
ETH Library

A Framework for Bidirectional
Program Transformations

Master Thesis

Author(s):
Fritsche, Simon

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-a-010889943

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010889943
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


A Framework for Bidirectional
Program Transformations

Master’s Thesis

Simon Fritsche

April 20, 2017

Advisors: Dr. Malte Schwerhoff and Prof. Dr. Peter Müller

Chair of Programming Methodology
Department of Computer Science, ETH Zurich





Contents

Contents i

1 Introduction 1
1.1 Abstract Syntax Trees . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Viper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Rewriting Core . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Error Transformations . . . . . . . . . . . . . . . . . . . 4
1.3.3 DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 Variables and Collections . . . . . . . . . . . . . . . . . 5
1.4.2 Case Classes . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Pattern Matching . . . . . . . . . . . . . . . . . . . . . . 7
1.4.4 Functions and Methods . . . . . . . . . . . . . . . . . . 8
1.4.5 Anonymous Functions . . . . . . . . . . . . . . . . . . . 8
1.4.6 Partial Functions . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Viper Intermediate Language . . . . . . . . . . . . . . . . . . . 10
1.5.1 Base Classes . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.3 Quantified Expressions . . . . . . . . . . . . . . . . . . 11
1.5.4 If-Then-Else . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.5 Inhale-Exhale Expressions . . . . . . . . . . . . . . . . . 11

1.6 Domain Specific Language . . . . . . . . . . . . . . . . . . . . . 12

2 Motivation 13
2.1 Current Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Rewriting in Scala . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Traversion . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Existing Rewriter . . . . . . . . . . . . . . . . . . . . . . . . . . 16

i



Contents

2.4 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Transformation . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Node Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Deep Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Further goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8.1 General ASTs . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8.2 Combinable Rewrite Rules . . . . . . . . . . . . . . . . 24

3 New Rewriter 25
3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Rewriting Function . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Traversion . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Rewritable Trait . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Recursion Selection . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Stop at Child . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Stop at Node . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Rewriting Context . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 User Defined Context . . . . . . . . . . . . . . . . . . . 32
3.4.2 Ancestors . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Simpler Configurations . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 Ancestor . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Slim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Combining Rewriters . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.1 Chain Execution . . . . . . . . . . . . . . . . . . . . . . 38
3.6.2 Interleaving Rules . . . . . . . . . . . . . . . . . . . . . 38

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Error Handling 41
4.1 Viper Error Structure . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Reasons . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Back-Transformations . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Node Back-Transformation . . . . . . . . . . . . . . . . 43
4.2.2 Automatic Node Back-Transformation . . . . . . . . . . 44
4.2.3 Error Back-Transformations . . . . . . . . . . . . . . . . 46
4.2.4 Reason Transformations . . . . . . . . . . . . . . . . . . 47
4.2.5 Combined . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



Contents

5 Tree Regex DSL 49
5.1 From Trees to Strings . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Matching on an AST . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Node Matcher . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Child Selector Matcher . . . . . . . . . . . . . . . . . . . 53
5.3.3 Context Matcher . . . . . . . . . . . . . . . . . . . . . . 54
5.3.4 Mark for Rewrite . . . . . . . . . . . . . . . . . . . . . . 54
5.3.5 Predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.6 Combinators . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Automatons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.3 Match example . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.1 Slim Regex Strategy . . . . . . . . . . . . . . . . . . . . 64
5.5.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.3 Ancestors . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.4 Behavior on Node Sharing . . . . . . . . . . . . . . . . 67

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Evaluation 69
6.1 New Rewriter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Tree Regex DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Handling CFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.2 Handling Cycles . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Viper Imports and Macros . . . . . . . . . . . . . . . . . . . . . 74
6.5.1 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5.2 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusion 83
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 85

iii





Chapter 1

Introduction

Many people see programs only as text that performs work on their com-
puter after pressing the "run" button in the development environment. But
when working in the area of compilers, program analysis or program veri-
fication, a program is not only characters in a file but an object in memory
to work with. When working with programs in such a context, they are
usually represented as a tree data structure called Abstract Syntax Tree or in
short AST.
Processing of programs (e.g. translation into machine code, optimization,
verification) is far easier on a program in AST form than in textual form.

The main goal of this thesis is to provide a framework that makes the encod-
ing of program modifications on AST level as convenient as possible. Since
this framework is for modifying, i.e. rewriting ASTs, we will call it a rewriter
throughout this thesis.
We want to provide a simple way of specifying standard use cases that is
still able to provide the expressiveness which is required for more complex
use cases. The rewriter should be usable on arbitrary tree structures and
even on Control Flow Graphs that include cycles. It should provide a second
layer language that improves the specification of AST transformations. We
want bidirectional transformations, which means that we want to be able to
transform selected parts of a program back into the state where no transfor-
mations were applied yet. This is useful, for example, in the context of error
messages. A more in depth specification of all the goals we set and achieve
during this thesis is provided in Section 1.3.

The proposal for developing a rewriter came from the Chair of Program-
ming Methodology at ETH Zurich. They want to have such a framework
for the development of their program verification infrastructure called Viper.
More information on Viper is provided in section 1.2.
There was already a rewriter implementation present in the Viper infrastruc-
ture but its usability and functionality is limited. We call this framework the
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1. Introduction

existing rewriter. In subsequent chapters of this thesis, we will point out the
limitations of the existing rewriter and how we overcame them in the new
rewriter.

We also looked into existing work regarding AST transformation and ex-
tracted useful ideas from them. The rewriting frameworks we looked at
are: The Stratego [1] program transformation language, Kiama [11] library
for language processing. We looked at Tregex [13] to get ideas for our DSL.
The masters thesis of Leo Büttiker [3] also provided useful input for our
rewriting framework.

The following sections of this chapter explain the concepts that are required
in order to understand the rest of this thesis.

1.1 Abstract Syntax Trees

As already mentioned, ASTs are the go-to data structure for representing
programs. This thesis is all about modifying and rewriting these trees.
Figure 1.1 shows how assignment x := 1 * y + y / 2 looks in AST
form, where x and y are integer variables and := is the assignment operator.

:=

x +

*

1 y

/

y 2

Figure 1.1: AST representation of the assignment x := 1 * y + y / 2

1.1.1 Terminology

Here we explain the different names we use for groups of elements in the
AST. Figure 1.2 shows an AST where elements in the same group are marked
with the same letter.

The element groups are:

• Node (N): N is the node we are currently looking at. All the other
groups of elements only make sense relative to a certain node. We call
N the current node.

2



1.2. Viper

A

A

N

C

D D

C

S S

Figure 1.2: Node groups in an AST

• Children (C): Children are the direct successors of the current node
in the tree. Every node in an AST holds information about its direct
children.

• Ancestors (A): Ancestors are the nodes that form the path from the root
of the tree to the current node (N). The first ancestor is the root. The
last ancestor is the current node itself and the second to last ancestor
is the node directly above. the current node and is called parent.

• Siblings (S): Siblings are nodes that share the same parent. The list of
siblings does not include the current node.

• Descendants (D): Descendants are nodes that have the current node as
ancestor. Note that this includes the children (C) of a node.

1.2 Viper

The Verification Infrastructure for Permission-based Reasoning (Viper [6]) is
a collection of tools developed by the Chair of Programming Methodology
group at ETH Zurich.

The Viper infrastructure includes:

• Viper intermediate language: an intermediate verification language
based on a permission logic inspired by Implicit Dynamic Frames [12].

• Frontends that translate higher level programming languages (Python,
Java, Scala, etc.) into the Viper language

• Backends that analyze or verify the Viper code

The core goal of the Viper tool-chain is to make the implementation of pro-
gram verification easier. Viper gives easy access to verification by providing

3



1. Introduction

an intermediate layer between theorem provers and high level code. To ver-
ify a programming language, one can simply implement a translation from
the verification techniques of said programming language into Viper code.

The complete Viper infrastructure is implemented in Scala. Therefore we
chose to implement the rewriter in Scala as well.

1.3 Goals

This section describes the goals we achieved in this thesis alongside refer-
ences to the chapters that tackle these Goals.

1.3.1 Rewriting Core

These goals describe the functionality we want for the new rewriting frame-
work. The solutions that achieve these goals are explained in chapter 3.

1. Common transformations that were possible to implement with the ex-
isting rewriter should be possible to implement with the new rewriting
framework. Furthermore there should be no additional specification
overhead generated by the new rewriting framework.

2. The implementation of transformations should be enhanced by mak-
ing important information about the current node available through
the rewriting framework. This means access to: ancestors, siblings
and even special user defined information.

3. Children selection and AST node duplication should be treated sepa-
rately (not the case in the existing rewriter). We want this modularity
because it gives us the possibility to optimize and automate children
selection and duplication separately.

4. The new rewriter should provide a feature to control the recursion into
AST nodes on node level and on groups of nodes.

5. The rewriting framework should be able to transform arbitrary ASTs
not only the Viper AST. Furthermore we want to be able to deal with
cycles in order to transform CFGs.

6. We want to be able to combine transformations. Complex AST trans-
formations can be the combination of multiple simple transformations.

1.3.2 Error Transformations

These goals describe what we want for the other direction of the bi-directional
transformation. We call these transformations into the untransformed state
of the program back-transformations. The concept of back-transformations is
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1.4. Scala

implemented with the example of error message back-transformations. How
we achieve these goals is described in chapter 4.

7. The rewriter should provide the ability to transform nodes back into
the untransformed state without additional help of the user

8. The user should be able to select individual nodes, not necessarily the
whole AST, and transform them back.

9. We want back-transformations to be integrated into the Viper error
message framework to map error messages back into the user context
(example in 2.5).

1.3.3 DSL

The goals in this section describe what we expect from the second-layer
DSL and what the purpose for the design was. These goals are achieved
in chapter 5. Further explanation about the DSL we chose can be found in
section 1.6

10. The DSL should provide a powerful and expressive language to specify
transformations. We want the DSL to address the problem of deep
matching (matching on parts of the AST that are deeper down than
the current node, motivated in Section 2.7).

11. Although the DSL should be designed to be powerful and flexible,
standard cases have to be implementable in a simple and concise way.

1.4 Scala

As we already mentioned, the rewriting framework is implemented in Scala
because it compliments the Viper infrastructure, which is implemented in
Scala. Therefore, a majority of the code examples in this thesis are written
in Scala. This section gives a brief introduction into the Scala features that
are used in this thesis but it is not a complete tutorial for Scala.
If one is interested in Scala or needs more information to understand a code
example, there is a comprehensive step-by-step guide from the author of
Scala: Martin Odersky [7].

1.4.1 Variables and Collections

Scala vals are equivalent to constants or final variables/fields in other com-
mon programming languages such as Java, C, etc. Since Scala includes a lot
of features from functional programming languages, immutable variables
and immutable data structures are more strongly advocated, compared to
most other object oriented languages. In fact, one should always declare a
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1. Introduction

variable as a val if possible. If a variable has to be mutable, one can use the
var keyword.

All data structures in Scala are immutable by default. If we want to add
an element to a list we have to create a new immutable list. To model a
mutable list with an immutable list, we use a mutable variable (var) and
always reassign the new list to the variable. Listing 1.1 shows the use of
vals, vars and Lists. The ++ operator is used to append one list to the
other.

var part1 = List(1, 2, 3)
val part2 = List(4, 5, 6)
part1 = part1 ++ part2
// part1 is now List(1, 2, 3, 4, 5, 6)

Listing 1.1: Scala vals,vars and immutable lists in use

Lists also support a lot of useful functions for modification such as map,
filter, collect, etc. If examples including those functions occur in the
thesis and are not understood, consult the Scala documentation website [9].

1.4.2 Case Classes

Case classes provide convenient additional features compared to regular
classes. The concept of a case class is that the class and the behavior of
a class is defined by a core set of fields. They are Scala’s way of defining
Abstract Data Types (ADTs). An example of a case class is provided in listing
1.2.

case class IntLit(i: Int)
...
val lit = IntLit(5)
val value = lit.i

Listing 1.2: Example of a case class

Class IntLit wraps an integer in a literal class. The parameter of the case
class (i: Int) behaves like a field. The idea behind case classes is that
these field(s) define the case class. Scala provides features for case classes
based on this assumption:

• Case classes provide a default implementation for equals and hash
code that include all the fields. This is called structural equality.

• Case classes support pattern matching (explained in section 1.4.3)

• Case classes implement the Product trait. Product is the base trait for
classes that are defined by a number of elements e.g. tuples, functions,
case classes. For case classes the product elements are its fields. Every
subclass of the Product trait has to implement an abstract function
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that allows access to the individual product elements. This will prove
useful to access the fields of a case class in Section 3.2.3.

• Case classes do not need the new keyword for instantiation. This is
important to have in mind when reading Scala code.

1.4.3 Pattern Matching

Scala pattern matching provides a control structure similar to a switch state-
ment. Assume we have the two case classes from Listing 1.3:

trait Expression

case class IntLit(i: Int)
extends Expression

case class BoolLit(b: Boolean)
extends Expression

Listing 1.3: Example class hierarchy for boolean and integer literals

With pattern matching we can now find out if a variable of type Expression
is an IntLit or a BoolLit. We can match depending on the wrapped integer
or boolean value and we can provide custom predicates that have to hold
on a match. Listing 1.4 demonstrates some of the possibilities.

val exp:Expression = ...

val abs = exp match {
case BoolLit(true) => 1
case IntLit(x) if x < 0 => -x
case IntLit(x) => x
_ => 0

}
Listing 1.4: Example of pattern matching

The control flow of the program will go from top to bottom through the case
statements. If a case matches the matched expression (exp), the expression
on the right hand side of the => is evaluated and taken as the return value
of the pattern match (match keyword).
Note that local variables can be defined and bound to the value of a field, as
we see in the case of case IntLit(x) => x. On the left side x is defined to
be the parameter of the IntLit class and on the right side x can be used as
variable that denotes the value of field i of class IntLit.
Scala also defines the _ pattern that matches everything and is mostly used
as a default case. If nothing matches inside the match block, an exception is
thrown.
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1. Introduction

1.4.4 Functions and Methods

Listing 1.5 shows the basic skeleton of a Scala method.

def meth(param: PType): RType = body
Listing 1.5: Sketch of a Scala method

A method is defined with the def keyword. meth takes one parameter with
name param of type PType. The return type is stated immediately after-
wards, in this case it is RType. body describes the function body. The body
can be a statement block, but can also be just an expression.

In Scala every statement is also an expression. This means that every state-
ment defines a return value. The return value of a statement block is the
return value of the last expression that was evaluated. Listing 1.6 shows
two examples. If a statement is not supposed to return anything (e.g. for-
loop) then its return value is the Unit value, comparable to void in other
programming languages. For more information look at the book "Program-
ming in Scala" [7].

val two = {
val x = 4;
x-2

}

val three = if(two == 2) {
3

} else {
2

}
Listing 1.6: The return value of each statement is the name of the val it is assigned to

1.4.5 Anonymous Functions

Functions can be anonymous in Scala. This means that one can declare
functions without a name. Combined with the concept that functions are
first-class objects i.e. they can be assigned to a variable or passed around
as a parameter, anonymous functions are a powerful feature. Examples for
anonymous functions can be seen in listing 1.7.

8
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val add = (x:Int, y:Int) => x + y

val combine = (x:Int, y:Int,
comb:Function2[Int, Int, Int]) => comb(x,y)

val five = combine(2, 3, add)
Listing 1.7: Examples of anonymous functions. Before the => is a parameter list and after the
=> is the body.

Variable add is a reference to an anonymous addition function. combine ref-
erences a function with three parameters. The third parameter of combine
has to be of type Function2[Int, Int, Int]. This means that the actual
argument provided as the third parameter of combine has to be a function
that takes two Ints as parameters and returns an Int. Function combine
then applies parameter x and y to the comb parameter.
Since the function referenced by add is such a Function2 we can, for exam-
ple, add 2 and 3 together by calling combine with 2, 3 and add as parame-
ters.

A more concise way to specify anonymous functions is to use the _ keyword
as placeholder for a parameter. Function (x:Int, y:Int) => x + y can be
written as: _ + _, where the _ defines the locations of the two parameters.

1.4.6 Partial Functions

A function that only consists of a pattern match block can be written as
a partial function. An example of such a function and the corresponding
partial function can be seen in listing 1.8.

val bFunc:Function1[BoolLit, Int] =
(b:Boolean) => b match {

case BoolLit(true) => 1
case BoolLit(false) => 0

}

val bVal:PartialFunction[BoolLit, Int] = {
case BoolLit(true) => 1
case BoolLit(false) => 0

}
Listing 1.8: Converting a BoolLit into an Int implemented as a function with pattern match
(bFunc) and as a partial function (bVal)

bVal is a partial function that maps a BoolLit to an Integer. The type sig-
nature PartialFunction[BoolLit, Integer] is defined in a way that the
first generic parameter BoolLit is the parameter type of the partial function
and the second generic parameter Integer is the result type of the partial
function.

9



1. Introduction

If we provide a partial function in an example of this thesis, we will sur-
round the case distinction with curly brackets like in listing 1.9

{
case BoolLit(true) => 1
case BoolLit(false) => 0

}
Listing 1.9: Example of an anonymous partial function

1.5 Viper Intermediate Language

Our rewriter will be used almost exclusively on the AST of the Viper inter-
mediate language throughout this thesis. Therefore, this section introduces
and explains the AST nodes that are used in the thesis.

1.5.1 Base Classes

These are base classes that will show up in later examples:

• Node is the super class of every Viper AST node.

• Exp is the super class of every AST node that represents a Viper ex-
pression.

• Stmt is the super class of every Viper AST node that represents a Viper
statement. A statement is always included inside a Seqn node, which
represents a list of statements. Therefore, the parent of a Stmt is always
a Seqn and its siblings are the other statements in the Seqn. This
knowledge will prove useful in Section 3.4.3

1.5.2 Methods

Methods in Viper are functions that have a Seqn as body. A method declara-
tion is shown in listing 1.10.

case class Method(name:String, args:List[LocalVarDecl],
rets:List[LocalVarDecl], pres:List[Exp], posts:List[Exp],
body:Seqn) extends Stmt

Listing 1.10: Class declaration of the method AST node

The first parameter name is the name of the method.
The second parameter args denotes the argument list of the method. They
are of type LocalVarDecl because parameters behave like method local vari-
ables and every declaration of said variables is captures as an AST node of
type LocalVarDecl.
rets contains a list of return variables. In Viper every method can return
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multiple values by writing the results into the specifically declared return
variables. pres and posts denote the pre- and postconditions of a method.
body forms the method body and is a Seqn node.

1.5.3 Quantified Expressions

Viper allows quantifiers as expressions. The two supported quantifiers are
forall and exists. We are interested in the common superclass of both quan-
tifiers, since it is important in later examples. Abstract class QuantifiedExp
is the common supertype of both quantifiers. Listing 1.11 shows the decla-
ration of the class.

trait QuantifiedExp extends Exp {
def qvars: Seq[LocalVarDecl]
def exp: Exp

}
Listing 1.11: Declaration of trait QuantifiedExp. It is the super class of Forall and Exists

qvars returns every variable that gets quantified by this expression and
exp returns the body of the quantifier. Both methods are abstract and are
overridden by Forall and Exists.

1.5.4 If-Then-Else

Viper supports an if-then-else expression (conditional). It is comparable to
the ternary operator from other programming languages. The class is shown
in Listing 1.12.

case class CondExp(cond: Exp, thn: Exp, els: Exp)
extends Exp

Listing 1.12: Class declaration of conditionals

The CondExp evaluates to the value of thn if cond evaluates to true, other-
wise CondExp evaluates to els. If the condition should be non-deterministic,
one can use the NonDet node. NonDet can take either no argument or a list
of variables on which the non-deterministic choice depends.

1.5.5 Inhale-Exhale Expressions

The class declaration of inhale-exhale expressions is provided in listing 1.13.

case class InhaleExhaleExp(in: Exp, ex: Exp)
extends Exp

Listing 1.13: Class declaration of inhale-exhale expressions

An inhale-exhale expression combines two expressions into one. If an In-
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haleExhaleExp node occurs in inhaling position it takes the value of expres-
sion in. If it occurs in exhaling position it takes the value of expression ex.

Information in inhaling position can be assumed by the verifier. When prov-
ing a method, the verifier assumes the precondition. The information inside
the precondition is in this case in inhaling position.

Information in exhaling position has to be proven by the verifier. When
proving a method, the verifier has to prove the postcondition given the
precondition and the method body, which means that the expressions of
a postcondition are in this case in exhaling position.

For more details about inhale-exhale expressions take a look at the Viper
paper [6].

1.6 Domain Specific Language

A domain specific language (DSL) is a language specialized to a particular
application domain. In this case the application domain is matching on trees.
There are two kinds of DSLs we had to chose from.

1. Embedded DSL: Build a language inside the host language (in our case
Scala) by using language features of the host language.

+ Advantages come from being inside the host language: access to
the full expressiveness of the host language, execution for "free"
and IDE support

− Disadvantage is less flexibility in language design

2. External DSL: Build an own language with parser and interpreter.

+ The main advantage is more flexibility in language design com-
pared to an embedded DSL

− Disadvantage is less flexibility in language design

- Disadvantages are no type support and more work because a separate
parser and interpreter has to be written

We decided to implement an embedded DSL because expressiveness was
more important than design freedom. And in addition to that, Scala’s flexi-
ble syntax facilitates DSL development. The goals we have for our DSL are
listed in Section 1.3.3
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Chapter 2

Motivation

This chapter explains the background and the starting situation of the thesis.
It introduces a running example that will guide through the rest of this thesis
and it backs up the goals we set for this thesis in section 1.3 with arguments
and examples.

In this chapter you will encounter Viper code. Viper code should be under-
standable for experienced programmers. If something is unclear, take a look
at Dr. Malte Schwerhoff’s PhD thesis [10] which includes a full explanation
of Viper’s grammar.

2.1 Current Use Cases

Before starting a project it is always useful to evaluate the use cases. Since
the Viper project already includes a rewriter, let us take a look on what it is
commonly used for:

• Simplifying expressions: It means calculating or reducing an expres-
sion already at compile time. E. g. x := (1 + 11) / 3 becomes x
:= 4 or b := true || x becomes b := true

• Replacing variables: Replacing a variable with an expression occurs
rather often in the Viper project. A concrete example would be func-
tion inlining, where the occurrences of formal parameters (type Lo-
calVarDecl) are replaced with actual parameters (type Exp) inside the
body of the inlined function. Consider function inc(x): Int { x
+ 1 }. Line i := inc(i) would become i := i+1 through inlining.

• De-sugaring expressions: In this case, de-sugaring means translating
a higher level language feature into a lower level language feature to
avoid dealing with the high level feature in each backend. As an exam-
ple directly taken from the Viper language, consider the following:
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Viper provides an "is element of" functionality (in) for ranged sequences.
A ranged sequence is a sequence that includes ascending integers. The
in method for sequences checks if an element is inside a sequence and
returns true or false depending on whether or not the element is
contained in the sequence.
An "is element of" check looks like this: x in [5..10). This check
can be rewritten into x >= 5 && x < 10.

• Collecting information: The rewriter does not necessarily have to rewrite
the AST. It can also be used as a visitor that executes a function with
side-effects on every AST node. An example for this usage would be
to find out which identifier names are already taken in order to create
a fresh collision free variable name.

The new rewriter has to support all the current use cases at minimum and
may not require more specification effort than the existing rewriter because
otherwise nobody would want to use it. This is captured with Goal 1.

2.2 Rewriting in Scala

This section explains what the standard requirements and features for a
rewriter are if it is implemented in Scala. The new and the old rewriter will
use the techniques explained in this section.

We introduce basic rewriting with a simple example. The example of choice
is evaluating the result of an addition at compile time (simplification). Fig-
ure 2.1 shows how this example looks on the AST level.

+

3 4

7

Figure 2.1: Precalculating an addition. On the left side is the original AST and on the right side
is the simplified version

The next step is to encode the actual transformation. Pattern matching is the
canonical choice for defining a mapping from one AST node to another. If
we want to pass such a pattern match around as a function, partial functions
(see section 1.4.6) come into play. These partial functions take an AST node
as input and produce a new AST node.
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{
case And(IntLit(i1), IntLit(i2)) => IntLit(i1 + i2)

}
Listing 2.1: Evaluating addition

Listing 2.1 shows how the partial function looks for our example. A rewrit-
ing framework can take this partial function and apply it to every node in
the AST. If the partial function matches, the node will be replaced with the
result of the partial function. If the partial function does not match, nothing
will change.

The next question is whether this transformation is to be applied to every
node simultaneously, or if it should follow a certain order.

2.2.1 Traversion

The two canonical traversion modes on ASTs are top-down (also known as
pre-order) and bottom-up (also knows as post-order). Figure 2.2 shows that
the selection of the traversion mode can make a significant difference.

+

+

1 2

+

3 4

+

3 7

10

Figure 2.2: Addition of four numbers (left). Partial function 2.1 applied top down (middle) vs.
Partial function 2.1 applied bottom up (right).

Selecting Children and Duplication

One has to consider that we are not working with a single type of AST
nodes that all have a left and a right child. AST nodes are diverse: Method
nodes have pre- and post-conditions, a body, arguments and return values
as children, whereas a boolean Not node only has one expression as a child.
Furthermore, not every field of a node should be a child. Fields like name,
line number or other meta-information are not important for the AST struc-
ture. They also do not extend the Node class which defines an AST node in
Viper. Therefore, we do not want to consider them as children.
Consequently, one has to write a function that defines where the recursion
continues on every AST node. Listing 2.2 shows a part of this function:
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def recurse(parent: Node): Node = parent match {
...

case Method(name, args, rets, pres, posts, body) =>
Method(name, args map go, rets map go,

pres map go, posts map go , go(body))
case Not(exp) =>

Not(go(exp))
case Add(l, r) =>

Add(go(l), go(r))
...
Listing 2.2: Function that recurses through the AST nodes. Method go(n: Node): Node
applies the current transformation to a node and returns the transformed node

A problem of this approach is that it is not flexible. If the children of an AST
node that should be visited change, a new recurse function has to be pro-
vided. But since the recurse function is coded into the rewriter, a change of
the recurse function implies a change in the implementation of the rewriter.

Another problem with this rec method is that every node in the AST is
copied during the transformation. This means that node sharing (see Section
2.6) is eliminated in the whole AST as soon as a transformation is applied.
Furthermore, every node is duplicated even if it and its children are not
involved in any transformation, which is inefficient.

The new rewriter should decouple children selection and duplication and
treat them as separate concepts to allow the optimization of both tasks inde-
pendently. This was stated in goal 3.

2.3 Existing Rewriter

The Viper project already has a working rewriting framework implemented.
This will be the baseline where we want to improve from. The following
sections explain how this rewriter works and what we want to improve.

transform(
pre: PartialFuncition[Node, Node],
rec: Function1[Node, Boolean],
post: PartialFunction[Node, Node]) : Node

Listing 2.3: Interface of the existing rewriter

Listing 2.3 shows the interface of the existing rewriter.

• pre is a partial function that takes a Viper Node as an argument and
returns a new Node. This function is applied in a pre-order fashion

• rec is a function from Node to Boolean that determines if the recursion
continues or stops at a certain node.
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• post is a partial function with the same properties as pre. The differ-
ence is that it is used to transform nodes post-order

Now we have everything to implement the addition simplification example
from Listing 2.1:

val ast: Node = ...
val result = ast.transform(PartialFunction.empty, _ => true,
{

case And(IntLit(i1), IntLit(i2)) => IntLit(i1 + i2)
})

Listing 2.4: Simplifying additions with the existing rewriter

Listing 2.4 shows the whole example for addition simplification. Val ast
contains an arbitrary AST that will be rewritten. It could, for example, be
the AST from Figure 2.2. result stores the rewritten AST.
The first parameter is PartialFunction.empty because the transformation
is performed bottom-up and not top-down. An empty partial function as
input is defined to transform nothing.
The second parameter is a function that always returns true regardless of
the parameter. This ensures that we recurse into every node of the AST.
The third parameter is the partial function from Listing 2.1 that simplifies
additions.

2.4 Running example

This section introduces an example that we will use very often during this
thesis because it demonstrates a lot of shortcomings of the old rewriter.

‖

l r

[ , ]

? :

* l r

‖

l r

Figure 2.3: Running example: Translating a disjunction into a non-deterministic case-split in
inhaling position and the original disjunction in exhaling position

Figure 2.3 shows the basic idea of the transformation. We want to rewrite
every disjunction (as indicated on the left) into the expression shown on the
right-hand side of the Figure. The right-hand side consists of an InhaleEx-
hale expression ([ , ]) as the most outside node.
The second parameter of the InhaleExhale expression is the matched dis-
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junction itself. The first parameter is an if-then-else expression (?:). The
choice in this if-then-else expression is non-deterministic (* operator) and it
is a choice between the two operands (l and r, both boolean expressions) of
the disjunction we want to rewrite.

We want this transformation because:
Having a case split in inhaling position instead of a disjunction can be ben-
eficial for automated verifiers, because it can assume l at first and try to
prove the program and then assume r and try to prove the program. In this
way the verifier can treat l and r separately.
Having the disjunction in exhaling position is beneficial because when the
verifier has to prove the disjunction, it is easier to prove that l, r or both
hold than it is to find the cases where l holds and for the rest of the cases
trying to prove that r holds.

2.4.1 Caveats

Here we explain the limitations of the existing rewriter when implementing
the running example.

Infinite Recursion

The first problem occurs when rewriting the AST in pre-order, which ends
in an infinite recursion. This is because the recursion always continues on
the rewritten children. The infinite cycle looks as follows: rewrite l || r
into [(* ? l : r), (l || r)]. Then recurse on both children of the
InhaleExhale expression, namely * ? l : r and l || r. But l || r
is the expression we started with and we start all over again.

Quantified Variables

Another problem is that the non-deterministic choice has to depend on every
variable that is quantified inside expressions l and r because the chosen
non-deterministic value has to be potentially different for each instance of
the quantified variable.
Figure 2.4 shows how the running example looks when variables are bound
by a quantifier. l and r are arbitrary boolean expression that potentially
mention the bound variable x. The transformation becomes more difficult
now because at every transformation step, a list of bound variables has to
be present for the non-deterministic choice node.

2.4.2 Transformation

We will build up an implementation of the transformation with the existing
rewriter step by step. At first we want to keep it simple and do not worry
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forall x:Bool

‖

l r

forall x:Bool

[ , ]

? :

*(x) l r

‖

l r

Figure 2.4: Running example: Translating a disjunction into a non-deterministic case-split in
inhaling position and the original disjunction in exhaling position

about quantified variables. We only want to perform the rewriting as shown
in Figure 2.3. For this we need a partial function that performs the rewriting
as explained in section 2.2. Listing 2.5 shows this partial function.

{
case Or(l, r) =>

val condExp = CondExp(NonDet(), l, r)
InhaleExhale(condExp, Or(l, r))

}
Listing 2.5: Partial function that transforms the AST according to the rule from Figure 2.3

Top-Down The next step is to decide about the recursion order. Since we
know about the infinite recursion problem (recall section 2.4.1), a simple
top-down traversion is not an option. We either need to write a recursion
function that prevents recursing into the exhale part of a newly introduced
InhaleExhale expression, or traverse bottom-up.

If we want to prevent recursion into certain nodes, we have to implement the
rec function, seen in Listing 2.3, appropriately. A possible solution would
be that the rec function captures a Set that contains every disjunction that
was generated from the rewriting function and if the recursion encounters a
disjunction that is contained in this set, the recursion stops.

The new rewriter should be able to do this an a convenient way. This is
captured in Goal 4.

Bottom-Up Traversing bottom-up, however is a more convenient solution,
since we do not have to write additional code for the rec parameter. The
drawback in this case is that we transform the exhale parts of the newly in-
troduced InhaleExhale expressions because we cannot distinguish between
the left and the right child of an InhaleExhale expression when traversing
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from the leaves to the root.
The result is semantically the same because if [l, r] is in exhaling position,
it is the equivalent to r.

The implementation with the existing rewriter chooses to go bottom-up. In
the new rewriting framework we want to be able to do the top-down trans-
formation without suffering from the drawback of additional code explained
in the top-down paragraph.

Listing 2.6 shows the transformer utilizing the rewriting function from List-
ing 2.5 and using bottom-up transformation.

val ast: Node = ...
val result = ast.transform(PartialFunction.empty, _ => true,
{

case Or(l, r) =>
val condExp = CondExp(NonDet(),l, r)
InhaleExhale(condExp, Or(l, r))

})
Listing 2.6: A simplified version of the running example

The final step is adding support for quantified variables, as mentioned in
section 2.4.1. For this to be done, we have to make the currently quantified
variables available to the NonDet node. This is achieved with a List, cap-
tured by the partial function parameters of the existing rewriter (pre and
post), where we include every quantified variable when going down the
AST and remove it when going up again. The implementation is provided
in Listing 2.7.

val ast: Node = ...
var qVars = List.empty[LocalVarDecl]
val result = ast.transform({

case q: QuantifiedExp => // (1)
qVars = qVars ++ q.variables.map(_.localVar)
q

}, {
_ => true

}, {
case q: QuantifiedExp => // (2)

val qvs = q.variables.map(_.localVar)
qVars = qVars filterNot qvs.contains
q

case Or(l, r) =>
val condExp = CondExp(NonDet(qVars),l, r)
InhaleExhale(condExp, Or(l, r))

})
Listing 2.7: The complete transformation
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The first addition to the transformer is a top-down function (1). This is
required because the node that quantifies a variable is an ancestor of the
node that uses the variable. Therefore, a function that is applied top-down
can collect every quantified variable that will potentially be used somewhere
down the AST.
The second addition to the transformer is an extension of the bottom-up
transformation (2). We need to remove the quantified variables again when
going up, since we are only concerned about the quantified variables from
the ancestors of the current node and not the quantified variables we have
seen in other branches of the AST.

We want the new rewriter to provide context, such as the quantified vari-
ables in example 2.7, with less effort from the user. This motivates goal
2.

2.5 Error Messages

A transformed program may look completely different than the untrans-
formed program. The verifier uses the transformed program for verification
and every error message generated by the verifier refers to the transformed
program. These error messages could report problems that the user does
not see, because the program was changed by the transformation.
Therefore we want to find a way to map the error back into the original
program context. Figure 2.5 illustrates this.

ASTstart AST′

Error′Error

transform

verify

???

verify

Figure 2.5: Program AST is transformed into program AST′. After verification we get the error
Error′ for program AST′ but what we want is the real error Error

An example can be seen in Figure 2.6. The transformed program is obtained
by applying a transformation that performs simplification. The correspond-
ing error messages are shown in Figure 2.7.

assert 10 <= 5 assert false

Figure 2.6: Simplification. User writes 10 <= 5. Verifier sees false
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assert might fail.
10 <= 5 might fail.

assert might fail.
false might fail.

Figure 2.7: Error messages. Left: error message the user wants to see. Right: error message
the verifier delivers. User has no idea what false means in the context of his program

We want to provide a solution to this problem that works together with the
new rewriter. Expectations on the solution of this task are captured in the
goals of section 1.3.2.

2.6 Node Sharing

Node sharing is an important topic when working with ASTs. Figure 2.8
shows what we mean when we talk about the sharing of nodes.

:=

x +

*

1 y

/

2

Figure 2.8: Variable y is shared between operators * and /

Node sharing is useful to save memory because e.g. in Figure 2.8 we only
need one node for variable y instead of two.

However if we have context sensitive transformations e.g. a transformation
that transforms every occurrence of y with x if variable y is inside a multi-
plication, we cannot keep sharing. The result of this transformation applied
on Figure 2.8 is shown in Figure 2.9

These problems with sharing will be considered in this thesis. This topic
contributes further motivation for goal 3.

2.7 Deep Matching

Scala pattern matching is used in the existing and the new rewriting frame-
work to match on AST structures. It can be used to match on single nodes
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:=

x +

*

1 x

/

y 2

Figure 2.9: Context sensitive transformations can eliminate sharing. Variable y and rewritten y
(x) are no longer shared

(case LocalVar("x") => ...), or on node structures (case And(LocalVar("b"),
TrueLit) => ...).

What pattern matching has problem with is matching on structures that are
deeper down in the AST (we call it: deep matching). For example if we
would want to match on every And node that has a variable named "x" as
descendant in the left operand branch, we have a problem. Pattern matching
requires us to specify each node on the path from And to LocalVar("x")
but this is not realistic since the number of AST nodes between And and
LocalVar("x") is arbitrarily high.

To provide a solution for this problem we developed a DSL that is capable
of deep matching. This is captured in Goal 10.

2.8 Further goals

2.8.1 General ASTs

One of the potential applications for AST rewriting in the Viper Infrastruc-
ture is the expansion of Viper Macros. Macros in Viper behave similar to
macros in other languages like C or C++. Macros can be parametrized which
means that every parameter occurrence in the macro is replaced with the
code that is provided as parameter in the macro call. Listing 2.8 provides an
example for a Viper macro:
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define swap(a, b) {
var temp := a
a := b
b := temp

}
...
var x:Int := 1
var y:Int := 2
swap(x, y)
assert(x == 2 && y == 1)

... expands into ...

var x:Int := 1
var y:Int := 2
var temp := x
x := y
y := temp
assert(x == 2 && y == 1)
Listing 2.8: The first part of the listing is the macro definition (macros are defined with the
define keyword). The second part shows a macro call. The third part shows how the expanded
macros look

Viper macros are expanded during the parsing phase which operates on the
Viper Parse AST. In order to utilize the existing rewriter for macro expansion,
one has to copy the implementation and replace every Viper AST type with
the corresponding Viper Parse AST type.
This motivated us to define goal 5.

2.8.2 Combinable Rewrite Rules

In software development it is a common practice to break one complex prob-
lem down into multiple simpler problems. We want provide such a feature
for our rewriting library as well.
If a rewriting strategy becomes too complex it might be a good idea to break
it down into multiple rewriting strategies and combine them with a combi-
nator. This is captured in goal 6.
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Chapter 3

New Rewriter

The following sections explain how the new rewriter works: basic function-
ality and features that help in achieving the goals are listed in Section 1.3.1.

3.1 Interface

We introduce the new rewriter by presenting the general interface showing
the whole set of features. Then we implement the running example and
thereby explain the features in detail.

val ast:Node = ...
val strategy = StrategyBuilder.Context[Node, NoC](...)
val result = strategy.execute(ast)

Listing 3.1: Creating a new rewriter and executing it on AST node ast

Listing 3.1 shows how a new rewriter is created from the rewriter factory
(StrategyBuilder) and executed on AST ast. Since the new rewriter pro-
vides more features than the existing rewriter we decided to encapsulate the
configurations in an object. We call the instances of a rewriter strategy be-
cause they encapsulate a possible rewriting strategy and they are instances
of the Strategy class. Listing 3.2 shows how the factory method of the most
potent rewriter looks like. This type of rewriter supports every possible fea-
ture we provide.

def Context[N <: Rewritable, C](
rewritingFunction: PartialFunction[(N, ContextC[N, C]), N],
defaultContext: C,
updateFunction: PartialFunction[(N, C), C],
traversionMode: Traverse)

Listing 3.2: Factory method for the new rewriter
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Here we give a small explanation for all the unknown names in Listing 3.2,
the following sections will explain every feature in detail:

• Rewritable: The rewritable trait has to be implemented by every AST
node that should be considered for rewriting. It encapsulates function-
ality such as children access and node duplication.

• N: This type parameter specifies the type of each AST node. It has to
implement the Rewritable trait at least. This gives the user the possi-
bility to specify a type that is more specific than the Rewritable trait
to work with inside the rewritingFunction and the updateFunc-
tion.

• C: This type parameter specifies the type of the user defined context.
We will use a NoC dummy parameter in examples to indicate that we
do not use user defined context in this example. In Section 3.5 we
will see different configurations that allow us to omit the NoC type
information.

• ContextC: This type represents the contextual information that is passed
to the rewriting function (we call it: rewriting context). An object of
this type encapsulates information about the ancestors, siblings and
the appropriate user defined context for a node. The examples in this
chapter will bind the parameter of type ContextC with variable name
ctxt.

• rewritingFunction: This function is similar to the rewriting function
of the existing rewriter. It maps AST node to AST node. Every node
in the AST will be given to this function as parameter and the result
will be taken as the new AST node. In addition to that, rewriting-
Function takes a second argument. This is of type ContextC and it
provides contextual information that can be used in the creation of the
new node.

• defaultContext: The default user defined context value

• updateFunction: The update function defines how the user defined
context is built up. Context is gathered from a node by applying this
function to a node and the current context to get the new context. If
the partial function is not defined, the old context is taken as default
instead.

• traversionMode: Traverse is the type of an enumeration that speci-
fies traversion modes such as TopDown and BottomUp. If this parameter
is not specified TopDown is taken as default value.

This looks much more heavy weight than the existing rewriter, especially
for smaller tasks. But we also provide rewriter factories that require less
configuration effort. They are provided in Section 3.5.
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Goal 5 is already achieved by the design of the new rewriter. We imple-
mented no feature that restricts us to one specific AST. The only requirement
is that the AST implements the Rewritable trait.

3.2 Basics

We illustrate the new rewriter by implementing the running example from
Section 2.4. At first we explain the basics.

The contents of this section allow us to achieve Goal 1. This means that we
can implement the standard use cases of an AST rewriter.

3.2.1 Rewriting Function

The core of the new rewriter is the rewritingFunction that maps from AST
node to AST node.

{
case (Or(l, r), ctxt) =>

val condExp = CondExp(NonDet(),l, r)
InhaleExhaleExp(condExp, Or(l, r))

}
Listing 3.3: Transforming Disjunctions into an InhaleExhaleExp with a case-split and the
disjunction again

Listing 3.3 shows the partial function we use for rewriting. It is exactly the
same as partial function from Listing 2.5. The ctxt parameter is not in use
currently. As soon as we add more complexity to the example we will see
the purpose of the rewriting context ctxt.

3.2.2 Traversion

We provide the same traversion orders for the new rewriter as we do for the
existing rewriter, namely top-down and bottom-up.
They are represented through an enumeration called Traverse that contains
every transformation mode that the new rewriter supports. This is currently
TopDown, BottomUp and Innermost but can easily be extended in the future.

Innermost is a traversion mode that combines top-down traversion with a
bit of recursion control. It behaves the same as top-down, as long as nothing
is rewritten. As soon as a node is being rewritten, the recursion stops in this
branch. This is useful if, for example, the children of rewritten nodes should
not be considered for rewriting.

27



3. New Rewriter

3.2.3 Rewritable Trait

Every node that extends the Rewritable trait is eligible for rewriting and
we will call such nodes rewritable nodes. The rewritable trait encapsulates
necessary functionality such as children selection and duplication. Listing
3.4 shows the two abstract methods of the Rewritable trait.

trait Rewritable {
def getChildren: Seq[Any]

def duplicate(children: Seq[Any]): Rewritable
}

Listing 3.4: Interface of the Rewritable trait

The getChildren and duplicate methods provide the required functional-
ity to rewrite a class. The following two subsections give more details about
these functions.

The main reason that we have this trait is to decouple recursion
(getChildren) from the creation of new AST nodes (duplicate). By pro-
viding this abstraction we have, for example, the possibility to provide a
default implementation for getChildren and implement duplication our-
selves. Therefore the Rewritable trait is our way to achieve Goal 3.

Get Children

The ideal case would be that we can provide the getChildren method al-
ready in the Rewritable interface. This is possible if the rewritable node is
a case class:
At first we need to get access to the fields of a rewritable node. As we saw
in Section 1.4.2, case classes implement the Product trait, which means that
we can get a list of fields directly.
If a rewritable node is not a case class, one can implement a field selector
via reflection, or the AST node provides a function that returns its children.
In the worst case we are at least as good as the existing rewriter.

After we have access to the fields, we need to differentiate between the fields
that should belong to the AST and the fields that are properties of a node.
To specify that a field belongs to the AST we have the Rewritable trait. If a
node is rewritable, it is considered an AST node. In case of Viper, class Node
implements the Rewritable trait.
Recall the children selector function from the existing rewriter (Listing 2.2).
If we look at, e.g. the Method node we see that the fields of this node are:

• name: of type String. This field does not implement Rewritable and
is not considered a child
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• args: of type List[LocalVarDecl]. Since LocalVarDecl is a subtype
of Node, it is also a list of Rewritable

• rets: of type List[LocalVarDecl]. Like args, a list of Rewritable
objects

• pres: of type List[Exp]. Since Exp is a subtype of Node it is a list of
type Rewritable

• posts: of type List[Exp]. Like pres, a list of Rewritable objects

• body: of type Seqn which is a subtype of Node.

To find out the children of a Method node, fields should be considered as
children of the AST node if they are either of type Rewritable or a collection
of Rewritables.
With these criteria we can support almost every node of the Viper AST by
default. This default children selector is implemented in the Rewritable
trait and every node that does not match the aforementioned criteria can
override this function and implement an own selector.

We use the Any type for the children of an AST node because it is a common
super type of Rewritable and List[Rewritable].

Duplication

ASTs in Scala are often immutable. This means that the nodes of an AST
do not contain fields that can be reassigned, everything is constant. If one
wants to update a node in an immutable AST, the node has to be copied. The
consequence of this is that the parent of the copied node has to be copied as
well in order to have the copied node as its child and this has to be repeated
up to the root.

If the new rewriter is executed and a new node is generated from the rewrit-
ing function, we need to update all the ancestors. Therefore, we need to be
able to copy a node with children specified by the rewriter. This is where the
duplicate method comes in. Every node is required to provide a method
that takes new children as arguments and returns a copy of itself with the
new children.

def duplicate(children: List[Any]): Method = {
children match {

case Seq(args:List[Exp], rets:List[Exp], pres:List[Exp],
posts:List[Exp], body:Exp) =>

Method(this.name, args, rets, pres, posts, body)
case _ => throw InvalidChildrenException()

}
}

Listing 3.5: Duplicator of a Method node.
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Listing 3.5 shows how a duplicator for our Method node looks. The dupli-
cate function takes new children (children) as parameter. If children is a
sequence of children that are valid for a Method node, the node is duplicated
with the new children. Note that the name of a Method does not implement
Rewritable, therefore it is not included in the children list. Nonetheless
the name has to be preserved through duplication.

The getChildren method and the duplicate method of a node need to
work with the same children list. Otherwise every call of duplicate will
fail and throw an exception.

Efficient Duplication Blindly duplicating every node, even if it did not
change is not always what we want. The consequences are: preserving
shared nodes will not be an option and a slow-down of the rewriting process
(if duplication is a costly operation).

On the other hand, one might intentionally want to duplicate every node
e.g. to ensure that there is no alias on a node in the tree or to ensure that
node sharing is eliminated. This makes sense in the context of, for example,
a shared mutable AST. If one of the parties that share the AST wants to
rewrite it but the others want to stay with the current AST, the AST has to
be copied and then transformed and not just transformed.

To address both problems, the user has the option to choose between dupli-
cating every node and duplicating efficiently. Efficiently means that a node
is duplicated only if one of the children changed or the node itself changed.
Listing 3.6 shows how to enable or disable efficient duplication.

val ast:Node = ...
val strategy = StrategyBuilder.Context[Node, NoC](...)
strategy.duplicateEfficiently
strategy.duplicateEverything

Listing 3.6: Enabling and disabling efficient duplication

3.2.4 Application

Listing 3.7 implements the same example with the new rewriter as Listing
2.6 implements with the existing rewriter. Note that we chose top-down
traversion instead of bottom-up traversion here because the new rewriter
includes features that allow us to deal with the infinite recursion problem
conveniently.
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val ast:Node = ...
val strat = StrategyBuilder.Context[Node, NoC]({
case (Or(l, r), ctxt) =>

val condExp = CondExp(NonDet(),l, r)
InhaleExhaleExp(condExp, Or(l, r))

}, Traverse.TopDown)
val result = strat.execute(ast)

Listing 3.7: Simplified running example with the new rewriter

3.3 Recursion Selection

Since we want to implement the running example as a top-down transfor-
mation, we need a way to deal with the infinite recursion problem.

There are two approaches to prevent recursion into nodes. The first ap-
proach is to provide a recursion pattern for every class that prevents recur-
sion into certain children and the second approach is to prevent recursion
into certain marked nodes. This allows us to achieve Goal 4.

3.3.1 Stop at Child

Stopping at a child means that every class can select which nodes it recurses
into. This is useful if one has to prevent recursion on larger scale than just
single nodes. This approach can be looked at as overriding the entries of the
children select function.

val m: Method = ...
val strat = StrategyBuilder.Context[Node, NoC]({ ... })
strat.recurseFunc({

case ie:InhaleExhaleExp =>
List(ie.in)

})
strat.execute(m)

Listing 3.8: Preventing recursion into the ex child of an InhaleExhaleExp

Listing 3.8 shows how you can select individual children for recursion. In
this case we select the in field but not the ex field. Function recurseFunc is
a member function of the Strategy. In case no recurse function is specified,
all children are considered for recursion.

This way of selecting children is cumbersome with the existing rewriter. One
would need to specify a new recursion function that only recurses into the
desired children and select that one instead of the recurse function shown
in Listing 2.2.
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3.3.2 Stop at Node

Stopping at certain nodes allows for a fine granularity of recursion control.
This is what we need for our running example since we want to prevent
recursion on nodes that are created during the rewriting process.

val ast:Node = ...
val strat = StrategyBuilder.Context[Node, NoC]({

case (Implies(left, right), ctxt) =>
Or(Not(left), ctxt.NoRec(right))

}, Traverse.TopDown)
val result = strat.execute(ast)

Listing 3.9: Preventing infinite recursion in the running example

Listing 3.9 shows how one can prevent the ex field of a freshly created
InhaleExhaleExp instance from being recursed into. Method NoRec stores
the instance directly into a list of forbidden nodes maintained by Strategy
object strat itself. A useful property of the NoRec method is that its return
value is its parameter. This allows for concise recursion control as we see in
Listing 3.9.

This would not have been cumbersome to implement with the existing
rewriter as well. The recursion control of the existing rewriter can only
stop the recursion after a node was rewritten and it cannot stop the transfor-
mation of the current node.

3.4 Rewriting Context

This section explains how we make the AST nodes aware of their surround-
ings and provide context to the AST transformations.
We provide access to user defined context, ancestors and siblings through
the second parameter of the rewriting function (bound by ctxt variable).
After this section we will have achieved Goal 2.

3.4.1 User Defined Context

This section explains everything regarding the user defined context we pre-
sented in Section 3.1. User defined context is a part of the contextual in-
formation that is provided to a rewriting function through the rewriting
context. When we talk about just context in this subsection we always mean
user defined context.

Strategies instantiated by the Context factory provide user defined context
of type C to the partial function used for rewriting. User defined context is
gathered from the ancestors of the current node.

32



3.4. Rewriting Context

For context gathering we provide the ability to specify a function that ex-
tracts context from a node and combines it with the already gathered con-
text. The function takes an AST node and the gathered context as arguments
and returns the updated context.

Listing 3.10 shows how the context gathering function looks for the running
example. It is a partial function that matches on QuantifiedExp and the
already gathered context of type List[LocalVarDecl]. Then it returns the
new context which is a new list where the quantified variables of the current
node q are appended to the already gathered context.
{

case (q: QuantifiedExp, c:List[LocalVarDecl]) =>
c ++ q.variables

}
Listing 3.10: User defined context extractor function

The collected context can be used inside the rewriting function by accessing
the field c of context object ctxt. The complete implementation of the run-
ning example to demonstrate how user defined context is used is shown in
listing 3.11. The default value for our List of LocalVarDecls is the empty
list (List.empty)

val ast:Node = ...
val strat = StrategyBuilder.Context[Node, List[LocalVarDecl]]({
case (Or(l, r), ctxt) =>

InhaleExhaleExp(CondExp(NonDet(ctxt.c), l, r),
ctxt.NoRec(Or(l, r)))

}, List.empty, {
case (q: QuantifiedExp, c) => c ++ q.variables

})
val result = strat.execute(ast)

Listing 3.11: Complete implementation of the running example with the new rewriter

Because we decided to let the partial function accumulate the user defined
context, the context can be of any type e.g. a tuple with heterogeneous data
or even a single integer that counts something.

N.B. The extracted user defined context comes from the ancestors including
the current node. The user defined context is different for top-down and
bottom-up.

• Top-down: Context is always extracted from the rewritten ancestors.
The only exception is the current node because it is not yet rewritten.
This also holds for innermost.

• Bottom-up: Since the ancestors are not yet rewritten, the context is
extracted from the original ancestors.
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3.4.2 Ancestors

In some cases it is required to have access to the ancestors without extracting
user defined context from them. Therefore, we provide a complete list of
every ancestor of a node to the rewriting function.
Ancestor information is provided through the ctxt parameter. Listing 3.12
picks up the addition simplification example we had in Section 2.3 again.
The difference in this example is that we only perform the transformation if
we are inside a Method. To check if we are inside a Method we can use the
ancestorList field of the ctxt parameter and check if a Method object is
among the ancestors.

StrategyBuilder.Context[Node, NoC]({
case (a@And(Int(i1), Int(i2)), ctxt) =>

if(ctxt.ancestorList.exists(_.isInstanceOf[Method]))
Int(i1 + i2)

else
a

})
Listing 3.12: Strategy using ancestor information. The if condition checks if the current node
is inside a method declaration. If the condition evaluates to true the transformation simplifies
the addition, otherwise it returns the addition unchanged. The a@ before the And node binds
the And node to a local variable a.

The following fields are available in the context object regarding ancestor
access:

• ancestorList: This field provides the whole list of ancestors of the
current node, including the node itself. Head of the list is the AST root
and the last element of the list is the current node.

• parent: parent provides the current node’s direct ancestor. This is
the second to last element of ancestorList.

3.4.3 Siblings

In addition to the list of ancestors, we provide access to the siblings of a
node. Information about siblings is also contained in the ctxt object.
A task that shows the benefit of sibling access is assertion folding. This
means that consecutive assert statements are merged into one assert state-
ment and all the boolean expressions inside the asserts are conjuncted to-
gether.
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var acc = List.empty[Exp] // accumulator
StrategyBuilder.Context[Node, NoC]({

case (a: Assert, ctxt) =>
acc = acc ++ a.exp
ctxt.next match {

case Some(Assert(_)) =>
NoOp

case _ =>
val result = Assert(acc.reduceRight(And(_, _)))
acc = List.empty[Exp]
result

}
})

Listing 3.13: Folding assertions using sibling information

Listing 3.13 shows the code for the assertion folding example. The example
uses the fact that an Assert node is a statement and the parent of every
statement is a Seqn. The children of Seqn are its statements and therefore
these statements are pairwise siblings. Figure 3.1 demonstrates this.

Seqn

stmt1 stmt2 stmt3

Figure 3.1: This example shows a Seqn node with three statements as children. stmt1, stmt2,
stmt3 stand for arbitrary statements. The dashed arrows denote where field next points to from
the point of view where the arrows start.

The transformation works as follows: For every assert we encounter, we
add the current boolean expression to the expression accumulator acc. If
the sibling which is the direct successor of the assertion we are currently
looking at is another assertion, the current assertion becomes a NoOp and its
boolean expression is added to the accumulator. If no assertion succeeds the
current assertion, we conjunct all the accumulated boolean expressions to-
gether (acc.reduceRight(And(_, _))) and return them in one assertion.
Figure 3.2 shows the rewriting step by step. The arrow > indicates the cur-
rent node.
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acc: List()

>assert(true)
assert(false)

acc: List(true)

NoOp
>assert(false)

acc: List(true, false)

NoOp
assert(true && false)

Figure 3.2: The left column shows where we start. The middle column shows that if the first
assertion is succeeded by another assertion the condition of the first assertion is put into the
accumulator and it is transformed into a NoOp. The right column shows that if no assertion
follows, the condition of the current assertion is put into the accumulator and a conjunct of the
accumulator elements becomes the new assertion condition.

Regarding sibling access, the following fields are available in the context
object (ctxt):

• siblings

• family: siblings plus the current node

• predecessors: Each sibling that comes before the current node in the
children list (from getChildren) of the parent class

• successors: Each sibling that comes after the current node in the field
declaration list of the parent class

• previous: Last element of predecessors

• next: First element of successors

If a node has children that are of type collection of Rewritable, we consider
each element of this sequence as a sibling. Figure 3.3 demonstrates the next
relation from the example node of Listing 3.14.

case class N(c1: Rewritable, c2:List[Rewritable],
c3:Rewritable, c4: List[Rewritable])

Listing 3.14: An example AST node

N

C1 C2 C3 C4

Figure 3.3: This example shows how the sibling relation is interpreted if the children of a node
are of type List[Rewritable] (example node from Listing 3.14). The dashed arrows denote
the value of the next field.
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3.5 Simpler Configurations

An AST transformation does not always utilize the full set of features that
our rewriter provides. We want that no specification overhead is generated
for features that are not used. Therefore we provide two other factory meth-
ods in addition to StrategyBuilder.Context.

3.5.1 Ancestor

If a Strategy wants access to the ancestors or siblings of the current node
but does not want to define own user defined context, one can use the An-
cestor factory method. An example would be Listing 3.13. It uses Sibling
information but does not need user defined context.
Listing 3.15 shows what parameters are required for the Ancestor factory
method.

def Ancestor[N <: Rewritable](
rewritingFunction: PartialFunction[(N,

ContextA[N]), N],
traversionMode: Traverse)

Listing 3.15: Factory method for transformations that use no user defined context

We can see that in comparison to Context (Listing 3.2) Ancestor requires
less specification.
What changes is the second parameter of the rewritingFunction. It is
now ContextA instead of ContextC. ContextA has the same functionality
as ContextC except that is does not include the c field for user defined
context access.

3.5.2 Slim

Some AST transformations do not require contextual information for rewrit-
ing. They only transform one node into another regardless of the surround-
ings. An example for such a transformation would be the addition simplifi-
cation example from Listing 2.4.
To increase the convenience for these methods we designed the Slim factory
method where no second parameter is required in the rewritingFunction.
Listing 3.16 shows the interface for a Slim transformation.

def Slim[N <: Rewritable](
rewritingFunction: PartialFunction[N, N],
traversionMode: Traverse)

Listing 3.16: Factory method for simple node replacement transformations
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3.6 Combining Rewriters

We already stated in the introduction that we want to combine rewriting
rules in order to allow the user to design AST transformations in a modular
manner.

The following two subsections present two approaches to combine rewriting
rules. Thereby we achieve Goal 6.

3.6.1 Chain Execution

Chaining execution means that two or more strategies are executed one after
the other but are treated as one strategy. The following list explains what is
possible with our execution chainers. s1 and s2 denote Strategy objects.

• Sequential chaining (s1 ‖ s2): The ‖ operator creates a Strategy that
executes s1 first. Then takes the resulting AST and execute s2 on it.

• Repetition (s1.rep): The rep method of a Strategy returns the same
Strategy, lifted to a repeatable Strategy. This means that the exe-
cution of s1.rep will apply s1 repeatedly to the AST until the AST
does not change anymore. In other words, *.rep creates a fixed-point
iteration strategy.
One can provide an integer as an argument to rep (e. g. s1.rep(10)).
Then s1 will be executed until a fixed-point is reached but a maximum
of 10 times.

3.6.2 Interleaving Rules

Interleaving rules means that one can not only execute one strategy after the
other but combine them even during the traversal of the AST.

This comes with some restrictions. Only strategies of the same kind can
be combined (Slim[N] and Slim[N], Ancestor[N] and Ancestor[N], Con-
text[N, C] and Context[N, C]) for reasons of implementation simplicity.
The generic parameters of the Strategy objects have to be the same. The
following paragraphs explains the different rule combinators with the help
of a semi-formal notation.

For better understanding we introduce this semi-formal notation: s1, s2
and s3 denote Strategy objects. Let node be the node we currently want to
rewrite and sX(nodeY) be the resulting node from applying Strategy sX
to nodeY. nodeY ∈ dom(sX) is true if the rewriting function sX matches on
nodeY (nodeY is in sX’s domain) and false otherwise.

• Sequential combination (s1 + s2): This combines the rewriting func-
tions of s1 and s2 together such that on rewriting a node, s1 is exe-
cuted and then the result is passed as a parameter to s2. That result
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is taken as the newly rewritten node. If s1 does not match, s2 is exe-
cuted on the original node.
In our notation this means: (s1 + s2)(node)↔ s2(s1(node))

• Conditional combination (s1 < s2): This is very similar to s1 + s2. The
only difference is that if s1 does not match on a node, s2 will not be
executed and no rewriting takes place.
(s1 < s2)(node)↔ if (node ∈ s1) s2(s1(node)) else node

• If-Then-Else (s1 ? s2 : s3): This construct works as follows: If s1 does
match on a node, s2 will be executed on the result of s1. If s1 does
not match, only s3 will be executed.
(s1 ? s2 : s3)(node)↔ if (node ∈ s1) s2(s1(node)) else s3(node)

3.7 Summary

In this chapter we introduced the new rewriting framework. The core im-
provements of the new rewriting framework over the existing framework
are:

• Decoupling of duplication and children selection: Section 3.2.3 de-
scribes how we separated the functionality of children selection and
duplication compared to the old rewriter where one function handled
both. The advantage of this abstraction is that we can now treat them
as separate concepts and, for example, implement automatic children
selection for case classes and efficient duplication independently.

• Recursion selection: Section 3.3 describes the recursion selection fea-
ture of the new rewriter. With little specification overhead one can
prevent recursion into specific nodes or even nodes that match on a
certain pattern.

• Context: The new rewriter provides context to node transformation
(see Section 3.4.1). The rewriting function can access ancestors, siblings
and even user defined context to assist with rewriting the current node.

• Simpler Configuration: In Section 3.5 we present three different fac-
tory methods for creating rewriting strategies. These different factory
methods were created to adapt the required specification for strategy
creation to a minimum, depending on the amount of features used.

• Combining Rewriters: Section 3.6 presents a way to combine rewrit-
ing strategies. This allows the user of the rewriting framework to
create complex AST transformation by splitting the transformation
into smaller less complex transformations and implementing those as
rewriting strategies.
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This chapter presented how we can transform a program in AST form into
another program. One problem with this approach is that if a program
changes, potential errors that might occur during the program may change
as well. The next chapter provides a way to deal with this problem.
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Chapter 4

Error Handling

We already motivated in section 2.5 that we want to be able to transform an
error message back into the untransformed version of the program because
the error message should only concern code that was written by the user.
The Viper related back-transformations for error messages are not part of
the rewriter itself, they are rather an extension of the rewriting framework
that was specifically designed for the Viper language.

To understand what has to be done, we first present the structure of error
messages in Viper. Then we show how back-transformations work and pro-
vide an example.

Meta-Data The term meta-data will occur on various places throughout
this chapter. With meta-data we mean data that is contained in the AST
nodes but does not define the nodes themselves. In the context of case
classes it describes fields that are not in the parameter list and do not have
to be mentioned in a pattern match. Meta-data in Viper is: line number, a
custom info field and back-transformations that will be introduced in this
chapter.

4.1 Viper Error Structure

A Viper error message consists of two parts. An error and a reason for
the error. Every error class extends the AbstractVerificationError trait
and every reason class extends the ErrorReason trait. The following two
sections give details about errors and reasons.

4.1.1 Errors

An error instance describes what went wrong on a higher level than the
error reason. If a program does not verify, the verifier returns one or more

41



4. Error Handling

error instances, one for each error that occurred. Examples are:

• AssertFailed: Indicates that an assertion might not hold

• AssignmentFailed: An assignment might not be possible

• PreconditionInCallFalse: A method precondition might not hold

• PostconditionViolated: A postcondition might not hold

Every error contains at least the following two fields:

• offendingNode: The offending node is the AST node that caused the
error. This node is exactly the same instance as the node from the AST
we verified, in particular all the meta-data is still present. This will
prove useful later in Section 4.2.1.

• reason: The reason field contains the reason for the error

In this thesis a method transform was added to the AbstractVerifica-
tionError trait that triggers the back-transformation of an error.

4.1.2 Reasons

A reason instance is part of an error instance and describes the error more
precisely. Examples for reasons are:

• AssertionFalse: States that an assertion evaluates to false. An asser-
tion is a boolean expression that is asserted e.g. by an Assert state-
ment, or as part of a method contract.

• InsufficientPermission: The Viper language uses a permission model
for field access. In order to write a value to a field, one needs to have
write permission for that field. If at one point in a program a field
is written to without write permission to that field being present, an
error including this reason will be the result.

• DivisionByZero: The divisor in a division might be zero

A reason also contains the field offendingNode. The offending node con-
tains the node instance that is responsible for the reason. The offendingN-
ode of a reason is most of the time a subtree of the offendingNode of the
enclosing error.

4.1.3 Example

Figure 4.1 shows an example of a Viper error message by showing what the
user sees. Figure 4.2 show how the object representation of the program
and the error message of Figure 4.1 looks. In this example we can also see
that the offendingNode for an error and a reason is not the same. The error
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is more on a statement level and the reason points precisely to the location
where the error occurs.

var x:Int := 5
assert x < 3

Assert might fail.
Assertion x < 3 might not hold.

Figure 4.1: The left column shows a simple Viper program that contains an error. The right
column shows the corresponding error message how it is printed to the user. The first sentence
Assert might fail is the error and the other sentence is the reason

Seqn

assert:=

Error

Reason

x 5
<

x 3

Figure 4.2: This AST shows the program from example 4.1 in AST form and how the error
message interacts with the AST. The offendingNode field of the Error points to the assert
statement that contains the erroneous code. The offendingNode of Reason points directly to
the location where the error occurs, namely expression x < 3.

4.2 Back-Transformations

This section explains how back-transformations work. There are three types
of back-transformations: node-, error- and reason back-transformations.

4.2.1 Node Back-Transformation

With node back-transformations we can transform the current node back
into the node it was before a transformation was applied.
Listing 4.1 shows an example of how this looks for simplified additions.
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{
case a@And(IntLit(i1), IntLit(i2)) => IntLit(i1 + i2)(

errT = NodeTrafo(a))
}
Listing 4.1: Provide a back-transformation (NodeTrafo) as meta-data (second parameter list,
assigned to parameter errT) to the created node. The a@ before the And match is Scala syntax
that binds the And node to variable a.

To add a node back-transformation to a Viper AST node, one can add a
node transformation (NodeTrafo) to the errT field of an AST node. Listing
4.2 shows the interface of class NodeTrafo: it takes the original node as the
only parameter. This class is used as a wrapper to make it combinable with
error- and reason back-transformations. Trait ErrorTrafo is the base trait
of every error transformation (including error and reason transformations).
Field errT is of type ErrorTrafo.

case class NodeTrafo(node: ErrorNode) extends ErrorTrafo
Listing 4.2: Interface of class NodeTrafo

The following paragraph shows in more detail how a node back-transformation
works.

Simplification Example

Let us consider expression x := 1 / ((2 + 2 + 3) - y) and its transfor-
mation shown in Figure 4.3. If variable y might have value 7, we get a
Division by 0 error with the offending expression 7 - y.
To transform this expression back, we recursively apply the back-transforma-
tions to the offending expression. In this case root node subtraction (-) has
no back-transformation appended, node y has no back-transformation ap-
pended but node 7 has. After the back-transformation, the offending ex-
pression is (2 + 5) - y. Then we recurse further. Nodes 2 and + have no
back-transformations appended but node 5 has. After transforming node 5
back we get (2+2+3) - y as the offending node, which is exactly what we
wanted.

We achieve Goal 8 because every node stores its back-transformation indi-
vidually. This means that one can select any node of the AST and transform
it back.

4.2.2 Automatic Node Back-Transformation

The rewriting framework introduced in previous chapters provides a method
for preserving meta-data across transformations. The idea behind this method
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:=

x /

1 -

+

2 +

2 3

y

:=

x /

1 -

+

2 5

y

:=

x /

1 -

7 y

Figure 4.3: Simplifying addition. In the left column is the original AST. In the middle column is
the AST where the rule was applied once bottom up and node 5 contains the back-transformation
into 2 + 3. In the right column is the AST where the transformation was completed and node
7 contains the back-transformation into 2+5, where node 5 is the same instance of node 5 from
the middle column.

is that the user is provided with the node before the transformation (old)
and the node after the transformation (now). Then the user can add meta-
data from the old node that was not duplicated into the now node. Listing
4.3 shows the interface of this method.

def preserveMetaData(old: N, now: N): N = now
Listing 4.3: The result of this method is the new AST node. Parameters are: old:N the old AST
node, now:N the new AST node. Returning now is the default implementation of this method in
the new rewriter.

Method preserveMetaData gives the user the option to control node cre-
ation. Parameter old points to the original AST node and now points to the
new AST node. By default this function returns the now node. The user
has the option to override this method. The idea is that meta-data which is
not copied during the transformation can be copied over from the old node
to the new node by returning a node that contains everything in method
preserveMetaData.

We provide a new rewriter (ViperStrategy) specifically for the Viper lan-
guage that overrides method preserveMetaData and adds node back-trans-
formations to every transformed AST node. Informally this means duplicat-
ing node now (since the Viper AST is immutable) and adding line number,
info and the node transformation NodeTrafo(old).
This is the only thing required to adapt the general rewriter to a Viper spe-
cific rewriter that provides automatic back-transformations.
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With this functionality we do not have to provide back-transformation our-
selves but the ViperStrategy does it for us. Goal 7 is thereby achieved.

4.2.3 Error Back-Transformations

It is not enough to transform nodes back. We also need to be able to trans-
form errors back. Consider, e.g. the example of method call desugaring.
When we desugar a method call we replace it with assertions of the pre-
and postconditions of the called method. If an assertion that encodes a
precondition check fails, we get an assertion failed error instead of a
precondition failed error.

Specify Back-Transformation To transform error messages, one can add
an ErrorTrafo, that transforms an AbstractVerificationError into an-
other AbstractVerificationError, to an AST node the same way a Node-
Trafo is appended to a node. This means that AST nodes store the back-
transformations for the errors they occur in as offending nodes. Listing 4.4
shows the interface of the error back-transformation wrapper. Listing 4.5
shows how the error back-transformation class would look for the method
call desugaring example.

case class ErrTrafo(error:
PartialFunction[AbstractVerificationError,

AbstractVerificationError])
extends ErrorTrafo

Listing 4.4: Interface of class ErrTrafo for error back-transformations

m.pres.map(pre => Assert(pre)(errT = ErrTrafo({
case AssertFailed(_, r) => PreconditionInCallFalse(m, r)

})
Listing 4.5: Example of transforming every method precondition of method m into an Assert
statement that checks the precondition. In addition every Assert is created with an error back-
transformation that transforms the potentially occurring AssertFailed error into the according
PreconditionViolated.

Transform Back Assume we have written a transformer for method call
desugaring and the precondition does not hold. Let us further assume
that the precondition is an arbitrary boolean expression bExp. Then the re-
sulting error is AssertFailed(Assert(bExp), AssertionFalse(bExp)).
Then we apply the back-transformation of the offending node (as specified
in Listing 4.5) to this error message and we get PreconditionInCall-
False(m, AssertionFalse(bExp)). The background code for an error
back-transformation (without reason back-transformation) can be seen in
Listing 4.6.
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val err = ...
val Terror = error.offendingNode.transformError(err)
Listing 4.6: This example shows what happens when an error (err) gets transformed back. The
offending node of the error stores the back-transformation for potential errors it occurs in as
offending node. Therefore it provides a method transformError that applies the parameter to
a back-transformation that is defined for the parameter (in this case matches err) and returns
the result. The result is the transformed error Terror.

4.2.4 Reason Transformations

A reason back-transformation works in the same way as an error transfor-
mation. The offending node stores the reason back-transformation of the
reasons it occurs in. Listing 4.7 shows the class interface of the reason back-
transformation wrapper.

case class ReTrafo(reason:
PartialFunction[ErrorReason, ErrorReason])
extends ErrorTrafo

Listing 4.7: Interface of class ReTrafo for reason back-transformations

The back-transformation of the reason works in the same way as the back-
transformation for errors.

4.2.5 Combined

The complete back-transformation of an error (e) in Viper happens in the
following steps. Listing 4.8 provides the code for these steps:

1. e.transform is called by the user of the rewriting framework. The
user has full control on the moment when the error is transformed
back. This is required because if the error is transformed back too
early the backend might get confused because the error does not cor-
respond to the program it got provided as input. Therefore the back-
transformation should happen as late as possible.

2. If the offending node of error e contains an error back-transformation,
we apply it and obtain the new error ne.

3. The new error ne has two fields: offendingNode and reason. We
first transform the offending node ne.offendingNode back according
to the specification in section 4.2.1 and get the new offending node
newON.

4. The second field ne.reason is transformed back by applying the rea-
son back-transformations specified in the offending node ne.reason
.offendingNode. From that we get the reason newRTemp. This is tem-
porary because the offending node of newR is still not transformed
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back. We do this again according to the rules specified in section 4.2.1
and get reason newReason.

5. Then we create a new error of the same type as ne with offending node
newON and reason newReason.

val e = ...
e.transform

def transform = {
val ne = offendingNode.transformError(this)
val newON = offendingNode.transformNode

val newRTemp = ne.reason.offendingNode.transformReason(ne.reason)
val newRON = ne.reason.offendingNode.transformNode
val newR = newRTemp.withNode(newRON)

ne.withNode(newON).withReason(newR)
}
Listing 4.8: The step by step explanation from section 4.2.5 in code form. Method withNode
can be called on an error or a reason and returns the same error/reason with the parameter as
offendingNode. Method withReason can be used to replace the reason field in an error.

This provides a complete error back-transformation of Viper errors and it is
what we wanted to achieve with Goal 9.

4.3 Summary

In this chapter we provided an extension to the rewriter that allows to pro-
vide error messages for transformed programs in a state where no transfor-
mation were applied yet.

The requirement to specify the original node for each newly created node
may seem like it could introduce a big specification overhead. This is avoided
by providing automatic node back-transformations as explained in section
4.2.2.

Error and reason transformations need to be provided by the user since
the rewriter cannot find out the connection between the transformed AST
nodes and their error messages. Sections 4.2.3 and 4.2.4 explained how such
transformations can be specified.
Section 4.2.5 describes the complete back-transformation of a Viper error
message.
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Chapter 5

Tree Regex DSL

This chapter describes the syntax we motivated in section 1.6.
The goal of the DSL is to make complex matching on nodes simpler and
more concise to write. We decided that the DSL should function similar to
regular expressions because regular expressions are a well known concept
that is used for complex matching. In this chapter we will develop a way to
adapt the approach for strings to trees.
The following sections describe how we achieved the goals we set in Section
1.3.3.

5.1 From Trees to Strings

Using a matcher on a string vs using a matcher on a tree is different, because
trees are two dimensional structures whereas strings are one dimensional.
Our idea to make string matching work on trees is to consider each so called
"root to leaf" path of a tree as a string to match on. The "root to leaf" paths
of the tree from Figure 5.1 would be: AB, ADAB, ADAC, ADB and ADE.

A

B D

A

B C

B E

Figure 5.1: A tree with node identifiers
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This approach, however, can become very inefficient since a full tree with at
least two children per node and depth d has in the best case 2d "root to leaf"
paths we need to check.
Therefore, we use the fact that these "root to leaf" paths share a large amount
of nodes among each other and we use the fact that we can apply the match-
ing greedily. Let us explain this with an example.

Simple Consider the simple regex A(B|C) (string regex syntax). This regex
matches on a path in the tree that starts with a node containing identifier
A. That node either has to have a node with identifier B or a node with
identifier C as follower.
If we use this regex on the "root to leaf" paths of the tree from Figure 5.1 we
get 3 matches. One on AB, one on the suffix of ADAB, one on the suffix of
ADAC and no match on ADE. This was not efficient because we checked the
same nodes AD three times.

Improved To make this more efficient we perform the matching directly on
the tree. This is done as follows:
We try to start the match on every node in the AST. This is most of the time
constant effort since the regex does not match on every node. The nodes
that start a matching are all A nodes. Figure 5.2 colored the starting nodes
in grey.

A

B D

A

B C

B E

Figure 5.2: Starting nodes for matching A(B|C)

The next step is to consume the first match and check if the children match
the rest. In this case it means that we reduce A(B|C) to (B|C) and check
the children of all starting nodes A for matching. In general, this step is
repeated until no match is left, but here we are done already after checking
(B|C). Figure 5.3 shows which children match in our example. It gives us
the same three matches that we got in the inefficient approach.

This is more efficient because we use the fact that most of the "root to leaf"
paths share nodes. Look at e.g. the two "root to leaf" paths ADAB and ADAC.
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The first three nodes are exactly the same. This means that we can find
out that the prefix AD does not match the regex and that the A at the third
position might start a match, without treating them as separate "root to leaf"
paths already.

A

B D

A

B C

B E

Figure 5.3: Child nodes of As that match (B|C)

5.2 Intuition

This section gives an intuition on how our regular expression rewriter works.
The details will be provided in the following sections.

Listing 5.1 shows the three core parts of a Regex strategy creation.

TRegexBuilder[N, C] &> Matcher |-> Rule[N, C]
Listing 5.1: Abstract representation of a regex strategy creation

Matcher The Matcher is the core of the Regex strategy. The responsibility
of the matcher is to find out which nodes have to be rewritten in the AST
and to extract contextual information for these nodes.
We provide matchers and combinators for matchers that are very similar to
the ones that exist for strings: n[And] for matching on an And nodes, n.Wild
for wildcard matches, m.? to indicate that matcher m should either match or
not, m.* to indicate that matcher m matches 0 or more times etc.
We also provide matchers that make sense in the context of AST matching
such as c[And](..) for extracting context from a node or iC[And](_.left)
to indicate that the matching should only continue on the left child of an And
node.
A detailed definition of matchers and combinators can be seen in Section
5.3.
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Rule A rule is a partial function that defines how nodes are translated,
possibly depending on contextual information such as ancestors, siblings or
user defined context. These rules have the same signature and behavior as
the rewriting functions from chapter 3. They define the rewriting of every
node that was marked by the Matcher for rewriting.

TRegexBuilder The TRegexBuilder creates a rewriting strategy given a
Matcher and a Rule. The TRegexBuilder itself specifies the type of the
user defined context C and the most general node type N. A matcher can be
added by using operator &>. This operator was chosen because of reasons
regarding operator precedence in Scala. After a matches is added, one can
provide a rewrite rule with N as node type and C as the user defined context
type by using operator |->. The result is a new rewriting strategy called
"regex strategy". This strategy provides the same functionality as regular
rewriting strategies do such as recursion selection, access to ancestors/sib-
lings/user defined context, efficient duplication, etc. A regex strategy can
even be part of an execution chain (see Section 3.6.1).
Section 5.5 shows the different factory methods for regex strategies.

Execution A regex strategy is executed in two steps.

1. Generate node-context pairs: The Matcher is applied on the AST and
every node that is marked for rewriting is stored with the extracted
context as a pair.

2. Rewrite the AST: Every node-context pair gets transformed by a rewrit-
ing strategy that uses the rule provided to the TRegexBuilder.

5.3 Matching on an AST

Section 5.1 explained our approach for tree matching in an abstract way
with letters as node identifiers. However, we don’t need to match on letters
but on AST nodes. Since AST nodes have more properties than a letter, e.g.
node type, node structures, different children, etc., we want to allow more
sophisticated matches.
Section 5.3.7 shows a complete list of all possible matchers we want to sup-
port including the required types.

5.3.1 Node Matcher

The simplest possible node matcher is called n matcher. An n matcher looks
like this: n[T] where T is a generic type that has to inherit from Rewritable.
In the case of strings the matcher was a letter, e.g. A, that matched every
occurrence of letter A. Here we have, for example, a matcher n[And] that
matches every And instance.
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Let us look at the example from Section 5.1. Consider the AST from Figure
5.4, that shows the same tree structure as Figure 5.1, but with AST nodes
instead of letters as nodes. These are the replacements: A → And, B →
TrueLit, C → FalseLit, D → ?:, E → BVar where BVar is a variable of
type bool.

And

TrueLit ?:

And

TrueLit FalseLit

TrueLit BVar

Figure 5.4: AST version of tree 5.1

To perform the matching A(B|C) from Figure 5.1 on AST 5.4, we need to
match like this: The child of an And node is a TrueLit or a FalseLit.
To match on node types we use node matchers: n[And], n[TrueLit] and
n[FalseLit].
In regular expressions on strings, one writes one matcher after the other (A
before (B|C)) and they are connected implicitly. In the embedded DSL for
AST matchers we use operator > for connection. Connection in the context of
AST matchers means that the left operand is the parent of the right operand.
The | operator is for choice and it has the same functionality in our DSL
than it has in string regexes.
The complete regex looks as follows: n[Add] > (n[TrueLit] | n[FalseLit]).

Wildcard Matcher

A wildcard is commonly known to match on everything. In the context of
matching AST nodes this means that it matches on every AST node. In our
framework one can express a wildcard matcher like this: n.Wild.
The wildcard matcher is just a prettier way of writing an n[Rewritable]
matcher since Rewritable has to be the supertype of every AST node.

5.3.2 Child Selector Matcher

The child selector matcher was specifically designed for tree matches and
has no equivalent on strings. With a child selector matcher, one can restrict
the direction of further matching.
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The basis of a child selector match is a node match. We only apply the
child selection if the base matcher actually matches. An example instance of
a child selector match would be: iC[And](_.left), where iC is short for
"into child". If this matcher matches on an And node, the rest of the pattern
will only be applied to the left child of the matched And node. If the child
selector match does not match, nothing happens.

The current implementation of the child selector matcher supports the se-
lection of one child for recursion. If desired one could also implement the
selection of a List of children. There are no conceptual differences.

5.3.3 Context Matcher

The last matcher that we present is the context matcher. Since our trans-
formations use user defined context (see Section 3.4.1), we want to have a
matcher that allows us to collect this context.

Recall our example from Section 3.4.1 where quantified variables were col-
lected as user defined context. Collecting quantified variables looks like this
if expressed with the new DSL: c[QuantifiedExp](_.variables). The ba-
sis for the context (c) matcher is a simple n matcher. If the base matcher
applies, we use the extractor function (in this case: _.variables) on the
matched node to collect the context.

5.3.4 Mark for Rewrite

We want to use our regular expressions to rewrite ASTs. But so far we can
only find nodes in the AST that match a certain pattern.
Since we want to rewrite AST nodes, we need a way to mark individual
nodes for rewriting: every matcher has the option to mark the matched
node for rewriting. Every node in a valid path that was matched by a rewrite
matcher is considered for rewriting.

Examples for rewrite matchers are: n.r[TrueLit], iC.r[And](_.left),
c.r[QuantifiedExp](_.variables).

If we consider the AST of Figure 5.4 again with matcher n.r[Add] > (n[TrueLit]
| n[FalseLit]), we get the three valid paths again with both And nodes
marked for rewriting.

5.3.5 Predicate

The presented matchers are still not as flexible as we want them to be: for
example matcher n[IntLit] matches on every IntLit. Matching only on
positive or even integers is not a possibility. Therefore, we allowed every
matcher to include a predicate that maps every matched node to a boolean
value.
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If we want to match only on positive integers, we can add a predicate to
the matcher: n[IntLit](_.value >= 0). This predicate takes a parameter
with the type of the matched node (IntLit) and has to return a boolean
value (_.value> 0).

5.3.6 Combinators

So far, we introduced the two combinators > and | for our examples. In
this subsection we give a complete list of combinators that can be used to
combine matchers. Assume that m1 and m2 are arbitrary matchers of type
Match and every combined matcher is also of type Match.

• m1 > m2 : The > combinator expresses a child relation. If m1 matches
on a path, m2 has to match on the direct child path. By direct child
path we mean the path that starts directly at the child of the deepest
node of the matched path.

• m1 | m2 : The | combinator represents choice. The combined matcher
matches if either m1 matches or m2 matches.

• m1.? : The ? operator after a match produces a match that applies if
m1 matches 0 or 1 times.

• m1.* : The * operator works analogous to the Kleene star known from
regular expressions on strings. m1 has to match 0 or more times for
the combined matcher to match. It is equivalent to the infinite pattern:
m1.? > m1.? > m1.? > ...

• m1.+ : The + operator produces a matcher that matches if m1 matches
1 or more times. The + operator is equivalent to: m1 > m1.*.

• m1 >> m2 : The >> combinator creates a matcher that matches if m2
matches on a path starting at the descendants of the AST node where
m1 matched. This combinator is equivalent to: m1 > n.Wild.* > m2.

• m1.** : The intention behind the ** operator is to match on a node
that occurs 0 or more times consecutively on a path that is interrupted
by other nodes. E.g. a path of And nodes that is interrupted by an
Or node would look like this And-And-And-Or-And. The purpose of
this operator will become clear when we see the example from List-
ing 5.6 that includes context. This operator is equivalent to: (m1.* >
n.Wild.*).*
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5.3.7 Summary

Regular expressions are a powerful tool to match on strings and we adapted
them to use their strengths for matches on ASTs. We address the problem
that Scala pattern matching is limited in matching on nodes on a high level
and on a deep level of the AST at the same time (explained in Section 2.7).
With the regex DSL we achieve Goal 10.

In this summary we list all possible matchers:

• Node match:

– simple: n[N <: Rewritable]

– predicate: n[N <: Rewritable](p: Function[N,Boolean])

– rewrite: n.r[N <: Rewritable]

– rewrite with predicate: n.r[N <: Rewritable](p: Function[N,
Boolean])

• Child match:

– simple: iC[N <: Rewritable](ch: Function[N, Rewritable])

– predicate: iC[N <: Rewritable](ch: Function[N, Rewritable],
p: Function[N, Boolean])

– rewrite: iC.r[N <: Rewritable](ch: Function[N, Rewritable])

– rewrite with predicate: iC.r[N <: Rewritable](ch: Function[N,
Rewritable], p: Function[N, Boolean])

• Context match: The context extraction function con extracts context of
type Any. This is because the context matcher does not know which
type of context is used for the transformation. It can be used in any
type of rewriting. Whether the extracted context has the correct type
is checked dynamically at the point where it is actually extracted.

– simple: c[N <: Rewritable](con: Function[N, Any])

– predicate: c[N <: Rewritable](con: Function[N, Any], p:
Function[N, Boolean])

– rewrite: c.r[N <: Rewritable](con: Function[N, Any])

– rewrite with predicate: c.r[N <: Rewritable](con: Function[N,
Any], p: Function[N, Boolean])
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Regex strategies combine the expressiveness of the new rewriter with more
powerful matching possibilities. Every strategy generated from the new
rewriter can be written as a regex strategy by putting the pattern match of
the strategy into a predicate that returns true is the node matches and add
this predicate to a n[Rewritable] matcher.

In general one should choose to use a regex strategy for transformations if
complex matching is required.
The advantage of strategies generated from the new rewriter is that they
are executed faster because they use standard pattern matching and do not
execute the regex matching engine (explained in Section 5.4). Therefore one
should use a regular strategy if execution speed matters and Scala pattern
matching is sufficient.

5.4 Automatons

To recognize if a matcher matches on a path of AST nodes, we use non-
deterministic finite automatons. This is a common approach for regular
expressions [2]. Since we built our DSL similar to regular expressions on
strings, we can use the same approach with minor modifications.

5.4.1 Specification

Our automaton framework does not only need to recognize a path that
matches a regex, it also has to provide information such as: children we
select for recursion, a new collected context and nodes that are marked for
rewriting. For this task we created our own specification of automatons that
got inspired by Khan Process Networks (KPN [4]).

• States: A state in our automaton defines which transitions can be taken
next. In our automaton design every important information is encap-
sulated in the transitions. A state is only defined by the transitions
that go out of it.
If a state has no outgoing transitions, we call it a final state. This im-
plies that the automaton is accepting, thereby indicating that the input
AST node sequence matched. If no outgoing transition matches the
input AST node, the automaton rejects.

• Matching transitions: Transitions in an automaton are taken depending
on the input. A matching transition models a node match. Therefore, a
matching transition is taken if the corresponding matcher matches on
the input node. If we write only "transition" in the following sections
we always mean matching transitions and not epsilon transitions.
Furthermore, transitions generate information such as extracted con-
text, children selected for recursion, etc. (similar to actions in KPNs) de-
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pending on the matcher being used. This information is then returned
as result of the transition method (explained in the next paragraph).

• Epsilon transitions: An epsilon transition is taken without requiring an
input AST node. They make the automaton non-deterministic because
an epsilon transition can cause multiple states to be reached on one
input.

transition(n: Rewritable):(List[State], List[TransitionInfo])
Listing 5.2: Interface of the transition method

Every state defines a transition method that can be seen in Listing 5.2.
This method is called with the AST nodes as parameters. If this method is
called with state s as target, every transition that can be taken from s on
input n will be taken. The resulting states will be returned as a List of
State. Every information that was generated from the taken transitions is
collected and returned in List[TransitionInfo].
For more information about the different TransitionInfo classes, have a
look at Section 5.4.2.

5.4.2 Construction

This subsection describes how we generate the automaton that recognizes a
path in the AST from the DSL specification. For every matcher and for every
combinator we define how the corresponding automaton is created.

Matchers

Every matcher yields an automaton that goes into the accepting state for
every input AST node that matches and rejects otherwise. This automaton
always consists of a single start node, a single end node and a single transi-
tion between those two.

The following paragraphs explain how the constructed automatons look.
The transition entering from outside denotes the starting node. The state
surrounded with a double circle is the final state. Our notation to annotate
the transitions is: At first comes the condition which is always a matcher
known from Section 5.3. If the matcher matches on the input that was given
to the transition method (including that the predicate returns true if spec-
ified), the transition will be taken. Then comes a / character that separates
the condition from the generated information. This information has to be of
type TransitionInfo.
A transition with no annotation is an epsilon transition. Details will be ex-
plained in the according paragraphs.

58



5.4. Automatons

Node Match Figure 5.5 shows the automaton created from a node match.
The condition of the transition is an n matcher. r is a TransitionInfo that
indicates whether the node is marked for rewriting or not.

s0start s1
n[T] / r

Figure 5.5: A node match automaton

Child Match Figure 5.6 shows the automaton created from a child match.
The condition an iC matcher. The transition creates two TransitionInfos.
The first (r) is whether or not the matched input is marked for rewriting and
the second contains the child child that was selected for further recursion.

s0start s1
iC[T] / r, child

Figure 5.6: A child selection match automaton

Context Match Figure 5.7 shows the automaton created from a context
match. The condition is a c matcher. The transition creates two Transi-
tionInfos: The first (r) is whether or not the matched input is marked for
rewriting and the second (udc) contains the user defined context extracted
from the matched node .

s0start s1
c[T] / r, udc

Figure 5.7: A context match automaton

Combinators

Combinators combine two automatons into one automaton or add some-
thing to an automaton in case they are unary. The resulting automaton has
one starting state and one final state.
We will denote the automatons that are parameters of the combinators as
a0 and a1. In the following diagrams we will draw automatons a0 and a1
as stars. Every transition that leaves such an automaton is connected to the
final state of the automaton and every transition that enters an automaton
is connected to the starting state of the automaton.
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Direct Child Figure 5.8 shows how combinator > combines two automa-
tons. They simply get executed after each other.

a0start a1 s0

Figure 5.8: Automaton for combinator >

Union Figure 5.9 shows how combinator | combines two automatons. On
entering the automaton, the transition goes both ways. This transition then
results in two states namely the starting state of a0 and the starting state of
a1.

s0start

a0

a1

s1

Figure 5.9: Automaton for combinator |

Option Figure 5.10 shows how unary operator ? modifies the input au-
tomaton a0. After entering s0, both epsilon transitions will be taken and the
automaton will be in two states: The starting state of automaton a0 and state
s1 that skips the execution of a0.

s0start

a0

s1

Figure 5.10: Automaton for operator ?

Star Figure 5.11 shows how the automaton modeled after the Kleene Star
looks. It can skip execution on a0 or execute a0 arbitrarily many times.
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s0start

s1

a0

Figure 5.11: Automaton for operator *

Other combinators The other combinators (+, **, >>) are expressed with
the combinators mentioned above. Therefore we do not have to provide an
automaton for them.

5.4.3 Match example

Consider the following example: we want to match on and rewrite every
implication that has an occurrence of variable x somewhere on its right side.
The regex for this example would look like this: iC.r[Implies](_.right)
>> n.P[LocalVar](_.name == "x").

To start with creating the automaton we need to break down the operations
into operations that have an automaton creation rule (in this case >>). The
regex resulting from breaking down the >> operation is: iC.r[Implies]
(_.right) > n.Wild.* > n[LocalVar](_.name == "x").

Then we can build the automaton according to the rules specified in section
5.4.2. Figure 5.12 shows the whole automaton. The boxes correspond to
the automatons generated from iC.r[Implies](_.right), n.Wild.* and
n[LocalVar](_.name == "x"). States that are labeled with e compared to
s are states that only have epsilon transitions as outgoing nodes. Those are
states in which the automaton will never be in, they are only passed through.
We included abbreviations for the transition labels since they would take up
too much space otherwise.

iCI: This abbreviates transition label iC[Implies] / r, _.right

nW: This abbreviates transition label n.Wild. There is no / because this
transition has only a condition and produces no information.

nV: This abbreviates transition label n[LocalVar](_.name == "x"). This
transition does not produce information as well.

To show how the matching with an automaton works we need an AST to
match on. Figure 5.13 provides an example AST.

Execution

Now we go through the execution of the automaton. We traverse through
the AST and provide the nodes as input to the automaton. Since the first
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s0start

e0 e1 s1 e2 e3

s2e4s3

iCI

nW

nV

Figure 5.12: The automaton built from regex iC.r[Implies](_.right) > n.Wild.* >
n[LocalVar](_.name == "x")

Assign

z Implies

FalseLit And

Or

LocalVar("y") LocalVar("x")

TrueLit

Figure 5.13: An AST we want to match on with the automaton shown in Figure 5.12

transition is only triggered by an Implies node, every node rejects on the
first input except the single Implies node in the AST. The following para-
graph explains how the automaton is executed starting from that Implies
node.

Step-By-Step We execute the automaton on every path, starting at the
aforementioned Implies node. The notation Input: Node, {...} → {...}
denotes that the automaton starts in each state on the left side of the arrow.
Then AST node Node is provided as input to the automaton (via method
transition) and after the transition is completed, the automation is in each
state on the right side of the arrow.

Input: Implies, {s0} → {s1, s2}: The starting state of the automa-
ton is s0. Then we provide the Implies node as input to the automaton.
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The automaton goes into state e0 and provides the information that the Im-
plies node should be stored for potential rewriting and that only the right
child of the Implies node is considered as further input. Then the automa-
ton takes every epsilon transition until it reaches a state where it has to
consume an input node. If at one point the automaton can take multiple
epsilon transitions it takes each of them. After every transition was taken,
the automaton ends up in states s1, s2.

Input: And, {s1, s2} → {s1, s2}: We have to execute the transitions
triggered by And for each state we are in. State s1 goes to e2 since wildcard
matches on everything. After every following epsilon transition is chased,
we get s1, s2 again. State s2 does not have a valid transition for an And
node therefore we do not get a result state.

Input: Or, {s1, s2} → {s1, s2}: We continue with left child Or. When
we give Or as input to the automaton in states s1, s2 we end up in the same
states. s1 always matches and produces s1, s2 and s2 fails on everything
except variable x.

Input: TrueLit, {s1, s2} → Fail: Then we look at right child Tru-
eLit. After executing the automaton from s1, s2 with input TrueLit we
get s1, s2 again. Since TrueLit was a leaf, the execution stops. We are not
in an accepting state and therefore the regex does not match on this path,
consequently the Implies node is not put into the list of nodes to rewrite.

Input: LocalVar("y"), {s1, s2} → Fail: The first child of Or is y.
From s1, s2 we get to s1, s2 again. Transition nV did not match because
the predicate restricts the variable name to be equal to "x". We are in a leaf
and at the same time not in an accepting state, the execution fails and the
Implies node is not put into the list of nodes to rewrite.

Input: LocalVar("x"), {s1, s2} → {s1, s2, s3}: The second child
of Or is variable x. Now transition nV matches and we go into accepting
state s3. State s1 still produces states s1, s2. Since a non-deterministic
automaton accepts if one of the states in the set is accepting, we found a
matching path (Implies-And-Or-LocalVar("x")). Node Implies, which
was marked for rewriting on this path is now added to the final set of nodes
to rewrite.

5.5 Application

The purpose of this DSL is to make rewriting more convenient. So far, we
are only able to mark nodes for rewriting but cannot perform the rewriting
itself. Therefore, we need a way to include a function that defines the node
rewriting.
For this task, we decided to integrate the same partial functions we had
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for the rewriting strategies from Section 2.3 and Chapter 3. To combine the
matching DSL with a rewrite rule, we created an object called TreeRegexBuilder
that provides different matching strategies similar to the StrategyBuilder
from Chapter 3.

After this Section it gets clear that regular expressions can be specified con-
cisely for simple tasks because there is no specification overhead generated
from the expressiveness i.e. one does not have to specify anything that will
not be important for the transformation process. Therefore we achieve Goal
11.

5.5.1 Slim Regex Strategy

A simple regex strategy maps from node to node without requiring contex-
tual information similar to a slim strategy from Section 3.5.2. Such a regex
strategy is created by using the the Slim[T] factory method, where T is the
most general node type of the AST (Node in case of Viper) and T has to im-
plement Rewritable.
Listing 5.3 shows how the regex from the automaton example (Figure 5.12)
looks in Scala. Implications get rewritten into equivalent disjunctions and
negations.

val t = TreeRegexBuilder.Slim[Node]
val strat = t &> iC.r[Implies](_.right) >>

n.P[LocalVar](_.name == "x") |-> {
case Implies(l,r) => Or(Not(l), r)

}
Listing 5.3: Transforming every implication that includes a variable named "x" as a child on the
right hand side into an equivalent disjunction and negation

5.5.2 Context

If the partial function should be able to utilize the user defined context that
was collected during the matching process, one has to use the Context[T,
C] factory method, where T is again the most general node type of the AST
and T needs to implement Rewritable. C is the type that the rule wants
for the collected user defined context. If the matcher collects context of the
wrong type (is possible because matcher uses type Any), a runtime exception
will be thrown. This choice was made because the rule should be statically
checkable but the matcher that collects the context should still be decoupled
from the rule.

However, simply extracting contexts if a path matches introduces ambiguity
problems: Figure 5.14 shows an AST where an ambiguity problem occurs
when collecting context with a regular expression strategy from Listing 5.4.
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Sub

IntLit(7) Add

Add

IntLit(13) LocalVar("x")

LocalVar("y")

Figure 5.14: AST used to point out ambiguity problems when matching with regex strategy
from Listing 5.4

val t = TreeRegexBuilder.Context[Node, Int](...)
val strat = t &> c[Add](_ => 1).* >

n.r[IntLit] |-> {
case (IntLit(i), ctxt) => IntLit(ctxt.c)

}
Listing 5.4: Regular expression that matches on every IntLit and assigns it the number of
ancestor Add nodes. The three dots indicate that there is functionality missing that is required
to handle this transformation.

We encounter the first problem when we match on IntLit(7). Since the
context matcher is not required to match once because of the Kleene star,
there is the possibility that no context is collected. We address this problem
by requiring a default parameter for user defined context in the Context
factory.

The second problem occurs when we match on both Add nodes. We extract a
1 from the first node and another 1 from the second Add node. But we need
to combine them somehow. To solve this problem, we want an accumulator
method that accumulates the extracted contexts.

The third problem is that we will match on IntLit(13) in two ways. The
path Add-Add-IntLit(13) matches the regex pattern and path Add-IntLit(13)
matches the regex pattern as well, without the first Add. Then we have col-
lected two different contexts for the same node that will result in different
transformations. This problem is addressed with the combinator method
that required the user to specify which context to use if the regex match
encounters an ambiguity.

The following itemization explains the general implementation of the three
parameters from the Context factory method.

• accumulator:Function2[C,C,C]: The accumulator function is used
to combine the context extracted from a node together with the context
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collected already.

• combinator:Function2[C,C,C]: The combinator function is used to
combine two contexts into one. This is important if the same node
is marked for rewriting twice but with different contexts. Then this
function selects one context or merges them together into one context.

• default:C: The default parameter is used as the starting value for the
context and will be present in case no context was collected.

Listing 5.5 provides the complete implementation of the example from List-
ing 5.4

val t = TreeRegexBuilder.Context[Node, Int](
_ + _, math.max(_, _), 0)

val strat = t &> c[Add](_ => 1).* >
n.r[IntLit] |-> {

case (IntLit(i), ctxt) => IntLit(ctxt.c)
}

Listing 5.5: The constructor of the Context factory method is now complete. The first parameter
is the accumulator which is just an integer addition. The second parameter is the combinator
which returns the bigger number. The third parameter defines the default context as 0

The running example from section 2.4 can be written as a tree regex. This
was the example where we rewrite disjunctions into inhale-exhale expres-
sions of a non-deterministic choice and the disjunction itself. Listing 5.6
provides this example.

val t = TreeRegexBuilder.Context[Node, List[LocalVarDecl]](
_ ++ _ , (_ ++ _).distinct, List.empty[LocalVarDecl])

val strat = t &> c[QuantifiedExp]( _.variables).** >> n.r[Or]
|-> {

case (o:Or, c) =>
InhaleExhaleExp(CondExp(NonDet(c.c), o.left, o.right),
c.noRec[Or](o))

}
Listing 5.6: Writing the running example as a tree regex. The context is a List: the accumulator
is appending the lists (_ ++ _), the combinator merges both lists into one ((_ ++ _).distinct)
and the default value is the empty list

Listing 5.6 uses the ** operator to collect the context. Why is the * op-
erator not enough? If we use c[QuantifiedExp]( _.variables).*, we
can only match on consecutive QuantifiedExp. In a path Forall(x)-And-
Forall(y)-Or only variable x would be collected and then we match on the
Or without collecting the other quantified variables.
Therefore, we need to allow arbitrary nodes in between the context matches.
This is captured by the following construct: (c[QuantifiedExp]( _.vari-
ables).* > n.Wild.*).*. We can have an arbitrary amount of interrup-
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tions and still match on every quantified variable. This is exactly how
(c[QuantifiedExp]( _.variables).** is defined.
Note that here the combinator function comes into play. The regex with **
can match in multiple ways on the path Forall(x)-And-Forall(y)-Or and
not every way includes every quantified variable. If for example Forall(y)
is matched as a wildcard and not with the c matcher then the variable "y"
will not be collected as context. But since it is guaranteed that the path
where both foralls are matched as context objects is among the paths that
match and the combinator we wrote merges the lists together, we get x and
y as context.

Since regex strategies created by the Context factory use ContextC as pa-
rameter type (seen in Section 3.1), the rewriting function has access to sib-
lings and ancestors as well.

5.5.3 Ancestors

We also include the option to use ancestor and sibling information without
reqiring user defined context. The factory method for this is Ancestor[T]
with the same rules for T than the Slim factory.

5.5.4 Behavior on Node Sharing

Recall example 5.5: We count how many Add nodes we have as ancestors
and assign every integer literal the the number of Add nodes in the ancestor
list.

If we consider the AST from Listing 5.15 we see that the IntLit(7) node is
shared among two nodes and the same IntLit(7) should be rewritten into
IntLit(1) and IntLit(2).

Add

Add

IntLit(7)IntLit(13)

Figure 5.15: AST of expression 13+7+7. IntLit(7) is shared and has both one and two add
nodes as ancestors.

Our solution to this problem is that we consider the same node with a
different ancestor path as different nodes. This means the path And-Not-
IntLit(7) denotes a different IntLit(7) than the path And-IntLit(7).
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With this information IntLit(7) is marked for rewriting twice as two dif-
ferent nodes and we get the AST of Figure 5.16.

Add

Add

IntLit(2)

IntLit(1)

IntLit(2)

Figure 5.16: Result of applying the transformation from Listing 5.5 to the AST from Figure
5.15.

5.6 Summary

This chapter presented a powerful tool for AST matching. In the first Section
(5.1) we utilize concepts of regular expressions on strings for AST matching.
We interpret every path on the tree as a string and match on them.

Since AST nodes contain more information than letters in strings we want
to have expressive matchers that provide flexibility in node matching. The
set of matchers we introduced can be seen in Section 5.3. AST matchers also
include functionality that is required specifically for rewriting nodes such
as extracting context or marking a node for rewriting.

A regular expression pattern is usually applied by using a non-deterministic
automaton. We also implemented an automaton framework to find the
matches of a regex pattern on an AST. Our automaton framework is ex-
plained in Section 5.4.

The last section before this summary (5.5) shows the different possible regex
strategy configurations and how they are applied to ASTs. It also describes
how we decided to handle context extraction and the behavior on shared
nodes.
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Chapter 6

Evaluation

In the evaluation we will again look at the goals we achieved, briefly recap
how the solutions work and in some cases suggest improvements left for
future work.

To underline these achievements, we provide the implementation of macro
expansion and file imports for the Viper intermediate language, which has
been based on the new transformation framework

6.1 New Rewriter

Goal 1 Common transformations that were possible to implement with the exist-
ing rewriter should be possible to implement with the new rewriting framework.
Furthermore there should be no additional specification overhead generated by the
new rewriting framework

We achieved this goal by removing the existing rewriter completely from
the Viper intermediate language implementation and we utilize the new
rewriter in every transformation that occurs inside the Viper intermediate
language project.
Although the rewriter was replaced, nothing changed for the users since
we kept the transformation method and only changed its implementation.
This means that no additional overhead is generated with the new transfor-
mation framework.

Goal 2 Enhance the convenience when implementing a transformation by mak-
ing important information about the current node available. This means access to:
ancestors, siblings and even special user-defined information.

The new rewriter provides access to ancestors and siblings when using the
Ancestor factory method. Additionally, user defined context can be used
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via the Context factory method. Details on both Strategies can be found in
Sections 3.4 and 3.5.

Goal 3 Children selection and AST node duplication should be treated separately.
We want this modularity because it gives us the possibility to optimize and automate
children selection and duplication separately.

The existing rewriter had only one function that defined both children selec-
tion and node duplication (see Section 2.2.1).
The new rewriter splits these into two concepts via the Rewritable trait. It
takes advantage of this split by implementing automatic children selection
for case classes and implementing efficient duplication in independent meth-
ods (Section 3.2.3).
In Section 2.6 we motivated this goal with node sharing. The existing
rewriter eliminated sharing without option. But the new rewriter allows
to keep sharing whenever possible because we implemented the duplica-
tion function appropriately (see Section 3.2.3).
A possible point for future work would be to utilize reflection for automatic
children selection or node duplication. Then the user of the rewriting frame-
work would not have to specify a duplicator or children selector for non case
classes anymore.

Goal 4 The new rewriter should provide a feature to control recursion into AST
nodes on the level of nodes and groups of nodes.

Section 3.3 explains the two possibilities for recursion control. The first
option allows to override the children selector and prevents recursion into
certain children for each instance of a selected class. This cannot be done
with the existing rewriter, one would have to change the core recursion func-
tion and thereby change the rewriter itself.
The second option is to prevent recursion into specific AST node objects.
This can be done during the transformation with the second parameter of
the rewriting function (we called it ctxt). Listing 3.9 provides an example.

Goal 5 The rewriting framework should be able to transform arbitrary ASTs, not
only the Viper AST. Furthermore, we want to be able to deal with cycles in order to
transform CFGs.

The new rewriter was designed from the start to handle arbitrary ASTs. Sec-
tion 6.5 demonstrates the use on an AST that is different from the Viper AST.
Section 6.4 shows how cycles in a CFG can be detected and dealt with when
using the new rewriter.
The existing rewriter only works on the Viper AST and has to be recreated
entirely in order to handle other ASTs. It would require a lot of bookkeeping
outside of the declaration of the existing rewriter to detect cycles.
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It is possible to detect cycles with the new rewriter, but a small check using
the ancestor feature of the new rewriter has to be done manually (see Sec-
tion 6.4). Integrating such functionality into the new rewriter is a possible
way to improve it in the future.

Goal 6 We want to be able to combine transformations i.e. complex AST transfor-
mations can be the combination of many simple transformations.

The new rewriter allows to combine rewriting strategies in two ways. One
way is to chain whole executions of a rewriter, even allowing fix-point iter-
ation. The other way is to interleave the rewriting rules, which offers a lot
of flexibility in the design of rewriting rules. A detailed explanation can be
found in Section 3.6.
A possible point for future work is to lift the limitations on the combina-
tion of different kinds of strategies. Currently only strategies with the same
generic types can be combined (details in Section 3.6).

6.2 Error Handling

Goal 7 The rewriter should provide the ability to transform nodes back into the
untransformed state without additional help of the user.

Section 4.2.2 shows how function preserveMetaData is used to automat-
ically generate node back-transformations for the Viper AST. This means
that the user has to write a node back-transformation himself only in rare
cases.

Goal 8 The user should be able to select individual nodes, not only the whole AST,
and transform them back.

In section 4.2.1 we show the concept that every node stores the version of
itself before the transformation was applied. This means that any node in
the AST can be selected and transformed back.

Goal 9 We want the back transformations to be integrated into the Viper error
message framework to map error messages back into the untransformed state (exam-
ple in 2.5).

The error message back-transformations were specifically designed for the
Viper AST and the implementation directly integrated into the Viper project.
Section 4.2.5 shows the back-transformation of a Viper error step-by-step.
The transformation of an error message into the untransformed program
state can be triggered by calling the transform method on the error it-
self. The user has full control over the point in time where the error is
transformed-back.
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6.3 Tree Regex DSL

Goal 10 The DSL should provide a powerful and expressive language to spec-
ify transformations. We want the DSL to address the problem of deep matching
(explained in Section 2.7).

Our DSL implementation adapts regular expressions on strings for the us-
age on ASTs. Regular expressions are a well known tool for dealing with
matching problems and we use this power to implement matchers that can
match on arbitrary levels of the AST at the same time. The power of our
matchers is explained in Section 5.3.
Our DSL is embedded in Scala and therefore we can provide maximum flex-
ibility with, for example, arbitrary Scala functions as predicates inside our
matchers. This makes the DSL is expressive and powerful.

Goal 11 Although the DSL should be designed to be powerful and flexible, stan-
dard cases have to be implementable in a simple and concise way.

Section 5.5 shows how our DSL is used for AST transformations. We provide
different factories for regex rewriting strategies such that the specification
effort matches the used features. This makes sure that simpler transforma-
tions can be encoded with less specification than more complex problems
and makes the use of our matching DSL attractive even for smaller prob-
lems.

6.4 Handling CFGs

In order to demonstrate that the new rewriter is able to handle cycles in a
graph, we will implement a simple example that transforms a simple graph
that contains cycles. An actual integration of a cycle detection feature is left
as future work.
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6.4.1 Example

class Node[I](
var info: I,
var children: List[Node[I]] = List()
) extends Rewritable {

def addChildren(ch: Node[I]*) = children ++= ch

override def duplicate(childr: List[Any]): Rewritable = {
children = childr.collect { case s:Node[I] => s }
this

}
}
Listing 6.1: Class declaration of a simple node. The * operator at the end of ch: Node[I]*
defines a variable parameter list similar to params in C# or varargs in Java.

Listing 6.1 shows the interface of a simple graph node called Node. A node
only consists of some information info and a list of children called chil-
dren.
The addChildren function allows to add children after the creation of the
node.
The duplicate method overrides the duplicate method of the Rewritable
trait. Note that the duplicate method does not create a new node in this
case, it only updates the current node with the new children. If we would
create a new instance when applying the transformation on a node, it would
be difficult to close a cycle.

6.4.2 Handling Cycles

val a = Node[Int](1)
val b = Node[Int](10)
val c = Node[Int](100)
val d = Node[Int](1000)

a.addChildren(b, c)
b.addChildren(c)
c.addChildren(a, d)
d.addChildren(d)

a:1

b:10 c:100

d:1000

Figure 6.1: On the left column is the code for the creation of the graph represented in the right
column.

Consider the graph from Figure 6.1. We want to double the value of every
node in the graph without ending in an endless recursion. Listing 6.2 shows
how we can do this.
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var visited = List[Node[Int]]()
val strat = StrategyBuilder.Ancestor[Node[Int]]({

case (n, ctxt) =>
if(visited.contains(n)) {

ctxt.noRec(n)
}
else {

n.info = 2 * n.info
visited = visited ++ List(n)
n

}
})
val res = strat.execute[Node[Int]](a)
Listing 6.2: A rewriting strategy that doubles the value of every node in the graph. We use
facroty Ancestor to get access to the recursion selection functionality (noRec).

The transformation works as follows: we match on every node and check if
is is contained in the visited list. If it is contained, we already transformed
this node and would start a cycle. Then we stop the recursion on the current
node and return the current node unchanged. Otherwise, we double the
info field of the current node. After we executed this strategy on node a,
we get the AST shown in Figure 6.2.
One could also return a new CFG instead of mutating the existing one if the
implementation can close the cycle with the duplicated nodes.

a:2

b:20 c:200

d:2000

Figure 6.2: The CFG resulting from transformation 6.2

6.5 Viper Imports and Macros

This section will give two examples of rewriter applications that are not on
the Viper AST. Both are implemented in the Viper parser which uses its own
AST, namely the Viper Parse AST.
The macro expansion and file import features were chosen to be imple-
mented with the new rewriter because they have a recursive structure that
can be handled nicely with the new rewriter.
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6.5.1 Imports

Viper supports file imports via the import keyword. If e.g. import "li-
brary.vpr" is stated at the beginning of a Viper program, one can use every
member (method, function, etc.) that is defined in the program written in
file library.vpr.

Every member of the main program and of every import gets merged into
one program during the parsing phase. This means that our import resolver
has to work on the Viper Parse AST. To make the code presented in this
section more concise and readable, we assume that a Viper program only
consists of imports, macros and methods. Listing 6.3 shows how the simpli-
fied Parse AST node for a program looks:

case class PProgram(
imports: List[PImport],
macros: List[PMacro],
methods: List[PMethod]) extends PNode

Listing 6.3: The simplified class declaration of the Viper parse AST program node

The implementation for parsing methods (PMethod) and macros (PMacro)
is not necessary to know in order to understand the transformation. The
PImport node wraps a string that contains the file name (field file). PNode
is the super-class of every Parse AST node and implements Rewritable.

The basic idea of the import transformation is to perform every import step
by step. In each step we take one PImport from list imports, read the
program from the file and convert it into a PProgram, then merge its fields
imports, macros and methods with the fields of the current program. The
imported program get removed from the imports list. This is done itera-
tively until list imports is empty.

We only allow to import a file once. Since no file is imported twice, cyclic
imports and multiple imports of the same file are handled naturally. Listing
6.4 shows the implementation of this transformation.
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def importProgram(imp: PImport): PProgram = ...

val imported = Set(f)
val importer = StrategyBuilder.Slim[PProgram]({

case p: PProgram =>
val firstImport = p.imports.headOption

firstImport.match {
case None => p
case Some(toImport) =>

if (imported.add(toImport.file)) {
val newProg = importProgram(toImport)

PProgram(
p.imports.tail ++ newProg.imports,
p.macros ++ newProg.macros,
p.methods ++ newProg.methods)

} else {
PProgram(p.imports.tail, p.macros, p.methods)

}
}

}).recurseFunc({ case p: PProgram => List() }).repeat
val result = importer.execute(prog)
Listing 6.4: The whole rewriter for file imports, f is the start file and prog is the program parsed
from file f. Method importProgram takes an import statement and parses it into a PProgram.
imported.add(..) is an operation on a Scala set and returns true if the added object was not
in the set and false otherwise.

Explanation The first line contains val imported: a set that stores the files
we already imported. f denotes the file we are currently parsing.

We chose a Slim strategy because no context is required during the transfor-
mation. We match only on PPrograms. The first thing we do is selecting the
first PImport for importing.
If there are no files to import (firstImport is None) the transformation does
not change anything on program p. Otherwise we carry on with the file
import.

Then we have to check if this file was already imported. The add method
of a Scala Set returns true if the added object was not in the set before
and false otherwise. If the file was already imported, we just remove the
import in the else branch.
If this is not the case, we pass the file specified in import to method import-
Program, which takes a file, parses it, and returns the corresponding PPro-
gram. Then we return a new PProgram that contains all the fields merged
together and does no longer contain the imported import statement.
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Since the transformation imports one file at a time we need to iterate until
the resulting program does not change anymore, i.e until every import is
consumed. This is done using the repeat combinator.

If this example would have been implemented with the existing rewriter,
one would need to write the code for fix-point iteration manually.

6.5.2 Macros

The other use case for which we use the new rewriter is macro expansion.
We show a simplified version of Viper macros to demonstrate how the macro
expander works. With respect to macros, this simplified Viper version still
exhibits the same challenges as the full version.

Definition

Listing 6.5 shows how a simplified macro node looks like as a Parse AST
node.

case class PMacro(
name: String,
args: List[String],
body: PNode) extends PStmt

Listing 6.5: Class declaration of a macro. The actual Viper node is called PDefine instead of
PMacro.

A macro (class PMacro) consists of three fields. The first one is name of type
String that contains the identifier of the macro.
The second is a parameter list (args), that stores the formal parameter
names. Macro parameters are only names and they do not have types be-
cause the formal parameters are replaced directly with the AST nodes that
are given as the actual parameters. Since the type-checking phase comes
after macro expansion, this does not pose a problem for static type safety.
Field body contains the body of the macro which is a statement block or an
expression and is of type PNode.

Listing 6.6 shows an example of a macro declaration in Viper code. name
is "swap", args are List("a", "b") and body holds the statement block
between the { ... } .
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define swap(a, b) {
var temp := a
a := b
b := temp

}

...

var x:Int := 1
var y:Int := 2
swap(x, y)
assert(x == 2 && y == 1)

...

var x:Int := 1
var y:Int := 2
var temp := x
x := y
y := temp
assert(x == 2 && y == 1)
Listing 6.6: The first part of the listing is the macro definition (macros are defined with the
define keyword). The second part shows two macro calls. The third part shows how the expanded
macros look

Expanding Macros

When expanding macros we start with a set of macros (we denote it with
macros: List[PMacro]) and an AST in which the use of those macros
should be expanded (we denote it with toExpand: PNode).

Helper Functions Listing 6.7 shows the rewriter for macro expansion. It
uses four helper functions. Three of them are provided in the beginning
of the Listing but one (replaceParams) is not because it only purpose is
parameter replacement and for a helper method it is too comprehensive to
show.
Method replaceParam takes three arguments: body is the body of the
macro, formalParams are the parameters of the macro definition and ac-
tualParams are the parameters of the macro call. The call to replaceParam
then replaces every occurrence of a formal parameter (in formalParams)
with the corresponding actual parameter (in actualParams) in body and
returns the resulting AST.

Explanation The rewriting strategy we use for expansion is instantiated
with user defined information of type List[String]. Since other macros
can be called from inside the macro body, we need to watch out for cyclic
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6.5. Viper Imports and Macros

calls. Our user-defined information stores the name of every macro we
already expanded in the current path.

For historical reasons, method calls are used to represent macro applications
in the parse AST. To determine if a PMethodCall is a macro call, we wrote
the helper function isMacro which checks if the name of the called method
is the name of a macro. The rewriter matches on every PMethodCall if it
calls a macro.

If we found a macro call, we check for a possible cycle. If we are in a cycle,
method recursionCheck will throw an exception and the macro expansion
stage will fail. Otherwise, we replace the macro call with its body, in which
the formal parameters were replaced by the actual parameters.

The context update is rather simple. Every time we encounter a macro call
we will add its name to the context.
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6. Evaluation

def isMacro(name: String) = macros.exists(_.name == name)

def getMacroByName(name: String): PMacro =
macros.find(_.name == name) match {

case Some(mac) => mac
case None => throw new Exception("Invalid macro name")

}

def recursionCheck(name: String, ctxt: List[String]) = {
if (ctxt.macros.contains(name))

throw new Exception("Recursive macro declaration")
}

def replaceParam(body:PNode, fP:List[String], aP:List[PExp]) = ...

val expander = StrategyBuilder.Context[PNode, List[String]]({
case (pMacro: PMethodCall, ctxt) if isMacro(pMacro.name) =>

val name = pMacro.name
recursionCheck(name, ctxt.c)

val realMacro = getMacroByName(name)
val body = realMacro.body

val formalParams = realMacro.args
val actualParmas = pMacro.args)
replaceParams(body, formalParams, actualParams)

}, List.empty[String], {
case (pMacro: PMethodCall, c) if isMacro(pMacro.name) =>

val realMacro = getMacroByName(pMacro.name)
c.macros ++ List(realMacro.name)

})
val expanded = expander.execute(toExpand)
Listing 6.7: The complete macro expander. The AST with every macro expanded is stored in
val expanded in the end.

Hygienic Macros

Listing 6.8 uses the code from Listing 6.6 to swap the value of variables x
and y and then swap them back again.
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6.5. Viper Imports and Macros

var x:Int := 1
var y:Int := 2

swap(x, y)

swap(x, y)

assert(x == 1 && y == 2)

... expand macro ...

var x:Int := 1
var y:Int := 2

var temp := x
x := y
y := temp

var temp := x
x := y
y := temp

assert(x == 1 && y == 2)
Listing 6.8: Swapping two times. Since both macro bodies use the same variable name temp,
we get the error: variable temp declared twice.

Macro expansion in Listing 6.8 produces an error because variable temp was
declared twice. This program is an example of the macro hygiene problem
[5].
We solve this problem by creating (partially) hygienic macros. Partially be-
cause capturing of variables that are not declared inside a macro is allowed
but variables that are declared inside a macro are guaranteed to not collide
with any variables declared outside.

To achieve this, we generate a fresh variable name for every variable that
was declared inside a macro. With our hygienic macro implementation the
example from Listing 6.8 becomes Listing 6.9.
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6. Evaluation

var x:Int := 1
var y:Int := 2

swap(x, y)

swap(x, y)

assert(x == 1 && y == 2)

... expand macro ...

var x:Int := 1
var y:Int := 2

var temp := x
x := y
y := temp

var temp$1 := x
x := y
y := temp$1

assert(x == 1 && y == 2)
Listing 6.9: Swapping two times with hygienic macro expansion. Fresh variables are created by
adding a $ and a counter vale, to avoid collisions with existing variable names.

6.6 Summary

The first three sections of this chapter list all the goals we set for this thesis
and give a concise explanation on how we achieved them. It also states
potential extensions for the new rewriting framework as future work.

In Section 6.4 we provide a short example of the transformation of a simple
circular graph to undermine the claim that our rewriting framework pro-
vides the tools to deal with CFG transformations.

Section 6.5 describes the implementation of file imports and macro expan-
sion. Both are important tasks for parsing a Viper program and both tasks
are now implemented as rewriting strategies.
One reason behind these transformations was to show that the new rewrit-
ing framework can handle arbitrary ASTs and not only the Viper AST.The
other reason is that both tasks are ideal applications for AST rewriting and
we utilize the new rewriting framework to provide a readable and clean im-
plementation for them. We used this opportunity to deal with the hygiene
problem of Viper macros by making macro expansion (partially) hygienic.
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Chapter 7

Conclusion

In the course of this thesis we developed a powerful rewriting framework.
Chapters 1 and 2 introduce the necessary project background and motivate
our goals for this thesis. They are achieved step by step in the following
chapters.

Chapter 3 describes a powerful library for AST transformations. We imple-
mented useful features such as recursion control, ancestor and sibling access,
user defined information, etc.

Chapter 4 introduces error back-transformations. In this thesis, these are
used to express the error message of a transformed program in the context
of the original program.

Chapter 5 provides a DSL to help with expressing complex matching pat-
terns. The DSL implements regular expressions for ASTs. Because ASTs are
different from the usual application field of regular expressions which are
strings, we had to define how a regular expression is applied to a tree. We
defined own node matchers and operators. Matching a regular expression
on an AST is performed with a non-deterministic finite automaton frame-
work developed in this thesis.
The DSL is very flexible and allows access to the features of the rewriting
framework (ancestors, siblings, user defined information, recursion control,
etc.).

Chapter 6 comments on the goals we achieved and provides two important
use cases of the new rewriter inside the Viper parser.

7.1 Future Work

Although we achieved the goals we set for this thesis there is still room for
improvement. The following list suggests tasks to further improve the new
rewriting framework.
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7. Conclusion

• Section 3.2.3 introduces the Rewritable trait that decouples children
selection from duplication in order to allow the automation of those
two.
Reflection could be used to implement a default children selection
and/or node duplication for general classes. Then the user of the
rewriting framework would not have to specify a duplicator or chil-
dren selector for non case classes anymore.

• In Section 6.4 we show that the new rewriter is conceptually able to
handle CFG transformations. Viper also has a CFG representation, but
we did not implement a strategy for it that integrates cycle handling.

• Combination of strategies (see Section 3.6) is currently restricted to
combining strategies created from the same factory method and with
the same generic types. However, different combinations would be pos-
sible in theory e.g. Context with Slim and the Slim strategy ignores
the gathered context information.

• The automaton that recognizes whether an AST matches a regex is non-
deterministic (see Section 5.4). The current implementation exhibits
bad performances if the automaton includes a lot of wildcard matches
or Kleene stars. This is a common problems among non-deterministic
automatons that recognize regular expressions and not specific to our
regex engine [8]. It would be beneficial to investigate how the automa-
ton could be optimized in order to improve performance.
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