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Abstract

The simulation of multiphase flow problems in highly heterogeneous porous media is
computationally demanding due to the different length and time scales involved. By us-
ing the concepts of pore network modelling and multiscale flow solvers, an approximate
solution is found which represents the most important macroscopic flow structures. In
this work, the multiscale restriction-smoothed basis (MsRSB) method for the solution
of the pressure distribution in porous media is extended for unstructured pore networks.
A new method that creates fully connected support regions without isolated pore bod-
ies is introduced. The implementation is purely algebraic and the geometric locations
of the pores are not required for the computation. Consequently, the multiscale method
can be used as a black-box solver for many different Poisson-type problems.
It was observed that the method produces results of good quality for numerous test
cases. However, unphysical coarse systems with negative transmissibilities can occur
for certain scenarios, especially if large transmissibility contrasts on the fine-scale are
involved, e.g. due to channels. This can result in approximate pressure solutions that
violate the maximum principle and, if an iterative multiscale formulation is used, the
solver may converge slowly or even diverge. The performance is substantially improved
when either the restriction or the prolongation operator are adapted to the underlying
transmissibility field.

iii





Contents

Contents

1. Introduction 1
1.1. Pore Network Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Multiscale Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Numerical Modelling 6
2.1. Multiscale Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Algebraic Grids of Fine and Coarse Systems . . . . . . . . . . . . . . . . . . . . . 7
2.3. Support Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Prolongation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5. Restriction Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6. Treatment of Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7. Iterative Multiscale Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8. Adapted Grid Partitioning for Networks with Channels and Barriers . . . . . . . 25

3. Numerical Results 27
3.1. Heterogeneous Transmissibility Field . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2. Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3. Flow Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4. Three-Dimensional Pore Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5. Iterative Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. Conclusion and Outlook 42

Bibliography 44

A. Direct Numerical Solution of the Prolongation Operator 46
A.1. Numerical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B. Multilevel MsRSB 52
B.1. Numerical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.2. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v





Chapter 1. Introduction

1. Introduction

The solution of multiphase flow problems in highly heterogeneous porous media as observed in
soils or rock formations is computationally demanding due to the numerous length and temporal
scales involved. Usually, the problem cannot be efficiently solved on a high resolution grid by
a standard CFD method that either uses a Finite Volume or Finite Element discretisation of
the Navier Stokes Equations, or by a Lattice Boltzmann Method. Consequently, the concepts of
pore network modelling and multiscale flow solvers are applied to find an approximate solution
which represents the most important flow structures.

1.1. Pore Network Modelling

In the following the modelling equations for incompressible two-phase flow in pore networks are
briefly reviewed based on [1] to obtain a linear system of equations for the pressure distribution.
In pore network modelling, the geometry of the porous media is idealised such that the most
important features of the flow are adequately represented on the macroscopic scale. An example
of an unstructured two-dimensional pore network is shown in Figure 1.1 (left). Pore bodies are
identified as computational nodes with constant pressure and saturation in each time step. The
pores are linked by pore throats that are characterised by a hydraulic transmissibility kij , which
corresponds to the reciprocal value of a hydraulic resistance. Note that kij may vary in large
orders of magnitude over short distances.

A visualization of two pore bodies i and j that are connected by a pore throat ij is given in Figure
1.1 (right). The number of adjacent pores connected to each pore i is denoted as coordination
number nc,i. It is assumed that each fluid in a pore has its own pressure. If source terms are
neglected, the flow balance for every pore body reads

Vi
∂Sαi
∂t

+

nc,i∑
j=1

vαij = 0, α = n,w, (1.1)

where Vi is the pore body volume, Si the saturation in pore i and vij the flow rate in the throat
connecting the pores i and j. The superscript index α represents the fluid phases, namely the
wetting (w) and the non-wetting (n) fluid phases. The fluxes are computed from the difference
of the pressures p in two neighbouring pores and kij by using Darcy’s law, i.e.,

vαij = −kαij(pαi − pαj ). (1.2)
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1.1. Pore Network Modelling
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Figure 1.1.: Left: Irregular unstructured two-dimensional pore network. Right: Visualization of
two neighbouring pore bodies i and j, and of the connecting pore throat ij.

The hydraulic transmissibility is related to the capillary pressures pc, i.e. kαij = f(pci , p
c
j), which

are defined as the pressure differences at the interface between the two fluid phases, i.e.

pci = pni − pwi . (1.3)

This equation is only valid for equilibrium conditions and has to be modified to account for
moving interfaces [1]. For a fluid-fluid interface, the capillary pressure is determined by the
Young–Laplace equation, i.e.

pci = γ

(
1

rmin
+

1

rmax

)
, (1.4)

where γ is the surface tension between the two phases and rmin and rmax are the minimum and
maximum radii of curvatures at the interface. However, in the modelling of pore networks pci
is usually directly related to Si by the so-called capillary pressure-saturation relationship, i.e.
pci = f(Swi ) [2]. One last condition is that all pores are completely filled with fluid, i.e.

Swi + Sni = 1. (1.5)

Usually, the equations introduced above are reorganised to first solve for a pressure solution based
on a saturation field given from the previous time step. The saturations and the transmissibilities
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1.2. Multiscale Solver

are then updated based on the pressure solution and the procedure is repeated for the subsequent
time steps.

To keep things simple, an incompressible single-phase flow is considered in the following. Hence,
the flow balance Equation (1.1) reduces to

nc,i∑
j=1

vij = qi, (1.6)

where qi denotes a source term. The flux between two neighbouring pores is

vij = −kij(pi − pj). (1.7)

For single phase flow, kij represents the structure and spatial properties of the network and can
vary over several orders of magnitudes. By combining (1.6) and (1.7) a linear system of equations
for the pressure is obtained, i.e.

Ap = q. (1.8)

Since the flow is balanced in each pore, A is a weakly diagonally dominant and symmetrical
matrix with a zero row-sum, i.e.

∑
j Aij = 0, for all cells except boundaries. A similar elliptic

system of equations could be derived for multiphase flow by rearranging the previously intro-
duced equations, or for continuous fluid domains by discretising the variable-coefficient Poisson
equation. However, since the subsequent solution steps are independent of the specific physical
system and valid for general Poisson-type equations, only the case of a single-phase flow in pore
networks is considered in this work.

1.2. Multiscale Solver

Currently, it is unfeasible to solve the system of Equation (1.8) with a direct numerical method for
realistic flow scenarios due to computational constraints. Using an iterative relaxation method
such as Jacobi, Gauss-Seidel or Successive Over Relaxation (SOR) results in slow convergence
of the pressure solution. More advanced methods, such as the Krylov Subspace Methods [3],
converge faster. However, the computational cost is still high for large systems. A much higher
convergence speed is usually achieved by using an Algebraic Multi Grid (AMG) method. AMG
ensures a fast reduction of the short and long-range error components by using a coarsening
process of the fine system to obtain algebraic grids on different coarse levels [4]. The fluxes
determined from pressure solutions obtained by an iterative method are not necessarily conser-
vative, depending on the level of convergence. However, a conservative velocity field is essential
when transport phenomena are relevant and if saturation values are computed in a multiphase
simulation.
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1.2. Multiscale Solver

Different methods have been developed to deal with the challenges arising in the flow simulation
of porous media. In upscaling methods, the fine scale system is approximated by a coarser system
that represents the large scale features of the solution and can be solved with less computational
effort [5]. However, these methods may produce unsatisfying results when the length scales are
not clearly separated and in addition, no information regarding the fine scale flow solution is
obtained. These limitations are resolved by multiscale methods that allow the reconstruction of
an approximate fine scale solution from a result obtained on a coarser scale. Different multiscale
modelling approaches exist, such as the multiscale finite element (MsFE) [6], the multiscale
finite volume (MsFV) [7] and the multiscale restriction-smoothed basis (MsRSB) [8] methods.
The general idea of all these methods is that localised flow problems are solved to obtain basis
functions which are used to map quantities between the fine and the coarse scales. Since only
the MsFV and the MsRSB methods provide fluxes that are conservative over the coarse cell
boundaries, which are used to reconstruct a conservative field for the whole domain, the MsFE
method is not further discussed here.

In the MsFV method two overlapping coarse grids are required to locally compute two sets of
basis functions that are used to construct the coarse transmissibilities and to reconstruct the
fine-scale velocity field from the coarse solution. The basis functions are usually obtained by
using a direct numerical method. Although MsFV can be formulated as an algebraic solver [9],
the method is primarily suited for structured systems since the fine cells have to be reordered
based on the dual-partitioning into interior, face, edge and vertex cells in the implementation.
The MsFV was developed further to deal with challenging test cases involving high permeability
contrasts by iteratively reducing the errors resulting from the localisation assumption by using
global information [10], [11], and to improve convergence speed and robustness in an iterative
implementation [12].

The MsRSB method uses an iterative smoothing process to obtain basis functions that are
consistent with the local properties of the fine-scale system. The smoothing process is a concept
that is related to AMG solvers using smoothed aggregation [13]. In [8] a simple damped Jacobi
smoother is used for the computation of the basis function of each block which is restricted to
a support region defined by a local triangulation using the centroids and shared face centres of
the neighbouring coarse cells. The formulation of MsRSB is algebraic and the method can be
applied equally for structured and unstructured grids. In a transient multiphase simulation with
changing transmissibilities, only a few iterations on the result from the previous time step are
necessary to update the basis functions. In a recent publication, it was shown how the MsRSB
can be extended for fractured porous media [14].
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1.3. Thesis Outline

The main goal of this Master’s thesis is to extend the MsRSB method for unstructured pore
networks that are able to represent real porous media. Unlike the implementation described in
[8], the method here should be able to cope with unknown pore locations and therefore operate
as a black-box solver for the system of equations (1.8).

The thesis is structured as follows. Chapter 2 summarises the general concepts of MsRSB
and describes how the method is extended for unstructured pore networks. In Chapter 3, the
numerical results of different test cases are presented. Finally, Chapter 4 gives a conclusion of
this work and recommendations for future research.
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Chapter 2. Numerical Modelling

2. Numerical Modelling

This chapter describes the multiscale restriction-smoothed basis (MsRSB) method for unstruc-
tured pore networks. The numerical modelling is based on [8], however, the geometric locations
of the pores are not required here and the method can operate as a black-box solver for an
approximate solution of the pressure distribution.

2.1. Multiscale Formulation

The solution of Equation (1.8) is represented on a fine-scale grid
{

ΩF
i

}n
i=1

. The multiscale
method starts with the partitioning of the fine grid into multiple non-overlapping blocks that
form a coarse grid

{
ΩC
j

}m
j=1

. Quantities associated with the coarse grid are interpolated to the

fine grid with a prolongation operator, i.e. P : ΩC → ΩF . Analogously, a restriction operator is
used for the mapping from the fine grid to the coarse grid, i.e. R : ΩF → ΩC .

The basic principle of every multiscale method is to first solve for a coarse solution pc on ΩC

and then to prolongate the coarse solution back to the fine scale to get an approximate solution
papprox of p, i.e.

papprox = Ppc. (2.1)

A linear system of equations for the computation of pc is derived by inserting papprox into
Equation Ap = q (1.8) and applying the restriction operator to map the system to the coarse
scale,

RA(Ppc) = Rq. (2.2)

This system can be rewritten to

Acpc = qc, (2.3)

with Ac = RAP and qc = Rq representing the coarse-scale system matrix and the coarse source
terms, respectively. In general, this system is much smaller than the original fine-scale system
and can usually be solved with a direct numerical method.

6



2.2. Algebraic Grids of Fine and Coarse Systems

After combining Equations (2.1) and (2.3) the multiscale method to compute the approximate
solution of p reads

p ≈ papprox = P (Ac)−1Rq. (2.4)

Generally, the approximate solution papprox can significantly deviate from the exact solution p.
Therefore Ac is usually used as a coarse correction step in an iterative multiscale formulation to
solve for p. The iterative multiscale formulation is presented in Section 2.7.

2.2. Algebraic Grids of Fine and Coarse Systems

In the following, it is shown how ΩF and ΩC are directly created from A. A useful approach to
get the topological characterisation of a system is its graph representation. A graph GF (V F , EF )
with the vertices V F and the edges EF of the fine-scale system is obtained by interpreting A
as the adjacency matrix of the graph. Every non-zero matrix entry kij 6= 0 of A defines an
edge between the vertices with indices i and j [15]. For certain applications it is advantageous
to consider a weighted graph representation. Therefore the edge weights are set to the values
of the corresponding transmissibilities kij . For symmetrical A, GF is an undirected graph with
kij = kji and only the strictly upper triangular matrix of A is used for the creation of GF . A
simple illustration of how a graph is created from a system matrix is given in Figure 2.1.

Figure 2.1.: System matrix A and its corresponding graph representation.

The vertices of GF are now associated with the grid points ΩF
i and the edges with the connections

between the different grid cells of the fine-scale system. Hence, ΩF is completely defined by GF ,
and therefore by A.

Similarly, the coarse-scale grid ΩC corresponds to a coarse graph GC(V C , EC). To determine
GC , GF is first partitioned into multiple coarse blocks. For the partitioning process, a variety of
graph based algorithms can be applied. The partitioner should produce approximately equally
sized blocks and reduce the number of edges connecting the different partitions. Here, algorithms
from the partitioning software Metis were used to efficiently produce blocks of good quality [16].
After the partitioning each vertex with index i belongs to a unique coarse block, i.e. i ∈ Cj , with
Cj denoting the set of fine scale vertices that belong to coarse block j. The coarse graph GC can
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now be created by merging the fine-scale vertices Vj = {i | i ∈ Cj} to a unique coarse vertex for
each block j and by the subsequent removal of multiple edges between the new coarse vertices.
Figure 2.2 shows GF and GC for a structured two-dimensional system with 81 solution unknowns
and 9 coarse cells with every vertex being connected to 8 other vertices except at the boundaries.
Here, the different colours and indicator values designate partition membership.

It is observed that the multipoint stencils of GC and GF are identical for a regular structured
grid. The connections between vertices on the coarse scale are later used to define the support
regions of the basis functions. Therefore, all blocks that are in the close neighbourhood of each
other should be connected in GC . For a nine-point stencil discretisation of the fine-scale system
all neighbouring coarse blocks are automatically correctly connected in GC .

Figure 2.2.: Graph representation of the fine and coarse systems GF and GC for a structured nine-
point stencil discretisation.

An example of a structured fine-scale system with a five-point stencil discretisation is shown in
Figure 2.3. Following the same procedure to obtain GC as described above, not all blocks are
connected on the coarse scale although they are in the close vicinity of each other. For example,
the coarse vertices with indices j = 3 and j = 5 are not directly connected in GC , since there
are no connections between the corresponding fine-scale vertices in GF . It is advantageous for
the multiscale method to also connect these vertices in GC . Therefore, additional edges denoted
as weak links are subsequently added to the coarse graph as indicated with dashed lines in
Figure 2.3. The weak links are added to GC based on a neighbourhood search on the fine-scale
that identifies other blocks in the vicinity of each block. First, the fine-scale vertices within a
topological distance R from each coarse partition are identified. A weak link is then added to GC
if the so found fine-scale vertices belong to a coarse block that is not already connected in GC .
The parameter R depends on the size of the system and should be chosen appropriately. For the
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2.2. Algebraic Grids of Fine and Coarse Systems

example shown in Figure 2.3 a value of R = 2 was chosen. For R = 1, no additional weak links
would have been added to the system.

Figure 2.3.: Graph representation of the fine and coarse systems GF and GC for a structured five-
point stencil discretisation. For GC , the subsequently added weak links are illustrated
with dashed lines.

An example of the neighbourhood search for each coarse block j is presented in Algorithm 1.
Here, v and v0 denote a set of fine-scale vertices, i.e. v, v0 ⊆ V F , and Nj is the set of indices of
the neighbouring coarse blocks of j. The function neighbours(v) returns the adjacent fine scale
vertices of v.

The above described procedure to get GF and GC is valid for general unstructured and three-
dimensional systems. An example for an unstructured two-dimensional system with 81 solution
unknowns and 9 coarse cells is shown in Figure 2.4. Here, a value R = 2 was chosen to obtain
GC .
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2.2. Algebraic Grids of Fine and Coarse Systems

Algorithm 1 Adding weak links to GC

1: for each coarse block j do
2: v0 = {i | i ∈ Cj}
3: v = {v0 | neighbours(v0) /∈ Cj}
4: r = 0
5: while r < R do
6: v ← v ∪ neighbours(v)
7: v = {v | v /∈ Cj}
8: r = r + 1

9: Nj = {k | i ∈ Ck ∧ i ∈ v}
10: for all k ∈ Nj do
11: if Coarse vertices with indices j and k are not yet connected then
12: Add weak link between coarse vertices with indices j and k

Figure 2.4.: Graph representation of the fine and coarse systems GF and GC for an unstructured
two-dimensional system. The weak links are illustrated with dashed lines.
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2.3. Support Regions

2.3. Support Regions

The prolongation operator P is formed by piecing together a set of basis functions Φj which are
specified for each coarse cell ΩC

j , i.e.,

Pij = Φj(ΩF
i ), (2.5)

with ΩF
i being the fine grid cell with index i. In the MsRSB method support regions Ij are

defined to determine the support of Φj . Here, Ij denotes the fine cells that are contained in
the support region of coarse cell ΩC

j . Basis functions have non-zero values only in the support
region,

Φj(ΩF
i ) > 0, ΩF

i ∈ Ij . (2.6)

The support region Ij can be constructed by creating a local triangulation of the block centroids
and shared-face centres of all neighbouring blocks of ΩC

j [8]. However, in pore networks geomet-
rical neighbouring pores are not necessarily connected by pore throats, as can be easily observed
in Figure 1.1 (left). Therefore, a triangulation would frequently produce disconnected support
regions with isolated vertices. Furthermore, if the locations of the fine cells are unknown the
triangulation cannot be created and therefore this method is not suited for a black-box imple-
mentation. Another problem is that only convex support regions can be easily created with a
Delaunay triangulation. A new method to create Ij directly from the graphs GF and GC will
be introduced later in this section. For convenience, the support boundary Bj , the global support
boundary G and the coarse cell centres Mj are defined first.

Bj contains the fine cells that are topological neighbours to the outermost cells of Ij so that
Bj ∩ Ij = ∅, and G is the union of all cells that are in Bj of at least one block, i.e.

G =
m⋃
j=1

Bj . (2.7)

The centres Mj are determined by using the graph representation GF of the system matrix A.
For each coarse partition j a fine-scale subgraph Gsubj (V sub

j , Esubj ) with the subgraph vertices
V sub
j , i.e.

V sub
j = {i | i ∈ Cj ∧ i ∈ V F }, (2.8)

and edges Esubj , i.e.

Esubj = {(i, k) | i ∈ Cj ∧ k ∈ Cj ∧ (i, k) ∈ EF }, (2.9)
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is formed and based on that, the relative closeness centralities of the fine cells are computed.
The relative closeness centrality of a vertex is a measure to quantify how easily it can be reached
from the other vertices and is defined as RCi = (n−1)/

∑n
k=1 dik, with dik being the unweighted

shortest path length from vertex i to vertex k and n being the number of vertices in the graph
[17]. The coarse cell centre Mj of each block with nj fine cells is then specified to be the fine cell
with the largest closeness centrality of Gsubj , i.e.

Mj = arg max
i∈Cj

{
(nj − 1)∑
k∈Cj

dik

}
. (2.10)

If Gsubj has disconnected vertices, it is necessary to ensure that Mj belongs to the connected part
of the subgraph. This can be achieved by setting dik of a disconnected vertex pair i and k to a
value that is higher than the maximum shortest path occurring in Gsubj , e.g. by setting it to nj .
However, it should be ensured that the partitions do not have too many disconnected vertices in
the first place. The method could be extended to determine Mj based on a weighted closeness
centrality which was not considered here.

In the following, the method to find Ij and Bj that only requires the graph representations GF
and GC of A is introduced. In a first step, a temporary support region sj is created that initially
includes all fine scale vertices of coarse cell ΩC

j , i.e.

sj = {i | i ∈ Cj}. (2.11)

The temporary support sj is then grown into the neighbouring coarse blocks of ΩC
j , which are

directly identified by the coarse graph GC . Here, coarse vertices that are connected through edges,
including the ones connected through weak links, are considered to be neighbouring blocks. The
growing is done by repeatedly adding the neighbouring fine vertices to sj , i.e.

sj ← sj ∪ neighbours(sj), (2.12)

until a fine scale centre cell Mk, k 6= j in the coarse neighbour block ΩC
k is reached and the

growing in the corresponding block ΩC
k is stopped. The growing then continues only in the other

blocks, until all centres of the coarse neighbourhood are reached. Finally the outermost vertices
of sj are assigned to Bj and all others to Ij . In a subsequent step it should be ensured that
the neighbouring coarse centres Mk, k 6= j are always in Bj and not in Ij , as it may occur in
complex unstructured and three-dimensional systems. The so determined support regions are
fully connected and have no isolated vertices which is an advantage compared to the support
regions obtained by local triangulation in [8].

An example algorithm for the creation of the support regions is presented in Algorithm 2. Here,
N is the index set of neighbouring coarse vertices, vcentres the set of neighbouring (fine scale)
block centre vertices, s0 the vertices from the initial temporary support region, s the temporary
support region and snew the vertices which are currently being added to s. In the implementation

12



2.3. Support Regions

the growing of each support region is done on a local subgraph that only includes vertices from
the current coarse block and from its coarse neighbours. Therefore, this part of the code can be
easily parallelised in the future.

Algorithm 2 Creating the support regions
1: for each coarse partition j do
2: N ← coarse neighbours(j)
3: vcentres = {Mk | k ∈ N}
4: s0 = {i | i ∈ Cj}
5: s← s0
6: snew = {s | neighbours(s) /∈ Cj}
7: while len(N) 6= 0 do
8: if vcentres,k ∈ s then
9: N ← N \Nk

10: snew ← neighbours(snew)
11: snew ← snew ∈ N
12: s← s ∪ snew
13: Bj = {s | neighbours(s) /∈ s}
14: Ij = s \Bj

In the following, the method is illustrated based on two examples which are introduced in Figure
2.5. The examples are both two-dimensional and the vertices are represented on an equidistant
grid. In the first example the edges form a nine-point stencil and the grid is partitioned into
nine structured coarse cells (left), whereas in the second example an unstructured network and
partitioning is used (right). In the figure the coarse cells are indicated with different colours and
the coarse centres are marked with a large red dot. For the structured example, the stepwise
growth of sj is visualized in Figure 2.7 for the centre block. In the top left subfigure sj only
includes the vertices from the centre block. The other subfigures then show the iterative growth
of sj into the neighbouring coarse partitions, until all coarse centres are reached. In the last
figure the resulting Ij (blue) and Bj (yellow) are shown. The same is shown for the unstructured
system in Figure 2.8. After creating Ij and Bj , the global support region G is determined. In
Figure 2.6 the vertices G ∩Bj are highlighted in green.

13



2.3. Support Regions

Figure 2.5.: Two examples of pore networks represented on equidistant grids which are both parti-
tioned into nine coarse blocks. The coarse cell centres are highlighted with a large red
dot.

Figure 2.6.: The resulting support regions Ij (blue), support boundaries Bj (yellow) and the global
support boundary vertices G∩ Ij (green) illustrated for the centre blocks of the above
introduced structured and unstructured networks.
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Figure 2.7.: Stepwise growth of the temporary support region for the centre block of a
structured network. The initial support region is highlighted in magenta,
the current support region in blue and the vertices that are added in every
step in light blue. The bottom right figure shows the resulting support
region (blue) and support boundary (yellow).
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Figure 2.8.: Stepwise growth of the temporary support region for a central block of
an unstructured network. The initial support region is highlighted in
magenta, the current support region in blue and the vertices that are
added in every step in light blue. The bottom right figure shows the
resulting support region (blue) and support boundary (yellow).
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2.4. Prolongation Operator

The MsRSB method uses an iterative process to compute the basis functions that form the
prolongation operator P [8]. In the following, the process to compute P is briefly summarised.
It is assumed that the system matrix A has zero row sum, i.e.

∑
j

Aij = 0, (2.13)

which is usually valid everywhere except at cells adjacent to Dirichlet boundaries, to obtain a
prolongation operator that has partition-of-unity, i.e.

∑
j

Pij = 1. (2.14)

If Equation (2.13) is violated, the diagonal entries of A are adjusted to ensure zero row sum for
the computation of P [8].

The basis functions are initialised by setting them to a value of one inside the corresponding
block and to zero otherwise, i.e.

P
(0)
ij =

{
1, if i ∈ Cj
0, otherwise. (2.15)

Then, a smoothing step is applied to get the iterative increments of the basis functions, i.e.

d̂ = −ωD−1AP (n), (2.16)

where D is the diagonal matrix of A and ω a relaxation parameter. Throughout this work,
ω is set to 2/3, similar to [8]. In every iteration, the cell values of the basis functions are
modified based on topological neighbouring cells. Hence, the basis functions will eventually have
non-zeros values in the entire network. To enforce the basis functions to have support in the
corresponding support regions only, d̂ is modified in an additional step. For convenience, a sum
of the increments d̂ is first computed including all fine cells in G, i.e.

d̂sums,i =
∑
j

d̂ij , i ∈ Ij , i ∈ G. (2.17)
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2.4. Prolongation Operator

Note that the increment values of cells in Bj are not included in the computation of the sum.
The increment is then modified by setting d̂ij outside Ij to zero and scaling the values on G to
preserve partition-of-unity in the whole network, i.e.

dij =


d̂ij−P

(n)
ij d̂sums,i

1+d̂sums,i
i ∈ Ij , i ∈ G,

d̂ij , i ∈ Ij , i /∈ G,

0, i /∈ Ij .

(2.18)

The prolongation operator is then updated, i.e.

P (n+1) = P (n) + d. (2.19)

The convergence of P is measured by computing the maximum value of dij outside G, i.e.

dmax = max(|dij |), i /∈ G. (2.20)

The prolongation operator has converged if dmax < dcrit. If not, P (n) is set to P (n+1) and the
iteration steps (2.16) - (2.20) are repeated. The converged basis functions of the centre block for
the networks from Figure 2.5 with constant transmissibilities are shown in Figure 2.9, represented
on a structured grid.

In a transient multiphase flow simulation the transmissibilities of the flow network may change
in every time step, and therefore the system matrix and the prolongation operator need to be
updated continuously. The computation of P (t) at time step t can be done by using the result
of the previous time step P (t− 1) as an initial guess for P (0)(t), i.e. P (0)(t) = P converged(t− 1).
The updating procedure usually converges after a few iteration steps.

In the implementation, the prolongation operator P is a large sparse matrix with zero entries
everywhere except for the cells on the support region. Since the values outside Ij are always set
to zero, the smoothing step (2.16) only affects the basis functions on the corresponding support
regions and support boundaries. To reduce the computational costs the steps (2.16), (2.18) and
(2.19) can be performed separately for every basis function Φj = Pj on local subsystems Aj

of A that involve the cells {ΩF
i | i ∈ Ij ∪ Bj}. However, the sums from step (2.17) depend on

values from different basis functions and have to be computed globally. Therefore, the benefits of
parallelising the computation are limited due to the required processor communication in every
iteration step.

The iterative method is computationally expensive especially if P is computed from scratch and
if the tolerance criteria to stop the iteration is low, as usually required for highly heterogeneous
and anisotropic flow networks, e.g. for domains involving channels. The smoothing step (2.16)
resembles a Jacobi iterative solver which has slow convergence properties. Switching to an
iterative method with faster convergence, e.g. a Gauss-Seidel solver, or using multiple smoothing
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2.4. Prolongation Operator

Figure 2.9.: Basis functions for the centre blocks of the above introduced structured and unstruc-
tured pore networks.

cycles before applying the correction step (2.18), is not straightforward, since the computation
of the update depends solely on the previous iteration step to maintain partition-of-unity.

Alternatively, one could think of using a direct method to compute the basis functions Φj , which
is discussed in Appendix A. Although reasonable results are obtained for homogeneous systems,
the direct method produces unusable prolongation operators for more complex flow scenarios
with high transmissibility contrasts due to a normalization step which is necessary to ensure
partition-of-unity.
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2.5. Restriction Operator

The restriction operator R is obtained by either using a control volume summation [8], i.e.

Rji,CV =

{
1, if i ∈ Cj
0, otherwise, (2.21)

or a Galerkin operator formulation [8], i.e.

RG = P T , (2.22)

where P T is the transposed matrix of P .

Usually, RCV is used to ensure that the fluxes across the border of each coarse cell are conserva-
tive. However, using RG in the implementation of an iterative multiscale formulation (Section
2.7) improves the convergence speed of the solver. Consequently, RCV is only applied in the last
iteration step to obtain a conservative result on the coarse scale.

2.6. Treatment of Boundaries

In a linear system of equations Dirichlet boundaries are usually defined by locally replacing A
by the identity matrix and specifying the boundary values at the right-hand-side of the system.
However, adjusting the diagonal elements of the resulting matrix to get zero row sum (2.13)
leads to a singular matrix which cannot be used in the iterative computation of P . Therefore,
Dirichlet boundaries are assigned to virtual cells outside the grid which are connected to the
simulation domain through an interface. Hence, the system matrix can easily be modified to
ensure zero row sum and be used as an iteration matrix in Equation (2.16). Note that it is
best to set the transmissibilities of the interfaces to values that are high enough to not cause a
significant pressure drop. For Neumann boundaries, no special treatment of A is necessary, since
the boundaries only affect the right-hand-side of the equations.

On the left of Figures 2.10 and 2.11 the support region and the basis function for a coarse block
which is adjacent to the boundary at the east of a structured flow network are shown. If the coarse
centre Mj of a boundary block is specified to be the fine cell with the largest closeness centrality
of the corresponding block according to (2.10), the resulting basis function remains constant east
of the coarse centre towards the boundary to ensure partition-of-unity of the basis functions,
which leads to errors in the approximate pressure solution. The quality of the prolongation
operator is significantly increased if Mj is moved to a fine cell adjacent to the boundary [8]. Two
different cases were considered to specify Mj of a boundary block. For connected boundary fine
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cells, Equation (2.10) is modified to only include the closeness centralities of the boundary cells,
i.e.

Mj = arg max
i∈(Cj∩BC)

{
(nj − 1)∑

k∈(Cj∩BC) dik

}
. (2.23)

Here, BC corresponds to the index set of fine cells adjacent to boundaries. Alternatively, if the
boundary cells are disconnected, all cells are considered in the computation similarly to (2.10),
but Mj is set to be the cell at the boundary with the highest closeness centrality with respect
to the whole block , i.e.

Mj = arg max
i∈(Cj∩BC)

{
(nj − 1)∑
k∈Cj

dik

}
. (2.24)

The resulting support region and the basis function are shown on the right of Figures 2.10 and
2.11 for the structured system. Moving the coarse centre to the very east of the domain results
in a basis function that decays smoothly.

Figure 2.10.: Coarse centre cells Mj (red), support regions Ij (blue), support boundaries Bj (yel-
low) and the global support boundary vertices G∩Ij (green) for the boundary blocks
of a structured network. In the right image Mj is moved to a cell adjacent to the
boundary.

For the sake of completeness, the effect of moving the coarse centres of the above introduced
unstructured network to a fine cell adjacent to the boundary is illustrated in Figures 2.12 and
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Figure 2.11.: Basis functions of a block that is adjacent to the east boundary of a structured
network. In the right image Mj is moved to the boundary. The colour scheme is
identical to the one of Figure 2.9.

2.13. Similarly to the structured case, the basis function with the modified Mj decays smoother
out from the boundary.

As mentioned above, the here presented multiscale method should also work if only the matrix
A and the right hand side q of the system of equations (1.8) are given and when the locations
of the boundary cells are unknown. General boundaries BC are extracted directly from q by
identifying the non-zero entries, i.e.

BC = {ΩF
i , i | qi 6= 0}. (2.25)

To specifically obtain the Dirichlet boundary cells, the fine cells with a non-zero row sum in A,
i.e.

BC = {ΩF
i , i |

∑
j

Aij 6= 0}, (2.26)

are determined. Note that no-flow boundaries cannot be extracted by using such an approach.
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Figure 2.12.: Coarse centre cells Mj (red), support regions Ij (blue), support boundaries Bj (yel-
low) and the global support boundary vertices G ∩ Ij (green) for a boundary block
of an unstructured network. In the right image Mj is moved to a cell adjacent to the
boundary.

Figure 2.13.: Basis functions of a block which is adjacent to the west boundary of an unstructured
network. In the right image Mj is moved to the boundary. The colour scheme is
identical to the one of Figure 2.9.
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2.7. Iterative Multiscale Formulation

Usually, (2.1) gives only an approximation for the solution of (1.8) and its quality depends,
among other factors, on the size of the coarse system, the level of convergence of P and the
specific test case. The accuracy can be improved with an iterative multiscale formulation of
the MsRSB method which uses a smoothing step to reduce the short-wavelength errors. In the
following, an iterative multiscale formulation based on [8] is briefly summarised.

To compute the pressure solution p(n+1) at iteration step (n+1), the residual r of the fine system
at the previous step (n) is first determined, i.e.

r(n) = q −Ap(n). (2.27)

A smoothing step S is then applied to the residual to get y(n) = S(r(n)) . In the implementation,
a few Jacobi iterations with the initial result set to zero or alternatively an incomplete LU-
factorization (ILU) are performed on the fine scale system

Ay(n) = r(n). (2.28)

The coarse error ec(n) is computed with a direct method, i.e.

ec(n) = (Ac)−1R(r(n) −Ay(n)), (2.29)

and the multiscale cycle is completed with the update of the solution, i.e.

p(n+1) = p(n) + Pec(n) + y(n). (2.30)

The steps (2.27) to (2.30) are repeated until the maximum value of the residual ri is below a
certain tolerance and the pressure is assumed to be converged. The initial result p(0) is usually
set to 0 or to the result of the previous time step in a transient flow simulation.

It is common in multigrid methods to have more than one coarse level to increase convergence
speed in an iterative multiscale formulation [18]. In the here presented black-box form of the
MsRSBmethod, a second set of coarse prolongation and restriction operators could be determined
based on Ac to obtain a system of equations for the pressure on the next coarser level. One
possible formulation of an iterative multilevel method is presented in Appendix B. However,
coarse-scale transmissibilities of Ac can be negative for certain fine-scale systems (see Section
2.8) and the so computed coarse-scale basis functions would have negative values. Therefore,
the MsRSB method is not straightforwardly extendable to a multilevel multiscale method for
general pore networks.
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2.8. Adapted Grid Partitioning for Networks with Channels and Barriers

Although the here presented method produces results of good quality for a wide range of het-
erogenous test cases, flow scenarios involving large transmissibility contrasts are in general more
challenging. It was observed that the errors of the approximate solution computed with the
MsRSB method are quite large in the vicinity of channels and barriers. In some cases, the
multiscale method produces non-physical coarse systems with negative coarse transmissibilities
that may lead to approximate solutions that violate the maximum principle. Therefore, a high
number of smoothing steps per coarse step is usually required for reasonable convergence rates in
an iterative formulation and in some extreme cases the iterative procedure may fail entirely. The
performance is significantly increased if the restriction operator, and consequently the grid parti-
tioning, are adapted to the structure of the basis functions [8]. This is done by finding the basis
function with the largest value for every fine cell i and assigning the cell to the corresponding
block, i.e.

Cadaptedk = {i | k = argmax
j

Pij}. (2.31)

In the following, a two-dimensional homogeneous test case with 200 x 200 fine cells and a diagonal
channel with a much higher transmissibility than the surrounding pore network, e.g. kchannel/k =
106, is considered. Figure 2.14 shows the test case for the initial structured partitioning into 5
x 5 coarse blocks (left) and for the adapted partitioning (centre). The updated partitioning is
now well aligned with the prolongation operator, as can be observed in Figure 2.14 (right). The
yellow line in the figure represents the support boundary of the block considered.

Figure 2.14.: Structured system with a diagonal channel. Left: Initial structured partitioning,
Centre: Adapted partitioning, Right: Basis function for a block that includes the
channel (The colour scheme is identical to the one of Figure 2.9).

The same is shown in Figure 2.15 for a test case where an unstructured initial partitioning into 25
blocks was used. It was reported in [8] and also observed in the here performed simulations, that
adapting the restriction operator generally leads to better results, also for test cases involving
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multiple channels. Flow scenarios including a large number of narrow channels in fractured media
were not considered here and are preferably treated as described in [14].

Figure 2.15.: Structured system with a diagonal channel. Left: Unstructured initial partitioning
done with Metis, Centre: Adapted partitioning, Right: Basis function for a block
that includes the channel (The colour scheme is identical to the one of Figure 2.9).

Figure 2.16 shows the initial structured partitioning, the adapted partitioning and two different
basis functions for a test case with a diagonal flow barrier that has a much lower transmissibility
than the surrounding geometry, e.g. kbarrier/k = 10−6. In this case, modifying the restriction op-
erator does not significantly increase the approximate solution and, in general, better results are
obtained if the partitioning is fitted to the barrier before the prolongation operator is computed
[8].

Figure 2.16.: Structured system with a diagonal barrier. Left: Initial structured partitioning,
Centre: Adapted partitioning, Right: Basis functions for two blocks that include the
barrier (The colour scheme is identical to the one of Figure 2.9).
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3. Numerical Results

The multiscale method described in Chapter 2 was implemented in Python using the libraries
NumPy [19], SciPy [20], python-igraph [21] and PyMetis [22]. In its black-box form, the resulting
code only requires the system matrix A and the right-hand-side vector q of the linear system
of equations (1.8) along with the number of coarse partitions as input parameters. Therefore
the implementation works equally for structured and unstructured, two- and three dimensional
model problems.

Multiple numerical studies were conducted to investigate the performance of the method and
to verify the implementation. The accuracy is evaluated by computing a relative error εi for
every fine cell ΩF

i of the multiscale result papprox compared to a reference pressure pref which is
obtained by a direct numerical method, i.e.

εi =

∣∣∣∣∣papproxi − prefi
prefi

∣∣∣∣∣ . (3.1)

To quantify the overall accuracy of one specific simulation, the maximum and root mean square
errors are used, i.e.

εMAX = max
i
{εi}, εRMS =

√√√√ 1

n

n∑
i=1

ε2i . (3.2)

In the following the results of several numerical studies are presented. The analysis only includes
steady state and incompressible single phase test cases. Furthermore, only the pressure distribu-
tion in pore networks is discussed and no fine-scale fluxes are reconstructed from the conservative
coarse boundary fluxes. Note that transmissibilities and pressures used in the computation are
dimensionless numbers with usually arbitrarily chosen values that have no relation to real porous
media.

3.1. Heterogeneous Transmissibility Field

First, the test case of an unstructured pore network with 51’200 pores and a highly heterogeneous
transmissibility distribution is investigated. To visualize the results, the pores are represented
on a regular two-dimensional grid with 320 x 160 cells as shown in Figure 3.1 (only the lower
left part of the domain is visualized).
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Figure 3.1.: Lower left part of an unstructured pore network represented on a regular grid.

The average coordination number of the network is nc,avg = 6.5 and transmissibilities with
values from the range kmax/kmin = 106 are randomly assigned to the pore throats. An average
transmissibility k̄i is determined for every pore based on the values from its neighbouring pore
throats, i.e.

k̄i =
1

nc,i

nc,i∑
j=1

kij , (3.3)

and the resulting field is visualized in Figure 3.2 along with the partitioning of the fine scale
system into 50 coarse blocks.

The basis functions of three blocks are visualized in Figure 3.3 for three different levels of conver-
gence of the prolongation operator with dcrit = 10−3 (top), dcrit = 10−4 (middle) and dcrit = 10−5

(bottom). The yellow lines in the figure represent the support boundaries of the corresponding
blocks. In general, low dcrit values are required for highly heterogeneous networks to obtain
prolongation operators of good quality. However, more than 10’000 iteration steps on the pro-
longation operator are here required for the lowest tolerance criteria which is computationally
expensive.

The one step pressure solution papprox obtained from Equation (2.4) and the corresponding
relative error are shown in Figure 3.4 for a test case with fixed pressure values of 2 and 1 at the
left and right, no-flow boundaries at the top and bottom and a prolongation operator converged
to dcrit = 10−5. It is observed that an accurate pressure field with a low error results in the
whole domain.
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Figure 3.2.: Transmissibility field k̄ of a highly heterogeneous network and grid partitioning into
50 coarse blocks.

The level of convergence has a direct influence on the accuracy of the one step pressure approxi-
mation. The errors εRMS and εMAX for different dcrit are listed in Table 3.1. As expected, results
of better quality are obtained for lower dcrit. However, this comes with a higher computational
cost for the calculation of the prolongation operator. It is observed that in this specific test case,
εMAX is higher for dcrit = 10−6 than for dcrit = 10−5. Note that the fine scale fluxes over the
coarse scale grid borders are always conservative if a control volume restriction operator is used,
independent of the convergence level of the prolongation operator.

Table 3.1.: εMAX and εRMS of papprox for different convergence levels
εRMS εMAX

dcrit = 10−3 0.0288 0.1025
dcrit = 10−4 0.0243 0.0860
dcrit = 10−5 0.0146 0.0551
dcrit = 10−6 0.0126 0.0624

The overall accuracy of the one step approximation is improved if the number of coarse blocks
m is increased. The results for m = 25 (top) and m = 105 (bottom) are shown in Figure 3.5
and the error norms are summarised in Table 3.2. Here, the values n/m denote the average
number of fine cells per block. Note that the number of 105 partitions is chosen since the grid
partitioner Metis produces disconnected blocks for the initially chosen number of 100 blocks. It
is observed that εMAX is higher for m = 105 than for m = 50. However, although all results
were obtained by using the same dcrit for the prolongation operator, comparison between the
three results is difficult, since the optimum dcrit may vary depending on the number and size of
the partitions.
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Figure 3.3.: Basis functions for different levels of convergence. Top: dcrit = 10−3, Middle: dcrit =
10−4, Bottom: dcrit = 10−5.
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Figure 3.4.: One step pressure approximation papprox (top) and the corresponding error ε (bottom).
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Figure 3.5.: One step approximation papprox for 25 (top) and 105 (bottom) coarse blocks.
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Table 3.2.: εMAX and εRMS of papprox for different numbers of coarse partitions
m n/m εRMS εMAX

25 2048 0.0307 0.0963
50 1024 0.0146 0.0551
104 488 0.0139 0.0642

3.2. Channels

Pore networks with high permeability contrasts are in general challenging to simulate with a
multiscale method. In the following, a test case involving five highly permeable channels with
kchannel/k = 106, where k is the transmissibility outside the channel, is investigated. The
simulation setup is identical to the one introduced in the previous section, except that the
transmissibilities of the pore throats are modified to represent the channels. Figure 3.6 shows
the transmissibility field k̄i with the initial partitioning into 50 coarse blocks (top) and the
adapted partitioning (bottom) according to Section 2.8. Note that for the adapted case, coarse
blocks with different number of fine cells result, which may be a disadvantage for the multiscale
method regarding accuracy and iterative performance.

Examples of basis functions converged to dcrit = 10−5 are visualized in Figure 3.7 (top) together
with the resulting one step pressure approximation (middle) and the relative error (bottom) for
the case of an adapted restriction operator. It is observed that the errors are in general larger
than for the heterogeneous test case, especially at the right boundary.

Using an adapted restriction operator significantly decreases the error norms if the same conver-
gence level of the prolongation operator is used, as shown in Table 3.3.

Table 3.3.: εMAX and εRMS of papprox for different restriction operators R
εRMS εMAX

R not adapted 0.1270 0.2551
R adapted 0.0216 0.1670

33



3.2. Channels

Figure 3.6.: Transmissibility field k̄ with initial (top) and adapted (bottom) partitioning
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Figure 3.7.: Basis functions (top), one step pressure approximation papprox (middle) and relative
error ε (bottom) for a pore network with channels.
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3.3. Flow Barriers

Next, a test case involving five flow barriers is discussed. The barriers are represented by modify-
ing the transmissibilities of the channels from the previous section to much lower values compared
to the surrounding geometry, i.e. kbarrier/k = 10−6. The transmissibility distribution is shown
in Figure 3.8 together with the partitioning into 50 blocks using Metis. Table 3.4 summarises
the error norms for different coarse partitions used. In contrast to the channel test case, using a
grid partitioning and restriction operator adapted to the prolongation operator does not improve
the multiscale result. However, the overall result is significantly improved if the transmissibility-
values are used as edge weights in the initial Metis partitioning.

Figure 3.8.: Transmissibility field k̄ with an unweighted partitioning into 50 blocks.

Table 3.4.: εMAX and εRMS of papprox for different restriction operators and partitioning
εRMS εMAX

Unweighted partitioning, R not adapted 0.0441 0.2123
Unweighted partitioning, R adapted 0.0507 0.2119
Weighted partitioning, R not adapted 0.0216 0.3528

The approximate pressure solution (top) and its relative error (bottom) are shown in Figure
3.9 for the test case with a weighted partitioning. The maximum error, which corresponds to
εMAX = 0.3528 in Table 3.4, is located in the vertical barrier.
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Figure 3.9.: One step approximation papprox (top) and relative error ε (bottom) for a pore network
with flow barriers.
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3.4. Three-Dimensional Pore Networks

For the sake of completeness, a three-dimensional test case with 54’705 pores and a heterogeneous
transmissibility distribution with kmax/kmin = 1.4 · 106 as visualized in Figure 3.10 (top) is
briefly discussed. In the figure, the spheres represent the pores, however, the sizes of the spheres
are arbitrarily chosen and have no relation to actual length scales. The average coordination
number is nc,avg = 10.3 and the grid is partitioned into 50 blocks. The resulting approximate
pressure solution for a prolongation operator converged to dcrit = 10−5 is shown in Figure 3.10
(bottom). Here, Dirichlet boundaries on two opposing sides of the pore network were used with
the pressures fixed to 2 and 1, respectively. Table 3.5 summaries the error norms for different
levels of convergence of the prolongation operator. Generally, the errors are higher than for the
two-dimensional case presented in Table 3.1.

Table 3.5.: εMAX and εRMS of papprox for different convergence levels.
εRMS εMAX

dcrit = 10−3 0.0364 0.1357
dcrit = 10−4 0.0270 0.1346
dcrit = 10−5 0.0261 0.1343
dcrit = 10−6 0.0260 0.1342

The overall computation time to obtain the basis functions is significantly higher for three-
dimensional than for two-dimensional test cases. This is due to the generally larger support
regions resulting from the higher number of neighbouring coarse cells per block. At the same
time, the number of global support boundary vertices can be very large for three dimensional
pore networks. Therefore a fast implementation of the partition-of-unity scaling steps (2.17) and
(2.18) is crucial for the overall performance of the method.
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Figure 3.10.: Transmissibility field k̄ (top) and approximate pressure solution papprox (bottom) of
a three-dimensional heterogeneous network.
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3.5. Iterative Solver

By using an iterative implementation of the multiscale method the error of the pressure solution
is reduced below a predefined tolerance as discussed in Section 2.7. In the following, the test case
involving five highly-permeable channels as introduced in Section 3.2 with the prolongation op-
erator converged to dcrit = 10−5 is considered. The iterative performance depends on the choice
of the restriction operator, which can be obtained by either using a control-volume or a Galerkin
formulation. The solution diverges if a control-volume operator unadapted to the prolongation
operator is used. This is due to the relatively large positive off-diagonal values in the coarse
matrix Ac which represent negative and therefore unphysical coarse scale transmissibilities. For
the channel test case, normalized positive coarse off-diagonals, i.e. acij/a

c
ii, with values up to

0.98 were observed. By adapting the control-volume operator to the basis functions as discussed
in Section 2.8 the maximum normalized coarse off-diagonal is reduced to 0.46 and the solution
converges. Figure 3.11 compares the convergence histories of εRMS (left) and εMAX (right) of the
iterative solvers that either use a Galerkin or an adapted control-volume (CV) implementation
of the restriction operator. For the fine-scale smoother, 10 Jacobi iterations per multiscale cycles
were used. As expected, faster convergence is observed by using a Galerkin approach. However,
the advantage of a control-volume formulation is that the fluxes over the coarse borders are
conservative after each multiscale cycle. Therefore it is recommended to first use the Galerkin
approach to ensure fast convergence and then switch to the control-volume formulation in the
last iteration step to obtain a solution that is conservative on the coarse scale.

Figure 3.11.: Convergence histories of εRMS (left) and εMAX (right) for an iterative MsRSB for-
mulation with 10 Jacobi steps per multiscale cycle.

The convergence speed is significantly increased if 10 ILU steps instead of the Jacobi iterations are
used as a smoother, as can be seen in Figure 3.12. It is observed that the implementation with
the control-volume restriction operator initially converges faster than the Galerkin approach
in this case. After ≈ 50 steps, the convergence speed of the control-volume implementation
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decreases and the two curves are congruent after ≈ 150 steps. No further studies were conducted
to investigate the reasons for this behaviour.

Figure 3.12.: Convergence histories of εRMS (left) and εMAX (right) for an iterative MsRSB for-
mulation with 10 ILU steps per multiscale cycle.
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4. Conclusion and Outlook

In this work, the MsRSB method was extended for unstructured pore networks. A graph repre-
sentation of the fine scale system is used to determine the block centres of every coarse partition.
Support regions are then obtained for each partition by repeatedly performing a neighbourhood
search on the fine scale graph until the centres of the neighbouring coarse blocks are reached.
This method produces support regions that are fully connected and does not require knowledge
of the geometrical pore locations. Subsequently, the basis functions are computed by using an
iterative smoothing process that is restricted to the corresponding support regions. In combi-
nation with an automatic partitioning algorithm such as Metis, the method can be used as a
black-box solver for many different Poisson-type problems.

It was observed that the MsRSB method produces results of good quality for different test cases
involving highly heterogeneous and unstructured pore networks. However, unphysical coarse
systems with negative transmissibilities can occur for certain scenarios, especially if large trans-
missibility contrasts on the fine-scale are involved, e.g. due to channels or flow barriers. This can
result in approximate pressure solutions that violate the maximum principle and, if an iterative
multiscale formulation is used, the solver may converge slowly or even diverge. The performance
is improved when either the restriction or the prolongation operator is adapted to the underlying
transmissibility field. For this adaption step knowledge about the specific test case is necessary
and hence the method cannot fully operate as a black-box solver for these scenarios.

The thesis is closed with suggestions for further research:

• In order to further investigate the accuracy and the iterative performance of the MsRSB
method for unstructured pore networks, a systematic study on various test cases with
different boundary conditions should be conducted. This study should include multiphase
flow scenarios and simulation geometries resembling realistic porous media.

• The influence of negative coarse transmissibilities on accuracy, stability and iterative per-
formance of the multiscale method should be investigated. This is relevant especially for
test cases involving channels and flow-barriers.

• In a parametric study, the influence of several model parameters such as weak link radius
and tolerance of the prolongation operator should be analysed. Furthermore, it should be
investigated whether it is better to use a weighted or unweighted graph representation to
define the partitioning and to find the coarse block centres.

• The current implementation should be improved regarding computational efficiency in order
to obtain a code that is able to simulate large three-dimensional networks in a reasonable
time. The main potential is seen in the normalisation steps required to ensure partition
of unity in the computation of the prolongation operator. Currently, Python dictionaries
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are created and accessed frequently, which is computationally inefficient and therefore a
bottleneck in the implementation.
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Appendix A. Direct Numerical Solution of the Prolongation Operator

A. Direct Numerical Solution of the Prolongation Operator

The iterative method to compute the prolongation operator described in Section 2.4 is compu-
tationally expensive especially if P is computed from scratch and if the tolerance criteria dcrit
to stop the iteration is low. Alternatively, one could think of using a direct method to compute
the basis functions Φj .

A.1. Numerical Modelling

A direct procedure to compute P consists of first solving a linear system of equations to get an
initial result Φ̂j for each coarse cell ΩC

j which is independent of other basis functions, i.e.,

AjΦ̂j = bj . (A.1)

Here, bj is zero everywhere except at the coarse block centre cell Mj , i.e.,

bij =

{
1, if i = Mj

0, otherwise, (A.2)

andAj is the system matrixA that is locally replaced by the identity matrix at all cells outside Ij
and at the centre cellMj . The initial basis functions are then scaled to ensure partition-of-unity,
i.e.

Φij =
Φ̂ij∑
j Φ̂ij

. (A.3)

It was observed that basis functions obtained with iterative and direct methods coincide for one-
dimensional test cases. However, large differences can occur for multidimensional networks. In
the following, the basis functions resulting from the iterative and direct methods are compared
for a simple two-dimensional and structured network with homogeneous conductivities which is
partitioned into three coarse blocks. The partitioning and the corresponding support regions and
-boundaries for the centre block are visualized in Figure A.1.

The basis functions resulting from the iterative (left) and direct (right) approaches are shown in
Figure A.2. In the case of the iterative method, the basis function decays linearly from the global
support boundary vertices in the middle towards the eastern and western support boundaries and
has constant values regarding to the vertical axis of the figure. Therefore, a linear pressure drop
from left to right could be exactly reproduced in a flow network with constant transmissibilities
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A.1. Numerical Modelling

Figure A.1.: Left: Partitioning of a structured network into three coarse blocks. Right: Support
regions, support boundaries and global support boundary vertices for the centre block.
The colour scheme is identical to Figure 2.6.

for a fully converged prolongation operator. On the contrary, the direct method produces a basis
function with values that increase towards the coarse block centre.

A better basis function is obtained if the result from (A.3) is corrected in a subsequent step:
The values of Φij on G are used as Dirichlet boundaries in a second linear system of equations
to solve for the modified basis function Φ̂mod

j , i.e.

Amod
j Φ̂mod

j = bmodj , (A.4)

with Amod
j and bmodj being the system matrix adapted to the new boundaries and the modified

right-hand-side, i.e.,

bmodij =

{
Φij , if i ∈ Ij ∩G
0, otherwise, (A.5)

respectively. The correction step is concluded by scaling the basis functions to again obtain
partition of unity. Figure A.3 (left) shows the basis function for the system introduced in Figure
A.1 obtained by the direct method with subsequent correction step which is now identical to the
fully converged iterative solution.

For the unstructured network introduced in Figure 2.5 (right) basis functions obtained with the
iterative and direct procedures are also quite similar, as can be observed by comparing Figures A.3
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A.2. Numerical Results

Figure A.2.: Basis functions obtained with an iterative (left) and direct (right) method for the
centre block of a structured network with three coarse partitions. The colour scheme
is identical to the one of Figure 2.9.

(right) and 2.9 (right). However, the direct procedure may produce bad results for more complex
systems with large transmissibility contrasts due to the scaling step (A.3), as demonstrated in
the next subsection.

A.2. Numerical Results

For the highly heterogeneous system introduced in Section 3.1, the basis functions (top), ap-
proximate pressure solution (middle) and relative error (bottom) are shown in Figure A.4 for
a prolongation operator obtained with a direct method. Although the overall error is small,
unphysical solutions that violate the maximum principle are observed at the lower right side of
the pressure field.

The multiscale method with a direct calculation of the prolongation operator entirely fails for
test cases involving high permeable channels as discussed in Section 3.2. Figure A.5 shows an
unphysical behaviour of the approximate pressure solution with large errors in a large portion of
the pore network.
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A.2. Numerical Results

Figure A.3.: Basis functions obtained with a direct method and a subsequent correction step for a
structured system with three coarse partitions (left) and for the unstructured network
introduced in Figure 2.5 (right). The colour scheme is identical to the one of Figure
2.9.
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A.2. Numerical Results

Figure A.4.: Basis functions (top), approximate pressure solution papprox (middle) and relative
error ε (bottom) resulting from a direct calculation of the prolongation operator for a
heterogeneous test case. 50



A.2. Numerical Results

Figure A.5.: Basis functions (top), approximate pressure solution papprox (middle) and relative
error ε (bottom) resulting from a direct calculation of the prolongation operator for a
channel test case. 51



Appendix B. Multilevel MsRSB

B. Multilevel MsRSB

It is common in multigrid methods to use more than one coarse level to increase convergence
speed in an iterative multiscale formulation.

B.1. Numerical Modelling

In the following it is shown how the black-box formulation of the MsRSB method introduced
in Chapter 2 can be extended to a three-level multiscale method for certain systems. First, a
symmetrical coarse system matrix Ac

∗ is computed, i.e.

Ac
∗ = P TA∗P , (B.1)

where A∗ is the fine scale system matrix with the diagonal elements adjusted to ensure zero row-
sum and P T the transpose matrix of P . Note that Ac

∗ is different to Ac introduced in Equation
(2.3). By following the steps presented in Sections 2.2 to 2.5 a set of coarse scale prolongation
and restriction operators PII and RII are then determined from Ac

∗ and used to obtain a system
matrix Ac

II on the next coarser level, i.e.

Ac
II = RIIA

cPII = RIIRAPPII . (B.2)

An approximate fine scale solution is computed analogously to (2.4) by subsequently applying
P and PII to a pressure solution obtained on the coarsest scale, i.e.

p ≈ papprox = PPII(A
c
II)
−1RIIRq. (B.3)

For the case of an iterative three-level multiscale formulation, the calculation of the residuals
and the smoothing step on the finest level are similar to (2.27) and (2.28). However, instead of
directly solving for the coarse correction according to (2.29), the residuals rc(n) on the coarse
scale are computed, i.e.

rc(n) = R(r(n) −Ay(n)) (B.4)

and smoothed, i.e.

yc(n) = S(rc(n)), (B.5)
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B.2. Numerical Results

e.g. by using a few Jacobi or ILU iterations analogously to (2.28). The coarse correction ec(n)II is
then computed on the coarsest scale by a direct solve, i.e.

e
c(n)
II = (Ac

II)
−1RII(r

c(n) −Acyc(n)). (B.6)

The multiscale cycle is completed with the update of the solution, i.e.

p(n+1) = p(n) + y(n) + Pyc(n) + PPIIe
c(n)
II . (B.7)

The above presented formulation is applicable and extendable to even more coarse levels as long
as the off-diagonals of the coarse level matrices, e.g. of Ac

∗ for the second level, are ≤ 0. Off-
diagonals> 0 may result in negative basis functions that lead to non-physical solutions. Therefore
the multilevel multiscale method cannot generally be used for arbitrary pore networks.

B.2. Numerical Results

In the following the results of a study conducted on a pore network with 2′000′000 pores arranged
on a structured 4000 x 500 fine scale grid are presented. The mean transmissibility is k = 1
with a standard deviation kstd = 0.3 and additionally, four channels with either kchannel = 100
or kchannel = 10 are added to the domain as shown in Figure B.1 (top). The partitioning into
8005 intermediate and 41 coarse blocks is indicated in Figure B.1 (bottom) with grey and black
lines, respectively, only for the very left part of the domain. Note that the number of partitions
is chosen this way since the grid partitioner Metis produces disconnected blocks for the initially
chosen numbers of 8000 and 40 coarse blocks.

The iterative performance of the three-level multiscale method is investigated by comparing the
convergence histories of εRMS and εMAX to the ones obtained with a two-level implementation.
Note that all prolongation operators are converged to dcrit = 10−4 and that five Jacobi iterations
per multiscale cycle were used for the intermediate and fine scale smoothers in the three-level
case. For the two-level case, ten Jacobi steps were applied.

It is expected that a three-level method converges faster than a two-level solver if the number
of blocks on the coarsest scale are identical for both cases, e.g. 41 in the here considered test
case. This is confirmed by comparing the convergence histories ‘3-level’ and ‘2-level 41’ shown
in Figure B.2 for the first 350 iteration steps. The iterations on the intermediate scale enable
a much faster convergence than using prolongation and restriction operators that directly map
between the finest and coarsest scales.

However, if the direct solve in the two-level case is done on the intermediate level, thus on
the level with 8005 blocks, the three-level method is clearly outperformed, as can be seen by
considering the convergence rate ‘2-level 8005’ in the Figure. Since the intermediate system can
be solved with a direct method without difficulty, the two-level method is also faster regarding
the computation time.
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B.2. Numerical Results

It is expected that a three-level implementation is an option if much larger fine scale systems
are used and if the coarse system cannot be solved directly, anymore. However, this case is not
further investigated here and may be a subject of further studies.

Figure B.1.: Transmissibility field (top) and partitioning into coarse and intermediate grids (bot-
tom, shown only for the left part of the domain).
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B.2. Numerical Results

Figure B.2.: Convergence history of εRMS (left) and εMAX (right) for a 3-Level and 2-Level iterative
multiscale formulation.
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