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Abstract
Synchrotron radiation based X-ray tomographic microscopy (SRXTM) allows non-destructive 3D in-
vestigation of a large variety of samples at micrometer and submicrometer scale in few minutes.
Several pioneering studies in the field of biology, material science, chemistry and paleontology were
based on data acquired with this X-ray imaging technique.

If the specimen under study is either sensitive to X-ray radiation or fast-evolving, the dose irradiated
to the sample or the total scan time are bounded to be under a certain limit, respectively. To fulfill
this constraint, the exposure time per projection and the total number of views have to be reduced,
leading in most cases to the acquisition of noisy, undersampled datasets, labeled as “underconstrained”,
that present a major challenge for analytical tomographic reconstruction.

This thesis focuses on the development of methods and strategies to address the reconstruction of
underconstrained SRXTM absorption-contrast, in-line phase-contrast and differential phase-contrast
datasets, acquired in low-dose scans of standard and full interior tomography. Considering the large
amount of raw data (several terabytes) created by high-throughput SRXTM acquisitions and the he-
terogeneity of the samples investigated with this imaging technique, the guiding thread of this work
was designing algorithmical solutions characterized by: (i) a good trade-off between reconstruction
accuracy and computational efficiency; (ii) versatility in dealing with different types of specimens
and imaging modalities; (iii) a minimum amount of supervised a-priori knowledge and required input
hyper-parameters to foster the practicality of the tomographic reconstruction. Several standard and
state-of-the-art iterative methods, already published in literature and proved effective for medical or
non-medical underconstrained datasets, had to be discarded due to the lack of versatility, computa-
tional efficiency or “user-friendliness”.

To guarantee computational efficiency and the flexibility necessary to address a large variety of dif-
ferent datasets and imaging modalities, the alternate direction method of multipliers plug-and-play
(ADMP) has been identified as one of the most suitable iterative reconstruction scheme. The ADMP
provides reconstructions with satisfactory trade-off between contrast and resolution after very few
iterations. At the same time, it allows the direct incorporation of any forward tomographic operator
and any denoising method for the problem regularization.
The computational efficiency of the ADMP has been greatly boosted by the usage of the gridding
projectors with minimal oversampling. The low complexity of these Fourier operators enables very
fast iterative reconstructions on a single core, with speed comparable to what can be achieved with
tomographic operators implemented on graphics processing units. The ADMP working with gridding
projectors and parallel beam geometry is computationally suited to run on central processing unit
(CPU) clusters.
Here, it is also shown that the degree of coupling between the implementations of the forward and
backprojector plays a crucial role in the performance of an iterative algorithm: the absence of coupling
between the tomographic operators leads in the best case scenario to sub-optimal accuracy and slower
convergence rates, in the worst case scenario it causes the algorithm to diverge or reconstructions to
be affected by severe artifacts.
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Furthermore, a procedure, called “virtual strategy”, is proposed to perform efficient iterative recon-
struction of full interior tomographic datasets. The virtual strategy transforms the interior dataset
into a standard one, avoiding to use differentiation or edge-padding throughout the entire iterative
reconstruction process, which reduces the amount of computations and required memory.
The Helgason-Ludwig sinogram filter is, finally, introduced as a fast unsupervised method to boost the
accuracy of analytical reconstructions of strongly undercontrained datasets in standard tomography.
This filter allows to reach an accuracy which is halfway between what achievable with analytical and
iterative reconstruction.

Studies conducted on SRXTM datasets of mouse lung tissue in full interior tomography at a re-
solution of 1.1µm show that the proposed iterative reconstruction scheme enables a dose reduction
per scan by a factor between 2.5 and 3. For other SRXTM datasets of high structural complexity in
standard tomography, dose can be reduced by a factor 5 or even more, depending on the specimen
under study and the envisaged quantification goal. Considering a CPU cluster with 50 cores and
an underconstrained SRXTM dataset of typical size (e.g. 500 views × 2048 detector pixels × 2048
slices), the run time expected for the proposed iterative reconstruction algorithm is around 25-35
minutes.

Other aspects were also addressed, including the design of a reliable simulation framework to test
reconstruction algorithms and assess their performance.

Apart from the single results, the hope with this doctoral project is to convince the reader that
a goal-oriented vision and approaching iterative algorithms as “puzzles”, whose pieces deserve both an
independent and inter-mixed inspection, are indispensable ingredients to further expand the frontiers
of tomographic image reconstruction and to see complex methods becoming practical and effective
tools in the hand of scientists from diverse fields.
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Zusammenfassung
Synchrotron-basierte tomographische Röntgen-Mikroskopie (Synchrotron-based X-ray Tomographic
Microscopy, SRXTM) liefert hochauflösende dreidimensionale Abbildungen von mannigfaltigsten Ma-
terialien auf Grundlage von Durchleuchtungsbildern. Sie ermöglicht so zerstörungsfreie Untersuchung
eines Probestücks im Mikrometer- und Sub-Mikrometer-Bereich. Zahlreiche wegweisende Studien,
etwa in der Biologie, den Werkstoffwissenschaften, der Chemie oder der Paläontologie, basieren auf
derartigen Daten.

Wenn dabei eine zu untersuchende Probe strahlungsempfindlich ist, oder wenn sie sich während der
Aufnahme verändert, dann führt das zu Einschränkungen im Bildgebungsverfahren. In ersterem Fall
darf die Strahlendosis einen gewissen Höchstwert nicht überschreiten, in letzterem Fall ist die zur
Messung verfügbare Zeit begrenzt. Dementsprechend werden von solchen Proben tendenziell weniger
Bilder in kürzerer Zeit aufgenommen. Es stehen zur Rekonstruktion des räumlichen Modells folglich
weniger und aufgrund Rauschens schlechtere Rohdaten zur Verfügung. Ein derartiger Datensatz wird
als “unterbestimmt” bezeichnet, und seine Verarbeitung stellt eine grosse Herausforderung dar, ins-
besondere bei Nutzung analytischer Rekonstruktionsverfahren.

Diese Doktorarbeit befasst sich mit der Entwicklung von Methoden und Strategien für die tomo-
graphische Rekonstruktion aus derartig unterbestimmten und mit niedrigen Strahlungsdosen gemessen
SRXTM-Rohdaten. Sie beschäftigt sich dabei mit Absorptions- und (ausbreitungsbasiertem wie dif-
ferenziellem) Phasenkontrast, und sie behandelt sowohl klassische als auch innere Rekonstruktion-
sprobleme. Angesichts der enormen Datenmengen von mehreren Terabytes, die bei SRXTM in kurzer
Zeit anfallen, und aufgrund der Heterogenität der abzubildenden Proben orientieren sich die präsen-
tierten algorithmischen Lösungen an folgenden Anforderungen: (i) gute Balance zwischen Genauigkeit
und Berechnungseffizienz; (ii) Anpassungsfähigkeit an verschiedene zu untersuchende Materialien
und Messprozeduren; (iii) minimale Nutzung von a-priori-Wissen oder “magischen” Parametern, ins-
besondere nicht um überhaupt Konvergenz zu erzielen. Mehrere Standardverfahren und spezialisierte
hochmoderne iterative Methoden mussten angesichts dieser Vorgaben mangels Anpassungsfähigkeit,
Berechnungseffizienz oder Nutzerfreundlichkeit verworfen werden, auch wenn deren grundsätzlicher
Nutzen für medizinische und nicht-medizinische Anwendungen bereits in der Literatur bewiesen wurde.

Hinsichtlich Berechnungseffizienz und Flexibilität lässt sich die Alternate Direction Method of Mul-
tipliers in der “Plug and Play”-Variante (ADMP) als geeignetes iteratives Rekonstruktionsverfahren
identifizieren. ADMP liefert nämlich nach bereits sehr wenigen Durchläufen Bilder mit ausreichendem
Kontrast und guter Auflösung. Allgemein gesprochen berechnet ADMP die tomographische Rekon-
struktion als regularisierte Näherungslösung des inversen Problems, das sich aus dem Bildgebungsver-
fahren ergibt: Gesucht ist nämlich das räumliche Bild, dessen künstliche Projektionen möglichst
mit den gemessenen Bildern übereinstimmen. ADMP gestattet dabei freie Wahl sowohl hinsichtlich
de verwendeten Projektionsoperators als auch in Bezug auf das zur Regularisierung genutzte En-
trauschungsverfahren.

Die Berechnungseffizienz von ADMP ist in dieser Arbeit durch Verwendung von neuartigen Grid-
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dingprojektoren mit minimaler Überabtastung massiv erhöht worden. Die niedrige numerische Kom-
plexität dieser Operatoren ermöglicht sehr schnelle iterative Rekonstruktion auf einzelnen Cores, wobei
die Geschwindigkeit vergleichbar ist mit komplexen GPU-basierten Ray-Casting-Projektoren. ADMP
mit Griddingprojektoren ist insofern optimal geeignet für die Ausführung auf einem CPU-Cluster, wie
er an Großforschungsanlagen vorhanden ist.

Weiterhin zeigt diese Arbeit experimentell, dass die Wahl übereinstimmender Vorwärts- und Rück-
wärtsprojektoren wesentlich für die Leistung der iterativen Methode ist: Nicht zueinander passende
tomographische Operatoren verursachen im Bestfall suboptimale Genauigkeit und langsame Konver-
genz, im schlechtesten Fall konvergiert das Verfahren entweder gar nicht, oder das Rekonstruktion-
sergebnis weist starke Bildfehler auf.

Hinsichtlich innerer Rekonstruktionsprobleme schlägt diese Arbeit eine “virtuelle Strategie” vor, um
effizient iterative Rekonstruktionen zu berechnen. Problem in diesem Fall ist ja, dass die gemessenen
Projektionen durch Bildanteile “verfälscht” sind, die nicht rekonstruierbar sind, da die verursachenden
Strukturen außerhalb des Rekonstruktionsbereichs liegen. Ziel der Strategie ist folglich die virtuelle
Umwandlung solcher “innerer” Rohdaten in äquivalente Standarddaten ohne Verwendung bekannter
rechen- und speicherintensiver Verfahren zur Auffüllung fehlender Information. Ein solches Vorgehen
macht durch Einsparung überflüssiger Rechenoperationen und Speicherzugriffe iterative Methoden
letztlich überhaupt erst praktisch anwendbar.

In einem letzten Teil widmet sich die Arbeit schließlich dem Helgason-Ludwig-Sinogramm-Filter. Es
handelt sich dabei um eine schnelle, parameterfreie Methode zur Verbesserung der Genauigkeit der
analytischen Rekonstruktion aus stark unterbestimmten Daten. Dieser Filter ermöglicht die analytis-
che Berechnung einer Rekonstruktion, deren Qualität etwa halbwegs die eines iterativ berechneten
Ergebnisses erreicht, obwohl der Aufwand für die Filterung nur unwesentlich zu Buche schlägt.

Zusätzlich zu diesen Aspekten behandelt die Arbeit auch die Gestaltung eines zuverlässigen Simu-
lationsrahmens zum Testen von Rekonstruktionsalgorithmen. Diese Regeln wurden bei Experimenten
mit synthetischen Daten angewendet, um reproduzierbar zu verlässlichen Qualitätsaussagen zu kom-
men.

Zur praktischen Überprüfung der in dieser Arbeit vorgeschlagenen Verbesserungen wurden Studien
mit SRXTM-Rohdaten durchgeführt. Für lokale Röntgenbilder von Mäuselungen mit einer Auflösung
von 1.1 µm lässt sich zeigen, dass bei Verwendung der vorgeschlagenen iterativen Rekonstruktions-
methode eine 2,5- bis 3-fache Dosisreduktion pro Scan möglich ist. Für andere SRXTM-Datensätze
mit höherer struktureller Komplexität kann die Dosis um Faktor 5 oder höher reduziert werden, ab-
hängig von der untersuchten Probe und dem Quantifizierungsziel. Auf einem CPU-Cluster mit 50
Cores lässt sich ein typischer SRXTM-Datensatz (etwa 500 Projektionen × 2048 Detektorpixel ×
2048 Schichten) mit den vorgeschlagenen iterativen Verfahren in ungefähr 25-35 Minuten verarbeiten.

Abgesehen von den konkreten Ergebnissen dieser Doktorarbeit besteht die Hoffnung, den Leser davon
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zu überzeugen, dass eine zielorientierte Herangehensweise an iterative Verfahren notwendig ist. Ins-
besondere sollten derartige Methoden als Puzzle verstanden werden, und die Teile sollten individuell
und im Zusammenspiel analysiert werden. So können die bestehenden Grenzen tomographischer
Bildrekonstruktion erweitert werden, und es wird möglich, komplexe numerische Methoden als prak-
tische und effektive Werkzeuge in die Hände von Wissenschaftlern aus den verschiedensten Bereichen
zu geben.
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Chapter 1
Scientific Aim & Outline

Synchrotron radiation based X-ray tomographic microscopy (SRXTM) is an imaging technique that
can provide non-destructive 3D information of a large variety of samples at micrometer and submi-
crometer scale, owing to the high brilliance and high coherence of the used radiation. Ultra-fast
and in-vivo SRXTM studies are recent achievements enabled by the latest developments in detector
technology and other instrumentation. Numerous cutting-edge investigations in the field of biology
(e.g. [1–3]), material science (e.g. [4, 5]), geology (e.g. [6, 7]), energy research (e.g. [8, 9]) and
paleontology (e.g. [10, 11]) have been made possible by this X-ray imaging technique.

This doctoral project complements the recent hardware advancements of SRXTM with software de-
signed to address the reconstruction of tomographic datasets acquired in low-dose and fast scans.
When the specimen investigated through SRXTM is radiation-sensitive, limiting the total dose of the
scan is of primary importance. To fulfill the dose requirement, the exposure time per view and the
number of projections need to be reduced, leading to the acquisition of so-called “underconstrained”
datasets, whose accurate reconstruction poses a non-trivial problem.

On paper, the topic of this doctoral project is certainly not new. The first studies in tomographic
reconstruction algorithms date back to the 70s. Since then, more than 60,000 papers have been
published just under the keyword “iterative tomographic reconstruction”, according to Google Scholar.
Despite the amount of ink already poured in journals and scientific magazines, it was interesting to
discover how much work is still needed to fill the gap between theory of tomographic reconstruction,
algorithm implementation, experimental limitations and quantification goals.

Most of the studies on computed tomography (CT) reconstruction have been performed in the con-
text of medical imaging. In the 70s, the filtered backprojection (FBP) algorithm [12] for analytical
tomographic reconstruction and the family of algebraic algorithms [13–15] based on the Kaczmarz
method [16] for iterative tomographic reconstruction were introduced. FBP has the advantage of
being fast and easy to implement, while providing high-quality reconstructions when the dataset is
well-sampled and features high signal-to-noise ratio. Algebraic methods are slower than FBP and yield
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reconstructions that generally look less sharp, but they may outperform FBP in terms of contrast-to-
noise ratio when dealing with undersampled or noisy datasets. In the last 20 years, statistical iterative
algorithms (e.g. [17, 18]), that incorporate the model ruling the signal formation at the detector,
have probably represented the leading line of research in the field. This is exemplified by the fact
that, since few years, some of the biggest manufacturers of CT scans like GE Healthcare, Philips
Healthcare and Toshiba Medical Systems provide their own specific statistical iterative reconstruction
methods [19–21]. When the physics of the experimental setup is well understood, statistical methods
outperform algebraic methods in terms of spatial resolution and provide better reconstructions than
both algebraic methods and FBP, when dealing with highly noisy datasets. Starting from the pionee-
ring works of [22] and [23], research in the field has also witnessed an incredible explosion in the use
of compressed sensing techniques combined to iterative methods (both algebraic and statistical) to
better address the reconstruction of underconstrained tomographic datasets. Compressed sensing is
used as regularization for iterative reconstruction to promote sparsity of the final result in a certain
space. Sparsity is a property that commonly characterize natural and medical images and can be
exploited to steer an iterative method towards better results, especially when the input dataset is
undersampled and affected by noise. Several published works [24–26] have consistently demonstrated
the advantage of using compressed sensing combined to an iterative reconstruction method to achieve
higher accuracy. Altogether, the mainstream research line in CT reconstruction at the beginning of
this PhD thesis (2012-2013) was focusing on statistical iterative algorithms incorporating compressed
sensing based regularization schemes.

Our challenge consisted in designing general algorithms for the reconstruction of underconstrained
datasets with high structural complexity and able to operate with minimal changes on projections
acquired with different modalities available in modern synchrotron imaging beamlines: absorption-
contrast, in-line phase contrast and differential phase contrast.
High-resolution SRXTM scans often require the acquisition of datasets in full interior tomography
(FINT), where the field-of-view lies entirely inside the object support. The reconstruction of under-
constrained FINT datasets represented another challenging task addressed by this doctoral project.
Furthermore, since SRXTM scans imply the acquisition of several terabytes of raw data, the computa-
tional feasibility and the trade-off between accuracy of the results and complexity of the investigated
algorithms was a constant focus throughout this study. The target platform for the computations was
a CPU cluster consisting of, at least, 50 cores.
Another point of interest was the selection of “user-friendly” algorithms, i.e. requiring the lowest
amount of supervised a-priori knowledge and input parameters, in the spirit of Occam’s razor, to pur-
sue the easiest and most practical among different viable solutions. “User-friendly” methods are more
likely to become tools regularly exploited by scientists performing SRXTM experiments at imaging
beamlines and not necessarily possessing an expertise in tomographic reconstruction.
This work was built, on one hand, upon recent advancements of compressed-sensing for image pro-
cessing and, on the other hand, upon a rather unexplored algorithm for CT reconstruction: the
alternate direction method of multipliers (ADMM) [27]. The target was, indeed, to discover whether
the ADMM had some potential for CT iterative reconstruction (even just in few niches of application)
compared to established algebraic and statistical methods.
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The uniqueness of this work lies in the innovative way to approach tomographic reconstruction of
underconstrained datasets.
First, algorithm design and characterization are driven by the quantification goals envisaged for specific
datasets and summarizable in questions like: what trade-off between contrast and spatial resolution
is provided by the proposed reconstruction method? Does it significantly facilitate segmentation?
What is the achievable dose reduction factor? In this respect, the SRXTM datasets of mouse lung
tissue in full interior tomography, acquired in the framework of the project “In-vivo lung imaging at
micrometer scale” [1], has offered the perfect platform to pursue this work. Dose reduction represents,
indeed, a crucial aspect to enable longitudinal studies, i.e. following the lung development at different
stages of the animal growth. The well-defined quantification goals of the lung imaging project were
fundamental to direct some of the studies conducted in this thesis.
Second, iterative reconstruction is analyzed for the first time as a “puzzle”, whose components require
to be inspected both separately and in relation to the other parts. This approach has lead to the
following results: the design of the gridding projectors with minimal oversampling; the discovery that
the accuracy of the tomographic projectors has limited influence on the accuracy of the iterative re-
construction algorithm; revealing the crucial importance of working with highly-coupled tomographic
projectors to guarantee the optimal performance of an iterative algorithm; the characterization of the
alternate direction method of multipliers, where the various components were separately analyzed;
highlighting the paramount relevance of the preprocessing strategies to tackle the reconstruction of
FINT datasets.

This thesis is organized as follows.

Chapter 2 is a short introduction to the concepts needed to understand the research conducted
in this doctoral project. It starts from the Beer-Lambert law and briefly describes the physics be-
hind absorption-contrast, inline phase-contrast and differential phase-contrast. The Radon transform
and its most known implementations in real space are then introduced, followed by the Fourier slice
theorem and a discussion about filtered backprojection. It concludes with the definition of “undercon-
strained” dataset and an overview of the different “families” of iterative reconstruction algorithms.

Chapter 3 offers a description of the simulation framework used to test tomographic reconstruc-
tion algorithms. The chapter opens by discussing how to choose simulated objects and what aspects
should be considered when using such objects to compute forward projections. Several metrics for
image quality are, then, introduced and their characteristics and limitations highlighted. In particular,
signal-to-noise ratio, contrast-to-noise ratio, methods to estimate the spatial resolution and full refe-
rence metrics are here discussed and compared from a user perspective.

Chapter 4 presents the detailed study conducted on the forward gridding projector. This operator
represents the key for fast iterative tomographic reconstruction without need for graphics processing
units. The chapter discusses the gridding method, its mathematical formulation and optimal gridding
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kernels to guarantee a good trade-off between accuracy and efficiency. The gridding projectors with
minimal oversampling and their utilization for iterative tomographic reconstruction are, then, intro-
duced and analyzed in detail. The chapter presents also a contextualization of these operators in the
current research of tomographic reconstruction and with future perspectives and closes with an ex-
perimental work regarding the ocupling effect between forward and backprojector. Three manuscripts
produced in this doctoral project [28–30] are here presented.

Chapter 5 describes the usage of the alternate direction method of multipliers (ADMM) for itera-
tive regularized reconstruction and introduces the “plug-and-play” algorithm (ADMP), as a versatile
framework allowing the integration of any denoising method as regularization scheme. This chapter
offers, first, an overview of regularization schemes based on compressed sensing and, then, presents
a full experimental characterization of the ADMM, aimed at studying separate aspects like speed of
convergence, influence of the number of conjugate-gradient sub-iterations on the overall performance
of the algorithm, usage of physical constraints and warm initialization. A comparison on simulated
data between the ADMM and the ADMP closes this chapter.

Chapter 6 discusses the interior tomography problem and the methods, namely differentiated backpro-
jection and edge-padding, to perform analytical reconstruction of this kind of datasets. The chapter,
then, focuses on the specific case of full interior tomography (FINT) without knowledge of the object
support, characteristic of many SRXTM acquisitions. This part shows how the gridding projectors
with minimal oversampling can be combined to differentiated backprojection and edge-padding to
perform fast iterative reconstruction of underconstrained FINT datasets. The virtual strategy is also
proposed as an equally effective, but much more efficient alternative to perform the same task. One
manuscript produced in this doctoral project [31] is here presented.

Chapter 7 describes a non-iterative unsupervised algorithm, designed to double the number of views
of a tomographic dataset by enforcing the Helgason-Ludwig consistency conditions. The method,
abbreviated as HLSF (Helgason-Ludwig sinogram filter), is a fast filter, that works in the Fourier-
Chebyshev domain and is applied prior to filtered backprojection. The HLSF improves the accuracy of
analytical reconstructions, when dealing with heavily undersampled datasets in standard tomography.
However, the quality of the reconstructions yielded by the HLSF followed by an analytical method
is not comparable to what achievable with a finely tuned iterative reconstruction algorithm. One
manuscript produced in this doctoral project [32] is here presented.

Chapter 8 summarizes the various contributions of this doctoral project and discusses future per-
spectives for the reconstruction of underconstrained SRXTM datasets.

Chapter 9 is entitled “Additional Contributions” and presents an application of the ADMM frame-
work to a specific phase retrieval problem. One manuscript produced in this doctoral project [33] is
here presented.



Chapter 2
Background

2.1 Synchrotron-based X-ray tomographic microscopy

X-ray radiography, discovered by Röntgen in 1895 [34], is a 2D non-destructive imaging technique,
that has played a crucial role in various fields like medicine, material science, archeology, quality
control and homeland security until these days. In the 1960s, Cormack had the intuition that the
density distribution of an object could be retrieved from radiographic projections acquired around a
single rotation axis [35] and in the 1970s Hounsfield devised the first X-ray tomographic scanner [36],
upgrading radiography to 3D and giving birth to computed tomography (CT). CT scans have since
been extensively utilized for preventive medicine and disease screening [37]. This method was later
adopted for non-destructive testing in material research starting from the 1980s [38, 39]. In the same
years, X-ray transmission tomography at micrometer scale was studied with synchrotron radiation [40]
and microfocus X-ray tubes [41].
Compared to laboratory sources, the major assets of X-rays produced at third-generation synchrotron
facilities are: the possibility of working with monochromatic light, therefore miminizing beam harden-
ing effects; a few orders of magnitude higher flux, allowing much faster scans even with monochromatic
light; an almost exact parallel beam geometry, which greatly simplifies tomographic reconstruction;
partial transverse coherence of the X-ray beam enabling the usage of phase-contrast techniques.
For all these reasons, reconstructions of synchrotron radiation based X-ray tomographic microscopy
(SRXTM) data are affected by fewer artifacts and feature a substantially improved contrast-to-noise-
ratio (CNR) [42].
In the last 20 years, SRXTM has found broad application in biology [1, 43–47], material science
[48–54] and paleontology [55, 56].
The experimental data used for the studies conducted in this thesis were acquired at the TOMCAT
beamline of the Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI), in operation since
June 2006 [57]. X-rays are produced by a 2.9 T superbending magnet with a critical energy of 11.1
keV on a 2.4 GeV storage ring [58]. A fixed-exit double crystal multilayer monochromator (DCMM)
located in the front-end allows to work with monochromatic light in the 6 to 45 keV energy range
[59]. X-rays exiting the sample are, first, converted into visible light by a scintillator screen and, then,
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projected onto a digital camera (CCD, CMOS or sCMOS) detector with suitable optics [1]. Thanks
to interchangeable cameras, the field-of-view (FOV) can range from 28.2× 23.8 mm2 with 11 µm
pixel size to 13.1× 13.1 mm2 with 6.5 µm pixel size. Objectives placed between the scintillator screen
and the camera can yield an up to 40-fold magnification of the FOV, allowing to reach an effective
pixel size down to 0.16 µm.

2.2 X-ray projections

2.2.1 Beer-Lambert law

X-ray photons traveling through a material either interact with particles of mass or pass unaffected.
Interactions occur every time a photon is absorbed, due to the photoelectric effect, or is scattered,
due to the Compton (incoherent scattering) or Rayleigh (coherent scattering) effect. In all these
scenarios, photons are considered removed from the original beam. The loss of photons caused by
absorption and scattering is called attenuation.
Assuming that Nin X-ray photons move in parallel geometry along the z-axis and hit perpendicularly
an infinitesimally thin (thickness ∆z ≈ 0) and homogeneous slab of material, the Beer-Lambert law
states that the expected number of photons lost inside the body is directly proportional to Nin and
∆z [60–62]:

∆N := Nout −Nin = −µNin∆z , (2.1)

where µ is called linear attenuation coefficient, has units of an inverse length and represents a charac-
teristic quantity of a given material. It holds that:

µ

ρ
=
σtot

uA
, (2.2)

where ρ is the density, u is the atomic mass unit, A is the relative atomic mass and σtot is the
total cross section, accounting for all types of interactions between X-rays and the selected material.
Considering the differential form of (2.1) and integrating over the thickness of the slab l, the Beer-
Lambert law becomes:

Nout = Nin exp (−µl) . (2.3)

If the body consists of ns thin slabs with different materials whose thicknesses zi sum up to l, (2.3)
assumes a more general form:

Nout = Nin exp

(
−

ns∑
i=0

µizi

)∣∣∣∣∣ ns∑
i=0
zi=l

zi−→0 ,∀ i
ns−→∞= Nin exp

−

l∫
0

µ(z)dz

 . (2.4)
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Since, in practice, the X-ray source provides a flux of photons, it is convenient to rewrite (2.4) in
terms of intensities, defined in general as the number of photons impinging on a selected region per
unit of time:

Iout = Iin exp

(
−

ns∑
i=0

µizi

)∣∣∣∣∣ ns∑
i=0
zi=l

zi−→0 ,∀ i
ns−→∞= Iin exp

−

l∫
0

µ(z)dz

 . (2.5)

Iout is called projection image of µ. Relation (2.5) is valid only under the following conditions: (i)
interactions act independently from each other; (ii) the incident radiation consists of parallel rays;
(iii) the X-ray beam is monochromatic, otherwise (2.5) has to be rewritten for each single energy
component E by replacing Iout, Iin and µ(z) with Iout (E), Iin (E) and µ (z,E).
At SLS, X-rays are shaped to have a divergence angle between 0.6 mrad and 2 mrad [58], allowing the
parallel beam geometry to be a good approximation. The DCMM provides monochromatic radiation
with ∆λ/λ (λ is the wavelength) of a few percent when multilayer crystals are used or 10−4 when
the Si-111 crystals are used [63].
Despite its simplicity, the Beer-Lambert law is the physical principle providing the basis for the math-
ematical model of tomographic reconstruction.

2.2.2 Absorption-contrast imaging

Standard X-ray absorption imaging can be performed on materials and at energies where µ = µa +

µs ≈ µa, µa being the absorption coefficient and µs the scattering coefficient. The cross-section of
the photoelectric effect, ruling the absorption of X-ray photons inside the sample, is ∝ Z3/E3 [64],
where Z is the atomic number and E the beam energy. X-ray absorption imaging can well discriminate
between hard and soft tissues, as µa varies considerably for materials with so disparate densities. On
the other hand, it fails to provide enough contrast between different types of soft tissues due to the
little variation of µa.

2.2.3 Phase-contrast imaging

At X-ray energies, the refractive index n of a material is expressed as follows [65]:

n = 1− δ+ iβ (2.6)

where β =
µaλ

4π
(2.7)

and δ =
λ2rene

2π
, (2.8)

where re is the classical radius of the electron and ne the electron density of the material. The
terms β and δ are related to different interactions between X-rays and the sample: β accounts for
the absorption, which affects the amplitude of the X-ray wave front [66]; δ accounts for the coherent
Rayleigh scattering [65], which affects the phase of the X-ray front wave [66].
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Phase-contrast is an imaging modality sensitive to variations of δ, thus, of electron density according
to (2.8). Soft tissues can be effectively discriminated when λ < 0.1 nm and phase-contrast dominates
absorption contrast [65, 66]. Phase-contrast techniques measure phase variations of a spatially co-
eherent X-ray beam. Since it is not possible to fabricate detectors with response time comparable to
the oscillation of optical or quantum fields, the phase of the wave front cannot be measured directly
[67]. There are various systems to convert X-ray phase variations into intensity variations measurable
at the detector. Examples are propagation-based phase contrast [53, 68], differential phase contrast
based on a Talbot grating interferometer [69], analyzer-based phase contrast [70] and crystal-based
interferometry [71].
In this work, we addressed the reconstruction of projections created by propagation-based and diffe-
rential phase contrast.

Propagation-based phase-contrast projections

Propagation-based phase-contrast (PBPC) (also called “in-line phase-contrast”) is yielded by the free-
space propagation of the X-ray wave front coherently scattered by the sample [53, 68] and is based on
the Fresnel approximation of the Kirchoff diffraction formula [72]. For absorption contrast imaging,
the detector is located directly behind the object. The opposite is true for PBPC, where a certain
distance is necessary to obtain edge enhancement.
Methods based on the contrast-transfer function (CTF) [73] and the transport of intensity equation
(TIE) [74, 75] offer a way to retrieve the phase from the intensity data. CTF works under the
condition that the sample is weakly absorbing [76]; it also requires high coherence and the acquisition
of projections at multiple distances [54]. TIE is a preferable solution when the beam coeherence is
limited [77].
The phase of the PBPC projections used in this work are retrieved by the Paganin algorithm [77], that
inverts the TIE equation and is applicable under the following assumptions: (i) “near-field” condition,
i.e. short detector-sample distance; (ii) the projection and paraxial approximations are valid [78];
(iii) the sample consists of a single material. Calling kx and ky the dual Fourier variables of x and
y, I(x,y, z = δz) the intensity measured at distance δz from the sample, the projected phase φ is
retrieved by the Paganin algorithm as [77]:

φ(x,y, z = 0) =
2π

λ

δ

µ
ln

F−1
x,y

µ
Fx,y

{
I(x,y, z = dz)

Iin

}
dz δ

√
k2x + k

2
y + µ


 , (2.9)

with

Fx,y {f(x,y)} =

∞∫
0

dx

∞∫
0

dy f(x,y) exp (i (kxx+ kyy)) . (2.10)

being the Fourier transform. Formula (2.9) clearly shows that Paganin phase retrieval works as a

low-pass filter on the input intensity data I(x,y, z = dz), since the kernel 1/
(
a1

√
k2x + k

2
y + a2

)
attenuates more frequency components corresponding to high values of kx and ky.
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φ(x,y, z = 0) represents the projected phase of the object. Once phase projections are acquired at
different angular positions, tomographic reconstruction techniques can provide the entire 3D phase
map of the object.
Compared to other methods, Paganin phase retrieval has the advantage of being fast and requiring
single projections. Although quantitative results are not achievable when the sample consists of two or
more materials, Paganin can still be applied to enhance the contrast-to-noise ratio of the projections.

Differential phase-contrast projections

A grating interferometer (GI) [69, 79] is a setup consisting of two gratings located after the source and
the sample. The first grating, G1 with period p1, splits the incident beam into several diffraction orders,
which interfere constructively at specific distances if the beam features sufficient spatial coherence.
The second grating, G2 with period p2, is made of highly absorbing materials and is positioned in
front of the detector to analyze the interference pattern, whose period would be too small to be
resolved otherwise.
GI is based on the occurrence of a rectangular-shaped interference pattern due to the Talbot effect
[80]. Once the sample is placed inside the incident wave, the phase sensitivity of GI is given by the
lateral shift of the interference pattern. Assuming the gratings aligned along the x-axis (i.e. the line
of the gratings are vertical), the lateral shift ∆x is proportional to the refraction angle α, which, in
turn, is proportional to the first derivative of the phase of the wave of front after having traversed
the sample [67, 81]:

α = −
1

k

∂φ

∂x
, (2.11)

where k = 2π/λ.
Phase-stepping is a widely adopted procedure to analyze the signal at the detector: one grating is
shifted by fractions of its pitch with respect to the other grating and at each step a projection is
acquired [67]. The result is an oscillatory triangular function for each pixel, that looks closer to a
sinusoid due to the finite spatial coherence of the system. The phase stepping curve, ϕ(φ), is of the
form [82]:

ϕ(φ) = a1 + a2 sin(φ− p) , (2.12)

a1, being the mean of ϕ, is connected to the absorption contrast; a2, being the amplitude of ϕ,
is connected to the scatter contrast; s is the lateral offset of the phase steps; p is the phase of ϕ
and relates to the differential phase contrast (DPC). In particular, if ϕ(φ)1 and ϕ(φ)0 are the phase
stepping curves acquired with and without sample, DPC is given by [67]:

DPC = arg
(
F{ϕ(φ)1}(qn)

)
− arg

(
F{ϕ(φ)0}(qn)

)
, (2.13)

where qn is the n-th Fourier harmonic and n is the number of phase steps. DPC is proportional to
α according to [67]:

DPC = 2π
dmα

p2
, (2.14)
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where dm is the selected integer or fractional Talbot distance. Considering (2.11), (2.14) and that:

φ(x, z) =
∫
dz δ(x, z) (2.15)

where the z-axis is the direction of propagation of the X-rays, DPC is proportional to the derivative
of the line integral of δ along the grating direction (x-axis, in this case).

2.2.4 Corrected projections

In the experimental practice, two are the main sources of systematic noise imparing the quality of X-ray
projections: fix-pattern and camera noise. Fix-pattern noise stems from beam inhomogeneities, non-
uniform detector response due to variations in the photon conversion yield, losses in charge transport,
charge trapping, non-constant performance of the readout or simply dust/scratches accumulated on
the surface of the scintillator or other optical elements [83]. The camera noise is mainly due to the
dark current, which is proportional to the exposure time, and to the ADC pedestal or digitization
offset, which is, instead, independent from the exposure time.
Flat-field and dark-field corrections are used to greatly reduce the impact of these sources of noise.
The flat field or white field is the intensity map of the X-ray beam without sample and serves to capture
the fix-pattern noise. The dark field corresponds to an image acquired by the detector without X-ray
illumination, which accounts for the camera noise. Calling the raw projection P, the flat-field F and
the dark-field D, the corrected projection, Pc, is computed as follows:

Pc =
P−D

F−D
. (2.16)

The correction computed by (2.16) is effective when the X-ray beam, scintillator response and camera
sensitivity can be considered stationary, an assumption that often is only approximately met [84].
When beam inhomogeneities or fix-pattern noise are absent, the flat-field correction is still required by
the Beer-Lambert law to calculate the unknown attenuation coefficient, since µl = ln(Nin/Nout) =

ln(F/P).

2.3 Radon transform

2.3.1 Definition and properties

The Radon transform represents the mathematical forward model for tomographic reconstruction.
Studied since the first decade of the 20th century by J. Radon [85], this transform has been applied
also to electron microscopy [86], reflection seismology [87], hyperbolic partial differential equations
[88, 89], barcode scanners [90] and line detection on natural images [91].
Considered a function f(x) : Rn −→ R, the Radon transform R integrates f over an hyperplane
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HY(θ, t) = {x ∈ Rn | x · θ = t}, where θ ∈ Sn−1 and t ∈ R is the signed distance from the origin
[92]:

R{f}(θ, t) :=
∫
HY

dx f(x) =
∫

Rn

dx δ(t− x ·θ)f(x) =
∫
θ⊥

dx f(tθ+ x) , (2.17)

where δ is the Dirac function and θ⊥ = {x ∈ Rn | x · θ = 0} is the subspace orthogonal to θ. (2.17)
encloses three different equivalent definitions of R. R{f} is a function on the unit cylinder in Rn:

CYn =
{
(θ, t) : θ ∈ Sn−1 , t ∈ R

}
(2.18)

The domain of the Radon transform is defined as follows:

Ω (CYn) =

{
∀ g ∈ C∞(CYn) : tl

∂k

∂tk
g(θ, t) is bounded , l,k = 0, 1, ...

}
. (2.19)

In the two dimensional case, the Radon transform integrates the function along lines. For n = 2,
f(x) = f(x1, x2), θ = (cos θ, sin θ), HY is a line of equation x · θ = x1 cos θ+ x2 sin θ = t, CY2 is
a circle of unit radius and the second definition in (2.17) simplifies to:

R{f}(θ, t) :=

+∞∫
−∞

dx1

+∞∫
−∞

dx2 f(x1, x2) δ(x1 cos θ+ x2 sin θ− t) . (2.20)

From this point onward, the two dimensional Radon transform (2.20) is considered.

Property (1): symmetry. Both parameter sets {t ∈ {0,+∞} ∪ θ ∈ {0, 2π}} and {t ∈ {−∞,+∞} ∪
θ ∈ {0,π}} describe every element of the Radon transform, as it holds that:

R{f}(θ, t) = R{f}(θ+ π,−t) . (2.21)

Property (2): linearity. Given α1,α2 ∈ R and two functions f1(x1, x2) and f2(x1, x2), it holds
that:

R {α1f1 +α2f2} = α1R{f1}+α2R{f2} . (2.22)

Property (3): shifting. Given g(x1, x2) = f(x1 − k1, x2 − k2), it results that:

R {g} (θ, t) = R {f} (θ, t− k1 cos θ− k2 sin θ) . (2.23)
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Property (4): rotation. Working in polar coordinates (ϕ, r) and given g(ϕ, r) = f(ϕ −ϕ0, r),
it results that:

R {g} (θ, t) = R {f} (ϕ0 − θ, t) . (2.24)

Property (5): scaling. Given a,b ∈ R0 and g(x1, x2) = f(x1/a, x2/b), it results that:

R {g} (θ, t) = R {f} (θ ′, t ′)

t ′ =
t√

a2 cos2 θ+ b2 sin2 θ
θ ′ = tan−1

(a
b

tan θ
)

.
(2.25)

Property (6): convolution. Given two functions f1(x1, x2), f2(x1, x2) and indicating with
x,y,z,...
∗

the convolution with respect to the variables x,y, z, ..., it results that:

R{f1
x1,x2∗ f2} = R{f1}

t∗ R{f2} . (2.26)

The relation between the Beer-lambert law and the Radon transform is straightforward if (2.5) is
rewritten in the form:

ln
(
Iin

Iout

)
=

∫
ray path

µ(z)dz , (2.27)

which states that the logarithmic ratio between the exiting and incident intensity corresponds to the
Radon transform of the map of attenuation coefficients along the ray direction. For absorption, PBPC
and DPC projections, (2.27) represents the Radon transform of the map of absorption coefficients,
the Radon transform of the map of δ and the derivative of the Radon transform of the map of δ,
respectively.

2.3.2 Real space implementations

Slant stacking

Formula (2.20) can be explicitly rewritten as a line integral by introducing the variable s, which runs
over the X-ray path. On the basis of Fig. 2.1, x1 = t cos θ− s sin θ, x2 = t sin θ+ s cos θ, therefore,
(2.20) becomes:

R{f}(θ, t) =

+∞∫
−∞

ds f (t cos θ− s sin θ, t sin θ+ s cos θ)

≈ ∆s
L−1∑
l=0

f
[
tj cos θk − sl sin θk, tj sin θk + sl cos θk

]
.

(2.28)
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The last term in (2.28) is the discretized version of R{f}(θ, t); for this reason, f has, now, square
brackets and all variables t, θ and s are indexed. The implementation of formula (2.28) necessitates
the use of two-dimensional interpolation, as the required points [tj cos θk − sl sin θk, tj sin θk +

sl cos θk], in general, never coincide with the given image points [x1,m, x2,n]. Two-dimensional
interpolation can be avoided by approximating the Radon transform as slant stacking (in seismics also
known as τ-p transform) [93], which entails only 1D interpolations. The slant stacking approximation

O

t s

x1

x2

Figure 2.1: Reference system for formula (2.28).

of the discrete Radon transform divides the interval [0,π] in two regions: one for nearly-horizontal
lines θ 6 π/4 and 3π/4 6 θ 6 π; one for nearly-vertical lines π/4 6 θ 6 3π/4. The slant stacking
approximation with nearest neighbor interpolation results [93]:

R{f}
[
θk, tj

]
=


∆x1

| sin θk|

∑
m

f [x1,m, bax1,m + be] for | sin θ| >
√
2
2

∆x2
| cos θk|

∑
n

f
[
ba ′x2,n + b ′e, x2,n

]
for | sin θ| 6

√
2
2

, (2.29)

where x1,m = xmin
1 +m∆x1 for m = 0, 1, ...,M− 1 ∈ N, x2,n = xmin

2 + n∆x2 for n = 0, 1, ...,N−

1 ∈N, b...e represents the operator rounding to the next integer and

a = −
∆x1
∆x2

cos θ
sin θ

b =
t− xmin

1 cos θ− xmin
2 sin θ

∆x2 sin θ

a ′ =
1

a
b ′ =

t− xmin
1 cos θ− xmin

2 sin θ
∆x1 cos θ

.

(2.30)
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Formula (2.29) clearly shows that interpolation is needed only along the s-direction, being x1 or x2
depending on the selected θ. The slant stacking approximation with linear interpolation becomes [93]:

R{f}
[
θk, tj

]
=



∆x1
| sin θk|

∑
m

(1−ω)f [x1,m, bax1,m + bc] +ωf [x1,m, bax1,m + bc+ 1]

for | sin θ| >
√
2
2

∆x2
| cos θk|

∑
n

(1−ω ′)f
[
ba ′x2,n + b ′c, x2,n

]
+ω ′f [bax2,m + bc+ 1, x2,m]

for | sin θ| 6
√
2
2

(2.31)
where a,a ′,b,b ′ are defined in (2.30), b...c is the flooring operator, ω = ax1,m + b− bax1,m + bc
and ω ′ = a ′x2,n+b ′− ba ′x2,n+b ′c. Given a square image N×N pixels and N views in [0,π], the
slant slacking implementation of the discrete radon transform with either nearest neighbor or linear
interpolation is characterized by a complexity O(N3).

Pixel-, ray- and distance-driven projectors

In the pixel-driven approach [95], the source point is connected to the selected pixel center until
intersection with the detector line, as displayed in Fig. 2.2a. A linear interpolation scheme distributes
the pixel value to the two detector cells that enclose the ray end point (they are indicated with a cross
in Fig. 2.2a). Pixel-driven forward projection is rarely utilized due its characteristic high-frequency
artifacts [96].
The ray-driven approach [97] connects the source to the center of a selected detector cell (Fig. 2.2b).
The latter point is projected for each row (column) onto the horizontal (vertical) axis joining the
centers of the two image pixels, that surround the ray (this axis is represented in Fig. 2.2b as a

IMAGE GRID

DETECTOR

SOURCE

(a) Pixel-driven approach

IMAGE GRID

DETECTOR

SOURCE

(b) Ray-driven approach

IMAGE GRID

DETECTOR

PROJECTION AXIS

(c) Distance-driven approach

Figure 2.2: Schematic representation of the different mechanisms characterizing the pixel-, ray- and
distance-driven approach for forward projection. This figure is readapted from [94].
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dashed horizontal line within the image grid): a linear interpolation scheme weighs the contributions
for each couple of image pixels. The ray-driven projection suffers from the same kind of high-frequency
artifacts affecting the pixel-driven approach [98].
The distance-driven approach [94, 98] in Fig. 2.2c projects the pixel boundaries (black dots) of each
image row/column and the detector cell boundaries (white dots) onto a common axis (this axis is
represented in Fig. 2.2c as a dashed horizontal line within the image grid). The overlap between the
interval defined by the projected boundaries of an image pixel (black squares) and the one defined
by the projected boundaries of a detector cell (white squares) weighs the contribution of the selected
image pixel to the selected detector cell (and vice versa). This method differs substantially from
the pixel- and ray-driven approaches for two reasons: (i) the distance-driven strategy is faster, as
the main loop runs over the projected boundaries on the projection axis, rather than running over
the image pixels or detector cells; (ii) the linear interpolation scheme is replaced with the calculation
of overlapping intervals. This different approach prevents projections from being affected by the
aforementioned high-frequency artifacts [94, 98].

Alternative basis for image representation

The previous implementations of the Radon transform employ the most common basis for image
representation: an array of abutting square pixels (cubic voxels, if the 3D case is considered). This
basis function assumes that each pixel has unit value inside and is zero outside. The major drawback
of a pixel basis is that combinations of such piecewise-constant elements may represent a rather poor
approximation of smoothly varying functions.
Given an image f ∈ RM,N sampled at nodes of a square grid G = {∀ x ∈ R2 | x = xm,n =

x0 + (m,n)T , m = 1, 2, ...,M , n = 1, 2, ...,N} and a generic set of functions Φq : R2 −→ R, the
continuous representation of the image on the selected basis results:

f̃(x) =
Q∑
q=1

cqΦq(x) , ∀ x ∈ R2 such that f̃(xm,n) = fm,n , (2.32)

where cq’s are the basis coefficients. Due to linearity of the Radon transform, it follows that:

p
[
θk, tj

]
∼= R


Q∑
q=1

cqΦq(x)

 =

Q∑
q=1

cq R {Φq(x)} , (2.33)

where
[
θk, tj

]
refers to the discrete projection points of f. Once Φq(x) are chosen, R {Φq(x)} is

determined regardless of the object under study (the object information is entirely encoded by the
coefficients cq’s).
According to [99], the optimal Φq(x) has to be smooth and both space- and band-limited. If the basis
functions are space-limited, the computation of f̃(x) can be performed very efficiently. Requiring the
basis function to be band-limited has to do with the finite nature of the data (one should not retrieve
frequencies above the band limit of the data) and with the null space of the Radon transform. It has
been shown that the functions living in the null space of the Radon transform (known as ghosts) have
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Fourier transform characteristics complementary to those of band-limited functions [100]. In the field
of signal processing, functions limited in some space are also called windows.
A window easy to compute and being (nearly) optimally concentrated in real and Fourier domain is
the Kaiser-Bessel [101]:

Φ
(l)
q (r) =


(√

1−
(
r
a

)2)m
Il

(
α

√
1−

(
r
a

)2)
Il(α)

0 6 r 6 a

0 otherwise

, (2.34)

where Il denotes the l-th order modified Bessel function of the first kind, a is the support radius and
α is the tapering parameter, controlling the trade-off between the width of the main lobe and the
amplitude of the side lobes of the Fourier transform of the function. Since the Kaiser-Bessel window
(2.34) is a radially symmetric function, the expression of its Radon transform does not depend on θ
[99]:

R
{
Φlq(r)

}
(t) =

a

Il(α)

(
2π

α

) 1
2

Il+1/2

α
√
2−

(
t

a

)2√1−( t
a

)2l+1/2 . (2.35)

Another basis recently introduced for tomographic image reconstruction is the tensor-product B-spline
[102], that has shown potential particularly for the case of DPC data [103]. Defining ∆nhf(x) the n-fold
iteration of the finite difference operator ∆hf(x) = (f(x+ h/2) − f(x− h/2)) /h and x+ = max{0, x},
β(l) is a centered univariate B-spline of degree l:

β(l)(x) =
∆l+11
l!

xl+ . (2.36)

In this case, Φ(l)
q (x) = β(l)(x1)β

(l)(x2) and the expression of the n-th derivative of the Radon
transform is [102, 103]:

R(n)
{
Φ

(l)
q (x)

}
(θ, t) =

∆l+1cosθ ∆
l+1
sinθ

(2l−n+ 1)
t2l−n+1+ . (2.37)

2.3.3 Parallel beam geometry

All the techniques developed and/or analyzed in this work address the reconstruction of tomographic
data in parallel beam geometry (PBG), The assumption is that X-rays are traveling parallel to each
other on planes perpendicular to the rotation axis r. This allows to greatly simplify the X-ray projection
model, since the contribution to the forward projection at a certain height r̄ originates from the object
information lying on the plane perpendicular to the r-axis and intersecting it at (0, 0, r̄). Each 2D
projection can, therefore, be regarded as a stack of independent projection lines being perpendicular
to r. The ensemble of 1D projections at a fixed height collected in [0,π) is called sinogram. Fig. 2.3
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is an example of a sinogram, whose projections are stacked along the vertical axis (namely, the “view
direction”; the horizontal axis is also called “channel direction”).

Channel direction

V
ie

w
 d

ir
e
c
ti

o
n

Figure 2.3: Example of a sinogram.

2.4 Analytical reconstruction

2.4.1 Fourier slice theorem

The Fourier slice theorem (FST) states that the 1D Fourier transform of a projection line acquired at
angle θ with respect to a certain axis corresponds to the 2D Fourier transform of the object, sampled
along a line that forms the same angle with respect to the same axis [12]. In mathematical terms, it
means that:

Ft {R {f}} (θ,ω) = Fx1,x2 {f} (u1,u2)
∣∣∣u1=ω cosθ
u2=ω sinθ

, (2.38)

where

Ft {R {f}} (θ,ω) =

+∞∫
−∞

dt R {f} (θ, t) exp (−2πiωt) ,

Fx1,x2 {f} (u1,u2) =

+∞∫
−∞

dx1

+∞∫
−∞

dx2f (x1, x2) exp (−2πi (x1u1 + x2u2)) .

(2.39)
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The derivation (2.38) makes use of expression (2.28) of the Radon transform and of the coordinate
change from (t, s) to (x1, x2) [12]:

Ft {R {f}} (θ,ω) =

+∞∫
−∞

dt R {f} (θ, t) exp (−2πiωt) =

+∞∫
−∞

dt

+∞∫
−∞

ds f(t, s)

 exp (−2πiωt)

=

+∞∫
−∞

dx1

+∞∫
−∞

dx2 f (x1, x2) exp (−2πiω (x1 cos θ+ x2 sin θ))

= Fx1,x2 {f} (ω cos θ,ω sin θ) .

.

(2.40)

Equation (2.38) clearly shows that sampling the 1D Fourier transform of a projection line is equiva-
lent to sampling the 2D Fourier transform of the object in a polar fashion. Theoretically speaking,
the reconstruction of f demands the following three steps: (i) acquisition of an infinite number of
projections in [0,π); (ii) 1D Fourier transform of the projections; (iii) 2D inverse Fourier transform.
In practice, implementing such an approach is not so trivial, because the 2D Fourier space of the
object is sampled in a polar fashion by the 1D FFT-transformed projections and it is necessary to
interpolate those samples on a Cartesian grid to apply the IFFT 2D. Fourier methods for tomographic
reconstruction are treated in detail in Chapter 4.

2.4.2 Filtered backprojection

Filtered backprojection (FBP) is a reconstruction algorithm that descends directly from the FST.
substitution with polar coordinates; split of the integral in two parts, one where θ ∈ [0,π/2], the
other where θ ∈ [π/2,π]; transformation of the second integral; recomposition of the two integrals
to form again a single one; application of property 2.21; utilization of the FST.

f (x1, x2) =

+∞∫
−∞

du1

+∞∫
−∞

du2 F{f} (u1,u2) exp (−2πi (x1u1 + x2u2))

=

2π∫
0

dθ

+∞∫
0

dωω F{f} (θ,ω) exp (−2πiω (x1 cos θ+ x2 sin θ))

︸ ︷︷ ︸
:=D

=

π∫
0

dθD+

2π∫
π

dθD

=

π∫
0

dθD+

π∫
0

dθ ′
+∞∫
0

dωω F{f}
(
θ ′ + π,ω

)
exp

(
+2πiω

(
x1 cos θ ′ + x2 sin θ ′

))
substituted θ ′=θ−π

=

π∫
0

dθD+

π∫
0

dθ ′
+∞∫
0

dωω F{f}
(
θ ′,−ω

)︸ ︷︷ ︸
used property (23)

exp
(
+2πiω

(
x1 cos θ ′ + x2 sin θ ′

))
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=

π∫
0

dθD+

π∫
0

dθ

0∫
−∞

dω ′ (−ω ′) F{f}
(
θ,ω ′

)
exp

(
−2πiω ′ (x1 cos θ+ x2 sin θ)

)
substituted ω ′=−ω and used again both θ ,ω

=

π∫
0

dθ

+∞∫
−∞

dω |ω| F{f} (θ,ω)︸ ︷︷ ︸
apply FST

exp (−2πiω (x1 cos θ+ x2 sin θ))

=

π∫
0

dθ

+∞∫
−∞

dω |ω| Ft {R{f}} (θ,ω) exp (−2πiω (x1 cos θ+ x2 sin θ)) (2.41)

=

π∫
0

dθ F−1 {|ω|} (t) ∗R{f}(θ, t) , with t = x1 cos θ+ x2 sin θ (2.42)

=

π∫
0

dθ

+∞∫
−∞

dt ′ F−1 {|ω|} (t− t ′) R{f}(θ, t ′) ,

where ∗ is the convolution operator. The passage from (2.41) to (2.42) is made possible by the
convolution property of the Fourier transform, namely, f ∗ g = F−1{F{f} F{g}}. (2.41) and (2.42) are
equivalent continuous formulas of FBP. The difference lies in the inner integral corresponding to the
filtering step, which is performed in Fourier domain for the first formula and in the real domain for
the second one. The outer integral corresponds to the backprojection step.
The discretized form of (2.42), for example, is:

f [x1,m, x2,n] = ∆θ∆t

K−1∑
k=0

J/2−1∑
j=−J/2

F−1{|ω|}
[
x1,m cos θk + x2,n sin θk − t ′j

]
∗R{f}

[
θk, t ′j

]
= ∆θ∆t

K−1∑
k=0

p(f) [x1,m cos θk + x2,n sin θk] ,

(2.43)

where p(f) indicates the filtered projection and ∆θ = π/K provided that the projectons are acquired
at equispaced angular intervals. Generally, the argument of p(f) in (2.43) does not exactly coincide
with the center of a detector cell and, therefore, an interpolation scheme is required.
One of the reasons why FBP has become a broadly adopted reconstruction algorithm for CT since
its introduction (and for several decades since) is that interpolation is performed entirely in the real
domain, differently from the Fourier methods briefly mentioned in 2.4.1. Interpolation errors in the
real domain are localized in a neighborhood; interpolation errors in the Fourier domain are smeared
back onto the entire image, once the inverse Fourier transform is computed. Considered an image
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f ∈ RM×N and its discrete Fourier transform (DFT) f̂, an error in Fourier domain can be thought
as an impulse located at (j̄, k̄) and added to f̂:

f̃[m,n] =
M∑
j=0

N∑
k=0

exp (2πijm/M) exp (2πikn/N)
(
f̂ [j,k] + aδ

[
j− j̄,k− k̄

])
= f[m,n] + a exp

(
2πij̄m/M

)
exp

(
2πik̄n/N

)
∼ f[m,n] + a cos

(
2π ∗

(
j̄m

M
+
k̄n

N

))
neglecting the imaginary part

. (2.44)

(2.44) clearly shows that the initial impulse located at (j̄, k̄) is transformed by the IDFT into a
perturbation periodically added onto the entire image ∀m = 0, 1, ...,M− 1 and ∀n = 0, 1, ...,N− 1.

2.4.3 Filtering step

The filtering step acts separately on each projection, suppressing low frequencies (those closer to the
origin of the Fourier domain), as shown by (2.41). The filter function |ω|, coming from the Jacobian
of the polar-Cartesian coordinate transformation, is called ramp or Ram-Lak [12].
To derive the discretized form of the ramp filter, one has first to assume the projections pθ[tj] =
R{f}[θ, tj]1 band-limited with bandwidth W, i.e. p̂θ[ωj] = 0 if |ωj| > W. The sampling theorem
[104] states that for a sampling period τ 6 1/2W it follows [105]:

pθ(t) =

+∞∑
j=−∞pθ [jτ] sinc (2πW(t− jτ)) , (2.45)

where sinc x := sin x/x. (2.45) is substituted inside the expression of the filtered projection, p(f)θ (t),
in (2.41), where the integration interval is now limited to [−W,W] [105]:

p
(f)
θ (t) =

+W∫
−W

dω |ω| F {pθ(t)} exp (−2πiωt) =

+W∫
−W

dω |ω|

+∞∫
−∞

dt pθ(t) exp (2πiωt)

 exp (−2πiωt)

=

+W∫
−W

dω |ω|

+∞∫
−∞

dt ′
+∞∑
j=−∞pθ [jτ] sinc

(
2πW(t ′ − jτ)

)
exp

(
2πiωt ′

) exp (−2πiωt)

=

+∞∑
j=−∞pθ [jτ]

+W∫
−W

dω |ω|

+∞∫
−∞

dt ′ sinc
(
2πW(t ′ − jτ)

)
exp

(
2πiωt ′

)
︸ ︷︷ ︸

:=D

exp (−2πiωt) .

(2.46)

1The variable θ is not indexed here to simplify the notation. The discretization of the ramp filter involves exclusively
the radial variable, t.
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Integral D is related to the Fourier transform of the sinc function given by:

F{sinc t}(ω) =

+∞∫
−∞

dt sinc t exp (2πiωt) = rect(ω) :=


0 |ω| > 1/2

1/2 |ω| = 1/2

1 |ω| < 1/2

. (2.47)

Using (2.47) to simplify D and considering the discretized version of the filtered projection, (2.46)
becomes [105]:

p
(f)
θ [kτ] =

1

2W

+∞∑
j=−∞pθ [jτ]

+W∫
−W

dω |ω| exp (−2πiω(kτ− jτ))

=
1

2W

+∞∑
j=−∞pθ [jτ]

+W∫
−W

dω |ω|

cos (2πω(kτ− jτ)) − i sin (2πω(kτ− jτ))︸ ︷︷ ︸
the integral of this function is 0


=
W

2
pθ [kτ] +

1

W

+∞∑
j=−∞
j6=k

pθ [jτ]

+W∫
0

dω |ω| cos (2πω(kτ− jτ))

= 2W

14pθ [kτ] −
+∞∑
j=−∞
j−k∈Zo

pθ [jτ]

π2(j− k)2

 = pθ [jτ] ∗ h[jτ] , h[jτ] =


1/4 j = 0

0 j ∈ Ze

−1/j2π2 j ∈ Zo

,

(2.48)

where Zo and Ze are the sets of odd and even integer numbers, respectively. The filter h and its
DFT, ĥ, are plotted in Fig. 2.4. ĥ resembles the ramp filter in the continuous formulation of FBP
(|ω|) with the difference that ĥ[0] 6= 0 (although very small), so that the filtering operation does not
suppress the DC term of the projections [12].
The ramp filter compensates for the non-homogeneous sampling of the Fourier domain [12], when
dealing with discrete projections. For the FST, the Fourier domain of the object is sampled in a polar
fashion by the DFT of the projections, thus, it is more sparsely sampled at higher frequencies.
As shown in (2.41) and (2.42), projections can be either filtered in Fourier or real domain. The first
solution can be efficiently implemented with FFT, provided that the data are first zero-padded to avoid
the wrap-around effect. The convolution theorem is, indeed, applicable only to cyclic convolutions,
i.e. the signals are assumed to be periodic. Hence, if there is no periodicity and FFT is used to
implement the convolution, the tails of the signals wrap around, leading to undesirable artifacts.
Due to the high-pass nature of the ramp filter, the filtering step enhances the noise affecting the
projections. As a matter of fact, the “pure” ramp filter should be employed only with almost noiseless
data. In general, the ramp filter is multiplied with a window, that ignores low frequencies and
suppresses the highest frequencies to a certain extent. Well-known examples of such windows are



22 background

Shepp-Logan (abbr. “sl”), Hanning (abbr. “hn”), Hamming (abbr. “hm”) and Parzen (abbr. “pz”)
[106], having the following expressions:

wsl(f) =
2
f

fc

π sin
(
π|f|

2fc

)

whn(f) =

0.5+ 0.5 cos
(
πf

fc

)
0 6 |f| 6 fc

0 otherwise

whm(f) =

0.54+ 0.46 cos
(
πf

fc

)
0 6 |f| 6 fc

0 otherwise

wpz(f) =



|f|− 6|f|

(
|f|

fc

)2(
1−

|f|

fc

)
0 < |f| <

fc

4

2|f|

(
1−

|f|

fc

)2
fc

4
< |f| <

fc

2

0 |f| >
fc

2

(a) (b)

Figure 2.4: (a) Filter h[jτ] given in (2.48) used to filter projections in real domain. (b) DFT of h[jτ]
used to filter projections in Fourier domain.
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where fc is the cutoff-frequency, i.e. the high frequencies corresponding to |f| > fc are suppressed. Fig.
2.5, where the four window functions are compared in the interval [0,1], shows that high frequencies
are suppressed the most by the Parzen window. Since high frequencies correspond either to noise
or highly varying signal features, the conclusion is that FBP reconstructions with the ramp filter will
have the best spatial resolution and the highest amount of noise, whereas those with the ramp filter
combined to the Parzen window will have the worst spatial resolution and the lowest amount of noise.
The filter function plays a crucial role in determining the reconstruction quality in terms of signal-to-
noise ratio/spatial resolution trade-off. For this reason, it is always mandatory, especially in published
works showing analytical tomographic reconstructions, to specify what kind of filter has been used for
FBP.

Figure 2.5: Shepp-Logan, Hanning, Hamming and Parzen windows at comparison.

2.4.4 Implementation aspects of the discrete backprojection

The discrete backprojection formula (2.44) is schematically depicted in Fig. 2.6: consider a single data
point belonging to a filtered projection, p(f)[θ, t]; trace the X-ray line corresponding to that point,
i.e. r : x1 cos θ+ x2 sin θ = t; assign the (scaled) data point to each image pixel traversed by r;
do the same operation for the other data points; repeat for all projections in [0,π). All contributions
from data points of different projections to the same image pixel are summed up. The backprojection
of all data points leads to an approximated version of the object f.
Backprojection B represents the adjoint operator of the Radon transform R, i.e. B = R∗. Given



24 background

0

x2

x1

θ

t

p(f)(θ,t)Filtered projection

Image grid

Figure 2.6: Sketch of the backprojection operation.

a generic linear operator A : U =⇒ V, with U,V being vector spaces, the adjoint operator, A∗ :

V =⇒ U, satisfies: 〈
y , A(x)

〉
=
〈
A∗(y) , x

〉
∀ x ∈ U ∀y ∈ V . (2.49)

From a computational point of view, the implementation of A∗ consists of the same (all linear)
operations involved by A, but in reverse order and with input/output arrays exchanged (if A is
complex, then, each adjoint calculation undergoes additional complex conjugation). This means that
every implementation scheme described in 2.3.2 can be used to build a corresponding backprojector.
The complexity of all these algorithms is, at least, O

(
N3
)
[93–95, 97, 99, 102]. The computational

hurdle of the backprojection operation can be greatly reduced through parallelized implementations
on Graphics Processing Units (GPUs). Two well-known examples of Open Source softwares offering
very fast GPU-based tomographic projectors have been published in [107, 108].
An algorithm characterized by much lower complexity is the hierarchical backprojector [109]. The
idea is to split the reconstruction of an image f(N) ∈ RN×N from a sinogram consisting, for example,
of N views × N pixels into the reconstruction of 4 images with half number of pixels, namely,
f(N/2) ∈ RN/2×N/2. A fairly accurate reconstruction of each f(N/2) requires only N/2 views,
since the pixels are halved in both dimensions. Backprojection for the 4 images f(N/2) requires
approximately 4 · (N/2)3 = N3/2 floating operations. The recursive usage of this strategy of halving
the image grid and the sinogram leads to an algorithm with complexity O

(
N2 log2N

)
[109], making

the hierarchical backprojector much faster than any of the previously mentioned FBP implementations.
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2.5 Iterative reconstruction

2.5.1 Underconstrained datasets

FBP has represented the standard CT reconstruction algorithm for decades, since its introduction.
This method is easy to understand, works fast with a parallel implementation and provides high-
quality reconstructions, when the sinogram is “properly” sampled.
Practical rules of thumb discussed in [12] suggest that the reconstruction of a N×N grid requires
M ≈ Nπ/2 projections homogeneously acquired in [0,π), each sampled with K ≈ N data points.
When M ≈ Nπ/2 and K � N, the reconstruction is affected by thick streak artifacts due to the
aliasing of single projections. Thin streaks appear in case M � Nπ/2 and K ≈ N, giving rise to
a characteristic star-shaped artifact [12]. In both scenarios, a sinogram in parallel beam geometry is
regarded as undersampled for FBP.
Two sources of noise usually affect projection data: additive noise due to roundoff errors/electrical
noise and shot noise, which is signal-dependent and follows a Poissonian statistics. Assuming the
additive noise a stationary zero-mean random process uncorrelated for different projections, it is
possible to show that [12]:

σ2r = σ
2
p π

+∞∫
−∞

dω |ω|2 |w(ω)|2 (2.50)

where σr is the standard deviation (std) of the FBP reconstruction, σp is the std of the projection
data and w(ω) is the additional window function for the filtering step. Relation (2.50) shows that
the smaller the area under |ω|2 |w(ω)|2, the smaller the error affecting the final reconstruction, but
the bigger the distortions due to edge-blurring, as already stated in 2.4.3. An expression similar to
(2.50) can be derived for the case of shot noise [12].
Although the previous arguments are helpful in understanding the FBP performance under data insuffi-
ciency or noise, the reconstruction algorithm needs always to be tested on experimental data acquired
with the tomographic setup under study. Effects like the non-zero size of the detector aperture func-
tion or some kind of structured noise characterizing the data can highly deviate the performance of
FBP (and any other reconstruction algorithm) from what theoretically expected. For example, a finite
detector aperture function acts roughly as a low-pass filter, that can suppress the potential aliasing
of the projection data [12].
In this work, the term underconstrained is used to generally identify tomographic datasets, for which
analytical algorithms like FBP are unable to provide high quality reconstructions. In the experimental
practice, underconstrained datasets result from low-dose fast scans or from tomographic setups, where
projections cannot be acquired homogeneously in [0,π). The study conducted in this thesis focuses
on the first case. Low-dose scans enable in-vivo studies that are particularly relevant in biomedical
research; fast scans allow tomography of quickly varying specimens of any kind. To decrease total
dose and scan time for a given CT setup, two possibilities are available: acquiring a little number of
projections, which leads to undersampled sinograms (M� Nπ/2)2; decreasing the exposure time per
projection, that yields very noisy data. Another current challenge in SRXTM is the reconstruction of

2The case K � N is of no interest for SRXTM, due to the high-resolution detectors employed for these kind of
tomographic scans.
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interior tomography data, arising when the irradiated object does not fit inside the CT field-of-view,
leading to the acquisition of truncated projections. Undersampled, noisy and truncated datasets (or
a combination of these issues), whose reconstruction cannot be “successfully” tackled by means of
FBP, are all here referred as underconstrained.

2.5.2 Iterative methods

The following paragraph does not want to be an extensive review of iterative methods for tomographic
reconstruction. Some key aspects and the various “families” of iterative algorithms are here listed.
Iterative algorithms are non-linear methods designed to provide better reconstruction accuracy than
FBP when dealing with underconstrained datasets. Reconstructions are calculated through minimiza-
tion of a cost function embedding a fidelity term, that steers the solution to fit the input data, and
a regularization term, that pushes the solution to fulfill the expectations or a-priori knowledge of the
object under study. Customary components are: a forward and a backprojection operator, an iterative
solver, a regularization scheme, constraints, a stopping criterion and parameters (supervised or unsu-
pervised) weighting the influence of each component. Iterative algorithms require more computations
than FBP and the computational bottleneck usually lies in the few calls per iteration of the forward
and backprojector. 3D compressed sensing based regularizations can easily represent a computational
bottleneck as well (more on this aspect in 5.2.7).
Algebraic methods were the first iterative algorithms to have ever been introduced. They include the
algebraic reconstruction technique (ART) [13], the simultaneous iterative reconstruction algorithm
(SIRT) [14] and the simultaneous algebraic reconstruction technique (SART) [15]. Algebraic me-
thods treat the tomographic problem as a system of equations, iteratively solved by the Kaczmarz
method [16].
Bayesian methods incorporate the statistical model (usually a Poissonian or a compound of Poisso-
nians) ruling the signal formation at the detector. The maximum likelihood expectation maximization
(MLEM) [110], the penalized weighted least square method (PWLS) [17, 18, 111] belong to this
group of algorithms.
Modern techniques for convex optimization like the split Bregman method [112] and the alternate
direction method of multipliers (ADMM) [113] have recently been applied to tomographic reconstruc-
tion [114–116].
The projection-onto-convex-sets (POCS) method [117] is designed to find the intersection area of
closed convex sets and has been mainly used to address the interior tomography problem combined
to differentiated backprojection [118].
Discrete tomography algorithms [119] deal with the reconstruction of images whose domain is a dis-
crete set. Some studies focus on the reconstruction of binary images [120, 121], others contemplate
reconstruction problems involving any small number of grey levels [122, 123]. The discrete algebraic
reconstruction technique (DART) [124] is a recent approach designed for discrete tomography, that
combines both non-discrete and discrete update steps at each iteration.
Iterative methods incorporate regularization schemes to stabilize the inversion problem and to improve
the reconstruction accuracy by exploiting some kind of a-priori knowledge regarding the object under
study. Examples of “classical” regularization schemes are Tikhonov [125] and Huber [126] penal-
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ties. Regularization schemes based on compressive sensing [127] like total variation (TV) [128] are
described in 5.2.7.
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Chapter 3
Simulation framework

This chapter describes the simulation framework used in this work to test the performance of recon-
struction algorithms. In particular, the following topics are analyzed: (i) how to choose simulated
objects; (ii) how to compute underconstrained sinograms; (iii) how to properly assess the reconstruc-
tion accuracy.
Devising a reliable simulation framework represents the first non-trivial task of any research in the field
of image processing/retrieval. The simulation framework is essentially a “measurement instrument”,
which is necessary to confirm theoretical expectations or to shed light when such expectations cannot
be so easily formulated in advance. It also plays a fundamental role in comparing the accuracy of
different methods designed to perform the same operation.
Despite its importance, very little attention has been dedicated to the problem of designing some kind
of “universal” simulation framework, shared by all people working and publishing in the field. This
may explain, why, in some cases, promising reconstruction algorithms have not received the necessary
attention and others have, despite all their shortcomings.
It is not easy to offer a universal solution to this problem. Nevertheless, this chapter discusses cru-
cial aspects that should be considered to get meaningful results when assessing the accuracy of a
reconstruction algorithm.

3.1 Creating tomographic datasets

3.1.1 Phantoms

The term phantom is a synonym for “simulated object or image”.
The Shepp-Logan (SL) phantom [129] simulates the map of attenuation coefficients of a head section
(Fig. 3.1) and has been used in countless publications dedicated to reconstruction algorithms. Since
the SL consists of the superposition of different roto-translated ellipses, its Radon transform can be
computed analytically [12]. This is a very useful feature to test forward projection operators (the
analytical sinogram works as a “ground truth”) or to create sinograms without errors generated by
a specific implementation of the Radon transform. The original phantom (SLO) (Fig. 3.1a) has
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(a) Original Shepp-Logan (b) Modified Shepp-Logan
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Figure 3.1: Original and modified Shepp-Logan (SL) phantoms.

very poor contrast3, since internal structures can be barely discerned from each other. For some
experiments, it is preferable to work with a modified version of the SL (SLM) (Fig. 3.1b) which is
characterized by higher contrast and is better suited, e.g., to recognize the presence of reconstruction
artifacts.
Unless the design of the algorithm is driven by a well-defined application, it is always preferable to test
a reconstruction algorithm on a tomographic dataset composed of multiple phantoms rather than a
single one. Following this strategy ensures that results obtained for a single phantom are not biased
by its specific features. For example, an algorithm that performs well on the piece-wise-constant SL
with curved corners will not necessarily perform satisfactorily for piece-wise-continuous objects with
sharp corners.
Moreover, a set with different phantoms should be organized according to a criterion or feature for
which the reconstruction algorithm has to be “measured”, like, e.g., contrast or spatial information.
Fig. 3.2 shows an example of dataset with varying contrast, obtained by multiplying the original
thorax section for a monotonically decreasing sequence of numbers ∈ (0, 1).
Given an image f ∈ RM×N, the spatial information (SI) is defined as follows [130]:

SIij :=
√
(f ∗ h1)

2
ij + (f ∗ h2)

2
ij (3.1)

where h1 and h2 are the convolution kernels of the Sobel filter:

h1 =

−1 0 1

−2 0 2

−1 0 1

 h2 =

−1 −2 −1

0 0 0

1 +2 1

 . (3.2)

3The contrast-to-noise ratio (CNR) is defined and discussed in Section 3.2
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CONTRAST

Figure 3.2: Illustrative example of dataset with varying contrast.

SPATIAL INFORMATION

Figure 3.3: Illustrative example of dataset with varying spatial information.

SI measures the edge energy and can be also used to build a metric that estimates the image complexity
[130]:

SImean =
1

NM

N∑
i=0

M∑
j=0

SIij (3.3)

SIrms =

√√√√ 1

NM

N∑
i=0

M∑
j=0

SI2ij (3.4)

SIstd =

√√√√ 1

NM

N∑
i=0

M∑
j=0

SI2ij − SI2mean . (3.5)

Figure 3.3 shows an example of dataset with varying spatial information, created by blurring the
original phantom with a Gaussian kernel of increasing radius.

3.1.2 Sinograms

Simulated sinograms are computed by an implementation of the Radon transform (see 2.3.2), unless
the object belongs to a family of functions that admits analytical forward projection.
The performance of a reconstruction algorithm can be properly assessed only if the error/deformation
induced by the forward projector is negligible. Tests conducted on phantoms with analytical Radon
transform can single out the best available forward operator. To further reduce the discretization
error for a given projector, a possible strategy is to work on a k-times upsampled version of the
phantom f(up) ∈ RkN×kN (k ∈ N0) to compute the sinogram b(up) ∈ RM×kN; the target sino-
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(a) Result of standard procedure.
Mean diff. with SL =

−4.452 10−4 ± 0.147

(b) Result of upsampled procedure.
Mean diff. with SL =

4.4139 10−4 ± 0.117

Figure 3.4: Difference between the SL (512 × 512 pixels) and FBP reconstructions of two sinograms
with 800 × 512 pixels. The first sinogram has been created by slant stacking with linear interpolation.
The second sinogram has been created, first, by upsampling to 2048 × 2048 pixels with bicubic
interpolation the SL, applying slant stacking with linear interpolation and, finally, downsampling the
number of pixels by a factor 4 with no interpolation. The mean difference and standard deviation of
the difference images are reported in their captions.

gram b ∈ RM×N is, then, obtained by downsampling4 b(up) along the channel direction. Fig. 3.4
shows an experiment employing the slant-stacking forward projector with linear interpolation (formula
(2.31)), where the upsampling strategy is compared to the case in which no upsampling is used: the
mean difference between the original phantom and the FBP reconstruction of the sinogram created
by the upsampling strategy has a standard deviation decreased by 20%. However, in reconstruction
experiments involving underconstrained datasets, the absolute difference in accuracy between the re-
construction of a sinogram created with the upsampling strategy and a reconstruction of a standard
sinogram usually does not play an effective role in biasing the benchmark of the algorithm under study.
Therefore, for computational efficiency, it is preferable to avoid this trick.
Another important aspect is the degree of coupling between the implementation of the forward projec-
tor R and backprojector B. When the actual implementation of B corresponds to the actual “adjoint”
implementation of R, the tomographic operators are strongly coupled from a computational point
of view. The coupling effect is here shown with an experiment involving analytical reconstructions:
consider a SL phantom with 512 pixels; compute well-sampled sinograms (805 views × 512 pixels)
with the pixel- (PD), ray- (RD) and distance-driven (DD) forward projectors (see 2.3.2); reconstruct
each sinogram with FBP consisting of ramp-filtering followed by the PD, RD and DD backprojector;
calculate the average absolute difference between analytical reconstructions and SL phantom. Re-

4The procedure works fine if no interpolation is used to downsample the sinogram, otherwise artifacts may arise in the
reconstruction.
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R-PD R-RD R-DD

B-PD 7.12e-2 9.90e-2 7.25e-2
B-RD 1.00e-1 6.67e-2 9.74e-2
B-DD 7.31e-2 9.65e-2 5.11e-2

Table 1: Average absolute difference between the analytical reconstructions and the SL phantom for
the experiment showing the coupling forward-adjoint operator. PD, RD and DD are the abbreviations
for pixel-, ray- and distance-driven approaches for either the forward projector, R, or the backprojector,
B. The yellow color highlights the lowest value along each column. Ramp-filtering has been used for
the reconstructions.

sults displayed in Tab. 1 show that, for a given forward projector, the highest accuracy, i.e. the
lowest absolute difference along a column of the table (highlighted in yellow) is obtained when the
reconstruction is performed by the corresponding backprojector. Moreover, the coupling effect plays
a more decisive role than the accuracy of the standalone operators. For instance, [94, 98] report that
the DD algorithm is more accurate than the classic PD. Nonetheless, the best reconstruction of the
PD-sinogram is achieved by the ramp-filtered PD-backprojector. When testing the performance of
a reconstruction algorithm on simulated data, it is, therefore, fundamental to compute the forward
projection either analytically, if possible, or with a forward projector not coupled to the operators
implemented inside the reconstruction algorithm itself5. In this way, the bias of accuracy due to the
coupling effect is eliminated and the overall simulation will better describe the performance of the
reconstruction algorithm on experimental data, where the “forward projector”, being the X-ray setup,
is surely not correlated to any PC-implementable tomographic operator. More details on the topic
can be found in 4.5 or [30].
Underconstrained tomographic datasets are generally created by choosing a number of views M �
N · π/2 and by adding either Poisson or Gaussian noise with a certain variance σ. In theory, a Pois-
son model is suited to represent the noise affecting projection data that have been acquired with a
photon-counting device [131]. If the CT detector is based on an energy integration system, a Poisson
model can still represent a good approximation for the noise characterizing the sinogram. A com-
pound of Poisson distributions can account both for a polychromatic X-ray beam and a camera with
an energy integration system [132], but, due to its complex likelihood expression, it has been often
approximated with either a Poisson or a Gaussian model [133]. Systematic experimental studies on
the noise properties of X-ray CT data have shown that the effective sinogram noise follows a much
more complex distribution than a Poisson or a Gaussian distribution, but, if a simple model is required,
a Gaussian distribution is a better approximation than a Poisson distribution [134]. This and the fact
that several works on phase contrast projections used Gaussian noise to conduct studies on simulated
datasets (e.g. [135]) lead us to use a Gaussian and not a Poisson model for the experiments to
follow. In any case, all these models neglect other sources of signal corruption like roundoff errors
and electrical noise (see also 2.5.1). Projections are always homogeneously acquired in [0,π), unless
it is specified otherwise. The “limited-view” problem occurs when the experimental setup does not

5This would not represent, however, a perfect solution, as the forward projector, not coupled to any of the backprojectors,
could be more coupled to one backprojector than to the other one, still creating a “dangerous” bias.
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SAMPLING FACTOR

Figure 3.5: Illustrative example of tomographic dataset with varying sampling factor.

allow to cover the entire interval [0,π). This kind of underconstrained dataset is simulated by leaving
empty an entire “angular cone”, e.g., centered around π/2. This work focuses on the reconstruction of
underconstrained datasets with projections homogeneously distributed over the entire straight angle.
M/N and σ are selected according to the phantom under study: if the phantom is characterized by
sufficient structural complexity, a sinogram constructed without too small M/N and/or too large σ
will already represent a tough challenge for FBP and, therefore, will be an interesting case of study
for iterative reconstruction algorithms or any other approach alternative to FBP. The sampling factor
(SF) is a quantity introduced here to describe the sampling level of a sinogram independently from
its number of pixels. SF is defined as:

SF =
M

Mopt
· 100% , where Mopt := N

π

2
. (3.6)

Equation (3.6) shows that the SF corresponds to the percentage of projections required to achieve
a FBP reconstructions free of undersampling artifacts. Figure 3.5 shows an example of dataset with
varying SF.

3.2 Image quality metrics

Metrics for image quality are tools designed to measure the distortion of an image caused by the
imaging system and to translate the visual perception of such degradation into numbers. Since
images are rather complex objects to analyze, no single metric is able to effectively describe the
overall quality. A complete analysis always requires the computation of multiple metrics focusing on
different aspects of the image.
In the following, the metrics for image quality used throughout this work are introduced and described.
Particular emphasis is put in explaining how to properly make use of such metrics, especially in the
field of tomographic reconstruction.
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3.2.1 SNR and CNR

The signal-to-noise ratio (SNR) [136] estimates the amount of noise affecting the image, whereas the
contrast-to-noise ratio (CNR) [136] describes how well a certain material (tissue, phase or attenuation
coefficient) can be visually discerned from the other ones. The computation of both figures of merit
requires the identification of one (for the SNR) or two (for the CNR) regions of interest (ROIs), i.e.
areas of the image characterized by the same material. Some a-priori knowledge about the investigated
object is always required in order to draw the necessary ROIs.
Given an image f, the SNR corresponds to the ratio between the mean value and standard deviation
of a selected ROI R1:

SNR =
f̄R1
σR1

where f̄R1 =
1

NR1

∑
i∈R1

fi and σR1 =

√
1

NR1

∑
i∈R1

(
fi − f̄R1

)2 . (3.7)

Since f̄R1 is fixed, the higher σR1 , i.e. the ROI noise, the lower the SNR.
The CNR corresponds to the ratio between the absolute difference of mean values and the sum of
standard deviations of two different neighboring ROIs R1 and R2:

CNR =

∣∣f̄R1 − f̄R2∣∣
σR1 + σR2

where f̄Rk =
1

NRk

∑
i∈Rk

fi and σRk =

√
1

NRk

∑
i∈Rk

(
fi − f̄Rk

)2 .

(3.8)
When the attenuation coefficients of the materials characterizing R1 and R2 are similar, a lower
amount of fluctuations in both ROIs suffices to suppress the CNR and vice versa.
In this work, the SNR and CNR assigned to an image correspond to averages of SNR and CNR values
computed for different ROIs and couples of ROIs, respectively. For tomographic reconstructions, it
is important to select ROIs at various distances from the center of the reconstruction circle, since
the reconstruction quality is generally best at the center and worsens towards the limit of the FOV.
Moreover, it is recommendable to select each time the largest possible ROIs to improve the statistics.
Figure 3.6 shows an example of SNR and CNR calculation for a simulated tomographic reconstruction
of a SL phantom. The gray material indicated with “A” and the background indicated with “B” are
targeted for this analysis (Fig. 3.6a). In Fig. 3.6b, eligible ROIs are overlaid to a FBP reconstruction
of the phantom. Notice that all ROIs lie within the reconstruction circle (shown in Fig. 3.6b). In this
example, SNRA = 1/4 (SNRA1 + SNRA2 + SNRA3 + SNRA4); analogously one proceeds for SNRB;
CNRA−B = 1/4 (CNRA1−B1 + CNRA2−B2 + CNRA3−B3 + CNRA4−B4). The SL phantom is well
suited for the selection of ROIs to estimate SNR and CNR, because it is piece-wise-constant and each
material occupies relatively large areas.
An example of phantom not suited to SNR and CNR calculation is displayed in Fig. 3.7a, which
is a simulated tomographic slice of a human thorax. The phantom detail in Fig. 3.7b shows how
variegated it is, for example, the white material on the bottom: subregions with supposedly different
tissues (labeled with “A”, “B”, “C” and “D”) can be roughly identified, even though it is hard to
define their contours. If the SNR-CNR analysis is run on ill-defined ROIs, the standard deviation(s)
required by formula (3.7) and (3.8) will not only represent the noise affecting the signal, but also the
characteristic heterogeneity of the object under study. Thus, the conduction of a reliable SNR-CNR
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(a) SL phantom
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RB1

(b) FBP reconstr. with ROIs

Figure 3.6: Example of selection of ROIs for SNR and CNR estimation. (a) SL phantom with indicated
the materials, A (intermediate grey) and B (black, background), selected for the analysis. (b) FBP
reconstruction of the SL phantom with 4 (blue) ROIs for A and 4 (red) ROIs for B used to compute
SNR and CNR. The orange dashed curve delimits the reconstruction circle: ROIs have to be selected
within this circle.

(a) Thorax phantom

A
B

C

D

(b) Detail

Figure 3.7: Example of a phantom not suited to the selection of ROIs for SNR and CNR estimation.
(a) Thorax phantom; the dashed square delimits the detail zoomed on the right. (b) Zoomed detail
of the “white material” on the bottom.

analysis requires the investigated phantom/specimen to be as much piece-wise-constant as possible
and, in general, precise a-priori knowledge regarding the composing materials is strongly recommended.
Since the user has to carefully draw the ROIs by hand, SNR and CNR can be computed only for a
limited amount of slices and regions within each slice. Altogether, these metrics can be applied only
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to specific cases and can only assess the quality of a selected subset of the reconstructed volume, but,
differently from metrics requiring a reference image, they are always applicable to real data.

3.2.2 Spatial resolution

The spatial resolution quantifies the sharpness of an image. A metric for spatial resolution is supposed,
for example, to compute a value in pixel units for each image of Fig. 3.8, concluding that the SL
phantom on the left is sharper than the one on the right. The lower the calculated value in pixel
units, the higher the spatial resolution of the image under study. The spatial resolution is a feature
strongly connected to the point-spread-function (PSF) of a linear imaging system. In the same way,
for a fixed tomographic setup, reconstruction algorithms can be thought as either linear (analytical
algorithms) or non linear (iterative algorithms) “imaging systems” and assessing the spatial resolution
of the reconstructed slices can provide an estimate of the intrinsic algorithm “PSF”.
A simple method to estimate the spatial resolution is the analysis of the edge slope [136]. An ideal
linear imaging system has point-wise PSF everywhere and preserves step-like edges [72]. A real imag-
ing system has PSF of finite size changing from region to region of the image and step-like edges are
mapped into uphills/downhills with a certain slope. Fitting a line crossing an edge perpendicularly
with an error function (erf) of the form yi = a1+a2 erf[(xi−a3)/a4] for i = 0, ...,n− 1 (example in
Fig. 3.9), where a = {ai} are the fit parameters and (xi,yi) the data points, can provide a measure of
the edge slope and, therefore, of the spatial resolution at that specific location. The parameter values
used here to initialize the least square fit are a(0) = {min(yi),yn−1−y0, 1/2 (xn−1− x0), 1.0}. The
erf derivative is a bell extending from the start, xs, to the end point, xe of the erf slope. Once the
fit function yfit(x, afit) is obtained, the first and last abscissa where dyfit/dx 6= 0 correspond to xs
and xe. The erf slope is finally computed as (yfit(xe) − y

fit(xs))/(xe − xs). For a tomographic
reconstruction, this procedure should be repeated on several edge profiles at different distances from
the image center and the single results are averaged. Analogously to what discussed for SNR and
CNR calculation, the described method has the drawback of not being unsupervised and the analysis

(a) (b)

Figure 3.8: SL phantom with 512 × 512 pixels convolved to a Gaussian kernel of radius 2 (a) and 6
(b).
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(a) Blurred and noisy SL phantom
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Figure 3.9: Example of estimation of spatial resolution through erf fit of a line profile. (a) SL phantom
with 512 × 512 pixels is convolved to a Gaussian kernel of radius 2 and Gaussian noise has been added.
The red segment indicates the position of the line profile used for the resolution analysis. (b) Line
profile (in black); fit by erf (in red).

can practically be conducted only over a limited portion of the reconstructed volume.
A metric for spatial resolution should be sensitive to the level of blurring and the amount of noise.
One of the major issues with the edge-slope-fitting procedure is that a very low SNR can impair
the estimation of the spatial resolution: the fit is sensitive to the choice of a(0) and for a noisy
edge profile a(0)0 = min(yi) will not necessarily represent the right translation factor along y or

(a) SR=3.2 pix. (b) SR=2.4 pix. (c) SR=2.5 pix.

Figure 3.10: Simulation showing the dependence of the edge profile fitting method on the amount of
noise affecting the image. All SL phantoms with 512× 512 pixels were convolved to a Gaussian of
radius=2. SR stands for spatial resolution, measured in pix.= pixel units. (a) Phantom plus additional
Gaussian noise with σ = 3% p̄, p̄ = average SL value. (b) Phantom plus additional Gaussian noise
with σ = 10% p̄. (c) Phantom plus additional Gaussian noise with σ = 20% p̄.
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a
(0)
1 = yn−1 − y0 will not precisely correspond to the slope height. Figure 3.10 shows three SL

phantoms characterized by the same level of blurring and different amounts of Gaussian noise. The
edge-slope-fitting procedure should return increasing values of spatial resolution going from the right
to the left; instead the image in Fig. 3.10a has the worst result.

A different approach to estimate the spatial resolution is the Fourier ring correlation (FRC) [137, 138].
The FRC works on single images, its extension to volumes is called Fourier shell correlation (FSC)
[139, 140]. The FRC estimates the spatial resolution by measuring in Fourier space the correlation
between two scans of the sample [137]. It has been mainly applied in single particle analysis for trans-
mission electron microscopy and cryo-electron microscopy. A perfect microscope would be able to
generate identical projections of the sample at different instants; a real microscope, instead, provides
an uncorrelated pattern, due to distortions and noise, that changes the sample projections at every
instant. The FRC procedure is depicted in Fig. 3.11: consider two independently acquired images
of the same object, I1 and I2; compute their FFT-2D (the DC term is placed at the grid center),
Fi = fftshift(fft2(Ii)) and i = 1, 2; start from the center and at each time construct rings of fixed
width δr at increasing distances r from the center; consider all Fourier components of F1 and F2
inside each ring to compute a single point of the FRC curve according to [137]:

FRC(r) =

∑
ri∈R(r,∆r)

F1(ri) · F2(ri)∗√ ∑
ri∈R(r,∆r)

|F1(ri)|
2 ·

∑
ri∈R(r,∆r)

|F2(ri)|
2

, (3.9)

where the notation ri ∈ R(r,∆r) indicates all pixel elements ri within the ring R, placed at distance
r, with thickness ∆r. The FRC curve starts from 1.0 at r = 0 (the DC components of the two images
should coincide) and goes to zero as r approaches the Nyquist frequency, due to the fact that the
uncorrelated components of the projections mainly affect the high frequencies.

FFT

ωy

ωx
0

r1

r2

Fourier rings

FFT

r3

IMAGE 1

IMAGE 2

Figure 3.11: General scheme of FRC.
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Reconstruction even
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Figure 3.12: Data splitting strategy to compute FRC (FSC) for tomography.

To obtain a value of spatial resolution from the FRC curve, different criteria can be applied. There
are criteria based on fixed-value thresholds like the “0.5-threshold” criterion [140], that estimates
the spatial resolution from the abscissa corresponding to FRC=0.5. The “σ-curve” criterion com-
putes the intersection between the FRC curve and σ(r) = 3/

√
n(r)/2, where n(r) is the num-

ber of pixels of R(r,∆r); the curve σ(r) describes the expected theoretical pure-noise behavior of
the Fourier cross-correlation coefficient [137, 141]. The “one-bit” and “half-bit” criteria compute
the intersection of the FRC curve with T1 bit(r) = (0.5 + 2.41/

√
n(r))/(1.5 + 1.41/

√
n(r)) and

T1/2 bit = (0.21 + 1.91/
√
n(r))/(1.21 + 0.91/

√
n(r)), respectively, [141]. When the FRC curve

meets T1 bit(r), the SNR of the combined images corresponds to unity and the average information
per pixel is 1 bit. The “half-bit” criterion is just a less stringent version of the “one-bit” criterion [141].
Differently from what occurs in microscopy, it is usually not possible to acquire two distinct tomo-
graphic datasets of the same sample, due to time and dose constraints. A solution (shown in Fig. 3.12)
is to split the sinogram into the set of even and odd projections and to reconstruct each set to obtain
two independent representations of the sample [142, 143]. This strategy ensures that each sinogram
is homogeneously sampled in [0,π). When the number of projections is the resolution-limiting factor,
the resolution of each sub-tomogram is expected to be half of the full-tomogram resolution [142].
The presence of noise in the data is accounted through a correction based on SNR considerations
[142]:

FRC∗(r) =
2FRC(r)

FRC(r) + 1
. (3.10)

This adaptation of the FRC (FSC) analysis to tomographic datasets works if the spatial resolution SR
satisfies the following relationship [142]:

SR > SRcrit = 2 SRang ≈ dθ ·D , (3.11)

where dθ is the angular increment between consecutive projections and D is the diameter of the
object under study. This condition can be also explained from another point of view: tomographic
reconstructions of strongly undersampled datasets are affected by aliasing artifacts, equally affecting
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both images submitted to the FRC analysis, and these artifacts give rise to an erroneous high corre-
lation.
In Fig. 3.11, as example, the FRC analysis is used to compare the spatial resolution of FBP re-
constructions with ramp filter + Hanning window using ray-driven (FBP-RD) and distance-driven
(FBP-DD) backprojector. The sinogram of SL, used for this experiment, has 804 views × 512 pixels
and additional Gaussian noise with σ = 2.0% average of the noiseless sinogram. According to the
described procedure, the sinogram is split into distinct datasets, one collecting even-indexed projec-
tions, the other odd-indexed projections; both sub-sinograms are, then, reconstructed with FBP-RD
and FBP-DD. Figure 3.13c shows a comparison between the FRC curve of the reconstructions with
FBP-RD and FBP-DD: for each radius r, the higher the curve the better the performance of the
algorithm in terms of spatial resolution. In this case, FBP-DD performs better than FBP-RD starting
from r ≈ 0.3. In Fig. 3.13d, 3.12e and 3.12f, the “0.5-threshold”, “one-bit” and “half-bit” criterion
are applied to the FRC curve of FBP-RD to determine a value for the spatial resolution, being 3.3
pixels, 2.8 pixels and 2.1 pixels, respectively. To compute the intersection with any criterion-curve,
the FRC data points are fitted with a polynomial of degree 10. In this example, the FRC analysis can
be considered reliable because the number of projections is sufficiently high to satisfy (3.11). If the
task is to measure the spatial resolution of reconstructions of strongly undersampled datasets, FRC
may not provide reliable results.
Compared to the edge-fitting method, the FRC (FSC) analysis has the upside of being unsupervised,
i.e. no ROI or line has to be selected by the user. On the other hand, it is not clear how the FRC
can provide an estimate for the spatial resolution of a tomographic reconstruction and, in particular,
which criterion should be adopted to obtain a result that has a physical meaning. In practice, the FRC
(FSC) can be used only for relative assessments, as in Fig. 3.11, Furthermore, a caveat to bear in
mind is that the FRC (FSC) analysis works properly if the distortions characterizing the two distinct
input datasets can be considered uncorrelated, otherwise a higher spatial resolution will be wrongly
measured. Considering its clear connection to the spatial resolution, the edge-fitting method and not
the FRC is used to analyze the reconstructions presented in the next chapters, when needed.

3.2.3 Full reference metrics

The term “full reference” identifies a family of unsupervised metrics, that measure the difference be-
tween the image (volume) under study and a ground-truth. The full reference metrics presented here
and utilized for experiments in the next chapters are the mean squared error (MSE), the peak signal-
to-noise ratio (PSNR) [144], the structural similarity index (SSIM) [145] and the normalized mutual
information (NMI). In the following, f ∈ RM×N indicates the image to analyze and r ∈ RM×N is
the oracle, ground-truth or reference image.

The MSE, probably the most known figure of merit in the field of signal processing, is defined as:

MSE =
1

MN

M∑
i=0

N∑
j=0

(f[i, j] − r[i, j])2 , (3.12)
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and the root-mean-square error (RMSE) is:

RMSE =
√
MSE =

√√√√ 1

MN

M∑
i=0

N∑
i=0

(f[i, j] − r[i, j])2 . (3.13)

The PSNR is a modified version of the MSE/RMSE measured in decibels (dB) [144]:

PSNR = 10 log10

(
max{r}2

MSE

)
= 20 log10

(
|max{r}|√

MSE

)
. (3.14)

The higher the MSE/RMSE, the lower the accuracy of f with respect to r; the opposite holds for the
PSNR. Placing the MSE term at the denominator enables the PSNR to be generally more sensitive
to differences between f and r than the MSE and RMSE themselves.
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Figure 3.11: Example of FRC analysis applied to measure the spatial resolution of FBP reconstructions
with ray-driven (FBP-RD) and distance-driven (FBP-DD) backprojector using Hanning filter. (a-b)
Single FRC curves for each algorithm. (c) Comparison between the two FRC curves. (d-f) Resolution
point computed on the FRC curve of FBP-RD with three different criteria: 0.5, 1 bit and 1/2 bit
criterion, respectively.

The SSIM synthesizes comparisons of luminance, contrast and structural information between f and
r, that have been conducted separately in a patch-wise fashion [145]. The result of this analysis is a
map of SSIM values, one for each pixel, ranging from 0 (lowest similarity) to 1 (highest similarity).
Working on patches, rather than on the entire image at once, allows to better account for local
changes of the three aforementioned quantities. The SSIM map is useful to know which areas of f
differ the most from the reference. To convert the SSIM map into a single number, the mean value
or MSSIM can be computed. Considered the patch fpq (rpq) of f (r), with m× n pixels, centered
around the pixel (p,q), the SSIM value is given by [145]:

SSIM (fpq, rpq) = l (fpq, rpq) · c (fpq, rpq) · s (fpq, rpq)

=
(2µ(fpq)µ(rpq) +C1) (2σ(fpq, rpq) +C2)

(µ(fpq)2 + µ(rpq)2 +C1)
(
σ(fij)2 + σ(rpq)2 +C2

) ,
(3.15)

where l, c and s stand for luminance, contrast and structural information, respectively. Here, given
generic images g, h ∈ Rm×n, µ(g), σ(g) and σ(g, h) are defined as follows:

µ(g) =
1

mn

m∑
i=0

n∑
j=0

g[i, j] σ(g) =

 1

(m− 1)(n− 1)

m∑
i=0

n∑
j=0

(g[i, j] − µ(g))2
 1
2
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(a) Original image (b) MSE=107.01 | MSSIM=0.76 (c) MSE=107.01 | MSSIM=0.03

Figure 3.12: Simulation readapted from [146]. (a) Original image. (b) Image summed to a positive
constant, t. (c) Image summed to t · rand{−1, 1}. At visual inspection, the degradation of (c) is
considerably more severe than that of (b). The MSE fails at identifying the difference between (b)
and (c). The MSSIM, instead, succeeds.

σ(g, h) =

 1

(m− 1)(n− 1)

m∑
i=0

n∑
j=0

(g[i, j] − µ(g)) (h[i, j] − µ(h))

 1
2

.

C1 and C2 in (3.15) are constants chosen on the basis of the dynamic range of the data.
The SSIM was devised to replace the MSE (and similar figures of merit) as a metric better capable
to mirror the perceived image quality. Several simulations reported in [146] prove that the MSE can
fail at mimicking the human vision, when trying to assess the degradation of an image. One of such
simulations is reproposed in Fig. 3.12. The original pepper image (Fig. 3.12a) is altered in two
different ways: the version in Fig. 3.12b is obtained by summing a constant positive step, t, to the
original image; the version in Fig. 3.12c is computed by summing t multiplied by either +1 or -1,
which is randomly chosen pixel-wise. At visual inspection, Fig. 3.12c is clearly more degraded than
Fig. 3.12b with respect to the original image. This difference is identified by the MSSIM, but not by
the MSE. The distorted images of Fig. 3.12 are said to belong to an “equal MSE hypersphere”.
Despite the initial enthusiasm of the imaging community towards this metric, several studies have
questioned the effective superiority of the SSIM with respect to more classical figures of merit. [145]
and [147] show that the PSNR and SSIM perform very similarly the same in identifying image distor-
tions. [148] proves that the structural term of the SSIM, namely s in (3.15), does not represent the
perceived structural content of the image. [149] finds no evidence of the superior performance of the
SSIM when assessing video quality. [150] not only shows that it is possible to create an “equal SSIM
hypersphere” through simulations, where the roles of MSE and SSIM in the example of Fig. 3.12 are
reversed, but also demonstrates the existence of a direct mathematical link between MSE and SSIM,
reaching the conclusion that the two metrics are essentially “cut from the same cloth”.
Putting this controversy aside for the moment, it is important to point out that MSE, RMSE and
PSNR are fast to calculate and parameterless, whereas the SSIM requires longer run times and features
parameters, that can highly affect the accuracy of the metric: the constants C1 and C2; the patch
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size; the radius of the Gaussian blurring kernel applied to each patch before computing the SSIM
[145]. Moreover, the strategy of working patch-wise to produce an accuracy map can, in principle, be
easily extended to MSE, RMSE and PSNR, if needed.

The NMI, mainly used as similarity measure for image registration [151, 152], is given by [153]:

NMI =
I(r, f)
H(r)

, (3.16)

where H, the (Shannon) entropy, and I, the mutual information, are defined as follows:

H(X) = −
∑
x

p(x) log2(p(x)) I(X, Y) = H(X) −H(X|Y) =
∑
x,y

p(x,y) log2

(
p(x,y)
p(x)p(y)

)
.

(3.17)
X and Y are generic variables and p(x) is the probability that X assumes the value/state x. If f (and r)
is quantized in n bins, the i−th bin corresponds to the value f(i) = min{f}+ i (max{f}− min{f})/n
and p(f(i)) is the number of counts inside the bin at x = f(i) of the normalized histogram. p(r(i), f(j))
is the joint probability distribution or joint histogram of the two images. The NMI, analogously to
the SSIM, ranges from 0, no mutual information between f and r, to 1, maximal mutual information
due to f ≡ r. This metric has the appealing feature of depending only on one parameter, the number
of bins n, and to offer a similarity measure based on principles of information theory, differently from
MSE and SSIM.

The aforentioned trap of the “equal hyperspheres” can occur only when dealing with images affected
by several different kinds of distortions. When the accuracy of a tomographic reconstruction algo-
rithm is under study, for example, the possible distortions affecting the retrieved image/volume are
known: fluctuations in piece-wise constant ROIs, poor contrast, blurred edges or disappereance of
small features.
In principle, all the presented full reference metrics can be valid tools to benchmark a reconstruction
algorithm. A good strategy is to devise ad-hoc experiments to know which metrics are reliable and
sensitive enough for the study that we have in mind.
Consider, for example, to study the accuracy of different backprojectors for analytical reconstruction
of undersampled sinograms. Which full reference metrics should be selected for this task? To answer
this question, the following experiment is conducted: noiseless sinograms with varying numbers of
projections, created by the slant stacking algorithm, are reconstructed by means of FBP with ramp
filtering and pixel-driven backprojector (linear interpolation). The FBP reconstructions are analyzed
with MSE, PSNR, MSSIM and NMI and results are reported in Fig. 3.13. The ideal metric should
feature either a strictly decreasing (in case of RMSE) or increasing (PSNR, MSSIM, NMI) plot. Re-
sults show that all metrics are reliable, i.e the quality of a reconstruction with less projections is
never superior than that of a reconstruction with more projections. However, the sensitivity is rather
different: the RMSE saturates starting from around 300 projections (red dashed line in Fig. 3.13a);
the PSNR and the NMI saturate starting from around 600 projections (red dashed line in Fig. 3.13b)
and 3.13d); the MSSIM curve does not feature any saddle nor saturation point (Fig. 3.13c). In this
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Figure 3.13: Example of experiment to test full reference metrics. Sinograms of SL with 512 pixels and
number of views going from 10 to 800 (at steps of 10) are reconstructed with FBP using ramp filter
and pixel-driven backprojector. Reconstructions are compared to the original SL phantom through
RMSE, PSNR, MSSIM and NMI. The red dashed lines indicate when the metric saturates, i.e., the
point from where it stops identifying differences with the previous reconstruction.

case, the MSSIM is the best suited metric to assess analytical reconstructions of undersampled data.
For other types of experiments, the MSSIM may not represent the most reliable and sensitive tool to
adopt, as it depends from case to case.

3.2.4 A final comment

Although metrics for image quality are a fundamental tool to conduct research in the field of image
processing, a lot of work is still ahead and no infallible or generally applicable analysis framework has
been devised yet. The sole reasonable approach is to handle every case separately to find the set of
metrics, that can measure at best the image distortions occurring in the considered experiment.
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The experimental parts presented in the following chapters are characterized by rather heterogeneous
analysis frameworks. Metrics were chosen according to the aforementioned criterion or to simply meet
the requests of reviewers, particularly affectioned to one or the other figure of merit.



48 simulation framework



Chapter 4
Gridding projectors

The gridding projectors are Fourier-based implementations of R and B with complexity O(N2 log2N).
These operators are based on the gridding method, a very old technique in signal processing dating
back to the late 60s.
The chapter opens with the mathematical formulation of the gridding method. The gridding projectors
and their usage for iterative reconstruction are, then, described. The following section discusses future
perspectives of the gridding operators in the context of the current research. The last section is
dedicated to the experimental study on the coupling effect between forward and backprojector.

4.1 The gridding method

4.1.1 Mathematical formulation

The gridding method (GM) is a signal processing technique designed to retrieve a signal from samples
of its Fourier transform located on a non-Cartesian lattice [154]. The term “gridding” indicates per se
the operation of mapping samples from an input grid onto a target grid by means of an interpolation
scheme. The peculiarity of the GM is that data-gridding and the Fourier transform are both involved
in the procedure.
The GM has been mainly applied to radio-astronomy [155–157] (starting from the late 60s), magnetic
resonance imaging (MRI) [154, 158–161] (starting from the early 90s), CT analytical reconstruction
[162–169] (starting from the mid 80s) and CT iterative reconstruction [28, 170, 171] (starting from
2004).
Consider a 2D real function f(x1, x2) with (continuous) Fourier transform F(u1,u2) and a sampling
function S(u1,u2) =

∑
i δ(u1 −u

(i)
1 ,u2 −u

(i)
2 ), where the set of points (u(i)1 ,u(i)2 ) form a generic

grid in Fourier space. In the GM, the sampled Fourier transform, F(s) = F · S, is convolved with a
function W(u1,u2) (also called “kernel”) and sampled again onto a Cartesian grid, described by the
shah or comb function X(u1,u2) =

∑
i

∑
j δ(u1 − i,u2 − j) [158, 163]:

F(scs) =
[
F(s) ∗W

]
·X =

[
(F · S) ∗W

]
·X , (4.1)
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where the superscript “scs” summarizes the three steps: (input F) sampled (by S), convolved (with
W), sampled (by X). By applying the inverse Fourier transform to the first and third member and
considering that F−1{X(u1,u2)} = X(x1, x2) (for a unit-spaced grid), Eq.(4.1) becomes [158]:

f(scs) = [(f ∗ s) ·w] ∗X , (4.2)

where s and w are the inverse Fourier transforms of S and W. If f(scs) is supposed to approximate f,
two aspects have to be amended in Eq.(4.2): (i) f(scs) needs to be corrected for the uneven sampling
in Fourier space [156]; (ii) the contribution of the window w has to be removed from f(scs) [163].
The uneven sampling in Fourier space is accounted by re-weighting S in Eq.(4.1) with the so called
density compensation factors (DCFs) [158]:

Fswcs =
[(
F ·
(

S

S ∗W

))
∗W

]
·X . (4.3)

The additional “w” in the superscript stands for “weighted” and ρ := S/(S ∗W) are the sought DCFs.
By computing, once again, the inverse Fourier transform, Eq.(4.3) becomes [158]:

f(swcsd)(x,y) =
{[
f ∗
(
s ∗−1 (s ·w)

)
·w
]
∗X
}
· Θ(x,y)
w(x,y)

, (4.4)

where ∗−1 is the symbol for deconvolution and Θ(x,y) is the box function used to crop the recon-
struction ROI, i.e. Θ(x,y) = 1 for |x| < 1/2, |y| < 1/2 and Θ(x,y) = 0 otherwise. The removal of
the window function contribution from the reconstruction (division per w) is also called deapodization.
(4.4) represents the GM equation.
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Figure 4.1: Normalized sinc function (a) and its Fourier transform (b) corresponding to the box
function Θ(x,y). Since the box function is constant, the GM with a sinc kernel does not require
deapodization. The sinc function has no compact support and, therefore, all available samples in
Fourier space have to be used to compute each interpolated point. This makes the GM with a sinc
kernel computationally not practical.
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According to the Nyquist-Shannon theorem, the optimal kernelW for a properly bandlimited interpola-
tion problem is the sinc function (Fig. 4.1a), that does not require deapodization, because its Fourier
transform corresponds to the box function (Fig. 4.1b). Since the sinc kernel has no compact support,
all samples available in Fourier domain contribute to the calculation of the new interpolated point
[163]. As a consequence, the convolution results extremely slow. If the kernel has compact support,
only few samples are needed to compute the interpolated ones and the procedure is computationally
efficient.
The inverse Fourier transform of a compact kernel is not compact, features a non-constant main
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Figure 4.2: The Hanning function is used here as example of a compact kernel eligible for the GM.
(a) Hanning kernel. (b) Kernel spectrum with FOV placed inside the main lobe and sidelobes aliasing
back into the FOV. (c) Kernel spectrum after deapodization: the central region of the main lobe is
now constantly equal to 1.0.
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lobe, that has to be corrected through deapodization, and is characterized by sidelobes aliasing back
into the FOV. An example of compact kernel is the Hanning function [172], displayed in Fig. 4.2a.
Figure 4.2b shows the Hanning spectrum, the main lobe containing the FOV and the sidelobes. The
deapodization removes the kernel contribution by flattening the main lobe to 1.0 (Fig. 4.2c), but in
doing so it enhances the height of the sidelobes, as the comparison of the y-axis scales in Fig. 4.2b
and Fig. 4.2c shows. The stratagem to avoid such artifacts is to perform the convolution in Fourier
space with an oversampled grid [158, 163]. Oversampling by a factor α > 1.0 increases the main
lobe (and FOV) width and reduces the height of the sidelobes, as more energy will be concentrated
inside the main lobe. Once the deapodization is applied, the enlarged FOV still suffers from aliasing
artifacts, but the target reconstruction is placed in a central artifact-free area corresponding to the
original FOV, which is finally cropped from the rest.
The recommended oversampling ratio for the GM is α = 2.0 [158, 163]. This value comes from
simple arguments of band-limited interpolation theory [163]. Consider an object f(x1, x2) with com-
pact support, such that f(x1, x2) = 0 for |x1| > x̄1 or |x2| > x̄2. Its continuous Fourier transform,
F(u1,u2), is measured on a Cartesian grid with spacings ū1, ū2. The sampled Fourier transform is,
therefore, F(s)(u1,u2) = F(u1,u2) ·X(u1/ū1,u2/ū2). It follows that [163]:

f(s) (x1, x2) = F−1
{
F(s)(u1,u2)

}
= F−1

{
F(u1,u2) ·X(u1/ū1,u2/ū2)

}
= ū1ū2 · f (x1, x2) ∗X(x1ū1, x2ū2) =

∑
i

∑
j

f

(
x1 −

i

ū1
, x2 −

j

ū2

)
.

(4.5)

Equation (4.5) shows that f(s) corresponds to a combination of infinite translated copies of the
original function. To ensure that the cropped region |x1| < x̄1 ∪ |x2| < x̄2 of f(s) equals f, no
overlap should occur among the different copies. This condition is fulfilled only if each copy extends
maximum to half area ū1 · ū2, i.e. x̄1 <= 1/2ū1 and x̄2 <= 1/2ū2 as depicted in Fig. 4.3. Setting
α = 2 allows to sample more densely the Fourier domain and to work with an oversampling grid
whose spacings are ū1 = 1/2x̄1 and ū2 = 1/2x̄2.

4.1.2 Optimal kernels

The GM performance is entirely determined by the kernel characteristics: ifW is compact enough, the
convolution in Fourier space is computationally efficient; if the kernel inverse Fourier transform, w, is
well concentrated under the main lobe, the aliasing artifacts arising from the sidelobes are less severe
and the GM yields a more accurate reconstruction. Of course, it is not possible to simultaneously
require compactness in real and Fourier domain, but a compact kernel, whose energy in dual space
is maximally concentrated inside a reasonably small region, can still be found. A metric designed to
measure and compare the accuracy of different GM kernels is the aliasing error defined as [158]:

ε(i) =

√√√√√ ∑
p6=0

[w(i+Gp)]2

[w(i)]2
, (4.6)
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where G is the dimension of the oversampled grid used in Fourier space.
The following discussion is taken from Section IIB and IIC of [28].
A kernel of prolate spheroidal wavefunctions (PSWFs), studied by Slepian in the early 60s [173], is by
construction the most compact in real and Fourier domain. Consider the operators PT and PΩ, that
create respectively time- and band-limited functions:

PT f(t) = ΘT f(t) PΩf(t) = F−1
ω [ΘΩ Ft(f(t))]

ΘT (t) =

{
1 if |t| 6 T/2

0 if |t| > T/2
ΘΩ(ω) =

{
1 if |ω| 6 Ω/2

0 if |ω| > Ω/2

(4.7)

The prolate spheroidal wavefunctions (PSWFs) are the eigenfunctions of the self-adjoint operator
PΩPT [173]:

PΩPTψi(t) =

T/2∫
−T/2

dt ′
sin (Ω(t− t ′))

π(t− t ′)
ψi(t

′) = λiψi(t) . (4.8)

If ψi’s are bandlimited, the PSWF of 0-th order, ψ0, with the largest eigenvalue λ0, has the highest
amount of energy E0 = ‖PTψ0‖2 in the interval [−T/2, T/2] [173]. Although the PSWFs represent
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Figure 4.3: Equation (4.5) shows that f(s) is given by a sum over infinite translated copies of f. To
ensure that f(s) within the FOV equals f, the condition x̄1 < 1/2ū1 ∪ x̄2 < 1/2ū2 has to be fulfilled,
otherwise aliasing artifacts will arise and f(s)FOV 6= f. (a) Case where the condition is fulfilled. (b) case
where the condition is not fulfilled along the x1-axis.
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the optimal kernel for GM, the definition in Eq.(4.8) does not offer a closed-form expression, i.e.,
a mathematical expression that can be evaluated in a finite number of operations. The difficulty
to compute the PSWFs was known also to the early literature of GM [163]. An iterative method
utilizing the operators PT and PΩ was proposed as a viable non-efficient solution in [158]. However,
depending on the magnitude of the parameter c = TΩ/2 [173], (4.8) can be approximated to find a
GM-specific formula for the PSWFs. Since T should not be larger than ± 1 to guarantee an accurate
deapodization correction, this window function is best approximated using spherical Bessel functions,
expressed as a normalized linear combination of even Legendre polynomials in Fourier space [173]:

ψ̂
(a)
0 (k) =

Na∑
n=0

c2nL2n(k)

Na∑
n=0

c2nL2n(0)

, (4.9)

where the superscript (a) stands for “approximated”, Ln is the Legendre polynomial of degree n
and {c2n} are the expansion coefficients. The inverse Fourier transform of a series of even Legendre
polynomials corresponds to a series of even spherical Bessel functions, that can themselves be expanded
in the interval [−1, 1] in terms of even Legendre polynomials [174, 175]. According to this argument,
ψ

(a)
0 (x) represents a scaled version of ψ̂(a)

0 (k):

ψ
(a)
0 (x) = C · ψ̂(a)

0

(
x
S

G

)
, (4.10)

where S is the density of the convolution LUT and C ∈ R0 is a constant.
A handy alternative to the PSWFs are the Kaiser Bessels (KBs) [101]. The KBs are very compact and
the associated aliasing error is inferior to that of many tested kernels [158], although they are slightly
sub-optimal compared to the PSWFs. The closed-form expression of the KBs allows to optimize of
their shape as a function of the oversampling [168]. The formula for the KB window and its inverse
Fourier transform are [101]:

ĥ(kx) =
G

sw
I0

β
√
1−

(
2Gkx

sw

)2 for |kx| 6
sw

2G
, (4.11)

h(x) =
sin

√(πswx
G

)2
−β2√(πswx

G

)2
−β2

, (4.12)

where I0 is the zero-th modified Bessel function, sw is the size of the convolving kernel and β is the
tapering parameter, that determines how fast the KB drops to zero. Working with α < 2 yields a
substantial decrease in run time and memory required for the reconstruction compared to the case of
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the GM with standard oversampling. The shape optimization of the KB kernel as a function of the
oversampling gives the following results [168]:

β = π

√(sw
α

)2
·
(
α−

1

2

)2
− 0.8 , (4.13)

S =
0.91

α · ε(s)max
for NN S =

1

α

√
0.37

ε
(s)
max

for LIN , (4.14)

where NN and LIN refer, respectively, to the nearest neighbor and linear interpolation scheme to
sample the convolution LUT and ε(s)max is the maximum allowed sampling error (4.6).

4.1.3 Gridding method for CT

This paragraph is partially taken from Section 3.1 of [29].
The connection between the GM and CT reconstruction is provided by the Fourier slice theorem (FST).
The discretized version of the FST states that the fast 1D Fourier transform (FFT) of a projection
line at angle θ yields equidistant samples of f̂ along the line u2 = u1 tan θ. The samples collected
from multiple projections form a polar lattice in Fourier space. To retrieve f through IFFT-2D, these
polar samples need to be interpolated at Cartesian locations, an operation that can be performed
by GM. CT reconstruction through a filtered gridding backprojector consists in the following steps
[163, 166, 167, 169]:

1. FFT1 of the sinogram along the channel direction ←− P̂{θ};

2. ramp filtering of the sinogram ←− P̂(f)
{θ}

;

3. convolution with kernel ←− f̂ (d) = Ŵ ∗ P̂(f)
{θ}

;

4. IFFT2 of f̂ (d) ←− f (d);

5. deapodization ←− f = f (d)/w.

When the GM is used for tomographic reconstruction, the compensation factors accounting for the
uneven sampling density in Fourier space (DCFs) are simply provided by the ramp filter.

4.2 Gridding projectors for iterative reconstruction of absorption
data

The following section represents a reprinted manuscript published as: F. Arcadu, M. Nilchian, A.
Studer, M. Stampanoni, and F. Marone, “A forward regridding method with minimal oversampling
for accurate and efficient iterative tomographic algorithms” , IEEE Transactions on Image Processing,
24(13), 14748-14764, 2016 [28].
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4.2.1 Abstract

The reconstruction of underconstrained tomographic datasets still represents a major challenge. In
fact, standard analytical techniques mostly give unsatisfactory results due to the lack of sufficient
information. In the last decades, several iterative algorithms, which can easily integrate a priori knowl-
edge, have been developed to tackle this problem. Most of them are based on some implementation
of the Radon transform, that acts as forward projector. This operator and its adjoint, the back-
projector, are typically called few times per iteration and represent the computational bottleneck of
the reconstruction process. In this work, we present a Fourier-based forward projector, founded on
the regridding method with minimal oversampling. We show that this implementation of the Radon
transform significantly outperforms in efficiency other state-of-the-art operators with O(N2log2N)

complexity. Despite its reduced computational cost, this method provides comparable accuracy to
more sophisticated projectors and can therefore be exploited in iterative algorithms to substantially
decrease the time required for the reconstruction of underconstrained tomographic datasets without
loss in the quality of the results.

4.2.2 Introduction

The word tomography refers to the method of reconstructing virtual cross-sections of an object using
its projections acquired at different angles. The filtered backprojection (FBP) algorithm, introduced
in the 70’s [176, 177], is an analytical method, that still represents the standard tomographic recon-
struction technique. It offers, in fact, a good trade-off between computational efficiency and accuracy.
FBP provides high quality reconstructions, when a sufficient amount of projections is acquired and
the noise affecting the experimental data is low with respect to the object signal [12].
In many tomographic applications, one or both of these conditions are not met due to experimental
constraints. This occurs, in particular, when the total scan time needs to stay under a certain thresh-
old due to dose limitations or to the evolution speed of the sample.
Many iterative algorithms have been designed to outperform FBP in the reconstruction of undercon-
strained datasets. These methods can easily incorporate a-priori knowledge about the object or the
image formation process. For this reason, they usually provide better reconstructions than FBP, but
at a much higher computational cost. Most iterative reconstruction algorithms are based on a forward
projector and its adjoint (the backprojector), typically called few times per iteration. The forward
projector usually corresponds to a discrete implementation of the Radon transform on a specific basis.
The efficiency of this operator strongly determines the performance of the entire iterative procedure.
Standard tomographic forward projectors require O(N3) operations for an image of N×N pixels
[93, 97, 98, 102, 178–182] and its computational cost remains substantial, even for highly opti-
mized implementations on graphic processor units (GPUs) [108]. More recently, algorithms with
O(N2 log2N) complexity have been proposed to improve the computational efficiency. They are
based on three different strategies. The first group of projectors exploits the Fourier slice theorem
[12]. Samples in the Fourier space are directly interpolated from a Cartesian to a polar grid [183].
These methods are characterized by poor accuracy and were never considered for iterative applications.
The second category uses a hierarchical decomposition of either the line integrals [184–189] or the
image domain [109, 190, 191]. In particular, the backprojector of [109, 191] has shown great perfor-
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mance in terms of accuracy and speed. This latter work is, however, focused on analytical problems
and an application to iterative algorithms has never been presented so far. The third class is based
on the non-uniform fast Fourier transform with min-max interpolation [192]. This accurate and fast
method has been exploited for iterative reconstruction techniques [170].
In this paper, we present a novel application of the regridding method (in a particular cost-efficient
form) as tomographic forward projector with O(N2 log2N) complexity. For the first time, we com-
pare this method with state-of-the art implementations of the Radon transform. In this work, we do
not consider only the forward projector itself, but also study its role in iterative procedures and, in
particular, its influence on the quality of the results.
The regridding method, originally devised for image reconstruction in radio astronomy [155, 157], has
been applied to a broad range of reconstructive imaging methods like magnetic resonance imaging
(MRI) [154, 168, 193] and as backprojector in computer tomography (CT) [163, 166, 169]. This
method is designed to retrieve a 2D or a 3D signal from samples of its Fourier transform located
on a non-Cartesian lattice: the Fourier samples are, first, convolved with a window function onto a
Cartesian grid, the IFFT is, then, applied and the signal in the real space is, finally, corrected from the
windowing contribution. The speed and accuracy of the method depend entirely on the choice of the
convolving window. There are, in particular, three milestones in the rather extensive literature about
the regridding method: the prolate-spheroidal wavefunctions (PSWFs) and the kaiser-bessels (KBs)
are recognized as high performing convolving windows [163]; an oversampling factor of 2, defined as
ratio between the number of Fourier samples convolved onto the Cartesian grid and the number of
pixels to be retrieved in the image space, is necessary for accurate reconstructions [158]; an efficient
KB-based regridding method for MRI designed to work with oversampling < 2 is introduced in [168].
In this work, we integrate these three previous results and propose an efficient forward projector tai-
lored especially for iterative reconstruction algorithms. The original contribution of this manuscript
can be summarized as follows.

• Novel application of the regridding method using PSWF and KB kernels as forward projector
in iterative algorithms. In CT, regridding was used exclusively as backprojector for analytical
reconstruction.

• Utilization of the minimal oversampling strategy (so far used only in the context of MRI) for
such forward projector to further improve its computational efficiency.

• Systematic comparison with state-of-the-art implementations of the Radon transform, clearly
demonstrating the advantages of the proposed projector for iterative reconstruction.

This paper is structured as follows. In Section II, we present the formulation and implementation
details of the proposed forward regridding projector (FRP) with standard and minimal oversampling.
In Section III, we benchmark the efficiency and accuracy of the FRP against state-of-the-art space-
and Fourier-based forward operators. Section IV deals with the reconstruction of underconstrained
simulated and experimental tomographic datasets with the alternate direction method of multipliers
(ADMM) implemented with the FRP and the most accurate among the projectors used in Section III.
We conclude the paper in Section V with a summary and some final remarks.
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4.2.3 Proposed method

Formulation

In this paper, we focus on the tomographic reconstruction of a single 2D slice from line projections of
an object in parallel beam geometry. However, Fourier methods have been previously applied also to
fan-beam [164, 171] and cone-beam [165] geometry and the method proposed here can analogously
be extended beyond this simple 2D case.
The set of line projections for one tomographic slice is called sinogram. The object to be recon-
struncted is a finite integrable real function f = f(x,y) : R2 → R with bounded support. The
symbol ˆcorresponds to the Fourier transform; Pθ(t) is the Radon transform of f for an angle θ and a
distance t from the origin, as defined in [12]. We also use round and square brackets when referring
respectively to continuous and discrete functions.
We start from the Fourier slice theorem [12]:

P̂θ(ω) = f̂(ω cos θ,ω sin θ) . (4.15)

Thanks to (4.15), the problem of reconstructing f from its projections Pθ(t) would be immediately
solved, if the samples f̂[ωi cos θj,ωi sin θj] were located on a Cartesian grid. This is, however, not
the case and the samples on the Cartesian grid need to be estimated from those available on a polar
grid. Simple interpolation schemes (nearest neighbor, linear or bilinear interpolation), used for this
approximation, lead to inaccurate reconstructions, since the localized interpolation error in Fourier
space smears back onto the entire image, once the IFFT is computed.
In the regridding method (RM) [154, 158], the interpolation from the [ωi, θj] to the [um, vn] grid is,
instead, performed as a convolution with a smooth window function ĥ, yielding more accurate results,
depending on the chosen kernel. The standard RM for analytical CT reconstruction consists of five
steps [163, 166, 169]:

1. FFT-1D of each projection ←− P̂θ;

2. ramp filtering of the projections ←− P̂(f)θ ;

3. convolution with window function ←− f̂ (m) = ĥ ∗ P̂(f)θ ;

4. IFFT-2D of f̂ (m) ←− f (m);

5. removal of the window function ←− f = f (m)/h.

The last step, known as deapodization, is necessary, because computing ĥ ∗ f̂ in Fourier space is
equivalent to calculating h · f in real space, so that removal of the convolving function is required if
f is sought. Accordingly, the forward regridding projector (FRP) is defined by the same steps listed
above (ramp filtering excluded) in the reverse order:

1. pre-deapodization ←− f (m) = f/h;

2. FFT-2D of f (m) ←− f̂ (m);

3. convolution with window function −→ P̂θ = ĥ ∗ f̂ (m);
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4. IFFT-1D of each polar slice of P̂θ ←− Pθ.

The FRP does not require density compensation factors, because, differently from the regridding
method used for backprojection, the input samples are uniformly distributed in Fourier space. To
simplify the algorithm, the convolving function ĥ = ĥ(u, v) is chosen to be separable in u, v, implying
that also h = h(x,y) will be separable in x, y:

ĥ = ĥ(u, v) = ψ̂(u) · ψ̂(v) =⇒ h(x,y) = ψ(x) ·ψ(y) (4.16)

Indicating with Fa the (discrete) Fourier transform with respect to the variable a and with {· · · } a
collection of discrete values, the formula for the FRP results:

Pθi [tl] = F−1
ω

{
P̂θi [ωj]

}
l
= F−1

ω

{(
ĥ ∗ f̂(m)

)
[ωj, θi]

}
l
=

= F−1
ω


∑

un∈Uij
vm∈Vij

ψ̂[g1(ωj,u − un)]ψ̂[g1(ωj,v − vm)]︸ ︷︷ ︸
Ci,j,n,m

f̂(m)[un, vm]


l

= F−1
ω


∑

un∈Uij
vm∈Vij

Ci,j,n,m Fx,y

{
f[xp,yq]

ψ[g2xp]ψ[g2yq]

}
un,vm


l

(4.17)

where ωj,u = ωj cos θi, ωj,v = ωj sin θi, Uij and Vij are respectively the sets of values of un
and vm inside the interpolation support, g1 and g2 are factors to map distances in the polar and
Cartesian grid into look-up tables (LUTs) indices.
The accuracy and efficiency of the RM (and, therefore, of the FRP) lie entirely in the choice of the
convolving function ĥ. In terms of accuracy, the optimal kernel is an infinite sinc function [163],
which is, however, computationally impractical. For finite kernels and, therefore, superior efficiency,
the smaller the supports of h and ĥ are, the better the performance of the method [163]. If h has
compact support in real space, the interpolation error is still smeared out on the whole image, but
it can be expected to remain as local as possible and the reconstruction will be accurate [158]; if
ĥ has compact support in Fourier space, only few datapoints in the support region will contribute
to the convolution and the method will be computationally efficient. The accuracy of a convolution
kernel ĥ is strongly determined by the shape (in particular, the rolloff) of the central lobe and the
amplitude of the aliasing sidelobes characterizing h. The deapodization removes the rolloff induced
by this central lobe, especially at the borders of the output image, but, at the same time, it amplifies
the aliasing sidelobes [158]. Aliasing contamination from sidelobes can be reduced by oversampling
[158, 163], i.e. artificially extending the image field-of-view (FOV) and ignoring the outer portion of
the image after reconstruction. In this way, smaller sidelobes will alias back into a wider central lobe,
whose tails are neglected, once the output array is cropped. The extended central lobe also tapers
less steeply, so that less rolloff correction is required. For a more detailed discussion on the optimal
characteristics of convolution kernels, the reader is referred to the abovementioned references.
An oversampling α = G/N = 2.0, with G the size of the grid, where the interpolation takes place,
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and N the size of the original input grid, guarantees accurate reconstructions with the RM [158, 163].
The aliasing error is a metric to compare the performance of different convolving functions and has
the following pixel-based form [158, 168]:

ε(i) =

√√√√√ ∑
p6=0

[h(i+Gp)]2

[h(i)]2
. (4.18)

FRP with prolate spheroidal wavefunctions

As outlined above, the energy of the ideal convolution kernel should be maximally concentrated in a
compact support both in real and Fourier space. We introduce the operators PT and PΩ, that create
respectively time- and band-limited functions:

PT f(t) = ΘT f(t) PΩf(t) = F−1
ω [ΘΩ Ft(f(t))]

ΘT (t) =

{
1 if |t| 6 T/2

0 if |t| > T/2
ΘΩ(ω) =

{
1 if |ω| 6 Ω/2

0 if |ω| > Ω/2

(4.19)

The prolate spheroidal wavefunctions (PSWFs) are the eigenfunctions of the self-adjoint operator
PΩPT [173]:

PΩPTψi(t) =

T/2∫
−T/2

dt ′
sin (Ω(t− t ′))

π(t− t ′)
ψi(t

′) = λiψi(t) . (4.20)

If ψi’s are bandlimited, the PSWF of 0-th order, ψ0, with the largest eigenvalue λ0, has the highest
amount of energy E0 = ‖PTψ0‖2 in the interval [−T/2, T/2] [173]. From the eigenvalue equation
(4.20), no analytical expression for the PSWFs can be obtained; however, several approximations
exist, depending on the magnitude of the parameter c = TΩ/2 [173]. Since T should not be larger
than ± 1 to guarantee an accurate deapodization correction [169], this window function is best
approximated using spherical Bessel functions, expressed as a normalized linear combination of even
Legendre polynomials in Fourier space [173]:

ψ̂
(a)
0 (k) =

Na∑
n=0

c2nL2n(k)

Na∑
n=0

c2nL2n(0)

, (4.21)

where the superscript (a) stands for “approximated”, Ln is the Legendre polynomial of degree n
and {c2n} are the expansion coefficients. The inverse Fourier transform of a series of even Legendre
polynomials corresponds to a series of even spherical Bessel functions, that can themselves be expanded
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in the interval [−1, 1] in terms of even Legendre polynomials [174],[175]. According to this argument,
ψ

(a)
0 (x) represents a scaled version of ψ̂(a)

0 (k):

ψ
(a)
0 (x) = C · ψ̂(a)

0

(
x
S

G

)
, (4.22)

where S is the density of the convolution LUT and C ∈ R0 is a constant.
An analytical regridding algorithm, based on this approximation of the PSWFs of 0-th order, has
shown to be about 20 times faster than FBP, while keeping the same image quality [169]. The FRP
has been implemented analogously with separable convolving kernel and deapodizer given respectively
by (4.21) and (4.22). The additional parameters were set to: α = 2.0, Na = 10 and S = 2048. This
implementation is abbreviated with FRP-PSWF. Since α = 2 guarantees accurate results [158], we
consider this oversampling as “standard”.

FRP with minimal oversampling

Due to the lack of an analytical expression for the PSWFs, it is difficult, in this case, to optimize
the oversampling and other parameters as a function of the aliasing error (4.18). Kaiser Bessels
(KBs) kernels have shown great accuracy compared to other convolving windows like two- and three-
term cosine, Gaussian and B-splines [158], although their aliasing error is slightly higher than for the
PSWFs approximation in (4.21). The simple analytical expression of KBs kernels enables, however, an
optimization of their shape as a function of the oversampling [168]. The formula for the KB window
and its inverse Fourier transform are [101]:

ĥ(kx) =
G

W
I0

β
√
1−

(
2Gkx

W

)2 for |kx| 6
W

2G
, (4.23)

h(x) =

sin

√(
πWx

G

)2
−β2√(

πWx

G

)2
−β2

, (4.24)

where I0 is the zero-th modified Bessel function, W is the size of the convolving kernel and β is the
tapering parameter, that determines how fast the KB drops to zero. Working with α < 2 yields a
substantial decrease in run time and memory required for the reconstruction compared to the case of
the RM with standard oversampling. The shape optimization of the KB kernel as a function of the
oversampling gives the following results [168]:

β = π

√(
W

α

)2
·
(
α−

1

2

)2
− 0.8 , (4.25)

S =
0.91

α · εmax
for NN S =

1

α

√
0.37
εmax

for LIN , (4.26)
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where NN and LIN refer, respectively, to the nearest neighbor and linear interpolation scheme to
sample the convolution LUT and εmax is the maximum allowed aliasing error (4.18). The FRP with
minimal oversampling has been implemented with a KB kernel based on (4.25) and (4.26), setting
εmax = 0.01, α = 1.125 and choosing a linear interpolation scheme for the LUT. The FRP with
this setting of parameters, abbreviated as FRP-KB, computes artifact-free forward projections in the
shortest time and with the smallest memory allocation.

Further details

The kernel width is set to W = 14.0/π for both FRP-PSWF and FRP-KB. Experiments with the
filtered adjoint operators, conducted on the Shepp-Logan (SL) phantom [129], show that for W ∈
[18/π, 20/π] the reconstruction is affected by a “blackening” artifact at the sides of the image, because
the intepolation is not local anymore, whereas for W ∈ [4/π, 10/π] the interpolation support is too
small and the reconstruction is consequently affected by bright symmetric curves. Reconstructions
look reasonable, by visual inspection, for W ∈ (10/π, 18/π); in our implementation, W = 14.0/π
provides the most accurate results.
Moreover, we recall that the backprojector is the adjoint (not the inverse!) operator of a forward
projector. From a computational point of view, the backprojector performs all operations of the
forward projector, but in reverse order. Density compensation factors (DCFs) are not needed for the
backprojector, when coupled to the forward operator inside an iterative scheme. The DCFs come into
play only when the backprojector is used for analytical tomographic reconstruction. In such case, they
correspond to a discrete version of the ramp filter, analogously to FBP.
The FRP operators are implemented in C with the fast FFTW library [194] and the pseudocode is
shown in Appendix. The 1D functions ψ̂ and ψ are stored in precomputed LUTs to allow for fast
computations.

Algorithm complexity

The cost of the FRP lies in the convolution and the call of FFT/IFFT. Given an input image of
N×N pixels, an oversampling ratio α, a kernel width W and a number of views M, the convolution
amounts to approximately WMN operations, whereas the overall call of FFT/IFFT corresponds to
α2N2 log2(αN)+αMN log2(αN) (1-time FFT-2D andM-times IFFT-1D) floating operations, that
represents the leading cost term when N is big enough.

4.2.4 Accuracy assessment

Benchmark procedure

The accuracy of the proposed forward projectors has been assessed with a phantom for which the
analytical Radon transform can be computed. The SL phantom [129] consists of 10 roto-translated
ellipses and, is, therefore, suited for this task [12]. We use here a modified version of the original SL
featuring higher contrast to improve visual perception.
The FRP-PSWF and FRP-KB are benchmarked against state-of-the-art implementations of the Radon
transform, listed in the following.
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The ray-driven (RT-RAY) [181] and distance-driven (RT-DIST) [98] forward projectors are widely
used and are characterized by O(N3) complexity.
The Radon transform based on a cubic B-spline basis (RT-BSPLINE) [102] is a very accurate projector,
superior, for instance, to implementations on pixel [93] and Kaiser-Bessel basis [182]. It is character-
ized by O(N3) complexity. For its implementation, a LUT of projected B-spline tensor products is
precomputed for each view (S = 2048) and used inside a standard pixel-based forward projector.
The hierarchical filtered backprojection [109] treats the reconstruction of an N×N image as the sum
of shifted reconstructions of smaller images centered at the origin. While the image grid is recursively
halved, the input sinogram is halved in angles and pixels, since each sub-image requires fewer projec-
tions for the reconstruction. Thanks to this decomposition scheme, the backprojection is performed
with O(N2 log2N) operations. We used the implementation described in [109, 191] to build the
corresponding forward projector (FHFP). The parameters ruling the image/sinogram decomposition
and the choice of the interpolation schemes can strongly influence the accuracy and efficiency of this
projector. Using the performance study in [191] as guide, we selected the best parameters for accu-
rate results, when studying the operator accuracy. For the computational cost evaluation, parameters
providing fastest artifact-free (at visual inspection) forward/backprojection have instead been used.
The non-uniform fast Fourier transform allows to Fourier transform finite-length signals to a non-
uniformly sampled frequency space. Similarly to the regridding method, it can be used to reconstruct
a signal from a non-Cartesian collection of samples in Fourier space. Several versions exist ([195–198]):
the non-uniform fast Fourier transform using min-max interpolation represents, so far, the most accu-
rate implementation of this method [192]. The forward projector based on this technique (NUFFT)
requires O(N2 log2N) operations, but also a significant amount of additional calculations and mem-
ory to precompute and store shift-invariant interpolators. For accurate results, NUFFT necessitates
an oversampling of 2.

Analysis tools

The accuracy of sinograms and reconstructed images obtained with different forward projectors is
assessed using the following standard metrics: root mean square error (RMSE), peak-signal-to-noise-
ratio (PSNR) [144] and mean structural similarity index (MSSIM) [145]. For the accuracy assessment
of the projectors in iterative schemes (Section 4.2.5), a linearly regressed version Îregr of the recon-
structed slice (I) is used for the metrics computation. In this way, the obtained score is less biased by
the different gray scales, characterizing I and the reference image, O, guaranteeing fair comparisons.
Reconstruction methods exploiting total variation can, in fact, lead to slight shrinkage of the sparse
coefficients [199]. Îregr is computed in the following way:

Îregr = argmin
Iregr

‖Iregr −O‖22 s.t. Iregr = a · I+ b (4.27)

where a ,b ∈ R.
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Comparison of forward projectors

The accuracy assessment of the two proposed forward projectors (FRP-PSWF , FRP-KB) is assessed
against the five operators introduced in 4.2.4 (RT-RAY, RT-DIST, FHFP, NUFFT, RT-BSPLINE).
The results of this section are focused on the forward projection and subsequent analytical reconstruc-
tion of a SL phantom with 512× 512 pixels. These experiments were also performed on SL phantoms
with other resolutions (128× 128, 256× 256, 1024× 1024, 2048× 2048) and different number of
views. The results show that the observed trends are independent from the phantom size and the
angular sampling.
Sinograms with 805 views × 512 pixels have been computed using the seven above-mentioned forward
projectors and are compared with the analytical Radon transform of the SL phantom by means of the
RMSE, PSNR and MSSIM values (Tab. 2). The figures of merit clearly show that the FRPs perform
the worst, while RT-BSPLINE provides the most accurate sinogram. The other operators (NUFFT,
RT-RAY, RT-DIST and FHFP) are characterized by an intermediate accuracy.
Each sinogram is, then, filtered with a standard ramp kernel in Fourier space and reconstructed using
the corresponding backprojector. The chosen number of views 805 ' 512 ∗ π/2 guarantees that
these analytical reconstructions are not affected by aliasing artifacts [12], ensuring that we are really
quantifying the accuracy of the entire projection-reconstruction process for each operator. The re-
sults in Tab. 3 show metric scores very close to each other, contrary to the trend seen in Tab. 2.
RT-BSPLINE confirms its highest accuracy, but NUFFT, RT-RAY and RT-DIST perform in a very
similar way to the FRP operators. In this case, FHFP shows the lowest accuracy. This second exper-
iment indicates that either the coupling forward-adjoint operator and/or the effect of a simple ramp
filter may reduce or even cancel the accuracy superiority of a well-performing projector with respect
to others of inferior quality. Computed sinograms and reconstructed slices are not shown because
differences are not detectable by visual inspection.
Tab. 4, presents the computational efficiency of the different projectors. It reports the time needed
and memory allocated to create a SL sinogram with 2048 pixels and 800, 1600 and 3200 views. The
used hardware is an Intel(R) Core(TM) i7-3520M CPU 2.90GHz. FRP-KB is, on average, faster by a
factor of 4.4, 11.0, 21.3 and 928 compared to FRP-PSWF, NUFFT, FHFP and RT-BSPLINE. The
computational cost for all projectors, except RT-BSPLINE, scales similarly with the number of views
in particular for 800 and 1600 projections. Among the Fourier-based methods, FRP-KB allocates,
on average, 64% and 70% less memory than FRP-PSWF and NUFFT, respectively. RT-BSPLINE
requires, instead, more memory than a standard pixel-based forward projector because the precom-
puted LUT has to be finely sampled to guarantee high accuracy. RT-RAY and RT-DIST are not
listed in these tables, since the implementations used for this work are based on GPUs. However,
extrapolations suggest that a single core implementation of RT-DIST could require approximately the
same memory, but larger computational cost than FHFP. On the other hand, RT-RAY may require
more memory than RT-DIST and longer times than RT-BSPLINE.

4.2.5 Application to iterative reconstruction algorithms

In this section, we investigate the usage of the proposed forward projection operator inside iterative
algorithms. The study is aimed at experimentally assessing the connection between the accuracy of
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RMSE PSNR MSSIM

FRP-PSWF 4.14 43.99 0.82

FRP-KB 4.25 42.75 0.80

RT-RAY 3.34 44.84 0.90

RT-DIST 3.34 44.85 0.91

FHFP 3.51 44.42 0.88

NUFFT 3.28 45.01 0.90

RT-BSPLINE 1.24 53.44 0.89

Table 2: RMSE, PSNR and MSSIM values for SL sinograms with 805 views × 512 pixels generated
by the algorithms listed in the first column. The reference sinogram is represented by the analytical
Radon transform of SL.

RMSE PSNR MSSIM

FRP-PSWF 0.09 26.00 0.24

FRP-KB 0.10 25.90 0.21

RT-RAY 0.10 25.80 0.23

RT-DIST 0.10 25.80 0.24

FHFP 0.11 24.95 0.13

NUFFT 0.11 25.45 0.24

RT-BSPLINE 0.09 27.42 0.37

Table 3: RMSE, PSNR and MSSIM values for the reconstructions of the SL sinograms with 805 views
× 512 pixels generated by the algorithms listed in the first column. The recostructions were performed
by means of the ramp-filtered adjoint operator corresponding to each sinogram. The reference image
is the original SL phantom. The scores were computed inside the reconstruction circle.

the forward projector and the quality of the iterative reconstruction. Two completely different iterative
methods are used in the following: the separable paraboloidal surrogate and the alternate direction
method of multipliers.
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TIME (s)

800 views 1600 views 3200 views

FRP-PSWF 3.22 4.60 5.13

FRP-KB 0.68 0.94 1.47

FHFP 11.24 15.88 44.88

NUFFT 7.83 10.12 16.01

RT-BSPLINE 438.60 875.71 1775.04

Table 4: Run time (in s) required to generate a sinogram with 2048 pixels and 800, 1600 and 3200
views for the algorithms listed in the first column. The used hardware is an Intel(R) Core(TM)
i7-3520M CPU 2.90GHz.

MEMORY (MB)

800 views 1600 views 3200 views

FRP-PSWF 207.93 214.49 227.61

FRP-KB 70.28 76.84 89.96

FHFP 26.05 35.33 53.88

NUFFT 234.13 266.91 332.46

RT-BSPLINE 29.89 43.00 69.23

Table 5: Memory (in MB) required to generate a sinogram with 2048 pixels and respectively 800,
1600 and 3200 views for the algorithms listed in the first column.

Separable paraboloidal surrogate

The separable paraboloidal surrogate (SPS) [17] is an algorithm for penalized likelihood based on
Poisson statistics, modeling the measurements at the detector. The SPS globally converges to a
unique minimizer and easily allows to enforce non-negativity constraints and to exploit non-quadratic
but convex penalty functions. SPS is implemented with the edge-preserving non quadratic cost
introduced in [17] and [200]. For further details about this well-established iterative method for
tomographic reconstruction, please refer to [17].
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Alternate direction method of multipliers

The alternate direction method of multipliers (ADMM) [27] is an iterative scheme suitable to minimize
a large variety of functionals, including those with L1-norm terms. Thus, the ADMM can be used to
solve a tomographic reconstruction problem with total variation regularization:

x̂ = argmin
x

[
‖Ax − b‖22 + λTVΩ(x)

]
. (4.28)

A is the matrix representation of the forward projector, b is the sinogram, x is the unknown object
and λ ∈ R determines the weight of the regularization; TV stands for total variation, defined as [128]:

TVΩ(f) =

∫
Ω

|∇f(x)| dx = ‖∇f(x)‖1 . (4.29)

The problem (4.28) can be mapped into the minimization of the following augmented Lagrangian
[103]:

Lµ(x, u,α) =
1

2
‖Ax − b‖22+λ

∑
k

‖uk‖1 +αT (Lx − u) +
µ

2
‖Lx − u‖22 (4.30)

where α are the Lagrangian multipliers, L is the gradient operator and u is an auxiliary variable.
The ADMM iteratively minimizes Lµ(x, u,α) by sequentially solving smaller problems; each iteration
involves two sub-optimizations with respect to x and to u, followed by the update of α:

1. xk+1 ←− argmin
x

Lµ(x, uk,αk)

2. uk+1 ←− argmin
u

Lµ(xk+1, u,αk)

3. αk+1 ←− αk + µ(Lxk+1 − uk+1) .

In step 1), the conjugate gradient (CG) method [201] is applied to the following linear system:

(A†A + µL†L)x = A†b + µL†
(

uk −
αk
µ

)
. (4.31)

The subproblem of step 2) is solved through a shrinkage operation:

uk+1 = max
{∣∣∣∣Lxk+1 +

αk
µ

∣∣∣∣− λ

µ
, 0
}

sgn
(

Lxk+1 +
αk
µ

)
. (4.32)

Our implementation of the ADMM performs 4 of CG (4.31) for the x-subproblem, whereas µ and λ are
set to 1.0. This setting provides accurate reconstructions when dealing with the group of simulated
and real data used in the following Section. Nevertheless, when performing experiments with different
number of iterations for the CG and/or different values for µ and λ, neither trends regarding the
accuracy nor the convergence of the ADMM implementations change.
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Experiments

SPS and ADMM have been implemented with the proposed projectors (SPS / ADMM-PSWF, SPS /
ADMM-KB) and with RT-BSPLINE (SPS / ADMM-BSPLINE), since this latter operator has shown
the best accuracy in the experiments presented in 4.2.4.
The convergence of the iterative algorithms has been studied through the tomographic reconstruction
of a SL sinogram with 200 views × 128 pixels. In this experiment, the number of iterations was 200.
The cost function plots in Fig. 4.4, 4.5 show that, for both SPS and ADMM, the convergence is
not significantly affected by the choice of the forward operator. In fact, the three implementations
of each method show a slight mismatch only for the first 10 iterations (Fig. 4.4, 4.5). The following
reconstructions of simulated and real data are computing by stopping the iterative algorithm when
the L2-norm of the relative difference between reconstructions of subsequent iterations is smaller than
a threshold ε = 0.1.
In the first experiment, an underconstrained SL sinogram with 50 views × 512 pixels has been used.
Gaussian noise with σ = 2.4% of the sinogram mean has been added. This σ fairly reproduces the
noise level affecting the real data used in the following experiments. The reconstructed slices in Fig.
4.6, 4.7 show no difference at visual inspection and the metric scores (Tab. 6, 7) confirm that the
image quality is comparable for all SPS and ADMM implementations.
For the next two experiments, real data acquired at the TOMCAT beamline of the Swiss Light Source
at the Paul Scherrer Institut have been used. In the first case, a sinogram with 1441 views × 2560
pixels of a modern seed acquired in full tomography (i.e., the sample support is entirely in the FOV)
has been downsampled to 300 views to create an underconstrained version of the original dataset.
Fig. 4.8, 4.9 show the FBP reconstruction with Parzen filter of the original sinogram (FBP-FULL),
followed by either the SPS or the ADMM reconstructions of the underconstrained dataset. FBP-FULL
is used as reference image to compute the scores in Tab.9. The iterative reconstructions show again
no evident differences at visual inspection except a slight blurring in the SPS-BSPLINE and ADMM-
BSPLINE case. This image quality degradation is also reflected in the higher RMSE and lower MSSIM
values for the implementations with RT-BSPLINE (Tab. 8, 9).
In the second case, mouse lung tissue data acquired in interior tomography configuration (i.e. the
sample support extends beyond the FOV) have been chosen. The original sinogram, consisting of
901 views × 2016 pixels, has been downsampled to 272 views. Metric scores are computed against
FBP-FULL as in the previous case. Once again, the SPS and ADMM reconstructions present no
visible difference and the image quality assessed through the figures of merit (Tab. 10, 11) lead to
the same conclusion.

4.2.6 Discussion and conclusion

In this paper, we have studied a novel application of the regridding method as forward projector with
O(N2 log2N) complexity for CT reconstruction. More specifically, we have designed a forward regrid-
ding projector (FRP) with standard (α = 2.0, FRP-PSWF) and minimal oversampling (α = 1.125,
FRP-KB).
The computational efficiency and accuracy of the proposed operators have been systematically com-
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Figure 4.4: Cost function of the SPS against the number of iterations for the three SPS implementa-
tions. The plot corresponds to the reconstruction of a noiseless SL sinogram with 128 views × 200
pixels.

RMSE PSNR MSSIM

SPS-PSWF 0.14 22.86 0.11

SPS-KB 0.14 22.86 0.11

SPS-BSPLINE 0.16 21.67 0.12

Table 6: RMSE, PSNR and MSSIM values for the SPS reconstructions of the SL sinogram shown in
Fig4.6. The scores are computed inside the reconstruction circle.

pared with other state-of-the-art implementations of the Radon transform: a ray- and distance-driven
projector (RT-RAY, RT-DIST), a Radon transform based on a cubic B-spline basis (RT-BSPLINE),
a fast hierarchical forward projector (FHFP) and a Radon transform based on the non-uniform fast
Fourier transform with min-max interpolation (NUFFT). Among the algorithms with O(N2 log2N)

complexity, FRP-KB is on average faster by a factor of 4, 11 and 21 with respect to FRP-PSWF,
NUFFT and FHFP. Compared to pixel-based projectors like RT-BSPLINE, the speed increase achieved
with FRP-KB is significantly larger (up to 3 orders of magnitude). FRP-KB also allows to reduce mem-
ory allocation by 64% and 70% compared to the Fourier-based projectors FRP-PSWF and NUFFT.
The accuracy of the FRP operators is slightly inferior compared to the other implementations of
the Radon transform, although differences in the computed sinograms are barely visible at visual in-
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Figure 4.5: Cost function of the ADMM (4.28) against the number of iterations for the three ADMM
implementations. The plot corresponds to the reconstruction of a noiseless SL sinogram with 128
views × 200 pixels.

RMSE PSNR MSSIM

ADMM-PSWF 0.15 22.44 0.13

ADMM-KB 0.15 22.47 0.13

ADMM-BSPLINE 0.15 22.62 0.12

Table 7: RMSE, PSNR and MSSIM values for the ADMM reconstructions of the SL sinogram shown
in Fig4.7. The scores are computed inside the reconstruction circle.

spection. We have shown that this lower accuracy becomes, however, negligible already when each
sinogram is reconstructed with the related ramp-filtered backprojector, indicating that other aspects
involved in the reconstruction process (e.g. filtering) have a stronger influence on the accuracy of the
obtained results.
In a second step, the proposed forward regridding operators (FRP-PSWF and FRP-KB) have been
integrated inside two different iterative schemes, (the separable paraboloidal surrogate, SPS, and the
alternate direction method of multipliers, ADMM) to asses their performance for the reconstruction
of simulated and real underconstrained tomographic datasets. We benchmarked these iterative algo-
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RMSE PSNR MSSIM

SPS-PSWF 0.06 31.33 0.14

SPS-KB 0.06 31.33 0.14

SPS-BSPLINE 0.07 30.56 0.10

Table 8: RMSE, PSNR and MSSIM values for the SPS reconstructions of the sinogram of the modern
seed specimen shown in Fig4.8. The scores are computed inside the reconstruction circle.

RMSE PSNR MSSIM

ADMM-PSWF 8.10 29.96 0.38

ADMM-KB 8.08 29.98 0.38

ADMM-BSPLINE 7.83 30.25 0.13

Table 9: RMSE, PSNR and MSSIM values for the ADMM reconstructions of the sinogram of the
modern seed specimen shown in Fig4.9. The scores are computed inside the reconstruction circle.

RMSE PSNR MSSIM

SPS-PSWF 4.23e-6 18.44 0.48

SPS-KB 4.23e-6 18.44 0.48

SPS-BSPLINE 4.87e-6 17.21 0.35

Table 10: RMSE, PSNR and MSSIM values for the SPS reconstructions of the sinogram of the mouse
lung tissue shown in Fig4.10. The scores are computed inside the reconstruction circle.

RMSE PSNR MSSIM

ADMM-PSWF 3.38e-6 20.40 0.61

ADMM-KB 3.47e-6 20.14 0.60

ADMM-BSPLINE 3.22e-6 20.81 0.61

Table 11: RMSE, PSNR and MSSIM values for the ADMM reconstructions of the sinogram of the
mouse lung tissue shown in Fig4.11. The scores are computed inside the reconstruction circle.
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rithms against the same implemented with RT-BSPLINE, the most accurate projector among those
tested in this study. The results show that, despite the inferior accuracy of the fast operators based
on the regridding method, both SPS/ADMM-PSWF and SPS/ADMM-KB have a similar convergence
rate and provide comparable image quality as SPS/ADMM-BSPLINE. This result suggests that the
minimization of the cost function in the tomographic reconstruction process is not strongly influenced
by the chosen forward projector.
To conclude, we show that the proposed forward regridding projector with minimal oversampling
(FRP-KB), thanks to its high computational efficiency, is an interesting new operator able to sub-
stantially speed up any iterative tomographic reconstruction algorithm, while preserving the results
accuracy achieved with more sophisticated operators. Its low computational cost and reduced memory
requirements make the proposed projector, so far developed for the parallel beam case, very appealing
for addressing problems characterized by more complex geometries, usually very demanding especially
from the memory point of view.
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4.2.8 Appendix: C-like pseudocode of the FRP

The following pseudocode refers to an implementation of FRP, where the convolution LUT is sampled
with nearest neighbor scheme. The notation is the same as introduced in section 4.2.3. In addition,
l = W/2 is the half width of the convolving kernel. The subscript p stands for “padded”. The
parentheses b· · · c correspond to the floor operator, d· · · e to the ceil operator and b· · · e to the round
operator. Although the pseudocode refers to our C implementation of the FRP, there are a couple of
functions (the slicing operator “:” and the memory allocating function “zeros”), that are characteristic
of high-level programming languages like Matlab or Python, and are used to express some passages
in a more concise form.

1. compute Ip ←− zeropad(I) up to G rows and columns

2. pre-removal of the interpolation kernel

for i = 0, ... ,G− 1 do:

for j = 0, ... ,G− 1 do:

I (m)
p [i, j]←−

Ip[i, j]
ψ[g2i]ψ[g2j]

;

endfor

endfor

3. compute Î (m)
p ←− FFT2

(
I (m)
p

)
;

4. initialize Ŝp = zeros(M,G);
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5. do interpolation in the Fourier space:

for i = 0, ... ,M− 1 do:

for k = 0, ... ,G/2− 1 do:

kx = k cos(θ[i]) +G/2

ky = k sin(θ[i]) +G/2

akx = dkx − le , bkx = bkx + lc
aky = dky − le , bky = bky + lc
for k1 = akx , ...,bkx do:

ψ̂x = ψ̂ [g1 · b|kx − k1|e]
for k2 = aky , ...,bky do:

ψ̂y = ψ̂ [g1 · b|ky − k2|e]
ψ̂x,y = ψ̂x · ψ̂y
Ŝp[i,k] + = Î (m)

p [k1,k2] · ψ̂x,y

Ŝp[i,G− k] + = Î (m)
p [G− k1,G− k2] · ψ̂x,y

end for on Cartesian index k2
end for on Cartesian index k1
Ŝp[i,k] = Ŝp[i,k] · e−πikG

Ŝp[i,G− k] = Ŝp[i,G− k] · eπikG

end for loop on radial variable k

Sp[i, :] = IFFT1(Ŝp[i, :])

end for loop on angular index i

6. crop padded sinogram: S = Sp[:, i1 : i2]

where i1 = b(G−N)/2e i2 = i1+N

7. return S .

PHANTOM SPS-PSWF SPS-KB SPS-BSPLINE

Figure 4.6: SPS reconstructions of a SL sinogram with 50 views × 512 pixels and additional Gaussian
noise with σ = 2.4% of the sinogram mean.
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PHANTOM ADMM-PSWF ADMM-KB ADMM-BSPLINE

Figure 4.7: ADMM reconstructions of a SL sinogram with 50 views × 512 pixels and additional
Gaussian noise with σ = 2.4% of the sinogram mean.

FBP-FULL SPS-PSWF SPS-KB SPS-BSPLINE

Figure 4.8: SPS reconstructions of the sinogram (300 views × 2560 pixels) of a modern seed specimen.
FBP-FULL is the FBP reconstruction of the fully sampled sinogram with 1441 views × 2560 pixels
Sample courtesy: S. Smith, University of Michigan.

FBP-FULL ADMM-PSWF ADMM-KB ADMM-BSPLINE

Figure 4.9: ADMM reconstructions of the sinogram (300 views × 2560 pixels) of a modern seed
specimen. FBP-FULL is the FBP reconstruction of the fully sampled sinogram with 1441 views ×
2560 pixels Sample courtesy: S. Smith, University of Michigan.
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FBP-FULL SPS-PSWF SPS-KB SPS-BSPLINE

Figure 4.10: SPS reconstructions of the sinogram (272 views × 2016 pixels) of mouse lung tissue.
FBP-FULL is the FBP reconstruction of the fully sampled sinogram with 901 views × 2016 pixels.
Sample courtesy: G. Lovric [1].

FBP-FULL ADMM-PSWF ADMM-KB ADMM-BSPLINE

Figure 4.11: ADMM reconstructions of the sinogram (272 views × 2016 pixels) of mouse lung tissue.
FBP-FULL is the FBP reconstruction of the fully sampled sinogram with 901 views × 2016 pixels.
Sample courtesy: G. Lovric [1].

4.3 Gridding projectors for iterative reconstruction of DPC data

The following section represents a reprinted manuscript published as: F. Arcadu, M. Nilchian, A.
Studer, M. Stampanoni, and F. Marone, “Fast gridding projectors for analytical and iterative tomo-
graphic reconstruction of differential phase contrast data” , Optics Express, 24(13), pp. 14749-64,
2016 [29].

4.3.1 Abstract

This paper introduces new gridding projectors designed to efficiently perform analytical and iterative
tomographic reconstruction, when the forward model is represented by the derivative of the Radon
transform. This inverse problem is tightly connected with an emerging X-ray tube- and synchrotron-
based imaging technique: differential phase contrast based on a grating interferometer. This study
shows, that the proposed projectors, compared to space-based implementations of the same operators,
yield high quality analytical and iterative reconstructions, while improving the computational efficiency
by few orders of magnitude.
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4.3.2 Introduction

The gridding method is a technique designed to retrieve a 2D or 3D signal from samples of its Fourier
transform located on a non-Cartesian lattice [154]. This method has been applied for decades to image
reconstruction problems in radio-astronomy [155, 157], magnetic resonance imaging [154, 168, 193]
and absorption computer tomography (CT) [28, 158, 163–166, 169, 170, 170, 192, 202].
A tomographic forward or backprojector based on the gridding method has O(N2log2N) complexity
(N is the number of rows/columns of an image supposed to be square), leading to a significantly
higher computational efficiency than a space-based implementation of the same operator (O(N3)
complexity) [93]. Several studies have also shown that CT analytical [169, 170, 202] and iterative
[28, 170] algorithms, adopting gridding projectors, can provide high quality reconstructions, while
substantially reducing the calculation times (up to 3 orders of magnitude).
This work introduces a gridding forward and backprojector designed to perform analytical and iterative
reconstruction of tomographic datasets, where the forward model is represented by the derivative of
the Radon transform. These operators are, in particular, applied to the reconstruction of differential
phase contrast (DPC) tomographic data acquired with a grating interferometer.
A grating interferometer is an imaging setup yielding three complementary types of information
[79, 203, 204]: attenuation, differential phase and dark field signals. DPC focuses exclusively on
the phase information related to the real part of the object refractive index and provides a high sen-
sitivity to electron-density variations, down to 0.18 e/nm3 [205]. For this reason, DPC based on a
grating interferometer is particularly suitable for the visualization of soft-tissue specimens.
DPC data can be analytically reconstructed by means of filtered backprojection without need for
integration of the projection information, if an imaginary filter function corresponding to a Hilbert
transform in the image space (HFBP) is used instead of the usual Ram-Lak filter [204]. This approach
is however not suited for the reconstruction of DPC underconstrained data because of insufficient ac-
curacy. Recent interest in the biomedical field for grating interferometry, when investigating dose
sensitive specimens, has lead to several studies aimed at extending established CT iterative algo-
rithms to the DPC case. In this regard, ad-hoc forward projectors working with a blob [206] and a
cubic B-spline [102] basis and iterative schemes relying on different algorithms (the regularized max-
imum likelihood [206], the separable paraboloidal surrogate [207], the alternate direction method of
multipliers [103] and a combination of statistical model and thresholding [208]) have been proposed.
So far, all analytical and iterative reconstruction methods developed for DPC utilize space-based
projectors, characterized by a complexity of O(N3) and, therefore, strongly limiting their computa-
tional performance. The projectors proposed here greatly reduce the computational times required
for analytical and, in particular, iterative reconstruction, while preserving the accuracy of the results.

Contributions

The contributions of this manuscript are summarized as follows:

• Design of a gridding forward projector acting as derivative of the Radon transform.

• Optimization of the parameters by means of the minimal oversampling strategy [168].
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• Comparison of accuracy and efficiency with a standard space-based implementation of the same
projector.

• Validation of the proposed operators through analytical and iterative reconstruction of simulated
and experimental DPC data.

4.3.3 Notation and preliminaries

This work focuses on parallel beam geometry, even though gridding can be extended to fan- and
cone-beam geometries [164, 165, 171].
The study object, i.e., an axial 2D slice of the whole 3D volume, is represented by a finite integrable real
function f = f(x) = f(x,y) : Ω ⊆ R2 → R with bounded support S = supp(f) ≡ {x ∈ R2 | f(x) 6= 0}.
Its CT forward projection or X-ray transform or Radon transform (in 2D, these transforms coincide
[92]) is given by:

Pθ(t) := R{f(x)}(θ, t) :=

∫
Ω

dx f(x) δ(x · eθ − t) , (4.33)

where · represents the inner product, θ ∈ [0,π) and eθ = (cos θ, sin θ). The variables used in (4.33)
are displayed in Fig. 4.12(a).
The derivative of the Radon transform is considered with respect to the variable t and is given by:

d

dt
Pθ(t) := R(1){f(x)}(θ, t) :=

d

dt

∫
Ω

dx f(x) δ(x · eθ − t) . (4.34)

The collection of all projections (P{θ} or dP{θ}/dt) in parallel beam geometry is also called sinogram.
Figure 4.12(b) shows an example of DPC sinogram; the pixels of each projection are placed along the
row or channel direction.
The 2D Fourier transform of a generic function g(a,b) is indicated with ĝ or Fa,b{g}; Fa{g} or Fb{g}
represents the 1D Fourier transform along the variable a or b, respectively. (x,y), (t, θ), (u, v) and
(θ,ω) are the coordinates of the real-space Cartesian, real-space polar, Fourier Cartesian and Fourier
polar reference frame, respectively. (· · · ) refers to entries of a continuous function, [· · · ] entries of
a discrete function/array and {· · · } either entries of an operator or a collection of discrete values.
Vectors and matrices are indicated with lower- and upper-case bold letters, respectively; both † and
∗ correspond to the Hermitian adjoint operator.

4.3.4 Proposed method

Connection between gridding and CT

The gridding method (GM) retrieves a signal from samples of its Fourier transform located on a
non Cartesian lattice: the samples are, first, convolved with a smooth and rapidly decaying window
function, the inverse fast Fourier transform (IFFT) is computed and, finally, the contribution of the
window function is removed from the signal in real space [154].
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Figure 4.12: (a) Coordinate system and variables used. (b) DPC sinogram example.

The connection between GM and CT reconstruction is provided by the Fourier slice theorem (FST)
[92]:

P̂θ(ω) = f̂(ω cos θ,ω sin θ) . (4.35)

The discretized version of (4.35) states that the fast Fourier transform (FFT) of a projection at angle
θ yields equidistant samples of f̂ along the line v = u tan θ. The samples collected from multiple
projections form a polar lattice in Fourier space. To retrieve f through IFFT, these polar samples
need to be interpolated at Cartesian locations, an operation that can be performed by the GM. CT
reconstruction through a filtered gridding backprojector consists in the following steps [163, 166, 169]:

1. FFT1 of the sinogram along the channel direction ←− P̂{θ};

2. ramp filtering of the sinogram ←− P̂(f)
{θ}

;

3. convolution with window function ←− f̂ (d) = ĥ ∗ P̂(f)
{θ}

;

4. IFFT2 of f̂ (d) ←− f (d);

5. removal of the window function ←− f = f (d)/h.

Accordingly, the gridding-based implementation of R or forward gridding projector (FRP) is given by
the same steps listed above (ramp filtering excluded) in the reverse order [28, 170]:

1. pre-correction ←− f (d) = f/h;

2. FFT2 of f (d) ←− f̂ (d);

3. convolution with window function −→ P̂{θ} = ĥ ∗ f̂ (d);



4.3 gridding projectors for iterative reconstruction of dpc data 79

4. IFFT1 of each polar slice of P̂{θ} ←− P{θ}.

Differentiated forward gridding projector

The formula of the differentiated forward gridding projector (DFRP) is obtained from the FST (4.35),
the definitions (4.33), (4.34) and from the property that derivatives in real space are mapped into
multiplications in Fourier space.

R(1){f}(θ, t) =
d

dt
Pθ(t) =

d

dt

∫
Ω

dω P̂θ(ω) e−2πiωt

=

∫
Ω

dω e−2πiωt (−2πiω) ·
(
ĥ ∗ f̂ (d)

)
(θ,ω)

= F−1
ω

{
(−2πiω) ·

(
ĥ ∗Fx,y {(f/h)(x,y)}

)
(θ,ω)

}
,

(4.36)

where i is the imaginary unit (i2 = −1), h and ĥ are the gridding interpolation kernel and its
Fourier transform, f(d) = f/h is the pre-corrected and oversampled version of f. Choosing the kernel
separable, i.e., h(x,y) = ψ(x)ψ(y) =⇒ ĥ(u, v) = ψ̂(u)ψ̂(v), simplifies the implementation of the
method. Discretizing (4.36) results in:

d

dt
Pθm [tn] =

d

dt
F−1
{ω}

{
P̂θm [ωj]

}
n
=
d

dt
F−1
{ω}

{(
ĥ ∗ f̂(d)

)
[ωj, θm]

}
n

=
d

dt
F−1
{ω}


∑

ur∈Umj
vs∈Vmj

ψ̂[g1(ωj,u − ur)]ψ̂[g1(ωj,v − vs)]︸ ︷︷ ︸
Cm,j,r,s

f̂(d)[ur, vs]


n

= F−1
{ω}

(−2πiωj)
∑

ur∈Umj
vs∈Vmj

Cm,j,r,s F{x,y}

{
f(o)[xp,yq]

ψ[g2xp]ψ[g2yq]

}
ur,vs


n

(4.37)

where i is the imaginary unit; θm = mπ/M ∈ [0,π) for m = 0, 1, ...,M− 1 and M is the number
of views; the image is assumed to be square with N pixels (N is even) and to have unit resolution,
therefore, xp = −N/2 + p and yq = −N/2 + q for p,q = 0, 1, ...,N − 1 are the image pixel
coordinates; tn = −N/2+ n for n = 0, 1, ...,N− 1 (N is also the number of detector cells); the
Fourier space is sampled at G evenly spaced points in the range [0.5, 0.5), therefore, ur = −1/2+ r/G

and vs = −1/2+ s/G for r, s = 0, 1, ...,G− 1, G = αN for α > 1; α is called oversampling ratio;
ωj,u = ωj cos θm, ωj,v = ωj sin θm and ωj = −1/2+ j/G for j = 0, 1, ...,G− 1; Umj (Vmj) are
the sets of pixel coordinates ur (vs) inside the interpolation support; g1 and g2 are factors mapping
distances from the polar and Cartesian grid into look-up table (LUT) indices and depend on the
sampling density of ψ and ψ̂. F−1

ω and F{x,y} in (4.37) are implemented as IFFT1 along ω and
FFT2 along x,y, respectively. f(o) represents a zero-padded or oversampled version of f by a factor
α > 1.0. Gridding an oversampled grid prevents the appearance of aliasing artifacts due to tails of
the reconstruction wrapping back into the field-of-view (FOV) [158, 169]. A general rule of thumb is
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to set α = 2.0.
Since the DFRP is a linear operator, the differentiated gridding backprojector (DBRP) is the Hermitian
adjoint operator of (4.37). From a computational point of view, the DBRP performs the same exact
operations as the DFRP, but in reverse order.
The accuracy and efficiency of gridding operators depend on the choice of the finite kernel ψ: the
smaller the support of ψ, the more accurate the pre-correction in real space; at the same time, the
smaller the support of ψ̂, the faster the interpolation stage in Fourier space [28, 158, 169]. The
accuracy of a convolution kernel is also strongly determined by the shape (in particular, the rolloff)
of the central lobe and the amplitude of the aliasing sidelobes characterizing ψ. The pre-correction
removes the rolloff induced by this central lobe, but, in doing so, the aliasing sidelobes are amplified
[28, 158].
In previous work [158, 163, 193], different compact kernels have been studied for gridding [158]. The
conclusion is that a Kaiser-Bessel (KB) [101] kernel has an optimal compact support in real and
Fourier space and provides analytical formulas, that enable shape optimization for ψ and ψ̂ on the
basis of a certain criterion, if available. The formulas for the KB kernel are:

ψkb(x) =

sin

√(
πWx

G

)2
−β2√(

πWx

G

)2
−β2

, ψ̂kb(kx) =
G

W
I0

β
√
1−

(
2Gkx

W

)2 , (4.38)

valid for |kx| 6 W/2G and where I0 is the zero-th order modified Bessel function, W is the size of
the convolving kernel and β is the tapering parameter, that determines how fast the KB drops to
zero. The accuracy and computational performance of (4.37) with a KB kernel depends on α, W,
β and S, the sampling density of ψ̂. Working with a pre-sampled LUT enables faster calculations
and this approach is, therefore, preferable than invoking Eq. (4.38), every time a point needs to be
interpolated in Fourier space.
According to the minimum oversampling criterion, the KB’s shape can be optimized by minimizing
the maximum pixel aliasing error [168]:

εij =

√√√√ ∑
p6=0

(h[i+Gp, j+Gp])2

(h[i, j])2
=

√√√√ ∑
p6=0

(ψ[i+Gp]ψ[j+Gp])2

(ψ[i]ψ[j])2
. (4.39)

The optimal kernel ψopt is found as solution of the minimization problem:

ψopt = argmin
ψ

max
i,j

(
εi,j
)

, (4.40)
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which translates in the following results [168]:

β = π

√(
W

α

)2
·
(
α−

1

2

)2
− 0.8 , S =


0.91/(α · γ) for NN

√
0.37/(γα2) for LIN

(4.41)

where NN and LIN refer, respectively, to the nearest neighbor and linear interpolation scheme to
sample the convolution LUT and γ is the maximum allowed sampling error for ψ̂. The minimal
oversampling criterion (4.41) reduces the initial parameter space {W,S,α,β} to {W,γ,α}.

Algorithm complexity

The cost of the DFRP lies in the convolution and the call of FFT/IFFT. Given an input image of
N×N pixels, an oversampling ratio α, a kernel width W and a number of views M, the convolution
amounts to approximately WMN operations, whereas the overall call of FFT/IFFT corresponds to
α2N2 log2(αN)+αMN log2(αN) (1-time FFT-2D andM-times IFFT-1D) floating point operations.
This second factor usually represents the leading cost term for real datasets.

4.3.5 Optimization of the gridding parameters

Optimization approach

For the pure Radon transform case, an optimal KB kernel, ψopt, can be constructed with any setting
{W,S,α,β} fulfilling (4.41). The choice of one specific set among the optimal ones would then be
dictated by computational efficiency criteria. However, the minimal oversampling criterion does not
account for the influence of the term −2πiωj on the accuracy of the actual implementation of the
DFRP. To assess which set of theoretically optimal gridding parameters provides the most accurate
results for the DFRP, the 3D parameter space {W,γ,α} needs to be explored in a brute-force manner,
through experiments making use of a family of functions, whose R(1) can be computed analytically.
The following family of 2D radially symmetric functions is considered:

f(n)(x) =

(a2 − ||x||2)n if ||x|| 6 a

0 if ||x|| > a
∀n ∈N . (4.42)

The analytical differentiated Radon transform is given by:

R(1)
{
f(n)
}
(θ, t) =


−2t

(2n)!!
(2n− 1)!!

(
a2 − t2

)n−1/2
if n = 2k

−πt
(2n)!!

(2n− 1)!!
(
a2 − t2

)n−1/2
if n = 2k+ 1

k ∈N , ∀θ ∈ [0,π).

(4.43)
To derive Eq. (4.43), one has to apply definition (4.34) to f(n)(x) and perform a cosinusoidal
substitution to obtain an integral of the form

∫π
0 dω (sinω)m, whose solution is available in [209].



82 gridding projectors

Optimal gridding parameters are evaluated for analytical and iterative reconstruction methods. For
the former case, the Hilbert-filtered DBRP is applied to DPC sinograms, created with (4.43), and
the obtained reconstructions are compared with the original phantom (4.42). For the latter case,
an approach disregarding the specific choice of iterative algorithm (and its specific parameters) is
followed: the forward projection computed with DFRP is compared to the analytical sinogram and is,
then, reconstructed with the Hilbert-filtered DBRP. In this way, both the accuracy of the standalone
forward projector and of the coupling forward-adjoint operator can be investigated.
The experiments in Sec. 4.3.5 make use of f(n)(x) with n = {2, 3}, sampled on a grid with 512 ×
512 pixels and its analytical R(1) is computed for 805 views, homogeneously distributed in [0,π). The
number of views is enough to prevent undersampling artifacts in the reconstructions, since 805 w
512 ∗ π/2 (according to the FBP Nyquist criterion [92]). Results are not biased by the resolution of
the phantoms, because experiments repeated with different grid sizes have yielded the same outcome.
The accuracy of the results is measured by the peak signal-to-noise ratio (PSNR) [144], a score
quantifying the overall difference between the computed and reference image. The PSNR is defined
as:

PSNR = 10 · log10


max
i,j

(O[i, j])2

1

MN
·
M−1∑
i=0

N−1∑
i=0

(O[i, j] − I[i, j])2

 (4.44)

where O and I are 2D arrays with M rows and N columns, being, respectively, the oracle and the
image to analyze. Since in (4.44) the difference is located at the denominator, PSNR results are more
sensitive to small variations from the oracle than the mean square error. When analyzing sinograms,
the PSNR is computed over the entire image, whereas, for reconstructions, it is computed within the
resolution circle.
The mean structural similarity index (MSSIM) [145] has also been employed for the image analysis.
Although confirming the trends described by the PSNR, the MSSIM results poorly sensitive for this
kind of test. For this reason, only PSNR scores are reported in Sec.4.3.5.

Optimal gridding parameters

To limit the extent of the brute force search of {W,γ,α}opt, preliminary experiments, studying how
the accuracy of the operators depends on just one parameter, while fixing the other two, have been
performed. These experiments focus on the forward projection with DFRP and on the reconstruction
of analytical sinograms with Hilbert-filtered DBRP. Results, collected in Figs. 4.13(a)-4.13(c), show
the following key trends: the choice of α is more critical for the backprojector (Fig. 4.13(b)); the
PSNR decreases only when γ > 10−4 (Fig. 4.13(a)); the DFRP is highly influenced by the choice of
W (Fig. 4.13(c)).
The general brute force search of the 3D parameter space has W ranging in [2.7, 17.7] (20 points),
γ in [10−8, 10−3] (10 points) and α in [1.05, 3.0] (20 points). Results can be visualized by means
of 2D PNSR maps, displaying the accuracy as a function of two parameters while the third one is
fixed, as shown in Figs. 4.14(a)-4.14(c). Few relevant trends, mirroring the results of the preliminary
experiments, can be recognized. The accuracy of DFRP and DBRP is only weakly influenced by
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γ, provided that this parameter is < 10−4 (Figs. 4.14(a) and 4.14(b)). DFRP is very sensitive to
the choice of W (Fig. 4.14(b)): the PSNR varies up to 5 dB for a difference of 0.8 in kernel size.
The reconstruction accuracy of DFRP sinograms (coupling DFRP-DBRP) is sensitive to the choice
of α (Fig. 4.14(a)) in a wider interval, 1.05 6 α 6 2.30, than for the reconstruction of analytical
sinograms (DBRP standalone, Fig. 4.14(c)), 1.05 6 α 6 1.70.
The optimal parameters are found by locating the maximum PSNR values in the 3D volume,
created by the brute force search. The PSNR reaches the maximum on a continuous spread area
(the intersection of the darkest blue regions in Figs. 4.14(a)-4.14(c)), while no local extrema exist.
Since the broad PSNR maximum corresponds to multiple parameter configurations, {α,W,γ}opt is
chosen as the peripheral point, requiring the smallest computational time. The optimal parameters for
analytical reconstruction, as obtained from the top score for the reconstruction with Hilbert-filtered
DBRP of analytical sinograms, are {W,γ,α}opt1 = {4.45, 1.7 · 10−6, 1.75}. The optimal parameters
for iterative reconstruction, merging the results for the computation of the forward projection with
DFRP and the recostructions of these sinograms with Hilbert-filtered DBRP, are {W,γ,α}opt2 =

{6.6, 6.0 · 10−6, 2.38}.
The second set of optimal parameters is more conservative and less computationally efficient, because
it involves a bigger kernel size and a higher oversampling ratio compared to the first set. The aliasing
error introduced by the DFRP can be amplified by the DBRP at each iteration in iterative schemes,
therefore a more conservative choice of parameters is mandatory. The results of the brute-force search

Table 12: (a) Reconstruction with Hilbert-filtered DBRP of an analytical SL sinogram (800 views ×
512 pixels). (b) Reconstruction with Hilbert-filtered DBRP of a sinogram created by the DFRP (800
views × 512 pixels). The settings {W,γ,α}nopt1 and {W,γ,α}nopt2 belong to the PSNR maximum
surface for analytical and iterative reconstruction, respectively. This is confirmed by the negligible
differences in PSNR.

{W,γ,α}opt1 {W,γ,α}nopt1
PSNR 24.51 24.14

(a)

{W,γ,α}opt2 {W,γ,α}nopt2
PSNR 35.50 35.41

(b)

Table 13: (a) Reconstruction with Hilbert-filtered DBRP of an analytical SL sinogram (800 views ×
512 pixels). (b) Reconstruction with Hilbert-filtered DBRP of a sinogram created by the DFRP (800
views × 512 pixels). The settings {W,γ,α}nopt3 and {W,γ,α}nopt4 do not correspond to the PSNR
maximum surface for analytical and iterative reconstruction, respectively. The differences in PSNR
are not negligible.

{W,γ,α}opt1 {W,γ,α}nopt3
PSNR 24.51 21.75

(a)

{W,γ,α}opt2 {W,γ,α}nopt4
PSNR 35.50 33.02

(b)
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(a) (b)

(c)

Figure 4.13: Preliminary experiments to determine the interesting range where to span each parameter
in a more general brute-force search. The DFRP projects f(n) with n = 2, 3: the result is compared
to the analytical sinogram. The Hilbert-filtered DBRP reconstructs the analytical sinogram: the
reconstructed slice is compared to the phantom. (a) Experiments spanning γ ∈ [10−10, 3.9 · 10−3]
and settingW = 4.45 and α = 3.0; all PSNR curves reach the maximum for γ < 10−4 (corresponding
to S > 50). (b) Experiments spanning α ∈ [1.05, 3] and setting W = 4.45 and γ = 10−10; all PSNR
curves reach the maximum for α > 1.8. (c) Experiments spanning W ∈ [1.9, 12.1] and setting
γ = 10−10 and α = 3.0.
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(a) (b)

(c)

Figure 4.14: Examples of 2D PSNR maps visualizing the results of the brute-force search of the
3D parameter space {W,γ,α}. These experiments made use of the phantom f(2). (a) Map for the
reconstruction with Hilbert-filtered DBRP of DFRP sinograms. (b) Map for the computation of DFRP
sinograms. (c) Map for the reconstruction with Hilbert-filtered DBRP of analytical sinograms.
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were confirmed, when using f(n) with n = 1, 4, 5.
Additional experiments with the Shepp-Logan (SL) [129] phantom have proved that this optimization
approach is not biased by the choice of the family function. In the experiment of Tabs. 12(a) and 12(b),
the settings {W,γ,α}nopt1 and {W,γ,α}nopt2 , belonging to the PSNR maximum surface for analytical
and iterative reconstruction respectively, are tested against the optimal settings. Table 12(a) shows
the PSNR score related to the reconstruction with Hilbert-filtered DBRP of the SL analytical sinogram
(800 views × 512 pixels) with {W,γ,α}opt1 and {W,γ,α}nopt1 = {7.6, 1.7 · 10−7, 2.1}. The PSNR
score in Tab. 12(b) refers to the reconstruction with Hilbert-filtered DBRP of the sinogram (800 views
× 512 pixels) computed by the DFRP with {W,γ,α}opt2 and {W,γ,α}nopt2 = {7.6, 6.0 · 10−7 , 2.7}.
The negligible differences in PSNR confirm, that {W,γ,α}nopt1 and {W,γ,α}nopt2 correspond indeed
to the respective PSNR maximum surfaces. The same approach is followed for the experiment in
Tabs. 13(a) and 13(b), where, this time, the settings {W,γ,α}nopt3 = {11.9, 6.0 · 10−7 , 1.66} and
{W,γ,α}nopt4 = {8.2, 6.0 · 10−7 , 2.2} are not located on the maximum surfaces for analytical and
iterative reconstruction, respectively. The differences of PSNR in Tabs. 13(a) and 13(b), between
optimal and suboptimal settings, are certainly not negligible.

4.3.6 Comparison with a standard implementation of R(1)

Benchmark procedure

To benchmark the accuracy and efficiency of the proposed operators, a standard space-based im-
plementation of R(1) has been considered: the forward projector introduced by [93] with additional
differentiation along the channel direction. Considered a discrete image f[m,n], the original imple-
mentation of the Radon Transform of [93], based on linear interpolation, is given by:

Pθ(t) =


1

sin θ

∑
m

[
(1− η)f [m, bam+ bc] + ηf [m, bam+ bc+ 1]

]
if | sin θ| >

√
2
2

1

cos θ

∑
n

[
(1− η)f

[
bãn+ b̃c,n

]
+ ηf

[
bãn+ b̃c+ 1,n

] ]
if | sin θ| 6

√
2
2

(4.45)

where

a = −
cos θ
sin θ

b =
t− xmin cos θ− ymin sin θ

sin θ

ã =
1

a
b̃ =

t− xmin cos θ− ymin sin θ
cos θ

η =

am+ b− bam+ bc if | sin θ| >
√
2
2

ãn+ b̃− bãn+ b̃c if | sin θ| 6
√
2
2 .

(4.46)

b...c represents the floor operation, xmin and ymin correspond to the smallest abscissa and ordinate
of the selected ray within the image grid. R(1) is computed from finite differences of Eq. (4.45)
along the pixel direction, i.e. the t-axis. This operator is named differentiated Radon transform and
abbreviated as DRT; its corresponding backprojector is abbreviated as DBP.
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Experiments focus on the the impact of undersampling and noise in analytical and iterative recon-
structions performed with the proposed operators on one side, DRT and DBP on the other side.
The PSNR and MSSIM are used for the assessment of the reconstruction quality of simulated data.
For real data, since a reference image is not available, the signal-to-noise ratio (SNR) and contrast-to-
noise ratio (CNR) are averaged for multiple regions-of-interest (ROIs) at different distances from the
image center. The SNR is computed within a ROI, supposed to be homogeneous; for the CNR, two
different neighboring ROIs are used, each supposed to be homogeneous. SNR and CNR are less reli-
able metrics than those relying on a reference image, but they can, nevertheless, give an approximate
indication of image quality.

Validation of the proposed operators for analytical reconstruction

Analytical reconstructions are performed by the Hilbert-filtered DBRP (HF-DBRP) with optimal pa-
rameters {W,γ,α}opt1 = {4.45, 1.7 · 10−6, 1.75} and Hilbert-filtered DBP (HF-DBP).
The first experiment deals with a simulated undersampled and noisy dataset of f(n) (n = 1, 2, 3) with
512× 512 pixels, computed by means of (4.43). A set of noiseless analytical sinograms is created
with a number of views ranging from 20 to 600. Another set is, instead, created with an increasing
amount of Gaussian noise, with σ ranging from 1% to 50% of the average value, µ, of the sinogram,
while the number of views is fixed to 805.
Since reconstructions with HF-DBRP and HF-DBP, for the same condition of either undersampling
or noise, are indistinguishable at visual inspection, the analysis of the results relies on the information
provided by PSNR and MSSIM (Figs. 4.15(a)-4.15(d)). Figures 4.15(a) and 4.15(b) show that the
reconstructions with HF-DBRP have generally superior quality for a number of views > 12% of what
is required by the FBP sampling criterion (in this case, 100 views). For very low number of views, the
HF-DBRP scores slightly worse than the space-based counterpart. Figures 4.15(c) and 4.15(d) show
that the gridding algorithm appears quite sensitive to the level of noise affecting the data, since the
drop of PSNR and SSIM for increasing noise is steeper compared to the other operator. The PSNR
scores are everywhere higher for the gridding reconstruction, whereas, according to the MSSIM, for
σ > 20%, the reconstructions with HF-DBP seem to perform better.
These results indicate that analytical reconstruction with the gridding backprojector is less sensitive
to undersampling than to noise. The HF-DBRP may slightly underperform compared to a standard
method, when a substantial amount of noise affects the data.
The second experiment tackles the reconstruction of a DPC sinogram of a rat brain, acquired at the
TOMCAT beamline of the Swiss Light Source at the Paul Scherrer Institute (Switzerland). The array
has 721 views × 1493 pixels. The reconstructions, shown in Figs. 4.16(a) and 4.16(b), are indistin-
guishable at visual inspection; nevertheless, the reconstruction with HF-DBRP shows improved SNR
and CNR values (Tab. 14(a)). When the original sinogram is downsampled to 400 and 300 views,
each pair of reconstructions still looks identical and the difference of SNR and CNR becomes rather
small (Tab. 14(b) and 14(c)).
The computational efficiency represents the very attractive feature of the proposed operators. Table
15 reports the time elapsed (in seconds) for the reconstruction of DPC sinograms of various sizes.
The used hardware is an Intel(R) Core(TM) i7-3520M CPU 2.90GHz. The HF-DBRP can speed-up
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(a) (b)

(c) (d)

Figure 4.15: PSNR and SSIM results for the comparison between the Hilbert-filtered DBRP and DBP
for the analytical reconstruction of DPC undersampled and noisy sinograms. (a,b) Scores for the
“undersampling-test” (for f(1)). (c,d) Scores for the “noise-test” (for f(3)); σ on the x−axis is the
variance of the Gaussian noise corresponding to a percentage of the average value of the noiseless
original sinogram.

calculations by two orders of magnitude for small datasets, up to three orders for bigger datasets with
respect to a standard space-based operator.

Validation of the proposed operators for iterative reconstruction

Iterative reconstructions are performed by means of the alternate direction method of multipliers
(ADMM) [27], solving a standard LASSO (Least Absolute Selection and Shrinkage Operator) prob-
lem. This method has been applied to DPC data in [103] with a more sophisticate formulation and
a forward projector based on a cubic B-spline basis [102]. Details regarding the ADMM, its usage for
tomographic reconstruction and the choice of the parameters are given in the Appendix.
Two implementations of the ADMM are tested in this section and the difference lies in the forward
and backprojector used: the DFRP and its Hermitian adjoint operator (ADMM-DFRP) versus the
DRT and its Hermitian adjoint operator (ADMM-DRT).
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(a) (b)

Figure 4.16: Analytical reconstructions of the DPC sinogram of a rat brain with a zoomed area. (a)
Reconstruction with the Hilbert-filtered DBRP. (b) Reconstruction with the Hilbert-filtered DBP. The
light blue and yellow squares in (b) indicate the ROIs used to computed the average SNR and CNR
values reported in Tab. 14.

The first experiment focuses on the convergence of the algorithm: an analytical sinogram, created
from f(2) and having 100 views × 256 pixels with additional Gaussian noise of σ = 8%µ (this σ has
been chosen to be slightly bigger than that estimated on the real data presented in the following), is
reconstructed by means of ADMM and the relative norm of the difference between consecutive itera-
tions, i.e. ||x(k+1) − x(k)||22/||x

(k)||22, is measured. The ADMM runs for 100 iterations. Figure 4.17

Table 14: SNR and CNR scores for the analytical reconstructions of the rat brain with 721 (a), 400
(b) and 300 (c) views. These values represent averages computed over the ROIs displayed in Fig.
4.16(b).

HF-DBRP HF-DBP

SNR 27.37 24.69

CNR 9.99 9.18

(a)

HF-DBRP HF-DBP

SNR 24.83 23.57

CNR 8.22 8.19

(b)

HF-DBRP HF-DBP

SNR 22.65 22.24

CNR 7.23 7.15

(c)
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shows that ADMM-DFRP and ADMM-DRT have almost exactly the same convergence speed and
that the solution remains practically unaltered after 20 iterations. This fact proves that the gridding
operators do not alterate the algorithm convergence with respect to standard projectors. For the next
reconstructions, the ADMM is stopped when ||x(k+1) − x(k)||22/||x

(k)||22 < ε = 5 · 10−6.
In a second step, the iterative reconstructions of the noisy and undersampled simulated sinogram,
employed for the convergence test, are analyzed. Images in Figs. 4.18(b) and 4.18(c) show no vis-
ible difference; the PSNR and SSIM analysis (Tab. 16(a)) reveals a slightly better accuracy for the
ADMM-DFRP.
Finally the sinogram of the rat brain, also used in the previous section, is reconstructed with the
ADMM approach. In this case, the number of projections has been reduced by a factor of 2.5 leading
to an undersampled dataset with an array of 300 views x 1493 pixels. Also for real data, the recon-
structed slices (Figs. 4.19(a) and 4.19(b)) look almost identical at visual inspection; the analysis,
reported in Tabs. 16(a) and 16(b), highlights a slight better performance for the ADMM-DFRP.
From a computational point of view, the proposed operators are ideal for iterative algorithms, since
these methods generally call the forward projector and its Hermitian adjoint few times per iteration,
often representing the computational bottleneck of the entire reconstruction process. For this last
dataset, on an Intel(R) Core(TM) i7-3520M CPU 2.90GHz, a single conjugate-gradient sub-iteration
within the ADMM (see Appendix) takes around 40s with the proposed operators (ADMM-DFRP),
and around 830s for ADMM-DRT. Since the stopping criterion terminates the procedure after approx-
imately 20 iteration, each involving 15 sub-iterations, the time elapsed for the reconstructions, if run
on a single core, is around 3.5h for the ADMM-DFRP and 69h for the ADMM-DRT.

4.3.7 Summary

Novel projectors have been introduced to address analytical and iterative reconstruction of tomo-
graphic differential phase contrast datasets, when the forward model is represented by the derivative
of the Radon transform, R(1). These operators are based on the gridding method and feature a
complexity of O(N2 log2N). The gridding parameters, offering the best trade-off between accuracy
and computational performance, have been experimentally optimized on the basis of the minimal
oversampling strategy, that requires the utilization of a Kaiser-Bessel kernel for the interpolation in
Fourier space.
The performance of the proposed differentiated gridding forward projector (DFRP) and backprojector
(DBRP) have been assessed with respect to a standard space-based implementation of R(1) and R(1)∗ .

Table 15: Times elapsed to perform the analytical reconstructions of DPC sinograms of different sizes.
The used hardware is an Intel(R) Core(TM) i7-3520M CPU 2.90GHz.

HF-DBRP HF-DBP

805 views × 512 pix. 0.23 s 28.93 s

1608 views × 1024 pix. 0.97 s 2.40 · 102 s

3217 views × 2048 pix. 4.23 s 1.20 · 103 s
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Figure 4.17: Convergence test showing the decrease of log10
(
||x(k+1) − x(k)||22/||x

(k)||22
)
as a func-

tion of the number of iterations.

(a) (b) (c)

Figure 4.18: Iterative reconstructions of a noisy undersampled DPC sinogram of f(2). (a) Original
phantom. (b) Reconstruction with ADMM-DFRP. (c) Reconstruction with ADMM-DRT.
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Table 16: (a) PSNR and MSSIM scores for the iterative reconstructions shown in Figs. 4.18(b) and
4.18(c). (b) Average SNR and CNR computed for multiple ROIs at different distances from the image
center for the iterative reconstructions shown in Figs. 4.19(a) and 4.19(b). The SNR and CNR scores
were averaged over the ROIs displayed in Fig. 4.16(b).

ADMM-DFRP ADMM-DRT

PSNR 31.42 30.76

MSSIM 0.74 0.67

(a)

ADMM-DFRP ADMM-DRT

SNR 29.34 29.01

CNR 13.18 12.63

(b)

(a) (b)

Figure 4.19: Iterative reconstructions of a DPC undersampled sinogram of a rat brain with a zoomed
area. (a) Reconstruction with ADMM-DFRP. (b) Reconstruction with ADMM-DRT.

The comparison has shown that the differentiated gridding operators can yield analytical and iterative
reconstructions of the same quality as space-based operators. The great advantage of the proposed
operators lies in the computational efficiency, since calculation times can be reduced by 3 orders of
magnitude.

Appendix: LASSO solved by the alternate direction method of multipliers

The LASSO problem corresponds to a L1 penalized linear regression of the form:

x̂ = argmin
x

[
‖Ax − b‖22 + λ ||x||1

]
. (4.47)

Considering the reconstruction problem presented in Sec.4.3.6, A , i.e., A = R(1), is the matrix repre-
sentation of the forward projector (therefore, A† is the Hermitian adjoint operator or backprojector),
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i.e., b is the DPC sinogram, x is the unknown slice of the object and λ ∈ R is the regularization
weight.
The LASSO problem can be numerically tackled by the alternate direction method of multipliers
(ADMM) [27], that maps (4.47) into the minimization of the following augmented Lagrangian:

Lµ(x, u, m) =
1

2
‖Ax − b‖22+λ

∑
k

‖uk‖1 + mT (x − u) +
µ

2
‖x − u‖22 (4.48)

where m are the Lagrangian multipliers and u is an auxiliary variable or the dual image.
The ADMM iteratively minimizes Lµ by sequentially solving smaller problems; each iteration involves
two sub-optimizations with respect to x and to u, followed by the update of m:

1. x(k+1) ←− argmin
x

Lµ

(
x, u(k), m(k)

)
2. u(k+1) ←− argmin

u
Lµ

(
x(k+1), u, m(k)

)
3. m(k+1) ←− m(k) + µ

(
x(k+1) − u(k+1)

)
In step (1), the conjugate gradient method (CG) is applied to the following linear system:

(A†A + µI)x = A†b + µ

(
u(k) −

m(k)

µ

)
. (4.49)

The subproblem of step (2) is solved through a shrinkage operation:

u(k+1) = max
{∣∣∣∣x(k+1) + m(k)

µ

∣∣∣∣− λ

µ
, 0
}

sgn
(

x(k+1) +
m(k)

µ

)
. (4.50)

Several parameters are required by the ADMM: the stopping criterion, the number of sub-iterations of
the CG, λ and µ. The more the conditioning number of A†A differs from 1, the more sub-iterations are
required by the CG. This number was set to 15. The parameter λ rules the trade-off between fidelity
and penalty term, for this reason, it should be selected depending on the amount of noise affecting
the data. Suited values for λ and µ have been found through several experiments with simulated
data. The reconstruction of simulated and real data are, in particular, performed with λ = µ = 1.0.
It is important to point out that the trends presented in Sec.4.3.6 resulted experimentally indipendent
from the choice of these two parameters.

4.4 Perspectives for Fourier-based tomographic reconstruction

The geometry and the computational facilities usually provided by synchrotron imaging beamlines
motivate the usage of the gridding method or iterative algorithms based on gridding projectors. Va-
rious studies have shown that analytical and iterative Fourier-based tomographic reconstruction can
perform very similarly in terms of accuracy to FBP or iterative methods making use of standard pro-
jectors. Synchrotron imaging beamlines like the Swiss Light Source (SLS), the European Synchrotron
Radiation Facility (ESRF) and the Advanced Photon Source (APS) offer CPU clusters to process the
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raw projection data, which represents the most suited enviroment for the utilization of Fourier-based
reconstruction methods. Only recently, ESRF and APS have been equipped with GPU clusters as
well.
Putting for a moment the specific context of this project aside and considering the broader picture,
the question that naturally arises is: does it make sense to push further the study of Fourier-based
reconstruction methods? To address this question, we will focus on two different aspects: complex
geometries and computational efficiency.
Fourier-based methods have been explored for more complex geometries like fan-beam [164, 171] and
cone-beam [165] since the late 90s, but this line of research did not have much of a follow-up (actually
for all geometries). For the cone-beam configuration, the reason may be connected to the memory
bottleneck. The GM requires to keep the entire volume in memory and, considering that oversam-
pling is needed, the reconstruction of a real dataset can easily result computationally not practical for
standard machines. If the minimal oversampling strategy [28, 168] applied to the study conducted in
[165] and considering future upgrades of computing machines in terms of memory capacity, GM-based
cone-beam reconstruction will probably be feasible and competitive with existing algorithms.
Fourier-based methods greatly outperform their real-space counterparts in speed, if the implementa-
tions are all considered on a single core. However, the last two decades have witnessed the introduction
and fervid development of real-space tomographic projectors implemented on GPUs [107, 108, 210–
214] (just to cite few of the numerous works published on the topic). How do the gridding projectors
perform with respect to GPU-implemented operators? It is not trivial to answer to this question.
Beside the algorithmical part, there are so many code-related and machine-architecture details that
can substantially change the outcome of such comparison. Although the tests were performed on
different machines, we can look at a couple of figures in [28] related to the FGP and in [215] related
to GPU-based projectors: to reconstruct a sinogram with 3200 views × 2048 pixels, (a non-optimized)
FGP with minimal oversampling requires 1.47s; to reconstruct a sinogram with 3072 views × 2048
pixels, ASTRA [108] takes 1.2s, NiftyRec [107] 35s. The presented figures indicate the possibility that
gridding projectors with minimal oversampling can compete with operators implemented on GPUs.

4.5 Coupling projector-backprojector for ADMM

The following section represents a reprinted manuscript published as: F. Arcadu, F. Marone and M.
Stampanoni, “An experimental study on the coupling projector-backprojector in iterative tomographic
reconstruction”, submitted, 2016 [30].

4.5.1 Abstract

The performance of an iterative reconstruction algorithm for X-ray tomography is strongly determined
by the features of the used forward and backprojector. For this reason, a large number of studies has
focused on the to design of projectors with increasingly higher accuracy and speed. To what extent the
accuracy of an iterative algorithm is affected by the mathematical affinity and the similarity between
the actual implementation of the forward and backprojection, referred here as coupling projector-
backprojector, has been an overlooked aspect so far.
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The experimental study presented here shows that the reconstruction quality and the convergence of
an iterative algorithm greatly rely on a good matching between the implementation of the tomographic
operators. In comparison, other aspects like the accuracy of the standalone operators, the usage of
physical constraints or the choice of stopping criteria may even play a less relevant role.

4.5.2 Introduction

Iterative reconstruction for X-ray tomography has been studied since the introduction of the first CT
scans in the mid 70s [36]. Differently from the filtered backprojection (FBP) algorithm [95], iterative
methods are non-linear and less computationally efficient, as the forward projector and its adjoint
operator, the backprojector, are generally called few times per iteration. In contrast to FBP, iterative
methods can, however, provide high quality reconstructions of tomographic underconstrained datasets,
characterized by poor signal-to-noise ratio (SNR), little number of views and/or missing data.
In general, iterative algorithms consist of the following elements: a solver for the cost function, physi-
cal constraints, a regularization scheme linked to the a-priori-knowledge regarding the specimen under
study and tomographic projectors.
Four main families of solvers can be identified for iterative reconstruction. Algebraic reconstruction
techniques like ART [13], SIRT [14] and SART [15] handle the tomographic problem as a system of
equations, which is solved by means of the Kaczmarz method [16]. Statistical methods as the max-
imum likelihood expectation maximization (MLEM) [110], the separable paraboloidal surrogate [17]
and the penalized weighted least square method (PWLS) [18, 111] incorporate the statistical model
ruling the signal formation at the detector. Recently, modern techniques for convex optimization like
the split Bregman method [112] and the alternate direction method of multipliers (ADMM) [113] have
also been applied to tomographic reconstruction [114–116]. Finally, the projection-onto-convex-sets
method [118] has been mainly used to address the interior tomography problem.
Physical constraints enforce at each iteration strict conditions in the image domain. Setting to zero
all negative pixel values and those falling outside the reconstruction circle is a typical example of
broadly exploited physical constraints.
Regularization schemes often utilized by iterative algorithms are Tikhonov [125], Huber [126] and
total variation (TV) [128]. In particular, a Huber or TV term can steer the cost function towards a
piecewise-constant solution, while preserving the spatial resolution.
Several implementations of the tomographic projectors have been proposed since the 70s. The pixel-
driven [95, 216, 217], ray-driven [95, 96, 217], distance-driven [94] and slant-stacking [93, 218]
approaches are different methods to approximate the Radon transform in real domain. Since the
listed approaches feature a complexity of O(N3) [93], their implementation on GPUs is a must to
make iterative reconstructions computationally feasible [108, 215, 219, 220]. Tomographic projectors
with complexity O(N2 log2N), based on hierarchical-decomposition [109], the non-uniform Fourier
transform [170] or the gridding method [28], are, instead, fast enough to not necessarily require a
GPU architecture.

So far, research in iterative reconstruction algorithms has mainly addressed the design of regulariza-
tion schemes leading to a better SNR-spatial resolution trade-off and the development of tomographic
projectors with increasingly higher accuracy and speed. An aspect that has been generally neglected is
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the role of the coupling projector-backprojector, i.e., the level of mathematical affinity and matching
between the actual implementation of the forward projector and its adjoint operator.
This work is an empirical investigation of the role played by this aspect on the performance of iterative
reconstruction algorithms for X-ray tomography. Ad-hoc experiments with state-of-the-art implemen-
tations of different tomographic operators (pixel-driven, ray-driven, distance-driven, slant-stacking,
gridding method) have been designed for this purpose. Reconstructions have been performed with
both analytical (FBP) and iterative (ADMM, PWLS, MLEM, SIRT) schemes. Results show that
the coupling projector-backprojector substantially affects accuracy and convergence of an iterative
algorithm. In some cases, the degree of matching between the tomographic projectors can even play
a more decisive role for the performance of the iterative method than other factors, like physical
constraints, stopping criteria or the accuracy of the standalone projectors.
A mathematical justification of the presented experimental results is not straightforward and is outside
the scope of this work. The aim of this study is, instead, to provide convincing experimental evidence
that a well-tuned coupling projector-backprojector is an absolute “must” for iterative tomographic
reconstruction schemes to avoid systematically sub-accurate results. A practical strategy for measur-
ing the coupling degree is also proposed: this tool could be very useful for users and developers of
software packages for iterative tomographic reconstruction to assess and validate the quality of the
proposed projector pairs.

4.5.3 Experimental framework

Tomographic projectors

The Radon transform, R, integrates a function f(x) : Rn −→ R over an hyperplane HY(n, t) = {x ∈
Rn | x · n = t}, where n is a unit vector and t ∈ R is the signed distance from the origin [92]:

R{f}(n, t) :=
∫
HY

dx f(x) =
∫

Rn

dx δ(t− x · n)f(x) =
∫

n⊥

dx f(tn + x) . (4.51)

δ is the Dirac function and n⊥ = {x ∈ Rn | x · n = 0} is the subspace orthogonal to n. For n = 2,
f(x) = f(x1, x2), n = (cos θ, sin θ), HY is a line of equation x · n = x1 cos θ+ x2 sin θ = t, thus, R
integrates f along lines. The second definition in (4.51) simplifies to:

R{f}(θ, t) :=

+∞∫
−∞

dx1

+∞∫
−∞

dx2 f(x1, x2) δ(x1 cos θ+ x2 sin θ− t) . (4.52)

R is also called forward projector and θ is, here, the angle formed by the detector line and the positive
x-semiaxis. The dual transform, i.e., the adjoint of the Radon transform, R∗, is called backprojection.
For n = 2 and given a generic function g(x) = g(x1, x2), R∗ is defined as [92]:

R∗{g}(x) =
1

2π

2π∫
0

dθ g (θ, x1 cos θ+ x2 sin θ) . (4.53)
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The six implementations of R and R∗ used in this work are for parallel beam geometry and a brief
description is given in the following.
The pixel-driven (PD) approach [95, 216, 217] works by connecting the source point to the selected
pixel center until intersection with the detector line, as displayed in Fig.4.20a. The pixel value is
assigned on the basis of a linear interpolation scheme to the two detector cells that enclose the ray
end point (they are indicated with a cross in Fig.4.20a).
The ray-driven (RD) approach [95, 96, 217] connects the source to the center of a selected detector
cell as shown in Fig.4.20b. The Siddon algorithm [181] is used to compute the intersection points of
the ray with the image grid (black dots in Fig.4.20b). Each pixel contributes to the selected detector
cell according to the ray path length.
The distance-driven (DD) approach [94, 98] in Fig.4.20c projects the pixel boundaries (black dots)
of each image row/column and the detector cell boundaries (white dots) onto a common axis (in
Fig.4.20c, the black squares are projected pixel boundaries, the white squares projected detector
cells). The overlap between the interval defined by the projected boundaries of an image pixel and
the one defined by the projected boundaries of a detector cell weights the contribution of the selected
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(a) Pixel-driven approach
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(b) Ray-driven approach
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(c) Distance-driven approach
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x2

x1

(d) Slant-stacking approach

Figure 4.20: Schematic representation of the different mechanisms characterizing the pixel-driven,
ray-driven, distance-driven and slant-stacking approach for forward projection (and backprojection).
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image pixel to the selected detector cell (and viceversa).
The slant stacking (SS) [93] method connects the source to each detector cell and divides the interval
[0,π] in two regions: one for nearly-vertical lines 0 6 θ 6 π/4 and 3π/4 6 θ 6 π; one for
nearly-horizontal lines π/4 6 θ 6 3π/4 (θ is the angle formed by the detector line and the positive x-
semiaxis). Figure 4.20d shows how SS works with a nearly-vertical line: the abscissas of the black dots
are obtained by using the ray equation and the x2 coordinates (white dots) of all image pixels. The
computed points (x1, x2) contribute to the selected detector cell according to a linear interpolation
scheme. The same approach is used for nearly-horizontal lines.
The gridding projectors [28, 170] are implementations of R and R∗ in the Fourier domain and are
based on the Fourier slice theorem (FSM) [92]. For the forward operation, the input image grid is,
first, multiplied with the deapodization matrix and, then, Fourier transformed (FFT-2D). The Fourier
Cartesian grid is convolved with a compact kernel to obtain Fourier samples on a polar grid. According
to the FSM, the inverse Fourier transform (IFFT-1D) of a polar slice at angle θ corresponds to the
object projection acquired at angle θ. The accuracy and efficiency of gridding projectors rely entirely
on the choice of the convolving kernel (that also determines the deapodizer) and the oversampling
ratio, α, used for the Fourier grid. In this work, two slightly different implementations are considered
[28]: one using a prolate spheroidal wavefunctions kernel and α = 2 (abbreviated with WF); the other
using a Kaiser-Bessel kernel and α = 1.5 (abbreviated with KB).

Degree of coupling projector-backprojector

Given a generic linear operator A : Cn1 −→ Cn2 , the adjoint, A∗, is defined as follows:

A∗ : Cn2 −→ Cn1 such that 〈y,A(x)〉 = 〈A∗(y), x〉 ∀ x ∈ Cn1 , ∀ y ∈ Cn2 , (4.54)

where < ... > is the notation for the inner product. Definition (4.54) can be used to measure
how well a computer implementation of A matches the computer implementation of A∗. The two
inner products in (4.54) are numerically evaluated with x and y being vectors of randomly generated
numbers. If the ratio r = 〈A∗(y), x〉 / 〈y,A(x)〉 matches 1 up to a reasonably sufficient numerical
precision, the implementations of A and A∗ can be considered well coupled.
For the tomographic case, a good coupling is achieved when the backprojector foresees the same
exact operations of the forward projector, but in reverse order and switching the roles of input/output
arrays for object and sinogram. The coupled implementations of R and R∗ listed in (4.5.3) feature
r = 1 up to the 7th digit. When not coupled, r = 1 at most up to the 4th digit.

Reconstruction algorithms

Analytical reconstructions are here performed with filtered backprojection (FBP) [95], that inverts
the Radon transform by applying the linear operator R∗ ◦∆, where ∆ is the ramp or Ram-Lak filter.
The trade-off between SNR and spatial resolution of FBP reconstructions depends on the type of
window superimposed to the Ram-Lak filter [12]. For this reason, FBP is used here with four different
filters [106]: a pure Ram-Lak filter that provides the highest spatial resolution and poorest SNR (abbr.
RAMP); a Ram-Lak filter combined with a Shepp-Logan window (abbr. SHLO); a Ram-Lak filter
combined with a Hanning window (abbr. HANN); a Ram-Lak filter combined with a Parzen window
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that provides the poorest spatial resolution and highest SNR (abbr. PARZ).
Four different iterative reconstruction algorithms have been selected for this study: the alternate
direction method of multipliers (ADMM) with TV regularization [115], the penalized weighted least
square (PWLS) with Huber penalty [18, 111], the maximum-likelihood expectation maximization
(MLEM) [110] and the simultaneous iterative reconstruction technique (SIRT) [13]. The number of
iterations is set to around 100, when studying the algorithm convergence. For the other experiments,
the stopping criterion and regularization strength are optimized according to the characteristics of the
considered dataset. Iterative reconstructions are run with a range of different stopping criteria and
weights of the penalty term. We define the optimal number of iterations and regularization strength
as those providing the best reconstruction accuracy, after appropriate exploration of the parameter
space. Nevertheless, it is important to point out that the presented trends in the performance of the
iterative algorithms as a function of the coupling projector-backprojector are independent from the
choice of the regularization parameters and confirmed also in case of a suboptimal selection.

Dataset and image quality assessment

The Shepp-Logan (SL) phantom [129] is used to create the simulated datasets for this study. Since
this phantom consists exclusively of roto-translated ellipses, its forward projection can be computed
analytically [12]. An analytical forward projection can be used in two ways: (i) as reference when
measuring the accuracy of a projector; (ii) as tomographic dataset not coupled to a specific operator
used within the selected reconstruction algorithm. A selection of experiments presented in Section
4.5.4 and 4.5.5 were also performed with different simulated objects and real datasets: the observed
trends are comparable to those obtained with the SL phantom and are, therefore, independent from
the chosen object.
The discretized forward projection of an object is also called sinogram, which corresponds to a matrix
∈ RM×N; M is the number of views and N the number of detector cells. In this study, projections
are always homogeneously distributed in [0,π). A sinogram in parallel beam geometry is considered
undersampled, when M < Nπ/2 [12]. FBP reconstructions of undersampled datasets are affected
by radially arranged line artifacts [12]. To simulate projections with a low photon statistics, Gaussian
noise with variance σ is added to the computed forward projection.
Four different analytical forward projections of the SL phantom are used in the experimental sections:
a well-sampled, noiseless SL sinogram with 402 views × 256 pixels, abbreviated as SL-FULL; an
undersampled, noiseless SL sinogram with 50 views × 256 pixels, abbreviated as SL-UNDER; a well-
sampled, noisy SL sinogram with 402 views × 256 pixels and additional Gaussian noise with σ = 3%
of the SL-FULL mean value, abbreviated as SL-NOISE; an undersampled noisy sinogram with 75
views × 256 pixels and additional Gaussian noise with the same σ of the SL-NOISE, abbreviated as
SL-UCONSTR.
The image quality is measured by the peak-signal-to-noise ratio (PSNR) [144], defined as:

PSNR = 10 log10

(
max{r}2

MSE

)
= 20 log10

(
|max{r}|√

MSE

)
, (4.55)
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where the mean squared error (MSE) is:

MSE =
1

PQ

P−1∑
i=0

Q−1∑
j=0

(f[i, j] − r[i, j])2 . (4.56)

r, f ∈ RP×Q are the reference and the image to be evaluated, respectively. The PSNR is preferable
over the MSE because more sensitive: as (f[i, j] − r[i, j])2 appears at the denominator, even small
differences can elicit non negligible variations of the PSNR value. In this study, the reference is either
SL or its analytical forward projection. When comparing an analytical or iterative reconstruction to
SL, the PSNR is computed within the reconstruction circle.

4.5.4 Operator coupling in analytical reconstruction

The following FBP tests provide a first indication of the role played by the coupling projector-
backprojector in iterative tomographic reconstruction. Reconstructed slices are not displayed here,
because differences are usually not detectable at visual inspection.
The accuracy of the standalone forward projectors DD, KB, PD, RD, SS and WF with respect to SL-
FULL is reported in Tab.17. The standalone backprojectors are used to perform FBP reconstructions
with different filters of SL-FULL, SL-UNDER and SL-UCONSTR6 and the corresponding results are
illustrated in Fig.4.21. The analysis in Tab.17 and Fig.4.21 suggest two facts. (i) The accuracy of
the standalone projector is not a good predictor of the accuracy of the standalone backprojector in
analytical reconstruction: e.g., KB has the lowest PSNR value in Tab.17, but it provides higher quality
reconstruction of SL-FULL than PD and DD (Fig.4.21a). (ii) The performance of a backprojector
is highly dependent on the characteristics of the dataset: e.g., SS has the highest PSNR score in
Tab.17 and the best reconstruction quality for SL-FULL (Fig.4.21a), but it performs poorly when
reconstructing underconstrained datasets (SL-UNDER and SL-UCONSTR in Fig.4.21b and 4.21c).
The experiment in Fig.4.22 evaluates the reconstruction accuracy of well-sampled noiseless sinograms
created by DD (Fig.4.22a), KB (Fig.4.22b) and PD (Fig.4.22c).

Table 17: Accuracy of the standalone forward projectors with respect to SL-FULL.

DD KB PD RD SS WF
PSNR 39.49 37.64 39.35 39.35 45.53 37.57

6Results with SL-NOISE show the same trends characterizing the reconstruction of SL-FULL, SL-UNDER and SL-
UCONSTR and therefore are not shown.
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(a) SL-FULL
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(b) SL-UNDER
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Figure 4.21: Accuracy of the standalone backprojectors in performing FBP reconstruction with differ-
ent filters (RAMP, SHLO, HANN, PARZ) of SL analytical sinograms. Reconstruction of (a) SL-FULL,
(b) SL-UNDER and (c) SL-UCONSTR.
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(a) FBP of DD sinogram
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(b) FBP of KB sinogram
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(c) FBP of PD sinogram

Figure 4.22: FBP reconstructions of sinograms with 402 views × 256 pixels created by the DD, KB
and PD forward projectors. The reconstructions are performed with different filters by the DD, KB,
PD, RD, SS and WF backprojectors.
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(a) FBP of a DD undersampled sinogram
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(b) FBP of a KB noisy sinogram
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(c) FBP of a PD underconstr. sinogram

Figure 4.23: FBP reconstructions of (a) an undersampled sinogram with 100 views × 256 pixels
created by the DD, (b) a noisy sinogram with 402 views × 256 pixel and additional Gaussian noise
(σ = 2% of SL-FULL mean) created by KB and (c) an underconstrained sinogram with 100 views ×
256 and additional Gaussian noise (σ = 2% of SL-FULL mean) created by PD. The reconstructions
are performed with different filters by the DD, KB, PD, RD, SS and WF backprojectors.

The effect of the coupling projector-backprojector is clear: regardless of the filter choice, the best
reconstruction quality is achieved when the backprojector matches the operator used to compute
the input sinogram. The weaker the action of the filter, the more pronounced the impact of the
coupling on the reconstruction accuracy. The results of the FBP reconstructions in Fig.4.23 show
that the role of the coupling remains important even when dealing with undersampled (Fig.4.23a),
noisy (Fig.4.23b) or underconstrained (Fig.4.23c) datasets. Considering that the performance of the
standalone backprojectors can strongly vary as a function of the dataset (Fig.4.21), it is remarkable
that undersampling and noise fail at breaking the effect of the coupling projector-backprojector. The
important role of the coupling projector-backprojector is also clear when the sinograms are computed
by RD, SS and WF (not shown).

4.5.5 Operator coupling in iterative reconstruction

To study the coupling effect on the convergence of iterative algorithms, SL-FULL is reconstructed with
ADMM, PWLS, MLEM and SIRT. In each test, a different pair of forward and backward operators
is used (Fig. 5-7). Only results for selected combinations of tomographic operators are shown in this
section for illustration. The observed trends are however confirmed by all combinations.
ADMM converges and reaches the lowest value of the cost function when the backprojector matches
the forward operator (Fig.4.24). When the backprojector does not match the forward operator, three
different scenarios are observed. (i) ADMM converges but the cost function does not reach the min-
imum value (SS and PD curves in Fig.4.24a). (ii) ADMM simply does not converge (KB and WF
curves in Fig.4.24b). (iii) ADMM reaches the lowest value of the cost function before diverging (DD
curve in Fig.4.24a).
Differently from ADMM, the convergence of PWLS is not endangered by a mismatch between to-
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mographic operators. Nevertheless, the cost function curve of PWLS with coupled operators is the
lowest at each point after few initial iterations. This is visible in the insets of Fig.4.25a and 4.25b.
MLEM and SIRT behave similarly to PWLS: the matching between forward projector and backpro-
jector is not essential to guarantee convergence, but is required to obtain the lowest cost function
curve at each point, as shown in the insets of Fig.4.26a and 4.26b. Despite this similarity to PWLS,
MLEM and SIRT can, instead, easily “explode” with an undersampled or noisy dataset if the ope-
rators are not coupled. For this reason, no reconstruction of underconstrained datasets done by
SIRT and only few cases with MLEM are shown in the following. SIRT and MLEM share a com-
mon aspect: the computation of the diagonal matrix C = {cjj = 1/

∑
i aij} is necessary, where

{aij} are the elements of the matrix representation of R. The cjj’s can be efficiently calculated as
R∗(1) , RM×N 3 1 = {(1)ij = 1 ∀ i, j}. This computation can be rather sensitive and produce very
high values at the image boundaries, compromising the stability of the iterative procedure especially
when using uncoupled projectors. On the other hand, since ADMM and PWLS do not involve po-
tentially sensitive computations, tests of these algorithms were not restricted to specific datasets or
projector pairs.
The results in Fig.4.24, 4.25 and 4.26 clearly illustrate the influence of the coupling projector-
backprojector on the convergence of all considered iterative procedures: the best performance is
achieved only when the operators match. The level of the cost function of an iterative algorithm after
a certain amount of iterations is not completely related to the reconstruction accuracy, or, in other
words, reaching the minimum of the cost function does not necessarily mean reaching the closest pos-
sible approximation to the original phantom. Additional experiments focusing on the reconstruction
accuracy have been performed. Reconstructions are displayed when differences can be perceived at
visual inspection.
Table 18 presents the results of ADMM reconstructions of SL-UNDER with the PD forward projector.
The best quality is achieved when the PD backprojector is used. Nevertheless, differences are rela-
tively small and the reconstructions look very similar. The coupling has a much stronger effect when
reconstructing SL-NOISE, as shown in Fig.4.27: the best ADMM reconstruction is obtained when the
operators match (SS, in this case) and differences in PSNR are up to 3.6 dB. At visual inspection, re-
constructions in Fig.4.27b, 4.27c and 4.27d are slightly more degraded than in Fig.4.27a, as suggested
by the PSNR score. Results in Fig.4.28 show once again the great impact of the coupling effect on
the reconstruction accuracy in presence of noise. Since KB and WF are both based on the gridding
method and are highly coupled (as also resulting from the previous analysis), the reconstruction in
Fig.4.28d is nearly identical to the one performed with matching operators in Fig.4.28a. The combi-
nation of a noisy underconstrained dataset and poorly coupled operators leads, instead, to strongly
degraded ADMM reconstructions (Fig.4.28b and Fig.4.28c).
The PSNR values in Tab.19(a) and 19(b) correspond, respectively, to PWLS reconstruction of SL-
UNDER using the KB forward projector with KB, DD, SS and WF backprojectors and of SL-NOISE
using the SS forward projector with SS, DD, WF and PD backprojectors.For PWLS, the coupling
projector-backprojector has slightly more impact in presence of undersampled data than of purely
noisy data: the spread of PSNR values in Tab.19(a) is, indeed, a bit larger than for the values in
Tab.19(b). Similarly to the results of Fig.4.28, the PWLS reconstruction of underconstrained datasets
with coupled projectors has the highest accuracy (Fig.4.29a), whereas severe artifacts can occur when
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(a) ADMM –R=RD
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(b) ADMM –R=DD

Figure 4.24: Study of convergence of the ADMM, using RD (Fig.4.24a) or DD (Fig.4.24b) as forward
projectors combined to all six backprojectors considered in this study.
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(a) PWLS –R=WF
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(b) PWLS –R=SS

Figure 4.25: Study of convergence of the PWLS, using WF (Fig.4.25a) or SS (Fig.4.25b) as forward
projectors combined to all six backprojectors considered in this study.

reconstructing an underconstrained dataset with uncoupled operators (Fig.4.29b).
Reconstructions with MLEM and SIRT are very sensitive to the coupling effect with both undersampled
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Figure 4.26: Study of convergence of the MLEM and SIRT, both using PD as forward projector
combined to all six backprojectors considered in this study.

and noisy datasets. Several reconstruction attempts for SL-UNDER, SL-NOISE and SL-UCONSTR
using these algorithms with non-matching operators failed, as the procedure quickly diverges after few
iterations. Figure 4.30 shows an experiment with MLEM, PD forward projector and PD, RD and KB
backprojectors: the reconstruction with coupled operators (Fig.4.30a) is once again characterized by
the highest accuracy.The last experiment is designed to roughly estimate the impact of the coupling

Table 18: PSNR scores of ADMM reconstructions of SL-UNDER using PD as forward projector and
PD, KB, RD, WF as backprojectors.

R∗=PD R∗=KB R∗=RD R∗=WF
PSNR 22.06 21.67 21.29 21.46

projector-backprojector on the reconstruction quality with respect to other two fundamental compo-
nents: physical constraints (i.e., setting to zero all negative pixels at each iteration) and optimal
number of iterations. As example we show here the results for SL-UCONSTR and the ADMM. The
highest PSNR in Tab.20 corresponds to case (1), where all three components (coupling, constraints,
optimal number of iterations) are present. The interesting result is that case (2), that relies only
on coupled operators, achieves a better reconstruction quality than case (3), where constraints and
optimal number of iterations are kept, but the operators are not matching. This experiment gives
a hint of the fact that, in some cases, the coupling projector-backprojector could even play a more
decisive role than other crucial factors on the accuracy of an iterative algorithm. To validate the
generality of these last results, further in-depth analysis is required, subject of future work.
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(a) R∗=SS – PSNR=20.13 (b) R∗=DD – PSNR=17.15

(c) R∗=KB – PSNR=16.50 (d) R∗=RD – PSNR=18.51

Figure 4.27: ADMM reconstructions of SL-NOISE using SS as forward projector and SS, DD, KB,
RD as backprojectors.

Table 20: Three different ADMM reconstructions of SL-UCONSTR. Case (1): coupled operators +
constraints + optimal number of iterations. Case (2): coupled operators. Case (3): constraints +
optimal number of iterations.

Case 1 Case 2 Case 3
PSNR 19.69 18.97 18.10

Table 19: PSNR scores of PSWS reconstructions of SL-UNDER using PD as forward projector (left)
and SL-NOISE using SS as forward projector (right).

R∗=KB R∗=DD R∗=SS R∗=WF
PSNR 22.09 19.15 19.24 21.50

R∗=SS R∗=DD R∗=WF R∗=PD
PSNR 23.04 22.51 22.39 22.47
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(a) R∗=KB – PSNR=16.87 (b) R∗=PD – PSNR=12.53

(c) R∗=RD – PSNR=14.17 (d) R∗=WF – PSNR=16.86

Figure 4.28: ADMM reconstructions of SL-UCONSTR using KB as forward projector and KB, PD,
RD, WF as backprojectors.

4.5.6 Conclusion

This work is an experimental study on the impact of the coupling projector-backprojector in iterative
reconstruction schemes. Since iterative algorithms call the tomographic operators few times per itera-
tion, it can be expected that the level of matching between the actual implementation of the forward
projector and backprojector can deeply affect the performance of the entire iterative procedure.
A framework consisting of four iterative methods (the alternate direction method of multipliers, the
penalized weighted least squares, the maximum-likelihood expectation maximization and the simulta-
neous iterative algebraic technique) working with six different projectors (distance-driven, pixel-driven,
ray-driven, slant-stacking and two gridding methods) has been conceived to test the aforementioned
hypothesis.
All iterative experiments on simulated data clearly show that the performance of every selected method
is deeply affected by the coupling projector-backprojector in terms of convergence and accuracy. The
best convergence behaviour and the highest reconstruction quality are systematically obtained when
the tomographic operators match. This conclusion holds regardless of the nature of the input tomo-
graphic dataset in terms of angular sampling or SNR. Moreover, there is indication that the coupling
projector-backprojector may represent one of the major players determining the performance of an
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(a) R∗=KB – PSNR=19.90 (b) R∗=SS – PSNR=17.84

(c) R∗=DD – PSNR=19.61 (d) R∗=PD – PSNR=19.62

Figure 4.29: PWLS reconstructions of SL-UCONSTR using KB as forward projector and KB, SS, DD,
PD as backprojectors.

(a) R∗=PD – PSNR=20.74 (b) R∗=RD – PSNR=10.63 (c) R∗=KB – PSNR=19.42

Figure 4.30: MLEM reconstructions of SL-UNDER using PD as forward projector and PD, RD, KB
as backprojectors.

iterative algorithm, even with respect to physical constraints or optimal number of iterations.
The results of this study indicate that it would be strongly advisable for users and developers of
software packages for iterative tomographic reconstructions to always select projector pairs with a
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high mathematical affinity and to carefully assess and validate the degree of coupling of the used im-
plementations. This strategy is important to avoid results systematically characterized by suboptimal
accuracy.
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Chapter 5
ADMM for CT reconstruction

This chapter focuses on a numerical optimization technique able to solve a large set of problems and
that only recently has been applied to tomographic reconstruction: the alternate direction method of
multipliers, abbreviated as ADMM.
The ADMM has the upside of being extremely versatile when it comes to incorporating different for-
ward models, regularization schemes and constraints and yields reconstructions of high quality after
a relatively small number of iterations.
We discuss the usage of the ADMM to tackle the reconstruction of underconstrained tomographic
datasets. Its accuracy, convergence and computational efficiency are here experimentally character-
ized.

5.1 Alternate direction method of multipliers

5.1.1 Mathematical formulation

The ADMM solves numerical optimization problems of the form [27]:

minimize f(x) + g(z)

subject to Ax + Bz = c ,
(5.1)

where f(x) : Rn −→ R, g(z) : Rm −→ R, A ∈ Rp×n and B ∈ Rp×m. The second line of Eq.
(5.1) is called “equality constraint” or simply “constraint”. The functions f and g are assumed to be
convex, i.e. [221]:

f (βx + (1−β)y) 6 βf(x) + (1−β)f(y) ∀ x, y ∈ Rn ∀β ∈ R , (5.2)

and equivalently for g. First, the ADMM creates the augmented Lagrangian corresponding to problem
(5.1):

Lµ(x, z,α) = f(x) + g(z) +αT (Ax + Bz − c) +
µ

2
‖Ax + Bz − c‖22 , (5.3)
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with µ > 0. α is the vector of Lagrangian multipliers also called dual variable. The initial constrained
optimization problem (5.1) is transformed into an unconstrained problem:

argmin
x , z ,α

Lµ(x, z,α) . (5.4)

The solution to (5.4) is, then, iteratively approximated with the following sequence of steps [27]:

x(k+1) = argmin
x

Lµ

(
x, z(k),α(k)

)
z(k+1) = argmin

z
Lµ

(
x(k+1), z,α(k)

)
α(k+1) = α(k) + µ

(
Ax(k+1) + Bz(k+1) − c

)
.

(5.5)

The following pattern characterizes the ADMM: incorporation of the equality constraint into Lµ; split
of the minimization of Lµ into partial minimizations with respect to x and z; computation of the
solution through a sequential update of the three steps in (5.5). The ADMM works also when the
solutions of the x- and z-subproblem are roughly approximated. The roles played by the variables x
and z are not entirely symmetric, meaning that in general the order of appearance of the subproblems
in (5.5) matters. The Lagrangian can be also expressed in the scaled form by introducing the primal
residual variable r = Ax + Bz − c. The second and third term in Eq. (5.3) become [27]:

αT (Ax + Bz − c) +
µ

2
‖Ax + Bz − c‖22 = α

T r +
µ

2
‖r‖22 =

µ

2

∥∥∥∥r +
1

µ
α

∥∥∥∥2
2

−
1

2µ
‖α‖22

=
µ

2
‖r + u‖22 −

µ

2
‖u‖22 ,

(5.6)

where u = α/µ is the scaled dual variable. By introducing u in Eq. (5.5), the ADMM steps become
[27]:

x(k+1) = argmin
x

(
f(x) +

µ

2

∥∥∥Ax + Bz(k) − c + u(k)
∥∥∥2
2

)
z(k+1) = argmin

z

(
g(z) +

µ

2

∥∥∥Ax(k+1) + Bz − c + u(k)
∥∥∥2
2

)
u(k+1) = u(k) + Ax(k+1) + Bz(k+1) − c .

(5.7)

This second form of the ADMM allows to express the scaled dual variable at an iteration k as the
sum of all residuals until that iteration, i.e., u(k) = u(0) +

∑k
j=0 r(j).

The ADMM converges if both the x- and z-subproblem admit a solution and if the non-augmented
Lagrangian, Lµ=0, has a saddle point, i.e. ∃ (x∗, z∗,α∗) such that L0(x∗, z∗,α) 6 L0(x∗, z∗,α∗) 6
L0(x, z,α∗) ∀ x, z,α [27]. If these assumptions hold, it follows that [27]:

• the residual converges: lim
k→∞ ‖r(k)‖22 = 0;
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• the objective converges: lim
k→∞

(
f(x(k)) + g(z(k))

)
= p∗ := inf

{
f(x) + g(z)

∣∣∣∣Ax + Bz = c
}
;

• the dual variable converges: lim
k→∞ ‖α(k)‖22 = α∗.

Experimental studies [27, 222] have shown that the ADMM is suited to optimization problems, that
do not require solutions of high accuracy. Generally speaking, if a rough solution is satisfactory
for the problem under study, the ADMM can converge in few tens of iterations, otherwise a large
unknown number of iterations may be needed to improve accuracy. For CT reconstruction, the “rough”
approximated solution provided by the ADMM results comparable and sometimes even improved at
visual inspection with respect to the reconstructions obtained with other iterative algorithms, as the
experiments presented in 5.2 show.
A practical stopping criterion for the ADMM requires two distinct ε-values [27, 223]: a εpri for the
norm of the primal residual, ‖r(k)‖2; a εdual for the norm of the dual residual, ‖s(k)‖2, defined as
s(k+1) = µATB(z(k+1) − z(k)).

5.1.2 General patterns for CT reconstruction

Problem (5.1) for CT image reconstruction simplifies to:

minimize
1

2
‖Ax − c‖22 + λR(x) (5.8)

where A = R, x is the unknown tomographic slice and c is the input sinogram. The first member of
problem (5.8) is also called fidelity term and is differentiable with respect to x for any x (differently
from the non-squared term ‖Ax − c‖2). R(x) is a function incorporating the a priori knowledge
available for the object x and it is also called regularization term. R(x) enforces, e.g., a specific
condition on the p-norm of x or promotes sparsity in a certain domain.
Consider now R(x) of the form R(x) = ‖Gx‖p, where G represents the gradient operator.
A strategy to decouple the fidelity and regularization terms is to introduce an auxiliary variable z
[103]:

minimize
1

2
‖Ax − c‖22 + λ‖z‖p

subject to Gx − z = 0 .
(5.9)

The augmented Lagrangian corresponding to problem (5.9) is:

Lµ(x, z,α) =
1

2
‖Ax − c‖22 + λ‖z‖p +α

T (Gx − z) +
µ

2
‖Gx − z‖22 . (5.10)
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To obtain closed-form expressions for the subproblems of procedure (5.5), the partial derivatives of
Lµ with respect to x and z must be computed. For the x-subproblem (the z-subproblem is considered
in detail in the next subsection):

0 =
∂

∂x
Lµ(x, z,α) = AT (Ax − c) + GTα+ µGT (Gx − z)

=
(
ATA + µGTG

)︸ ︷︷ ︸
Ã

x −
(
AT c − GTα+ µGTz

)︸ ︷︷ ︸
c̃

= Ãx − c̃ . (5.11)

Since Ã is symmetric and positive definite, the conjugate gradient (CG) technique [224] can be used
to compute an approximated solution of the x-subproblem:

x(k+1) = argmin
x

Lµ

(
x, z(k),α(k)

)
= CG

{
Ãx − c̃

}
. (5.12)

The number of iterations required by the CG to obtain a reasonable approximation of x(k+1) depends
on the conditioning number of Ã, defined as the ratio between the maximum and minimum singular
value of Ã, i.e., κ = λmax(Ã)/λmin(Ã). The higher κ, the more iterations are needed for CG to
achieve a certain reconstruction accuracy. The preconditioned conjugate gradient (PCG) can be used
to substantially improve the CG convergence. The preconditioner is a symmetric positive definite
matrix used to decrease the conditioning number of the problem to be solved by CG. At the cost of
one matrix-vector multiplication before the CG main loop and one inside it, preconditioning allows to
reach the minimum of the cost function in less iterations. Ad-hoc strategies for iterative tomographic
reconstruction have been proposed, for example, in [225–229].
A slightly different formulation of the ADMM for CT is the so called plug-and-play (ADMP) [230].
The plug-and-play formulation simply replaces the equality constraint in Eq.(5.9) with x− z = 0. The
ADMP Lagrangian, therefore, looks like:

Lµ(x, z,α) =
1

2
‖Ax − c‖22 + λR(z) +α

T (x − z) +
µ

2
‖x − z‖22

=
1

2
‖Ax − c‖22 + λR(z) +

1

2µ
‖µ(x − z) +α‖22 −

1

2µ
‖α‖22 ,

(5.13)

where the last quadratic term can be neglected since:

min
x,z

Lµ(x, z,α) = min
x,z

{1
2
‖Ax − c‖22 + λR(z) +

1

2

∥∥∥∥x − z +
α

µ

∥∥∥∥2
2

}
(5.14)

The first subproblem becomes:

0 =
∂

∂x
Lµ(x, z,α) = AT (Ax − c) +

(
x − z +

α

µ

)
=
(
ATA + µI

)︸ ︷︷ ︸
Ã(p)

x −

(
AT c + z −

α

µ

)
︸ ︷︷ ︸

c̃(p)

= Ã(p)x − c̃(p) .
(5.15)



5.1 alternate direction method of multipliers 115

Without considering the partial derivative of Lµ with respect to z, the second subproblem becomes:

min
z

Lµ(x, z,α) = min
z

{1
2

∥∥∥∥x − z +
α

µ

∥∥∥∥2
2

+ λR(z)
}
= min

z

{1
2
‖z − x̃‖22 + λR(z)

}
. (5.16)

The last form of Eq.(5.16) explicits the fact that, regardless of the choice of R(z), the z-subproblem
corresponds exactly to a denoising problem. The appealing feature of the ADMP is that the fidelity
and the regularization terms are effectively decoupled from each other: the x-subproblem does not
contain the regularization term differently from Eq. (5.11), where G is present; the z-subproblem
does not contain the matrix A. The “plug-and-play” denomination of the ADMP comes from the
fact that any denoising algorithm can be directly used to obtain an approximated solution of the
z-subproblem.

5.1.3 Regularization schemes

The reconstruction of underconstrained tomographic datasets represents in general an ill-posed under-
determined problem, due to presence of noise in the data and the fact that the number of unknowns
is larger than the number of equations (namely, A ∈ Rmn×n

2
and m < n). To guarantee a stable

inversion of Ax = b = b̂+ e (b̂ indicates the noise-free data, e the noise component), a regularization
scheme must be employed.
The regularization term, R(x), added to 1/2||Ax − b||22 can be interpreted in different ways: (i) it
prevents the solution from overfitting the data, thus, assimilating the noise affecting b; (ii) from a
Bayesian point of view, R(x) imposes a prior distribution on the model parameters; (iii) it represents
some a priori knowledge available on x used to steer the optimization towards an expected result.
Standard and state-of-the-art regularization schemes for iterative tomographic reconstruction can be
grouped in three categories: Lp-norm, dictionary-based and non-local priors.

Lp-norm priors

Considered x ∈ Rn and p ∈ R | p > 0, the Lp-norm of x is defined as:

‖x‖p =

(
n∑
i=1

|xi|
p

) 1
p

, (5.17)

and for p =∞
‖x‖∞ = max {|x1|, |x2|, ..., |xn|} . (5.18)

Lp-norms with p > 1 (included p = ∞) satisfy the following three properties: (i) only the zero
vector has zero norm; (ii) the norm of a vector is positive homogeneous with respect to multiplication
by a scalar; (iii) the triangle inequality holds. Instead Lp-norms with 0 < p < 1 are not complete,
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because the triangle inequality is not satisfied. The case p = 0 does not correspond to a real norm
and the notation ‖x‖0 represents the number of non-zero components of x [127]:

‖x‖0 =
n∑
i=1

(1− δ(xi)) . (5.19)

Each Lp-norm is characterized by a n-th dimensional “ball” with a surface of specific shape. The
“balls” of L0, L1/2, L1, L2 for n = 2 are depicted in Fig. 5.1 (colored shapes) and correspond to
two segments on the axis (green), a concave figure (orange), a square rotated by 45°(purple), a circle
(light blue) and a square (blue), respectively. To graphically understand the role played by a Lp-norm
term, consider the following problem:

argmin
x
‖x‖p such that x ∈ r : x2 = x1 tanθ+q . (5.20)

Problem (5.20) is solved by increasing the p-norm “ball” until it intersects the straight line r in one
point (Fig. 5.1). For p = ∞, the solution to (5.20) is found when the blue square is increased in
size until its right top corner touches r; the solution for p = 2 corresponds to the tangent point on r
of the circle with radius ρ = q cos θ; when p 6 1, the solution coincides with the point (0,q). This
simple example anticipates the connection between Lp-norm regularization terms with p 6 1 and
compressive sensing : the solution to (5.20) with p 6 1 is sparse on the basis {(1, 0)T , (0, 1)T }, as
(0,q) has only one non-zero component. This can occur for p > 1 only in particular cases (e.g., r
being vertical or horizontal).

x2

x1
O

p = ∞
p = 2
p = 1

p = 1/2

p = 0

r

θ

(0,q)

Figure 5.1: Lp balls for p = 0, 0.5, 1, 2,∞ in the two dimensional case. Fixed a value for p, problem
(5.20) is solved by expanding the corresponding ball until it intersects the line r in one point.
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Compressive sensing (CS) [127, 231, 232] deals with the recovery of signals that are sparse on a certain
frame, even when the number of available samples is not sufficient according to the Nyquist-Shannon
theorem. A signal x ∈ Rn is sparse on a frame D ∈ Cn×p with columns {d1, d2, ...} (called atoms)
and n 6 p if:

x = Dc c ∈ Rp
∣∣ ‖c‖0 = k and k� p . (5.21)

If p = n, the frame corresponds to an orthonormal basis and < di, dj >= δij; for p > n, the frame
corresponds to an oversampled dictionary, where the first n columns are linearly dependent. The
general formulation for CS tomographic reconstruction is:

argmin
x

{
‖Ax − b‖22 + λ ‖c‖0

}
s.t. c = D−1x , (5.22)

which is equivalent to seek for a reconstruction x whose forward projection matches b and has a cer-
tain level of sparsity on the frame defined by the atoms {d1, d2, ...}. The 0-norm term is non-convex
as any other p-norm term with p < 1 (Fig. 5.1). Since convex cost functions are easier to tackle
in terms of numerical optimization, ‖...‖0 can be replaced with ‖...‖1, that is convex and yields a
solution with reasonable sparsity on the selected frame, as shown by the example of problem (5.20)
and Fig. 5.1. When ‖...‖1 is used instead of ‖...‖0 inside (5.22), the problem is called least absolute
shrinkage and selection operator (LASSO) [233].

A type of regularization that has found wide-spread successful applications in signal processing and
image reconstruction is total variation (TV) [128], defined in discretized form as:

‖x‖TV = ‖∇x‖1 =
n∑
i=1

(
|∇x1x|+ |∇x2x|

)
, (5.23)

which is a LASSO-form of problem (5.22) with D−1 = G = matrix representation of the gradient
operator ∇. A TV term in (5.22) encourages the solution to be piecewise-constant, while preserving
discontinuities corresponding to edges. As image denoising method, TV offers a better SNR/spatial
resolution trade-off compared to simple filtering schemes (Gaussian blurring, mean filter, ...) [128].
To better understand the idea of TV, let assume that x̃ is the computed solution of Ax = b, with b
affected by white noise. Figure 5.2 shows that x̃ can be thought as x̃ = x̄+ e, where x̄ is the noiseless
target object and e the noise component backprojected from the input data. A large number of
natural images and specimens studied with CT can be roughly considered piecewise constant, as they
feature high level of sparsity in the gradient domain. The gradient of a white noise image, instead, is
not sparse. Therefore, TV steers the solution of the reconstruction problem towards a signal sparse in
the gradient domain, which should correspond to the piecewise constant target object, and suppresses
all components not characterized by such property. In the ADMM scheme of (5.10), G is the matrix
representation of ∇ and the z-subproblem becomes:

0 =
∂

∂z
Lµ(x, z,α) = λ

d

dz
‖z‖1 −α+ µ (z − Gx) , (5.24)
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which leads to the shrinkage function [234, 235]:

z(k+1) = max
{∣∣∣∣Gx(k+1) +

α(k)

µ

∣∣∣∣− λ

µ
, 0
}

sgn
(

Gx(k+1) +
α(k)

µ

)
. (5.25)

The z-subproblem of the ADMM with TV regularization can be, therefore, computed very efficiently.
The z-subproblem of ADMP with TV regularization can be solved, instead, by the split-Bregman [112]
or Chambolle [236] TV denoising method, that can be more effective than (5.25) but at a higher
computational cost.
TV suits the reconstruction of piecewise constant images, but not images with smooth regions (e.g.
ramps): staircase artifacts are generated by TV in the attempt of transforming smooth regions into
piecewise constant ones. Regularization schemes called generalized or higher order total variation
(GTV or HOTV) [237–240] have been proposed to address the regularization/denoising of smooth
objects. These methods make use of higher order derivatives of the TV argument. The GTV imple-
mentation discussed in [239] was implemented inside the ADMP. The FFT-based approach for GTV
introduced by [241] is computationally efficient when limited to 2D and is tested inside the ADMP in
5.2.7. GTV solves in general the following problem [240, 241]:

argmin
x

{1
2
‖x − x̃‖22 + ‖x‖

λ1,λ2
gtv

}
= argmin

x

{1
2
‖x − x̃‖22 + λ1‖Gx‖(2,n)

1,2 + λ2‖Hx‖(3,n)
1,2,3

}

‖s‖n1,n2
1,2 :=

n1−1∑
i=0

n2−1∑
j=0

s2i+jn1

1/2 ,
(5.26)

where x̃ is the noisy input image, G and H are the gradient and Hessian operator, respectively. The
FFT-based algorithm for GTV introduced by [241] features as input parameters λ1, λ2 and a stopping
criterion (chosen to be, once again, a fixed number of iteration). For the regularization parameters
of the ADMP, we set λ = λ1 = c · λ2, c ∈ R0.

Noisy reconstruction

= +

Signal component Noise component Gradient of the signal component Gradient of the noise component

SOBEL FILTER

Figure 5.2: A noisy reconstruction can be considered as the sum of the target object plus a noise
component. The target object is piecewise constant and, therefore, has very sparse gradient. The
noise component is, instead, dense in the gradient domain. TV can steer the optimization towards a
solution featuring sparse gradient, while suppressing the noise component.
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Dictionary-based regularization

The orthogonal matching pursuit (OMP) [242] is a greedy algorithm that can directly solve problem
(5.22), without replacing ‖...‖0 with ‖...‖1. In particular, the OMP can solve problems of the form:

argmin
c
‖c‖0 subject to ‖Dc − x‖22 6 ε

argmin
c
‖Dc − x‖22 subject to ‖c‖0 6 k .

(5.27)

The OMP can be used with an oversampled dictionary D, that is either precomputed, i.e. constructed
with a mathematical formula, or learnt through appropriate training on a specific dataset.
Creating an oversampled dictionary for a real-size image would require long computations and non-
negligible memory capacity to finally store a matrix, where each column has the same size of the input
image. To keep D small in size, the common strategy is to divide the real-size image X ∈ Rn

2
into

overlapping patches xi with
√
n×
√
n pixels [243–245] and to use xi as inputs to either compute the

dictionary or to solve one of (5.27) through the OMP. Moreover, working with overlapping patches
prevents the appearance of block artifacts, that would occur with non-overlapping patches, and binds
the dictionary-based regularization to be local [246].
The OMP solves (5.27) by computing a series of inner products between the overlapping patches of
the image and the columns of the dictionary. For the second problem of (5.27) and for a given patch
xi, e.g., the OMP retains the columns of D, {di1 , di2 , ..., dik}, yielding the k highest inner products.
The selected patch is, then, expressed as a linear combination of such columns:

xi = Dc = c1di1 + c2di2 + ... + ckdik s.t. cj =
〈
xi, dij

〉
. (5.28)

A precomputed dictionary performing well for image denoising is the one based on the discrete co-
sine transform (DCT) [246, 247]. Two established methods to create trained dictionaries for image
denoising/reconstruction are the principal component analysis (PCA) [248] and the K-SVD algorithm
[246].
Figure 5.3 shows how dictionary-based denoising works. First, a precomputed or learnt dictionary is
created, then, the overlapping patches of the noisy image are used as input for the OMP algorithm
to solve one of the problems in (5.27). The denoised image is constructed by replacing each original
patch with a linear combination of the “most representative” atoms of D as explained in (5.28). In
theory, a learnt dictionary offers a more sparse representation than a precomputed one for images
similar to those that were used for the training. As example, let us consider two SRXTM datasets of
distinct samples of the same kind. If the dictionary is learnt on the tomographic reconstructions of
the first dataset, the reconstructions of the second dataset will result more sparse on this dictionary
than on a precomputed one. When a training dataset is not available or is not reliable enough, a
precomputed dictionary is a viable option, as it will yield a reasonably good sparse representation.
How to create a learnt dictionary than performs better than a precomputed one for a specific target
dataset is still an open issue.
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DCT

PRECOMPUTED LEARNT

TRAINING IMAGE PCA K-SVD

DICTIONARY DENOISING

NOISY LENA'S SISTER DCT REPRES. PCA REPRES. K-SVD REPRES.

SSIM = 0.179 SSIM = 0.196 SSIM = 0.201SSIM = 0.049

DICTIONARY CREATION

Figure 5.3: Procedure to perform dictionary-based denoising. First, a precomputed or learnt/trained
dictionary is created (red box). Second, the overlapping patches of the noisy image are used as input
for the OMP algorithm to solve one of the problems in (5.27). Each individual noisy patch is replaced
with a linear combination of the “most representative” dictionary atoms, as shown in (5.28). In case
a learnt dictionary is used, the training and target images should be similar to a certain extent.

Non-local priors

The denoising methods described so far, scan the neighborhood of each pixel and perform some
type of local averaging. The non-local means (NLM) algorithm [249, 250] removes the constraint of
locality, such that a pixel can be averaged with any similar pixel in a preselected window of search.
Given a noisy image x ∈ Rn, the NLM denoised version xnlm is computed as [250]:

xnlmi =
∑
j∈Ωs

ωijxj

0 6 ωij 6 1 ,
∑
j

ωij = 1 , ωij ∝ exp
(
−(xΩi − xΩj)

TW (xΩi − xΩj)
)

,
(5.29)

where Ωs is the window of search, defining the level of non-locality, ωij is the weight encoding
the similarity between pixel i and pixel j that, by construction, has an exponential dependence on
the W-weighted square difference between the neighborhood Ωi of pixel i and Ωj of pixel j. The
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mechanism behind the NLM is depicted in Fig. 5.4. The drawback of the NLM is that it cannot
be utilized in the context of energy minimization, thus, it cannot be generalized to other cases than
denoising.
The non-local total variation (NLTV) [251] is based on the same idea as NLM, but offers, in addition,
a tool that can be used for variational regularization theory. The convex NLTV functional of an image
x ∈ Rn is [251]:

R(x) =
n∑
i=0

|∇ωi x| , (∇ωi x)j :=
√
ωij (xj − xi) , ωij = ωji , (5.30)

where ∇ωi is the non-local gradient operator characterized by positive, symmetric weights ω ∈ [0, 1]
that correspond to those in Eq. (5.29). Since the non-local gradient is computed between a given
pixel i with all the n image pixels, ∇ωi x ∈ Rn

2
. The non-local gradient can be also interpreted

as the gradient of a graph having the given image pixels for nodes. NLTV has been applied to
image denoising [251, 252] and used as regularization scheme for iterative reconstruction algorithms
[202, 253–255].
Non-local denoising methods tested inside the ADMP in 5.2.7 are the non-local means (NLM) al-
gorithm [249, 250], and the non-local TV (NLTV) computed with the split-Bregman method [202].
These two algorithms are computationally efficient when limited to 2D problems. The NLM and
NLTV share the following input parameters: the neighborhood size (Ωi and Ωj in (5.29)), the search
radius (defining Ωs in (5.29)) and the degree of filtering, h, (embedded inside the weighting matrix

Ωj

Ωi Ωs

Ωk

Figure 5.4: Sketch showing the mechanism of the NLM. Given a pixel i with neighborhood Ωi, all
pixels within the window of search Ωs around pixel i are used to compute the similarity weights of
Eq. (5.29). The weights range in [0,1] and their value depends on the weighted square difference
between Ωi and the neighborhood of the investigated pixel. For example, xΩj is clearly more similar
to xΩi than xΩk , therefore ωij > ωik.
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W in (5.29)), ruling the exponential decay of the weights (ωij in formula (5.29)). NLTV [202] has a
variational formulation and is solved by the ADMM; this regularization scheme requires, therefore, its
own ADMM-parameters µnltv, λnltv and stopping criterion, that here is chosen to be a fixed number
of iterations. If the NLTV is used inside the ADMP, the regularization strength λ (in (5.16)) coincides
with λnltv and all other parameters are chosen according to the object under study. NLM is formulated,
instead, as an image filter and, therefore, lacks an input parameter that can be directly connected
to the regularization strength of the ADMP. The ADMP with NLM regularization can be used, but,
from a mathematical point of view, stops to work as a “formal” ADMM method.

5.2 Characterization of ADMM & ADMP for CT

Individual components of ADMM (ADMP) are here separately studied to understand their impact on
convergence and reconstruction accuracy.
An exhaustive experimental study would require a huge dataset comprising different phantoms, levels of
noise and undersampling. This study is, instead, aimed at finding general trends characterizing ADMM
(ADMP). For this reason, the collection of results, that are here presented, should be considered
“indicative” rather than “absolute”.
Some parts of this experimental characterization involve comparison of the ADMM to different iterative
techniques for CT reconstruction. The iterative methods used for comparison are the separable
paraboloidal surrogate used to solve a penalized weighted least squares (PWLS) cost function with
Huber penalty [17], the simultaneous iterative reconstruction technique (SIRT) [13], and themaximum
likelihood expectation-maximization (MLEM) [110].
When not specified otherwise, the ADMM utilizes gridding projectors with minimal oversampling, TV
regularization with λ = µ = 1.0, 4 sweeps of CG and physical constraints, i.e., negative pixels are set
to zero at each iteration.

5.2.1 Dataset

To study the general trends of the ADMM (ADMP), the dataset comprises 4 analytical SL sinograms
with 256 detector cells. The first sinogram, indicated as “PERF” (which abbreviates “perfect”) is noise-
less and well-sampled with 402 views. The second sinogram, indicated as “UNDS” (which abbreviates
“undersampled”) is noiseless with 50 views and simulates a purely undersampled dataset. The third
sinogram, indicated as “NOIS” (which abbreviates “noisy”) has 402 views and additional Gaussian
noise with standard deviation σ = 30%µ, with µ being the mean value of PERF; it simulates a purely
noisy dataset. The fourth sinogram, indicated as “UNDC” (which abbreviated “underconstrained”),
has 75 views and Gaussian noise with standard deviation σ = 25%µ; it simulates an underconstrained
dataset. The FBP reconstructions of the four sinograms with Ram-Lak filter are displayed in Fig. 5.5.
To validate whether our findings are biased by the phantom choice, experiments were repeated with a
simulated slice of a human lung (in the 4 modalities of “PERF”, “UNDS”, “NOIS” and “UNDC”) that
is displayed in Fig. 5.5(e). In the following text and captions, the SL dataset is always used, unless
specified otherwise.
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(a) PERF (b) UNDS

(c) NOIS (d) UNDC

(e) LUNG PHANTOM

Figure 5.5: FBP reconstructions with Ram-Lak filter of the four analytical SL sinograms, PERF,
UNDS, NOIS, UNDC and the lung phantom used to validate the findings obtained for the SL dataset,
as described in (5.2.1).

5.2.2 Convergence rate, accuracy and spatial resolution

The ADMM is characterized by a very fast convergence rate compared, e.g., to SIRT and PWLS.
Figure 5.6 shows that the cost function of the ADMM effectively stops to decrease after around 8-10
iterations for all types of input data. The cost function of SIRT stops to decrease after 20 iterations,
when reconstructing UNDS and UNDC, and requires more than 50 iterations to reach a plateau for
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PERF and NOIS. PWLS necessitates more than 50 iterations for any kind of input data.
The plots of the PSNR as a function of the number of iterations are displayed in Fig. 5.7. The
ADMM reaches the peak of quality for PERF, NOIS and UNDC after around 5 iterations, thus,
before the cost function plateau is reached. When reconstructing UNDS, the ADMM saturates the
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Figure 5.6: Convergence plots for SIRT, PWLS and ADMM when tackling the reconstruction of
PERF, UNDS, NOIS and UNDC.
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Figure 5.7: Reconstruction accuracy as a function of the number of iterations for SIRT, PWLS and
ADMM when tackling the reconstruction of PERF, UNDS, NOIS and UNDC.

reconstruction quality few iterations after the cost function plateau. SIRT features a steady increase of
the reconstruction quality even after 50 iterations for PERF and UNDS, a peak quality for NOIS after
35-40 iterations and another at 15-20 iterations for UNDC. PWLS is characterized by a monotone
increase of the PSNR regardless of the kind of input dataset. Moreover, in the considered range of
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50 iterations, the ADMM reaches for each dataset a higher PSNR peak compared to both SIRT and

(a) SIRT (PSNR=19.70) (b) PWLS (PSNR=21.20) (c) ADMM (PSNR=21.37)

Figure 5.8: Reconstructions of UNDC performed by SIRT (15 iterations), PWLS (50 iterations) and
ADMM (4 iterations). The red segment drawn on the first reconstruction indicates the position of
the line profile used to compare the spatial resolution in Fig. 5.9.
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Figure 5.9: Line profiles of the SIRT, PWLS and ADMM reconstructions displayed in Fig. 5.8. The
position of the line profile is shown in Fig. 5.8(a).
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PWLS.
The ADMM has a great performance in terms of spatial resolution. Consider, for example, the SIRT,
PWLS and ADMM reconstructions of UNDC done with 15, 50 and 4 iterations, respectively, in order
to pick the best result (PSNR-wise) of each algorithm in the first 50 iterations (Fig. 5.7). The
ADMM reconstruction results the sharpest at visual inspection, as also proved by the comparison of
edge profiles in Fig. 5.9: the red curve, corresponding to the ADMM edge profile, is slightly above the
green and blue curve on the left of the dashed black line, that identifies the edge position, whereas it
is clearly underneath the other two curves on the right side.
These results are not used to claim that the ADMM is necessarily superior to SIRT and PWLS,
but only to show that the algorithm yields satisfactory results at visual inspection with a very little
number of iterations. Based on our experience, standard implementations of SIRT generally cannot
provide higher reconstruction accuracy than ADMM. PWLS can perform better on simulated data
than ADMM if the number of iterations is > 50. Despite this, one has to keep in mind the bias
that naturally tends to favor PWLS with respect to ADMM: underconstrained datasets are created
with the addition of pure Gaussian noise which matches exactly the formulation of PWLS. Real data
acquired at X-ray synchrotron beamline usually do not feature a pure Gaussian noisy component.

5.2.3 Number of CG sub-iterations

The CG plays a fundamental role in the reconstruction process of the ADMM.
When solving a problem of the form Ãx = b̃ with A being symmetric and positive definite, the
convergence rate of the CG is known to be highly dependent on the conditioning number of A. In the
tomographic case, A = R∗R and b̃ = R∗ b. If the CG alone is used to perform iterative reconstruction,
noise (and not undersampling, for instance) can represent a critical source of instability. Figure 5.10
shows that, despite all cost functions decrease with the number of iterations (Fig. 5.10(a)), the
PSNR of the NOIS reconstruction reaches a peak around 10-15 iterations and, then, becomes smaller
(Fig. 5.10(b)), whereas the PSNR for all other reconstructions saturates approximately after the same
number of iterations.
The question, now, is how to choose the optimal number of CG sub-iterations (ncg) for the ADMM.
Results in Fig. 5.11 show, unsurprisingly, that the cost function decreases faster when a higher number
of CG sub-iterations is utilized, although all curves reach the same plateau after around 12-13 ADMM
iterations. A real insight on how to select ncg comes from the plots of Fig. 5.12: figures 5.12(a,c,d)
show, in particular, that when the number of iterations is too high, i.e ncg > 6, the PSNR reaches
the maximum value after the first ADMM iteration and decreases right after. The problem with this
behaviour is that the final reconstruction will be almost exclusively shaped by the action of the first
subproblem, whereas the regularization will only marginally contribute. Moreover, stopping the ADMM
after 1 iteration means downgrading the algorithm to simple “image processing”, where CG takes care
of the reconstruction and, then, denoising follows. This finding is confirmed by the results displayed
in Fig. 5.13 of the same experiment conducted on the lung phantom dataset. The optimal number
of sub-iterations is considered to be between 4-6, which represents a good compromise between the
excessively fast convergence in terms of PSNR when ncg > 6 and the slow convergence provided by
ncg=2. In the following, reconstructions are performed with ncg=4. Since ncg=4 is a relatively small
number of CG sub-iterations, preconditioning is not really needed to speed up the first subproblem and
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Figure 5.10: Convergence rate and PSNR as a function of the number of iterations for CG used
standalone to reconstruct PERF, UNDS, NOIS and UNDC.

performing the additional matrix-vector multiplication required by the PCG could even slow down the
first subproblem. Preconditioning is, instead, required when Ã = R(1)∗R(1) (R(1) is the derivative
of the Radon transform along the channel direction, i.e. R(1){f}(θ, t) = dR{f}(θ)/dt), which occurs
for the reconstruction of DPC datasets (see 2.2.3). Ã = R(1)∗R(1) has a higher conditioning number
than Ã = R∗R and the optimal number of CG iterations for the ADMM is around 15 [29]. When
Ã = R(1)∗R(1), the ADMM can benefit from a preconditioning strategy.
The last experiment compares the classical ADMM with a slightly different version, indicated as
ADMM-EXP, where the first subproblem has been slightly modified. The operator Ã = R∗R is
applied once outside the main CG loop and twice inside it. Recalling that [92]:

R∗R{x} = 2π · (−∆)−1/2 {x} , (5.31)

where (−∆)−1/2 is the ramp filter operator, one could replace R∗R in the CG with the right term of
Eq. (5.31), that can be efficiently implemented in Fourier space:

(−∆)−1/2 {x} = F−1

{
F
{
(−∆)−1/2

}
·F {x}

}
= F−1

{
‖ω‖
2π
·F {x}

}
. (5.32)

This simple trick allows to substantially speed up the first subproblem, as R∗R is replaced by 1 FFT-
2D and 1 IFFT-2D. Figure 5.14 shows the reconstruction accuracy as a function of the number of
iterations for ADMM and ADMM-EXP: for each type of dataset, the ADMM-EXP shows a significantly
poorer performance than the ADMM with standard CG. The reason behind this clear decrease of
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Figure 5.11: Convergence rate of the ADMM for different numbers of CG sub-iterations. Each plot
corresponds to the reconstruction of one of the four datasets PERF, UNDS, NOIS and UNDC.

reconstruction quality may arise from a disruption in the coupling of the tomographic operators in
the CG: formula (5.32) does not replace every single call of the tomographic projectors, as R and
R∗ need still to be called separately at other points in the CG or ADMM. This creates an evident
asymmetry or absence of coupling between the ramp operator of eq. (5.32) and the single calls of
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the tomographic projectors. In a way, this test is an additional confirmation of the importance of the
operator coupling in iterative tomographic reconstruction as already discussed in (4.5).
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Figure 5.12: Reconstruction accuracy of the ADMM as a function of the number of ADMM iterations
for different numbers of CG sub-iterations. Each plot corresponds to the reconstruction of one of the
four datasets PERF, UNDS, NOIS and UNDC.
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Figure 5.13: Reconstruction accuracy of the ADMM as a function of the number of ADMM iterations
for different numbers of CG sub-iterations using the lung phantom for validation Each plot corresponds
to the reconstruction of one of the four datasets PERF, UNDS, NOIS and UNDC.
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Figure 5.14: Comparison of reconstruction accuracy as a function of the number of iterations between
ADMM and ADMM-EXP, the latter briefly described at the end of (5.2.3).

5.2.4 Optimal selection of λ and µ

A “brute-force-search” approach is used to study the influence of λ and µ on the reconstruction quality.
Both parameters are spanned in the interval [10−1, 109]. For µ < 10−1 and ∀ λ, ADMM does not
converge.
Results are presented in the form of coupled maps for each kind of dataset (Fig. 5.15 and 5.16):
the map on the left represents the maximum PSNR obtained in 50 iterations; the map on the right
indicates the minimum number of iterations required to achieve the highest PSNR.
A first important observation is that there is no strong dependence of accuracy and convergence on
on the ratio λ/µ, which appears once in the shrinkage operator (Eq. (5.25)) as a threshold level
determining which pixels of z are set to zero or left unaltered. The presence of µ alone inside the CG
and the shrinkage function breaks the potential dependence of the ADMM on λ/µ. The occurrence of
µ in both subproblems makes this parameter more vital for accuracy and convergence of the ADMM
than λ: as stated before, µ is forced to be > 10−1, regardless of λ, to prevent the iterative process
from diverging.
All PSNR maps of Fig. 5.15 and 5.16 feature a rectangular area on the left where the maximum
accuracy (PSNR > 20) is achieved for ∀ µ > 101 and λ ∈ [10−0.5, 102.7], which roughly corresponds
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to a number of iterations between 5-10. For noisy datasets (Fig. 5.16(b,d)), the best reconstruction
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(d) Reconstruction of UNDS

Figure 5.15: On the left column, maps of maximum PSNR, on the right column, maps of number of
iterations where the maximum PSNR is achieved of ADMM reconstruction of PERF and UNDS for
different values of λ and µ.
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quality is obtained with a number of iterations 6 5.
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(c) Reconstruction of UNDC
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(d) Reconstruction of UNDC

Figure 5.16: On the left column, maps of maximum PSNR, on the right column, maps of number of
iterations where the maximum PSNR is achieved of ADMM reconstruction of NOIS and UNDC for
different values of λ and µ.
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The top right area of all maps features very low PSNR, achieved after the chosen maximum number
of iterations. The corresponding reconstructions are very blurred, because in this interval of µ and λ
the regularization term takes over the fidelity one.
The optimal selection of λ and µ falls in the aforementioned top left rectangular area, corresponding
to a number of iterations between 5-10.
Experiments conducted on the lung phantom dataset (Fig. 5.17 and 5.18) confirm the same depen-
dence of accuracy and convergence of the ADMM on the parameters µ and λ.

5.2.5 Physical constraints

x is the map of a selected physical quantity (e.g. attenuation coefficient), usually characterized only
by positive values. This a-priori information can be used during the reconstruction and the negative
pixels of x can be totally or partially steered towards 0. The application of these “physical constraints”
after the first subproblem of the ADMM corresponds to the following simple operator:

x
phys
i =

xi if xi > 0

β · xi 0 6 β < 1 , if xi < 0 .
(5.33)

(5.33) can be regarded as a shrinkage operation: the difference between (5.33) and (5.25) lies in the
fact that the first is applied directly on x and the second on z. The term “physical” comes from the
fact that x is supposed to be a map of attenuation coefficients that are physical quantities supposed
to be > 0.
Experiments are here run with the “hard threshold”, i.e. β = 0. Results in Fig. 5.19 show that
physical constraints provide superior results in three cases out of four (PERF, UNDS and NOIS). For
the UNDC case, the accuracy of the ADMM with physical constraints drops after around 10 iterations,
but the peak of quality is higher with respect to the one achieved without constraints.
These results clearly indicate that a trivial operator like (5.33) substantially impact the reconstruction
quality and should be utilized whenever possible (e.g, it cannot be used with interior tomography
datasets). This fact is confirmed by the plots in Fig. 5.20 obtained with the lung phantom dataset,
despite these curves look quite different from those in Fig. 5.19.

5.2.6 Warm initialization

For the first iteration of the ADMM, the x-subproblem needs an initial guess for x(0). In contrast to
a "cold" initialization (trivial guess, x(0) = 0), a “warm initialization” requires an educated guess, To
understand whether warm initialization can boost the reconstruction quality or speed up convergence,
the four datasets are reconstructed with “cold-initialization”, x(0) = 0, and warm initialization, x(0) =
FBP(b). The Ram-Lak filter is used to perform the FBP reconstruction to prevent losses in spatial
resolution before starting the ADMM procedure.
Results in Fig. 5.21 show that the cold and warm initialization (plots are labeled with an additional
“-init”) reach asymptotically the same reconstruction quality, but the accuracy in the first 15 iterations
is severely deteriorated in case of warm initialization. For each dataset, the ADMM with warm
initialization does not reach the peak quality and generally “stagnates” giving very little contribution



136 admm for ct reconstruction

-1
.0

-0
.47

4
0.0

53
0.5

79
1.1

05
1.6

32
2.1

58
2.6

84
3.2

11
3.7

37
4.2

63
4.7

89
5.3

16
5.8

42
6.3

68
6.8

95
7.4

21
7.9

47
8.4

749.0

log10 λ

-1.0
-0.474
0.053
0.579
1.105
1.632
2.158
2.684
3.211
3.737
4.263
4.789
5.316
5.842
6.368
6.895
7.421
7.947
8.474

9.0

lo
g 1

0
µ

PSNR

0

3

6

9

12

15

18

21

24

27

(a) Reconstruction of PERF

-1
.0

-0
.47

4
0.0

53
0.5

79
1.1

05
1.6

32
2.1

58
2.6

84
3.2

11
3.7

37
4.2

63
4.7

89
5.3

16
5.8

42
6.3

68
6.8

95
7.4

21
7.9

47
8.4

749.0

log10 λ

-1.0
-0.474
0.053
0.579
1.105
1.632
2.158
2.684
3.211
3.737
4.263
4.789
5.316
5.842
6.368
6.895
7.421
7.947
8.474

9.0

lo
g 1

0
µ

MAX-ITER

0

5

10

15

20

25

30

35

40

45

(b) Reconstruction of PERF
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(d) Reconstruction of UNDS

Figure 5.17: On the left column, maps of maximum PSNR, on the right column, maps of number of
iterations where the maximum PSNR is achieved of ADMM reconstruction of PERF and UNDS of
the lung phantom dataset for different values of λ and µ.

to the accuracy already achieved by FBP. On the basis of these results, the warm initialization strategy
is simply discarded.
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(d) Reconstruction of UNDC

Figure 5.18: On the left column, maps of maximum PSNR, on the right column, maps of number
of iterations where the maximum PSNR is achieved of ADMM reconstruction of NOIS and UNDC of
the lung phantom dataset for different values of λ and µ.
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5.2.7 Testing different regularization schemes

The following experiments illustrate the potential advantage of using sophisticated regularization
schemes to dump the noise component or the streak artifacts affecting reconstructions of undercon-
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(a) Reconstruction of PERF
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(d) Reconstruction of UNDC

Figure 5.19: Reconstruction accuracy as a function of the number of iterations for the case in which
no physical constraints are used (blue curves labeled “no-constr” in the legend) and the case in which
they are with β = 0 (red curves labeled “constr” in the legend).
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(d) Reconstruction of UNDC

Figure 5.20: Reconstruction accuracy as a function of the number of iterations for the case in which
no physical constraints are used (blue curves labeled “no-constr” in the legend) and the case in which
they are with β = 0 (red curves labeled “constr” in the legend) for the lung phantom dataset.

strained datasets. The used algorithms are: ADMM-TV, ADMP using split-Bregman TV (ADMP-
TV), ADMP using NLM (ADMP-NLM), ADMP using NLTV (ADMP-NLTV) and ADMP using GTV
(ADMP-GTV). Analytical reconstructions with FBP using an additional Parzen window for the ramp
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filtering are displayed to give an idea of quality of the input datasets. The reconstruction with
ADMM-TV is computed with an optimal parameter set. Reconstructions with ADMP are performed
with sub-optimal parameters (no brute-force search of the parameter space was performed to find the
optimal parameter set) that already yield superior results with respect to the ADMM-TV.
When dealing with purely noisy data, sophisticated regularization schemes provide higher quality re-
constructions than ADMM-TV already at visual inspection: the noisy pattern characterizing Fig. 5.22
(b) is partially or completely removed in Fig. 5.22 (c,d,e,f), although with different SNR-spatial re-
solution trade-offs. The edge line profiles in Fig. 5.23 prove that an effective noise removal can be
achieved without substantial losses in terms of spatial resolution.
The purely undersampled case represents a different kind of challenge: regularization schemes are
designed to filter out random noise, whereas streak artifacts represent a type of structured noise that
can be “interpreted” by the denoising method as part of the true signal to restore. To prevent en-
hancement of the streak artifacts, the regularization parameters must be chosen carefully. The pattern
due to undersampling can be completely removed by sophisticated regularization schemes, but at the
cost of severely decreasing the spatial resolution. The ADMP reconstructions in Fig. 5.24 offer a
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Figure 5.21: Comparison of reconstruction accuracy as a function of the number of iterations between
“cold initialization”, i.e., x(0) = 0, and “warm initialization”, i.e., x(0) = FBP(b) (with Ram-Lak filter)
used to feed the x-subproblem at the first ADMM iteration. Results with warm initialization feature
the additional label “init”.
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(a) FBP | MSSIM=0.20 (b) ADMM-TV | MSSIM=0.24 (c) ADMP-TV | MSSIM=0.32

(d) ADMP-NLM | MSSIM=0.26 (e) ADMP-NLTV | MSSIM=0.33 (f) ADMP-GTV | MSSIM=0.30

Figure 5.22: Reconstructions of NOIS with FBP (Parzen filter), ADMM-TV, ADMP-TV, ADMP-
NLM, ADMP-NLTV, ADMP-GTV. The red segment in (a) identifies the position of the line profiles
shown in Fig. 5.23.

reasonable visual compromise between artifacts reduction and spatial resolution (as also demonstrated
by the edge profile analysis in Fig. 5.25). The visual improvement with respect to ADMM-TV is,
however, inferior to what experienced in the case of a purely noisy dataset.
The case of an underconstrained dataset in Fig. 5.26 shows, once again, that great visual results can
be achieved by making use of sophisticated regularization schemes. The analysis of the edge profiles
for the reconstructions of Fig. 5.26 is shown in Fig. 5.27.
In the last experiment, we show that “upgrading” a regularization scheme from 2D to 3D generally
improves the reconstruction of a piecewise constant volume. A 3D modified SL phantom with 256
× 256 × 256 pixels is used to construct three datasets, 3D-NOIS, 3D-UNDS and 3D-UNDC, which
represent the 3D versions of NOIS, UNDS and UNDC. These new datasets are reconstructed by the
ADMP-TV, where both subproblems operates slice by slice, and ADMP-TV3, where the x-subproblem
operates slice by slice and the z-subproblem on the entire volume. Despite not showing great dif-
ferences at visual inspection, the volume computed by ADMP-TV3 is more accurate than the one
computed by ADMP-TV, as proved by the MSSIM values shown in Tab. 21 (and calculated on the
entire volume). The performance of the iterative reconstruction can substantially improve when TV
works in 3D, due to the higher sparsity characterizing the object volume-wise rather than slice-wise.



142 admm for ct reconstruction

0 10 20 30 40 50

Pixel position

0.0

0.2

0.4

0.6

0.8

1.0

P
ix

el
va

lu
e

FBP
ADMM-TV

ADMP-TV
ADMP-NLM

ADMP-NLTV
ADMP-TGV

Figure 5.23: Edge line profiles for the reconstructions shown in Fig. 5.22 corresponding to the segment
indicated in Fig. 5.22(a). The black vertical dashed line identifies the edge location.

3D-NOIS 3D-UNDS 3D-UNDC
ADMP-TV 0.18 0.20 0.17
ADMP-TV3 0.30 0.36 0.27

Table 21: MSSIM values for the reconstruction of SL-3D-NOISE, SL-3D-UNDER and SL-3D-
UCONSTR computed by ADMP-TV, where TV operates on individual slices, and ADMP-TV3, where
TV operates on the entire volume.
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Figure 5.25: Edge line profiles for the reconstructions shown in Fig. 5.24 corresponding to the segment
indicated in Fig. 5.24(a). The black vertical dashed line identifies the edge location.
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(a) FBP | MSSIM=0.21 (b) ADMM-TV | MSSIM=0.24 (c) ADMP-TV | MSSIM=0.27

(d) ADMP-NLM | MSSIM=0.28 (e) ADMP-NLTV | MSSIM=0.27 (f) ADMP-GTV | MSSIM=0.28

Figure 5.24: Reconstructions of UNDS with FBP (Parzen filter), ADMM-TV, ADMP-TV, ADMP-
NLM, ADMP-NLTV, ADMP-GTV. The red segment in (a) identifies the position of the line profiles
shown in Fig. 5.25.

The computational cost, in terms of both runtime and memory allocation, prevents the usage of many
sophisticated regularization (e.g. NLM, NLTV and GTV) schemes in a 3D fashion for datasets of real
sizes.
The results presented in this paragraph should not be considered conclusive, as they are biased by
the choice of the used phantom (in this case, SL). A phantom characterized by a different structural
complexity or intrinsic CNR than the SL, being eventually smooth instead of piecewise-constant, would
certainly turn the presented results upside down.

5.3 Practical tips for ADMM users

5.3.1 Choosing the stopping criterion

The L2-norm of the difference between consecutive reconstructions, i.e. ‖x(k+1) − x(k)‖2, can be
used to decide when to stop an iterative algorithm: if ‖x(k+1)− x(k)‖2 > ε, the procedure continues,
otherwise it stops. This stopping criterion works well, if the iterative algorithm features a strictly
monotone increase of the reconstruction quality as a function of the number of iterations like the
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(a) FBP | MSSIM=0.17 (b) ADMM-TV | MSSIM=0.20 (c) ADMP-TV | MSSIM=0.24

(d) ADMP-NLM | MSSIM=0.27 (e) ADMP-NLTV | MSSIM=0.26 (f) ADMP-GTV | MSSIM=0.30

Figure 5.26: Reconstructions of UNDC with FBP (Parzen filter), ADMM-TV, ADMP-TV, ADMP-
NLM, ADMP-NLTV, ADMP-GTV. The red segment in (a) identifies the position of the line profiles
shown in Fig. 5.27..
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Figure 5.27: Edge line profiles for the reconstructions shown in Fig. 5.26 corresponding to the segment
indicated in Fig. 5.26(a). The black vertical dashed line identifies the edge loacation.
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PWLS (Fig. 5.7(b)).
The accuracy of ADMM (ADMP) reconstructions generally peaks after very iterations; at that point,
‖x(k+1) − x(k)‖2 may not be small enough to comply to a standard ε-threshold criterion. When
reconstructing a dataset for the first time, a good strategy is to run the ADMM (ADMP) on a single
slice for around 50 iterations, saving each intermediate result. The set of reconstructions is, then,
visually inspected and analyzed with the PSNR to know at which iteration the accuracy reaches the
maximum. The number of iterations obtained with this procedure is likely to represent a reasonable
stopping criterion for the reconstruction of the entire dataset.

5.3.2 Selecting the parameters λ and µ

Various studies have presented criteria to automatically select the optimal regularization strength
(λ, in this case) for large ill-posed inverse problems. Examples are the generalized cross-validation
method [256], the L-curve criterion [257], the discrepancy principle [258, 259], the subspace [260] and
the generalized [202] information criterion. The problem is that these criteria are usually based on
mathematical principles not directly correlated to the image quality, as the image quality itself cannot
be precisely defined and modeled.
If a reliable criterion for the parameter selection is missing, it is convenient to collect some experience
with manual tuning. For the ADMM, only the order of magnitude of λ and µ counts. A good
strategy is to select first the appropriate order of magnitude for µ, that rules the intermixing between
the x- and the z-subproblem. Once µ is set, λ can be chosen on the basis of the target SNR/spatial
resolution trade-off. Several trials will be needed, especially at the beginning, to get a “feeling” with
manual parameter tuning.

5.3.3 Selecting the regularization scheme

In 5.1.3, different regularization schemes have been introduced and some of them have been used
to run the experiments presented in 5.2.7. Here we briefly discuss how to select the appropriate
regularization scheme for a given dataset.
For piecewise constant objects, TV usually offers a very good accuracy/efficiency trade-off. ADMP-
TV, implemented with either split-Bregman or Chambolle TV, can yield better results than ADMM-TV
but at a higher computational cost.
For smooth objects, TV can generate artifacts and loss of structural information, thus NLM, NLTV
and GTV are preferable solutions. Preliminary results, as those presented in Fig. 5.22 and 5.26, have
shown that NLTV provides a remarkable SNR/spatial resolution trade-off, while being less incline
to generate wavy patterns in piecewise constant ROIs compared to NLM (see reconstruction in Fig.
5.26(d)) and GTV (see reconstructions in Fig. 5.22(f) and Fig. 5.26(f)). GTV seems also to perform
poorly in preserving edges when the intrinsic CNR of the object is low: the reconstruction in Fig.
5.26(f) is characterized by very sharp black ellipses, whereas the same does not hold for the middle-
sized circle on the top center, that has by construction lower intrinsic CNR with respect to grey “filling”
of SL.
It is opinion of the author that dictionary-based regularization schemes should generally be avoided
due to the scarse accuracy/efficiency trade-off. The OMP scans all the atoms of the dictionary to
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find the best candidates to represent a given patch and this operation results highly time-consuming
without a GPU implementation [261] or a sparsity-based algorithm [262]. In addition, the action of
dictionary-based regularization schemes is bounded to be local, since overlapping patches are used.
TV or Huber penalty are, then, much more efficient edge-preserving schemes with a local action.



Chapter 6
Reconstruction strategies for full interior

tomography datasets

6.1 The interior tomography problem

Interior tomography (INT) [92] is the problem of reconstructing an object function from truncated
projections. Truncated datasets are acquired when the object support S * FOV, i.e. the detector
does not fit the object along certain directions. INT scans allow high resolution investigations of small
ROIs inside the specimen under study [263], while decreasing the integral dose delivered to the entire
volume [264].
Data reconstruction is the major challenge posed by interior tomography.
Until the early 2000s, it was believed that INT data could not yield a unique solution [92]. Consider
the complete dataset p(θ, t) with θ ∈ [0,π) and t ∈ [−1, 1] and the partial dataset p̃(θ, t) θ ∈ [0,π)
and a < |t| 6 1. Even if p̃(θ, t) = 0 for |t| 6 a, it can still produce a non-zero local reconstruction
inside r 6 a, i.e. x̃(θ, r) = FBP(p̃(θ, t)) 6= 0 for r 6 a [92, 265]. If ˜̃p(θ, t) with θ ∈ [0,π) and
t ∈ [−a,a] is the INT dataset, ˜̃p(θ, t) = p(θ, t) − p̃(θ, t) and it follows that:

˜̃x(θ, r) = FBP
(

˜̃p
)
(θ, r)

∣∣∣
|r|6a

= FBP (p) (θ, r)
∣∣∣
|r|61

− FBP (p̃) (θ, r)
∣∣∣
|r|61

=
�����������
FBP (p) (θ, r)

∣∣∣
a6|r|61

+ FBP (p) (θ, r)
∣∣∣
|r|6a

−
�����������
FBP (p̃) (θ, r)

∣∣∣
a6|r|61

− x̃(θ, r)
∣∣∣
|r|6a

= x(θ, r)
∣∣∣
|r|6a

− x̃(θ, r)
∣∣∣
|r|6a

.

(6.1)

Equation (6.1) shows that the reconstruction of the INT dataset, ˜̃p(θ, t), equals the exact object
inside the FOV of radius a, x(θ, r) with |r| 6 a, minus an artifact image, x̃(θ, r) with |r| 6 a, arising
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from the data outside the FOV. Apart from being not exact, ˜̃x(θ, r) is also not unique, as x̃(θ, r) can
be constructed as [92]:

x̃(θ, r) =
1

π

+∞∫
|u|

dr
(
r2 − |u|2

)−1/2
g ′(r) , (6.2)

where g is a generic Schwartz function vanishing in [−a,a].
From a practical point of view, FBP reconstructions of INT datasets are inevitably affected by a low-
frequency artifact, that arises from the action of the ramp filter on truncated projections [266–268].
This artifact gives a bowl-shaped profile to constant ROIs with very low values at the image center
and very high values close to the border of the reconstruction circle. The CNR of reconstructions
affected by the bowl artifact is so degraded, that different structures can be barely recognizable at
visual inspection. All considered, INT reconstructions are not exact (therefore, quantitative), not
unique and cannot be used for morphological studies due to presence of the bowl artifact.

6.2 Overview of reconstruction methods for INT data

Only two methods can provide reconstructions of interior tomography data, that are not affected
by the bowl-artifact: differentiated backprojection and sinogram extrapolation. The idea and theory
behind these two methods are briefly explained in the following.

6.2.1 Differentiated backprojection

In 2004, [269] proposed a two-step algorithm for the reconstruction of INT datasets, called differentia-
ted backprojection (DBP). DBP, first, backprojects the derivative of the projections along the channel
direction and, then, retrieves the object by inverting a finite Hilbert transform. Differently from a FBP
reconstruction, the backprojection of the differential sinogram is only partially affected by the data
truncation. The idea of DBP comes from the local or lambda tomography [270], which retrieves the
object from the backprojection of the second derivatives of the projections. The relation between the
backprojected differential sinogram and the Hilbert transform is here derived. Considering an object
f, x = (x1, x2), n = (cos θ, sin θ), p̂(θ, r) = Ft{p(θ, t)} and i the imaginary unit, the backprojected
differential sinogram results [269]:

g0 (x1, x2) :=

π∫
0

dθ
∂p (θ, x · n)

∂r
= 2π

π∫
0

dθ

+∞∫
−∞

dr ir p̂(θ, r) exp (2πir x · n)

= 2π

π∫
0

dθ

+∞∫
−∞

dr i sgn(r) p̂(θ, r) |r| exp (2πir x · n)

= 2π

π∫
0

dθ

+∞∫
−∞

dr i sgn(r sin θ) f̂(rn) |r| exp (2πir x · n)
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Figure 6.1: According to [269], exact inversion of Eq. (6.3) is possible only along rays crossing
opposite sides of the object support, S. In the figures, such rays are indicated with r1, whereas the
inversion is not possible along r2.

= 2π

+∞∫
−∞

du1

+∞∫
−∞

du2 i sgn (u2) f̂ (u1,u2) exp (2πi x · u) = −2πH0 f (x1, x2) ,

(6.3)

where in the third passage one exploits that sgn(r) = sgn(r sin θ) for θ ∈ [0,π) and the FSM, i.e.
p̂(θ, r) = f̂(rn). The symbol H0 stands for the Hilbert transform along the direction θ = 0. Equation
(6.3) can be also rewritten with the Hilbert transform computed along any direction in [0,π) [269]:

gθ (x1, x2) = −2πHθf (x1, x2) . (6.4)

For computational convenience, the Hilbert transform is usually inverted along the x1- (θ = π/2) or
the x2-axis (θ = 0). In [269], Eq.(6.3) is invertible only along directions crossing opposite boundaries
of the object support, thus, characterized by segments outside the object support but still inside the
FOV where f is known to be zero (radii r1 illustrated in Fig. 6.1(a,b)). The inversion formula results
[269]:

f (x1, x2) = f
(
tn + sn⊥

)
= −

1√
(s− Lt) (Ut − s)

Ut∫
Lt

ds ′
√
(s ′ − Lt) (Ut − s ′)

Hθf
(
tn + s ′n⊥

)
π(s− s ′)

+Ct

 , (6.5)
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where Lt and St are the entrance and the exit point of the ray (of the kind of r1 in Fig.6.1(a,b)) with
S and Ct is a constant computed as follows:

Ct = −

Ut∫
Lt

ds ′
√
(s ′ − Lt) (Ut − s ′)

Hθf
(
tn + s ′n⊥

)
π(s− s ′)

. (6.6)

The DBP method of [269] is extended in [118] to the case in which the FOV exceeds S only from one
side (Fig. 6.2(a)). [271–273] introduce DBP also to the case in which FOV ⊂ S and the attenuations
coefficients are known in specific ROIs ⊂ FOV (Fig. 6.2(b)). In all the presented configurations, DBP
yields an exact solution, thus reconstructions are quantitative and free of the bowl artifact.

6.2.2 Sinogram extrapolation

Sinogram extrapolation techniques combined to standard FBP do not provide exact, quantitative
reconstructions, but prevent the formation of the bowl artifact. Reconstructions are still usable for
morphological analysis, unless the quantitativity is retrieved on the basis of some kind of a priori
knowledge regarding the object under study [263]. Sinogram extrapolation was proposed for the first
time at the end of the 70s, to remove the bowl artifact appearing on one or two sides of an FBP
reconstruction, when the object exceeds the detector length.
In [266], the continuation of the data is performed by adding pieces of a chosen function, that are
smoothly attached to the projection extremities. The continuation length is selected on the basis of
the known object support and the extrapolated parts gradually fall to zero.
The method introduced by [274] works with partially truncated projections and required the knowledge
of the object support. The truncation length of a specific projection is estimated from the data
acquired at other angles. An iterative procedure going forward and back from the Radon to the image
domain is used to reconstruct the object.
The reconstruction artifacts due to data truncation are mathematically analyzed in [267] for parallel

S

FOV

(a)

S

FOV
ROIs

(b)

Figure 6.2: The results of [269] are valid for the kind of configurations shown in Fig. 6.1 were extended
to (a) in [118] and (b) in [271–273].
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and fan-beam geometries.
The connection between bowl artifact and ramp filtering in FBP reconstructions is well explained
in [268]. The same study proposes extrapolation methods that do not require the knowledge of
the object support. Consider a truncated projection p(r) with |r| 6 a < 1 (the dependence on θ
is dropped because the extrapolation methods have no dependence on the angle), the extrapolated
projection, p(e)(r), according to one method results [268]:

p(e)(r)



p(r) −a 6 r 6 a

p(a) · cos2
(
π(r− a)

2a

)
a < r < 2a

p(−a) · cos2
(
π(r+ a)

2a

)
−2a < r < −a

0 otherwise

, (6.7)

and according to the other method [268]:

p(e)(r)



p(r) −
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2
−a 6 r 6 a

p(a) − p(−a)

2
· cos2

(
π(r− a)

2a

)
a < r < 2a

p(−a) − p(a)

2
· cos2

(
π(r+ a)

2a

)
−2a < r < −a

0 otherwise

. (6.8)

A simple but effective extrapolation method, when the object support is not known, is edge-padding,
discussed in [263, 275, 276]. In this case, p(e)(r) results:

p(e)(r)


p(r) −a 6 r 6 a

p(a) a < r < 2a

p(−a) −2a < r < −a

. (6.9)

Reconstructions based on edge-padding can be regarded as quasi-exact, because they are defined up
to an “almost” constant term. Consider an object f = f(x,y) with support defined on the unit circle
and |ρ| < 1 be the radius of the FOV for the INT scan. The FBP-E reconstruction, with edge-padding
symmetrically extending in [-1,−ρ] and [ρ,1], is of the form:

f(fbpe)(x,y) =

π∫
0

dθ

+ρ∫
−ρ

dt P(θ, t) · h(x cos θ+ y sin θ− t)

+

π∫
0

dθ

−ρ∫
−1

dt P(θ,−ρ) · h(x cos θ+ y sin θ− t)
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+
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dθ
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+

π∫
0

dθ (P(θ,−ρ) + P(θ, ρ))

+1∫
ρ

dt h(x cos θ+ y sin θ− t)

︸ ︷︷ ︸
const

=

π∫
0

dθ

+ρ∫
−ρ
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π∫
0

dθC(θ) , (6.10)
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Figure 6.3: Sketch showing the backprojection of the term C(θ) in equation (6.10) along 4 directions
0, π/4, π/2 and 3π/4. The central FOV of radius ρ is homogeneously covered by a constant value.
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where P(θ, t) is the projection point at angle θ and distance t from the origin of the reference frame
and h(t) is the inverse Fourier transform of the ramp filter (an even function , i.e. h(t) = h(−t)).
C(θ), backprojected from 0 to π, creates an “almost” constant term. To illustrate this statement,
consider the sketch in Fig. 6.3: 4 constant projections at angles 0, π/4, π/2 and 3π/4, each identified
by a different color, are backprojected onto the image grid. The sketch shows that, when the edge-
padding extends from [-1,−ρ] and [ρ,1], the unit circle and the FOV of radius ρ are covered by
a constant value after backprojection of C(θ) along the given directions. When the edge-padding
extends up to a radius ρ < ρ(edge) < 1, the FOV is still constant (not the unit circle, this time). The
conclusion is that analytical reconstructions of INT datasets performed with edge-padding are exact
up to a constant.

6.3 Reconstruction of full INT data

The following section represents a reprinted manuscript published as: F. Arcadu, F. Marone and M.
Stampanoni, “Fast iterative reconstruction of data in interior tomography without a priori knowledge” ,
to appear in Journal of Synchrotron Radiation, Novemeber 2016 [31].

6.3.1 Abstract

This paper introduces two novel strategies for iterative reconstruction of full interior tomography
(FINT) data, i.e., when the field-of-view is entirely inside the object support and the knowledge
of the object support itself or the attenuation coefficients inside specific regions-of-interest are not
available. The first approach is based on data edge-padding. The second technique creates an
intermediate virtual sinogram, which is, then, reconstructed by a standard iterative algorithm. Both
strategies are validated in the framework of the alternate direction method of multipliers plug-and-play
with gridding projectors that provide a speed-up of 3 orders of magnitude with respect to standard
operators implemented in real space. The proposed methods are benchmarked on synchrotron-based
X-ray microtomography datasets of mouse lung alveoli. Compared to analytical techniques, the
proposed methods substantially improve the reconstruction quality for FINT underconstrained datasets,
facilitating subsequent postprocessing steps.

6.3.2 Introduction

The term interior tomography (INT) refers to the problem of reconstructing an object function, when
its support (S) is not a subset of the field-of-view (FOV) [92]. This imaging modality is broadly
applied in medical screening, material science and biology, as it allows high-resolution investigations
of small regions of interest (ROIs).
Since INT projections contain information /∈ FOV, reconstructions with filtered backprojection (FBP)
suffer from a DC shift and low frequency artifacts [92], that compromise the quantitativeness of the
results and make further postprocessing, visualization and rendering of the investigated object com-
plicated [263].
Two different analytical reconstruction methods can address this problem: the differentiated backpro-
jection (DBP) and FBP of edge-padded projections (FBP-E). The idea of DBP [269] is to backproject
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the derivative of the data and, then, recover the original object by Hilbert transform techniques. This
method provides quantitative reconstructions, when S is known and only specific geometries are in-
volved: two opposite boundaries of the object are inside the FOV [269]; the FOV exceeds the object
only from one side [118]; the FOV ⊂ S and the attenuation coefficients are known in a subregion R ⊂
FOV [271–273]. FBP-E [268, 275, 276] corresponds to FBP of projections, that have been padded
with the edge pixels. This strategy prevents the appearance of low-frequency artifacts within the
reconstructed FOV, although results are not fully quantitative.
Iterative methods have also been proposed for INT datasets, characterized by low photon statistics
and/or with a low number of views(e.g. low-dose scan). Usually, these underconstrained datasets
cannot be reconstructed with sufficient accuracy with analytical methods. The separable paraboloidal
surrogate (SPS) [277], the maximum-likelihood expectation-maximization (EM-ML) [278] and the
penalized weighted least square (PWLS) method [279] have been modified to deal with truncated pro-
jections. In [277], the regularized SPS is initialized through the projection-onto-convex-sets (POCS)
[118]; the knowledge of S, the attenuation coefficients in one or multiple subregions and the posi-
tion of the background pixels are needed for this reconstruction technique. In [278], the standard
EM-ML is combined with thresholding, acting on pixels of selected ROIs. In [279], the PWLS is
regularized with a complete high-quality scan of the same object. All these methods work for very
specific (mostly medical) applications and require a priori knowledge obtained from previous scans.
Iterative reconstruction of INT datasets without knowledge of either the object support or the atte-
nuation coefficients inside specific ROIs (case of “full” interior tomography, abbreviated as FINT) has
been initiated by [280]. In this work, the authors prove that an iterative scheme working with total
variation regularization yields a unique reconstruction of a FINT dataset, in case the object under
study is piecewise constant.
At synchrotron imaging beamlines, time resolved high resolution investigations of a large variety of
dynamic systems spanning different fields (e.g. biology [2, 3], material sciences [4, 5], energy research
[8, 9], earth and environmental sciences [6, 7]) are becoming routine. Due to the large variability
of the examined samples and to the large datasets (several tens of TB) often associated to these
experiments, efficient iterative reconstruction algorithms, not bounded to a specific application, are
highly demanded.
This paper introduces two fast strategies for iterative reconstruction of FINT data, i.e., the FOV
⊂ S, S is unknown as well as the attenuation coefficients inside specific ROIs of the FOV. In this
regard, the presented results can be considered a step further on the line of research launched by [280].
Differently from previous studies, this work shows the importance of data pre-processing (either edge-
padding or differentiation) for analytical and iterative reconstruction of FINT datasets. The proposed
iterative strategies are fast and provide high-quality, non quantitative reconstructions, best suited
for subsequent post-processing and analysis steps (e.g. segmentation and morphological studies),
independently of the imaged system.

Contributions

The contributions of this manuscript are summarized as follows:
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• Analyze the importance of FINT data pre-processing through edge-padding and differentiation
for analytical and iterative tomographic reconstruction.

• Introduction of two fast forward gridding projectors for iterative reconstruction of FINT data:
one implements the derivative of the Radon transform, the other acts as Radon transform
combined to edge-padding [28, 29].

• Introduction of the virtual strategy, as a more efficient alternative to specific forward, projectors
for INT data. This strategy is independent from the chosen iterative scheme and regularization.

• Validation of the proposed methods within the framework of the alternate direction method of
multipliers plug-and-play (ADMP) [230], on simulated and real datasets of full interior X-ray
microtomography.

The edge-padding and virtual strategies studied in this work are neither bounded to the ADMP nor
applicable only to the case of piecewise constant objects, but they can be utilized within any kind of
iterative reconstruction algorithm and regularization scheme.

6.3.3 Reconstruction artifacts in interior tomography

Preliminaries

This work focuses on the reconstruction of a 2D slice from line projections acquired in parallel beam
geometry. However, results can be generalized to more complex tomographic configurations (e.g.,
fan- and cone-beam).
The collection of line projections, measured at different angles θ ∈ [0,π), is called sinogram. The
object to be reconstructed is a finite integrable real function, whose support, S, is assumed to be
compact.
In interior tomography, the object support lies outside the field of view, i.e., S * FOV and S∩ FOV
6= ∅. Different INT configurations, listed in [118] and displayed in Fig.6.4, have been studied in
literature. The case of full interior tomography (FINT), often characterizing microtomographic scans
(Fig.6.4d, FOV ⊂ S), is considered in this work.

Case of analytical reconstruction methods

FBP reconstruction of a FINT sinogram is affected by a DC shift and low-frequency artifacts [268,
275, 276], due to the effect of the ramp filter on truncated projections [268]. To clarify this point,
the example discussed in [268] is reproposed here.
Fig.6.5 shows a complete and truncated projection of a homogeneous circle before and after ramp
filtering. In standard tomography (Fig.6.5 on the left), the filtered projection has a constant, positive
profile in the middle with symmetric negative tails. Once all projections in [0,π) are smeared back to
the image grid, the circle is filled with constant pixel values and the negative tails of each projection are
zeroed-out by the positive contributions from all other projections (Fig.6.6b). In interior tomography,
the filtered projection (Fig.6.5 on the right) is instead everywhere positive, characterized by a bowl-
shaped profile and tails with very high values. After backprojection, these positive tails are still
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present, because no negative compensation in the reconstruction process is possible, yielding the bowl
artifact displayed in Fig.6.6c. The DC shift and bowl-shaped profile, shown in Fig.6.6d, can severely
compromise the interpretation/morphological analysis of reconstructed FINT datasets.

Case of iterative reconstruction methods

Although iterative algorithms do not involve explicit ramp filtering, reconstructions of FINT data are
affected by the same artifacts as for analytical methods.
Fig.6.7 shows an iterative reconstruction with SPS of the same sinogram used for Fig.6.6(c) and the
corresponding line profile along the central row. The image is once again affected by a DC shift and
a bowl artifact (Fig.6.7(b)). The reconstruction with any other iterative algorithm would present the
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Figure 6.4: Different interior tomography configurations. The black line represents the boundary of
the object support S; the red line delimits the FOV. The striped area identifies S∩ FOV. (a): Standard
tomography. (b): INT with two opposite sides of ∂S ⊂ FOV [269]; [279]. (c): INT with the FOV
exceeding S only from one side [118]. (d): Full INT (FINT), where FOV ⊂ S [273, 277, 278, 280].
This work focuses on the latter configuration.
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Figure 6.5: Illustrative example of the effect of the ramp filter on a single projection in case of standard
and interior tomography. Notation: Ft (F−1

ω ) is the (inverse) Fourier transform along the variable t
(ω); |ω| is the ramp filter; Pθ(t) is the projection in parallel beam geometry acquired at angle θ.
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Figure 6.6: (a) Simulated homogeneous circle: the background pixels are set to 0.0, the pixels inside
the circle are set to 1.0. The image size is 512x512 pixels. The dashed red circle identifies the FOV
for the interior tomography case. (b) FBP reconstruction of a sinogram with 800 views × 512 pixels
in standard tomography; (c) FBP reconstruction of a sinogram with 800 views × 200 pixels in interior
tomography with FOV depicted in (a). The image is zoomed to have the same dimensions of (a) and
(b). (d) Comparison of the line profiles along the segment D, indicated in (a), for the reconstructions
shown in (b) (blue line) and (c) (green line).

same problems.
This observation can be explained by the fact that iterative methods “mimic” the effect of the ramp
filter: the reconstruction after the first iteration corresponds to a blurred version of the object, similar
to the result of backprojection when omitting the filtering step; after several iterations, the object
becomes sharper, until a similar spatial resolution as for the FBP reconstruction is reached. This
“mimicking” behavior leads to the same problems characterizing FBP, when dealing with FINT data.

6.3.4 Proposed approach

The proposed approach builds upon existing methods, extended and combined to address the FINT
problem. Although here for illustration purposes specific projectors, iterative scheme and regularization
have been chosen, the proposed strategy is more general and not bounded to these choices.

(a) (b)

Figure 6.7: (a) Iterative reconstruction with SPS of the FINT sinogram used also for Fig.6.6(c). (b)
Profile of the central line in the iterative reconstruction (a).
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Flexible iterative reconstruction scheme

The alternate direction method of multipliers plug-and-play (ADMP) [230] offers an optimization
framework, where the reconstructive and the regularization tasks are neatly separated in two subprob-
lems. This structure allows the direct use of any forward projector for the reconstructive subproblem
and any denoising method for the regularization subproblem. The ADMP can be viewed as a particular
case of the classical formulation of the alternate direction method of multipliers [27].
In parallel beam geometry, the tomographic problem for a piecewise constant object has the following
form:

x̃ = argmin
x

R(x)
∣∣ Axi = bi for i = 0, · · · ,nz − 1

x =
(
xT0 , · · · , xTnz−1

)T ∈ Rnz×n×n xi ∈ Rn×n A ∈ Rm×n ,n×n bi ∈ Rm×n
(6.11)

where m is the number of views, nz is the number of slices, n is the number of pixels along a row
or a column (assuming the image grid to be square), x is the unknown 3D object, xi is the unknown
i-th slice, A is the forward projection operator (A† is the adjoint operator or backprojector), b is the
sinogram and R is the functional enforcing the object to be piecewise constant. The dual variable u
is introduced to transform the constrained optimization problem (6.11) into:

argmin
x,u

F(x, u) = argmin
x,u

{
1

2

nz−1∑
i=0

‖Axi − bi‖22 + λR(u)

}
subject to u = x (6.12)

The constraint u = x is incorporated in the functional by augmenting F with an array of multipliers
γγγ. In this way, the following Lagrangian is obtained:

argmin
x,u,γγγ

L(x, u,γγγ) = argmin
x,u,γγγ

{
1

2

nz−1∑
i=0

‖Axi − bi‖22 + λR(u) +
µ

2
‖x − u +γγγ‖22

}
. (6.13)

The original problem (6.11) is, therefore, mapped into the minimization of the Lagrangian (6.13).
The ADMP solves (6.13) by cyclically minimizing two subproblems with respect to the variable x and
u and by updating the multipliers γγγ until convergence:

x(k+1) ←− argmin
x

L
(
x, u(k),γγγ(k)

)
u(k+1) ←− argmin

u
L
(
x(k+1), u,γγγ(k)

)
γγγ(k+1) ←− γγγ(k) +

(
x(k+1) − u(k+1)

) (6.14)

where the superscript (k) refers to the k-th iteration of a selected variable. The 1st and 3rd term of
(6.13) will contribute to the x-subproblem, whereas the 2nd and the 3rd term to the u-subproblem.
To explicitly derive the form of the x-subproblem, the gradient of L with respect to x is calculated:

Rn×n 3 0 = ∇xi L
(

x, u(k),γγγ(k)
)
= ∇xi

{
1

2

nz−1∑
i=0

(
‖Axi − bi‖22 + µ‖xi − u(k)

i +γγγ
(k)
i ‖

2
2

)}
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= A† (Axi − bi) + µ
(

xi − u(k)
i +γγγ

(k)
i

)
=
(

A†A + µI
)

x −
(

A†b + µ
(

u(k)
i −γγγ

(k)
i

))
= Ãx − b̃ . (6.15)

Since Ã is symmetric and positive-definite, the conjugate gradient (CG) technique [224] is adopted
to iteratively find the solution of the system Ãx = b̃. For the u-subproblem, it results that:

argmin
u

L
(

x(k+1), u,γγγ(k)
)
= argmin

u

{
λR(u) +

µ

2
‖x(k+1) − u +γγγ(k)‖22

}
= argmin

u

{
1

2
‖u − ũ‖22 +

λ

µ
R(u)
}

.
(6.16)

The last term in (6.16) corresponds exactly to a denoising problem, where ũ represents the input
noisy image and τ = λ/µ is the regularization strength. The form of the u-subproblem gives the
“plug-and-play” qualification to the ADMP, as the type of denoising can be changed without altering
the structure of the entire algorithm.
The iterative procedure is stopped when the L2-norm of the relative difference between reconstruc-
tions of subsequent iterations, x(k) and x(k+1), is smaller than a certain threshold, i.e., ||x(k+1) −
x(k)||22/||x

(k)||22 < ε = 0.01. One of the main advantages of ADMM-type methods is that satisfactory
results in terms of image quality can be achieved after very few iterations.
For the experiments presented in Sec.6.3.5, ADMP with split Bregman total variation (SBTV) (Gold-
stein & Osher, 2009) as plug-and-play regularization has been used. τ strongly determines the quality
of the iterative reconstruction since it controls the trade-off between spatial resolution and noise
removal.

Fast forward projectors for interior tomography

The DC shift compromises the quantitativity of FINT reconstructions, but, except for an offset con-
stant throughout the tomographic slice, the information is preserved. The bowl artifact leads, instead,
to non-quantitative reconstructions characterized by varying gray level values within homogeneous
regions and prevents, therefore, any reliable morphological analysis, unless “decupping” algorithms or
sophisticated segmentation approaches are utilized.
Two analytical methods can be adopted to avoid this bowl artifact: DBP and FBP-E. Reconstructions
with these techniques are non-quantitative, i.e., exact up to an unknown constant, but can be safely
used for image analysis if the knowledge of the attenuation coefficients in an absolute sense is not
needed, as it is often the case. Fig.6.8 shows the reconstruction of an FINT sinogram created from
a Shepp-Logan (SL) phantom using FBP, DBP and FBP-E. The original SL with 2048 × 2048 pixels
(Fig.6.8a) is forward projected over 800 angles in [0,π) and only the central 512 pixels of the sinogram
are retained. The bowl artifact is visible at the corners of the FBP reconstruction (Fig.6.8c) and in a
line profile (Fig.6.8f red). This artifact is instead not present in the DBP and FBP-E reconstructions
(Fig.6.8d,e and Fig.6.8f green, black).
For the iterative reconstruction of FINT data, the proposed idea is to use tomographic forward ope-
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: (a) Complete SL phantom. (b) SQRES of the SL phantom. (c) SQRES of the FBP
reconstruction. (d) SQRES of the DBP reconstruction. (e) SQRES of the FBP-E reconstruction. (f)
Line profiles along segment D. The line profiles in (f) show that DBP and FBP-E successfully remove
the bowl artifact. The line profiles are manually shifted along the vertical axis to better distinguish
one from another.

rators based on the principles of DBP and FBP-E, i.e., a projector that implements the derivative of
the Radon transform and a Radon transform acting on an edge-padded projections, respectively.
To guarantee fast reconstructions, the forward gridding projector (FGP) [28], that works in the Fourier
space and has a complexity of O(N2 log2N), has been selected for this work. Studies conducted in
[28] showed that the FGP is significantly faster than standard space-based projectors (complexity of
O(N3)) [93] and its accuracy results comparable to that of very sophisticated operators, when used
in iterative schemes.
In standard tomography, the FGP works on an oversampled grid created with zero-padding. For FINT
data, the following modifications of the original forward gridding projector are proposed: (i) the dif-
ferentiated FGP (DFGP) [29], that implements the derivative of the Radon transform (still works on
an oversampled grid created with zero-padding) and computes a differential sinogram; (ii) the FGP
combined with edge-padding (FGP-E), i.e., the oversampled grid is created by edge-padding of the
object. If these 2 operators are used within the ADMP framework, two iterative schemes can be
defined: the ADMP-D implementing the DFGP and the ADMP-E implementing the FGP-E.
As a proof of principle, the experiment in Fig.6.8 is repeated with the standard ADMP, ADMP-D and
ADMP-E. The bowl artifact, appearing in the reconstruction with the standard ADMP (Fig.6.9(c)),
is not present in the images computed with ADMP-D (Fig.6.9(d)) and ADMP-E (Fig.6.9(e)).



6.3 reconstruction of full int data 161

Edge-padding has two main advantages with respect to the differentiated operator. First, the compu-
tation of the differential sinogram by finite differentiation is very likely to enhance the noise affecting
the original sinogram; if a sophisticate technique is used instead (like the Savitzky-Golay filter [281]),
additional parameters, ruling the trade-off between noise and spatial resolution, are added to the
reconstruction problem. This argument is valid for both analytical and iterative reconstructions. Sec-
ond, the number of sub-iterations required by the CG step in the ADMP is related to the conditioning
number (CN) of the operator A: for the ADMP-D, A corresponds to the derivative of the Radon
transform; for the ADMP-E, A is the Radon transform itself, having a lower CN than its derivative.
It has been experimentally observed that to reach convergence with the same number of iterations,
the CG loop of the ADMP-D requires at least 15 sub-iterations, whereas 4 are enough for the CG
loop of the ADMP-E. For these reasons, only the ADMP-E is utilized for the experiments discussed
in Sec.6.3.5.

Iterative virtual method

For the iterative reconstruction of FINT data without a priori knowledge on the object support or
on the attenuation coefficients inside specific ROIs, an alternative four-step strategy is also proposed:
the iterative virtual method (abbreviated as ADMP-V). The steps of the ADMP-V are (Fig.6.10):

(a) (b) (c)

(d) (e) (f)

Figure 6.9: (a) Complete SL phantom. (b) SQRES of the SL phantom. (c) SQRES of the ADMP
reconstruction. (d) SQRES of the ADMP-D reconstruction. (e) SQRES of the ADMP-E reconstruc-
tion. (f) Line profiles along segment D. The line profiles in (f) show that ADMP-D and ADMP-E
successfully remove the bowl artifact. The line profiles are manually shifted along the vertical axis to
better distinguish one from another.
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Figure 6.10: Diagram showing the steps of the virtual strategy (ADMP-V). (1) Reconstruction with
FBP-E. (2) Zero-out all pixels /∈ FOV. (3) Forward projection to obtain the virtual sinogram (mv =
nπ/2). (3) The virtual sinogram is used as input for the ADMP. The α((an))-padding used for FBP-E
is colored in light blue, whereas the α((int))-padding inside ADMP is colored in light red.

(i) data reconstruction with an analytical method, like DBP or FBP-E; (ii) zeroing of all pixels
outside the reconstruction circle; (iii) forward projection of this newly computed image to obtain a
“virtual” sinogram, simulating a non-FINT dataset; (iv) reconstruction with ADMP using projectors
for standard tomography (FGP, in this case) and using physical constraints (e.g. zeroing all pixels
outside the reconstruction circle at each iteration).
After steps (i), (ii) and (iii), the initial FINT dataset is transformed into a standard tomographic
dataset with known support, that can be reconstructed with any analytical or iterative algorithm.

6.3.5 Experiments

Analysis framework

Metrics to assess the reconstruction accuracy are computed over the square inscribed inside the
reconstruction circle (SQRES).
The contrast-to-noise ratio (CNR) is defined as:

CNR =
|Sri1 − Sri2 |

σri1 + σri2
, (6.17)
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where Sri and σri are the mean and standard deviation of the ROI ri, assumed to be homogeneous.
For the computation of the CNR, ri1 and ri2 must be neighboring. The values of CNR, reported in
the tables of Sec.6.3.5, represent averages over multiple ROIs at different distances from the image
center.
In case of simulated data, the peak signal-to-noise ratio (PSNR) [144] and the mean structural
similarity index (MSSIM) [145] are also used as figures of merit. Since results are not quantitative
due to the DC shift, a linearly regressed version, Iregr, of the reconstruction, I, is used as input for
the analysis. Calling O the phantom, Iregr is computed as:

Iregr = a · I+ b such that ‖Iregr −O‖22 is minimized (6.18)

where a ,b ∈ R. In this way, PSNR and MSSIM scores are not biased by the DC shift.
Edge profiles and histograms are also displayed to provide additional information about the spatial
resolution and the segmentability of the images. Reconstructions are mapped to the interval [0,1] to
facilitate the display and direct comparison of profiles and histograms.

6.3.6 Data and settings

The phantoms used to generate the simulated data are displayed in Fig.6.11. The first dataset is the
SL phantom [129], which is often utilized to validate tomographic reconstruction algorithms. The
second dataset is a segmented reconstruction of mouse lung tissue and it is labeled MLT. This phan-
tom is evidently characterized by a high structural complexity and is related to the real data used in
Sec.6.3.10. The procedure to create FINT sinograms from a reference image has been described in
Sec.6.3.4.
The real datasets have been acquired at the TOMCAT beamline of the Swiss Light Source in the
framework of the SNF project “In vivo study of lung physiology with fast X-ray tomographic mi-
croscopy” [1]. The three sinograms correspond to scans of mouse lung tissue at micrometer scale
with an effective detector pixel size of 2.9 (MOUSE-1, MOUSE-2) and 1.1 (MOUSE-3) µm. The
first two datasets consist of 901 Paganin phase-retrieved [77] projections and 2016 pixels, whereas
the third one has 501 projections × 2016 pixels.

(a) (b)

Figure 6.11: Phantoms used to generate the simulated FINT sinograms. (a) SL phantom. (b) MLT
phantom.
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Figure 6.12: PSNR and MSSIM of the reconstructions of an FINT sinogram of SL and MLT phantoms
computed by GRID-E as a function of α(an), the edge-padding factor. The dashed red line locates
the optimal oversampling factor, α(an) = 2.32.

The regularization strength τ (the only free parameter in the ADMP) is tuned so that reconstructions
with ADMP-E and ADMP-V look visually as similar as possible.

6.3.7 Optimal edge-padding length for analytical and iterative reconstructions

The edge-padding length rules the trade-off between the reconstruction accuracy and computational
efficiency for both analytical and iterative reconstruction methods. An insufficient amount of padding
fails at removing the bowl artifact, whereas an excessive padding substantially increases the compu-
tational cost with insignificant gain in the reconstruction quality.
In this work, analytical reconstructions of FINT data are performed by means of the ramp-filtered
adjoint FGP-E. The method, labeled GRID-E, is equivalent to FBP-E. To improve the signal-to-noise
ratio (SNR) of the retrieved image, projections are additionally windowed with a Hamming function
superimposed on the ramp filter. GRID-E is also used in the first step of the ADMP-V.
When performing analytical reconstructions with GRID-E, the edge-padding required for the INT
dataset and the oversampling needed by the gridding backprojector coincide. The edge-padding or
oversampling factor, i.e. the ratio between the number of pixels of edge-padded and original pro-
jections, used for GRID-E is indicated with α(an) (the superscript stands for “analytical”). Fig.6.12
shows the PSNR and MSSIM scores as a function of α(an) for the reconstructions of a SL and MLT
sinograms with 1500 views × 512 pixels created from initial phantoms with 4096 × 4096 pixels. The
smallest α(an) corresponding to the highest values of both PSNR and MSSIM in Fig.6.12 is 2.32
(marked with a dashed red line).
An iterative reconstruction method utilizing the FGP-E as forward projector (like ADMP-E) depends
on two distinct edge-padding factors: α(int) (the superscript stands for “internal”), corrisponding
to the oversampling factor required by each call of the gridding implementations of A and A† for
both standard and interior tomography; α(ext) (the superscript stands for “external”), which is the
edge-padding factor required to address the reconstruction of FINT datasets, can be considered
a simple data extrapolation approach and is used for the entire duration of the iterative proce-
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Figure 6.13: Diagram showing the difference between the two edge-paddings required by ADMP-
E. The edge-padding by a factor α(ext) (α(ext)-padding, indicated in the scheme with a light green
color) is done before the start of the ADMP-E and remains for the entire duration of the iterative
reconstruction. The edge-padding by a factor α(int) (α(int)-padding, indicated in the scheme with a
light red color) is required every time the forward gridding projector, A, and its adjoint operator, A†,
are called inside the ADMP-E. The α(int)-padding is summed up to the α(ext)-padding when making
use of A and A†.

dure. A sinogram b, reconstructed by ADMP-E, is first padded by a factor α(ext), becoming b ′

(β = num. pixels b ′/num. pixels b). Then, every time A† (analogously it works for A) is invoked
inside the CG, b ′ is padded again by a factor α(int), becoming b ′′. The second padding is only tem-
porary (since it is a requirement of the gridding operators) and, once A† (A) has completed its own
calculation, the resulting image (sinogram) is cropped to remove the additional α(int)-padding. The
α(ext)-padding, instead, remains for the entire run of the ADMP-E. The double-padding mechanism
required by ADMP-E is showed in Fig.6.13.
Fig.6.14 shows the PSNR and MSSIM maps as a function of α(int) and α(ext) for the reconstruction
of the same SL sinogram as in the experiment of Fig.6.12. The maps clearly point out that the
reconstruction accuracy strongly varies with α(ext) and only in a weaker way with α(int). We selected
α(int) = 1.7 and α(ext) = 1.87 as optimal edge-padding parameters, because they are the smallest
values (highest computational efficiency) guaranteeing simultaneously maximum accuracy in terms of
both PSNR and MSSIM.
The optimal edge-padding factors determined here are used for the following reconstructions with
ADMP-V and ADMP-E. For ADMP-V, α(an) = 2.32 is utilized inside GRID-E and α(int) = 1.7 inside
ADMP. ADMP-E utilizes α(ext) = 1.87 as external and α(int) = 1.7 an internal edge-padding factors.
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(a) (b)

Figure 6.14: PSNR and MSSIM maps of the reconstructions of an FINT sinogram of a SL phantom
computed by ADMP-E as a function of α(int) and α(ext).

6.3.8 Validation for different zoom-in factors

The reconstruction accuracy of the ADMP-E and ADMP-V has been tested for different zoom-in
factors (ZIFs), defined as the ratio between the number of pixels of the sinogram in standard tomog-
raphy and the corresponding FINT one. For example, given a sinogram in standard tomography with
4096 pixels, a ZIF=4 describes a FINT sinogram consisting of the central 1024 pixels of the original
dataset.
Fig.6.15 shows reconstructions computed by the two iterative methods for increasing ZIFs. The orig-
inal MLT sinogram has 1500 views × 4096 pixels. At visual inspection the reconstructions are not
affected by FINT artifacts and look almost identical, showing that both methods can satisfactorily
tackle the reconstruction of FINT data for different ZIFs.
The reconstructions with ZIF=8 (Fig.6.15(c),(f)) are overall characterized by a sort of background
pattern. For the simulated data used here, this problem, starting to be barely visible with ZIF=8, can
be neglected up to ZIF∼32. This does not represent a problem for the real datasets used in subsection
6.3.10, as the highest ZIF is roughly 9.

6.3.9 Validation for different conditions of asymmetry

The accuracy of the ADMP-E and ADMP-V has been tested also for the reconstruction of FOVs
placed at various distances from the phantom center. In this way, the iterative methods can be
validated for different conditions of asymmetry, i.e., not symmetrical distribution of the attenuation
coefficients around the selected FOV.
An example of such test, performed with the SL phantom, is shown in Fig.6.16. The sinograms
for FOV-1 and FOV-2 have both 1500 views × 512 pixels. Once again, the reconstructions are not
affected by FINT artifacts and look practically identical, proving that both methods can handle FINT
cases with pronounced feature asymmetry around the FOV.
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(a) (b) (c)

(d) (e) (f)

ADMP-E

ADMP-V

ZIF=2 ZIF=4 ZIF=8

Figure 6.15: Reconstructions computed by ADMP-E and ADMP-V of MLT sinograms with increasing
ZIF: 2, 4 and 8. (a) ADMP-E reconstruction: ZIF=2. (b) ADMP-E reconstruction: ZIF=4. (c)
ADMP-E reconstruction: ZIF=8. (d) ADMP-V reconstruction: ZIF=2. (e) ADMP-V reconstruction:
ZIF=4. (f) ADMP-V reconstruction: ZIF=8.

GRID-E ADMP-E ADMP-V
MSSIM 0.026 0.047 0.045
PSNR 14.74 24.69 24.43
CNR 0.66 2.92 2.85

Table 22: PSNR, MSSIM and CNR computed for the reconstructions of SL (Fig.6.17) phantom.

6.3.10 Reconstruction of underconstrained sinograms

Iterative tomographic algorithms are mostly designed to address underconstrained datasets, providing
insufficient direct information for accurate reconstruction with analytical methods. An undercon-
strained sinogram is either undersampled, noisy or a combination of both factors. A sinogram in
standard tomography is considered undersampled if m < n · π/2, where m is the number of views
and n the number of detector pixels [12]. An FINT sinogram is undersampled when m < ns · π/2
with ns = n · ZIF: ns represents the number of detector cells required to “cover” the entire object in
standard tomography and n the number of available detector cells from the FINT scan [263]. Since
low-dose, fast scans of FINT microtomography are usually characterized by m� n� ns, undersam-
pling combined to local tomography artifacts result in a sort of “background texture”, that can severely
affect FINT reconstructions. Iterative reconstruction in standard tomography can greatly reduce the
amount of this background texture through the usage of constraints and regularization. Since no



168 reconstruction strategies for full interior tomography datasets

FOV-1

FOV-2

(a)

(b) (c)

(d) (e)

Figure 6.16: Reconstructions of two different FOVs computed by ADMP-E and ADMP-V. (a) SL
phantom with FOV-1 and FOV-2. (b) ADMP-E reconstruction: FOV-1. (c) ADMP-V reconstruction:
FOV-1. (d) ADMP-E reconstruction: FOV-2. (e) ADMP-V reconstruction: FOV-2.

constraints are available for the FINT datasets, the removal of the background texture relies entirely
on the regularization: for the same amount of noise in the data, the regularization strength τ should
be bigger, the higher is the undersampling factor, defined as UF = (1−m/(n ·π/2 ·ZIF)) · 100%. If
τ is too low, the jump associated to the background texture can be regarded by the TV as a collection
of faint edges to be preserved and the regularization will only remove the noise component.
The ADMP-E and ADMP-V are here tested for the reconstruction of underconstrained datasets against
GRID-E. The regularization strength, τ, is separatly chosen for ADMP-E and ADMP-V to guarantee
a higher quality reconstruction in terms of CNR (while maintaining a similar spatial resolution) com-
pared to GRID-E.
In the first experiment, an FINT sinogram of the SL phantom with ZIF=4, 200 views × 512 pixels,
UF = 94% and corrupted by Gaussian noise with σ = 2.5% of the sinogram mean is considered.
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(a) (b) (c) (d)

Figure 6.17: Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the SL
sinogram with 200 views × 512 pixels, additional Gaussian noise with σ = 2.5% of the sinogram
mean and ZIF=4. The green segment in (a) shows the position of the line profiles displayed in
Fig.6.18(a). (a) SL phantom. (b) GRID-E reconstruction. (c) ADMP-E reconstruction. (d) ADMP-
V reconstruction.

(a) (b) (c) (d)

Figure 6.18: Edge profiles (a) and histograms (b,c,d) for the reconstructions with GRID-E, ADMP-E
and ADMP-V shown in Fig.6.17.

(a) (b) (c) (d)

Figure 6.19: Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the MLT
sinogram with 200 views × 512 pixels, additional Gaussian noise with σ = 3.5% of the sinogram
mean and ZIF=4. The green segment in (a) shows the position of the line profiles displayed in
Fig.6.20(a). (a) MLT phantom. (b) GRID-E reconstruction. (c) ADMP-E reconstruction. (d)
ADMP-V reconstruction.

Fig.6.17 shows that the reconstructions computed by the ADMP-E and ADMP-V look more similar
to the phantom compared to the GRID-E reconstruction. They have higher MSSIM, PSNR and CNR
(increased by a factor of 4.4) scores, as reported in Tab.22. The edge profiles (Fig.6.18(a)) indicate
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(a) (b) (c) (d)

Figure 6.20: Edge profiles (a) and histograms (b,c,d) for the reconstructions with GRID-E, ADMP-E
and ADMP-V shown in Fig.6.19.

GRID-E ADMP-E ADMP-V
MSSIM 0.101 0.135 0.135
PSNR 8.39 12.68 12.63
CNR 0.44 1.98 1.87

Table 23: PSNR, MSSIM and CNR computed for the reconstructions of MLT (Fig.6.19) phantom.

that the proposed iterative approaches lead to improved CNR without deterioration of the spatial
resolution. Moreover, the peaks corresponding to the different phases of the SL phantom can be
clearly identified in the histograms for the iterative reconstructions in Fig.6.18(c,d), whereas only two
peaks appear in Fig.6.18(b) for the analytical reconstruction.
For the second experiment, a FINT sinogram of the MLT phantom with the same condition of un-
dersampling considered in the previous case (200 views × 512 pixels, ZIF=4) and a larger amount of
Gaussian noise (3.5% of the sinogram mean) is used. ADMP-E and ADMP-V substantially reduce
the noise in the reconstructions displayed in Fig.6.19(c,d) compared to GRID-E (Fig.6.19(b)) making
the light structures clearer against the dark ones. The metric scores in Tab.23 are largely higher
for the iterative reconstructions, with an improvement of the CNR by a factor of nearly 4.4. The
edge profiles (Fig.6.20(a)) for the three different reconstructions coincide almost perfectly at the edge
position, demonstrating the efficacy of the split bregman total variation regularization in removing
noise while preserving edges. The higher quality of the iterative reconstructions is also highlighted
by the histograms in Fig.6.20(c,d) showing clear peaks corresponding to the two phases of the MLT
phantom.
For the third experiment, the dataset of MOUSE-1, characterized by a ZIF≈ 3.2, 901 views × 2016
pixels, UF = 91%, a pronounced asymmetry and highly absorbing structures (e.g. ribs) outside the
FOV, is considered. Due to the feature size and the pattern complexity, the different quality of the
reconstructions displayed in Fig.6.21 can be best appreciated in the blow-ups below the images. Fea-
tures in the iterative reconstructions can be more easily identified thanks to the reduced noise and to
the CNR increased by a factor of 5.3 (Tab.24). The line profiles at the edge position (Fig.6.22(a)) for
the ADMP-E and ADMP-V results match that for the GRID-E reconstruction. Moreover, the double
peak in Fig.6.22(c,d) shows that the two main phases of the lung tissue are better separated in
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(a) (b) (c)

Figure 6.21: Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the MOUSE-
1 sinogram with 900 views × 2016 pixels. The green segment in (a) shows the position of the line
profiles displayed in Fig.6.22(a). The blow-ups below each reconstruction are zoomins for two different
ROIs.

(a) (b) (c) (d)

Figure 6.22: Edge profiles (a) and histograms (b,c,d) for the reconstructions with GRID-E, ADMP-E
and ADMP-V shown in Fig.6.21.

GRID-E ADMP-E ADMP-V
CNR 0.16 0.83 0.85

Table 24: CNR scores computed for the reconstructions of the sinograms of MOUSE-1 (Fig.6.21).

GRID-E ADMP-E ADMP-V
CNR 0.26 1.21 1.19

Table 25: CNR scores computed for the reconstructions of the sinograms of MOUSE-2 (Fig.6.23).

terms of gray level in the iterative reconstructions, whereas a single peak characterizes the histogram
for the analytical reconstruction in Fig.6.22(b).
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(a) (b) (c)

Figure 6.23: Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the MOUSE-
2 sinogram with 900 views × 2016 pixels. The green segment in (a) shows the position of the line
profiles displayed in Fig.6.24(a). The blow-ups below each reconstruction are zoomins for two different
ROIs.

In the fourth experiment, the reconstructed dataset of MOUSE-2 (901 views × 2016 pixels, ZIF≈ 3.2)
has a very similar pattern complexity as MOUSE-1, whereas the morphology, e.g. the shape of the
small structures, is quite different. Reconstructions with the ADMP methods in Fig.6.23 clearly show
higher quality compared to the analytical one, thanks to the decreased noise level and the higher CNR
(increased by a factor 4.6, Tab.25). Small dark features are well identifiable in Fig.6.23(b,c), whereas
they are mainly covered by noise and undersampling/local tomography artifacts in Fig.6.23(a). The
edge profiles in Fig.6.24 for the iterative reconstructions overlap almost exactly at the edge position
with that for the analytical result, indicating also in this case that the total variation regularization
operates with negligible loss in terms of spatial resolution. The histograms corresponding to the
reconstructions with the ADMP-E and ADMP-V in Fig.6.24(c,d) show the presence of 2 phases. This
is not the case in the histogram for GRID-E in Fig.6.24(b).

(a) (b) (c) (d)

Figure 6.24: Edge profiles (a) and histograms (b,c,d) for the reconstructions with GRID-E, ADMP-E
and ADMP-V shown in Fig.6.23.
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(a) (b) (c)

Figure 6.25: Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the MOUSE-
3 sinogram with 500 views × 2016 pixels. The green segment in (a) shows the position of the line
profiles displayed in Fig.6.26(a). The blow-ups below each reconstruction are zoomins for a ROI.

(a) (b) (c) (d)

Figure 6.26: Edge profiles (a) and histograms (b,c,d) for the reconstructions with GRID-E, ADMP-E
and ADMP-V shown in Fig.6.25.

GRID-E ADMP-E ADMP-V
CNR 0.24 0.88 0.89

Table 26: CNR scores computed for the reconstructions of the sinograms of MOUSE-3 (Fig.6.25).

For the fifth experiment, the dataset of MOUSE-3, characterized by 500 views × 2016 pixels and a
ZIF≈ 9.0, is used. In this case, UF = 98%, but features are in average much larger compared to
MOUSE-1 and MOUSE-2, since projections were acquired with a higher magnification. The iterative
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reconstructions in Fig.6.25 offer a clearer vision of the object; nevertheless, all structures recognizable
in Fig.6.25(b,c) can be visually identified in Fig.6.25(a) as well. The CNR is improved in this example
by a factor of 3.7 (Tab.26(c)). In Fig.6.26(a) an edge can hardly be recognized for the reconstruction
with GRID-E, whereas those corresponding to ADMP-E and ADMP-V, practically identical, do show a
flank. Histograms in Fig.6.26(b,c) show a distinction between the two main phases of the lung tissue,
whereas a single peak dominates in the histogram for the analytical reconstruction in Fig.6.26(a).
These five experiments with simulated and real sinograms show that: (i) ADMP-E it manages to
substantially improve the image quality compared to an analytical method like GRID-E when tackling
the reconstruction of underconstrained FINT datasets with different ZIF, noise level and feature com-
plexity; (ii) the virtual strategy incorporated in the ADMP-V can provide comparable results to those
achievable with the ADMP-E.

6.3.11 Computational cost

To give an idea of the superior computational performance of the ADMP-V compared to the ADMP-E,
the time required for a single iteration, ∆t, has been measured for two different datasets on an Intel(R)
Core(TM) i7-3520M CPU 2.90GHz. For a sinogram with 800 views × 504 pixels (convergence reached
after 8 iterations), ∆t(ADMP-E) = 46.7s and ∆t(ADMP-V) = 1.45s; for a sinogram with 1584 views
× 1008 pixels (convergence reached after 9 iterations), ∆t(ADMP-E) = 173.2s and ∆t(ADMP-V)
= 5.7s. Thus, the ADMP-V for small and medium datasets is approximately 30 times faster with
respect to the ADMP-E.

6.3.12 Conclusion

This work introduces two novel strategies for iterative reconstructions of datasets in full interior to-
mography (FINT), when the FOV is completely inside the object support and no a priori knowledge
regarding the support itself and the distribution of the attenuation coefficients in certain ROIs is avail-
able. FINT represents a very general case, frequently encountered in many tomographic applications
like synchrotron-based X-ray microtomography.
One strategy works with an edge-padding forward projector. The second is a four-step procedure,
requiring the creation of an intermediate virtual sinogram, simulating a full tomography dataset; this
sinogram is, then, reconstructed by a standard iterative algorithm, while enforcing a tight constraint
outside the reconstruction circle. Both strategies, although not bounded to a specific iterative scheme,
have been implemented in this work inside the alternate direction method of multipliers plug-and-play
(ADMP), that offers a versatile optimization framework, where different forward projectors and reg-
ularizers can be easily plugged in, without altering the structure of the iterative solver. The two
resulting iterative methods have been labeled ADMP-E (edge-padding strategy) and ADMP-V (vir-
tual strategy).
The forward gridding projector with minimal oversampling (FGP) is used as standard and edge-padding
forward operator for the ADMP. The FGP guarantees fast iterative reconstructions, while keeping the
same accuracy of the results achieved with more sophisticated, but much slower, implementations of
the Radon transform.
The ADMP-E and ADMP-V have been, first, validated for the reconstruction of FINT datasets with
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different zoom-in factors and asymmetry conditions around the FOV. The methods have, then, been
tested on underconstrained simulated and real FINT datasets. Results show that both iterative tech-
niques yield reconstructions of higher quality compared to a standard analytical method: the CNR is
greatly improved (in average 4 times higher), while preserving the spatial resolution, and small features
can be more easily identified. The reconstruction quality achieved with the two proposed iterative
strategies is comparable. ADMP-V provides, though, superior computational efficiency (about 30
times faster), since it requires a much smaller grid for the computations inside the iterative procedure.
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Chapter 7
Sinogram inpainting

“Inpainting” is an image processing technique designed to replace a set of labeled pixels with the
information provided by unlabeled neighboring pixels [282]. Inpanting is often used to remove specific
features from an image without compromising its continuity, as illustrated by the example in Fig. 7.1
Zooming can be considered a special case of inpainting, since the geometry of the pixels to recon-
struct is well-defined. Consider a zooming by a factor k and a low-resolution image x(lr)[i, j], the
target high-resolution image, at first, is x(hr)[ki,kj] = x(lr)[i, j] and 0 otherwise. The inpainting or
zooming algorithm uses x(hr)[ki,kj] to infer the values of all the other pixels.
Sinogram inpainting is here referred as the procedure to upsample the sinogram along the view direc-
tion, creating new projections at angles between the ones already available. The inpaiting geometry
is, therefore, a bundle of horizontal equidistant lines, whereas for image zooming it corresponds to

(a) Original image (b) Inpainted image

Figure 7.1: Example of image inpainting. (a) In the original image the cat wears glasses. (b) The
pixels corresponding to the glasses are labeled and then replaced through inpainting with information
coming from the surroundings. The performance of an inpanting algorithm is visually measured by
the degree of compatibility between the inpainted pixels and the neighbors.



178 sinogram inpainting

a pattern of both horizontal and vertical lines to be inferred. Increasing the number of views of an
undersampled sinogram has the potential of reducing the streak artifacts affecting its FBP reconstruc-
tion.
The image processing literature offers a wide variety of different algorithms for inpanting or zooming,
that theoretically could be directly applied to the specific case of sinogram inpanting. Many of such
techniques work well with natural images, yielding satisfactory visual results, but they are not suited
for sinograms: visually acceptable inpainted sinograms can unexpectedly lead to FBP reconstructions
affected by severe artifacts. The problem is that neighboring pixels of a sinogram do not necessarily
belong to the same local area, as it occurs for natural images, thus, the principle ruling almost any
inpainting/zooming algorithm cannot be applied to this case. Here is a list of different methods for
image inpainting/zooming that have been tested in this work for tomographic datasets: Papoulis-
Gerchberg [283, 284]; matrix extrapolation [285]; frequency-selective extrapolation [286]; Criminisi
inpainting [287]; Navier-Stokes based inpainting [288]; fast marching inpainting [289]; image zooming
through directional cubic convolution interpolation [290].
Specific techniques for sinogram interpolation/extrapolation have been proposed since the 90s, but
are usually designed to address the “missing-wedge” problem or the extrapolation of projections out of
the FOV. These algorithms are also iterative and require several input parameters. Using an iterative
technique purely working in the Radon domain has the advantage of being much more computa-
tionally efficient than iterative reconstruction algorithms making use of tomographic operators. The
drawback is that iterative algorithms for sinogram restoration combined to FBP cannot outperform
iterative reconstruction algorithms in terms of accuracy. It is for this reason that iterative algorithms
for sinogram restoration have never taken over a leading position in the research on tomographic
reconstruction.

7.1 Sinogram filter based on the consistency conditions

The following section represents a reprinted manuscript published as: F. Arcadu, J. Vogel, M. Stam-
panoni and F. Marone, submitted to Fundamenta Informaticae, 2016 [32].

7.1.1 Abstract

This work introduces and characterizes a fast parameterless filter based on the Helgason-Ludwig
consistency conditions, used to improve the accuracy of analytical reconstructions of tomographic
undersampled datasets. The filter, acting in the Radon domain, extrapolates intermediate projections
between those existing. The resulting sinogram, doubled in views, is then reconstructed by a standard
analytical method. Experiments with simulated and real data prove that the peak-signal-to-noise ratio
of the results computed by filtered backprojection is improved up to 5–6 dB, if the filter is used prior
to reconstruction.

7.1.2 Introduction

The Radon transform [291] of a function belonging to the space of rapidly decreasing C∞ functions
on R2 satisfies the Helgason-Ludwig consistency conditions [292, 293] (HLCC). These properties
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characterize any k-th moment of the Radon transform. The consistency conditions, known since the
1960s [292], have been mainly exploited in iterative pre-processing algorithms (prior to reconstruc-
tion) to restore limited-angle tomographic datasets [277, 294–296], to reduce translational motion
artifacts in fan-beam computed tomography (CT) reconstructions [297] or metal artifacts [298], and
for alignment in cardiac position emission tomography (PET) and CT [299].
The algorithm presented in this work utilizes the HLCC for a different purpose, namely, augmenting
the number of views of a sinogram with projections homogeneously acquired in [0,π) to improve its
reconstruction with an analytical technique like filtered backprojection [300] (FBP). This augmenta-
tion strategy should provide better analytical reconstructions especially for undersampled datasets,
i.e., m� nπ/2, where m is the number of views and n the number of detector pixels [12]. Iterative
algorithms, often utilized for the reconstruction of strongly undersampled datasets, are characterized
by a high computational cost, a rather large hyper-parameter space and need for sample-specific
constraints and/or a priori knowledge. The proposed algorithm, instead, acting as a filter that prepro-
cesses the sinogram before the actual reconstruction, is parameterless, sample-independent and fast
(only slightly impacting the total reconstruction speed).
The use of this HLCC-based filter substantially improves the quality of FBP reconstructions of un-
dersampled datasets. However, the reconstruction quality provided by highly optimized iterative
algorithms, set with finely tuned hyper-parameters and sample-specific a priori knowledge, is not yet
achieved. Nonetheless, the proposed method represents an effective strategy when sufficient compu-
tational power (e.g. access to high performance computing facility) is not available or high variability
of the samples requires time consuming integration of a priori knowledge and hyper-parameters opti-
mization for each single investigated object.

7.1.3 Helgason-Ludwig consistency conditions

The HLCC are properties characterizing the Radon transform, R, of a 2D function f(x) with bounded
support, Ω, entirely placed within the field-of-view (FOV), i.e., Ω ⊂ FOV. In parallel beam geometry,
the Radon transform is defined as [12]:

p(θ, t) = R{f(x)}(θ, t) =
∫
Ω

dx f(x) δ(x · n̂ − t) , (7.1)

where x = (x1, x2), n̂ = (cos θ, sin θ), θ is the projection angle formed with the x1-axis and t is the
distance of the X-ray line from the origin of the reference frame.
The HLCC state that the integral:

+1∫
−1

dt tk p(θ, t) (7.2)
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is a homogeneous polynomial of degree k in cos θ and sin θ for k > 0 [292, 293]. The zeroth-order
condition (k = 0), e.g, corresponds to [294]:

µ =

+1∫
−1

dt p(θ, t) =
∫

R2

dx f(x) ∀ θ , (7.3)

meaning that the integral of any projection along t is constant and equals the integral of f over R2.
For k > 1, conditions related to higher moments of p(θ, t) are obtained.
An effective way to enforce the HLCC is by expanding p(θ, t) onto a Fourier-Chebyshev basis [295]:

p(θ, t) =
1

π

∞∑
k=0

+∞∑
l=−∞bkl (1− t

2)1/2 Uk(t) e
ilθ , (7.4)

where Uk(t) represents the k-th order Chebyshev polynomial of second kind, the bkl’s are the Fourier
Chebyshev coefficients and θ ∈ [0, 2π] and i is the imaginary unit. On this orthogonal basis, the
HLCC become [295]:

bkl = 0 for

{
|l| > k

k+ |l| = 2z+ 1 ∀ z ∈N
. (7.5)

If the Radon transform is sampled over 2π, the positions of the non-zero bkl form in the (k, l)-space
a checkboarded wedge as shown in Fig. 7.2.
Consistency conditions have been extended to fan-beam [301] and cone-beam [302] geometry as well.

l

Figure 7.2: Checkboarded wedge pattern of the bkl coefficients in the (k, l)-space. The non-zero
bkl’s are placed in the white squares, the rest is zero.
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(a) (b)

Figure 7.3: Example of a sinogram interleaved with 0-valued lines (a) and the binarized real part of
its Fourier-Chebyshev decomposition (b), showing that inconsistencies give rise to non-zero bkl’s at
the locations indicated in (7.5).

7.1.4 Proposed method

The discrete version of p(θ, t) (also called sinogram) is indicated with p[θh, tj], where θh = hπ/m ∈
[0,π) for h = 0, 1, ...,m− 1 and tj = −1+ 2j/(n− 1) for j = 0, 1, ...,n− 1, considering tj ∈ [−1, 1].
The proposed Helgason-Ludwig sinogram filter (HLSF) doubles the number of views of a sinogram
∈ Rm×n by extrapolating m missing projections at intermediate angles θh+1/2 = (θh + θh+1)/2.
The input sinogram is, first, interleaved with 0-valued projections, as shown in Fig. 7.3(a). In this way,
it becomes an inconsistent dataset characterized by several non-zero bkl’s at the locations indicated
in (7.5) (Fig. 7.3(b)). By enforcing (7.5), consistency is recovered, the 0-valued lines are filled
with extrapolated values and the resulting sinogram ∈ R2m×n can be reconstructed by means of an
analytical method like FBP.
HLSF consists of the following four steps:

1. extension of the data to [0, 2π];

2. creation of an intermediate sinogram with 4m views; the 2m original projections are interleaved
with 2m zero lines;

3. imposition of the HLCC on the intermediate inconsistent sinogram;

4. crop of the interval [0,π) and reassignment of the original m views.

“Imposing HLCC” means to enforce the property expressed by (7.5), i.e. zero-out all bkl 6= 0, that
are supposed to be zero.
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m

(a)

2m

(b)

D
4m

(c) (d)

4m

(e)

Figure 7.4: Succession of steps to compute the Fourier-Chebyshev decomposition of a sinogram. (a)
Input sinogram of a Shepp-Logan phantom, θ ∈ [0,π). (b) Extended sinogram, θ ∈ [0, 2π]. (c)
Interleaved sinogram. (d) Zoom-in of the region D in (c). (e) Sinogram with cosine-resampled
projections.

7.1.5 Step (1): extend sinogram to [0, 2π]

First, the input sinogram, p[θh, tj], has to be extended to [0, 2π] in order to use (7.4):

p(1)[θh ′ , tj] =


p[θh, tj] for θh ′ ∈ [0,π)

p[θh,n− tj] for θh ′ ∈ [π, 2π)
∈ R2m×n

θh ′ =
πh ′

m
h ′ = 0, 1, ..., 2m− 1 .

(7.6)

Fig. ??(b) shows the result of extending the example sinogram in Fig. ??(a).

7.1.6 Step (2): interleaved sinogram

The interleaved sinogram p(2)[θh ′′ , tj] has θh ′′ = h ′′π/2m for h ′′ = 0, 1, ..., 4m− 1 and corresponds
to:

p(2)[θh ′′ , tj] =


p(1)[θh ′ , tj] for h ′′ = 2h ′

0 for h ′′ = 2h ′ + 1
∈ R4m×n . (7.7)

An example of interleaved sinogram is shown in Fig. ??(c).
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7.1.7 Step (3): imposing HLCC

By introducing the following quantities:

ck(θ) =

+∞∑
l=−∞bkl e

ilθ , (7.8)

(??) can be rewritten as:

p(θ, t) =
1

π

+∞∑
k=0

ck(θ) (1− t
2)1/2 Uk(t) (7.9)

The ck(θ)’s are the Chebyshev coefficients of [p(θ, t)(1− t2)−1/2]; the bkl’s are the Fourier series
coefficients of the ckl’s. The strategy consists in computing the bkl coefficients in two steps: first
p(θ, t) is expanded onto the Chebyshev basis, then, the bkl’s are retrieved from the ck(θ)’s.
The ck(θ)’s can be easily computed, by resampling the projections at points t ′j = cos(π(j+ 1)/(n+

1)) [277, 303]. The cosine-resampling simplifies Uk(t) into a sine function. Thus, the first term of
(7.9) becomes:

p(2)[θh ′′ , t ′j] =
n−1∑
0

ck[θh ′′ ] sin
(
π(j+ 1)(k+ 1)

n+ 1

)
. (7.10)

(7.10) shows that the ck[θh ′′ ]’s correspond to the type-1 discrete sine transform (DST-1) coefficients
of the cosine-resampled projections (an example is provided by Fig. 7.4(e)).
After running the DST-1 along the channel direction of the sinogram, the bkl’s are finally yielded by
the FFT along the view direction:

bkl =
1

4m
DFT{ck[θh ′′ ]} . (7.11)

Altogether, imposing the HLCC on p(2)[θh ′′ , tj] requires the cosine resampling, a DST-1 along the
channel direction, a FFT along the view direction, setting to zero the bkl’s according to (7.5) (Fig.
7.2) and reversing the process, i.e. an IFFT along the view direction, an IDSF-1 along the channel
direction and resampling at positions tj. The resulting sinogram is p(3)[θh ′′ , tj] ∈ R4m×n.

7.1.8 Step (4): crop in [0,π) and reassign original data

The sinogram, p(4)[θh ′′′ , tj], is finally cropped in the interval [0,π), i.e. p(4)[θh ′′′ , tj] ∈ R2m×n and
the original projections are reassigned. Therefore, we obtain:

p(4)[θh ′′′ , tj] =


p[θh, tj] for h ′′′ = 2h

p(3)[θh, tj] for h ′′′ = 2h+ 1

∈ R2m×n , h = 0, 1, ...,m− 1 . (7.12)
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Experiments have shown that reassigning the original projections at the end of the procedure slightly
increases the quality of the FBP reconstruction in terms of peak-signal-to-noise ratio, even though
the consistency of the obtained sinogram marginally decreases.

7.1.9 Complexity and efficiency

The computational cost of the HLSF lies in the calls of the DST-1 along the channel direction and
the FFT along the view direction. The computation of the DST can be factorized similarly to the
FFT (O(N log2N) complexity) plus few pre- and post-processing steps with O(N) complexity [304].
For an input sinogram with m views × n pixels, this yields to approximately 8mn(log2 n+ log2 4m)

floating operations and a resulting O(mn(log2 n+ log2 4m)) complexity.
To show that the proposed filter only slightly impacts the total reconstruction speed, a pure Matlab
implementation of the HLSF has been compared to the well known Matlab function iradon. Results
for sinograms of different sizes, collected in Tab. 27, prove that the HLSF requires smaller runtimes
than a standard non-GPU implementation of FBP, especially for real datasets where m,n > 103.

HLSF FBP

805 views × 512 pix. 0.22 s 0.30 s

1608 views × 1024 pix. 0.63 s 2.34 s

2500 views × 2048 pix. 1.65 s 14.50 s

Table 27: Comparison between the time elapsed to run the HLSF and the FBP reconstruction for
sinograms of different sizes. HLSF is implemented in pure Matlab. FBP is performed by the Matlab
function iradon.

7.1.10 Benchmark procedure

To assess the performance of the HLSF, four phantoms with structural patterns of different complexity
have been considered (Fig. 7.5). PH-1 in Fig. 7.5(a) is the segmentation of a reconstructed slice of
mouse lung tissue at micrometer scale. PH-2 in Fig. 7.5(b) is a multilevel segmentation of a MRI
scan of a human brain. PH-3 in Fig. 7.5(c) is a multilevel segmentation of a CT slice of a human
lung. PH-4 is the well-known Shepp-Logan phantom [129].
The simulated sinograms are computed by a standard space-based implementation of the Radon
transform based on slant-stacking with linear interpolation [93].
Reconstructions are performed by means of FBP. The tradeoff between signal-to-noise ratio (SNR)
and spatial resolution of FBP reconstructions is highly dependent on the choice of the filter function.
For this reason, the dataset has been reconstructed with 3 different filters: a pure ramp or Ram-
Lak filter and a ramp combined to a Hanning or Parzen [106] window to damp the high frequency
components of the projections [12]. These filters are indicated in the following as Ram-Lak, Hanning
and Parzen, respectively. The Ram-Lak filter provides the highest spatial resolution and the worst
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(a) PH-1 (b) PH-2 (c) PH-3 (d) PH-4

Figure 7.5: Set of simulated data used to benchmark the HLSF. PH-1 has 784 × 784 pixels; PH-2
has 592 × 592 pixels; PH-3 has 500 × 500 pixels; PH-4 has 512 × 512 pixels.

SNR, the opposite occurs for Parzen; Hanning is placed in the middle. Reconstructions labelled
“CFBP” (Consistent FBP) were computed with FBP on a sinogram pre-filtered by HLSF with an
upsampling factor of 2; reconstructions labelled “IFBP” (Interpolation FBP) were computed with
FBP on a sinogram upsampled by a factor of 2 by means of 1D cubic spline interpolation along the
view direction; reconstructions labelled “TFBP” (Telea FBP) were computed with FBP on a sinogram
upsampled by a factor of 2 after having applied the Telea inpainting algorithm [289]; otherwise they
are simply labelled “FBP”.
The standard peak-signal-to-noise ratio (PSNR) [144], calculated within the reconstruction circle, is
used to score each reconstruction with respect to the corresponding phantom.
The “sampling factor” (SF) is defined as the ratio between the number of projections of the considered
sinogram and the number of projections of an optimally sampled sinogram. For parallel beam geometry,
a sinogram is optimally sampled if m > n π/2, with m the number of views and n the number of
detector pixels [12]. A sinogram with 100 views × 512 pixels, for example, considered well-sampled
with 805 w 512 · π/2 views, has SF = 0.12.
A metric, called power of wrong coefficients (PWC), is here introduced to quantify the inconsistency
of a given sinogram on the basis of its Fourier-Chebyshev coefficients. It is defined as follows:

PWC =

∑
(k,l)=(kw,lw)

|bkl|
2

∑
∀k,l

|bkl|
2

· 100% , (7.13)

where kw, lw are the indices of all bkl 6= 0, that are supposed to be zero according to property (7.5).

7.1.11 Experiments

First, the performance of HLSF is tested for the noiseless case: noise-free sinograms with different
SFs are reconstructed with FBP after pre-filtering with HLSF. The plots in Fig. 7.6 show that HLSF
improves the reconstruction quality for small SF, while for higher SF the results for FBP and CFBP
are comparable. The exact boundary between these 2 regimes depends on the filter choice. It is
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marked in Fig. 7.6 with a dashed black line and corresponds roughly to 0.47 for the Ram-Lak filter,
0.30 for Hanning and 0.15 for Parzen, regardless of the reconstructed object. The stronger the action
of the filter, the smaller the SF interval where the HLSF increases the PSNR of the reconstruction.
Subsequently, HLSF is also tested for noisy sinograms. The standard deviation of the added Poisson
noise is expressed as percentage of the original sinogram mean value and is indicated with σ. Fig.
7.7 presents two-dimensional maps showing the difference between the PSNR score of CFBP and
FBP reconstructions. Positive values indicate that CFBP outperforms FBP and viceversa. Each map
corresponds to a specific choice of reconstruction filter and phantom.
The differential maps, shown in Fig. 7.7, are characterized by the same trend observed for the PSNR
in Fig. 7.6: the stronger the action of the filter, the smaller the area, where HLSF provides a sub-
stantial improvement. However, CFBP reconstructions have always a higher PSNR compared to the
FBP ones, since values on these maps are everywhere positive (Fig. 7.7).
Reconstructions with FBP and CFBP for each phantom are displayed in Fig. 7.8, 7.9, 7.10 and 7.11.
At visual inspection, the reconstructions with CFBP show better quality and details can be more easily
identified.
CFBP has also been compared to 1D cubic spline interpolation along the view direction (upsampling
factor of 2) followed by FBP (IFBP). Simple 2D interpolation schemes used to double the number
of views of a sinogram can yield visible artifacts on the FBP reconstruction and are, therefore, not
considered here for comparison with HLSF. The algorithms are tested, first, on noiseless, then, on
noisy datasets. Figure 7.12(a) shows that CFBP outperforms IFBP for any value of SF, when us-
ing the Ram-Lak filter, whereas differences vanish, when using the Hanning filter and SF& 0.30, as
illustrated by Fig. 7.12(b). Analogously to the results of Fig. 7.7, the stronger the action of the
filter, the smaller the SF interval where CFBP can outperform IFBP for the reconstruction of noiseless
undersampled datasets. The differential maps for PH-4 in Fig. 7.13 are everywhere positive (positive
values correspond to PSNRCFBP(σ, SF) > PSNRIFBP(σ, SF)) and show that CFBP yields a better
reconstruction quality than IFBP, especially for σ > 1.73 and SF< 0.33. Very similar results have
also been obtained for PH-1, PH-2 and PH-3.
If an interleaved sinogram (as the one shown in Fig.7.3(a)) is simply regarded as an image, the
extrapolation of missing projections can be performed, in principle, through inpainting. Among the
methods tested for image inpainting, the Telea algorithm [289] was the only one filling the interleaved
sinogram, providing FBP reconstructions, that were not affected by severe visible artifacts. CFBP
was, therefore, compared to the Telea algorithm followed by FBP (TFBP). The differential maps
for PH-2 displayed in Fig.7.14 are, once again, everywhere positive (positive values correspond to
PSNRCFBP(σ, SF) > PSNRTFBP(σ, SF)). Results showing CFBP outperforming TFBP have been
also obtained for PH-1, PH-3 and PH-4.
We finally present an experiment dealing with a synchrotron-radiation-based X-ray tomographic mi-
croscopy dataset of a modern seed acquired at the TOMCAT beamline of the Swiss Light Source at
the Paul Scherrer Institute. The original sinogram consisting of 900 views × 2560 pixels has been
downsampled to 150 views to be sufficiently undersampled. Figure 7.15 shows the FBP reconstruction
of the original sinogram (Fig. 7.15(a)) and the FBP, IFBP, TFBP and CFBP reconstructions of the
downsampled sinogram (Fig. 7.15(b-e)), respectively. The Hanning filter was used for all reconstruc-
tions. The undersampling artifacts appear quite reduced in the CFBP reconstruction compared to
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the results in Fig.7.15(b,c,d). The improvement in reconstruction quality is confirmed by the PSNR
scores of the reconstructions (b-e) computed with respect to the FBP reconstruction of the original
sinogram, used in this experiment as ground truth.
Other experiments (not shown here) have indicated that no additional improvement can be obtained
from either applying HLSF multiple times sequentially or using HLSF to triple or quadruple at once
the number of views.

(a) Ram-Lak (b) Hanning

(c) Parzen

Figure 7.6: PSNR scores as a function of the sampling factor, SF, of the FBP reconstructions
performed with Ram-Lak, Hanning and Parzen filters. The red markers correspond to FBP recon-
structions, the blue ones to CFBP reconstructions. The marker shape is related to the phantom used
to create the simulated data.
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(a) Ram-Lak (PH-1) (b) Hanning (PH-2)

(c) Parzen (PH-3)

Figure 7.7: Maps of difference between PSNR scores of the CFBP and the FBP reconstructions as
a function of the sampling factor, SF, and the variance, σ, of the additional Poisson noise. σ is
expressed as percentage of the original sinogram mean value. The caption of each map specifies what
filter and phantom were used for the reconstructions.
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(a) FBP (b) CFBP

Figure 7.8: Reconstructions performed by FBP and CFBP with Ram-Lak filter of a PH-1 sinogram
168 views × 784 pixels (SF = 14%) + Poisson noise with σ = 2.2% of the original sinogram mean
value.

(a) FBP (b) CFBP

Figure 7.9: Reconstructions performed by FBP and CFBP with Parzen filter of a PH-2 sinogram 82
views × 592 pixels (SF = 9%) + Poisson noise with σ = 2.8% of the original sinogram mean value.

7.2 Relationship between reconstruction quality and sinogram con-
sistency

The experiment in Fig.7.16, involving a simulated sinogram of Shepp-Logan, shows how the PWC
varies at the different stages of the HLSF procedure and highlights a fact, that was only briefly
mentioned at the end of Section 7.1.4: the PWC does not always and necessarily correlate with the
reconstruction quality expressed in terms of PSNR.
The original undersampled sinogram with 110 views × 512 pixels (Fig.7.16(a)) is consistent by con-
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(a) FBP (b) CFBP

Figure 7.10: Reconstructions performed by FBP and CFBP with Hanning filter of a PH-3 sinogram
108 views × 500 pixels (SF = 14%) + Poisson noise with σ = 2.2% of the original sinogram mean
value.

(a) FBP (b) CFBP

Figure 7.11: Reconstructions performed by FBP and CFBP with Ram-Lak filter of a PH-4 sinogram
149 views × 512 pixels (SF = 18%) + Poisson noise with σ = 1.1% of the original sinogram mean
value.

struction, with PWC= 0.50% (PWC< 1% generally corresponds to sinograms with high consistency).
When the sinogram is interleaved with zero lines (Fig.7.16(b)), its consistency becomes very low,
PWC= 70.71%, and is restored once the HLCC are imposed (Fig.7.16(c)), reaching PWC= 0.56%.
The original sinogram has slightly lower PWC than the HLSF sinogram, but the FBP reconstruction
of the HLSF sinogram (Fig.7.16(f)) has substantially higher PSNR than the FBP reconstruction of
the original sinogram (Fig.7.16(e)) as a consequence of using double number of projections.
The same conclusion was obtained when comparing the HLSF algorithm with and without final re-
assignment of the original projections, this last version indicated with HLSFn. The HLSFn sinogram
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(a) Ram-Lak (b) Hanning

Figure 7.12: PSNR scores as a function of the sampling factor, SF, of the FBP reconstructions
performed with Ram-Lak and Hanning filters. The red markers correspond to IFBP (cubic spline
interpolation along the view direction + FBP) reconstructions, the blue ones to CFBP reconstructions.
The marker shape is related to the phantom used to create the simulated data.

shown in Fig.7.16(d) has slighly smaller PWC than the HLSF sinogram in Fig.7.16(c), but its FBP
reconstruction in Fig.7.16(g) has inferior PSNR than the one in Fig.7.16(f). This empirical result
explains why the HLSF algorithm includes the reassignment of the original projections at the end of
the procedure.
The same mismatch is also observed when other inpainting algorithms are used. The sinogram in
Fig.7.16(a) doubled in number of views by means of 1D cubic interpolation has PWC= 2.5% and its
FBP reconstruction has PSNR= 19.61. The same sinogram doubled in number of views by the Telea
inpainting algorithm has PWC= 4.7% and its FBP reconstruction has PSNR= 21.54.
These example show that a more consistent sinogram does not necessarily lead to a FBP reconstruction
of higher quality, at least when comparing sinograms with PWC values . 10%.

7.3 Discussion and conclusion

This work presents a fast procedure to improve analytical tomographic reconstructions of undersam-
pled datasets in parallel beam geometry. The proposed method is a filter working in the Radon
domain and based on the Helgason-Ludwig consistency conditions. It doubles the number of views
of a sinogram homogenously sampled in [0,π), by extrapolating projections at intermediate angular
positions.
This sinogram filter, abbreviated HLSF, is a non-iterative, parameterless procedure, that can be effi-
ciently implemented with FFTs and only marginally impacts the total computational cost for analytical
reconstructions.
Experiments, performed on simulated data of different structural complexity, have shown that FBP
reconstructions of sinograms pre-processed with the presented HLSF are charaterized by a higher
PSNR compared to FBP reconstructions of standard sinograms. HLSF improves the reconstruction
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(a) Ram-Lak (PH-4) (b) Hanning (PH-4)

(c) Parzen (PH-4)

Figure 7.13: Maps of difference between PSNR scores of the CFBP and the IFBP (cubic spline
interpolation along the view direction + FBP) reconstructions as a function of the sampling factor,
SF, and the variance, σ, of the additional Poisson noise. σ is expressed as percentage of the original
sinogram mean value. The caption of each map specifies what filter and phantom were used for the
reconstructions.

quality for both noiseless (generally, for SF . 0.31) and noisy undersampled (especially, for SF .

0.33 and σ & 1.73%) sinograms. Moreover, HLSF outperforms 1D cubic spline intepolation along
the view direction and the Telea algorithm for image inpainting: improvements in the reconstruc-
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(a) Ram-Lak (PH-2) (b) Hanning (PH-2)

(c) Parzen (PH-2)

Figure 7.14: Maps of difference between PSNR scores of the CFBP and the TFBP (Telea inpainting
algorithm + FBP) reconstructions as a function of the sampling factor, SF, and the variance, σ, of
the additional Poisson noise. σ is expressed as percentage of the original sinogram mean value. The
caption of each map specifies what filter and phantom were used for the reconstructions.

tion accuracy are substantial when dealing with noisy undersampled datasets (especially, for SF .

0.33 and σ & 1.73%). This result has been confirmed by experiments performed on real datasets of
synchrotron-radiation-based X-ray tomographic microscopy.
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(a) FBP (900 proj.) (b) FBP (150 proj.) | PSNR = 24.3

(c) IFBP (150 proj.) | PSNR = 26.3 (d) TFBP (150 proj.) | PSNR = 26.8 (e) CFBP (150 proj.) | PSNR = 28.6

(f) Detail - FBP (900 proj.) (g) Detail - FBP (150 proj.)

(h) Detail - IFBP (150 proj.) (i) Detail - TFBP (150 proj.) (j) Detail - CFBP (150 proj.)

Figure 7.15: FBP reconstructions with Hanning filter of a dataset of a modern seed specimen. The
PSNR values of reconstructions (b-e) are computed with respect to (a), that is used as ground truth.
(a) FBP reconstruction of the original sinogram with 900 views × 2560 pixels; the light blue square
identifies the regions zoomed in images (f-l). (b) FBP reconstruction of the downsampled sinogram
with 150 views × 900 views. (c) IFBP reconstruction (cubic spline interpolation along the view
direction + FBP) of the downsampled sinogram with 150 views × 900 views. (d) TFBP reconstruction
(Telea inpainting algorithm + FBP). (e) CFBP reconstruction of the downsampled sinogram with 150
views × 900 views. (f-l) Blow-ups of the region indicated in (a) of all the reconstructions. Sample
courtesy: S. Smith, University of Michigan.
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(a) Undersampled sinogram, PWC=0.50% (b) Interleaved sinogram, PWC=70.71%

(c) HLSF sinogram, PWC=0.56% (d) HLSFn sinogram, PWC=0.49%

(e) FBP of sinogram (a), PSNR=20.40 (f) FBP of HLSF sinogram, PSNR=22.56 (g) FBP of HLSFn sinogram, PSNR=22.44

Figure 7.16: Experiment showing the relationship between PWC and PSNR. (a) Original undersampled
sinogram with 110 views × 512 pixels. (b) Interleaved sinogram. (c) Result of applying the HLSF
to sinogram (a). (d) Result of applying the HLSFn to sinogram (a), where HLSFn corresponds to
HLSF without final reassignment of the original projections. (e) FBP reconstruction with Hanning
filter of the original undersampled sinogram. (f) FBP reconstruction with Hanning filter of the HLSF
sinogram. (g) FBP reconstruction with Hanning filter of the HLSFn sinogram.
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Chapter 8
Summary & Outlook

8.1 Overview of the results

The challenge embraced by this doctoral project was designing reconstruction algorithms for undercon-
strained datasets of SRXTM low-dose scans, acquired in absorption-contrast, in-line phase-contrast
and differential phase-contrast, in full-FOV or full interior tomography. A good trade-off between
accuracy and computational efficiency, versatility in tackling datasets acquired with different imaging
modalities and no need for supervised a-priori knowledge were pivotal requirements for the investiga-
ted reconstruction methods.

In view of the stated scientific aim, the following can be regarded as the main results achieved
by this work.

• Design and optimization of the gridding projector with minimal oversampling (FGP-KB). FGP-
KB opens the way for fast iterative tomographic reconstruction on CPU clusters. When used
inside an iterative scheme, FGP-KB has comparable accuracy as more sophisticated forward
projectors working in real domain and its speed is similar to that of (real-domain) tomographic
operators implemented on GPUs. This projector can be used for different types of datasets,
namely absorption-contrast, inline phase-contrast differential phase contrast and full interior
tomography with minor changes in the gridding kernel.

• Identification of the alternate direction method of multipliers plug-and-play (ADMP) as iterative
reconstruction method fulfilling the requirements defined in the scientific aim of this project.
The ADMP features fast convergence, an excellent CNR-resolution trade-off and the versatility
of switching forward projector without changing the structure of the algorithm. In addition, the
ADMP offers a framework where sophisticated image denoising methods can be “plugged in”
and “played” as regularization for the iterative reconstruction. Advanced1 and computationally-
feasible regularization schemes, preliminarily tested within the ADMP, are the split-Bregman

1 “Advanced” is meant with respect to the well-established regularization schemes listed 2.5.2 (e.g. Tikhonov, Huber).
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total variation, the non-local split-Bregman total variation and the total generalized variation.
All these denoising methods do not require supervised a-priori knowledge.

• Experimental characterization of the role played by the tomographic projectors on the perfor-
mance of an iterative reconstruction algorithm. In this regard, two results must be highlighted.
The first result is that the accuracy of the projectors alone has limited impact on the recon-
struction accuracy of the iterative method: in other words, projectors with different “standalone”
accuracies (i.e. creating a single sinogram), used by the same iterative algorithm, yield almost
identical reconstructions at visual inspection and in terms of standard metrics for image quality.
The second result is that a high degree of coupling between forward and backprojector is of
vital importance to ensure the convergence and accuracy of an iterative algorithm. The overall
take-home message is that computational efficiency and coupling degree are the only aspects
to consider for tomographic projectors when setting up an iterative reconstruction algorithm.

• Introduction of the virtual strategy as an efficient way to perform iterative reconstruction of
underconstrained datasets in full interior tomography (FINT) without knowledge of the object
support. The virtual strategy is effective in removing the typical FINT artifacts and yields a
reconstruction quality comparable to what achievable with the edge-padding and differentiated
strategies. The virtual strategy has the upside of being faster by a factor of 20 and 50-80
compared to the edge-padding and differentiated strategies, respectively.

• Design of the Helgason-Ludwig sinogram filter (HLSF) to improve the accuracy of analyti-
cal reconstructions of strongly underconstrained absorption-contrast and inline phase-contrast
datasets in full FOV. The HLSF has the upside of being parameterless and relatively fast, as it
adds a negligible amount of computations with respect to filtered backprojection (FBP). On the
other hand, the HLSF cannot compete with the accuracy achievable by finely tuned iterative
reconstruction algorithms, thus offering a reconstruction quality halfway between what provided
by FBP and an iterative algorithm.

8.2 Implications

Now that we have identified the most suited iterative algorithm (ADMP) and its components (gridding
projectors, one of the aforementioned TV regularization schemes, etc ...) to address the reconstruction
of underconstrained SRXTM datasets, the still unanswered question is: what advantage can iterative
reconstruction offer in terms of dose reduction?
To address this question it is necessary to bear in mind that the achievable dose reduction depends
on the characteristics of the selected dataset (structural complexity, intrinsic contrast, etc ...) and on
the quantification goal.
Consider the example in Fig.8.1, regarding the tomographic reconstruction of a modern seed sample
in absorption-contrast and full-FOV. The original sinogram consists of 1500 views × 2560 pixels.
Assume that the final goal is segmenting the inner holes, displayed, e.g., in Fig.8.1(d). When the
number of projections of the original sinogram is downsampled by a factor 5 (300 views), the Otsu
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(a) FBP (1500 views) (b) FBP (300 views) (c) ADMP-TV (300 views)

(d) ROI (1500 views) (e) ROI (300 views) (f) ROI (300 views)

(g) OTSU (1500 views) (h) OTSU (300 views) (i) OTSU (300 views)

Figure 8.1: Reconstructions and segmentations of a SRXTM dataset of a modern seed in absorption-
contrast and full-FOV. The top row shows the entire reconstructions. The middle row shows the
zoom-ins of the selected ROI. The bottom row shows the Otsu segmentations of the ROI [305].
The first column contains results related to the analytical reconstruction of the full sinogram with
1500 views × 2560 pixels; the second and third columns contain results related to the analytical and
iterative reconstruction (ADMP-TV) of the sinogram with 300 views × 2560 pixels. Sample courtesy:
S. Smith, University of Michigan.

segmentation 3 [305] (Fig.8.1(h)) of the FBP reconstruction (Fig.8.1(b,e)) has very poor quality, as

3The Otsu method has been selected because it does not require any input parameter.
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(a) FBP (1500 views) (b) FBP (600 views) (c) FBP (500 views)

(d) ROI (1500 views) (e) ROI (600 views) (f) ROI (500 views)

Figure 8.2: FBP reconstructions of a SRXTM dataset of mouse lung tissue in inline phase-contrast and
full interior tomography at 1.1µm resolution. Speckle artifacts affect the analytical reconstructions
of the downsampled sinograms with 600 and 500 views. In the FBP reconstruction of the sinogram
with 500 views, the airways start to merge and fake tiny structures begin to appear in the pulmonary
tissue. This brings to the conclusion that it is not possible to push the number of views below 600
and have reliable tomographic reconstructions at the same time.

it features several clusters of misclassified pixels. The iterative reconstruction with the ADMP-TV of
the same undersampled dataset (Fig.8.1(c,f)) offers, instead, a better Otsu segmentation (Fig.8.1(i)),
where the misclassified pixels are more likely to be removable with a proper use of morphological
operators. In this fictitious example, the conclusion is that using the ADMP-TV can lead to a dose
reduction by a factor of 5 for the considered dataset.
The same approach is used to estimate the achievable dose reduction for the acquisition of SRXTM
datasets of ex-vivo mouse lung tissue in inline phase-contrast and full interior tomography at a resolu-
tion of 1.1 µm [1]. The starting point is always to analyze how the quality of the FBP reconstruction
deteriorates for a decreasing number of views. The reconstructed slice consists of two phases: the pul-
monary tissue (light gray) and the airways (dark gray). Figure 8.2 shows that decreasing the original
1500 views to 600 and 500 leads to speckle artifacts that severely affect the quality of the FBP recon-
struction. In particular, when the number of views is 500 (Fig.8.2(c,f)), the airways start to merge
and some fake tiny structures seem to appear in the middle of the pulmonary tissue. With this degree
of undersampling (500 views), iterative reconstruction without ad-hoc a-priori knowledge cannot offer
any help in improving the accuracy of the results. A good rule of thumb to understand, indeed, when
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(a) FBP (1500 views) (b) FBP (600 views) (c) ADMP-NLTV (600 views)

(d) ROI (1500 views) (e) ROI (600 views) (f) ROI (600 views)

(g) OTSU (1500 views) (h) OTSU (600 views) (i) OTSU (600 views)

Figure 8.3: Reconstructions and segmentations of the SRXTM dataset already displayed in Fig.8.2.
The top row shows the entire reconstructions. The middle row shows the zoom-ins of the selected
ROI. The bottom row shows the Otsu segmentations of the ROI [305]. The first column contains
results related to the analytical reconstruction of the full sinogram with 1500 views × 2016 pixels;
the second and third columns contain results related to the analytical and iterative reconstruction
(ADMP-NLTV) of the sinogram with 600 views × 2016 pixels.

iterative reconstruction can represent an asset or not, is the following: structures that cannot be well
identified at visual inspection in the FBP reconstruction of an underconstrained dataset, because of
the noise and artifacts, will not be satisfactorily retrieved by an iterative reconstruction algorithm of
the same dataset. In the case of the lung dataset, this means that is not possible to work with a
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number of views below 600 and still hope to be able to properly segment all the airways. Figure 8.3
shows reconstructions and segmentations of the original and the undersampled dataset with 600 views.
From the results in Fig.8.3(g,h,i), it appears that iterative reconstruction (performed in this case by
the ADMP-NLTV) can help in boosting the contrast-to-noise ratio, thus facilitating the subsequent
segmentation, although the result in Fig.8.3(i) still requires additional processing to correctly classify
all pixels [306]. In conclusion, for the considered type of SRXTM dataset, it is possible to decrease
the irradiated dose by a factor 2.5.

8.3 Perspectives

Key ingredients missing in the proposed ADMP are an automatic stopping criterion and a criterion
to optimally select the input parameters λ and µ. The ADMP with gridding projectors stands out in
terms of computational efficiency and versatility, but it still lacks a solid “user-friendliness”. From a
practical point of views, in order to know how to stop the ADMP at the right moment, it is necessary
to perform various preliminary tests with different number of iterations or values of ε for criteria of
the form “is ‖x(k+1) − x(k)‖2 < ε?”, x(k) and x(k+1) being consecutive intermediate results of the
iterative process. In the same way, the λ-µ space has to be explored in advance to know which setting
provides optimal reconstruction quality. This is definitely not appealing from a user perspective.
The solution to these problems could be found by analyzing the working mechanism of the ADMP.
Consider Fig.8.4(a), showing the first 5 iterations of the ADMP-TV for the reconstruction of a simu-
lated underconstrained dataset. After the first iteration, the reconstruction looks very blurred, but
it becomes increasingly sharper as other iterations of the ADMP-TV follow. Assume now that the
trade-off between CNR and spatial resolution can be considered acceptable already at the fourth ite-
ration. Then, signaling the iterative procedure that the improvement in CNR or spatial resolution at
iteration 5 is negligible compared to iteration 4 would be an effective way to stop the ADMP. Notice
that this is very different from stopping the iterative process when ‖x(k+1) − x(k)‖2 < ε. Since the
CNR is a supervised metric requiring manually selected ROIs, the spatial resolution can represent a
better candidate to serve as stopping criterion. The Fourier ring correlation computed between x(k)

and x(k+1) could provide the information about the change in spatial resolution necessary to stop the
ADMP.
Regarding the optimal selection of λ and µ, consider Fig.8.4(a) and Fig.8.4(b), showing reconstruc-
tions of the same simulated underconstrained dataset performed by the ADMP-TV with different
parameter settings. In both cases, the reconstruction starts as very blurred and gets sharper after
each iteration; the difference is that this “sharpening” process clearly works at different speeds. At the
end, the final reconstruction obtained with λ = µ = 1.0 will be very sharp, but also noisy, whereas
the one obtained with λ = µ = 105 will be very blurred, but with better SNR. What is, therefore, the
best parameter setting in this case? It depends on what visualization/quantification goal has been
planned for the reconstructed dataset. The point is that an iterative algorithm like the ADMP should
not have an automatic criterion for the selection of the parameters. From a practical perspective,
the input parameters (λ,µ) are just a “leverage” to set the target trade-off between SNR and spatial
resolution. A good practical solution would be to have a graphical user interface (GUI) connected to



8.3 perspectives 203

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

(a) First 5 iterations of ADMP-TV with λ = µ = 1.0

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

(b) First 5 iterations of ADMP-TV with λ = µ = 105

Figure 8.4: First 5 iterations of the reconstructions performed by ADMP-TV with different parameter
settings of a simulated underconstrained dataset. (a) First 5 iterations of ADMP-TV with λ = µ = 1.0.
(b) First 5 iterations of ADMP-TV with λ = µ = 10−5.

the ADMP and reconstructing a single slice with, e.g., 5-6 choices of (λ,µ). All these reconstructions,
characterized by different SNR-resolution trade-offs, are, then, displayed side by side, so that the user
can select the best result according to his own judgement. Once the optimal set (λ,µ) is chosen by
the user, the ADMP reconstructs the entire volume with the same setting.
Considering this hypothetical GUI support for the ADMP and that processing a volume with, e.g.,
500 views × 2048 detector pixels × 2048 slices requires between 25-35 minutes on a cluster with 50
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cores, the ADMP has really the potential to become a useful tool to address the reconstruction of
low-dose tomographic datasets acquired at synchrotron imaging beamlines.

This thesis, as most of the studies in the field of iterative tomographic reconstruction, presents
experiments on real datasets with variable sampling factor. To perform low-dose tomographic scans,
decreasing the exposure time per projection, i.e. acquiring noisier datasets, is a strategy that can be
used in place of reducing the number of views. Since compressed-sensing-based denoising methods are
designed to suppress random noise (especially Poissonian and Gaussian), the ADMP working with the
discussed regularization schemes is expected to work better with datasets acquired with short exposure
time per projection rather than with a small amount of views. As a matter of fact, undersampling
leads to tomographic reconstructions affected by aliasing artifacts, that look differently depending on
the kind of dataset and object. For example, aliasing artifacts appear in the form of wavy streaks
in the reconstruction of the modern seed sample in Fig.8.1(e) and in the form of speckles in the
reconstruction of the mouse lung tissue in Fig.8.2(c). Regularization schemes based on compressed
sensing do not perform well with structured artifacts and may also run the risk to exchange those
artifacts for structures to be preserved. For this reason, substantial reduction of the dose irradiated in
SRXTM scans might be achieved by decreasing the exposure time per projection and using iterative
reconstruction methods as those proposed by this work.

Looking beyond this thesis, promising future developments for tomographic reconstruction can be
envisaged in the incorporation of machine learning techniques. The pioneering and elegant work of
Pelt [307] has proved that FBP boosted by a simple multilayer perceptron (MLP) with a relatively
small training dataset can offer an appealing alternative to iterative reconstruction. This algorithm,
called neural network FBP (NN-FBP), is however limited to learn a set of optimized filters and the
final reconstruction can be roughly considered a linear combination of FBP reconstructions.
Some research groups are currently exploring the possibilities offered by deep learning for image recon-
struction. “Deep learning” is an expression used to define MLPs with several hidden layers. In particular,
for image processing, convolutional and recurrent neural networks (CNN and RNN) [308, 309] have
proved to be the most powerful tools so far to perform segmentation [310], pattern recognition [311]
and natural language processing [312]. An interesting aspect is that very little of a CNN/RNN for
segmentation or pattern recognition has to be changed to transform it into a CNN/RNN for image
reconstruction [313], namely only the last layer of the network. The challenge with CNNs and RNNs
for many applications is to design a valid training dataset. Despite the lack of mathematical criteria to
assess the quality of a training dataset, there are few important rule of thumbs: (1) the dataset should
embrace the full experimental variance; (2) the dataset parsing should be non-trivial; (3) the dataset
should be of high-quality with respect to the envisaged application. To better understand these points,
let us consider a practical example, tomographic reconstruction of SRXTM data of mouse lung tissue.
In this case, rule 1 requires the training dataset to contain image patches from lung tissue of different
mice, to account for the biological variance, and from different beamtimes, to account for average
changes in the experimental setup (X-ray beam, optics or camera). Rule 2 suggests to select image
patches with plenty of structures or at the interface between different image regions. According to
rule 3, the high-quality part of the training dataset should not be affected by zingers, ring artifacts or
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any other sort of spurious signal that the neural network should not learn. How big should the training
dataset be to obtain a reliable deep learning system for SRXTM image reconstruction? Since such
study has not been conducted yet, we can gain some insights by analyzing the results published in
[314]. This work shows that a rather standard CNN, trained on thousands of patches extracted from
few tens of reconstructed slides, manage to perform complex tasks like finding the center of rotation
or removing typical artifacts. The preliminary results on simulated and experimental datasets of [313]
for image reconstruction seem to point in the same direction. A synchrotron imaging beamline offers
the perfect framework to test the idea of combining tomographic reconstruction with deep learning:
SRXTM experiments produce terabytes of imaging data for different samples and are often repeated
in the course of different beamtimes. As a matter of fact, the lack of training data will not represent
a problem for SRXTM applications.
Deep learning is surely better suited than compressed sensing techniques to boost tomographic image
reconstruction, when dealing with undersampled datasets. Undersampling yields artifacts that are
correlated to the object and cannot be completely disentangled by enforcing sparsity in a certain
space during iterative reconstruction. A deep learning system is instead more likely to learn to “recog-
nize” and to “filter out” a streak artifact than an iterative method using a compressed sensing based
regularization. For this reason, I do not see any potential for studies exploring how neural networks
can mimic finely tuned iterative reconstruction methods. By default, no improvement in terms of
reconstruction accuracy compared to iterative regularized methods would come from such approach.
Only the overall computational efficiency would increase, as a trained network in feed-forward mode
would reconstruct faster than any iterative method developed so far.
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Chapter 9
Additional contributions

9.1 Contrast-transfer-function phase retrieval based on compressed
sensing

The following section represents a reprinted manuscript published as: P. Villanueva-Perez, F. Arcadu,
P. Cloetens, and M. Stampanoni, “Contrast-transfer-function phase retrieval based on compressed
sensing”, submitted to Applied Physics Letters, 2016.
P. Villanueva and F. Arcadu contributed equally to the manuscript.

9.1.1 Abstract

We report on a new contrast-transfer-function (CTF) phase-retrieval method based on the alternating
direction method of multipliers (ADMM-CTF), which allows to exploit any compressed sensing regu-
larization scheme reflecting the sparsity of the investigated object. The proposed iterative algorithm
retrieves accurate phase maps from highly noisy single-distance projection microscopy data and is
characterized by a stable convergence, not bounded to the prior knowledge of the object support
or to the initialization strategy. Experiments on simulated and real datasets acquired at ID16A-NI
beamline at the European Synchrotron Radiation Facility (ESRF) show that ADMM-CTF yields recon-
structions with a substantial lower amount of artifacts and enhanced signal-to-noise ratio compared
to the standard analytical inversion.

9.1.2 Introduction

A current challenge in biology is performing high-resolution non-destructive imaging of radiosensitive
specimens like cells and bacteria. Hard X-ray synchrotron-based phase-contrast techniques are suited
to address this problem [315]. Phase-contrast methods [78, 316] exploit elastic interactions that do
not deposit dose and provide enough sensitivity to discriminate different soft tissues. In the hard X-ray
regime, the elastic component of the refractive index for soft tissues results three orders of magnitude
bigger than the inelastic component which originates the standard X-ray absorption contrast. Reso-
lutions up to tens of nanometers are achieved thanks to the high coherence and brilliance of third
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generation synchrotron sources [317–319].
Projection microscopy [320], abbreviated as PM and also known as in-line holography, offers a bet-
ter signal-to-dose ratio compared to other free-propagation phase-contrast techniques, e.g, coherent
diffraction imaging [321]. PM records magnified holographic intensity patterns and retrieves the com-
plex phase information by means of a phase retrieval algorithm. It requires a small X-ray source, which
can also be secondary [322]. The sample, positioned at a distance z1 from the source, is irradiated
with a coherent divergent beam and the intensity of the Fresnel diffraction pattern (or hologram) is
measured at a distance z2 from the sample, as depicted in Fig. 9.1. The distances z1 and z2 are
chosen such that the defocusing distance z = z1z2/(z1 + z2) is sufficient to provide a measurable
near-field diffraction pattern [72].
The phase map of the sample can be retrieved from the hologram by means of non-linear iterative
algorithms [323, 324], that require knowledge of the object support and have no guaranteed conver-
gence. Analytical inversion algorithms stem either from the linearization of the propagation distance,
as the transport-of-intensity equation (TIE) approaches [325], or from the linearization of the sample
transmissivity, leading to the contrast-transfer function (CTF) method [73]. The so-called mixed
approach [326], finally, applies for slow varying samples and beyond the small distance limit. From
a physical point of view, the interaction between the beam and small soft-tissue samples is well ap-
proximated through linearization, making CTF the optimal approach to retrieve the phase map of
the sample. Due to the missing frequencies characterizing the transfer function, CTF cannot retrieve
a quantitative solution from a single hologram, unless the case of a pure-phase or one-material ob-
ject [73] is considered. To overcome this limitation and ensure an overall non-zero transfer function,
CTF requires the acquisition of holograms at different distances z1 [54, 327], increasing the dose
delivered to the sample. CTF reconstructions also suffer from low frequency artifacts due to the fact
that frequencies below fmin ≈ 1/

√
2λzmax [327], where λ is the wavelength and zmax the maximum

defocusing distance, cannot be recovered. Furthermore, the sensitivity and resolution achievable by
PM for radio-sensitive specimens is dictated by the radiation damage [328]. To prevent the alteration
or destruction of the sample due to the radiation damage, the exposure time of PM projections has
to be limited, resulting in the acquisition of highly noisy datasets. The signal retrieved from such
datasets through analytical inversion is overall affected by noise and artifacts, that can impair the

z1 z2

Figure 9.1: Projection microscopy setup. The sample is illuminated at a distance z1 from the source
point and a Fresnel holographic pattern is recorded at a distance z2 from the sample.
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identification of the soft tissues under study.
Here we report on a new iterative algorithm based on the alternating direction method of multipliers
[113] and abbreviated ADMM-CTF, that can solve the CTF problem with a single noisy hologram
by incorporating any kind of compressed sensing regularization scheme matching the specimen un-
der study. The ADMM-CTF recovers the missing frequencies of the transfer function, providing an
accurate reconstruction of the phase map where the noise pattern and distortions are substantially
decreased. The algorithm has stable convergence not bounded to the usage of the object support
(e.g. setting all labeled pixels of the background to zero at each iteration) and does not require
warm initialization, i.e., initializing the solution with an approximated reconstruction. Experiments
performed on simulated and real datasets acquired at ID16A-NI at ESRF show that ADMM-CTF
working with total variation regularization (TV) [128, 329] improves the quality of the retrieved piece-
wise constant phase maps at visual inspection and in terms of signal-to-noise ratio and structural
fidelity. The proposed algorithm is an effective tool to enable low-dose fast acquisitions of PM with
short exposure time, as it can operate in single distance and with datasets affected by a considerable
amount of Poisson noise. Nevertheless, this approach can be trivially extended to retrieve a phase
map combining different defocusing distances.
Similar compressed sensing approaches applied to phase retrieval have also been studied for Gabor
holography [330], single-distance PM tomographic reconstruction [331], TIE with pure-phase objects
[332], and Fourier transform holography and CDI [333]. Recently, a regularized Newton method that
can address any specific kind of phase retrieval problem has also been introduced [334]. The works
of Brady [330], Kostenko [331] and Maretzke [334] deal either with the same forward model or type
of regularization as the ADMM-CTF, but use a different iterative scheme. The work of Bostan [332]
is based on the ADMM, but it has only been applied to TIE for data acquired in the optical domain.

9.1.3 Forward model for CTF

The forward model for CTF is here derived and discussed. Using the projection approximation [78],
the sample transmissivity in the transverse plane can be expressed as

t(x) = ej(φ(x)+jB(x)) , (9.1)

where
φ(x) = k

∫
δ(x; z)dz , (9.2)

B(x) = k
∫
β(x; z)dz , (9.3)

k = 2π/λ is the wave number, and δ and β are the real and imaginary part of the complex refractive
index, respectively. The wavefield after the sample is given by

ψ(x) = ψ0(x)t(x) , (9.4)

where ψ0(x) is the wave field illuminating the sample. To simplify the model, we assume a monochro-
matic plane wave illumination, as the magnified geometry in Fig. 9.1 is equivalent to a plane wave
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geometry [72], with propagation distance equal to the defocusing distance z and with demagnified
coordinates. The intensity measured in the near-field at a distance z is given by the squared module
of the convolution between the incoming wave field and the Fresnel propagator

I(x; z) = |ψ(x) ∗ h(x; z)|2 , (9.5)

where the Fresnel propagator is given by

h(x; z) =
ejkz

jλz
ej
k|x|2
2z . (9.6)

In general, the inversion is not a linear problem. As mentioned before, the interaction between hard
X-rays and soft tissues is quite small. Therefore, the CTF equation [73] is a good approximation to
retrieve the complex transmissivity from the measured intensity at the detector:

Î(f; z) = δ(|f|) + 2 cos(πλz|f|2)B̂(f) − 2 sin(πλz|f|2)φ̂(f) , (9.7)

where the widehat operator indicates the Fourier transform, and f is the Fourier dual variable of x. For
imaging of soft tissues, the absorption component can be neglected, i.e., δ� β, and the discretized
forward model can be written as:

b = Aφ , (9.8)

where
A = F−1

(
−2 sin(πλz|f|2)

)
F (9.9)

and b is the flat corrected intensity minus one, and F is the Fourier transform operator. This forward
projector can be easily extended to the single-material scenario, considering that the ratio β/δ is a
fundamental property of the sample:

A = F−1

(
2
β

δ
cos(πλz|f|2) − 2 sin(πλz|f|2)

)
F . (9.10)

Incoherent effects can also be included in the forward model by adding an optical transfer function
(OTF):

A = F−1

(
2
β

δ
cos(πλz|f|2) − 2 sin(πλz|f|2)

)
OTF(f)F . (9.11)

9.1.4 ADMM for CTF

The compressed-sensing reconstruction of a discrete physical map (x) minimizes a cost function
consisting of a quadratic fidelity term, that encodes the forward model, and a regularization term R,
that enforces the sparsity featured by the investigated specimen:

x̃ = argmin
x

[
‖Ax − b‖22 + ηR(x)

]
, (9.12)
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where η is the regularization strength. If the specimen is piecewise constant, i.e., sparse in the gradient
domain, R(x) can be chosen to be the total variation [128] and (9.12) becomes a LASSO problem
[329]: R(x) = TV(x) :=

∑
j=1,2 ‖(∇x)j‖1, where ∇ represents the gradient operator. To use ADMM

[113], the auxiliary variable uj = (∇x)j j = 1, 2 is introduced and the LASSO problem is mapped
into the minimization of the following Lagrangian:

Lτ(x, u, m) =
1

2
‖Ax − b‖22+η

∑
j

‖uj‖1 + mT (∇x − u) +
τ

2
‖∇x − u‖22 , (9.13)

where m and τ are Lagrangian multipliers. ADMM iteratively minimizes Lτ by sequentially solving
smaller problems; each iteration k + 1 involves two sub-optimizations with respect to x and to u,
followed by the update of m:

1. x(k+1) ←− argmin
x

Lτ

(
x, u(k), m(k)

)
2. u(k+1) ←− argmin

u
Lτ

(
x(k+1), u, m(k)

)
3. m(k+1) ←− m(k) + τ

(
∇x(k+1) − u(k+1)

)
To obtain a close form for Step (1), one sets ∇x Lτ = 0, which leads to the equation:

(A†A + τI)x = A†b +∇†
(
τu(k) − m(k)

)
, (9.14)

where I is the identity and † indicates the adjoint operator. Equation 9.14 can be efficiently solved
for x through FFT, as both A and ∇ are block Toeplitz matrices and periodic boundary conditions
are assumed [335]. Setting ∇u Lτ = 0 provides the close form for step (2), which corresponds to a
shrinkage operation:

u(k+1) = max
{∣∣∣∣∇x(k+1) +

m(k)

τ

∣∣∣∣− ητ , 0
}

sgn
(
∇x(k+1) +

m(k)

τ

)
. (9.15)

9.1.5 Experimental results

To test the capabilities of this framework, we first performed different validations including and not
including incoherent effects via a known OTF. A modified Shepp-Logan phantom including a maximum
phase shift of 0.4 rad and a ratio β/δ = 0.5 was used in transmission, as illustrated in Fig. 9.2(a).
A plane wave illumination with a propagation distance 137 µm, pixel size 10 nm, and energy 17.01
keV was simulated. The simulated intensity without any incoherent effect (no OTF) and including
Poisson noise for an imaging fluence of Φ = 1 · 1012 ph/µm2 is depicted in Fig. 9.2(b). The phase
map is retrieved by analytical inversion and with the proposed ADMM-CTF algorithm. The analytical
reconstruction is obtained by inverting A from Eq. (9.10) with a Tikhonov regularization term ε = 0.1
and by imposing the simulated ratio β/δ. The obtained result is shown in Fig. 9.2(c). ADMM-CTF
is applied without any incoherent effect and without Tikhonov regularization. For this reconstruction,
we set τ = 5 · 10−5 and η = 0.02 · τ. The iterative procedure is stopped when the average difference
between two consecutive reconstructed intensities is smaller than the average expected uncertainty
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(b) Simulated intensity(a) Phase phantom

(c) Analytical reconstruction (d) ADMM reconstruction

300 nm

Figure 9.2: (a) A modified Shepp-Logan phantom. (b) Simulated PM intensity with Poisson noise.
(c) Best analytical reconstruction with Tikhonov regularization. (d) ADMM-CTF reconstruction with
TV regularization.

for the flat corrected intensity. The flat corrected intensity is computed by dividing the intensity with
the sample (Is) by the intensity without sample (If):

I(x; z) =
Is(x; z)
If(x; z)

. (9.16)

The average intensity measured with the sample is given by 〈Is〉 ≈ (1− 2〈B〉)〈If〉, neglecting second
order absorption effects. The expected uncertainty of the flat corrected intensity, used as stopping
threshold for the ADMM-CTF, is given by

〈σI〉2 ≈
2 (1− 3〈B〉)
〈If〉

. (9.17)

The code [336] was implemented in MATLAB on a Intel(R) Core(TM) i7-3540M CPU at 3.00GHz.
Convergence was achieved after seven iterations, amounting to a total time of 3.02 s.
The reconstruction with ADMM-CTF depicted in Fig. 9.2(d) presents a clear improvement, at visual
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(a) Digital phantom

(b) Analytical reconstruction (c) ADMM reconstruction

1 µm

Figure 9.3: (a) Digital version of the sample. (b) Analytical reconstruction. (c) ADMM-CTF recon-
struction with TV regularization.

inspection, compared to the analytical result. The accuracy of the reconstructions has also been
assessed in terms of peak-signal-to-noise-ratio (PSNR) [144] and mean structural similarity index
(MSSIM) [145], computed against the phantom. For the analytical reconstruction, PSNR=20.52
and MSSIM=0.13; for the ADMM-CTF reconstruction, PSNR=38.59 and MSSIM=0.17. Therefore,
ADMM-CTF combined with TV regularization succeeds to retrieve missing frequencies and to reduce
noise and distortions.
Finally, the proposed algorithm was tested on real single-distance PM datasets acquired at the ID16A-
NI beamline of ESRF. The new ID16A-NI Nano-imaging beamline provides nano-focused X-ray beams,
exploiting high coherence at 185 m from the insertion device. At ID16A-NI, PM was performed with
an effective pixel size of 10 nm and a defocusing distance z = 4.01 mm. The samples were illuminated
by a 17 keV beam with a focal spot characterized by a half width half maximum of 37× 24.5 nm2 and
a divergence of 5.6 mrad. The OTF corresponds to a rectangular aperture with a size of 0.3× 0.56
mm2. The samples are silicon etched wafers with small pillars mimicking biological features that
range from 50-100 nm and have low phase contrast between 5-30 mrad. The digital version of one
of these samples is shown in Fig. 9.3(a). The analytical result, in Fig. 9.3(b), was obtained with a
regularization parameter ε = 0.5 and by setting the ratio β/δ = 5.4 · 10−3 for silicon at 17.01 keV.
The reconstruction computed by the ADMM-CTF approach, depicted in Fig. 9.3(c), was obtained
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with τ = 5 and η = 2 · 10−6 · τ and by applying physical constraints, i.e, setting to zero all negative
pixels at each iteration. The convergence was obtained after 29 iterations, corresponding to a run
time of 25 s. The wiggling artifacts in the background and the dark grey halo in the area within
the object pillars are substantially suppressed in the ADMM-CTF reconstruction compared to the
analytical one. At visual inspection, Fig. 9.3(c) is much more similar to the digital phantom than the
result in Fig. 9.3(b). Furthermore, for the analytical CTF retrieval PSNR=14.59 and MSSIM=0.10,
whereas for the ADMM-CTF retrieval PSNR=24.46 and MSSIM=0.16.

9.1.6 Conclusion

In summary, the proposed ADMM-CTF algorithm allows to accurately retrieve phase maps from highly
noisy single-distance PM data by exploiting compressed sensing regularization schemes suitable to the
specimen under study. The ADMM-CTF features a stable and fast convergence. Furthermore, it does
not require an initialization strategy nor the knowledge of the specific object support. The amount
of distortions affecting the analytical CTF inversion are greatly reduced by the ADMM-CTF, leading
to more accurate reconstructions. All considered, the ADMM-CTF has the potential to become
a very useful tool for projection microscopy experiments because of the following reasons: (i) It
provides higher quality reconstructions for low-dose acquisition schemes (single-distance and short
exposure time), allowing subsequent quantitative and morphological analysis to be more reliable. (ii)
Its convergence is independent from the sample.
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