahren die Gradienten entlang des Alpenhauptkammes und spezielle Temperaturverhältnisse in anderen Gebieten nicht zufriedenstellend abbilden konnten. So liegt zum Beispiel der Höchststand der Temperatur im Juli in Göschenen fast 3 Grad tiefer als im gleichhoch gelegenen Airolo, während zwischen Göschenen und einem Ort in der Nordschweiz sich kaum Unterschiede ergeben (langjährige Temperaturmessungen zwischen 2000 und 2013 im oberen Reussstal und in der oberen Leventina durch L. Z'graggen). Zusätzlich zu diesen drei Höhenlagen wurden Isolinienkarten in der Höhenlage von 3500 m erstellt, um die Gradienten zwischen 2000 m und 3500 m flächig modellieren zu können. Diese basierte jeweils auf dem Messwert der Station Jungfraujoch und einem leichten von Nord nach Süd gerichteten horizontalen Gradienten (+1°C im Süden bei Chiasso und – 1°C im Norden bei Schaffhausen), denn gemäss den Radiosondierungen in Payerne, München und Milano kann zwischen Schaffhausen und Chiasso in grosser Höhe ein Temperaturunterschied von etwa 2 Grad erwartet werden (Auswertung durch L. Z’graggen am Geographischen Institut der ETH Zürich, nicht publ.). Mit dem GIS-Programm „Topo to Raster“ wurden anhand der digitalisierten Isolinien auf den genannten Höhenlagen 500, 1000, 2000 und 3500 m die jeweiligen Temperaturwerte auf jeden Gitterpunkt mit einer Maschenweite von 25 m interpoliert. Damit war für die Höhenlagen 500 m, 1000 m, 2000 m und 3500 m an jeden Gitterpunkt die Temperatur errechnet, Abbildung 7 zeigt die Verteilung einiger Temperaturwerte in einer Höhenlage von 1000 m auf, worauf weiter unten noch näher eingegangen werden wird.

Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaSi plausibel erklären?“

Für die Berechnung der einzelnen Temperaturwerte auf reellen Höhen des digitalen Geländemodells mit einer Gittermaschenweite von 25 m wurden zwischen den verschiedenen Höhenstufen die Gradienten aus den Temperaturkarten auf 500 m, 1000 m, 1500 m, 2000 m und 3500 m auf jedem Gitterpunkt berechnet und anschliessend die Temperatur auf die reelle Höhe desselben Gitterpunktes berechnet. Unterhalb der Höhenlage von 500 m wurde der Gradient zwischen 500 und 1000 Meter als repräsentativ betrachtet, oberhalb der Höhenlage von 3500 m wurden in Abhängigkeit von der Jahreszeit pauschal Gradienten zwischen 0.5 und 0.7°C/100 m verwendet.

Diese Basiskarten der Temperatur wurden anschliessend um die Strahlung, die Gletscherflächen und um die Kaltluftseen bereinigt. Die Temperatur auf den Gletscherflächen wurde pauschal um -2°C korrigiert.
Kaltluftseen

![Abbildung 8: Schematische Darstellung eines Kaltluftsees.](image-url)
Abbildung 12: Intensität der berücksichtigten Kaltluftseen beim mittleren Tiefststand der Temperatur im April.

Abbildung 13: Intensität der berücksichtigten Kaltluftseen beim mittleren Tiefststand der Temperatur im Juli.
Abbildung 14: Intensität der berücksichtigten Kaltluftseen beim mittleren Tiefststand der Temperatur im Oktober.

Abbildung 15: Intensität der berücksichtigten Kaltluftseen beim mittleren Tiefststand der Temperatur im Jahr.
Im Weiteren kann es vorkommen, dass sich Kaltluftseen tagsüber nicht mehr auflösen. Dies ist aber nur im November, Dezember und Januar der Fall, wenn die schwache Sonneneinstrahlung nicht mehr ausreicht, die kalten Talsohlen ausreichend zu erwärmen oder wenn die Talgründe wegen starker Horizontüberhöhung kein direktes Sonnenlicht mehr erhalten. Deshalb musste die Intensität der Kaltluftseen auch beim Tageshöchststand der Temperatur im Monat Januar kartiert werden. Die Intensitäten sind allerdings klein, überschreiten 2 Grad nur selten und beschränken sich auf einige Kälteseen im Jura und in den Alpen, wie Abbildung 16 zu entnehmen ist. Die meisten Kaltluftseen lösen sich indessen auch im Januar tagsüber vollständig auf.

Abbildung 16: Intensität der berücksichtigten Kaltluftseen beim mittleren Höchststand der Temperatur im Januar.

Die in den Monaten November, Dezember und Januar auch am Nachmittag bestehenbleibenden Kaltluftseen beeinflussen in geringem Masse auch die Temperatur während des Tageshöchststandes im Gesamtjahr, vgl. Abbildung 17. Allerdings sind die Intensitäten mit bis 1 Grad nicht mehr sehr bedeutend.
Korrekturen der Strahlung

Ergebnisse

Abbildung 18: Interpolierte absolute Minima (links) und Maxima (rechts)

nehmen die Temperaturen stark ab. So sind in 2200 Metern Höhe 25 Grad noch knapp mögli-
lich, in 3500 Metern steigt das Thermometer auch über gletscherfreien Felsflächen kaum über
15 Grad. Ein anderes Bild zeigen die absoluten Tiefstwerte. Mit absoluten Tiefstwerten von
nur -10 bis -12 Grad ist es in den Seeregionen des Mittel- und Südtessins eindeutig am wenig-
ten kalt. Demgegenüber zeigt sich die Ostschweiz, welche den Kälteeinbrüchen aus Nordost
voll ausgesetzt ist, mit Tiefstwerten von -25, in Kältseen von -30 Grad als sehr kalt. Selbst
Gipfellagen auf 2500 Metern bzw. 3500 Metern sind mit Tiefstwerten von etwa -32 bzw. etwa
-37 Grad nur unwesentlich kälter als die Niederungen der Ostschweiz. Abbildung 19 - 23 zeigen
die Tiefst- und Höchststände der Temperatur im Jahr und in den Monaten Januar, April, Juli
und Oktober. Hier gilt im Wesentlichen das in Abbildung 7 Gesagte, einzig spielt die Höhe eine
entscheidende Bedeutung, indem es bekanntlich mit zunehmender Höhe kälter wird. Aller-
dings ist die Temperaturabnahme in den Monaten Juli und April viel grösser als im Oktober
und besonders im Januar. In den Monaten Oktober und Januar ist die Atmosphäre oft stabil
gegessichet, insbesondere bei Hochdrucklagen. Dann kann es vorkommen, dass es auch aus-
erhalb von Kältseen in tieferen Lagen kälter ist als in der Höhe. Im April hingegen kann die
kräftige Sonneneinstrahlung die Niederungen bereits stark aufheizen, während es in der Höhe
immer noch sehr kalt ist. Auch im Juli sorgt die lange und kräftige Sonneneinstrahlung beson-
ders in den Niederungen für hohe Temperaturen, während höhere Luftschichten von dieser
Erwärmung weniger profitieren. Als Folge dieser oft labilen Temperaturverhältnisse kommt
e denn in den Monaten April und Juli oft zu vertikalen Umlagerungen, was sich oft in Form
von Schauern und Gewittern äussert.

Die Monatsmitteltemperaturen wurden von den mittleren Tiefst- und Höchstwerten des je-
weiligen Monats abgeleitet. Die Temperaturen der Monate Mai, Juni, August, September wur-
den nur für die Berechnung der Mitteltemperatur in den Monaten April bis September ge-
braucht. Sie wurden deshalb nur von den im Detail ausgearbeiteten Temperaturkarten durch
lineare Korrelationen aus den Stationswerten abgeleitet. Für jeden Stationswert wurde eine
Korrelationsfunktion abgeleitet und der Korrekturwert anschliessend flächig interpoliert. Die
Temperaturkarte des Mai wurde mithilfe dieser Korrelation vom April abgeleitet, die Tempe-
raturkarte des Junes und des Augusts vom Juli, die Temperaturkarte des Septembers vom Ok-
tober.

In vielen Publikationen wird mit dem Mittel der Temperatur während der Vegetationsperiode
Die Länge der Vegetationsperiode ist aber räumlich sehr unterschiedlich. Um diese Informa-
tion zu erstellen, müsste man für jeden Gitterpunkt in Abhängigkeit von der Höhenlage und
der Region eine Statistik rechnen. Dies war im Rahmen des Projektes nicht möglich, deshalb
wurde hier eine Karte der Mitteltemperatur in den Monaten April bis September in der Peri-
ode 1961-1990 erstellt. Der April wurde mit einbezogen, um die Wachstumsperiode in den
tiefen Lagen mit zu berücksichtigen.

2.4.2 Thermische Kontinentalität
Die thermische Kontinentalität wird durch den Unterschied zwischen den Tiefstständen und
Höchstständen der Temperatur im Monat berechnet. Die oben genannten Karten der Tiefst-
stände und Höchststände der Temperaturen in den ausgewählten Zeiträumen wurden subtra-
hiert, sodass sich für jeden Zeitraum eine thermische Kontinentalität ergibt.

Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaïS plausibel erklären?“

Spätfröste und Frostoffe

Im Wesentlichen bilden die erarbeiteten Temperaturkarten und die Karten der thermischen Kontinentalität die Tage mit Frost gut wieder. Es wurde hauptsächlich mit diesen Karten gearbeitet. Zusätzlich zur Temperaturkarte des April wurden nach dem im vorhergehenden Kapitel aufgezeigten Verfahren Karten für die Anzahl der Frostoffe im April, im Mai, im Juni und im Jahr auf 1000 m, 2000 m und 3500 m erstellt und anschliessend interpoliert. Diese Karte bildet nur einen vorläufigen Zwischenstand ab, sie enthält noch keine Korrektur von Kaltluftseen.
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaïS plausibel erklären?“

Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaïS plausibel erklären?“

2.4.3 Niederschlag

Als erster Datensatz für die Überlagerungen mit den Standortkarten wurde die Tafel 2.2 „Mittlere jährliche korrigierte Niederschlagshöhen 1951-1980“ des Hydrologischen Atlas der Schweiz HADES verwendet (Höhengradient 0.8 mm/m, HADES 2001).

Abbildung 28: Mittlere monatliche Niederschlagshöhen (HADES Tafel 2.7). Legende: dunkelviolett = 450-500 mm, helllila = < 50 mm.

2.4.4 Relative Luftfeuchtigkeit
Abbildung 29: Relative Luftfeuchte um 13:30 Uhr in den Monaten Januar, April, Juli, Oktober (Periode 1981-2010).

Abbildung 30: Relative Luftfeuchte um 13:30 Uhr im Jahr (Periode 1981-2010).

Um die Verdunstung bei Föhn zu berechnen, wurde in einem weiteren Schritt die Luftfeuchte am frühen Morgen oder die mittlere Luftfeuchte berechnet.

2.4.5 Schnee

2.4.6 Trockenheitsindex

2.4.7 Globalstrahlung

Tabelle 3: Verhältnis zwischen direkter Strahlung und Globalstrahlung im Januar (Z’graggen 2001).

<table>
<thead>
<tr>
<th>Höhengrad</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpennordseite</td>
<td>0.28</td>
<td>0.32</td>
<td>0.36</td>
<td>0.38</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td>Alpensüdseite</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Tabelle 4: Verhältnis zwischen direkter Strahlung und Globalstrahlung im April (Z’graggen 2001).

<table>
<thead>
<tr>
<th>Höhengrad</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpennordseite</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Alpensüdseite</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Tabelle 5: Verhältnis zwischen direkter Strahlung und Globalstrahlung im Juli (Z’graggen 2001).

<table>
<thead>
<tr>
<th>Höhengrad</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpennordseite</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>Alpensüdseite</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Tabelle 6: Verhältnis zwischen direkter Strahlung und Globalstrahlung im Oktober (Z’graggen 2001).

<table>
<thead>
<tr>
<th>Höhengrad</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpennordseite</td>
<td>0.42</td>
<td>0.43</td>
<td>0.45</td>
<td>0.47</td>
<td>0.49</td>
<td>0.51</td>
<td>0.53</td>
<td>0.56</td>
</tr>
<tr>
<td>Alpensüdseite</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
</tbody>
</table>
2.4.8 Wind
2.4.9 Föhn

Der Föhn ist für die Pflanzenwelt von eminent wichtiger Bedeutung, da er durch seine grosse Windgeschwindigkeit, niedrige Luftfeuchtigkeit und hohe Temperatur das Pflanzenleben entscheidend beeinflusst. So verlängert der Föhn in den nördlichen Alpentälern die Vegetationsperiode, wirkt aber anderseits sehr austrocknend, so dass einige hygrophile Pflanzen trotz hoher Niederschlagsmengen in stark dem Föhnwind ausgesetzten Regionen in ihrer Konkurrenzkraft stark geschwächt sind.

In der Schweiz gibt es im Wesentlichen zwei typische Föhnerscheinungen. Dies ist zum einen der bekannte Südföhn, oder im Allgemeinen einfach Föhn genannt. Dieser entsteht meist bei südlicher bis südwestlicher Höhenströmung und betrifft die Gebiete nördlich des Alpenhauptkammes, welcher sich vom Gr. St. Bernhard über die Monte Rosa bis zum Gotthardpass und von da an über Lukmanier- und Malojapass bis zum Ofenpass erstreckt. Das Engadin, welches unmittelbar nördlich dieser Linie verläuft, hat keine typischen Südföhnerscheinungen, deshalb wurde diese Region für Föhnerscheinungen nicht weiter untersucht. Auch im Mittelland und im Jura kennt man den Föhn als Wind kaum, auch hier war er infolgedessen nicht weiter untersucht.

Die typischsten Föhnregionen sind im Übrigen im Einzugsgebiet der Rhone das Rhonequertal von Martigny an abwärts bis zum Genfersee, das Val d’Entremont und das Val Ferret sowie das Oberwallis von Brig bis etwa Sierre, ferner noch das Saas- und das Matteral. In den ande-

Die zweite, ausgeprägte Föhnerscheinung ist der Nordföhn, welcher in den Tälern südlich des Alpenkammes auftritt. Der Nordföhn kann dabei praktisch in jedem Tal auftreten. Eindeutig am häufigsten ist er aber auf der Simplonsüdseite, in der Leventina und im Bergell.

Über die Föhnhäufigkeit existieren bisher einzig von einigen wenigen Stationen zuverlässige Angaben.

Es war also nötig, die in den Föhnregionen vorhandenen Klimastationen bezüglich Föhnhäufigkeit auszuwerten. Dabei werden an allen Stationen eindeutige Kriterien angewendet, um Föhnfälle von Nichtföhnfällen zu unterscheiden.

Als Kriterien für Föhnfälle galten dabei:
- Relative Luftfeuchtigkeit: tagsüber <=50%, in der Nacht <=55%
- Windgeschwindigkeit: >=5 km/h
- Windrichtungsbereich: typische Windrichtung in ° bei Föhn +/- 60°

Nur wenn alle obgenannten 3 Bedingungen an einer Station erfüllt waren, wurde von Föhn an einer Station gesprochen.

Das Messnetz von MeteoSchweiz besitzt zwei für Föhnuntersuchungen in Frage kommende Stationstypen. Dies sind erstens die automatischen Messstationen, an welchen alle 10 Minuten bestimmte Klimaparameter gemessen werden. Die Föhnhöchstwerte können bei solchen Stationen direkt ausgezählt werden. Da es aber gerade in den Föhngebieten nur wenige solche Stationen gibt, mussten auch die Klimastationen in Betracht gezogen werden. Bei den Klimastationen wird allerdings nur dreimal am Tag beobachtet, nämlich morgens um 7.30 Uhr, nachmittags um 13.30 Uhr und abends um 19.30 Uhr. Um die Föhnhöchstwerte eines Tages abschätzen zu können, wurde mit einem sehr einfachen Verfahren gearbeitet: Hat eine bestimmte Station an einem Termin Föhn, so wird die Fönhöchstwelle dieses Tages auf 8 Stunden gesetzt. Falls eine Station an 2 Terminen an einem bestimmten Tag Föhn zeigt, ergibt dies eine Fönhöchstwelle von 16 Stunden und wenn schliesslich alle 3 Termine Föhn anzeigen, so wird die Fönhöchstwelle dieses Tages auf 24 Stunden gesetzt. Nun wiesen viele wertvolle Stationen über nur wenige Jahre Beobachtungen in digitaler Form auf. Sie mussten jedoch trotzdem in Betracht gezogen werden, weil der Föhn räumlich ein sehr variables Phänomen ist.

Nach dem oben beschriebenen Verfahren wurden für das Jahr sowie für die Monate Januar, April, Juli und Oktober die Anzahl Stunden mit Föhn, die Temperatur bei Föhn sowie die relative Luftfeuchtigkeit bei Föhn ausgewertet. Die für das ganze Jahr erhaltenen Föhnparameter sind in Tabelle 7 für den Südföhn und in Tabelle 8 für den Nordföhn enthalten:
<table>
<thead>
<tr>
<th>Station</th>
<th>Stationshöhe</th>
<th>Zeitperiode</th>
<th>Anzahl Föhnstunden Jahr in [h]</th>
<th>Temperatur bei Föhn im Jahr in [°C]</th>
<th>Luftfeuchtigkeit bei Föhn im Jahr in [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visp</td>
<td>640</td>
<td>2009-2013</td>
<td>738</td>
<td>16.2</td>
<td>43</td>
</tr>
<tr>
<td>Zermatt</td>
<td>1638</td>
<td>2009-2013</td>
<td>223</td>
<td>11.5</td>
<td>38</td>
</tr>
<tr>
<td>Turtmann</td>
<td>630</td>
<td>1971-1980</td>
<td>506</td>
<td>15.7</td>
<td>36</td>
</tr>
<tr>
<td>Montana</td>
<td>1505</td>
<td>2009-2013</td>
<td>583</td>
<td>10.6</td>
<td>45</td>
</tr>
<tr>
<td>Sion</td>
<td>482</td>
<td>1973-1982</td>
<td>155</td>
<td>17.6</td>
<td>35</td>
</tr>
<tr>
<td>Vernayaz</td>
<td>480</td>
<td>1971-1980</td>
<td>340</td>
<td>15.3</td>
<td>40</td>
</tr>
<tr>
<td>Monthey</td>
<td>470</td>
<td>1971-1980</td>
<td>220</td>
<td>15.7</td>
<td>41</td>
</tr>
<tr>
<td>Aigle</td>
<td>381</td>
<td>1984-2008</td>
<td>60</td>
<td>16.7</td>
<td>37</td>
</tr>
<tr>
<td>Adelboden</td>
<td>1345</td>
<td>1973-1982</td>
<td>105</td>
<td>14.5</td>
<td>35</td>
</tr>
<tr>
<td>Guttannen</td>
<td>1058</td>
<td>1971-1980</td>
<td>890</td>
<td>12.5</td>
<td>45</td>
</tr>
<tr>
<td>Meiringen</td>
<td>600</td>
<td>1971-1980</td>
<td>327</td>
<td>16.9</td>
<td>37</td>
</tr>
<tr>
<td>Interlaken</td>
<td>575</td>
<td>1973-1982</td>
<td>25</td>
<td>17.2</td>
<td>37</td>
</tr>
<tr>
<td>Engelberg</td>
<td>1017</td>
<td>1971-1980</td>
<td>252</td>
<td>15.1</td>
<td>40</td>
</tr>
<tr>
<td>Gütsch</td>
<td>2282</td>
<td>1971-1980</td>
<td>595</td>
<td>3.6</td>
<td>48</td>
</tr>
<tr>
<td>Göschinen</td>
<td>1110</td>
<td>1971-1980</td>
<td>1216</td>
<td>9.6</td>
<td>54</td>
</tr>
<tr>
<td>Gurtnellen</td>
<td>739</td>
<td>1969-1973</td>
<td>770</td>
<td>14.6</td>
<td>43</td>
</tr>
<tr>
<td>Altdorf</td>
<td>449</td>
<td>1969-1973</td>
<td>514</td>
<td>17.6</td>
<td>34</td>
</tr>
<tr>
<td>Altdorf</td>
<td>449</td>
<td>1983-2012</td>
<td>445</td>
<td>18.8</td>
<td>34</td>
</tr>
<tr>
<td>Altdorf</td>
<td>449</td>
<td>2009-2013</td>
<td>501</td>
<td>18.8</td>
<td>36</td>
</tr>
<tr>
<td>Elm</td>
<td>959</td>
<td>1971-1980</td>
<td>443</td>
<td>13.1</td>
<td>41</td>
</tr>
<tr>
<td>Tierfehd Linthal</td>
<td>815</td>
<td>1969-1973</td>
<td>418</td>
<td>15.5</td>
<td>36</td>
</tr>
<tr>
<td>Tierfehd Linthal</td>
<td>815</td>
<td>1971-1980</td>
<td>403</td>
<td>15.7</td>
<td>37</td>
</tr>
<tr>
<td>Glarus</td>
<td>515</td>
<td>1983-2012</td>
<td>158</td>
<td>19.3</td>
<td>31</td>
</tr>
<tr>
<td>Vättis</td>
<td>957</td>
<td>1971-1980</td>
<td>582</td>
<td>13.6</td>
<td>42</td>
</tr>
<tr>
<td>Platta Medels</td>
<td>1378</td>
<td>1969-1973</td>
<td>434</td>
<td>11.4</td>
<td>41</td>
</tr>
<tr>
<td>Disentis</td>
<td>1190</td>
<td>2009-2013</td>
<td>390</td>
<td>13.8</td>
<td>43</td>
</tr>
<tr>
<td>Andeer</td>
<td>987</td>
<td>2009-2013</td>
<td>654</td>
<td>14.4</td>
<td>43</td>
</tr>
<tr>
<td>Weissfluhjoch</td>
<td>2670</td>
<td>1971-1980</td>
<td>339</td>
<td>2.6</td>
<td>41</td>
</tr>
<tr>
<td>Davos</td>
<td>1580</td>
<td>1984-2008</td>
<td>755</td>
<td>8.1</td>
<td>42</td>
</tr>
<tr>
<td>Chur</td>
<td>555</td>
<td>1983-2012</td>
<td>728</td>
<td>16.1</td>
<td>44</td>
</tr>
<tr>
<td>Bad Ragaz</td>
<td>496</td>
<td>1973-1982</td>
<td>565</td>
<td>17.7</td>
<td>37</td>
</tr>
<tr>
<td>Vaduz</td>
<td>460</td>
<td>1973-1982</td>
<td>405</td>
<td>19.3</td>
<td>31</td>
</tr>
<tr>
<td>Heiden</td>
<td>810</td>
<td>1973-1982</td>
<td>265</td>
<td>16.0</td>
<td>35</td>
</tr>
<tr>
<td>Alstätten</td>
<td>430</td>
<td>1973-1982</td>
<td>135</td>
<td>20.0</td>
<td>29</td>
</tr>
<tr>
<td>Säntis</td>
<td>2500</td>
<td>1971-1980</td>
<td>327</td>
<td>3.1</td>
<td>41</td>
</tr>
</tbody>
</table>

Tabelle 7: Anzahl Stunden mit Föhn, Temperatur bei Föhn und Luftfeuchtigkeit bei Föhn an den ausgewerteten Klimastationen.
Tabelle 8: Anzahl Stunden mit Nordföhn, Temperatur bei Nordföhn und Luftfeuchtigkeit bei Nordföhn an den ausgewerteten Klimastationen.

<table>
<thead>
<tr>
<th>Station</th>
<th>Höhe</th>
<th>Zeitperiode</th>
<th>Anzahl Föhnstunden Jahr</th>
<th>Temperatur bei Föhn im Jahr</th>
<th>Luftfeuchtigkeit bei Föhn im Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplon</td>
<td>1475</td>
<td>1971-1980</td>
<td>1489</td>
<td>6.6</td>
<td>43</td>
</tr>
<tr>
<td>Airolo</td>
<td>1139</td>
<td>1971-1980</td>
<td>1797</td>
<td>7.6</td>
<td>46</td>
</tr>
<tr>
<td>Piotta</td>
<td>1007</td>
<td>1997-2013</td>
<td>1501</td>
<td>9.5</td>
<td>42</td>
</tr>
<tr>
<td>Matro</td>
<td>2180</td>
<td>1997-2013</td>
<td>1255</td>
<td>3.3</td>
<td>37</td>
</tr>
<tr>
<td>Comprovasco</td>
<td>544</td>
<td>1969-1973</td>
<td>1018</td>
<td>12.2</td>
<td>36</td>
</tr>
<tr>
<td>Bellinzona</td>
<td>229</td>
<td>1969-1973</td>
<td>806</td>
<td>13.9</td>
<td>32</td>
</tr>
<tr>
<td>Monte Bre</td>
<td>905</td>
<td>1971-1980</td>
<td>798</td>
<td>9.3</td>
<td>37</td>
</tr>
<tr>
<td>Lugano</td>
<td>276</td>
<td>1971-1980</td>
<td>640</td>
<td>15.0</td>
<td>30</td>
</tr>
<tr>
<td>Monte Gene- ros</td>
<td>1610</td>
<td>1997-2013</td>
<td>1093</td>
<td>5.7</td>
<td>38</td>
</tr>
<tr>
<td>Vicosoprano</td>
<td>1065</td>
<td>1969-1973</td>
<td>1771</td>
<td>7.8</td>
<td>42</td>
</tr>
<tr>
<td>Robbia</td>
<td>1078</td>
<td>1971-1980</td>
<td>1161</td>
<td>8.9</td>
<td>35</td>
</tr>
</tbody>
</table>

Abbildungen 34 zeigt die relative Luftfeuchtigkeit bei Föhn. Dabei sind sowohl der Süd- als auch der Nordföhn in Alpenkammnähe deutlich feuchter als in den tiefen Talsohlen der Alpentäler oder am Alpenrand. Der Südföhn weist unmittelbar nördlich des Alpenkamms etwa 50 % relative Luftfeuchtigkeit auf, bei Nordföhn sind es unmittelbar südlich des Alpenkamms...
etwa 45 %. In tiefen Lagen der nördlichen Alpentäler weist der Südföhn nur noch ca. 30 % relative Luftfeuchtigkeit auf, ähnlich trocken ist der Nordföhn in den Niederungen der Alpensüdseite. Die höhere relative Luftfeuchtigkeit am Alpenkamm überrascht nicht, denn in vielen Fällen mit Föhn auf der eine Seite der Alpen herrscht auf der anderen Seite trübes Wetter mit Niederschlägen. Somit wirkt sich der Föhneffekt wenige km vom Alpenkamm entfernt noch nicht so stark aus wie weiter stromabwärts. Gebiete, wo der Südföhn mit einer relativen Luftfeuchtigkeit von 50 % noch nicht sehr trocken ist, sind das Oberwallis vom Saastal bis ins Obergoms, das Urserental und das oberste Reusstal sowie das Tavetsch und das Rheinwald. Im Falle des Nordföhns sind mit relativen Luftfeuchtigkeiten von 40 bis 45 % unter anderem die Simplonsüdseite, das Bedrettotal, die oberste Leventina und das Bergell nicht so lufttrocken wie die Gebiete weiter südlich.

Abbildung 34: Relative Luftfeuchtigkeit bei Föhn im Jahr in %.
April die Föhngeschwindigkeit gegenüber dem Oktober und Januar um 25 % reduziert. In ei- nem nächsten Schritt wurde das Gebiet des Südföhns bzw. des Nordföhns gutachterlich in Windgeschwindigkeitsklassen gemäss Abbildung 36 unterteilt. Dabei stellt die Klasse 1 die höchste Windgeschwindigkeit bei Föhn dar, die Klasse 3 die kleinste. Tabelle 9 enthält die den in den Monaten Januar, April, Juli und Oktober sowie im Jahr den Klassen zugeordneten Windgeschwindigkeiten.

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Januar</th>
<th>April</th>
<th>Juli</th>
<th>Oktober</th>
<th>Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasse 1</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Klasse 1.5</td>
<td>34</td>
<td>25</td>
<td>25</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Klasse 2</td>
<td>25</td>
<td>19</td>
<td>19</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Klasse 2.5</td>
<td>18</td>
<td>14</td>
<td>14</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Klasse 3</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabelle 9: Den Klassen 1 bis 3 zugeordnete Windgeschwindigkeiten bei Süd- und Nordföhn in den Monaten Januar, April, Juli und Oktober sowie im Jahr in [km/h].

Zu den in Abbildung 36 enthaltenen Stärkeklassen ist zu bemerken, dass die stärkste Windklasse, nämlich die Klasse 1 nur für das untere Urner Reusstal, die Gebiete um Balzers im St. Galler Rheintal und um Meiringen im Haslital sowie beim Lauberhorn im Berner Oberland gegeben wurde. Die Klasse 1.5 wurde dem Rhonequertal zwischen Martigny und St. Maurice zugeordnet. Bei all diesen Gebieten handelt es sich um Orte, wo der Südföhn praktisch immer heftig bläst und durchschnittlich im Winter mit 40 km/h nordwärts braust. Im Falle eines Föhnsturmes sind Stundenmittel von 70-85 km/h möglich. Die übrigen Nord- Südtaeler erhielten in
der Regel die Stärkeklasse 2. Den Ost-West gerichteten Täler, wie das Vorderrheintal, das Prättigau oder das Rhonetal von Martigny aufwärts bis etwa Sion, wo man den Föhn als kräftiger Wind praktisch nicht kennt, wurde die Stärkeklasse 3 zugeordnet.

2.4.10 Potenzielle Evapotranspiration

Mit Hilfe der Monatsmittelwerte der Globalstrahlung, der Windgeschwindigkeit, der Luftfeuchtigkeit sowie der Lufttemperatur konnte die potenzielle Verdunstung flächendeckend für die ganze Schweiz mit einer Auflösung von 25 x 25 Meter berechnet werden für das Jahr sowie die Monate Januar, April, Juli und Oktober. Dabei kam die Penman-Monteith-Formel zur Anwendung.

2.5 Verwendung weiterer Standortsfaktoren

2.5.1 Karte der Substratgruppen

2.6 Literaturrecherche

2.7 Workshops, Einbindung von Experten

Auf der Basis der Literaturrecherche wurden in mehreren Workshops und mittels Befragungen von weiteren Experten die nachfolgenden Hypothesen formuliert, die anschliessend in den geostatistischen Analysen geprüft werden. Für ausgewählte Arealgrenzen und Höhenstufengrenzen wurden die relevanten Parameter ausgewählt.
2.8 Hypothesenbildung

2.8.1 Samendruck

Bei den folgenden Graphiken handelt es sich um Vermutungen, wissenschaftliche Belege, ob der Samendruck bei verschiedenen topographischen Gegebenheiten (isoliertem Berggipfel, ansteigende Talsohle etc.) eine Rolle spielt, fehlen bisher. Die nun folgenden Beispiele beziehen sich auf die Tanne und Fichte.

Verlauf der Tannengrenze an einem durchschnittlichen Hang:

![Diagramm Tannengrenze](image)

Abbildung 38: Tannengrenze an einem durchschnittlichen Hang.
Mögliches Ansteigen der Tannenobergrenze an einem isolierten Gipfel wegen mangelndem Samendruck der Fichte aufgrund der kleinen Fläche des Fichtenareals:

Abbildung 39: Tannengrenze an einem isolierten Gipfel.

Mögliches Absinken der Tannenobergrenze in einem Alpental mit hochgelegener Talsohle wegen mangelndem Samendruck der Tanne aufgrund der kleinen Fläche des Tannenareals im Talgrund:

Abbildung 40: Tannenobergrenze in einem Alpental mit hochgelegener Talsohle.
2.8.2 Karte Standortsregionen und Walliserkarte

2.8.2.1 Tannen-Haupteural – Tannen-Nebenareal – Tannen-Reliktareal

<table>
<thead>
<tr>
<th>Region</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uri Hauptareal – Nebenareal</td>
<td>Die sehr geringe thermische Kontinentalität im oberen Reusstal zwischen Amsteg und Göschenen ist entscheidend für das Vordringen des Hauptareals der Weisstanne bis Göschenen hinauf. Die Nebentäler sind infolge kleiner Kälteseen (nicht kartiert) deutlich kontinentaler.</td>
</tr>
<tr>
<td>Tessin Hauptareal – Nebenareal</td>
<td>Im Bleniotal und der mittleren Leventina wirkt hauptsächlich die Föhnhäufigkeit und die thermische Kontinentalität pro Jahr (bei 1000 m ü. M.). Aus diesem Grund dürfte sich das Hauptareal nordeponiert (hier geringere thermische Kontinentalität wegen geringerer Aufheizung tagsüber) deutlich weiter ins Tal erstrecken (ca. 4 - 5 km) als an den Südflanken. Die Niederschläge sind weniger wichtig.</td>
</tr>
<tr>
<td>Graubünden Nordalpen, Hauptareal – Nebenareal</td>
<td>Keine Hypothese erstellt.</td>
</tr>
<tr>
<td>Graubünden Nordalpen, Nebenareal – Reliktareal</td>
<td>Keine Hypothese erstellt.</td>
</tr>
<tr>
<td>Graubünden Misox und Calancatal, Hauptareal – Nebenareal</td>
<td>Keine Hypothese erstellt.</td>
</tr>
<tr>
<td>Graubünden Misox und Calancatal, Nebenareal – Reliktareal</td>
<td>Keine Hypothese erstellt.</td>
</tr>
<tr>
<td>Graubünden Bergell, Nebenareal – Reliktareal</td>
<td>Keine Hypothese erstellt.</td>
</tr>
</tbody>
</table>
2.8.2.2 Grenzen für Buchenareal

Es wurde beschlossen, dass beim Kanton Wallis und Graubünden das effektive Buchenareal interpretiert werden soll und nicht die Grenze 2a/2b (Buchengrenze) aus der Standortsregionenkarte (siehe Abb. 1). Beim Kanton Tessin und Uri wurde die Grenze 2a/2b und 4/5a verfeinert, es werden anhand dieser Grenze die ausschlaggebenden Klimaparameter bestimmt.

Es wird angenommen, dass die Ausbreitung der Buche mit den folgenden Parametern erklärbar ist: Lithologie, thermische Kontinentalität, Föhnhäufigkeit und Sommerniederschlag (Mai-Juli).

Die Buchengrenze soll möglichst getrennt nach den folgenden vier Lithologiegruppen betrachtet werden:
- Kalk
- armer Granit, evtl. Orthogneis
- Paragneis/-schiefer
- Bünderschiefer, evtl. Flysch

Bei gleichbleibender thermischer Kontinentalität wird angenommen, dass der Sommerniederschlag der entscheidende Faktor ist.

<table>
<thead>
<tr>
<th>Region</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uri 2a/2b</td>
<td>Es wird vermutet, dass eine Kombination der Faktoren Aaregranit (Hauptgrund), Föhn und evtl. Sommerniederschlag besteht. Im Gegensatz zu Chur ist das Gebiet weniger kontinental und der geologische Untergrund weniger kalkhaltig.</td>
</tr>
<tr>
<td>Tessin 4/5a</td>
<td>In der oberen Leventina sind vermutlich der Nordföhn (welcher der Hauptgrund für die niedrige Luftfeuchtigkeit darstellt) sowie eventuell die thermische Kontinentalität, welche zu Spätfrösten Anlass gibt, ausschlaggebend.</td>
</tr>
<tr>
<td>Graubünden, Nordalpen, Grenze Buchenareal</td>
<td>Bei Ilanz sind wahrscheinlich der häufigere Kaltluftsee und die geringeren Sommerniederschläge (unter 350 mm) entscheidend und beim Domleschg die geringere Luftfeuchte (häufig Südföhn) und ebenfalls der geringere Sommerniederschlag (unter 350 mm) im Vergleich zum Prättigau.</td>
</tr>
<tr>
<td>Graubünden, Misox, Grenze Buchenareal</td>
<td>Entscheidend ist der Nordföhn (geringe Luftfeuchte).</td>
</tr>
<tr>
<td>Fehlende Buche im Calancatal</td>
<td>Entscheidend ist der Nordföhn (geringe Luftfeuchte).</td>
</tr>
</tbody>
</table>
Fehlende Buche im Bergell: Entscheidend ist der Nordföhn (geringe Luftfeuchte).

Fehlende Buche im Puschlav: Entscheidend sind der Nordföhn (geringe Luftfeuchte) und die thermische Kontinentalität (Spätfröste).

Wallis, 2a/2b: Keine Hypothese erstellt.

Wallis, 3/5a: Entscheidend sind der Nordföhn und die Luftfeuchte (siehe TI-Modell).

2.8.2.3 Grenze für Fichte im Kanton Tessin

Nur an sonnigen, steinigen, konvexen Lagen verjüngt sich die Fichte noch mit einem gewissen Erfolg. Mikroklimatisch passiere also etwas zwischen 0 und 10 cm, die Klima-Messungen sind aber meistens nur in 2.5 m Höhe verfügbar.

Es wird vermutet, dass pathogene Pilze, welche sich unter langanhaltenden Nassschnee-Bedingungen (Luftfeuchte) mit gleichzeitig milden Temperaturen entwickeln, ausschlaggebend sind. Somit wäre eine Klima-Faktor-Kombination zu suchen, die die niedrige thermische Kontinentalität am Boden schildert. Ein ähnlicher Effekt ist auch im Urner Meiental und in der Göscheneralp zu beobachten. Auch hier hat die Fichte infolge sehr grosser Schneemengen und später Ausaperungszeit (Mai, teilweise Juni) an den Nordhängen Mühe und macht der Lärche Platz. Im Meiental in tiefsten Lagen unterhalb 1500 Meter gibt es deshalb auch Tannenbestände, obwohl dort die Tanne nur noch im Nebenareal ist. Unklar ist desweiteren die Abgrenzung im westlichen Teil des Tessins (Centovalli, Onsernone), wo die Kontinentalität gegenüber dem Verzascatal, dem unteren Maggiatal und dem Bavonatal ähnlich ist und die Fichten besser zu Gedeihen scheinen.

Die Grenze 5a (mit Fichtenvorposten) / 5b (ohne Fichte) weist nach G. Carraro keine echten klimatischen Unterschiede auf, die Trennung wurde vielmehr für die Förster gemacht, da mit wenigen Ausnahmen in 5b (Sottoceneri) menschenbedingt praktisch keine Nadelwälder mehr vorkommen (weder Fichte, Lärche, noch Tanne) auch wenn palinologische Funde sowie einzelne Exemplare und Gruppen auf ein gewisses Potential hindeuten (v.a. für Tanne, kaum für Fichte und Lärche, daher oft keine realistische Möglichkeit einer Wiederbesiedlung, NaiS-Profile werden auch anders gestaltet). Diese Grenzen werden nicht weiter untersucht.
2.8.2.4 Grenze 5b / M im Kanton Tessin

Bei dieser Grenze handelt es sich weniger um eine klimatische als um eine geologische. Die Standortsregion M ist eher subkontinental und weist ein ähnliches Klima auf wie die Po-Ebene. Frosttage im Winter 105 bei Stabio, 50 bei Mendrisio.

Nach G. Carraro ist die Anzahl Frosttage in der Po-Ebene (Stabio, Region „M“, fast 80 - 100 Frosttage) fast doppelt so hoch als in Insubrien (Mendrisio, Region „5b“, ca. 50 Frosttage). Dafür seien die Temperatur-Maxima im Sommer höher, was die Buche in den Tieflagen noch begünstigt und manche Immergrünen etwas schwächen kann. Diese Grenze wird nicht weiter untersucht.

2.8.2.5 Obergrenze Flauemeichenareal Walliser Haupttal

2.8.3 Höhenstufengrenzen aus NaiS-nahen Waldstandortskarten

Beschluss, dass wenn immer möglich mit der Obergrenze der Höhenstufe gearbeitet wird. Falls keine deutlichen Werte herauskommen, soll die Fläche zu Hilfe genommen werden für die Interpretation (aber nicht für Resultate). Es soll möglichst mit denselben Parametern gearbeitet werden um einen späteren Vergleich der Regionen zu vereinfachen.

2.8.3.1 Kantone Basel-Stadt und Basel-Landschaft

CO/SM:	Entscheidend ist der geologische Untergrund (Lithomap 3 + 4), die Temperatur und die ETa/ETp-Verhältnisse. Es ist zu erwähnen, in welchem Bereich Bodenkarte wichtig wird.
SM/UM:	Keine Hypothese erstellt.
UM/OM:	Keine Hypothese erstellt.

2.8.3.2 Kantone Genf und Waadt

| CO/SM: | Entscheidend sind die ETa/ETp-Verhältnisse sowie die Strahlung. Für die Auswertung sind ebenfalls das Gelände-modell und die Geologie entscheidend (da ETa/ETp zu wenig detailliert). |
2.8.3.3 Kanton Schaffhausen

<table>
<thead>
<tr>
<th>Kreis/Ausschuss</th>
<th>Relevante Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO/SM</td>
<td>Entscheidend sind die ETa/ETp-Verhältnisse, die Lithologie, die Bodeneigenschaften, der Niederschlag und die Spätfrüste.</td>
</tr>
<tr>
<td>SM/UM</td>
<td>Keine Hypothese erstellt.</td>
</tr>
</tbody>
</table>

2.8.3.4 Kantone St. Gallen und Appenzell Ausserrhoden

<table>
<thead>
<tr>
<th>Kreis/Ausschuss</th>
<th>Relevante Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM/UM</td>
<td>Entscheidend sind die Temperatur und der Niederschlag während der Vegetationsperiode, die Globalstrahlung im Juli und evtl. der Föhn. Falls die Ergebnisse zu wenig präzise ausfallen, sollte nach den vier 4 Lithoklassen aufgeschlüsselt werden.</td>
</tr>
<tr>
<td>UM/OM</td>
<td>Entscheidend sind die Temperatur und der Niederschlag während der Vegetationsperiode, die Globalstrahlung im Juli und evtl. der Föhn. Die Geologie (laubholzfördernd/nadelholzfördernd) ist wichtig.</td>
</tr>
<tr>
<td>OM/HM</td>
<td>Die Geologie (laubholzfördernd/nadelholzfördernd) ist wichtig. Entscheidend sind die Temperatur und der Niederschlag während der Vegetationsperiode, die Globalstrahlung im Juli und evtl. der Föhn.</td>
</tr>
<tr>
<td>HM/SA</td>
<td>Temperatur- und Strahlungsabhängig.</td>
</tr>
<tr>
<td>SA/OSA</td>
<td>Entscheidend sind wahrscheinlich Sonderstandorte.</td>
</tr>
</tbody>
</table>

2.8.3.5 Kanton Graubünden

Dieselben Parameter wie SG gehen nicht, diese sind zu wenig differenzierend.

Alpennordseite:

<table>
<thead>
<tr>
<th>Kreis/Ausschuss</th>
<th>Relevante Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO/SM Nordalpen:</td>
<td>Keine Hypothese erstellt.</td>
</tr>
<tr>
<td>SM/UM Nordalpen:</td>
<td>Keine Hypothese erstellt.</td>
</tr>
<tr>
<td>UM/OM Nordalpen:</td>
<td>Keine Hypothese erstellt.</td>
</tr>
<tr>
<td>OM/HM Nordalpen:</td>
<td>Entscheidend sind die thermische Kontinentalität, die Temperatur und die Globalstrahlung.</td>
</tr>
<tr>
<td>HM/SA Nordalpen:</td>
<td>Entscheidend ist die Temperatur während der Vegetationsperiode, die thermische Kontinentalität im Jahr und die Globalstrahlung.</td>
</tr>
<tr>
<td>SA/OSA Nordalpen:</td>
<td>Entscheidend sind wahrscheinlich Sonderstandorte.</td>
</tr>
<tr>
<td>HM/SA Engadin u. Münstertal:</td>
<td>Keine Hypothese erstellt.</td>
</tr>
<tr>
<td>SA/OSA Engadin und Münstertal:</td>
<td>Entscheidend sind die Globalstrahlung im Januar und die Lufttrockenheit im Januar, welche im Engadin häufig Fростtrocknis zur Folge haben. Damit fällt die Fichte in hohen Lagen aus, obwohl die Julitemperaturen ihr noch ein gedeihen ermöglichen würden.</td>
</tr>
</tbody>
</table>
2.9 Deskriptive Analysen

2.10 Projektablauf

Das Projekt lief planmäßig ab. Die Abgabefrist musste verlängert werden.
3 Ergebnisse

3.1 Grenzen aus Standortsregionenkarte und Walliser Karte

3.1.1 Grenzen für Tannen-Hauptareal – Tannen-Nebenareal – Tannen-Reliktareal

Allgemeines

Nachfolgend soll jeweils allgemein erst getestet werden, ob die in Kap. 2.8.2 erwähnten Hypothesen zutreffen. Regionale ausschlaggebende Faktoren werden jeweils zusätzlich unter „Hypothesen“ erwähnt.

Die Tabellen und Auswertungen zu den Tannenarealen befinden sich im Anhang B1.
3.1.1.1 Kanton Uri
In den Seitentälern Meiental und Göschenerntal ist die Situation ziemlich anders. Hier geht die Tanne nur noch an den Nordhängen als Bestand ins Tal hinein. Wenn die Talsohle 1100 bis 1200 m ü. M. übersteigt, verschwinden die Bestände sehr rasch, an den Südhängen finden sich bloss noch einzelne Exemplare am Taleingang. Hier darf man noch von einem Nebenareal der Tanne sprechen. Weiter taleinwärts kommt die Tanne nicht mehr vor. Im Urserental fehlt hauptsächlich wegen des mächtigen und intensiven Kaltluftsees die Tanne vollständig.

Uri: Grenze Hauptareal (HA) - Nebenareal (NA)

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Die sehr geringe thermische Kontinentalität im Bereich Amsteg-Göschenen ist entscheidend, dass das Hauptareal noch bis nach Göschental hinaufreicht.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die wichtigsten erklärenden Variablen für die Grenze des Tannen-Hauptareals sind:</td>
</tr>
<tr>
<td></td>
<td>• Sehr geringe thermische Kontinentalität im Hauptareal.</td>
</tr>
</tbody>
</table>

Im Vergleich mit den anderen Untersuchungsgebieten zeigt sich, dass die thermische Kontinentalität (sämtliche Parameter, ausser KONT-TABS1000) bis zum Übergang vom Haupt- zum Nebenareal sehr gering ist. So liegt beispielsweise die thermische Kontinentalität im Jahr im Reusstal bei nur 3.2°. Dies ist auch der wahrscheinlichste Grund für das üppige Vorkommen der Weisstanne im Reusstal bis über Göschental hinauf. So sind Kaltluftseen praktisch unbekannt, und die Tagesgänge der Temperatur sind gering. Hingegen ist die thermische Kontinentalität in den Seitentälern größer. Zum einen bilden sich in diesen Tälern (allerdings nur mässig ausgeprägte) Kältesseen, welche wegen ihrer Kleinheit und mangels fehlenden Messungen NICHT KARTIERT.
WURDEN. Aber auch an den Hängen sind die Unterschiede zwischen Tag und Nacht ausgeprägter, was aufgrund von Wärmebildern aufgezeigt werden kann.
Demgegenüber spielen die Jahressummen der Niederschläge keine Rolle für die Grenze, im Gegenteil. So hat es in Gurtnellen, wo sich mit 1100 mm die Trockenheitsinsel des Kantons Uri befindet, grosse Weisstannenbestände. Hingegen fehlen in Färnigen im Meiental, wo mehr als 1400 mm gemessen werden, die Tannen vollständig. Höhere Niederschläge würden aber für mehr Weisstannen im Meiental als im Hauptal sprechen.
Die Geologie ist nicht ausschlaggebend für die Grenze, der größte Teil der Region liegt im basenarmen Aaregranit, nur das obere Meiental erstreckt sich durch den Erstfeldergneis.

| Vergleich mit Hypothese und Literatur: | Die Hypothese konnte bestätigt werden. |
Uri: Grenze Nebenareal (NA) - Reliktareal (RA)

Hypothese:
Der Wert der thermischen Kontinentalität liegt höher als bei der Grenze Hauptareal – Nebenareal.

Ergebnis:
Die wichtigsten erklärenden Variablen für die Grenze des Tannen-Nebenareals sind:
- **Zunehmende thermische Kontinentalität** vom Nebenareal zum Reliktareal: KONTJAHRT1000 (mean TaNA: 3.5°C; mean TaRA: 3.8° (dortige Kaltluftseen nicht berücksichtigt, sonst mean TaRA noch weit höher als 3.8°); weitere Werte siehe Anhang).

Kartenausschnitt: Kontinentalität im Jahr auf 1000m.

Am ausgeprägtesten ist die thermische Kontinentalität im Urserental, welches bei Andermatt einen ausgeprägten Kältesee aufweist und tannenfrei ist. Im Meiental und in der Göscheneralp spielt neben den mässig ausgeprägten Kaltluftseen vermutlich auch der geringere Samendruck eine Rolle, fällt doch der subalpinen Stufe ein grosses Gebiet zu, während die hochmontane Stufe zwischen die hochgelegene Talsohle von meist über 1200 Meter und der Obergrenze der hochmontanen Stufe bei 1500 Metern eingezwängt ist. Das ohnehin für die Tanne ungünstiger werdende Klima, welches die Tanne bereits schwächt, lässt also an sich schon nur noch wenige Tannenbestände zu. Der vermutlich damit einhergehende schwache Samendruck verschlechtert das Verhältnis der Tanne zu den anderen Baumarten gleich nochmals, was die Tanne taleinwärts irgendwann ganz aussteigen lässt.

Die Geologie kann die Grenze nicht erklären, es gibt keine wesentlichen Unterschiede zwischen dem Haupt-, Neben- und Reliktareal.
Vergleich mit Hypothese und Literatur:
Die Hypothese konnte bestätigt werden.

3.1.1.2 Kanton Tessin und Misox und Calancatal vom Kanton Graubünden

Es kann unter natürlichen Verhältnissen Jahrtausende dauern, bis sich eine etwas konkurrenzstärkere Baumart (in diesem Fall die Fichte gegenüber der Tanne) endgültig durchsetzt. Der Mensch kann also durch seine Eingriffe eine Baumartenentmischung einleiten und beschleunigen, welche sich unter natürlichen Verhältnissen in einigen Jahrtausenden von selbst eingestellt hätte. Immerhin gilt zu beachten, dass die Fichte in der Leventina in ein zuvor von der Tanne besetztes Areal einwandern musste. Die Tannenstandorte hingegen konnten sich noch über Jahrtausende halten, allerdings wurden sie laufend etwas kleiner durch natürliche Störungen. Griff nun der Mensch noch ein, so dezimierte sich das Tannenareal in schnellerem Ausmass, weil die Bestände geöffnet wurden, und die Fichte – dem Pioniercharakter der südalenischen Weisstanne zum Trotz - Freiflächen schneller besiedeln kann als die Weisstanne. Hat die Fichte ein solches Areal erobert, so wird es für die Weisstanne wahrscheinlich schwierig, ein solches Areal zurückzuerobern, sind doch die Verjüngungsschancen in den vom Nordföhn oft stark austrocknenden Lagen bedeutend schlechter als diejenigen der Fichte, zumal hier auch die Frostwechseltage häufiger als weiter im Süden vorkommen. Dies gilt in besonderem Masse an den Südhangen, wo auf Xeromoder selbst die Fichte grosse Schwierigkeit hat, sich zu verjüngen (trockener Schneesimsen-Fichtenwald, welcher fast den ganzen Südhang der oberen und grosse Teile der mittleren Leventina einnimmt). Auch scheint an diesen Lagen das natürliche Feuerregime eine nicht unbedeutende Rolle zu spielen oder zumindest gespielt haben. An den Sonnenhängen der mittleren Leventina hat es grossflächige Föhrenbestände, welche laut Pollenanalysen (Zoller, 1960) natürlich sein müssen, denn die Föhre war in der Leventina seit Beginn der Wiederbewaldung immer anwesend, die meiste Zeit sogar häufiger als heute. Höchstwahrscheinlich haben also an diesen Südhangen natürliche Feuer stattgefunden, denn sonst hätte die Fichte diese nicht allzu flachgründigen Böden besiedelt. Eine erhöhte Feueraktivität wirkt sich für die Weisstanne nachteilig aus (Tinner et al, 1999).
Hypothese:
Im oberen Bleniotal und der oberen Leventina wirkt sich hauptsächlich die Föhnhäufigkeit und die thermische Kontinentalität aus.

Ergebnis:

Die wichtigsten erklärenden Variablen für die Grenze des Tannen-Hauptareals sind:

- **Zunehmende Föhnhäufigkeit:** FOEHNJAHRR (mean TAHA: 13.2 %, mean TaNA: 15.5 %), FOEHNAPRILL (mean TAHA: 13.3 %, mean TaNA: 17 %).

Zunehmende thermische Kontinentalität vom Hauptareal zum Nebenareal: KONTJAHRR1000 (mean TaHA: 4.5°C; mean TaNA: 4.8°C, wobei die Kaltluftseen nicht berücksichtigt sind und die KONTJAHRR1000 im TaNA im Fall der oberen Leventina markant erhöhen würde. Weitere Werte siehe im Anhang.

Kartenausschnitt: Föhnhäufigkeit im Jahr, Grenzwert bei ca. 14 %, d.h. bei 51 Föhntagen im Jahr.

Vergleich mit Hypothese und Literatur:
Die Hypothesen decken sich im Wesentlichen sich mit den Resultaten.

Der Einfluss der Schneebedeckung kann zusätzlich entscheidend sein für das unterschiedliche Vorhandensein von Tannen an Nord- und Südhängen (Details siehe Kap. Bergell), weil im Januar zudem häufig der kalte, trockene Nordföhn bläst (zwischen 17.5 – 19.1 %), was die Gefahr von Frosttrocknis verstärken kann.
Tessin, Misox und Calancatal: Grenze Nebenareal (NA) - Reliktareal (RA)

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Entscheidend sind die thermische Kontinentalität und die Föhnhäufigkeit. Die Tannen stocken v.a. noch in geschützten Mulden am Nordhang auf tiefgründigen Böden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die wichtigsten erklärenden Variablen für die Grenze des Tannen-Nebenareals sind:</td>
</tr>
<tr>
<td></td>
<td>• Zunehmende Föhnhäufigkeit: FOEHNHJAHRR (mean TANA: 15.5 %; mean TaRA: 17.7 %), FOEHNHAPRIL (mean TANA: 17 %; mean TaRA: 20.6 %), wobei bei der Föhnhäufigkeit im Jahr der Grenzwert von 17 % am besten mit der Grenze übereinstimmt.</td>
</tr>
<tr>
<td></td>
<td>• Zunehmende thermische Kontinentalität vom Nebenareal zum Reliktareal: KONTJAHRR1000 (mean TaNA: 4.8°C; mean TaRA: 5.0°C).</td>
</tr>
<tr>
<td></td>
<td>• Kaltluftseen: Speziell in Gebieten mit hochgelegener Talsohle im TaRA (Airolo, Bedrettotal, Campo Blenio, Pian San Giacomo im Misox könnten zusätzlich die Kaltluftseen, welche die thermische Kontinentalität in diesen Gebieten deutlich erhöhen und vielerorts auf weit über 5.0°C erhöhen, die Tanne stärker einschränken als im TaNA.</td>
</tr>
<tr>
<td>Vergleich mit Hypothese und Literatur:</td>
<td>Die Hypothese konnte im Wesentlichen bestätigt werden.</td>
</tr>
</tbody>
</table>

Kartenausschnitt: Föhnhäufigkeit im Jahr, der Grenzwert liegt im Bereich von 17 %, d.h. bei 62 Tagen.
Übriger Kanton Graubünden

Nach Zuber & Bühler 2011 gibt es in Graubünden auch Vorkommen auf Trockenstandorten (ähnlich Wallis) im Unterengadin, Albatal, Surses und im Schams.

Nordalpen: Grenze Hauptareal (HA) - Nebenareal (NA)

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Ergebnis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td>Die Arealgrenze zwischen Tannen-Hauptareal und Tannen-Nebenareal in Graubünden lässt sich anhand der klimatischen Parameter nicht eindeutig erklären. Die ausgewählten klimatischen Parameter unterscheiden sich in den Waldbereichen beiderseits der jeweiligen Grenzabschnitte nur marginal. Im Folgenden werden die wichtigsten Unterschiede zwischen den beiden Arealen aufgezeigt:</td>
</tr>
<tr>
<td></td>
<td>• Zunehmende Föhnhäufigkeit im Juli: FOEHNHJUL (mean TAHA: 2.9 %; mean TaNA: 5.1 %), wobei bei der Föhnhäufigkeit im Jahr der Grenzwert von 3.2 % am besten mit der Grenze übereinstimmt.</td>
</tr>
<tr>
<td></td>
<td>• Zunehmende thermische Kontinentalität vom Hauptareal zum Nebenareal (v.a. bei Kontinentalität im April und Juli, Werte siehe Anhang und Kartenausschnitt).</td>
</tr>
<tr>
<td></td>
<td>• Abnehmender Niederschlag im Sommer (mean TAHA: 454.6 mm; mean TaNA: 385.7 mm) und abnehmende Luftfeuchtigkeit im April und Juli (Werte siehe Anhang).</td>
</tr>
</tbody>
</table>
| | **Alle diese Parameter sind einzeln zu gering, um die Tanne zu dezi-**mieren. Dies besonders bei der Föhnhäufigkeit (in diesem Fall Südföhn) im Juli von nur 3.2 %, während die Föhnhäufigkeit auf der Alpensüdseite (in diesem Fall Nordföhn) viel die grössere Häufigkeit aufweist, dort aber allerdings neben der thermischen Kontinentalität auch der einzige Grund für das Zurücktreten der Tanne ist. Auch der Sommerniederschlag scheint zu hoch zu sein, gibt es doch im Wallis noch ein Tannen-Nebenareal bei Sommerniederschlägen von 200 mm (im Wallis aber wahrscheinlich auch andere Ökotypen der Tanne). Die **Kombination dieser Faktoren** (erhöhte Südföhnhäufigkeit, Abnahme der Sommerniederschläge, Zunahme der thermischen Kontinentalität
und allgemeine Abnahme der Luftfeuchtigkeit [nicht nur wegen der Zunahme der Föhnhäufigkeit]) wirken sich als Ganzes negativ aus auf die Tannenverbreitung in Nord- und Mittelbünden. Auch spielt höchstwahrscheinlich die Geologie eine erhebliche Rolle bei der Verbreitung der Weistanne. So scheint die Tanne speziell auf nährstoffreichen Bündnerschiefer, welcher auch tiefgründige, gut mit Wasser versorgte Böden bildet, viel weiter ins Alpeninnere vorzudringen als auf flachgründigen Böden, es sei denn, diese beherbergen tiefe Fels- spalten, in welchen die Tanne noch erstaunlich gut wächst.

Kartenausschnitt: Föhnhäufigkeit im Juli.

Kartenausschnitt: Thermische Kontinentalität im April auf 1000m, eine Abgrenzung ist am ehesten beim Wert 5.2°C vorhanden.
Mit der Geologischen Karte und der Lithologischen Karte kann die Arealgrenze auch nicht erklärt werden. Am ehesten könnte die lokal sehr unterschiedlich ausgeprägte Moränenbedeckung eine Rolle spielen (Arealgrenze im Prättigau).

Vergleich mit Hypothese und Literatur:

Nordalpen: Grenze Nebenareal (NA) - Reliktareal (RA)

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die wichtigsten erklärenden Variablen für die Grenzen des Tannen-Nebenareals sind:</td>
</tr>
</tbody>
</table>
Vergleich mit Hypothese und Literatur:

<table>
<thead>
<tr>
<th>Kartenausschnitt: Kontinentalität im Juli auf 1000m. Der Grenzwert liegt bei den Südtälern im Bereich von 7.6°C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kartenausschnitt: mittlere Januar-Temperaturen.</td>
</tr>
</tbody>
</table>

Es wurde keine Hypothese erstellt. Auch hier wäre eine feinere Unterteilung / Regionalisierung der Untersuchungen sinnvoll, da z.B. das Niederschlagsregime sehr unterschiedlich in der Region Surselva, Prättigau oder Albulatal ist.

Nach Frey 2003 ist an südexponierten Hängen die Einstrahlung in den kontinentalen Gebieten besonders gross (geringere Bewölkung), was der Tanne im Allgemeinen nicht zu behagen scheint, weil dies die thermische Kontinentalität erhöht. Vor allem bei den Tannen-Inseln wirken mikroklimatische Faktoren mit, wie z.B. der Schlucht-Effekt (an engen Taleinschnitten bestehen eine höhere Luftfeuchte und auch eine geringere thermische Kontinentalität, dies wiederum begünstigt die Weisstanne). Nach Campell et al. (1955) kommen die Tannen-Inseln v.a. noch auf den tiefgrünigsten Tonschieferböden und in schattigen Lagen vor. Nach Vanoni (2012) sind die Bestände im Reliktareal alle bereits in fortgeschrittenem Bestandesalter und weisen meist keine Verjüngung auf!
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaIS plausibel erklären?“

Bergell: Grenze Nebenareal (NA) - Reliktareal (RA)

Ausführungen zur Verbreitung der Weisstanne: Innerhalb des Tales kann ein Tannengradient von oben nach unten (kontinental > insubrisch) festgestellt werden. Lokal kühlere und feuchtere Standorte werden durch die Tanne bevorzugt. Westlich von Vicosoprano vermag die Tanne die Bestände der N-exponierten Talflanke zu dominieren, während sie auf der S-exponierten Flanke stark zurücktritt.

Hypothese: Keine (ev. Föhneinfluss, Exposition).

Ergebnis: Die wichtigsten erklärenden Variablen für die Grenze des Tannen-Nebenareals sind:

- **Zunehmende thermische Kontinentalität im Januar vom Nebenareal zum Reliktareal**: KONTJAHR1000 (mean TaNA: 4.8°C; mean TaRA: 5.0°C). Zudem erhöht der Kaltluftsee von Löbbia die thermische Kontinentalität im TaRA zusätzlich.

- **Zunehmende Föhnhäufigkeit im Januar**: FOEHNHJAN (mean TaNA: 16.6 %; mean TaRA: 17.8 %), wobei bei der Föhnhäufigkeit im Januar der Grenzwert von 17 % am besten mit der Grenze übereinstimmt. Dies führt wiederum zu geringer Luftfeuchtigkeit, was der Tanne nicht behagt.

Kartenausschnitt: Föhnhäufigkeit im Januar, Grenzwert liegt im Bereich von 17%.

Der Nordföhn ist eindeutig am häufigsten auf der Simplonsüdseite, in der Leventina und im Bergell. Dabei ist der Nordföhn in Alpenkammnähe deutlich feuchter als in den tiefen Talsohlen der Alpentäler oder am Alpenrand. Im Falle des Nordföhnens sind mit relativen Luftfeuchtigkeiten von 40 bis 45 % die Simplonsüdseite, das Bedrettotal, die oberste Leventina und das Bergell zwar nicht so lufttrocken wie die Gebiete weiter südlich. Die jährliche Verdunstung ist aber mit bis zu 250 mm in der Leventina, im Bleniotal, im Misox sowie im Bergell und im Puschlav und auf der Simplonsüdseite am größten. Dies sind die Gebiete, wo sehr häufig der Nordföhn auftritt und die mittlere Luftfeuchtigkeit deutlich geringer ist als in den anderen Gebieten der Alpensüdseite.
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaS plausibel erklären?“

Kartenausschnitt: Kaltluftseen (grüne und violette Flächen) mit Minimum-Temperaturen im Januar.

Vergleich mit Hypothese und Literatur:

Die Tanne kann sich im Bergell nur noch an Schattenhängen halten, wegen der hohen Einstrahlung sonnseits (dort geringere Luftfeuchtigkeit und erhöhte thermische Kontinentalität). Hauptgrund, weshalb die Tanne im Bergell nur noch an Nordhängen auftritt, dürfte der gleiche sein wie im Tessin und im Misox, nämlich der Nordföhn. Ev. wirkt auch der fehlende Schutz der Schneedecke (Frosttrocknisgefahr). Auf der folgenden Karte ist die jeweilige Abweichung vom gesamtschweizerischen Mittel der Schneehöhenverteilung ersichtlich. Hier tritt klar hervor, dass das Bergell, das Puschlav, das Wallis, das Engadin und Teile von Nordbünden eine bis über 50 % geringere Schneebedeckung im Februar aufweisen als im Mittel.

Entscheidend wären die Klimawerte der Mitteltemperatur und der Kontinentalität im Monat Mai und Juni (Kartengrundlagen fehlen. So wären Aussage über Frosteinbrüche möglich: Je wärmer die Temperatur und je höher die Kontinentalität, je höhere Schwankungen gibt es).

Neben klimatischen Faktoren hat wahrscheinlich auch die starke landwirtschaftliche Nutzung an der Südflanke zum Fehlen der Tanne beigetragen, wahrscheinlich ist der Beweidungsdruck (Ziegen!) seit Jahrhunderten höher als auf der steileren N-Flanke.

Puschlav: Grenze Nebenareal (NA) - Reliktareal (RA)

Angaben zur Verbreitung der Weisstanne: Bis zum Lago di Poschiavo sind Tannen mehr oder weniger häufig eingestreut, dominieren die Bestände jedoch kaum. Nördlich von Poschiavo sind nur noch Relikte anzutreffen.

Hypothese:	keine
Ergebnis:	Die wichtigsten erklärenden Variablen für die Grenze des Tannen-Nebenareals sind:
	• Zunehmende thermische Kontinentalität vom Nebenareal zum Reliktareal (Werte siehe Anhang).
	• Zunehmende Föhnhäufigkeit: FOEHNJAHR (mean TaNA: 12.6 %; mean TaRA: 14.6 %), FOEHNHAPRIL (mean TaNA: 15.7
%, mean TaRA: 18.8 %), FOEHNHJAN (mean TaNA: 16.5 %, mean TaRA: 17.2 %).

- Einfluss von Kaltluftsee, welcher die thermische Kontinentallität im Puschlav oberhalb Le Prese deutlich erhöht.
- Lithologie und Wasserverfügbarkeit.

Die grösseren Tannen-Bestände stocken alle auf saurem Gestein. Der Nordföhn erreicht im Puschlav die höchsten Windgeschwindigkeiten. Im Reliktareal bei Angeli Custodi gibt es noch ein grösseres Gebiet mit Tannenvorkommen im Altbestand (10 - 49 %). Die Bestände stocken in einem vor dem Nordföhn geschützten Maiensässkessel („La Möglia“).

Kartenausschnitt: Tannenbestände im Reliktareal. Legende: oranger Layer = Tannenanteil 10 - 29 %; roter Layer = Tannenanteil 30 - 49 %.

Kartenausschnitt: Kaltluftsee im Bereich und oberhalb der Nebenarealgrenze. Legende: graublaue Fläche = Kaltluftsee; Wert -4.5°C = Januar – Minimumstemperatur.
Das Puschlav ist ausserdem schneearm, somit entfällt der Schutz vor Frosttrocknis und vor Spätfrösten bei der Tanne.

Vergleich mit Hypothese und Literatur:
3.1.1.4 Kanton Wallis

Wallis: Grenze Hauptareal (HA) - Nebenareal (NA)

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die Variable, die am ehesten für die Grenze des Tannen-Hauptareals ausschlaggebend ist, ist die zunehmende thermische Kontinentalität vom Hauptareal zum Nebenareal: KONTJAHR (mean TaHA: < 3.9°C; mean TaNA: 3.9 - 4.9°C). Ausserdem ist im Hauptareal der Sommer-Niederschlag um 100 mm höher, zudem sind die Nebelhäufigkeit (und somit höhere Interzeption) und die Luftfeuchte höher – alles klimatische Bedingungen, die die Tanne fördern.</td>
</tr>
<tr>
<td>Vergleich mit Hypothese und Literatur:</td>
<td>Es wurde keine Hypothese erstellt.</td>
</tr>
</tbody>
</table>

Wallis: Grenze Nebenareal (NA) - Reliktareal (RA)

|-------------|-------|
| Ergebnis: | Die wichtigsten erklärenden Variablen für die Grenze des Tannen-Nebenareals sind:
 - **Zunehmende thermische Kontinentalität** vom Nebenareal zum Reliktareal: KONTJAHR (mean TaNA: 4.9°C; mean TaRA: 5.7°C), KONTJUL (mean TaNA: 8.2°C; mean TaRA: 9.0°C).
 - **Kaltluftsee** im Obergoms, welcher die thermische Kontinentalität in diesem Bereich des Reliktareals noch deutlich erhöht. |
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaS plausibel erklären?“

Kartenausschnitt: Kaltluftseen im Obergoms mit Temperatur-Tiefstwerten im Januar.

Kartenausschnitt: Niederschlag im Jahr; 650 mm/J bezeichnet Vacik et al. 2010 als für die Tanne begrenzend, und nach Tinner et al. 2013 700-800 mm/J. Dieser Faktor ist nur für die Untergrenze der Tanne am Nordhang im Zentralwallis wesentlich.

Die unterschiedlichen Niederschlagsverhältnisse an der unteren Arealgrenze an Süd- und Nordhängen zeigen die entscheidende Wirkung der Reliefabschirmung bzw. der Strahlungsverhältnisse auf die Evapotranspiration.

nach Lingg 1986 für die Tanne im Kontaktbereich zu den Klimaxföhren- und Fläumeichenwäldern zum ökologischen Schlüsselfaktor.
Schlussfolgerungen Tannenarealgrenzen:

Es scheint nach den vorliegenden Auswertungen so zu sein, dass bei einer jährlichen Föhnhäufigkeit von über 15 - 17 %, wie sie in den oberen Talabschnitten der Alpensüdseite vorkommt, die Tanne nur noch Reliktbestände aufweist. Dies gilt auch dann, wenn die anderen Faktoren an sich für die Tanne noch günstig wären. Auch scheint es so zu sein, dass bei einer thermischen Kontinentalität, welche auf 1000 Metern 5 Grad überschreitet, unabhängig von anderen Faktoren, die Tanne nur noch Reliktbestände aufweist.

Ausserdem wird es für die Tanne bei Sommerniederschlägen unter 200 mm und/oder Jahresniederschlägen unter 650 - 800 mm kritisch (nur noch an den Nordhängen im Wallis kommen Tannen bei tieferen Niederschlagswerten vor), insbesondere, wenn durch hohe Sommertemperaturen und geringe Luftfeuchtigkeit die Verdunstung gefördert wird, wie zum Beispiel im Zentralwallis.

Für den Übergang vom Haupt- zum Nebenareal scheint eine jährliche Kontinentalität auf 1000 Metern von 3.5 - 4 Grad die plausibleste Grenze zu sein, auch wenn die übrigen Faktoren noch günstig sind. Auch eine jährliche Föhnhäufigkeit von 12 – 15 % scheint auszureichen (kommmt allerdings nur in den oberen Tälern der Alpensüdseite vor), um die Tanne soweit zu benachteiligen, dass sie sich auf günstige Nordhänge, tiefgründige Böden u. ä. zurückzieht.

Es versteht sich von selbst, dass bei lokalen Kaltluftseen oder strahlungsreichen Südhängen, welche beide die thermische Kontinentalität ansteigen lassen, die Tanne bereits in Gebieten ausfallen kann, wo das regionale Klima für sie an und für sich noch günstig wäre. Bei hochgelegenen Talabschnitten ist es höchstwahrscheinlich so, dass wegen nachlassendem Samendruck die Grenze einer Baumart, so auch der Tanne, gegen die Talhintergründe stark absinkt (um einige 100 Meter) und einer anderen Baumart (hier meist die Fichte) weichen muss, auch wenn sich die klimatischen Bedingungen kaum ändern. Genau umgekehrt ist es bei einem isolierten Gipfel, wo die obere Stufe flächenmässig nur einen geringen Anteil hat. Hier erzeugt deshalb die in dieser Stufe vorkommende Baumart, zum Bsp. Fichte, einen geringeren Samendruck als die in der tieferen Stufe vorkommende Baumart, zum Bsp. die Tanne, weil die Fläche nach unten stark zunimmt. Dementsprechend wird hier die Grenze zwischen Tanne und Fichte eher nach oben verschoben, siehe Abschnitt Samendruck.

Wenn im Folgeprojekt die Tannenarealgrenzen modelliert werden, ist die Formel f(thermische Kontinentalität, Föhnhäufigkeit, Sommerniederschlag [Mai-Juli], relative Luftfeuchtigkeit, Lithologie) mit der Unterteilung in zwei Formeln:

- Tannengrenze auf durchlässigen Kalkböden (oder basischen Böden)
- Tannengrenze auf sonstigen Böden (restliche Lithologieklassen).

Weitere, hier nicht berücksichtigte Literatur wie Forrester et al. 2013, Zingg & Bürgi 2008, Lebourgeois 2010 und 2013, etc. befindet sich im Anhang A. Bei WINALP (Mellert et al. ohne Jahr) kamen sie aufgrund ihrer Modellierungen zu folgenden Ergebnissen:

Ausschnitte aus Ergebnissen aus WINALP (Mellert et al. ohne Jahr). Anmerkung: Die farbigen Bänder zeigen die Streuung. Es konnte nicht eruiert werden, ob das Vorkommen oder das Wachstum modelliert wurde.

Klosterhuber 2005 und Vacik et al. 2010 kamen bei den Waldtypisierungen des Südtirols und Tirols zum Schluss, dass die Tatsache auffallend sei, dass sich zwischen den Fichten- und Tannenzonen (z.B. in den Seitentälern des Wipptales) in aneinandergrenzenden Landschaftsräumen keine offensichtlichen klimatischen Unterschiede zugunsten der Tannen-
3.1.2 Buchen-Arealgrenze

Allgemeines
Um die Buchenarealgrenzen klimatisch erklären zu können, wurden jeweils die Ausprägungen der ausgewählten Klimaparameter in der Waldfläche im Bereich der Höhenstufe 800-1300 m (Höhenstufen mit Buchenvorkommen) beiderseits der Arealgrenze ausgewertet. Somit bestehen Mittelwerte und Standardabweichungen vom Buchenareal und der benachbarten übrigen Fläche (jeweils als Gesamtareal). Bei signifikanten, physiologisch erklärbaren Klimaparametern wurde jeweils versucht, den Grenzwert genauer zu bestimmen. Eine genaue Erörterung des Wertebereichs wird im geplanten Teil B erfolgen (um die Grenzen genauer festlegen zu können). Bei der Aufzählung der wichtigsten erklärenden Variablen werden jeweils in Klammern die Mittelwerte (mean) für die Buchenarealfläche (BuAR) und die übrige Fläche (üF) angegeben. Die detaillierten Ergebnisse können in Anhang B2 nachgeschaut werden.

Die Tabellen und Auswertungen zu den Buchenarealen befinden sich im Anhang B2.

Abbildung 43: Buchenareale nach NaIS (es wurden Anpassungen getätigt, um die Genauigkeit der Resultate zu erhöhen [v.a. im Wallis durch Lokalkenntnisse von JB und im Kt. GR aufgrund der kantonalen Bestandeskartierungen]).
3.1.2.1 **Kanton Uri**

- der Föhn,
- der nährstoffarme Aaregranit,
- die relativ geringen Niederschläge im Sommer,
- Spätfröste und Winterkälte.

Die Parameter Spätfröste und Winterkälte können NICHT die Ursache sein, ist doch das obere Reusstal das frostärmste und in der Nacht mildeste Tal des Alpennordhangs. Auch bei den absoluten Minima werden die Tiefstwerte der anderen Alpentäler, wo die Buche reichlich vorkommt, nicht erreicht.
Auch der Föhn scheidet als alleiniger Faktor aus, hat doch das Reusstal bei Silenen heftigeren Föhn und das Churer Rheintal fast ebenso häufigen Föhn. Die Buche kommt jedoch in den letztgenannten Gebieten als Bestand vor.

Uri: Grenze nördliche Zwischenalpen mit Buche und ohne Buche (2a/2b)

Hypothese:	Es wird vermutet, dass eine Kombination der Faktoren Aaregranit (Hauptgrund), Föhn und Sommerniederschlag besteht (und ev. Luftfeuchte). Im Gegensatz zu Chur ist das Gebiet weniger kontinental und der geologische Untergrund weniger kalkhaltig.
Ergebnis:	Die wichtigsten erklärenden Variablen für die Buchenarealgrenze sind:
	• **Zunehmende Föhnhäufigkeit** vom Buchenareal zur übrigen Fläche: FOEHNHJAH (mean BuAR: 6.8 %; mean üF: 10.7 %), FOEHNHJAN (mean BuAR: 5.4 %; mean üF: 9.2 %), FOEHNHAPR (mean BuAR: 15.4 %; mean üF: 17.9 %), FOEHNHJUL (mean BuAR: 4.8 %; mean üF: 7.1 %), FOEHNHOKT (mean BuAR: 11.8 %; mean üF: 16.5 %); wobei FOEHNHJUL (Grenzwert im Bereich von 6.6 %) und FOEHNHJAN (Grenzwert im Bereich von 8.5 %) die Grenze am treffendsten widerspiegeln (siehe folgende Kartenausschnitte). Die Föhnhäufigkeit ist gekoppelt mit einer geringen relativen Luftfeuchte, der hohen Verdunstung bei Föhn und der potenziellen Evapotranspiration.
	• **Abnehmender Niederschlag im Sommer** vom Buchenareal zur übrigen Fläche (mean BuAR: 551 mm; mean üF: 427 mm; Grenzwert im Bereich von 440 mm).

Wie später (siehe Kt. GR) noch erläutert wird, reicht die Föhnhäufigkeit alleine höchst wahrscheinlich nicht aus, die Buche zum Verschwinden zu bringen, zumal auf der Alpensüdseite die Nordfohnhäufigkeit an der Arealgrenze der Buche deutlich höher liegt. Dies insbesondere dann, wenn die Föhnhäufigkeiten tagsüber untersucht werden, welche bekanntlich für die Pflanzen wichtig sind, während die nächtlichen Föhnhäufigkeit wohl eine deutlich geringere Rolle spielen.
Um den Einfluss des Aaregranits aufzeigen zu können, müsste der Kanton Uri mit einem Tal nördlich der Alpen mit ähnlichen Klimawerten verglichen werden können. Immerhin setzt im sommerfeuchten, aber allerdings ebenfalls fähnfreichen Oberhasli bei Guttannen die Buche auf Aaregranit vollständig aus, während sie auf Gneis noch Bestände bildet.

Kartenausschnitt: Föhnhäufigkeit im Juli, Grenzwert bei Buchenarealgrenze bei ca. 6.6 %, d.h. bei etwa 49 Föhnstunden im Monat.

Kartenausschnitt: Föhnhäufigkeit im Januar, Grenzwert bei Buchenarealgrenze bei ca. 8.5 %, d.h. bei etwa 63 Föhnstunden im Monat.
Vergleich mit Hypothese und Literatur:

Kartenausschnitt: Niederschlag von Juni-August, Grenzwert bei Buchenarealgrenze bei ca. 440 mm.
Kalkschutt wird sie zudem von der Waldföhre abgelöst. Auf flachgründigen und stark austrocknenden Felsstandorten stocken Eichenwäldchen, und vor allem im föhneprägten Haupttal auf Silikatgestein treten grossflächige Föhrenbestände (Heidekraut-Föhrenwald, Einheit 68) auf, die neben den natürlichen Extremstandorten aufgrund der früheren Waldnutzung auch noch potentielle Buchenstandorte besiedeln. Im Bereich des Aaregranites mit seiner ungünstigen Bodenentwicklung wird die Buche bereits auf 800 m ü. M. von Tannen- und Fichtenwäldern abgelöst.

3.1.2.2 Südtäler der Schweiz

Bei der Auswertung der Buchenareale der Südtäler der Schweiz wurde das Tessin, Misox, Calancatal, Bergell, Puschlav und das Gebiet bei Gondo (VS) berücksichtigt.

Tessin, Misox, Calancatal, Bergell, Puschlav und Gondo: Grenze südliche Randalpen mit Buche und südliche Zwischenalpen ohne Buche (5a/4), sowie Grenze südliche Randalpen mit Buche und kontinentale Hochalpen ohne Buche (5a/3)

<table>
<thead>
<tr>
<th>Hypothese Tessin und Gondo (VS):</th>
<th>In der oberen Leventina sind vermutlich der Nordföhn und der Frost entscheidend.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothese Misox, Calancatal und Bergell:</td>
<td>Entscheidend ist der Nordföhn (geringe Luftfeuchte).</td>
</tr>
<tr>
<td>Ergebnis:</td>
<td>Die wichtigsten erklärenden Variablen für die Buchenarealgrenzen sind:</td>
</tr>
<tr>
<td></td>
<td>• Zunehmende Föhnhäufigkeit vom Buchenareal zur übrigen Fläche: FOEHNHJAHR (mean BuAR: 11.4 %; mean üF: 15.9 %), FOEHNHJAN (mean BuAR: 14.2 %; mean üF: 15.3 %), FOEHNHAPR (mean BuAR: 12.5 %; mean üF: 19.2 %), FOEHNHJUL (mean BuAR: 9.6 %; mean üF: 15.7 %), FOEHNHOKT (mean BuAR: 7.5 %; mean üF: 11.8 %); wobei FOEHNHJUL (Grenzwert</td>
</tr>
</tbody>
</table>
im Bereich von 13 %) und FOEHNHAPR (Grenzwert im Bereich von 16 %) die Grenzen am treffendsten widerspiegeln (siehe folgende Kartenausschnitte). Die Fönhäufigkeit ist gekoppelt mit einer geringen relativen Luftfeuchte, der hohen Verdunstung bei Föhn und der potenziellen Evapotranspiration.

- **Abnehmender Niederschlag im Sommer** vom Buchenareal zur übrigen Fläche (mean BuAR: 555 mm; mean üF: 454.4 mm), wobei die Werte im Puschlav und Bergell tiefer liegen als im Tessin.

- **Zunehmende Kontinentalität** vom Buchenareal zur übrigen Fläche: z.B. KONTJUL1000 (mean BuAR: 6.6°C; mean üF: 7.7°C; Grenzwert im Bereich von 7.2°C).

Die Arealgrenze variiert örtlich, abhängig von der Geologie.

Kartenausschnitt: Fönhäufigkeit im Juli, Grenzwert bei Buchenarealgrenze bei ca. 13 %, d.h. bei etwa 96.7 Föhnstunden im Monat.

Kartenausschnitt: Föhnhäufigkeit im April, Grenzwert bei Buchenarealgrenze bei ca. 16 %, d.h. bei etwa 115.2 Föhnstunden im Monat.
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaS plausibel erklären?“

Kartenausschnitt: Thermische Kontinentalität auf 1000 m im Juli, Grenzwert bei Buchenarealgrenze bei ca. 7.2°C.

Vergleich mit Hypothese und Literatur:

Auch Michiels et al. 2009 erwähnt, dass im Alpenraum regelmässige Föhnaktivität im Frühjahr und Frühsommer, die mit sehr geringer Luftfeuchte verbunden ist und dadurch die Mortalität der Keim- und Sämlinge begünstigt, die Buche regional ausschliessen oder auf windgeschützte, abgeschattete Lagen wie Schluchten beschränken kann (z.B. „Bündner Südtäler“: Misox, Puschlav).

Nach Michiels 2008 scheinen zudem die mediterranen Buchen generell Probleme mit der Frosthärte zu haben, ob die Buchen des Tessins zu diesem Typ gehören, wurde nicht abgeklärt.
3.1.2.3 Übriger Kanton Graubünden
Buchenarealgrenze Nordalpen (2a/2b)

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Bei Ilanz ist der Kaltluftsee entscheidend und beim Domleschg die geringere Luftfeuchte und der geringere Sommerniederschlag im Vergleich zum Prättigau.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Es wurde der Buchenlayer des Kantons Graubündens verwendet (Grenze obermontan, inkl. Flächen CO, SM und UM), da die Grenze 2a/2b zu grob ist. Der Layer wurde zudem noch mit den Betriebsplanangaben des Kantons GIS-Layer auf dessen Plausibilität überprüft. Die wichtigsten erklärenden Variablen für die Buchenarealgrenze sind:</td>
</tr>
<tr>
<td></td>
<td>• Zunehmende Föhnhäufigkeit im Juli vom Buchenareal zur übrigen Fläche: FOEHNHJUL (mean BuAR: 4.2 %; mean üF: 6.3 %; der Grenzwert liegt im Bereich von 5 - 6 %, siehe folgenden Kartenausschnitt). Indirekt enthalten ist dabei die Verdunstung bei Föhn (im April und Juli signifikante Werte) und indirekt z.T. enthalten ist hier auch die relative Luftfeuchte (signifikanter Wert im Juli).</td>
</tr>
<tr>
<td></td>
<td>• Abnehmender Niederschlag im Sommer vom Buchenareal zur übrigen Fläche (mean BuAR: 402 mm; mean üF: 366.0 mm).</td>
</tr>
<tr>
<td></td>
<td>• Geologie (generell reicht die Buche bei Kalk und Bündnerschiefer weiter in die Täler hinein, siehe Kartenausschnitt unten).</td>
</tr>
</tbody>
</table>

Kartenausschnitt: Föhnhäufigkeit im Juli, Grenzwert bei Buchenarealgrenze zwischen 5 - 6 %.
Kartenausschnitt: Niederschlag im Sommer, Grenzwert bei Buchenarealgrenze zwischen 366 – 400 mm/J.

Bei den obigen Resultaten ist ersichtlich, dass lokalklimatische Faktoren oder die Nutzungsgeschichte ebenfalls einen wesentlichen Einfluss spielen müssen, da die Grenzen nicht so eindeutig sind.

Nach dem folgenden Kartenausschnitt (violette Linie = Grenze obermontan GR) müsste das Buchenareal weiter ins Domleschg und ins Vorderrheintal reichen. Die Arealgrenze muss hier durch andere Faktoren bestimmt sein. Im Prättigau ist die relative Luftfeuchtigkeit zur Mittagszeit im Juli höher als im Vorder- und Hinterrheintal. Ein ähnliches Bild zeigt auch die Luftfeuchte im April. Während sie an den Arealgrenzen im Vorder- und Hinterrheintal bei ca. 46 % liegt, liegt sie an der Arealgrenze im Talschluss des Prättigau bei 52 %. Im Prättigau sind auch die Sommerniederschläge um ca. 80 mm höher als an der Buchenarealgrenze im Vorderrheintal.
Kartenausschnitt: Darstellung der relativen Luftfeuchte zur Mittagszeit im Juli und der Obergrenze der obermontanen Stufe. Legende: blau = 77 % Luftfeuchte, rot = 42 %.

Abbildung 4: Längsprofil der Temperatur zwischen April und September von Landquart nach Disentis.

Kartenausschnitt: Darstellung der Substratgruppen sowie der Obergrenze des Buchenareals.

Wie schon bei der Tanne scheinen in Graubünden auch bei der Buche die Summe der einzelnen Faktoren den Ausschlag zu geben. So reicht die Föhnhäufigkeit im Domleschg und im Vorderrheintal nicht aus, um das Fehlen der Buche zu erklären. Die Grenze der Buche verläuft auf der Alpensüdseite bei jährlichen Föhnhäufigkeiten von etwa 13 %, was in Nord- und Mittelbünden nirgendwo der Fall ist.
Zudem verläuft diese Grenze auf der Alpensüdseite meist auf einem nadelholzfördernden Substrat, nämlich auf Gneis. Auch der Kaltluftsee allein in der Gegend von Ilanz scheidet als alleiniger Faktor aus, gibt es doch auch im Prättigau einen intensiven Kaltluftsee auf ähnlicher Höhenlage. Die Sommerniederschläge sind mit 350 bis 450 mm eindeutig zu hoch, als dass sie alleine die Buche wegdrängen könnten. Aber die Summe der Faktoren, nämlich im Vorderrheintal der Kaltluftsee, der dort häufiger auftritt als im Prättigau, die allgemein höhere thermische Kontinentalität, die oft geringere Luftfeuchtigkeit wegen der häufigen Föhntendenz im Frühjahr und Sommer verbunden mit geringer Luftfeuchtigkeit (Föhn als Wind kennt man im Becken von Ilanz kaum) und die etwas geringeren Sommerniederschläge zusammen scheinen doch genügend stark zu wirken, dass die Buche im Vorderrheintal bei Ilanz nicht mehr auftritt, während sie im Prättigau doch noch grosse Bestände bildet. Zudem treten im Vorderrheintal auch eher nadelholzfördernde Gesteine auf, was die Buche ebenfalls behindert, zumindest gegenüber dem Churer Becken kann dies eine Rolle spielen. Auch im Domleschg scheinen der häufige Föhn, welcher sich hier auch zumindest zeitweise als Wind bemerkbar macht, die allgemein höhere thermische Kontinentalität (verbunden mit mehr Spätfrösten), die geringeren Sommerniederschläge und nicht zuletzt auch der in den tieferen Lagen des Domleschg häufig auftretende Kaltluftsee (ebenfalls verbunden mit mehr Spätfrösten) zusammen verantwortlich zu sein, dass die Buche weitgehend ausfällt.

Eine ähnliche Faktorenkombination dürfte auch im oberen Reusstal im Urnerland massgebend sein. Auch hier erreicht die Föhnhäufigkeit deutlich nicht die Werte, welche auf der Alpensüdseite bei der Buchengrenze erreicht werden. Wenn zusätzlich noch die Föhnhäufigkeiten nur tagsüber untersucht werden, welche eigentlich für die Pflanzen noch wichtiger wären, dann würden die Bündner Rheingebiete ähnliche Föhnhäufigkeiten aufweisen wie das obere Reusstal bei Gurtnellen oder Göschenen, aber diese beiden Gebiete hätten weniger häufig Südföhn, als die Lokalitäten an der Buchengrenze auf der Alpensüdseite Nordföhn aufweisen. Wahrscheinlich ist also auch im Reusstal eine Kombination von klimatischen und geologischen Faktoren für das Aussetzen der Buche verantwortlich, nämlich die ungünstige Unterlage (Aaregranit) und der häufige Südföhn sowie im verminderten Masse auch der geringere Sommerniederschlag, während Kältesezen und Spätfröste im Reusstal keine Rolle spielen.

<table>
<thead>
<tr>
<th>Vergleich mit Hypothese und Literatur:</th>
</tr>
</thead>
</table>
Nach Vacik et al. 2010 kann im Südtirol die gängige Ansicht, dass sich die Buche in den klimatisch grenzwertigen Zwischenalpen vorwiegend an kalkreiche („laubbaumfördernde“) Substrate hält, eindeutig widerlegt werden. Im Untersuchungsgebiet ist die Geologie kein Ausschlussgrund, aber sehr wahrscheinlich mitbestimmend ob die Buche noch vorkommen kann oder nicht.

3.1.2.4 Kanton Wallis
Buchenarealgrenze nördliche Zwischenalpen (2a/2b)

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Keine (ev. Nebelbänke und laubholzförderndes Substrat).</th>
</tr>
</thead>
</table>
| Ergebnis: | Im Wallis ist der Föhn viel geringer als in den anderen untersuchten Gebieten. Hier sind die wichtigsten erklärenden Variablen für die Buchenarealgrenze folgende:

- **Abnehmender Niederschlag im Sommer** vom Buchenareal zur übrigen Fläche (mean BuAR: 299 mm; mean üF: 242 mm; der Grenzwert liegt im Bereich von 280 mm, siehe folgenden Kartenausschnitt).

- **Abnehmende relative Luftfeuchte im Juli** vom Buchenareal zur übrigen Fläche (mean BuAR: 58 %; mean üF: 51.0 %; der Grenzwert liegt im Bereich von 56 %, siehe folgenden Kartenausschnitt).

Die thermische Kontinentalität im Juli auf 1000m zeigt beim Wert 7.6°C aber ebenfalls eine gute Übereinstimmung mit der Buchenarealgrenze.

Kartenausschnitt: Niederschlag im Sommer, Grenzwert bei Buchenarealgrenze bei ca. 280 mm.
Kartenausschnitt: Relative Luftfeuchte im Juli, Grenzwert bei Buchenarealgrenze bei ca. 56 %.

Kartenausschnitt: Verhältnis von aktueller zu potenzieller Evapotranspiration, Grenzwert bei Buchenarealgrenze bei ca. 70 %.
Vergleich mit Hypothese und Literatur:

Nach Manthey et al. 2007 zeigen empirische Belege, dass die Buche gegenüber Trockenstress empfindlicher ist als Eiche, Hainbuche oder Linde. Buchen in Mischbeständen zeigten eine stärkere Absenkung von Wasserpotenzial, Blattleitfähigkeit und Photosynthese sowie des Stammholzzuwachses in ausgeprägten Trockenperioden als Eichen (Epron & Dreyer 1993; Backes & Leuschner 2000; Leuschner et al. 2001; zit. in Manthey et al. 2007); ebenso ist die Buche anfälliger für Cavitation als z.B. die Eiche (Magnani & Borghetti 1995; Breda et al. 1993; zit. in Manthey et al. 2007).

Nach Untersuchungen in Frankreich scheinen semiaride Sommermonate (Juni/Juli) (mit Mittelwerten der monatlichen Niederschläge von unter 50 mm) der Verbreitung der Buche ein Limit zu setzen (Badeau et al. 2004, zit. Michiels 2008). Im Wallis sind die Werte zwar höher, aber es ist die geringe Luftfeuchte welche die Trockenheit verstärkt.

Nach Manthey et al. 2007 dürfte die Trockenheitstoleranz wichtiger als die Frosthärte sein. Es sei davon auszugehen, dass die Buche an ihrer heutigen Trockengrenze (< ca. 650 mm NS/J.) unter einem sommertrockenen Klima auf flachgründigen Böden von einem in Zukunft trockeneren Klima geschädigt werden könnte.
Auf dem folgenden Kartenausschnitt sind die gelben Flächen somit Gebiete wo die Buche aufgrund der Trockenheit nicht mehr vorkommen kann. Die orangen Flächen weisen zwar genügend Niederschlag auf, aber bei ungünstigen Bodenverhältnissen oder starkem Föhneinfluss kann auch dort die Buche bereits heute an ihre Grenzen stossen. Anmerkung: im Engadin und dem Münstertal fehlt sie aus anderen Gründen, sehr wahrscheinlich wegen Temperatur (Kaltluftsee), Kontinentalität und geringem Sommerniederschlag (wurde nicht untersucht).
Schlussfolgerungen Buchenarealgrenzen:

In sämtlichen Gebieten sind die Lufttrockenheit und z.T. zusätzlich der Sommer-Niederschlag und / oder das Verhältnis der aktuellen zur potenziellen Evapotranspiration (ETa/ETp) und die Spätfröste (ausgelöst durch Kaltluftseen oder allgemein hohe thermische Kontinentalität) begrenzende Faktoren. Für die Lufttrockenheit ist v.a. die Föhnhäufigkeit (und somit die Verdunstung bei Föhn) entscheidend. So ist es sehr wahrscheinlich, dass das Fehlen der Buche im Bergell, im mittleren und oberen Misox oder im Calancatal auf den Nordföhn zurückzuführen ist. Es kann vermutlich angenommen werden, dass eine jährliche Föhnhäufigkeit von mehr als ca. 13 % die Buche im Allgemeinen ausschliesst, auch wenn die übrigen Faktoren für die Buche günstig wären. Neben dem Föhn kann auch der Sommerniederschlag für die Buche günstig sind, bei Werten unter 250 bis 300 mm in warmen Gebieten und damit bei zusätzlich erhöhter Verdunstung setzt die Buche aus.

3.1.3 Obergrenze Flaumeichenareal Wallis

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die Grenze zwischen dem Flaumeichenareal und dem Föhrenareal wurde untersucht, indem die Klimaparameter in den Flächen ausgewertet wurden, wo das Flaumeichenareal an das Föhrenareal grenzt, d.h. das Flaumeichenareal wurde nur dort betrachtet, wo darüber ein Föhrenareal angrenzt. Die Areale wurden aus der überarbeiteten Waliser Karte (Frehner et al. 2005) entnommen.</td>
</tr>
</tbody>
</table>

![Map of Flaumeichen and Föhren areas](image)

Es ist nur der Sonnenhang berücksichtigt, da nur dort Flämcheichen und Föhren aufeinander grenzen.

Auf eine Aufteilung nach strahlungsreichen und –armen Standorten wurde verzichtet, da keine starken Schatthänge vorkommen.

Das Flaumeichenareal unterscheidet sich vom Föhrenareal durch die höheren Temperaturen und die Sommertrockenheit. Die erklärenden untersuchten Variablen für den Übergang vom Flaumeichenareal zu Föhrenwaldflächen sind:

- **Stark zunehmendes Verhältnis von aktueller zu potenzieller Evapotranspiration** vom Flaumeichenareal zu den Föhrenwaldgebieten: ETa/ETp (mean FEiAR: 33.9%; mean FöAR: 69.8%; der Grenzwert liegt im Bereich von 60%, siehe Kartenausschnitt).
- **Für den Ausfall der Föhre sind vermutlich die zunehmenden mittleren Höchstwerte bei der Julitemperatur** Richtung Talgrund wesentlich (TJULMAX: mean FEiAR: 22.5°C; mean FöAR: 19.9°C; der Grenzwert liegt im Bereich von 20.5°C, siehe Kartenausschnitt).
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaïS plausibel erklären?“

- **Zunehmender Sommer-Niederschlag** (mean FEiAR: 206.3 mm; mean FöAR: 251.5 mm).

Die Globalstrahlung ist im Föhrengebiet nicht anders als bei den Eichen, sie hängt nur von der Neigung und der Exposition ab und nicht von der Höhenlage.

Kartenausschnitt: Verhältnis von aktueller zu potenzieller Evapotranspiration, Grenzwert bei Fläumeichenarealgrenze bei ca. 60%.

Kartenausschnitt: Mittlere Höchstwerte der Lufttemperatur im Juli, Grenzwert bei Fläumeichenarealgrenze bei ca. 20.5°C.
Vergleich mit Hypothese und Literatur:

Nach Burnand (1976) ist eine Primärwirkung der Strahlung auf die Vegetationsentwicklung im Relief nachweisbar und entscheidend für die Verteilung von Waldföhre und Flaumeiche im Wallis.

Nach Rigling et al. 2006 und 2013 erträgt die Flaumeiche die Sommer-trockenheit besser als die Waldföhre, bei Dichtstand verstärkt sich der Trockenstress zusätzlich. Ausserdem verjüngen sich die Waldföhren v.a. an kühleren, höher gelegenen Standorten, die Flaumeichen dagegen an wärmeren Standorten.

3.2 Höhenstufengrenzen

Falls möglich, wurde die Verteilung der Klimaparameter direkt an der jeweiligen Obergrenze der Höhenstufengrenze untersucht (im Anhang werden sowohl das Mittel über die gesamte Höhenstufe als auch das Mittel entlang der Obergrenze der Höhenstufe aufgezeigt). Falls dies aufgrund geringer Flächen nicht möglich war (Kantone BS/BL, GE, SH), wurde die Verteilung der Klimaparameter innerhalb der Flächen der einzelnen Höhenstufen zur Interpretation zu Hilfe genommen. Die Analyse der Verteilung der Klimaparameter innerhalb der Flächen gibt Auskunft über den gesamten Wertebereich der Klimaparameter. Im Gegensatz dazu gibt die Analyse der Verteilung der Klimaparameter direkt an den Höhengrenzen eine genauere Auskunft über die Klimabedingungen an der Grenze selbst.

Die Tabellen und Auswertungen zu den Höhenstufengrenzen befinden sich im Anhang B4.

3.2.1 Kantone Basel-Stadt und Basel-Landschaft

Colline Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Entscheidend sind der geologische Untergrund, die Temperatur und das ETa/ETp-Verhältnis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die Flächen sind zu klein, um die Situation an den Grenzen im Detail abschätzen zu können. Die colline Stufe ist hauptsächlich auf Sandsubstraten (Sande, Kiese) und grobklastischen Materialen (Schotter) vertreten (Lithomap Gruppe 3 bzw. 4). Charakterisiert werden kann dieses Areal am besten mit der ETa/ETp (>67.8 %) und SWB Karte (v.a. Werte <-88 mm), mit der Globalstrahlung im Juli (>185 W im Monatsmittel) und der Juli-Temperatur (>18.5°C).</td>
</tr>
</tbody>
</table>
Der Kartenausschnitt zeigt die Verbreitung der collinen Stufe in den Kantonen BS und BL und die Lithologieklassen nach Remund et al. (2013) auf.
Der Kartenausschnitt zeigt die Verbreitung der collinen Stufe in den Kantonen BS und BL und die Karte SWB nach Remund et al. (2013).

Vergleich mit Hypothese und Literatur:

Submontane Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Temperatur- und strahlungsabhängig.</th>
</tr>
</thead>
</table>
Obergrenze untermontane Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Temperatur- und strahlungsabhängig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die Obergrenze der untermontanen Stufe in BS/BL kann nicht in ausreichendem Detail erklärt werden, da sie aufgrund der geringen Höhenunterschiede ein sehr kleinräumiges Wechselspiel aufweist. Ver einfachend kann die Obergrenze der untermontanen Stufe mit dem Grenzwert von 12.5°C der Mitteltemperatur von April bis September erklärt werden. Im Bereich zwischen 11 und 12.5°C ist die Obergrenze der untermontanen Stufe von der Globalstrahlung abhängig, d.h. auf strahlungsreichen Standorten reicht die Grenze etwas höher.</td>
</tr>
</tbody>
</table>

3.2.2 Kantone Genf und Waadt

Abgrenzung colline und submontane Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Entscheidend sind das ETa/ETp-Verhältnis sowie die Strahlung. Für die Auswertung sind ebenfalls das Geländemodell und die Geologie entscheidend (da ETa/ETp zu wenig detailliert).</th>
</tr>
</thead>
</table>

Vergleich mit Hypothese und Literatur:

Nach Manthe et al. 2007 verfügt die Buche über eine Reihe von physiologischen Mechanismen zur Trockenheitsadaption, welche es ihr mit großer Wahrscheinlichkeit ermöglichen werden, auf tiefgründigen Böden mittlerer bis guter Wasserspeicherkapazität weiterhin vorherrschende Baumart zu bleiben.

3.2.3 Kanton Schaffhausen

Obergrenze colline Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Entscheidend sind die ETa/ETp-Karte, die Lithologie, die Bodeneigenschaften, der Niederschlag und die Spätfröste.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Im Vergleich zu Basel hat die colline Stufe in Schaffhausen durchschnittlich um ca. 1.3°C tiefere Temperaturen und eine geringere Kontinentalität. Im Mittel liegen die collinen Standorte in Schaffhausen deshalb an strahlungsreicheren Expositionen als in BS/BL. Bei der räumlichen Verbreitung spielen die lithologischen Verhältnisse eine Rolle. Auf Sandsubstraten sind die Temperaturen (Juli) in der collinen Stufe im Durchschnitt um 1°C geringer als auf glazialen Lehmsanden und grobklastischen Materialien. Letztere und die Sandsubstrate weisen ein höheres Verhältnis ETa/ETp auf; auf ihnen sind deshalb die Verhältnisse eher als collin einzustufen. Bei Basel liegt der Bereich des Verhältnisses ETa/ETp für die colline Stufe bei weniger als 72 %, da dort ein etwas trockeneres Klima herrscht.</td>
</tr>
</tbody>
</table>

Obergrenze submontane Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Temperatur- und Strahlungsabhängig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die submontane Stufe ist nach oben hin deutlich durch die Jahrestemperaturen und Juli-Temperaturen begrenzt. Hierbei können 5.2°C bzw. 12.6°C als Beschreibung der Obergrenze der submontanen Stufe verwendet werden. Die Kontinentalität wirkt auch begrenzend, je höher die Kontinentalität, desto tiefer liegt die absolute Höhenlage (Meereshöhe) dieser Höhenstufe.</td>
</tr>
<tr>
<td>Vergleich mit Hypothese und Literatur:</td>
<td>Die Hypothesen konnten belegt werden. Es existieren keine Literaturangaben.</td>
</tr>
</tbody>
</table>
3.2.4 Kantone St. Gallen und Appenzell Ausserrhoden

Obergrenze submontane Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Entscheidend sind die Temperatur und der Niederschlag während der Vegetationsperiode, die Globalstrahlung im Juli und der Föhn / die Verdunstung. Falls die Ergebnisse zu wenig präzise ausfallen, sollte nach den vier 4 Lithoklassen aufgeschlüsselt werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Im Bereich der Obergrenze der submontanen Stufe sind die Wärmesumme (Frosttage und ein Teil der Strahlung sind in Temperaturkarten enthalten!) und die Geologie die wichtigsten erklärenden Variablen:</td>
</tr>
<tr>
<td></td>
<td>• Frosttage im April und Mai (über 3.5 Frosttage [2.3 im April und 1.2 im Mai] mehr bei der Obergrenze der Höhenstufe als beim Mittelwert der Höhenstufe).</td>
</tr>
<tr>
<td></td>
<td>• Geologie: Kalk hebt die Obergrenze an (siehe Südhang bei Walensee), Verrucano (gut sichtbar bei Nordhang bei Walensee) und Molasse senkt die Obergrenze ab. Mittelwerte weisen über 100 Höhenmeter Differenz auf, siehe Abb. 45.</td>
</tr>
</tbody>
</table>

Kartenausschnitt: Vergleich der Obergrenze der submontanen Stufe mit der TJULMAX-Isotherme im Bereich von 20.5°C.

Vergleich mit Hypothese und Literatur: Der Niederschlag während der Vegetationsperiode und der Föhneinfluss stellten sich als nicht wesentlich heraus. Es existieren keine Literaturangaben zu dieser Höhenstufe.
Obergrenze untermontane Stufe

Hypothese:
Die Geologie (laubholzfördernd/nadelholzfördernd) ist wichtig. Entscheidend sind die Temperatur und der Niederschlag während der Vegetationsperiode, die Globalstrahlung im Juli und der Föhn / die Verdunstung.

Ergebnis:
Auch die Obergrenze der untermontanen Stufe ist eine Wärmegrenze, wobei auch hier die mittleren Höchstwerte der Julitemperatur (TJULMAX: mean Grenze: 18.1°C; siehe folgenden Kartenabschnitt) und die Jahresmitteltemperatur (TJAHRMEAN: mean Grenze: 7.0°C) am signifikantesten korrelieren. Ebenfalls wesentliche Faktoren sind die Topografie (bei flachen Lagen tieferliegende Obergrenze), die Geologie und der Samendruck im Talinneren (abnehmendes Samenangebot aufgrund geringerer Anzahl Samenbäume). Ein Unterschied besteht auch bei den Frosttagen im April und Mai, es sind 4.4 Frosttage (3.1 im April und 1.3 im Mai) mehr bei der Obergrenze der Höhenstufe als beim Mittelwert der Höhenstufe (insgesamt 10.8 Frosttage).

Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaS plausibel erklären?“

Vergleich mit Hypothese und Literatur:
Auch hier sind der Niederschlag während der Vegetationsperiode und der Föhneinfluss weniger wichtig als anfangs angenommen. Es existieren keine Literaturangaben zu dieser Höhenstufe.

Obergrenze obermontane Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Die Geologie (laubholzfördernd/nadelholzfördernd) ist wichtig. Entscheidend sind die Temperatur und der Niederschlag während der Vegetationsperiode, die Globalstrahlung im Juli und der Föhn / die Verdunstung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Ebenfalls bei der Obergrenze der obermontanen Stufe ist die Wärmesumme entscheidend (TJAHRMEMAN: mean Grenze: 4.8°C; TJULMEAN: mean Grenze: 12.8°C; TJANMEAN: mean Grenze: -2.8°C), wobei auch hier die mittleren Höchstwerte der Julitemperatur (Grenzwert bei 15.4°C) und der mittleren Jahrestemperatur (Grenzwert bei 4.8°C, siehe Kartenaußchnitt) am signifikantesten korrelieren. Ebenfalls wesentliche Faktoren sind die Geologie und die Topografie (bei flachen Lagen tieferliegende Obergrenze). Wesentlich ist wahrscheinlich auch, in wie weit sich die letzten Spätfristtage mit dem Laubaustrieb überlagern, dies wurde aber nicht untersucht (im April noch über 14 Frosttage, im Mai noch 3.4 Frosttage an Obergrenze).</td>
</tr>
</tbody>
</table>

Vergleich mit Hypothese und Literatur: Auch hier sind der Niederschlag während der Vegetationsperiode und der Föhneinfluss weniger wichtig als anfangs angenommen. Es existieren keine Literaturangaben zu dieser Höhenstufe.
Obergrenze hochmontane Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Temperatur- und strahlungsabhängig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Auch hier ist die Obergrenze der Höhenstufe eine Wärmesummen-[\text{grenze, am signifikantesten korreliert der mittlere Höchstwert der Temperatur im Juli und die mittlere Januartemperatur (siehe Abb. 48 und Kartenausschnitt). Temperaturwerte: } TJAHRM[\text{EAN: mean Grenze: 4.1°C; TJULMEAN: mean Grenze: 12.0 °C; TJANMEAN: mean Grenze: -3.5°C. Die Geologie spielt keinen wesentlichen Einfluss mehr (Unterschied zwischen Obergrenze auf basischer oder saurer Unterlage kleiner als 100 Höhenmeter, weil Tanne und Fichte im Wesentlichen bodenvag sind).}</td>
</tr>
</tbody>
</table>

Abbildung 48: Häufigkeitsverteilung der mittleren Höchstwerte der Julitemperatur an der Obergrenze der hochmontanen Stufe.

Kartenausschnitt: Korrelation der Obergrenze der hochmontanen Stufe mit der mittleren Januartemperatur (Wert: -3.5°C).
Nachfolgend wird noch der Nord-Süd-Gradient der Obergrenze der hochmontanen Stufe aufgezeigt. Die Obergrenze ist von Norden nach Süden bis zur Y-Koordinate von ca. 203000 ansteigend, danach fällt die Obergrenze mit zunehmender Kontinentalität ab (Taminatal).

Vergleich mit Hypothese und Literatur:

Obergrenze subalpine Stufe

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Temperatur- und strahlungsabhängig.</th>
</tr>
</thead>
</table>
| Ergebnis: | Auch hier ist die Obergrenze der Höhenstufe eine Wärmesummen-
| | grenze und der Strahlung, am signifikantesten korreliert die mittlere
| | Juli temperatur (siehe Kartenausschnitt). Temperaturen: TJAHR-
| | MEAN: mean Grenze: 2.8°C; TJULMEAN: mean Grenze: 10.55 °C;
| | TJANMEAN: mean Grenze: -4.6°C. Strahlungswerte: JULGLOBRADW:
| | mean Grenze: 194.6 W. |
Vergleich mit Hypothese und Literatur: Die Hypothesen stimmen mit den Resultaten überein.

3.2.5 Kanton Graubünden

Obergrenze colline Stufe Alpennordseite

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die colline Stufe im Churer Rheintal resultiert aus der Trockenheit von Frühling bis Sommer, dies einerseits aufgrund geringer Niederschläge, aber vor allem aufgrund des durchlässigen Untergrundes und der Lufttrockenheit (Föhneinfluss). Die colline Stufe liegt innerhalb des Kaltluftsees (TJANMIN in Fläche geringer als an Obergrenze). Ausserdem weist ein Teil der collinen Fläche einen ETa/ETp-Wert kleiner als 60 % auf (bei Kt. GE Ausschlusskriterium für Buchenwälder) und die Lithologie besteht wie bei Basel aus</td>
</tr>
</tbody>
</table>
großklastischen Materialien (Schotter, Sande, Kiese, Bachablagerungen) und einem kleinen Gebiet auf Dolomit. Der Niederschlag im Sommer (Grenzwert bei 368 mm) und während der Vegetationsperiode (April-September, Grenzwert 633 mm) ist gering und die Föhnhäufigkeit im April und Juli (und somit die Austrocknung) gross (im April 15.1 % [somit 108.7 Föhnstunden!] und im Juli 4.9 %; siehe Kartenausschnitt).

Die Föhnhäufigkeit ist gekoppelt mit einer tiefen relativen Luftfeuchte und entsprechend grosser Verdunstung.

Vergleich mit Hypothese und Literatur:

<table>
<thead>
<tr>
<th>Hypothese</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Die Obergrenze der submontanen Höhenstufe weist eine zu geringe Ausdehnung auf (nur im Raum Luzisteig, Maienfeld vorhanden), um eine Aussage machen zu können.</td>
</tr>
<tr>
<td>Vergleich mit Hypothese und Literatur:</td>
<td>Nicht möglich.</td>
</tr>
</tbody>
</table>
Obergrenze untermontane Stufe Alpennordseite

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>keine</th>
</tr>
</thead>
</table>

![Kartenausschnitt: Korrelation der Obergrenze der untermontanen Stufe mit der mittleren Jahrestemperatur (Wert: 7.88°C).](image)

| Vergleich mit Hypothese und Literatur: | Es wurde keine Hypothese erstellt und Literatur zur untermontanen Stufe fehlt. |
Obergrenze obermontane Stufe Alpennordseite

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Entscheidend sind die thermische Kontinentalität (im Jahr oder im April), die Temperatur und die Globalstrahlung im Juli.</th>
</tr>
</thead>
</table>

![Kartenausschnitt: Korrelation der Obergrenze der obermontanen Stufe mit der Isolinie der mittleren Tiefstwerte der Julitemperatur (Wert: 10.7°C).]
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaS plausibel erklären?“

Kartenausschnitt: Korrelation mit der thermischen Kontinentalität im Jahr (Grenzwert im Bereich von 4.69°C).

Vergleich mit Hypothese und Literatur:
Die Hypothesen stimmen mit den Resultaten überein.

Obergrenze hochmontane Stufe Alpen Nordseite

Hypothese: Entscheidend ist die Temperatur während der Vegetationsperiode, die thermische Kontinentalität im Jahr und die Globalstrahlung (wobei diese z.T. in den Temperaturkarten enthalten ist).

Ergebnis: Auch hier ist die Obergrenze der Höhenstufe eine Wärmesummen Grenze:
- die thermische Kontinentalität im Jahr stimmt in geringerem Masse damit überein als erwartet. (KONTJAHR: mean Grenze: -4.4°C, siehe Kartenausschnitt).

Auch dieses Resultat ist nicht überraschend, verläuft doch die hochmontane Stufe in den Nordalpen weitgehend horizontal. Die Tagesstiefststände der Temperatur und zu einem geringeren Mass auch die Mitteltemperaturen verlaufen ebenfalls weitgehend horizontal, deshalb diese gute Übereinstimmung. Demgegenüber korreliert die Kontinentalität weniger gut, weil sie gegen das Alpeninnere stark anwächst. Auch bei den Tageshöchsttemperaturen sind keine grossen Korrelationen zu erwarten, besonders im Sommer nicht. Denn im Gegensatz zur hochmontanen Stufe, welche immer etwa im Bereich von
1500 bis 1600 Meter verläuft, steigen die Tageshöchststände der Temperatur im Juli gegen das Alpeninnere an. Im Weiteren muss unterstrichen sein, dass die Obergrenze in der hochmontanen Stufe nicht mit der Obergrenze der Weisstanne zusammenfällt. In den inneren Tälern von Mittelbünden wird die Obergrenze der hochmontanen Stufe nämlich von der Fichte gebildet, wobei allenfalls die Lärche beigemischt ist. In äußeren Tälern von Nordbünden und besonders in den Kantonen St. Gallen und Appenzell wächst die Weisstanne bis an die Obergrenze der hochmontanen Stufe, lokal sogar darüber hinaus.

Kartenausschnitt: Korrelation zwischen der mittleren Temperatur von April-September und der Obergrenze der hochmontanen Stufe.

Kartenausschnitt: Korrelation zwischen der mittleren Tiefsttemperatur im Januar und der Obergrenze der hochmontanen Stufe.
Vergleich mit Hypothese und Literatur:
Die Hypothesen stimmen mit den Resultaten überein.

Obergrenze subalpine Stufe Alpennordseite

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Entscheidend sind die Globalstrahlung im Januar, die Luftfeuchte im Januar und die mittlere Juli temperatur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Im Bereich der Obergrenze der subalpinen Stufe ist die Wärmesumme die wichtigste erklärende Variable:</td>
</tr>
<tr>
<td></td>
<td>- Mit der Höhe abnehmende mittlere Lufttemperatur (TJAHR-MEAN: mean Grenze: 2.8°C; TJULMEAN: mean Grenze: 10.6°C; TJANMEAN: mean Grenze: -4.7°C); dieser Grenzwert korreliert sehr gut mit der Obergrenze der subalpinen Stufe.</td>
</tr>
<tr>
<td></td>
<td>- Die Globalstrahlung im Januar beträgt 39.18 W (mean Grenze).</td>
</tr>
<tr>
<td></td>
<td>- Luftfeuchte im Januar beträgt 60.6 % (mean Grenze).</td>
</tr>
<tr>
<td></td>
<td>Mit der Obergrenze der subalpinen Stufe ist hier die Obergrenze der subalpinen Fichtenstufe gemeint. Die Obergrenze der Fichtenstufe steigt gegen das Alpinnere nur wenig an, weshalb Jahresmitteltemperaturen oder Julimitteltemperaturen am besten mit dieser Grenze korrelieren, insbesondere dann, wenn die Strahlung nicht allzu hoch ist und die Luftfeuchtigkeit nicht allzu niedrig ist. Ist die Luftfeuchtigkeit im Winterhalbjahr sehr niedrig und die Globalstrahlung hoch, dann stellt sich in subalpinen Lagen oft Frosttrocknis ein, was die Fichtenobergrenze trotz höheren Tageshöchstständen im Juli nicht weiter ansteigen lässt. Im Gegenteil – die Fichtengrenze kann in ähnlichen Situationen sogar absinken, so etwa in den inneren Vispertälern, wo auch die hochmontane Stufe weitgehend fichtenfrei ist und die Lärche oft Reinbestände bildet.</td>
</tr>
</tbody>
</table>

Vergleich mit Hypothese und Literatur:
Die Resultate stimmen mit den Hypothesen überein.
Die Obergrenze der obersubalpinen Stufe (obere Waldgrenze) auf der Alpennordseite wurde nicht untersucht.

Obergrenze hochmontane Stufe Engadin und Münstertal

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis:</td>
<td>Im Bereich der Obergrenze der hochmontanen Stufe ist die Wärmesumme (Frosttage und ein Teil der Strahlung sind in Temperaturkarten enthalten!) die wichtigste erklärende Variable:</td>
</tr>
</tbody>
</table>

Kartenausschnitt: Temperaturmaxima im Juli, Grenzwert bei Obergrenze Hochmontan im Bereich von 17°C.
Die mittlere Januartemperatur liegt bei der Obergrenze hochmontan im Bereich von -3.5 - -3.79°C.

Auch hier muss gesagt sein, dass die Obergrenze der hochmontanen Stufe nicht an eine Obergrenze einer Baumart gebunden ist. Die Obergrenze der hochmontanen Stufe kann gebildet sein durch die Fichte, aber auch durch die Lärche, die Engadiner Föhre oder durch Leg- oder aufrechte Bergföhren. Da die Obergrenze der hochmontanen Stufe im Engadin ziemlich horizontal verläuft, korreliert sie mit den Mitteltemperaturen. Auch der Tageshöchststand der Temperatur im Juli unterliegt im Unterengadin nur noch geringen Schwankungen in einer bestimmten Höhe, das heisst es ist im Unterengadin in einer bestimmten Höhenlage etwa überall gleich warm, gegen das Oberengadin wird es etwas kühlter.

Vergleich mit Hypothese und Literatur:

Obergrenze subalpine Stufe Engadin und Münstertal

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th>Allgemein ist bei der Obergrenze der subalpinen Stufe die Globalstrahlung im Januar, die Luftfeuchte im Januar und die mittlere Juli temperatur entscheidend. Im kontinentalen Bereich (Engadin) liegt die Fichtengrenze bei höheren Temperaturen, da der Einfluss von Frosttrocknis hinzukommt.</th>
</tr>
</thead>
</table>

| Ergebnis: | Im Bereich der Obergrenze der subalpinen Stufe ist die Wärmesumme die wichtigste erklärende Variable:
Möglichwerweise drückt die Frosttrocknis sogar die Lärchen- und Arvengrenze etwas hinunter, das heisst die Obergrenze der subalpinen Stufe verläuft bei einem höheren Wert des Tageshöchststandes im Juli, als dies in den übrigen Alpen der Fall ist.
Damit ist also die Frosttrocknis, auf welche die Bäume in höheren Lagen empfindlich reagieren, der wichtigste begrenzende Faktor. Diese kann näherungsweise durch die Strahlung und die Luftfeuchte im Januar dargestellt werden:
- **Die Globalstrahlung im Januar beträgt 40.45 W (mean Grenze) und liegt viel höher als in Nordbünden.**
- **Die relative Luftfeuchte im Januar beträgt 54.0 % (mean Grenze, siehe Kartenausschnitt) und liegt viel tiefer als in Nordbünden.**
Das bedeutet, dass die Gefahr vor Frosttrocknis viel höher ist als in Nordbünden. |
Schlussbericht des Projektes „Mit welchen Klimaparametern kann man Grenzen aus NaSI plausibel erklären?“

Kartenausschnitt: mittlere Januartemperatur, Grenzwert bei -4,9°C.

Kartenausschnitt: Luftfeuchte im Januar.
Die auffällige Verbreitungslücke der Fichte im Oberengadin zwischen Bever und Maloja ist auf den extremen Kaltluftsee (siehe Kartenausschnitt und nach Frey et al. 1998 auf die Wirkung des häufigen und heftigen Malojawindes zurückzuführen.

Kartenausschnitt: Kaltluftseen mit Januar-Minimaltemperatur.

Vergleich mit Hypothese und Literatur:

Die Obergrenze der obersubalpinen Stufe (obere Waldgrenze) im Engadin und Münstertal wurde nicht untersucht.
Schlussfolgerungen zu Höhenstufengrenzen:

Mit zunehmender Kontinentalität und zunehmendem Massenerhebungseffekt steigen die Höhenstufen (wie auch Schneegrenze, Baumgrenze und Waldgrenze) vom Gebirgsrand zum Zentrum hin an und die Temperaturwerte an den Obergrenzen nehmen zu. Somit sind die in SG / AR eruierten Werte für die Höhenstufengrenzen nicht 1:1 auf den Kanton GR übertragbar, da sich die Temperatur stark ändert – die Wärmesumme ist nicht mehr der einzig entscheidende Faktor, die mittleren Höchstwerte bei den Temperaturen nehmen zu und die mittleren Tiefstwerte ab, die Frosteinflüsse werden stärker, aber auch der Föhneinfluss und die Strahlung nehmen zu.
4 Diskussion

Ebenfalls wurden erstmals Karten zur Föhnhäufigkeit, zur Lufttemperatur bei Föhn, zur relativen Luftfeuchte bei Föhn sowie zur potentiellen Evapotranspiration bei Föhn erstellt. Dazu musste auch ein sogenannter Föhnindex erstellt werden, welcher die Windstärken aufzeigt.

Unsere Resultate stellen noch keine definitiven Ergebnisse dar, sondern erste Erkenntnisse, welche falls nötig weiter verfeinert und anschliessend auf einen gemeinsamen Nenner gebracht werden sollen, um die Grenzen anhand von Funktionen in die Zukunft modellieren zu können (geplanter Teil B, Projekt „Adaptierte Ökogramme“).

Unsere Arbeit weist darauf hin, dass die Verbreitung der Buche mit der Föhnhäufigkeit in Zusammenhang steht und somit die Lufttrockenheit ein begrenzender Faktor für die Buche darstellt. Dies wurde erst in Hydrokulturversuchen durch Lendzion & Leuschner 2008 untersucht. Ebenfalls konnte der Zusammenhang der thermischen Kontinentalität mit der Verbreitung der Tanne gezeigt werden, während bis anhin aufgrund fehlender Kartengrundlagen nur Zusammenhänge mit der hygrischen Kontinentalität als naheliegend erachtet wurden (Frey 2003).

Im Gegensatz zum WINALP-Projekt und zu den Waldtypisierungen im Südtirol konnten die klimatischen Parameter viel feiner eingegrenzt werden, dies aufgrund detaillierterer Kartengrundlagen. Somit steigt auch die Aussagekraft der erhaltenen Werte in Bezug auf baumphysiologische Aspekte. Im Vergleich zum Untersuchungsgebiet von WINALP bestehen in der Schweiz einige regionalklimatische Gegebenheiten (z.B. Föhn, thermische Kontinentalität, Berg- und Talwinde, Strahlungsunterschiede, etc.), die kleinräumige Unterschiede bei den Höhenstufen und den Arealgrenzen verursachen können und somit feiner angesprochen werden müssen als bei WINALP (siehe Schlussfolgerungen Kap. Tannenareale).
Uns ist bewusst, dass z.B. die Isotherme der mittleren Höchsttemperatur im Juli wenig gemein hat mit den Obergrenzen von Höhenstufen (Kritik von Frey & Lösch 2010) und somit keine physiologische Erklärung dazu existiert; dies sind aber Näherungswerte und zeigen v.a., dass es sich bei einer Höhenstufengrenze um eine Wärmegrenze als Ganzes handelt, die aber gut mit diesem Wert korreliert.

Unser Projekt benutzt zudem nicht Klimaparameter, die zur Mortalität der Baumarten führen (z.B. Angaben zu Baumarten in Choat et al. 2012), sondern solche, die für ein reduziertes Wachstum verantwortlich sind und somit die Konkurrenzstärke vermindern, so dass sich die Mischungsverhältnisse der Hauptbaumarten verschieben. Dies wiederum führt zur Bildung der Höhenstufen.

5 Ausblick

6 Literatur

Verwendete Kartengrundlagen:

Literatur Bericht:

Zusätzliche Literatur Anhang A:

7 Anhang

A Literaturrecherche
B Tabellen aus Kapitel „Resultate“:
 B1: Tannenarealgrenzen
 B2: Buchenarealgrenzen
 B3: Eichenarealgrenzen
 B4: Höhenstufengrenzen
C Höhenstufen nach NaiS (Arbeitspapier vom Projekt „NaiS-LFI – Zuordnung der LFI-Stichproben zu Waldgesellschaften“)