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1

Abstract

The magnitude, distribution, and variability of the CO2 sources and sinks at regional scales are
less constrained compared to those at global scale, irrespective of whether this concerns terrestrial
carbon exchange fluxes or fossil fuel emissions. This limits the development of a comprehensive
understanding of the mechanisms that control the carbon balance at regional scales. This is a
crucial gap, as it hinders us to develop effective policies for managing carbon and negotiating
international emissions treaties. Yet, the recent increase in the network density for atmospheric
CO2 observations as well as the recent progress in high-resolution atmospheric modeling now
provide novel opportunities to combine the CO2 observations with regional atmospheric transport
models to understand and better constrain the carbon fluxes at regional scales.

The aim of this thesis is to benefit from these developments, especially the establishment of
four new atmospheric CO2 observing sites in Switzerland as part of the CarboCount CH project,
and to derive the net CO2 balance for central Europe and especially Switzerland using Carbon-
Tracker Switzerland, i.e., a newly developed regional atmospheric CO2 assimilation system. Car-
bonTracker Switzerland is based on an Ensemble Kalman Filter-based assimilation method and
ingests atmospheric CO2 observations in order to optimally estimate the net biospheric fluxes, i.e.,
net ecosystem exchange, over its domain. Relative to existing systems, CarbonTracker Switzer-
land contains several improvements, namely the consideration of high resolution (7 km) atmo-
spheric transport and mixing based on online calculations with the weather model COSMO, the
consideration of subgrid scale variations in the underlying ecoregions, and high resolution fossil
fuel emissions with hourly time functions.

First, in chapter 3, the European-scale footprint of these fossil fuel CO2 emissions is inves-
tigated using the European domain of COSMO (also at 7km resolution). The evaluation with
14C and CO observations-based estimates of the fossil fuel footprint reveal excellent agreement
across different sites in Europe, suggesting high fidelity in both the emission estimates and the
modeling of atmospheric transport. The comparison of a simulation with hourly varying emission
with one where the emissions were kept constant reveals a substantial fossil fuel rectifier effect
(up to 9 ppm) that emerges from the covariance between emissions and transport. The fossil fuel
footprint is characterized by very high spatiotemporal variations. In fact, it contributes in many
places in central Europe to more than half of the temporal variability in atmospheric CO2, mostly
on diurnal and synoptic timescales. This is the result of the interaction between strongly spatially
patterned emissions and variations in atmospheric transport and mixing. These strong fossil fuel
emission induced temporal variations in atmospheric CO2 offer new opportunities for detecting
changes in emissions, especially from satellites.

Second, in chapter 4, the CarbonTracker CH system is evaluated and thoroughly assessed
on the basis of comparisons with observations and a number of tests using synthetic data. The
evaluation reveals excellent agreement at all CarboCount CH observing sites and Jungfraujoch,
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with biases in the annual mean of less than 1 ppm and correlations between 0.85 and 0.9. An
important exception is the Gimmiz site, likely owing to this station’s location in proximity to
strong CO2 fluxes from agriculture activities and vegetation, and having very strong inversion
conditions in wintertime that are not well captured by our transport model. The performance of
the assimilation system is affirmed by it being able to reduce the a priori error very substantially,
and by retrieving the true fluxes accurately despite strong initial perturbations and the introduction
of errors in the background CO2 and in the fossil fuel CO2 signals. The sensitivity tests reveal
some sensitivity to the many parameterizations and parameters that enter an atmospheric CO2

assimilation system, but confirm the advantages of considering the subgrid scale variations in the
ecoregions.

Third, in chapter 5, CarbonTracker Switzerland is used to assimilate two of the CarboCount
CH atmospheric CO2 observing sites as well as four others in Germany, Austria, and northern
Italy to infer the net ecosystem exchange fluxes in central Europe for 2013. Three other sites not
used in the inversion are used for independent evaluation. The assimilation of the atmospheric
CO2 data leads to a significant improvement of the fits at the independent evaluation sites. In
particular, the negative bias in the prior estimates of atmospheric CO2 in summertime was re-
moved. Although, the total annual net ecosystem fluxes are not shifted significantly from the
prior estimates from a terrestrial ecosystem model, the seasonal cycle is altered substantially. The
maximum uptake of the terrestrial biosphere in central Europe is shifted from July to June and the
magnitude of seasonal cycle is reduced in the posterior fluxes. The main reason is a substantial
reduction in NEE in the cropland regions in late summer, likely associated with harvest, which is
a process not considered in the prior. The assimilation system estimates a total biospheric sink
for Switzerland of 1.4 Tg CO2. The largest uptake is driven by croplands, followed by forests
and grassland. The bottom-up estimates agree with the country total, but allocate this sink almost
entirely to forests, while estimating a neutral balance for the croplands.

In sum, this research developed, applied, and evaluated new methods for detecting the fossil
fuel emission and for assessing the limits of a regional high-resolution assimilation system for
atmospheric CO2. This is necessary for improving our understanding of the regional carbon bud-
gets and for the development, assessment and verification of carbon reduction schemes, whether
through changes in land management or through reductions in fossil fuel emissions.

Zusammenfassung

Die Grösse, Verteilung und Variabilität der CO2 Quellen und Senken auf regionaler Skala sind
gut lekunnd weniger im Vergleich zu denen auf globaler Skala, und zwar unabhängig davon, ob
diese terrestrischen Kohlenstoffflüsse oder Emissionen fossiler Brennstoffen betrifft. Dies be-
grenzt ein umfassendes Verständnis der Mechanismen, die die Kohlenstoffbilanz auf regionaler
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Skala zu steuern. Das ist eine entscheidende Lücke, denn es hindert uns, wirksame Strategien zur
Minderung von Kohlenstoffemissionen und internationalen Emissionsabkommen zu entwickeln.
Doch die jüngste Zunahme der Netzdichte atmosphärischer CO2 Beobachtungen sowie die jüng-
sten Fortschritte hochaufgelöster atmosphärischer Modellierung listen jetzt neue Möglichkeiten,
die CO2 Beobachtungen mit regionalen atmosphärischen Transportmodellen zu kombinieren, um
besser auf die Kohlenstoffflüsse auf regionaler Skala zu rückschliessen. Das Ziel dieser Arbeit
ist von diesen Entwicklungen zu profitieren, vor allem von der Einrichtung vier neuer atmo-
sphärischen CO2 Messstandorte in der Schweiz im Rahmen des Projekts CarboCount CH um
erneut die Netto-CO2 Bilanz für Mitteleuropa insbesondere für die Schweiz zu bestimmen. Dies
erfolgt mit Carbon-Tracker Schweiz, eine weiterentwickelte regionale atmosphärische CO2 As-
similationssystem. Car bonTracker Schweiz basiert auf einem Ensemble Kalman Filter-basierten
Assimilationsverfahren und benutzt atmosphärischen CO2 Beobachtungen, um die netto biosphärische
Flüsse in seiner Domäne optimal zu schätzen. Im Vergleich zu bestehenden Systemen, Carbon-
Tracker Schweiz enthält eine Reihe von Verbesserungen, nämlich die Berücksichtigung hoher
Auflösung (7 km) atmosphärischen Transports basierend auf Online-Rechnungen mit dem Wet-
termodell COSMO, die Berücksichtigung von Variationen in den zugrunde liegenden oregionen
innerhalb einer Gitterzelle und, hoch aufgelöste anthropogene Emissionen mit stündlichen Zeit-
funktionen.

Erstens wird in Kapitel 3 der Fubdruck fossiler CO2 Emissionen auf europäischer Skala mit
Hilfe von COSMO (in 7km Auflösung) untersucht. Die Evaluierung mit 14C und CO Beobach-
tungen des fossilen Brennstoffs Fubdruck zeigen eine hervorragende ereinstimmung an verschiede-
nen Standorten in Europa, was darauf hindeutet, hohe Genauigkeit in den Emissionen und der
Modellierung atmosphärischen Transports. Der Vergleich einer Simulation stündlich variieren-
der Emissionen mit einer Simulation konstanter Emissionen zeigt einen wesentlichen Rekti-
fizierungseffekt (bis zu 9 ppm), die wegen der Kovarianz zwischen Emissionen und Transport
vorkommt. Der fossile Fubdruck ist mit einer sehr hohen räumlichen und zeitlichen Variabilität
versehen. Tatsächlich trägt in vielen Orte in Mitteleuropa mehr als die Hälfte der zeitlichen
Variabilität der atmosphärischen CO2 bei, vor allem auf täglichen und synoptischen Zeitskalen.
Dies ist das Ergebnis der Wechselwirkung zwischen stark räumlich gemusterten Emissionen
und der atmosphärischen Variabilität. Diese durch fossilen Emissionen verursachten zeitliche
Schwankungen des atmosphärischen CO2 bieten neue Möglichkeiten zur Erfassung Veränderun-
gen in Emissionen, insbesondere mithilfe von Satelliten.

Zweitens in Kapitel 4 wird das CarbonTracker CH-System evaluiert auf der Basis von Ver-
gleichen mit Beobachtungen sowie eine Anzahl von Tests anhand synthetischer Daten. Der Ver-
gleich zeigt eine ausgezeichnete ereinstimmung bei allen CarboCount CH Beobachtungsorte und
Jungfraujoch, mit Verzerrungen im Jahresmittel von weniger als 1 ppm und Korrelationen zwis-
chen 0,85 und 0,9. Eine wichtige Ausnahme ist der Gimmiz Messstandort, was auf die Nähe
starke CO2 Flüsse der Landwirtschaft und städtischen Aktivitäten, und sehr starke winterliche at-
mosphärische Inversion mit Bedingungen im Winter zurückzuführen ist. Dies wird von unserem
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Transportmodell nicht gut erfasst. Die Leistung des Assimilationssystems wird durch das Re-
duzieren von vornherein in biosphärischen Flüssen künstliche eingebrachte Fehler weitestgehend
bestätigt. Dies erfolgte durch die Bestimmung der wahren Flüsse trotz starker Anfangsstörungen
und die Einführung von Fehlern im Hintergrund CO2 Mischungsverhältnisse sowie in den fossilen
Brennstoffen CO2 Signale. Die Empfindlichkeitstests zeigen leichte Empfindlichkeit gegenüber
den vielen Parametrisierungen und Parameter, die in ein atmosphärisches CO2 Assimilationssys-
tem einfliessen, bestätigen aber die Vorteile der Berücksichtigung der Variationen der oregionen
innerhalb einer Gitterzelle.

Drittens wird in Kapitel 5 CarbonTracker Schweiz verwendet, um Beobachtungen von zwei
der CarboCount CH Standorten sowie von vier weiteren Standorten in Deutschland, terreich und
im Norden Italiens die biospärischen Flüsse in Mitteleuropa zu bestimmen. Drei weitere, bei
der Inversion nicht verwendeten Messstandorte wurden für die unabhängige Bewertung verwen-
det. Die Assimilation der atmosphärischen CO2 Daten führt zu einer deutlichen Verbesserung
anhand der Differenz zwischen simulierter und beobachter CO2 Mischungsverhältnisse bei den
unabhängigen Evaluierungsstandorten. Insbesondere wurden die negative systematische Ab-
weichung in den a priori Schätzungen des atmosphärischen CO2 im Sommer entfernt. Ob-
wohl die gesamten jährlichen biospärischen Flüssen nicht wesentlich von den a priori Schätzun-
gen von einem terrestrischen osystem Modell sich nicht unterscheiden, der saisonale Zyklus
verändert sich wesentlich. Die maximale Aufnahme in terrestrischen Biosphäre in Mitteleuropa
ist von Juli bis Juni in den a posteriori Flüssen verschoben und die Grö des saisonalen Zyk-
lus ist reduziert. Der Hauptgrund dafür ist eine deutliche Reduzierung der NEE in den land-
wirtschaftlichen Regionen im Spätsommer, wahrscheinlich mit der Ernte verbunden, was ein
Prozess ist, das nicht im biosphärischen Modell betrachtet wird. Das Assimilationssystem schätzt
insgesamt eine biosphärische Senke für die Schweiz von 1,4 Tg CO2 währen 2013. Die gröe
Aufnahme wird durch Ackerflächen, gefolgt von Wäldern und Wiesen getrieben. Die Bottom-up-
Schätzungen stimmen mit dem bestimmten Ländertotal insgesamt überein, aber diese verteilen
die Senke fast ausschlieich auf Wälder, während es eine keine Senke für die croplands abschätzt.

Zusammenfassend hat diese Arbeit neue Methoden zur Erfassung der fossilen Brennstoffe-
missionen und für Prüfung der Grenzen eines regionalen, hoch aufgelösten Assimilationssys-
tems von atmosphärischen CO2 Beobachtungen entwickelt, angewandt und evaluiert. Dies ist
notwendig für die Verbesserung unseres Verständnis des regionalen Kohlenstoffkreislaufs und
für die Entwicklung, Bewertung und erprüfung der Strategien zur Minderung der CO2 Emissio-
nen, sei es durch Veränderungen in der Landnutzung oder durch Reduzierung der Emissionen
fossiler Brennstoffe.



Chapter 1

Introduction

1.1 Motivation

Carbon dioxide (CO2) and methane (CH4) are the two most important long-lived greenhouse
gases driving climate change (IPCC, 2014). About half of the man-made emissions of CO2 have
been removed from the atmosphere through sink processes on land and in the ocean (Sarmiento
and Gruber, 2002; Sabine, 2004; Le Quere et al., 2016; Ciais et al., 2013b), strongly limiting
the increase in atmospheric CO2 since the beginning of the industrial period. Although an ad-
ditional 10 to 20% will get removed on century timescales, a good fraction of the cumulative
emissions will remain there for many centuries, making the CO2-driven climate change essen-
tially ”irreversible” (Solomon et al., 2009). As a consequence of this long-term impact of the
human emissions, any climate change target, such as the 2◦ C target recently agreed upon at the
21st Conference of the Parties (COP21) of the United Nations Framework Convention on Cli-
mate Change (UNFCCC) is associated with an emission budget (Meinshausen et al., 2009; Allen
et al., 2009; Stocker et al., 2013b; Kolby Smith et al., 2015). The exact magnitude of this budget
critically depends on the magnitude of these carbon sinks and on the carbon that might get liber-
ated from the existing carbon pools through carbon-climate feedbacks (Cox et al., 2000; Gruber
et al., 2004; Stocker et al., 2013a; Steinacher et al., 2013). It is thus essential to understand the
sources and sinks of atmospheric CO2 in order to provide the foundation of the strategies toward
mitigating adverse effects of climate change (Le Quere et al., 2016; Michalak et al., 2011).

The terrestrial biosphere is responsible for about half of the annual removal of CO2 from the
atmosphere (Le Quere et al., 2016) and for the the majority of the atmospheric CO2 variations
on interannual timescales (Rayner, 2005; Keeling and Shertz, 1992). Thus, quantifying these
sources and sinks over land is highly demanded in order to predict future atmospheric CO2 (Pillai
et al., 2012). However, there is still tremendous uncertainty in our estimation of the terrestrial
carbon sinks. The current general questions about the land carbon sink are the magnitude, distri-
bution, variability, trends and underlying natural and human triggered mechanism in each region

5
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(Ciais et al., 2013b). Resolving surface fluxes to the regional biome level will help us to identify
the key driving processes and provide high-resolution flux products that can be used to improve
our understanding of the mechanisms of the terrestrial biosphere CO2 exchange processes. Re-
solving them to the level of countries will be beneficial for managing carbon and for negotiating
international emissions treaties (Canadell and Schulze, 2014; Göckede et al., 2010).

Different approaches have been used to estimate the terrestrial biospheric fluxes, such as for-
est statistics (Janssens et al., 2003), eddy covariance measurements (Aalto et al., 2004), process
modeling (Reichstein et al., 2007), space-borne observations, and atmospheric trace gas monitor-
ing combined with inverse modeling (Rayner, 2005; Rayner et al., 2010). The latter set of method
is often referred to as ”top down methods”, while the former ones are being called ”bottom-up
methods”. Each of these methods has its particular strengths and weaknesses.

Forest statistics methods based on forest inventory data are good at tracking carbon in above-
ground biomass, but are less suitable to describe the accumulation of soil carbon (Krinner et al.,
2005). In addition, they are, by definition, limited to assess carbon changes in forests. But they
have the great advantage of having near global coverage (Pan et al., 2011). Eddy covariance
measurements provide detailed and temporally highly resolved estimates of the main terrestrial
carbon fluxes, but cannot be used without some form of upscaling (Jung et al., 2011) to deter-
mine average fluxes over large regions, as the representative information is constrained to local
scales (Göckede et al., 2010). Terrestrial carbon process models combine climate, carbon pools,
and carbon dynamics across larger spatial and temporal scales, but most of them do not include
land-use history. Further, given the need to parameterize many key processes and interactions,
they always just reflect the state-of-the-art in the carbon cycle’s community’s understanding. Two
examples are the ongoing discussions about the strength of the CO2 fertilization effect (Schimel
et al., 2015) and the potential role of nitrogen limiting that effect (Hungate, 2003; Luo et al., 2004;
Reich et al., 2006). Space born measurements, from which properties such as land use, leave area
index (LAI) and other relevant quantities can be inferred, have proven to be very important for
monitoring regions that are otherwise difficult to access (e.g., the Arctic or tropics), but their con-
straints on carbon stocks and fluxes is modest at best. Atmospheric CO2 measurements have a
long history of being used to infer carbon sources and sinks (Bolin and Keeling, 1963; Keeling
et al., 1989; Gurney et al., 2002; Ciais et al., 2010), but their accuracy has remained limited so
far, owing to limited observational coverage and the limited accuracy of atmospheric transport
modeling (Lin and Gerbig, 2005; Gerbig, C. and Körner, S. and Lin, J. C., 2008).

The gap in scales between the different methods, and particularly between the top-down and
bottom-up methods, has been an important reason for the difficulty in achieving full closure of the
carbon budget (Wofsy and Harris, 2002). Most atmospheric CO2 based inversions methods can
only determine fluxes at large scales, while the bottom-up estimation methods are often available
only at the local to regional scale. In order to close this scale gap, atmospheric inversions need to
resolve the local (< 100 km) to regional scales (100-1000 km) e.g. (Gerbig et al., 2009). To obtain
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this spatial resolution, daily to synoptic time variability also must be resolved, because these vari-
abilities at different temporal scales contain a lot of information abut regional CO2 fluxes (Geels
et al., 2004). In addition, resolving the fluxes diurnally could help separate land biospheric fluxes
into their photosynthetic and respiratory components (Braswell et al., 2005). The current atmo-
sphere CO2 observation network of 200 surface flask sites and ground continuous measurement
stations may constrain the carbon budget well for the big continents, such as North America,
Europe and Japan. However, the sources and sinks at national, or states/province scale, or at city
scale are not well constrained due to the sparseness of the ground-based network of atmospheric
stations (Ciais et al., 2013b; Chevallier et al., 2010).

Recognizing this need for higher spatial resolution, denser measurement networks are now
being constructed around the world, such as those associated with the European project ICOS. In
addition, space based measurements are being pushed, (e.g., OCO-2 (Infrared) and ASCENDS
(active)). These measurements will provide new possibilities for extracting information of re-
gional fluxes. To combine the strengths of these methods and make use of large amount of data
that is now becoming available (such as tall tower measurements, remote sensing data), one way
to make progress is to adopt the method of assimilation. Several efforts have pushed atmospheric
inversions to sub-continental and regional scales in the last few years (Peylin et al., 2005; Gerbig
et al., 2006; Peters et al., 2010), but only a few groups have attempted to do inversions with spa-
tial resolutions well below 10 km (Lauvaux et al., 2008, 2009; Sarrat et al., 2007, 2009; Göckede
et al., 2010; Tolk et al., 2011; Chatterjee et al., 2012).

As part of the interdisciplinary CarboCount CH project (carbocount.ch), this thesis aims to
develop, test, and apply a regional high-resolution (∼7 km) atmospheric CO2 inversion system
in order to deduce the sources and sinks of the terrestrial biosphere for central Europe, and par-
ticularly Switzerland. Our ultimate objective is to understand the magnitude, distribution, and
variability of the terrestrial carbon fluxes, and to determine the key factors that limit the estima-
tion of terrestrial biospheric fluxes in this region. Our inversion system is based on the Ensemble
Kalman Filter method (Peters et al., 2005) developed originally for the globe with a focus on
North America (Peters et al., 2007), and later applied also for Europe (Peters et al., 2010), the
Netherlands (Meesters et al., 2012), the Amazon basin (Alden et al., 2016; van der Laan-Luijkx
et al., 2015), and most recently southeast Asia (Thompson et al., 2016; Zhang et al., 2014).

1.2 Global carbon cycle and its perturbation

1.2.1 Global carbon pools, processes, and timescales

Carbon dioxide (CO2) is being mixed within the planetary boundary layer and transported into
the free atmosphere within hours after emitted, and then subjected to the large-scale transport
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and mixing processes that mix the air within a given hemisphere within a few weeks to months.
With an exchange timescale of about one year, the transport across the equator takes the longest.
Since the vast majority of the fossil fuel emissions occur in the northern hemisphere, this slow
exchange causes the northern hemisphere to have a mean atmospheric CO2 concentration several
ppm higher than that of the southern hemisphere (Keeling et al., 1989; Fan et al., 1999). Even
slower is the transport from the troposphere into the stratosphere, causing the stratospheric CO2

increase to lag that of the troposphere by several years (Andrews et al., 2001)

In comparison to the mixing timescales in the atmosphere that range from hours to several
years, the time scales of exchange of CO2 between atmosphere and ocean, land, soil, or freshwater
range over a much wider set of scales, i.e., from minutes, hours, days, years, to decades or even
millennia. The speed of exchange between the atmosphere and the geologic reservoirs (such as
rocks) is even slower, i.e., has timescales of hundreds of thousands of years. Thus, the latter
is usually considered constant for the purpose of the study of the current carbon cycle and its
anthropogenic perturbation.

Before the onset of the industrial era in the late 18th century, atmospheric CO2 varied little
for centuries, with only a small increase of about 20 ppm characterizing the last 8000 years, i.e.,
the entire Holocene (Indermühle et al., 1999). This implies that the exchange fluxes between
the different reservoirs of the global carbon cycle must have remained nearly balanced, i.e., that
the global carbon cycle operated in steady-state on the multi-decadal timescales recorded in the
ice cores. This permitted carbon cycle researchers to reconstruct the so-called natural carbon ex-
change fluxes between the different reservoirs, i.e., the black arrows shown in 1.1, which presents
a baseline, against which the anthropogenic perturbation fluxes (red arrows) can be compared.

Clearly, there had been larger variations in atmospheric CO2 in Earth’s history, with the best
recorded being the glacial/interglacial variations that dominated Earth’s history during the last
million years (Lüthi et al., 2008). During the glacial maxima, the atmospheric CO2 concentration
dropped by about 100 ppm compared to the interglacial periods, for reasons that are still not fully
understood, although most researchers would agree that the polar oceans were key in driving these
changes (Sigman et al., 2010). In contrast, the terrestrial biosphere likely did not contribute much
to the drawdown of atmospheric CO2 between the interglacial and glacial periods. If anything, it
likely lost several hundred Pg of carbon going into a fully glaciated world (Sigman and Boyle,
2000).

On timescales shorter than a few decades, the decadal-term steady state picture shown in
Figure 1.1 may look rather different. The most prominent variations in atmospheric CO2 are
caused by the El Niño/Southern Oscillation (ENSO), first described by Bacastow (1976). ENSO
causes anomalies in atmospheric CO2 of several ppm, implying anomalous exchange fluxes of
several Pg C yr−1 (Keeling and Revelle, 1985). Later research has shown that most of these
variations stem from the tropical land, which tends to dry out during El Niño events, leading to a
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Figure 1.1 Schematic of the global carbon cycle taken from Ciais et al., (2013). The numbers
are the stock of carbon (Pg C) in each reservoir, while the arrows show the fluxes (Pg C yr−1. The
red arrows and numbers refer to the anthropogenic fluxes, while the black ones denote the ”natural”
fluxes.

massive loss of carbon. Another prominent example are volcanic eruptions, of which the Pinatubo
event in the early 1990s has attracted most attention (Keeling et al., 1996; Jones and Cox, 2001;
Sarmiento et al., 2010; Frölicher et al., 2011, 2013). Also this event is mostly driven by the
terrestrial biosphere, likely a response to the cooler and more moist conditions that prevailed
as a result of the increased loading of aerosols in the upper atmosphere (Jones and Cox, 2001;
Frölicher et al., 2011).

On even shorter timescales, the pronounced seasonal cycle in atmospheric CO2 reflects the
exchange of several tens of Pg C yr−1 back and forth between the atmosphere and the Earth’s
surface, with a clear tendency for an increase in recent decades (Graven et al., 2013b). The
seasonal cycle as well as its increasing amplitude are almost entirely caused by the terrestrial
biosphere (Forkel et al., 2016; Heimann and Reichstein, 2008), as the timescale for the exchange
of CO2 between the surface ocean and the atmosphere is too slow to leave a strong imprint of
the seasonal cycle in the ocean on the atmosphere (Sarmiento and Nicolas, 2006). During the
growing season, the strong excess of photosynthesis over respiration on land leads to a massive
net removal of carbon from the atmosphere. During the dormant season, most of this carbon is
respired back to the atmosphere, leaving a relatively small net flux into the terrestrial biosphere.
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1.2.2 Global and regional anthropogenic carbon budgets

Starting in 2001, the Global Carbon Project has issued an annual global anthropogenic carbon
budget based on the best available knowledge (Le Quere et al., 2016). So far, it established
the land carbon balance, i.e., Sland, by difference from the other terms in the global budget of
anthropogenic CO2, i.e., by using observations for the rate of increase in atmospheric CO2 (Gatm),
estimates of the emissions from fossil fuel burning and cement manufacturing (Eff), estimates of
the emissions from land use change (ELUC), and observation and model-based estimates for the
ocean sink for anthropogenic CO2 (Socean). This gives:

Sland = Eff + ELUC − Socean − Gatm (1.1)

The input from chemical reaction from other gases, i.e., the production of CO2 by oxidation of
methane and any possible lateral fluxes of anthropogenic CO2 from land to the ocean are ignored
in this calculation (Le Quere et al., 2016). Fig 1.2 shows the inferred partitioning of anthro-
pogenic CO2 emissions to the different components, revealing the steady increase in emissions,
but also the corresponding increase in the sinks by the atmosphere, land and ocean. Particularly
impressive is the strong increase in the sink strengths of the land and ocean, as they have kept up
in relative terms with the strong growth in emissions, so that the fraction of emissions staying in
the atmosphere has not changed in a substantial manner through time, even though there is much
debate about a small decrease in this ratio (Raupach et al., 2014). Very notable are also the strong
interannual variations in the atmospheric growth rate, which have their corresponding variations
in the land sink, largely driven by variations in ENSO (Note that these variations are present in
the budget only after 1959 due to the fact that the annual data needed to determine the interannual
variations in atmospheric growth are available only since the start of the direct atmospheric CO2

measurements at the Mauna Loa and South Pole stations.)

For the last decade available (2004−2013), the Global Carbon Project estimated Eff as 8.9 ±
0.4 Pg C yr−1, ELUC 0.9 ± 0.5 Pg C yr−1, Gatm 4.3 ± 0.1 Pg C yr−1, Socean 2.6 ± 0.5 Pg C yr−1,
and Sland 2.9 ± 0.8 Pg C yr−1, i.e., both land and ocean are responsible for about a quarter of the
total anthropogenic carbon sink.

While the uncertainties of the global anthropogenic CO2 sinks are relatively modest, resulting
in an inferred land sink that is uncertain only within ±30% (Le Quere et al., 2016), the spatial
attribution of this sink is very uncertain, with some studies emphasizing the sinks in the northern
hemisphere, while others tend to locate it more in the tropics (Ciais et al., 2013b; Sarmiento
et al., 2010; Pan et al., 2011; Ballantyne et al., 2015). For Europe, initial assessments suggested a
very small sink (Fan, 1998), although this estimate was later shown to be biased by the choice of
transport models. More recent assessments put the land carbon sink of Europe anywhere between
about 0.2 Pg C yr−1 (Peters et al., 2010) and 0.9 Pg C yr−1 (Luyssaert et al., 2012). With the
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Figure 1.2 Annual anthropogenic CO2 emissions and their partitioning among the atmosphere,
land and ocean (Pg C yr−1) from 1750 to 2011. See Ciais et al. (2013b) for details.

help of satellite CO2, the Europe uptake more CO2 than former studies as shown in Reuter et al.
(2014, 2016, in press).

This sink applies to CO2 only. If the balance of all greenhouse gases is taken into consider-
ation, i.e., also that of methane and nitrous oxide, then a more neutral or even a slightly positive
balance emerges (Schulze et al., 2009). This is because the trend towards more intensive agri-
culture and relatively large number of livestock leads to strong emissions of nitrous oxide and
methane that offsets the carbon sequestration in forests and grasslands. In addition, forest distur-
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bance in Europe has continued to increase in the first decade of this century (Seidl et al., 2014).

The land carbon sink of Europe has been shown to vary from year to year quite substantially,
mostly in response to variations in soil moisture conditions during the growth season (Peters et al.,
2010; Bastos et al., 2016; Mystakidis et al., 2016). Bastos et al. (2016) showed that the strongest
land sink occurs when the North Atlantic Oscillation and the East-Atlantic pattern are both in
negative phase, associated with cool summers with wet soils that support plant growth.

1.2.3 Anthropogenic CO2 emission

The rise in the atmospheric CO2 concentration is a consequence of the cumulative anthropogenic
CO2 emissions since the beginning of the industrial era. The average growth rate of the emissions
during the last decade (2005-2014) was 2.2% yr−1, reaching a level of 9.8 ± 0.5 Pg C yr−1 for
2014, slightly lower than 2013 (Le Quere et al., 2016). The majority of these emissions stem
from the burning of fossil fuel and cement manufacture, i.e., 8.9± 0.4 Pg C yr−1, while land use
change is responsible for 0.9 ± 0.5 Pg C yr−1. The latter emissions stem almost entirely from
tropical deforestation (Houghton et al., 2012).

As one of the biggest contributors to fossil fuel CO2 emissions, the European Union (EU)
(> 11 %) promised to reduce its emissions by 2020 by 20% relative to the level in 1990, with
deeper cuts planned for the future. The tracking and verification of this pledge requires accurate
information about the fossil fuel emissions. Currently, these emissions are estimated primarily
from statistics of fossil fuel consumption and cement production, using well known fossil fuel
inventories, such as IEA (Andres et al., 2012). But these statistics can be biased (by error or as a
result of manipulation), thus raising the need for independent methods to assess the veracity of a
given emission reduction pledge.

Different methods have been developed to determine and/or verify anthropogenic CO2 emis-
sions. One method, for example, involves the tracer sulfur hexafluoride (SF6), which is associated
with the CO2 emissions from fossil-fuel fired power plants, thus providing a distinct fingerprint
(Turnbull et al., 2006). Another commonly used tracer for fossil fuel carbon is carbon monoxide
(CO), i.e., a side-product from fossil fuel burning, especially if the combustion process is not
complete. Thanks to its relatively ease of measuring, CO is a very powerful tracer of the fossil
fuel signature in atmospheric CO2 (Oney, 2016; Turnbull et al., 2015), but its main disadvantage
is the varying ratio to the fossil fuel CO2 depending on the source process. Another powerful
tracer for tracking fossil fuel CO2 is radiocarbon, since the burning of fossil fuel adds radiocar-
bon ”dead” CO2 to the atmosphere, thus reducing the relative abundance of radiocarbon in the
atmosphere, the so called Suess effect (Keeling, 1979). Since there is very little interference by
other processes (except for the production of radiocarbon by nuclear power plants (Graven et al.,
2013a)), this tracer is fundamentally very useful for tracking fossil fuel derived CO2, and thus has
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been used extensively (Graven, 2015; Levin and Rödenbeck, 2008; Turnbull et al., 2011). But
making these measurements at the required precision and accuracy is a challenge, so that they
mostly tend to be used together with CO, with radiocarbon providing the basis for computing the
CO:CO2 emission ratios, and then the CO providing the detailed evolution of the fossil fuel signal
(van der Laan et al., 2010; Vogel et al., 2013).

1.2.4 Land biospheric fluxes and dynamics

Each year, the global land ecosystem fixes CO2 at a rate of 120 Pg C per year, corresponding
to Gross Primary Production (GPP), of which half is emitted back into the atmosphere by plant
respiration. This results in a net primary production (NPP) of about 60 Pg C yr−1 (see also Figure
1.2). The decomposition by heterotrophs consumes another 50 Pg C yr−1 stored by ecosystem,
leading to a global net ecosystem production (NEP) of approximately 10 Pg C yr−1. A positive
NEP corresponds to a medium-term carbon storage (Peh et al., 2015). Net biome production
(NBP) is then the carbon that enters the longer-term storage. It emerges from NEP after taking
into consideration irregular loss events such as forest fires and insect invasions that temporarily
enhance the loss. Net biome production (NBP) corresponds ultimately also to the number required
to establish the global budget of anthropogenic CO2, i.e., roughly to the net land sink of 2 to 3 Pg
C yr−1 (Le Quere et al., 2016).

A large range of different model approaches have been developed and used to simulate the
land ecosystems and to investigate their dynamics. Along an axis of simplicity, simple statistic
models sit at the beginning. They are easy to apply by assuming that the relationship between the
local climate and the species abundance are in some form of equilibrium. However, under future
climate changes, competition and disturbances will play an important role in the forest models,
making statistical models less helpful. Forest succession models (or gap models) were developed
to simulate the complex processes in forests, such as the essential processes of establishment,
growth, light competition and mortality. The European mountain forests, for example, were
simulated using the forests model FORCLIM (Bugmann and Solomon, 1995), and hardwood
forests were applied to different latitudes with model SORTIE (Pacala et al., 1996).

At a higher level of sophistication, the most recent land surface models, Dynamic Global
Vegetation Model (DGVM), consider more ecosystem processes, such as stomatal conductance,
and better resolve the ecosystem processes, such as soil moisture, exchange of carbon, water
cycles, as well as implement some disturbance processes, such as harvesting, management, mor-
tality, some nutrient limitations, and permafrost (Jiang et al., 2016; Sitch et al., 2007; Quillet
et al., 2010). However, the current generation of coupled biosphere-atmosphere models still have
many gaps that can be improved, such as including physiological effects of high ozone concen-
tration, photosynthetic enhancement due to diffuse radiation, influence from the nitrogen cycle,
more realistic modelings of disturbances, vegetation dynamics (mainly the response of vegeta-
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tion to disturbances), fires and aerosols, and how the combination of all these processes impacts
on carbon cycle. Coupling DGVM could also improve the performance of climate models (e.g,
carbon, water cycles) (Levis, 2010; Seneviratne et al., 2006; Davin et al., 2016).

Process-based ecosystem models and forest inventories suggest that CO2 fertilization, nitro-
gen deposition and forest regrowth are largely driving a long-term increase in the land biosphere
sink (Houghton et al., 2012; Zaehle, 2013; Thornton and Zimmermann, 2007). Plants will uptake
more CO2 under increasing atmospheric CO2 through photosynthetic enhancement, which has a
negative feedback to rising atmospheric CO2 concentration. However, as the atmospheric CO2

increases beyond the optimal level for the plant, that effect has been shown to saturate (Canadell
et al., 2007).

In order to assess the future source-sink balance of the terrestrial biosphere, more processes
than just CO2 fertilization need to be considered. An interesting example is ozone, which has a
negative effect on vegetation productivity owing to its easy diffusion through the stomata open-
ings and its strong oxidative potential that tends to destroy cellular structures. If a future warmer
world comes with higher levels of near-ground ozone, then this will act as an additional posi-
tive feedback between climate change and the global carbon cycle. An additional process is fire.
However, while it has an effect on GPP and autotrophic respiration, as well as on interannual
variations in the atmospheric CO2, it appears that is influence on the average annual net carbon
balance is limited (Arneth et al., 2010). Further, the exact role played by nitrogen in terrestrial
ecosystems is still to be explored (Gruber and Galloway, 2008). While some experiments and
coupled carbon-nitrogen models suggest that nitrogen availability severely limits the fertilization
of terrestrial biosphere response to elevated CO2 (Reich et al., 2014), others argue that this effect
is not as important, particularly not in tropical forests, owing to the very high C:N ratio of wood,
and the competitive advantage of trees to allocate a fraction of their energy into growing tall (Ray
et al., 2015). Finally, there is a key role of temperature in controlling all the processes determining
NBP. Warming enhances GPP, but also all the respiration terms, with the overall balance on NBP
critically depending on the relative temperature sensitivity of the different processes. Further,
temperature affects also plant growth indirectly, through impacts on soil moisture, for example.
In general, the consensus is that globally, warming tends to lead to a loss of carbon from terres-
trial ecosystems. This does not apply on a regional level, however (Ciais et al., 2013b; Mystakidis
et al., 2016), as many regions reveal a positive response, particularly at higher latitudes, where
the plants can benefit from a longer growing season.

In summary, while there are many climate feedbacks associated with the carbon cycle, ni-
trogen and atmospheric chemistry in response to anthropogenic warming, the exact sign and
magnitude of these feedbacks remain ill constrained. Further, the effects of extreme events on
this carbon balance has only been partially quantified. This is critical, since droughts and heat
waves are a substantial contributor to interannual variability and possibly trends of regional land
carbon fluxes (Ciais et al., 2005; Lewis et al., 2011).
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1.3 Quantifying land biospheric fluxes

As introduced above, the quantification of the land biospheric fluxes has relied on two sets of
approaches, i.e., those that are based on local measurements of fluxes or biomass, commonly are
referred to as the bottom-up approaches, and those based on remote observations of effects of
these fluxes on atmospheric concentration, commonly referred to as the top-down approaches.
While both sets of approaches have been used successfully, the most promising method to deter-
mine the terrestrial carbon fluxes is to combine the bottom-up methods with top-down methods
(Wofsy and Harris, 2002; Gerbig et al., 2009).

Right now, only a bottom-up method based on the forest inventory exists to estimate the
carbon budget for Switzerland (FOEN, 2015).

1.3.1 Bottom-up method for carbon fluxes

In the bottom-up approaches, information obtained at local scale is used to derive either changes
in carbon stocks or net CO2 exchanges between the land surface and the atmosphere on regional
or global scales. This local information can be flux measurements from eddy covariance towers,
or carbon stock measurements from forest inventories, which are then scaled up using empirical
or process-based models in conjunction with maps of land cover and biophysical parameters
(Dolman et al., 2009; Pan et al., 2011; Jung et al., 2011).

The eddy covariance fluxes are obtained as the products of the co-variation of the temporal
anomalies atmospheric CO2, C ′ and vertical wind speed, w′, i.e., w′C ′. The eddy covariance
measurements are very powerful for the understanding of the processes governing the terrestrial
carbon cycle. For example, the nighttime measurements of NEE have been used to separate GPP
from community respiration (Reichstein et al., 2005), permitting to use the eddy covariance data
to produce a global GPP dataset with monthly resolution on a 1 by 1 degree grid (Jung et al.,
2011). This development was greatly aided by the homogenization of the data from all the global
sites through the FLUXNET project (Baldocchi et al., 2001), and the public access to these data
through the FlUXNET data portal alongside with other meteorological data at these sites. The
FLUXNET data have produced numerous insights, such as the impact of the 2003 heat wave on
European plant productivity (Ciais et al., 2005; Teuling et al., 2010; Finnigan and Brunet, 1995;
Baldocchi, 2003; Friend et al., 2007). Still, known issues with the eddy covariance technique
introduce large uncertainties in the measurements. This includes, for example, the difficulties to
constrain the fluxes during night-time, when the vertical turbulence is very small, or when there
is considerable lateral flow (e.g. Saleska et al. (2003); Alfieri et al. (2011)). By virtue of the
sheer number of plot sites across the globe, forest inventories have proven to be among the most
powerful methods to constrain the terrestrial carbon sink, at least that associated with forested
lands. In the most extensive synthesis to date, Pan et al. (2011) collected forest inventory data
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from across the globe and determined for 1990 to 2007 a total forest sink of 2.4 ± 0.4 Pg C yr-1

globally. Regionally, they suggest the strongest sink for the tropical forests (1.19 ± 0.41 Pg C
yr-1), followed by the temperate forests (0.72 ± 0.08 Pg C yr-1), and then the boreal forests (0.50
± 0.08 Pg C yr-1). Taking into account the substantial amount of deforestation still occurring in
the tropics, i.e., about 1.3 Pg C yr-1, the overall balance of the tropical forests is about neutral,
consistent with the inversion estimate of tropical atmosphere-land CO2 fluxes (Stephens et al.,
2007; Steinkamp and Gruber, 2013; Ciais et al., 2013b).

Forest inventories are also one of the few methods that provide detailed estimates for indi-
vidual countries. As a consequence, the results of these inventories provide also the basis for
the individual nations reporting their forest sinks to the UNFCCC. For Switzerland, this forest
inventory is the only bottom-up method based result currently available (FOEN, 2015).

An alternative way to estimate land carbon fluxes relies on process-based models, such as
the land surface models that not only include all the biophysical fluxes between the land surface
and the atmosphere, but incorporate all the processes controlling the major land carbon fluxes.
Among the most advanced of them are the Dynamic Global Vegetation Models (DGVMs), as they
also simulate the relative abundance of the major plant functional types in response to changes in
the environment. Thus, these process-based models determine the terrestrial carbon cycle and the
response of carbon and vegetation patterns to climate change based on the understanding of the
underlying processes or dynamics that are temporally or spatially relevant to the global carbon
cycle (Friedlingstein et al., 2014). The biggest advantage of the process-based models is that
they allow for an easy understanding of the processes driving the carbon cycle (Piao et al., 2009;
Thonicke et al., 2010). However, as discussed above, these models are highly sensitive to the
particular parameterizations that they employ, making their predictions not really robust. Thus,
a lot of work is still needed in order to identify the key representative ecological processes, and
to find ways to implement them in a more robust and fundamental manner (McGuire et al., 2001;
Cramer et al., 2001; Friedlingstein et al., 2014).

There are other methods used for constraining the land carbon fluxes, such as the Normalized
Difference Vegetation Index (NDVI), or oxygen isotopes (Welp et al., 2011), both of which con-
tain information about GPP. Vegetation fluorescence from remote sensing (such as GOSAT) also
provides a relatively direct way for constraining GPP (Frankenberg et al., 2011). Finally, mea-
surements of the atmospheric concentration of carbonyl sulphide (COS) has recently emerged as
a novel tracer constraint for GPP, based on the quantitative correlation between GPP and COS
plant uptake (Hilton et al., 2015; Campbell et al., 2017).

The accuracy of any estimate based on a bottom-up approach relies on the representativeness
of the local measurement sites. Hence, a common challenge to all such bottom-up based mea-
surements is that there may be significant uncertainties due to the need to extrapolate the local
data to at least regional scales. However, modern non-linear statistical models have proven to be
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very powerful in overcoming some of these challenges (Jung et al., 2011).

1.3.2 Observations for top-down methods

As the variations in atmospheric CO2 reflects the spatially and temporally integrated signal from
different CO2 sources and sinks, atmospheric CO2 measurements have been used for determining
the biospheric fluxes already for a long time. The very basis of any inversion is the availability of
high quality atmospheric CO2 data.

The first modern, high-quality CO2 concentration measurements were conducted by Charles
D. Keeling at Mount Mauna Loa in Hawaii and at the South Pole Station in the late 1950s (Keel-
ing, 1960). These in-situ data combined with other coastal measurements showed for the first
time that the atmospheric CO2 concentration is increasing in response to the emissions of fos-
sil fuel derived carbon. This insight provided the very foundation for the first concerns about
global warming. Since then, many new observing stations have been added, including those
at mountain tops, on tall towers, on remote islands, and in the middle of major cities, greatly
expanding the global network of atmospheric CO2 data. These measurements are being col-
lected world wide through various programs and projects, such as, the Global Atmosphere Watch
(GAW) program with data archived at the World Data Centre for Greenhouse Gases (WDCGG;
www.gaw.kishou.go.jp/wdcgg/). The major challenge has been data quality, and in particular the
tracing of any measurement back to a particular standard (Ciais et al., 2014). While this standard
was originally provided by Charles D. Keeling based on this manometric measurement technique,
this was taken over by the World Meteorological Organization(WMO) in the 1980s. This ensures
that all high quality measurements of atmospheric CO2 are traceable back to the WMO standards,
i.e., comply with their dry mole fraction.

The advent of the new laser-based instrumentation such as Cavity Ring-Down Spectroscopy-
based Picarro has substantially alleviated the measurement challenges, as these instruments tend
to produce very precise and accurate measurements with little drift. Nevertheless, measurements
to the WMO standard still require carefully calibrated data. With proper working standards and
calibration, this is now more commonly achievable, so that data with precisions of 0.1 ppm or
less and accuracies approaching the precision level are available from a rapidly growing number
of stations around the world, which represents a significant expansion with respect to the pre-
vious existing networks (Andrews et al., 2014; Buchwitz et al., 2013). For example, the U.S.
plans to establish 60 new sites as part of the National Ecological Observatory Network (NEON)
(http://www.neoninc.org/), and in Europe, the plan is to maintain the existing sites and
to establish a few more in order to have a total of about 35 sites as part of the European Infras-
tructure program ICOS (http://www.icos-infrastructure.eu/) (Ciais et al., 2014).
However, there is no monitoring system in place to guarantee that each site is compatible to the
WMO standards. Further, few sites have guaranteed long-term funding, while the monitoring of

http://www.neoninc.org/
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the global carbon cycle is critically tied to sustained observations (U.S. Carbon Cycle Science
Plan) (Michalak et al., 2011).

Aircraft measurements provide essential information about the vertical distribution of atmo-
spheric CO2, particularly because they provide strong constraints on the vertical transport, which
is one of the Achilles heals of atmospheric transport modelling. In fact, Stephens et al. (2007)
showed that none of the global transport models used in the Transcom project is able to success-
fully reproduce the vertical gradients when comparing to the measurements over the U.S.. To date,
the only regular measurements are with dedicated aircraft those from the National Oceanic and
Atmospheric Administration (NOAA) (www.esrl.noaa.gov/gmd/ccgg/aircraft/). Several projects
included aircraft campaigns, such that data are available from Siberia, California Nexus (CalNex),
the Amazon (Gatti et al., 2010; Miller et al., 2007), and from a series of global meridional flights
as part of the HIPPO project (Graven et al., 2013b; Wofsy, 2011).

Measurements on commercial aircrafts, such as the Japanese CONTRAIL project (http:
//www.cger.nies.go.jp/contrail/), or the German IAGOS-CARIBIC project (In-
service Aircraft for a Global Observing System, while IAGOS-CORE provides in-situ measure-
ments of the atmospheric chemical species (O3, CO, CO2, CH4, NOx, NOy, H2O), aerosols and
cloud particles) provide another avenue to extend the surface measurement network aloft (Pet-
zold et al., 2012). Some of these aircraft measurements have already been used in atmospheric
inversions, although with higher observation error compared to the in-situ measurements (Peters
et al., 2010). Some scientists also applied the aircraft measurements for correcting the boundary
conditions in regional inversions, as boundary conditions constitute an important source of error
(Lauvaux et al., 2012). Aircraft profile data could also potentially correct the satellite observation,
as suggested by Kulawik et al. (2010).

Space-based observations of the column CO2 dry mole fraction XCO2 have opened another
window to constrain the atmospheric CO2 distribution (Crisp et al., 2004; Reuter et al., 2016, in
press). The first attempt, SCanning Imaging Absorption spectroMeter for Atmospheric CHartog-
raphY, (SCIAMACHY), used the solar infrared wavelength to measure the whole atmospheric
column, but these data suffered from interference by aerosols and clouds, resulting in a rela-
tively poor precision of around 3 ppm (Reuter et al., 2011). Later, another satellite to mon-
itor atmospheric CO2 and methane was successfully launched in 2009 by Japan, Greenhouse
gases Observing Satellite (GOSAT), which could provide more accurate XCO2 data. How-
ever, it has proven difficult to realize its full potential, requiring extensive correction of the
retrieval biases in order to produce results that can be used in conjunction with surface-based
measurements (Wunch et al., 2011). Nevertheless, atmospheric inversions that make use of the
GOSAT data have demonstrated substantial error reductions, especially once they were com-
bined with surface measurements (Chevallier et al., 2010; Miller et al., 2007). The precision
might be improved further by aggregating SCIAMACHY and GOSAT data, and hence help re-
duce the uncertainties related to the limited spatiotemporal coverage of either satellite (Ciais

http://www.cger.nies.go.jp/contrail/
http://www.cger.nies.go.jp/contrail/


1.4. Atmospheric CO2 inversion 19

et al., 2014). The recently (2014) launched satellite Orbiting Carbon Observatory 2 (OCO-
2) carries high expectations from the CO2 community. Other satellite products include those
from the Atmospheric Infrared Sounder (AIRS) on EOS-Aqua (Liu et al., 2012), the hyper-
spectral Infrared Atmospheric Sounding Interferometer(IASI) (http://www.ospo.noaa.
gov/Products/atmosphere/soundings/iasi/) and the Thermal Emission Spectrom-
eter (TES) on EOS- Aura (Kulawik et al., 2010), but all products struggle from their low precision
and accuracy relative to the other elements of the global atmospheric CO2 observing network (Ku-
lawik et al., 2010). An important role for improving the satellite retrievals is being played by the
ground-based network for the measurement of the total air column of CO2, i.e, the Total Carbon
Column Observing Network (TCCON). It has a precision of around 1 ppm, i.e., substantially
better than that of the current suite of satellites, and by measuring essentially the same quantity,
i.e., the weighted average column dry air mixing ratio of CO2, it can provide calibration observa-
tions during overflights as well as improve the detailed spectroscopic information needed to invert
the retrieved radiance. Although not at the level to be compatible with the WMO measurement
standards, the measurement quality of TCCON has been proven to be good enough to be used in
atmospheric inversions (Chevallier et al., 2011). Nevertheless, there are still some uncertainties
when calibrating the TCCON data to WMO rules (Wunch et al., 2010), and with its relative sparse
density (only 18 stations in 2012).

In summary, the global atmospheric CO2 measurement network has greatly expanded since
Charles D. Keeling began his first systematic measurements on Mauna Loa and the South Pole in
the late 1950s. The observing system has also become much more diverse not only with regard to
the measurement systems, but also with regard to the aim of the measurements. While Keeling’s
measurements aimed at documenting the global-scale rise in atmospheric CO2, today’s networks
aim to cover also much more detailed and regional aspects, including the wish to track changes
in fossil fuel emissions (Ciais et al., 2014).

1.4 Atmospheric CO2 inversion

The term atmospheric CO2 inversion describes not a single technique, but rather a whole suite of
approaches that share the common goal of ”inverting” atmospheric CO2 observations in order to
determine the CO2 fluxes between the atmosphere and Earth’s surface (Peylin et al., 2013). These
include the classical Bayesian synthesis inversion methods (Enting et al., 1995), but also carbon
data assimilation systems of various flavors (Rayner et al., 2010). Such carbon assimilation sys-
tems can serve for more than the determination of the carbon fluxes. They can also be used to
generate consistent 4-dimensional fields of atmospheric CO2 concentrations (Liu et al., 2012) or
to estimate parameters of biogeochemical models (Rayner, 2005). The carbon data assimilation
system is a framework that puts atmospheric, terrestrial and (when needed oceanic) data together,
with the goal to find optimal solutions that fulfill all available constraints (model and observa-
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tions) in an optimal manner, often employing methods that are common in other fields, such as
signal processing (Rayner et al., 2011; Chatterjee, 2012; Steinkamp and Gruber, 2013).

1.4.1 Global atmospheric CO2 inversions

Many studies have used atmospheric inversions to estimate CO2 fluxes on the global scale in
the last decade (Gurney et al., 2002; Rayner, 2005; Liu et al., 2009; Feng et al., 2009; Cheval-
lier et al., 2007, 2009; Piao et al., 2009; Rödenbeck et al., 2003; Patra et al., 2005; Peters et al.,
2007; Steinkamp and Gruber, 2013; Jacobson et al., 2007). These inversion systems were de-
veloped by different groups based on very different methods, such as Bayesian synthesis inver-
sion (Chevallier et al., 2006; Bocquet and Wu, 2011; Göckede et al., 2010) maximum likelihood
estimate methods (Michalak et al., 2005; Gourdji et al., 2010), 4-D variational methods, such
as CCDAS (Rayner, 2005), Ensemble Kalman Filter (EnKF) Methods (adapted from Bayesian
method), such as CarbonTracker(Peters et al., 2005), Markov chain Monte Carlo (MCMC) meth-
ods (Miller et al., 2013) and several hybrid methods, such as the hybrid method between EnKF
and maximum likelihood (Zupanski et al., 2007), or that between EnKF and the 4-D Variational
method. Michalak et al. (2004) applied a geo-statistical approach based on the Bayesian method,
in which the prior probability density function is based on an assumed form of the spatial and
temporal correlation and prior flux estimates are required. It optimizes the prior error covariance
parameters, the variance and the spatial correlation length by maximizing the probability density
function of the observations with respect to these parameters. Rayner (2005) developed a terres-
trial carbon cycle data assimilation system (CCDAS) with EnKF and found that on interannual
timescales, net primary productivity (NPP) is the controlling process.

Peters et al. (2005) introduced an ensemble Kalman Filter-based assimilation system, i.e.,
CarbonTracker, that was later expanded and improved upon by Peters et al. (2007) and Peters
et al. (2010). This system used the atmospheric transport model TM5, and the prior land surface
fluxes from the Carnegie Ames Stanford Approach (CASA) biosphere model as well as a number
of additional data sets to constrain the atmosphere-Earth surface fluxes globally. In these versions
of CarbonTracker, weekly scaling factors for the terrestrial biospheric and ocean carbon fluxes
are estimated across a set of pre-defined ecoregions. The estimated total uptake in North America
and Europe matched well with results from previous work, but substantial differences were found
for cropland. The low resolution of the atmospheric model, poorly constrained soil moisture,
phenology and errors in the vertical mixing above this ecoregion have been suggested as reasons
for the poor behavior on cropland. In addition, unrealistic diurnal cycles of CO2 flux were found
in these initial versions of CarbonTracker due to the fact that the optimization was done only for
the net CO2 flux, i.e, the sum of GPP and respiration. In recent years, CarbonTracker has been
adapted for different applications, such as for multi-tracer inversions (van der Velde, 2015), for
different regions (e.g., China, Amazon(CT-SAM))(Jiang et al., 2016; Laan-Luijkx et al., 2015),
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or combined with different transport models (such as the Stochastic Time-Inverted Lagrangian
Transport model), or for different tracers (CH4)(Tsuruta et al., 2017).

Joint assimilation of data from different observation platforms has also been attempted, such
as combining the space and surface networks. Peng et al. (2014) developed a regional assimilation
system CFI-CMAQ (Carbon Flux Inversion system and Community Multi-scale Air Quality) by
combining the RAMS-CMAQ (Regional Atmospheric Modeling System and Community Multi-
scale Air Quality) and EnKF. Basu et al. (2013) used a joint inversions of surface and corrected
GOSAT XCO2 and found that the terrestrial uptake are mainly from subtropical regions. Peylin
et al. (2013) collected around 13 inversion systems and most of them could be found at http://
www.globalcarbonatlas.org/?q=en/content/atmospheric-inversions. The
comparison of the inversion systems reveal that the biggest differences from inversion systems
exists in the tropical and southern land balance, while the interannual variability (IAV) in land
carbon fluxes are consistent among these systems. Markov chain Monte Carlo(MCMC) is rarely
used in the former inversion system in the past until Miller et al. (2013).

The currently most common assimilation methods are the Kalman filter and the four-dimensional
variational assimilation (4D-var) methods. The Ensemble Kalman Filter (EnKF) was first intro-
duced by Evensen (1994) and first applied to an atmospheric system by Houtekamer and Mitchell
(1998) (Evensen, 2009). As neither an adjoint model nor full linearity are required, and since un-
certainties can propagate forward directly inside the EnKF, it has become popular among many
assimilation systems. For example, the Canadian Meteorological Centre has applied an EnKF
method to its operational ensemble prediction system (EPS) in 2005. Further, the method has
seen many developments and improvements. For example, Whitaker and Hamill (2002) proposed
a square root filter (EnSRF) method of EnKF to avoid the source of sampling errors generated
from perturbed observation. Ott et al. (2004) proposed a local ensemble Kalman filter (LEKF,
a kind of EnSRF) for parallel implementation to reduce the computational cost in EnSRF. Hunt
et al. (2007) extended the ETKF method to a local ensemble transform Kalman filter (LETKF)
to further accelerate the LEKF. More recent developments include a no-cost smoother, i.e., using
the same weight for different time steps; using spin-up, dealing with forecast sensitivity to ob-
servations; and the simultaneous estimation of the optimal inflation and observation errors. Yang
et al. (2011) also showed that EnKF has advantages over 4D-var for short assimilation windows.

Popular transport models used in global atmospheric inversions are Eulerian transport mod-
els, such as TM3, TM5, LMD, etc. In Eulerian models, the CO2 concentration is simulated in the
3-dimensional boxes that represent the discretised space. Generally, Eulerian models suffer from
numerical diffusion, limiting the resolution to scales larger than the grid size in the underlying
meteorology. But they have the advantage of simulating the space-time distribution of CO2 every-
where, providing the opportunity to analyze the distribution of CO2 in both forward and inverse
mode. Some inversion systems started to use a Lagrangian transport model, such as a new ver-
sion of CarbonTracker, CarbonTracker-Lagrange (CT-L). Lagrangian models can represent the

http://www.globalcarbonatlas.org/?q=en/content/atmospheric-inversions
http://www.globalcarbonatlas.org/?q=en/content/atmospheric-inversions


22 Chapter 1. Introduction

atmospheric transport with high accuracy owing to their following the air parcels and therefore
not being subject to excessive diffusion and easily run backward in time, but they require good
parameterizations of the sub-grid scale processes, particularly in the planetary boundary layer.
Further, owing to their relatively low computational cost, Lagrangian inversion systems tend to
do well in regional inversions with a limited number of observing sites, but they tend to lose this
advantage on global scales with the corresponding increase in the number of observations.

Pillai et al. (2012) compared these two different frameworks (Eulerian (WRF) versus La-
grangian (STILT)), and found the representation of details in the interaction between turbulent
mixing and advection through wind shear as the main cause of discrepancies between the two.
Combining Lagrangian and Eularian transport models in DA might be conducive to reduce the
transport model errors.

1.4.2 Regional atmospheric CO2 inversions

There are at least two important differences between global and regional inversions of atmo-
spheric CO2. First, regional inversions require information about the CO2 concentration at their
lateral boundaries, i.e., the so-called background component. In addition, given their higher spa-
tial resolution, they require correspondingly more highly resolved surface boundary conditions,
such as the fossil fuel emissions and prior biospheric fluxes. Further, they are more susceptible
to the specific regional transport and mixing characteristics, such as sea-breezes, flows around
and over mountain ranges, and other small-scale, but persistent flows. Thus, the resolution and
fidelity of the transport models needs to be higher than that in the models used for global-scale
inversions.

A large number of inverse modeling studies have been conducted at continental scales, such
as for Europe (Bergamaschi et al., 2010; Rigby et al., 2011), or for some regional domains in
the US at moderate resolution (Brioude et al., 2013; Miller et al., 2014). Also studies at higher
resolution exist. For example, Göckede et al. (2010) undertook high-resolution inversions for
the state of Oregon in the northwestern U.S, with a horizontal grid size of 6 km. They revealed
that dividing biome types by ecoregions could capture their different biogeochemical responses
to external forcings across climatic gradients. They also emphasized that the precise definition
of the advected background CO2 mixing ratios is paramount for inverse modelings frameworks
operating on regional to continental scales, as systematic mixing ratio offsets can cause significant
shifts in the inversely estimated flux fields.

Tolk et al. (2011) suggested to re-evaluate the inverse methods for regional scales that were
simply transferred over from global inversion systems, after they found the inaccurate carbon
exchange at local scale using the different inversion methods in Netherlands. Tolk et al. (2009),
Tolk et al. (2011) and Meesters et al. (2012) found that optimising the scaling factors separately
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for GPP separating and respiration for every grid box instead of whole eco-regions works quite
well on short time scales for the regional scale based on tests with synthetic data and field mea-
surements. They also pointed out that on regional scale, inversions appear to be quite sensitive to
the precise specification of the land surface properties in the assimilation system.

Another issue is the selective use of observations. With inversions increasingly aiming to use
all available observations, the question arises whether night-time observations can be assimilated.
But the use of night-time measurements exposes the inversion system much more to the often
problematic night-time prediction of PBL height in the transport models (Gerbig, C. and Körner,
S. and Lin, J. C., 2008). In addition, night-time measurements from short towers within the
nocturnal boundary layer also provide information of limited spatial representativeness due to
the stable boundary layer. Gourdji et al. (2010) checked the night time measurements and found
that including nighttime measurement worsened the optimization not only at sites based on short
towers, but also those on tall towers.

1.4.3 Challenges in the inversion system

The first challenge is the density and coverage of the observation network. The number of un-
knowns in the inversion often exceeds the number of available independent observations, i.e., the
problem often tends to be underconstrained. This is especially the case for global inversions on
the basis of the existing surface observation network, as many regions of the world have only
sparse coverage. One solution to this problem is to reduce the number of unknowns by aggregat-
ing the surface regions into larger spatial patterns based on some rules, such as similar ecosystems
(Peters et al., 2010), or spatial proximity (Bousquet et al., 2000). This clearly reduces the degrees
of freedom of the statistical problem at hand, but it introduces aggregation errors, i.e., errors
that arise because all the fluxes within such a region are now forced to have the same variations
through time, i.e., are forced to be fully correlated, even if this is not the case in reality (Kamin-
ski et al., 2001). The aggregation error can be reduced by grouping elements with correlated
errors (Turner and Jacob, 2015). This can be achieved by using some form of a tree aggregation
method, or through a clustering method based on prior error patterns (Wu et al., 2011; Turner and
Jacob, 2015; Wecht et al., 2014). Another problem in this aggregation is that it tends to suppress
variability in the true fluxes, as it fails to take into consideration the considerable variability that
occurs on local to sub-regional scales.

The second important problem is the transport model error. The perfect model of the circula-
tion and air movement in the atmosphere does not exist, because the errors from spatiotemporal
resolution, incorrect vertical transport, systematic errors in the meteorological forcing data, im-
perfect parameterizations for convection, etc., will cause unrealistic model samples (Basu et al.,
2013). The impact of this error has been well illustrated in the results from the TransCom Stan-
dard Inversion Experiments, where the in-between model error was often as large or even larger
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than the within model posterior error (Gurney et al., 2002; Baker et al., 2006). The transport error
does not only cause a spread between the models, but also a bias in the results because of the
systematic nature of these errors. Of particular concern is the simulation of the vertical atmo-
spheric transport, which has been shown to be particularly ill simulated by most global transport
models (Stephens et al., 2007). Different methods were used for calculating or reducing transport
error (Miller et al., 2015), e.g., Lin and Gerbig (2005) used the uncertainties in the wind speed
to estimate the transport error, while Broquet et al. (2013) used a relative error based on the as-
sessment of the performance of the tracer Radon to track the transport model error. Chan et al.
(2015) treated the difference between individual runs from prior mole fractions and the sampled
synthetic observations. The project ACT-America aims at solving the problem of transport model
error at regional scale, in which one example is that assimilated observed wind profiles from li-
dar to provide accurate meteorological forcing which results in decreased model error within the
boundary layer (Deng et al., 2015).

The third challenge is the need to provide accurate information about the background CO2

at the boundaries of the regional inversion model. This has been shown to cause as much un-
certainty in the posterior flux estimates as the spread of the prior estimates of the ecosystem
fluxes (Lauvaux et al., 2012). Different methods have been tested to address this issue, for ex-
ample, constraining the inverted land ecosystem fluxes together with the measured background
CO2 (Lauvaux et al., 2012), or improving the inverted land ecosystem fluxes by assimilating the
background CO2 as well (Alden et al., 2016).

A further challenge is the representation error, i.e., the mismatch of spatial scales between the
model and the observations (Peylin et al., 2013). Eulerian inversion systems assume that a point
observation can be represented by the average CO2 mixing ratio in a model grid box. However,
coarse resolution transport models can have substantial mismatches between the observed and
simulated CO2 concentrations that are not caused by erroneous surface fluxes, but by specific
local features not captured in the transport model, such as local wind pattern associated with
unresolved topographic features. For example, the representation errors were estimated to be
1-2 ppm at mesoscale, around half ppm at continent scale (Gerbig et al., 2003; Lin and Gerbig,
2005). Transport models with higher resolution are adopted to reduce the representation errors
due to their stronger capability of modelling small scale (Tolk et al., 2008).

In addition to above challenges, there are some other problems in multi-data inversion sys-
tems that assimilating data streams from different sources, such as, incompatibilities between
model and data, mismatch between different data. Bacour et al. (2015); MacBean et al. (2016)
proposed data calibration and preliminary sensitivity analyses for model parameters that need to
be improved.

In summary, atmospheric inversions are a powerful, but also somewhat fickle method, as
the quality of the results critically depends on many aspects of the system, ranging from the
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transport model to the statistical method employed to find the optimal solution. Often, the impact
of the many choices that have to be made along the way are not very obvious, requiring detailed
sensitivity studies to fully expose these dependencies. Yet, unlike no other data-driven method,
these inversion methods provide an integrated and consistent view of the land carbon fluxes.

Some projects have already made efforts towards filling the gap between bottom-up and top-
down method, such as North American Carbon Program (http://nacp.ornl.gov/int_
synthesis.shtml), REgional Carbon Cycle Assessment and Processes (http://www.
globalcarbonproject.org/reccap/overview.htm), or reconcile the estimated fluxes
from these different methods (Turner et al., 2011; Gourdji et al., 2012; Dolman et al., 2012) Rec-
onciling the results from these 2 approaches favor for robust results from these 2 methods, because
the uncertainties could be reduced when reconciling the results, such as (Jiang et al., 2016) found
very close estimation from these methods that both methods indicated the increased trend of sinks
in China.

1.4.4 The CarboCount CH project

To fill the gap between the different spatial scales and to better understand CO2 and CH4 fluxes
and their sensitivity to recent and current climate variability, the project CarboCount CH was
proposed to develop a prototype modelling and observing system for CO2 and CH4 at the regional
scale. In the project, top-down methods based on atmospheric measurements were proposed to
be combined with ”bottom-up” methods based on fluxes measurements, process-based models of
natural fluxes, and statistical information on anthropogenic emissions. This project focuses on
central Europe and especially central Switzerland where rich and detailed data sets are available
to provide input and independent verification. The heterogeneity and complex topography of the
region provide the challenge and the need that avoided by other regional system.

To achieve the goal, first, an integrated atmospheric CO2/CH4 measurement network are
developed in central Switzerland with four new representative sites on hill tops and towers all
equipped with continuous instruments measuring (at least) CO2, CH4, and water vapor, aug-
mented existing flux and concentration measurement sites and Second, the establishment of high
resolution bottom-up driven data products based on process-based ecosystem modeling, direct
flux measurements, forest inventories, and geostatistical data of anthropogenic CO2 and CH4

emissions. Third, the development and application of high-resolution regional to local models of
atmospheric transport and atmosphere-biosphere exchange of CO2 and CH4, used in forward and
inverse (data assimilation) modes.
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1.5 Aim and the structure of this thesis

The specific aim of this thesis is to develop, test, and apply a new regional high-resolution atmo-
spheric inversion method on the basis of an Ensemble Kalman Filter method, taking advantage
of the newly acquired CO2 observations from the CarboCount CH network. The particular ques-
tions I will try to answer in this thesis are: How well can the high resolution transport model
with the newly built-in tracer module reconstruct the atmospheric CO2 concentration and its fos-
sil fuel components? How to port the global inversion system to regional inversion system with
high resolution transport model given current cluster and computational capability and what are
the proper settings for this regional inversion system? What are the key sources of error in the
estimates of CO2 concentration for the inversion system, and how much do the input data un-
certainties or biases, mainly background CO2 contribute to the uncertainties of inverted fluxes?
What are the difference between top-down and bottom-up method, and the reason leading to these
difference?

As this method builds on the various CarbonTracker versions, we name the resulting assimi-
lation system CarbonTracker Switzerland. This is not the first time a high resolution atmospheric
CO2 inversion is conducted in Europe (Tolk et al., 2011), but this is the first time such a system
is being developed for complex mountainous terrain and for a region with rather fine-grained
patterns of ecosystem structure. I will be using an ecoregion-based aggregation, which has it
disadvantages owing to the implied strong aggregation, but I will alleviate this by allowing for
sub-grid level patterning of the ecoregions.

My work encompasses the two major components of top-down methods, and is structured
as: the introduction (Chapter 1) is followed by the method and data of the thesis (Chapter 2). We
tested the transport model and fossil fuel CO2 in Europe domain (Chapter 3) and then test the data
assimilation system in the central Europe using synthetic data from a forward simulation (Chapter
4), following by the assimilation of the real data in order to quantify the biospheric carbon budget
for central Europe and Switzerland (Chapter 5). The last chapter (Chapter 6) summarizes the
conclusions and provides an outlook into the future topics.



Chapter 2

CarbonTracker Switzerland: Method and
Data

Abstract

This chapter first briefly introduces the basic concept of data assimilation and the Bayes‘ perspec-
tive on the cost function, and then provides the background and the core elements of an Ensemble
Kalman Filter (EnKF) that underpins much of this thesis. It then describes the tuning methods as
well as the diagnostics that are being used to determine the quality of an EnKF. The core part of
this chapter is then the introduction and description of the CarbonTracker Switzerland inversion
system for atmospheric CO2. This high-resolution inversion system for central Europe and partic-
ularly Switzerland is based on the coupling of the CarbonTracker (Peters et al., 2005) EnKF code
with the atmospheric weather forecast model COSMO that we use as a transport model, set up
at a resolution of 7 km for the COSMO-2 domain covering central Europe. The goal of Carbon-
Tracker CH is to optimally estimate a small set of scaling factors for the prior net terrestrial CO2

fluxes taking advantage of a suite of 9 CO2 observing sites in central Europe, three of them taken
from the newly established CarboCount CH network. This chapter describes the general setup
of CarbonTracker CH, while the specific applications are thoroughly introduced and described in
the following chapters.

2.1 Overview of carbon data assimilation systems

The broad set of methods summarized under data assimilation (DA), also known as model-data
fusion, are an analysis tool that uses different statistical methods based on information theory,
control theory, optimization theory and inverse problem theory to project observations into a
background field in order to approximately reproduce or represent a true physical state of a system

27
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from the real world (Rayner P. and Chevallier, 2016; Bouttier and Courtier, 1999; Tarantola,
2005). The first application of data assimilation dates back to the time when Gauss and Legendre
used an early version of the least squares method to calculate the orbits of heavenly bodies. Such
data assimilation methods are used particularly in cases, when there is incomplete information
about a system, providing an opportunity to improve the description or understanding of this
system by using observations of this system. Such an incomplete understanding can stem from
a deficient model (owing to, for example imperfect knowledge of the governing equations), or
poorly known parameters, or incorrect estimates of the current state, and/or noisy or imperfect
observations. Thus DA optimizes the prior information by combining model and data to generate
the ‘truth‘, or analysis, or posterior, which could then be useful as initial state for the forecast
in the next step. An alternative application of DA is to generate merged data-model products in
order to assess the quality of observations due to instrumental, or other sources of errors(Bouttier
and Courtier, 1999).

2.1.1 Basic concepts in data assimilation

A data assimilation system has three core elements: i.e., a state vector that describes the state of
the unknowns, a measurement vector, and an observation operator.

The basic problem in any inversion is formed by a set of measurements Y (with dimension
of N), from which we would like to infer a true state vector λ with a set of M parameters (e.g.,
CO2 fluxes, soil moisture, etc.) using an observation operator H (a dynamic model, in our case
an atmospheric transport model, or a radiative transfer model). This observation operator acts
upon the state vector to produce a model-based set of observations, i.e., forecast, that then can be
compared to the real observations:

Y = H(λ) + ε, (2.1)

where ε represents the misfit between the measurements and the model forecast. The observation
operator H may be linear or nonlinear, depending on the complexity of the system, but its quality
is critical in order to estimate the best guess of the observation. The goal of the inversion system
is to estimate the parameters λ and the error structure using the observations. If the system is
linear and of manageable size, the observation operator H can be directly inverted, as done in so
called synthesis inversions (Enting et al., 1995). But in many cases, the observation operator H is
sparse, ill conditioned and often very large, so that other methods are often being used to “invert”
the problem (see below).

In the end, all inversions aim to minimize a cost function J that quantifies the model-data
mismatch:

J = ‖(H(λ)− Y)‖2 (2.2)
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which is equivalent to stating that the inversion seeks to make ε as small as possible.

However, due to the often sparse observations, the inverse problem is often underdetermined.
This requires us to provide some extra information for the parameters, known as prior informa-
tion. The prior information is usually the information at the initial step of each assimilation cycle,
while the background field is the forecast from the dynamic model, which we also call as back-
ground state vector). After introducing the prior information, the goal of inverse problem is to
find the optimal parameters that balance the prior information error and the model-data mismatch.

2.1.2 Bayesian objective function

The Bayesian framework assumes that all the processes follow a Gaussian distribution so that the
data information and the observations can be represented as probability density functions (PDF)
and combined in a joint PDF (i.e., the joint probability that the λ and Y occur together), described
by the following equality:

P(λ, Y ) = P(λ|Y ) · P(Y ) = P(Y |λ) · P(λ), (2.3)

where P(λ, Y ) is the joint PDF for prior (or background) information λ and observation data Y.
P(Y |λ) is the conditional probability of the observation given the prior information, determined
from λ and the observation operator. P(Y ) is the PDF of the observation. In the analysis proce-
dure, we know that that a measurement has been taken, so that P(Y ) = 1. This gives then:

P(λ|Y ) = P(Y |λ) · P(λ). (2.4)

This means that the key term, the posterior P(λ|Y ) is equal to the background PDF P(λ) times
P(Y |λ). The aim is to find the maximum for P(λ|Y ). Next we will derive how to generate the
cost function under Bayes’ rule to solve this problem.

Although there is no specific limit for the probability in Bayes Theory, a Gaussian PDF is
assumed for the sake of algebraically convenience and often a good approximation, particularly
for the atmospheric CO2 inverse problem. In addition to the assumption of Gaussian distribution,
we make two additional assumptions for the atmospheric CO2 inversion system: First, we assume
that the forward dynamic model H is linear, so that H(λ−λf ) is the same as H(λ)−H(λf ), where
the symbol f denotes the prior from the model forecast, or background. Since atmospheric CO2

is essentially an inert gas in the atmosphere (we neglect here the production of CO2 from methane
and other organic substances) and atmospheric transport and mixing are linear by definition, this
assumption is very closely fulfilled. The second assumption is the expectation that the background
errors and the observation errors are entered around 0, i.e., that they are unbiased (E[εf] = E[εo] =

0). We further assume that these two errors are mutually uncorrelated (E[εf, εo] = 0). Their
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variance are noted as var(εf) = Pf , var(εa) = R.

The Gaussian PDF of the observations and parameters are calculated using the equations for
a bell-shaped curve:

P(λ) = e(−1/2)(λ−λ
f )TP f -1(λ−λf) (2.5)

P(Y |λ) = e(−1/2)(H(λ)−Y )TR-1(H(λ)−Y ). (2.6)

Inserting function ( 2.6) and ( 2.5) into ( 2.4), and taking the logarithm gives:

- log P(λ|Y ) = C1((1/2)(H(λ)− Y )TR-1(H(λ)− Y ) + (1/2)(λ− λf)TP

Rewriting this in terms of the cost function J(λ) gives:

J(λ) = (1/2)(H(λ)− Y )TR-1(H(λ)− Y ) + (1/2)(λ− λf)TP f -1(λ− λf ) = Jo + Jf, (2.8)

where Jo is the contribution from the observation data, and Jf is the part from the background part.
The optimal λ is to make the cost function J minimal.

2.1.3 Data assimilation in carbon cycle research

After several decades of development in DA, there are two basic data assimilation methods com-
monly used in the atmospheric field, with the two methods being distinguished based on their
sequence to incorporate the observation information: The first one is called sequential assimi-
lation, as it uses observations from the past until the time of analysis. This method is further
differentiated according to its dimensionality into 3 or intermittent 4 dimensional variational as-
similation methods (3D-Var or intermittent 4D-Var)). The second method is called retrospective
assimilation, as it uses observations from the future as well (Bouttier and Courtier, 1999). The
Ensemble Kalman Filter belongs to this second group.

In terms of data assimilation in carbon cycle research, two fundamentally different approaches
have been taken to improve the carbon sources and sinks depending on the observation operator:
This goal is achieved by either optimizing the 4-dimensional fields of atmospheric CO2 concen-
trations (e.g.(Peters et al., 2007; Liu et al., 2012; Michalak et al., 2005)) (see Fig 2.1), or by
improving parameters in biogeochemical models (Gao et al., 2011). The latter has the advantage
that it provides for a system that is fundamentally capable of making also predictions. But it
comes at the cost of being highly dependent on the fidelity of this model, i.e., structural problems
in the underlying model will lead to a strongly distorted set of optimized parameters.



2.2. Kalman Filter Methods for Carbon Cycle Research 31

.

.

Prior fluxes
with 
uncertainties

Atmospheric 
transport
 model

Modeled 
atm. CO2

Assimilation
System

Posterior 
Fluxes with 
uncertainties

Observed 
atm.CO2

Figure 2.1 A schematic flow diagram of a carbon data assimilation system using observed CO2

concentrations.

2.2 Kalman Filter Methods for Carbon Cycle Research

2.2.1 Ensemble Kalman Filter

The Ensemble Kalman Filter methods can be divided further into two sets of methods depending
on how the errors are considered in the observations: In the stochastic Ensemble Kalman Filter,
the observations are perturbed by their errors, while this is not the case in the deterministic En-
semble Kalman Filter methods. In both methods, there are two steps in each time period, i.e., a
forecast step before the observations are introduced and an analysis step thereafter (see Fig 2.2).
Lei and Bickel (2011) argued that the behavior of these two different methods depends on the
observations: the stochastic filter is more stable if it is provided with observations of good quality
or with observations that have a high information content. As this is not necessarily the case here,
we use a deterministic Ensemble Kalman Filter (Ensemble Kalman Smoother) to incorporate the
observations and transport model. But as it turns out, if the forecast or background state vector is
Gaussian distributed, these two methods behave quite consistently (Furrer and Bengtsson, 2007).

Concretely, in this thesis we are following Peters et al. (2005), and use an Ensemble Square
Root Filter (EnSRF) method, which is a subclass of the deterministic EnKF methods (Whitaker
and Hamill, 2002). In EnSRF, the prior parameter error distribution is known and the total analysis
error variances need to be minimized. With the given background(or prior) covariance Pf, the
square root of this matrix can be calculated through either a Cholesky decomposition or a singular
value decomposition method to get the deviation of the parameters, which are then added to the
parameters in the background state vector to obtain the ensemble members.

There are many other flavors of Ensemble Kalman Filters, such as ensemble adjustment
Kalman filter(EAKF) (Anderson, 2001), the local Ensemble Kalman Filter (LEKF) (Ott et al.,
2004), and the local ensemble transform Kalman filter (Miyoshi and Kunii, 2012), with the main
differences being their update scheme. More advanced data assimilation methods that emerged
in recent studies attempt to account for the non Gaussian feature. These methods include particle
filtering methods, or combinations of the filtering method with variational methods, or with other
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Figure 2.2 Schematic drawing of the time stepping used in an Ensemble Kalman Filter.

machine learning methods, for example, with the non parametric Kernel method, or Gaussian
mixture models (Sondergaard and Lermusiaux, 2013; Anderson, 2010; Liu et al., 2016).

In this thesis, the parameters that we are trying to solve are flux scaling factors λ , which are
optimized by the following Kalman filter function:

λ
a

= λ
f
+ K(Yo −H(λ

f
)), (2.9)

where λ
a

represents the optimized ensemble mean scaling factor, λ
f

the mean background scaling
factor, Y o the observed CO2, and K the Kalman Gain. As before, H(.) is the observation operator
(normally a model if the unit of background state vector is different from the observation, other-
wise H is just identity matrix, such as some data assimilation in hydrology, e.g., soil moisture). In
this study, H is an atmospheric transport model that converts prescribed CO2 fluxes at the surface
into observation space, i.e., atmospheric CO2 concentrations. The Kalman gain K is computed as
follows:

K = PfHT(HPfHT + R)
−1
, (2.10)

whereR is the error covariance matrix of the measurements. It includes measurement (instrument
+ retrieval) error, model (transport) error and a representation error (Peylin et al., 2002). In
the case of atmospheric CO2 observations from a high quality network the instrument error is
negligibly small. In the case of observations retrieved from satellites, this error is actually quite
substantial. Here, we assign the instrument error just a small value. Since it is difficult to calculate
the atmospheric model transport error, the model transport error is implicitly contained in the
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matrix of observation error matrix R. Finally, the symbol ()T is the matrix transpose. The two
matrix products are computed as follows:

HPfHT =
1

N− 1

∑
[H(λ′1),H(λ′2), ...,H(λ′N)][H(λ′1),H(λ′2), ...,H(λ′N)]T. (2.11)

Where N is the number of ensemble members.

PfHT =
1

N− 1

∑
[λ′1, λ

′
2, ..., λ

′
N ][H(λ′1),H(λ′2), ...,H(λ′N)]T. (2.12)

where λ′ represents deviations from mean values:

λ′ = λ− λ, (2.13)

The posterior covariance is calculated by:

Pa = (1− KH)Pf. (2.14)

When the ensemble size is big enough, the posterior covariance converge to (λa − λa
)(λa − λa

)T

In the Ensemble Square Root Kalman Filter (EnSRF), the ensemble is broken into a mean
and into an anomaly part, and the anomalies (λ’) are updated using a reduced gain:

λ′a = λ′f − K̂H(λ′f) (2.15)

K̂ = K(1 + (R/(HPfHT + R))−1/2)−1 (2.16)

The Kalman gain has the dimension of the number of parameters times number of observa-
tions, such that K(Yo −H(λ

f
) has the same dimension as λ

f
.

2.2.2 Generating background and observation error covariances

The background or prior covariance matrix P f contains the prescribed uncertainty of each pa-
rameter, multiplied by the correlation between different parameters in horizontal space using the
Schur product. Here, we assume that the spatial correlation decreases exponentially with distance
(L=100km), calculated as

Pf = P · e-dij/l (2.17)

where the same ecosystems are assumed to behave approximately the same, as shown by Peters
et al. (2010); van der Laan-Luijkx et al. (2017). In addition, the ecoregions in the same grid cell
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Table 2.1 Summary and notation of variables used in the Ensemble Kalman Filter. M is the

Variables Meaning Dimension or dimen-
sion changes

λa Analysis of the model state m

λf Forecast or background model state m

λt True model state m

K Kalman gain m× n

Yo Vector of observations m

H Observation operator m× n

Rf Covariance matrix of observation errors n× n

Pf Covariance matrix of background errors
λf − λt

m×m

Pa Covariance matrix of analysis errors λa−
λt

m×m

have higher correlation than those that are located in different grid cells.

The observation error covariance is a diagonal matrix, with the diagonal values obtained from
the error between the forecast and the observed CO2 concentration. Here we do not consider any
possible correlations between the different observation sites, so the off-diagonal values are set to
0.

2.2.3 Tuning and regularization of the ensemble Kalman Filter

Many choices have to be made when building an atmospheric CO2 inversion system based on
an EnKF, such as the finding of a proper ensemble size, defining appropriate spatial and tempo-
ral correlation lengths for the covariance matrix, and reducing the potential error arising due to
inefficient sampling, or systematic errors. Tuning can help us to identify the best choices.
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2.2.3.1 Covariance localization

If the ensemble size N is not big enough given the unknown variables, then the sampling co-
variance might be biased, and cannot be considered as a correct prediction sampling (Frei and
Künsch, 2013). Covariance localization and inflation are used to avoid huge ensemble sizes that
brings along a heavy computational cost (Peters et al., 2005; Chatterjee et al., 2012). Peters et al.
(2005) introduced the localization in the CarbonTracker, i.e., first, the site with high observation
errors are chosen, then the correlation coefficients (CR) of the H(λ′f) and λ′f are calculated, then
the probability of the these scalars are inferred based on the the correlation coefficients:

Pro = CR/
√

(1− CR2)/(n-2) (2.18)

If this calculated Pro is smaller than the t-test value based on the degrees of freedom and p value
(degrees of freedom is 8 in our case and p=0.02 ), then the localization is applied.

Zupanski et al. (2007) applied a covariance localization method in the Maximum Likelihood
Ensemble Filter using the distance function defined in the information space and found that the
system works very well even with small ensemble sizes. In chapter 4, we adopted similar covari-
ance method, i.e., first, we calculated the ratio(Rt) of prior covariance to the posterior covariance:

Rt = Pf/Pa (2.19)

If the ratio is larger than the limit number, then the influence of the observation is localized within
this area.

The covariance localization might destroy the autocorrelation structure(Chatterjee, 2012).
Other localization methods, such as spectrum regularization, balance-aware localization schemes,
or dynamic or covariance schemes were created to better suppress such spurious errors(Buehner,
2012; Anderson, 2012; Leng et al., 2013).

The above addresses just the issue of horizontal localization, while we have not addressed
the issue of the vertical localization at all. The latter is not particularly relevant for our surface
observation based inversion, but might become highly relevant in the future in the context of the
use of satellite-based or ground-based total column measurements.

2.2.3.2 Covariance inflation

If the ensemble size is small, the analysis covariance will be significantly underestimated. In
such cases, the filter may diverge, because the ensemble spread is too small, resulting in the
model rejecting observations and sticking to its prior (Furrer and Bengtsson, 2007; Chatterjee
et al., 2012). Thus the covariance need to be enlarged when using varying background covariance
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matrix, which is achieved by an inflation following:

λf,a
j = λ+ α0.5(λj − λ), (2.20)

where the subscripts f, a means different processes when dealing with inflated ensemble mem-
bers, either before (f) the update step, or after (a) the update but before the propagation step, j
the calculated covariance based on the posterior analysis. Anderson (2007) suggested to conduct
the inflation after the assimilation due to errors in assimilation that might results in too small
variance in the analysis. Different methods were used to calculate the factor α. Anderson (2007)
and Anderson (2009) discussed the use of observations and the observational error variance to
update α temporally and spatially. Chatterjee et al. (2012) inflated the background error of both
the concentrations and the surface fluxes of CO2. Miyazaki et al. (2011); Chatterjee et al. (2012)
applied this method to CO2 fluxes inversion, i.e., using random variables and then updated using
Bayes theorem. Here, we tested the system with constant values inflation, and found that the
covariance is still too small, or too high that is out of our knowledge. Hence, we still adopted the
constant prior covariance in the later chapters.

2.2.4 Time filtering

There is a time lag before the CO2 emitted by the vegetation or any other surface process reaches
the receptor at the observation site. In addition, mixing occurs along the way, so that any given
observation represents the weighted sum of surface fluxes over a time interval. As we are using
high-frequency observations (daily), the observation frequency is shorter than the atmospheric
transport process, requiring us to take the time lag and mixing into consideration. This is ensured
in the EnSRF by using a time filter to account for the different response of CO2 to the fluxes in
former time steps. The length of this filter is referred to as the smoother window. The time filter-
ing is implemented in such a manner that information from previous steps is used alongside the
new observations. Concretely, Concretely, this means that the state vector at time t is constrained
by observations from different times between time t and time t plus the lag time, in consecutive
cycles of the filter.

2.2.5 Diagnostics

The essential step when building a data assimilation procedure is the diagnostic step, which allows
monitoring the performance of the filter and ensure that the posterior error remain in a proper
range.
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2.2.5.1 Error reduction

Reducing uncertainty is the goal of EnKF, hence error reduction is one of most important ways
to judge the behavior of the system. The error reduction can be computed as:

Error reduction = 1− σ2
opt/σ

2
prior (2.21)

σ2 is the variance. Generally, we expect an optimal system to have higher error reduction.

2.2.5.2 Chi-square

χ2 = (y− H(λ))2/(HPHT + R) (2.22)

In a Bayesian framework, the chi-square using posterior information (H(λ)a) should converge
to the number of observations (Steinkamp, 2011), while the chi-square using prior information
(H(λ)f) requires the chi-square to go towards the degrees of freedom (Zupanski et al., 2006).
However, in the framework of a data assimilation system, this rule does not always work. For
example, Peters et al. (2005) found that synthetic tests violate this rule, and Chevallier (2014)
demonstrated that the results from the simulation with chi-square around 1 was the worst among
all the configuration. In the sensitivity test, we found the system behaves better when the chi-
square is higher than the degree of freedom. However, the chi-square converges towards the
number of observation when using the real in-situ measurements.

2.2.5.3 Degree of freedom of signal(DFS)

The Degrees of Freedom of Signal (DFS) can be used to measure the contribution from the ob-
servations sites Lauvaux et al. (2012); Kim et al. (2014). Lauvaux et al. (2012) computed the
DFS with the prior covariance matrix to evaluate the weight of the observation constraints from
different correlation structures. We used the sensitivity matrix of analysis to the observation, then
summing the off-diagonal elements of this matrix, resulting in the following function:

DFS = Trace(HPaHT/R). (2.23)

For more details about the diagnostic and error characteristics, please refer to chapters 2 and
3 of Rodgers (2000) and Chevallier (2014). Weston et al. (2014) and Pinnington et al. (2016) also
checked the basic assumption that the correlation in prior and observation error, and found that the
root mean square error of NEE could be reduced after considering the correlation of observation
error.
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2.3 CarbonTracker Switzerland

CarbonTracker Switzerland represents the regional adaptation of the global CarbonTracker atmo-
spheric inversion system (Peters et al., 2005, 2011), which is based on an Ensemble Square Root
Kalman Filter (EnSRF). This required several adaptations, the most important of which is the
explicit consideration of CO2 at the lateral boundaries, which was avoided in the other Carbon-
Tracker implementations by using an atmospheric transport model covering the globe. Here, we
introduce the basic elements of the model, but refer the reader to chapters 4 and 5 regarding the
specific implementations.

2.3.1 Basic setup and flow chart

Figure 2.3 illustrates the basic flow chart of CarbonTracker CH, i.e., the flow of information
and the basic two step approach typical of an Ensemble Kalman Filter system. The initial step
consists of the computation of an ensemble of forecasts with an observation operator. These
results are then compared with the observational constraints in the second step, out of which a set
of optimized parameters emerges plus a new set of ensembles, which then can be used to start the
whole process again. At its core, CarbonTracker CH follows the EnSRF system outlined above.

COSMO-2
Fossil fuel emissions

λGPP *GPP

EnKF

Background CO2         XCO2
bg

Observed CO2

from CarbonTracker Euope

        XCO2
ff Optimized 

scaling 
factorfrom MeteoTest & Edgar
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VPRM

λRa *Ra

Figure 2.3 The schematic draw of the assimilation system using observed CO2 concentration.

We use the high resolution atmospheric weather forecast model COSMO as the observation
operator in this paper to convert the modelled CO2 fluxes into observation space. In the model,
we separately consider 53 tracers, each of them reflecting a particular process, and together mak-
ing up the total atmospheric CO2 dry air mole fraction, XCO2. Concretely, we consider (i) the
advection and mixing of the lateral background information into the domain, i.e., the so called
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background CO2 signal, (XCObg
2 ) (ii) the fossil fuel signal, (XCOff

2 ) (iii) the oceanic CO2 signal
(XCOoce

2 ), (iv) the signal of GPP from each considered ecoregion, i.e., XCOgpp, r
2 , and (v) the sig-

nal of total ecosystem respiration from each considered ecoregion, i.e., XCOra, r
2 . The atmospheric

CO2 mole fraction can then be computed by the sum of all components, with the GPP and respi-
ration components being scaled with the respective scaling factors, λ(r,frac,GPP) and λ(r,frac,ra. This
gives for the total dry air mole fraction of CO2:

XCO2 =
Neco∑
r=1

λ(r,frac,gpp)XCOgpp
2 +

Neco∑
r=1

λ(r,frac,ra)XCOra
2 + XCObg

2 + XCOff
2 + XCOoce

2 (2.24)

The evaluation of the modelled with the observed CO2 concentration is based on equation (2.24),
based on the modelled 3-D XCO2 field for each ensemble member.

2.3.2 Atmospheric Transport Model COSMO

The initial version of the COSMO-Model (former name was Lokal Modell (LM)) was developed
by the Deutscher Wetterdienst (DWD), but its further development is now organized through the
COnsortium for Small-scale Modelling (COSMO)(Baldauf et al., 2011). It is a non-hydrostatic
regional weather model designed for high resolution regional forecast requirements of weather
services, and used by different meteorological institutions worldwide.

The COSMO consortium and CLM-Community released unified versions of COSMO. The
version used in this thesis is COSMO4.23, a numerical weather prediction (NWP) version. Fur-
ther information about COSMO is provided on www.cosmo-model.org and www.clm-community.
eu. The COSMO model has been configured and evaluated for different European countries ex-
tensively.

The model’s grid is based on rotated geographical coordinates, that is geographical coordi-
nates by tilting the north pole, and a generalised terrain following height coordinate, on which
the dynamical core, hydrodynamical equations are built to describe atmospheric transport in a
non-hydrostatic and fully compressible form, with different applicable spatial scales. We adopted
the Runge Kutta core in this thesis, which uses the 3rd-order Runge-Kutta scheme from Wicker
and Skamarock (2002) (Optionally a Leapfrog scheme could be used in COSMO). A level 2.5
turbulent closure is used for parameterizing the vertical turbulent mixing, which treats Turbulent
Kinetic Energy as a prognostic variable. For radiation, a sigma-two-stream radiation scheme is
adopted from Ritter and Geleyn (1992). Cloud processes with prognostic equations for water
vapor, cloud water, cloud ice, rain and snow, are dealt with using a bulk microphysics scheme.
The cloudiness at sub-grid scale is an empirical function of relative humidity and height. A fully
3-dimensional semi-Lagrangian scheme and a direction split finite volume differencing scheme
are adopted inside COSMO model. In this thesis, we use the semi-Lagrangian scheme method for

www.cosmo-model.org
www.clm-community.eu
www.clm-community.eu
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the tracers due to problems encountered with the other scheme with negative CO2 concentration
for sinks (GPP).

MeteoSwiss has configured COSMO for its weather prediction needs for two domains, the
COSMO-7 domain covering most of Europe with a resolution of 7 km (see chapter 3), and the
COSMO-2 domain covering Switzerland and most of the surrounding countries at a resolution
of 2 km (Figure 2.4). The model domain for CarbonTracker CH is the same domain at that of
COSMO-2 but with a resolution of 7 km, covering the region from 42.72◦ N 2.25◦ E (lower left)
to 49.76◦ N 17.25◦ E (upper right) with Switzerland in the center of the domain (Figure 2.4). The
model is configured with 60 vertical geometric hybrid levels.

Figure 2.4 The geographic domain of CarbonTracker Switzerland. The domain is the same as that
of the COSMO-2 setup used by MeteoSwiss, but with a resolution of 7 km.

A generic tracer transport module was developed by ETH’s Center for Climate Systems Mod-
eling (C2SM) and MeteoSwiss and added to COSMO as part of the CarboCount CH project
(Roches and Fuhrer, 2012). At the lateral boundaries, the boundary conditions are given through
a relaxation scheme, with the boundary condition values for each prognostic variable being read
in from a file. For fossil fuel tracers, we implemented a semi-Lagrangian scheme with clipping
processes to ensure strictly positive concentration.
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2.3.3 Fossil fuel Emissions

The fossil fuel emissions for CO2 were generated by merging a relatively coarse emission inven-
tory for the regions outside Switzerland (EDGAR v4.2, 10 km(Janssens-Maenhout et al., 2012))
with a high-resolution (0.5 km) emission inventory for Switzerland. The latter was produced by
the company MeteoTest, specifically for the CarboCount CH project.

We merged the emission categories from the two inventories to 5 large emission categories,
i.e., power generation, residential heating, road transport, industrial processes, and others. Even
though each of these different categories have a distinct emission pattern, many of them co-occur
in the large metropolitan areas, leading to a very patchy emission pattern with strong emission
hotspots, and extensive regions with relatively low emissions (More detail see Chapter 3).

These emissions inventories are given for each emission category as annual totals for each
grid cell, requiring us to multiply them with time functions to generate hourly time series of the
fossil fuel emissions at each location (Nassar et al., 2013). The time functions we employed were
originally generated by the University of Stuttgart (Institute für Energiewirtschaft und Rationelle
Energieanwendung, IER) (Friedrich and Reis, 2004) and had been used in several air quality
modeling studies. The time functions are comprised of diurnal, weekly and seasonal components
and are specific to each of the main economic sectors (activities collected in the Selected Nomen-
clature for Air Pollution (SNAP) codes) (Kuenen et al., 2014). The time functions (except for
the daily one) vary also by country, and are locally adjusted to reflect local time. Some small
reassignments were necessary to align the categories used for the emission inventories with the
SNAP categories.

The time functions differ greatly between the various categories, reflecting their very different
time course of activities over the average day, week or year. Among all diurnal time functions,
road transportation has the largest diurnal variability and is characterized by two peaks during
the day reflecting the rush hour periods (local time 8:00-9:00 and 17:00-18:00). Also residen-
tial/commercial combustion has a distinct diurnal cycle with two peaks but lagged compared to
the road transportation. In contrast, the emissions from industrial processes and fossil-fuel fired
power plants vary less over the course of the day and also have only one peak. The time func-
tions for the day-of-week primarily reflect the lower industrial and traffic activities during the
week end, while most other sectors continue to emit at only slightly smaller rates. Nevertheless,
combining all the sectors together, emissions during the weekend are 15-20% lower than during
the week. The seasonal time functions depend primarily on the local climatic conditions, with
northern and central European countries having a clear maximum in winter due to their heating
requirement, while there is little seasonality in emissions in the southern European countries.
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2.3.4 Lateral boundary conditions and background CO2

The meteorological forcing data are from MeteoSwiss COSMO-7 analysis hourly data with 150
2D or 3D fields. The boundary concentrations for the background CO2 are provided by the post-
assimilation results of CarbonTracker Europe (Peters et al., 2010) (with a resolution of 1◦). The
3-hourly CO2 fields were cropped and interpolated to the COSMO-7 and COSMO-2 domains
using the COSMO preprocessing tool INT2LM at 7km. As the vertical coordinate systems are
different, i.e., CarbonTracker Europe uses pressure levels, we interpolated these data to the hybrid
height level of COSMO. This required knowledge of the hybrid coefficients for the center of each
layer in the CarbonTracker output as well as surface pressure, which we took from the COSMO
model.

2.3.5 Terrestrial biosphere Fluxes

The terrestrial biospheric exchange pattern is used for prescribing the flux patterns within the
regional basis functions (figure 2.3). The flux pattern is purely seasonal (annual mean flux is zero
for every pixel).

The Gross Primary Production (GPP) in VPRM is calculated by using the MODIS land sur-
face water index, enhanced vegetation index, near surface temperature and shortwave radiation,
while total ecosystem respiration fluxes (R) are calculated based on temperature (Mahadevan et
al., 2008) (http://modis.gsfc.nasa.gov/). The terrestrial biospheric CO2 is the sum
of the CO2 concentration from GPP and R, representing net ecosystem exchange (NEE) of CO2

between the atmosphere and the terrestrial biosphere. Eight vegetation classes are used in VPRM
with different parameters, which are the combination of 22 sub-classes, in which parameters
controlling these classes had been optimized using CarboEurope-IP eddy covariance flux obser-
vations at various sites as described in Pillai et al. (2012). After converting to a surface mass flux
and reprojecting to the simulation domain, the hourly NEE fields were read in by COSMO.

2.3.6 Subgrid scale heterogeneity in ecoregions

The ecoregion maps are from the VPRM percentage information, with detailed percentage infor-
mation kept inside each pixel. In this paper, we ignore the ecoregions in one grid with area less
than 10% and replace them with the dominant ecoregion. As the 4 new measurement sites have
distinct sensitivity region (result from a Lagrangian model), we separate their main sensitivity re-
gion from the rest of the domain, and call this inside the footprint. The croplands dominate other
species, with total fluxes about 2 times as the sum of the forests. The original croplands were
decomposed into 4 different regions, due to similar behaviour and species at different regions.
The grassland is kept as 1 ecoregion in the whole domain due to the small contribution to the total

http://modis. gsfc.nasa.gov/
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NEE fluxes.
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Figure 2.5 The distribution of different eco regions: percentage of area in each pixel(%).

2.4 Atmospheric CO2 Observations

Table 2.2 lists all the atmospheric CO2 measurement sites used in this study (either used for eval-
uation or for assimilation). These observation sites all adhere to the WMO standards and record
the atmospheric CO2 concentrations at high frequency, from which hourly means are generated.
Most of the sites have complete daily coverage with the exception of Monte Cimone, where a
substantial period is missing in the summer and fall in 2013.

Four of the sites are new and have been added thanks to the CarboCount CH project (Oney
et al., 2015) (see Fig. 2.6), i.e., Beromünster, Früebüehl, Lägern Hochwacht, and Gimmiz.

The Beromünster measurements sensor are located on a tall tower (217 m above ground)
located on a gentle hill in Switzerland, with Alps in the south and the Jura Mountains in northwest,
with sampling from 5 different elevations. We choose the observation at the highest level due to
less exposure to the local fossil fuel emissions and bigger concentration footprint (more details
see(Satar et al., 2016)). The Früebüel site measurements are made 4 m above ground on the flank
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of a gently sloping mountain (we treat it as continental site where the uncertainty is relatively
high), with influence from nearby (< 50 km) pasture and forest fluxes during most days, and
mainly influenced by the eastern Swiss Plateau during convective days in summertime. The
measurements at Gimmiz are made on a small tower (32 m) in flat terrain, and mainly inform on
the CO2 from nearby (< 50 km) crop and anthropogenic fluxes. The site Gimmiz is only used in
the pseudo-inversions, but excluded in the real observation inversions due to the too high errors
with observations. For more detail information on the specifics of each site, the reader is referred
to Oney et al. (2015).

In addition, we use one more site from Jungfraujoch (JFJ, Switzerland) that is a high elevation
site that mainly records the large-scale variations in the free troposphere, and 4 more sites outside
Switzerland. Please consult Schöner et al. (2012), Ferrarese et al. (2015) and Geels et al. (2007)
for more information about these sites.

For the inversion, we subselect the data based on the degree of vertical mixing. At the moun-
tain sites, i.e., SNB, CMN, and PRS, where the site is above the PBL for most of the day, we use
the observation data at 0-6:00 AM. For the other sites, we use the data in the afternoon from local
time (UTC) 12:00-15:00 PM.

Table 2.2 The CO2 concentration measurement site information.

Station(code) Location Altitude a.s.l. characteristics
Lägern Hochwacht (LHW) 47.48◦ N,8.4◦ E 860m continental

Beromünster (BRM) 47.19◦ N,8.18 ◦ E 797(base),1009m(highest level) continental
Früebüel (FRU) 47.12◦ N,8.54◦ E 982 m continental
Gimmiz (GIM) 47.05◦ N,7.25◦ E 443 m continental

Monte Cimone (CMN) 44.20◦ N, 10.70◦ E 2165 m mountain site
Schauinsland (SSL) 47.92◦ N, 7.92◦ E 1205 m continental
Plateau Rosa (PRS) 45.93◦ N, 7.70◦ E 3482 m mountain site
Sonnblick (SNB) 47.05◦ N,12.95 ◦ E 3106m mountain site

Jungfraujoch (JFJ) 46.55 ◦ N, 7.98 ◦ E 3580 m mountain site
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Figure 2.6 Map showing the CarboCount CH measurement sites for atmospheric CO2 in the con-
text of other carbon related activities in Switzerland, such as FluxNet (Eddy Covariance Measure-
ments) and the NABEL network (air quality).
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Chapter 3

Spatiotemporal patterns of the fossil-fuel
CO2 signal in central Europe: Results from
a high-resolution atmospheric transport
model

abstract

The emission of CO2 from the burning of fossil fuel is a prime determinant of variations in atmo-
spheric CO2. Here, we simulate this fossil fuel signal together with the natural and background
components with a regional high-resolution atmospheric transport model for central and south-
ern Europe considering separately the emissions from different sectors and countries on the basis
of emission inventories and hourly emission time functions. The simulated variations in atmo-
spheric CO2 agree very well with observation- based estimates, although the observed variance
is slightly underestimated, particularly for the fossil fuel component. Despite relatively rapid at-
mospheric mixing, the simulated fossil fuel signal reveals distinct annual mean structures deep
into the troposphere reflecting the spatially dense aggregation of most emissions. The fossil fuel
signal accounts for more than half of the total (fossil fuel + biospheric + background) temporal
variations in atmospheric CO2 in most areas of northern and western central Europe, with the
largest variations occurring on diurnal timescales owing to the combination of diurnal variations
in emissions and atmospheric mixing/transport out of the surface layer. Their co-variance leads
to a fossil-fuel diurnal rectifier effect with a magnitude as large as 9 ppm compared to a case with
time-constant emissions. The spatial pattern of CO2 from the different sectors largely reflects the
distribution and relative magnitude of the corresponding emissions, with power plant emissions
leaving the most distinguished mark. An exception is southern and western Europe, where the
emissions from the transportation sector dominate the fossil fuel signal. Most of the fossil fuel

47
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CO2 remains within the country responsible for the emission, although in smaller countries, up to
80% of the fossil fuel signal can come from abroad. A fossil fuel emission reduction of 30% is
clearly detectable for a surface-based observing system for atmospheric CO2, while it is beyond
the edge of detectability for the current generation of satellites with the exception of a few hotspot
sites. Changes in variability in atmospheric CO2 might open an additional door for the monitoring
and verification of changes in fossil fuel emissions, primarily for surface based systems.

3.1 Introduction

With annual CO2 emissions from fossil fuel burning and cement production having soared in the
recent decades and approaching 10 Pg C yr−1(Raupach et al., 2007; Friedlingstein et al., 2014;
Le Quere et al., 2016), these fluxes have reached the same order of magnitude as the natural
exchange fluxes between the atmosphere and land surface and between the atmosphere and the
ocean, respectively (Sarmiento and Gruber, 2002; Le Quere et al., 2016). Thus, the fossil fuel
emissions have become a key driver for the spatiotemporal dynamics of atmospheric CO2, not
only close to major sites of emissions, but also far downstream (Peylin et al., 2011; Keppel-Aleks
et al., 2013; Nassar et al., 2013). This represents simultaneously a challenge and an opportunity.
It is an opportunity since the substantial and growing size of this fossil fuel CO2 signal facilitates
the use of variations in atmospheric CO2 to monitor and verify changes in fossil fuel emissions
(Bovensmann et al., 2010; Velazco et al., 2011; McKain et al., 2012; Ciais et al., 2014; Shiga
et al., 2014). At the same time, the large fossil fuel CO2 signal complicates the use of atmo-
spheric CO2 observations to determine sources and sinks of CO2 driven by the land biosphere
through atmospheric inverse modeling methods. This requires the separation of the biospheric
signal in atmospheric CO2 from the total signal, which is usually accomplished by subtracting an
estimate of the fossil fuel component from the measured atmospheric CO2 concentration. This
implies that any error in the fossil fuel component tends to be projected directly onto the in-
versely estimated biospheric fluxes (Nassar et al., 2013; Peylin et al., 2011). Thus, in order to
benefit from the monitoring and verification opportunity as well as to minimize the magnitude
of the challenge associated with atmospheric inversions, it is paramount to well characterize the
fossil fuel component in atmospheric CO2 in time and space.

Two sets of approaches have been developed to determine this fossil fuel component in at-
mospheric CO2. A first set of approaches relies on concurrent observations of carbon monoxide
(CO) and/or radiocarbon to determine the fossil fuel component in the observed atmospheric CO2

variations (Breon et al., 2015; Ciais et al., 2013a; Levin and Karstens, 2007; van der Laan et al.,
2010; Turnbull et al., 2011; Newman et al., 2013; Vogel et al., 2013; Lindenmaier et al., 2014;
Vardag et al., 2015; Oney, 2016). A major advantage of these observation- based methods is that
they do not require any atmospheric transport modeling, and thus are not sensitive to any errors
in the modeled atmospheric transport. A major disadvantage is that these observation-based es-
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timates are available only at a relatively small set of observing sites, providing a very limited
picture of the spatiotemporal dynamics of the fossil fuel signal for larger areas. Further compli-
cations may arise from e.g., poorly known and varying ratios of the emissions of CO and CO2 in
the case of CO-based methods (Oney, 2016), or the emission of radiocarbon from nuclear power
and reprocessing plants in the case of radiocarbon-based methods (Graven and Gruber, 2011).

In the second set of approaches the fossil fuel CO2 signal is modeled, starting from the spec-
ification of fossil fuel emissions as a bottom boundary condition in an atmospheric transport
model, and then running this model forward in time (Peylin et al., 2011; Ogle et al., 2015). A
key advantage of this set of approaches is that the spatiotemporal dynamics is fully resolved. But
this comes at the disadvantage that the resulting accuracy of the modeled fossil fuel CO2 signal
not only depends on the quality of the fossil fuel emissions data, but also on that of the transport
model. The latter disadvantage is well illustrated by the results of a recent model intercompari-
son study, where inter-model differences in the simulated spatiotemporal pattern of the fossil fuel
CO2 were 2-3 times larger than the differences resulting from the use of different emission in-
ventories (Peylin et al., 2011). Of particular relevance is the resolution of the atmospheric model,
as this is key to better resolve the topography and land surface contrasts that govern much of the
atmospheric circulation and mixing in the lower atmosphere.

The challenge associated with the modeling of atmospheric transport is particularly acute
for the fossil fuel component, since fossil fuel emissions are distributed in time and space in a
highly heterogeneous and non-Gaussian manner (Ray et al., 2014). This reflects the nature of the
processes underlying these emissions, ranging from the point source nature of the emissions from
coal-fired power plants, whose emissions vary in response to changing needs for electricity, to the
strong diurnal fluctuations of the dispersed emissions associated with road transportation (Nassar
et al., 2013). This strong spatial and temporal patterning of the fossil fuel emissions interacts with
the spatiotemporal variability of atmospheric transport, forming distinct patterns of the fossil fuel
signal in atmospheric CO2 (Feng et al., 2016c). Of particular relevance are the diurnal and the
seasonal changes in emissions, since they tend to co-vary with atmospheric transport, which can
lead to atmospheric CO2 concentration gradients due to a rectification effect (Denning et al.,
1995; Zhang et al., 2016). Such unaccounted for variations in the fossil fuel signal would bias
the biospheric signal in atmospheric inversion frameworks, hindering us from developing a better
understanding of the role of the land biosphere as a carbon sink. At the same time, this strong
temporal patterning of the emissions creates also distinct signals that might be used to detect or
track the fossil fuel signal.

In fact, several studies already explored the possibilities to detect the fossil fuel signal (Ciais
et al., 2014; Nassar et al., 2013). These include a range of methods and systems, including bottom
up methods based on surface observation systems (Shiga et al., 2014; McKain et al., 2012; Keller
et al., 2016), CO and radiocarbon based methods (Levin and Karstens, 2007; van der Laan et al.,
2010; Vogel et al., 2013), airborne measurements (Turnbull et al., 2011), satellite constraints (Kort



50 Chapter 3. Fossil-fuel CO2 signal in central Europe

et al., 2012), and top-down approaches on the basis of atmospheric inversions (Ogle et al., 2015;
Lauvaux et al., 2016; Brioude et al., 2013). Spatially, the focus ranges from point scale emissions
(Bovensmann et al., 2010; Velazco et al., 2011; Turnbull et al., 2016), or urban-scale (Newman
et al., 2013; Breon et al., 2015; Turnbull et al., 2015; Pillai et al., 2016) to regional and global
(Keppel-Aleks et al., 2013; Basu et al., 2016).

A necessity to successfully deploy any of these different detection approaches is a good un-
derstanding of the spatiotemporal dynamics of the fossil fuel signal over a scale that is sufficiently
large in order to avoid an unacceptably high sensitivity to the lateral boundary conditions, i.e.,
over scales exceeding a few 100 km. A successful detection also requires a good understanding
of the contribution of the other processes affecting atmospheric CO2 variations, namely the ex-
change fluxes with the land biosphere and with the ocean, respectively. Further, often it would be
quite useful to know the source processes responsible for the fossil-fuel CO2 signature, i.e., what
fraction of the signal stems from emissions from a coal-fired power plant and what part from road
transportation. This helps, e.g., with the assessment of how the implementation of a particular
policy affects the fossil fuel signature, such as e.g., the shutting down of coal- fired power plants.

Few studies have taken a continental to global perspective on the fossil fuel signal (Keppel-
Aleks et al., 2013), as the focus in the last few years had been on urban areas (McKain et al., 2012;
Newman et al., 2013; Kort et al., 2012), or just whether the emissions in the city be detected
or not (Hase et al., 2015; Pillai et al., 2016). In addition, comparatively less work has been
carried out in Europe (Schneising et al., 2008), and the majority of those used relatively coarse
resolution atmospheric transport models, resulting in relatively washed-out gradients of the fossil
fuel signal over Europe (Keppel-Aleks et al., 2013; Peylin et al., 2011), or few of them focused
on whether the potential reduced emissions could be discerned by current observation methods
in this region or not(Levin et al., 2011). Furthermore, little consideration has been given to the
temporal variations of the emissions.

The main objective of this work is to fill these gaps, and to develop a quantitative understand-
ing of the fossil fuel CO2 signal in Europe. To this end, we employ a forward modeling approach
using a high resolution atmospheric transport model for Europe, forced with finely resolved fos-
sil fuel emission fluxes in time and space. In this paper, we will (i) investigate the magnitude of
the contribution of the fossil fuel CO2 signal to the variations in total CO2; (ii) understand how
the high temporal resolution considered in the fossil fuel emissions affect the fossil CO2 signal;
and (iii) determine the detectability of a reduction of fossil fuel emissions from different sources
through changes in the column mean CO2 as seen, e.g., by a satellite-based observing system. We
first describe the model and methods, followed by the evaluation of the model in the third part.
We then present the results, followed by a discussion of each of the aforementioned three main
topics, and then conclude with a summary and an outlook.
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3.2 Methods and Data

To simulate the fossil-fuel CO2 over central and southern Europe in the context of the variations in
total atmospheric CO2, we employ a regional high- resolution atmospheric transport model for the
European domain and prescribe lateral and boundary conditions for the various components that
constitute atmospheric CO2. These include the fossil fuel emissions, the CO2 exchange fluxes
with the land and ocean surfaces, and the lateral atmospheric CO2 boundary conditions. The
simulations cover the period April 2008 until April 2009. The following subsections describe the
methods and data in more detail.

3.2.1 Atmospheric transport model

The simulations were undertaken with the limited-area atmospheric prediction model COSMO
(Consortium for Small-scale Modeling) (Baldauf et al., 2011) Version 4.23. We employed the
COSMO-7 setup developed by the Swiss Federal Office for Meteorology and Climatology (Me-
teoSwiss) for the purpose of providing boundary conditions for the inner COSMO-2 grid used for
forecasting the weather in Switzerland. The COSMO-7 setup has a grid spacing of 6.6 km and
its domain covers central and southern Europe (35.16◦N/9.80◦E (lower left) to 56.84◦N/23.02◦E
(upper right) (see Fig. 3.1).

The COSMO model is based on the primitive hydro-thermodynamical equations describ-
ing compressible non-hydrostatic flow in a moist atmosphere without any scale approximations.
The model equations are solved numerically on a rotated latitude-longitude grid, with terrain-
following coordinates in the vertical (60 vertical levels, and lowest level at 10 meters), using
an Eulerian finite difference method. Parameterization schemes are used to resolve the sub-grid
scale physical processes such as vertical diffusion (turbulence), convection, radiation, and soil
processes. A tracer transport module was recently added to the COSMO model, permitting the
online transport of passive tracers in a manner that is fully consistent with the physics of the
model (Roches and Fuhrer, 2012). In our setup, advective transport was accomplished with a
3-dimensional semi-Lagrangian scheme. The tracers are transported in the model as moist air
mass mixing ratios qCO2. Values reported here are provided as dry air mole fractions χCO2, cal-
culated as χCO2 = qCO2/(1 − qH2O)Mdry/MCO2, where qH2O is the specific humidity and Mdry

and MCO2 are the molar masses of dry air and CO2, respectively. The dry air column average
mixing ratio is calculated as XCO2 = (

∑K
k=1(p(k+ 1/2)− p(k− 1/2))qCO2(k))/(

∑K
k=1(p(k+

1/2) − p(k − 1/2))(1 − qH2O(k))) ∗Mdry/MCO2. K is the vertical level, and p pressure, which
is at the staggered level(Baldauf et al. (2011)is recommended for more information).
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Figure 3.1 Map of the fossil fuel emissions used in this study. Also depicted is the domain of the
COSMO-7 setup employed here. Shown in transparent color are the fossil fuel CO2 emissions for
different sectors in units of gC m−2 yr−1. The colors from the different sector blend to a darker
color when they are co- located as shown by the color mixing star at the bottom right.

3.2.2 Fossil fuel emissions

The fossil fuel emissions for CO2 were generated by merging a relatively coarse emission in-
ventory for the regions outside Switzerland (EDGAR v4.2 FT2010, approx. 10 km, (Janssens-
Maenhout et al., 2012)) with a high-resolution (0.5 km) emission inventory for Switzerland. The
latter was produced by the company MeteoTest specifically for the CarboCount CH project. The
annual emissions from this merged product for the year 2008 amount to 2.54 Pg CO2 over the
domain, representing about 10% of the global emissions of that year (Le Quere et al., 2016).
We merged the emission categories from the two inventories to 5 large emission categories, i.e.,
power generation, residential heating, road transportation, industrial processes, and others. Even
though each of these different categories have a distinct emission pattern, many of them co-occur
in the large metropolitan areas, leading to a very patchy emission pattern with strong emission
hotspots, and extensive regions with relatively low emission densities (Fig. 3.1).

These emission inventories are given for each emission category as annual totals for each
grid cell, requiring us to multiply them with time functions to generate hourly timeseries of the
fossil fuel emissions at each location (Nassar et al., 2013). The time functions we employed were
originally generated by the University of Stuttgart (Institute für Energiewirtschaft und Rationelle
Energieanwendung, IER) for the GENEMIS project (Friedrich and Reis, 2004) and have been
used since in several air quality modeling studies. The time functions are comprised of diurnal,
weekly and seasonal components and are specific to each of the main economic sectors (activities
collected in the Selected Nomenclature for Air Pollution (SNAP) codes) (Kuenen et al., 2014).
The time functions (except for the daily one) vary also by country, and are locally adjusted to re-
flect local time. Some reassignments were necessary to align the categories used in EDGAR v4.2
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and the CarboCount CH inventory (both following IPCC guidelines) with the SNAP categories
as described in the supplementary material.

The time functions differ greatly between the various categories, reflecting their very differ-
ent time course of activities over the average day, week or year (see Fig. 3.2a,b). Among all
diurnal time functions, road transportation has the largest diurnal variability and is characterized
by two peaks during the day reflecting the rush hour periods (local time 8:00-9:00 and 17:00-
18:00). Also residential/commercial combustion has a distinct diurnal cycle with two peaks. In
contrast, the emissions from industrial processes and fossil- fuel fired power plants vary less over
the course of the day and also have only one peak. The time functions for the day-of-week reflect
primarily the lower industrial activities and traffic during the week end, while most other sectors
continue to emit at only slightly smaller rates (see Fig. 3.2a). Combining all the sectors together,
emissions during the weekend are 15-20% lower than during the week. The seasonal time func-
tions depend primarily on the local climatic conditions (see Fig. 3.2b), with northern and central
European countries having a maximum in winter due to their heating requirement, while there is
little seasonality in emissions in the southern European countries.

In order to be able to trace the fossil fuel signature in atmospheric CO2 back to the emitters,
we consider separate fossil-fuel tracers for ten different countries (or groups of countries) in our
atmospheric transport model (see Fig. 3.1). Each of these tracers receives only the emissions
from its respective country or group of countries, while elsewhere, the emissions are set to zero.
Due to the linearity of atmospheric transport and the absence of any transformation of CO2 in the
atmosphere, the individual country-based tracers can then be summed to obtain the total fossil
fuel CO2 signal. In addition, in order to determine the contribution of the different CO2 emission
categories to the total fossil fuel CO2, we also included five additional fossil fuel tracers, one each
for the five categories we consider, i.e., power generation, residential heating, road transportation,
industrial processes, and others. For these 5 tracers, we used time-invariant emissions, permitting
us to assess also the role of the time variations in emissions on the fossil fuel CO2 signal. In total,
we included 17 fossil fuel tracers (10 countries, 5 sectors, and total fossil fuel CO2 with time
varying emission, and total fossil fuel CO2 with time constant emission) in our high-resolution
simulation study.

3.2.3 Other CO2 component fluxes

In order to simulate the distribution of total atmospheric CO2, we also include in our model three
other CO2 components, namely background CO2, the terrestrial biospheric CO2 and the oceanic
CO2 components. The background CO2 represents that part of the atmospheric CO2 that enters
the domain through its boundaries. These boundary concentrations are provided by the post- as-
similation results of CarbonTracker Europe (Peters et al., 2010). For the terrestrial biospheric CO2

component, we used the hourly terrestrial biospheric fluxes from the Vegetation Photosynthesis
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Figure 3.2 Time dependence of fossil fuel CO2 emissions for different sectors and countries. (a)
Time functions for the diurnal and weekly emissions for four sectors. (b) Annual evolution of the
CO2 emission intensity for three different countries or group of countries. Shown are the daily
minima and maxima for each country.

and Respiration Model (VPRM) (Mahadevan et al., 2008). For the oceanic CO2 component, we
combined the monthly air-sea CO2 flux estimates for the Atlantic from Landschützer et al. (2013)
with the annual mean flux estimates for the Mediterranean by DOrtenzio et al. (2008). As the
oceanic flux contribution is small, no attempt was made to add higher frequency variability.

3.2.4 Simulations

The hindcast simulation started on March 1, 2008, with the initial and boundary conditions for
meteorology taken from the operational hourly COSMO-7 analyses of MeteoSwiss and the initial
and boundary conditions for atmospheric CO2 provided by CarbonTracker Europe (Peters et al.,
2010). The model was then run for 13 months until April 30, 2009. No assimilation of any
meteorological data was performed. The lateral and boundary conditions for the total of 18 CO2

tracers considered (15 fossil fuel, 3 other components) were prescribed as described above. We
consider the first month as a spinup, and use the subsequent 12 months for our analyses.

3.3 Evaluation

3.3.1 Total atmospheric CO2

We evaluate our COSMO-based results for the total atmospheric CO2 concentration (computed
by summing the fossil fuel component with the three others) by comparing them to the mea-
surements from four sites in central Europe, namely Mace Head (MHD, 3.33◦N, 9.90◦W, 5m
above ground, coastal site, 15 m a.s.l.), Cabauw (CBW, 51.97◦N, 4.92◦E, 20m, 60m, 200m above
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ground, flatland, near urban site, 0 m a.s.l.), Hegyhatsal (HUN, 6.95◦N, 16.65◦E, 10m, 48m, and
115m above ground, continental site, 248 m a.s.l.) (Geels et al., 2007), Puy de Dome (PUY,
45.46◦N, 2.58◦E, mountain site, 1480 m a.s.l.). In order to minimize the impact of local influ-
ences, we use the average CO2 concentrations between 12:00 and 18:00 local time, i.e., the time
of day of maximum vertical mixing.

The modeled atmospheric CO2 records at these four sites agree well with the observed ones
(see Table 3.1). The correlation between the modeled and observed values exceed 0.7 at all sites
and heights. The highest correlation is found at Mace Head (MHD) (>0.81). This is due to the
relatively steady conditions that characterize this relatively clean coastal site. Influence from air
pollution is only observed during episodes of transport from the United Kingdom and continental
Europe, which are very well captured by the model. The correlations are somewhat lower at the
more polluted and more continental sites, i.e., between 0.72 and 0.78 at the coastal tall tower
station Cabauw (CBW) in the Netherlands, and around 0.8 at the continental tall tower station
Hegyhatsal (HUN) in Hungary. Even the atmospheric CO2 variations at the mountain top site
Puy de Dome in France are well captured (r = 0.75).

COSMO tends to systematically underestimate the observed CO2 concentration at most of
the stations and levels, except at the coast of Ireland (MHD), where it is overestimated by 0.3
ppm (Table 3.1). The biases tend to get larger with increasing continentality of the sites, and
the associated higher complexity of the surrounding terrain and other influencing factors. At the
Cabauw site (CBW), the biases amount to between -0.8 and -1.6 ppm, while in central Hungary
(HUN) the biases are already more than -4 ppm at all vertical levels. In general, this may be
related to COSMO-7 ventilating the planetary boundary layer too strongly, particularly in winter
time under weakly stratified conditions. This is especially acute for the HUN site, because the air
in the lowest atmospheric levels tends to get trapped at this site owing to the winter-time preva-
lence of anticyclonic conditions in the Carpathian Basin (Haszpra et al., 2012). An alternative
explanation is that the biospheric sink simulated by VPRM is too strong, as discussed later.

Even though COSMO exhibits some biases in the mean, it captures the observed variability
generally well (Table 3.1). In particular, COSMO reproduces the strong gradient in variability
between the coastal site Mace Head (∼6 ppm) and the continental site in central Hungary (∼12
ppm), reflecting primarily differing contributions of synoptic variations on atmospheric CO2.
However, the absolute magnitude of the variations are not matched by our simulations, with
COSMO consistently underestimating the observed variability.

Overall, the evaluation of the total atmospheric CO2 concentration reveals a good agreement
with the observations, both in terms of mean and variability. The low and positive bias at the
Mace Head site, where the contribution of the background CO2 component dominates, suggests
that this component is overall well modeled and likely not responsible for the bias at the other
sites. This bias is likely due to the superposition of biases in atmospheric transport (as argued
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for the HUN site) and biases in the underlying boundary conditions for the fossil fuel emissions
and/or terrestrial fluxes. Since the contribution of the oceanic fluxes is very small, this component
can be excluded as an explanation. Unfortunately, we do not have observationally-based estimates
of the fossil fuel or terrestrial biosphere components at the four sites discussed so far, requiring
us to use data from other sites for further evaluation.

3.3.2 Fossil fuel CO2 component

Estimates of the fossil fuel component in atmospheric CO2 are available for our model simulation
period from Lutjewad in the Netherlands (LUT, 6.35◦ E, 53.4◦ N, 1 m a.s.l.) (van der Laan et al.,
2010; Bozhinova et al., 2014) and from Heidelberg (HEI, 49.417◦N, 8.675◦E, 116 m a.s.l.) (Levin
and Karstens, 2007). Both estimates are based on a combination of concurrent CO and 14CO2

measurements and represent the fossil fuel induced offset relative to a regional background. They
are thus comparable to our modeled fossil fuel component, as this reflects the offset relative to
the domain-wide background induced by the lateral boundary conditions. Lutjewad is located
on the Waddensea dike in the north of the Netherlands, influenced by the highly populated and
industrialized areas in the Netherlands and in northwestern Germany (Ruhr area). The Heidelberg
station is located near an urban center with considerable fossil fuel emissions.

At the Dutch site LUT, the daily average fossil fuel CO2 component simulated by our model
compares well with the observations (r =0.73, mean bias -4 ppm) (see Fig. 3.3a). Generally,
the model reproduces the observed variability, especially in summer, when the fossil fuel CO2

component is low owing to the deep mixing in the atmosphere. But the model underestimates the
estimated fossil fuel CO2 component substantially in winter. This may be due to several reasons.
First, the model may transport signals too quickly out of the planetary boundary layer, which
is a known problem of many atmospheric transport models under stratified conditions typical of
wintertime (see also above) (Holtslag et al., 2013). Second, our wintertime emission inventory
in the region might be too small, owing to, for example, our underestimating the strength of the
seasonal signal in the time functions. Third, the observations might be biased high. One reason
is that these reconstruction rely on a constant ratio between CO and 14CO2, which may lead to
an underestimation of the 14C-CO ratio compared to real values at some time of the year, and
subsequently overestimation of the inferred fossil fuel CO2 (van der Laan et al., 2010; Bozhinova
et al., 2014).

At Heidelberg, our model captures the fossil fuel CO2 component even better, particularly
since the model has a very small mean bias of 0.75 ppm. Also the day- to-day and the seasonal
variations are well represented with a correlation coefficient of 0.72. The model’s (small) overes-
timation of the fossil fuel component may be due to our prescribing all emissions at the surface,
while the fossil-fuel fired power plants that contribute substantially to the fossil fuel CO2 at this
site tend to have an effective emission height quite some distance above the ground due to the
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Figure 3.3 Comparison between modeled and observation-based estimates of the fossil fuel CO2

component. (a) Comparison at the Lutjewad site in the Netherlands (LUT, 6◦ 21’E, 53◦ 24’N, 1
m a.s.l.) (van der Laan et al., 2010; Bozhinova et al., 2014). (b) Comparison at Heidelberg (HEI,
49.417◦ N, 8.675◦ E, 116m a.s.l.) (Levin and Karstens, 2007). The observational estimates are
based on concurrent observations of CO and 14CO2.

height of the stacks and the additional rise of the buoyant plumes (Vogel et al., 2013). Another
reason might be an overestimation of the emissions in our emission inventory EDGAR - an ex-
planation furthered by EDGAR’s emission being higher than those of IER (Peylin et al., 2011).
Especially assuring, and particularly so in comparison to the situation at LUT, is the COSMO
model’s ability at HEI to capture most of the variability and amplitude of the fossil fuel compo-
nent in winter. An exception are the observations from late December and early January, where
the data include a number of exceptionally high peaks. These peaks may be the result of very
strong local trapping of the emitted fossil fuel CO2 by e.g., a local inversion situation, i.e., a
process that our model cannot properly resolve.

Despite these discrepancies, the good to excellent evaluation results provide us with good
confidence to use our COSMO-7 based system to investigate the spatio- temporal variability of
the fossil-fuel CO2 in central and southern Europe. It is particularly encouraging to note the good
agreement not only for the fossil fuel CO2 component, but also for total atmospheric CO2. The
presence of an overall negative bias in the total atmospheric CO2 in the absence of such a bias in
the fossil fuel component suggests that the bias comes from the terrestrial biospheric component.
This could be due to our VPRM-based estimates of the net fluxes being too negative as suggested
by Oney (2016), i.e., suggesting a too strong sink for central and southern Europe, or for our
model simulating a too small diurnal and/or seasonal rectification effect (Denning et al., 1995),
i.e., a too small correlation between the time variations in the terrestrial exchange fluxes and
atmospheric transport/mixing. This deficiency does not impact our results much, since our focus
will be on the spatio-temporal variability of the fossil fuel CO2 signal.
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Table 3.1 Evaluation of COSMO-7 based simulations of the atmospheric CO2 concentration at 4
European sites (locations are shown in Figure 1). The comparison are shown for the 3 hourly means
between 12 to 18 PM local time for the period April 2008 through April 2009. m.s.a.g.is the height
above ground or relative height.

Station characteristics m.s.a.g(m) S.T.D.
obs(ppm)

S.T.D.
mod(ppm)

Correlation Bias(ppm)

Cabauw (CBW,
Netherlands)

tower 20 11.46 11.80 0.78 0.72

Cabauw (CBW,
Netherlands)

tower 60 10.86 11.06 0.77 0.27

Cabauw (CBW,
Netherlands)

tower 200 9.35 8.19 0.74 0.88

Puy de Dome
(PUY, France)

mountain top 10 7.83 7.65 0.75 0.85

Hegyhatsal
(HUN, Hungary)

continental 10 12.08 9.42 0.8 4.0

Hegyhatsal
(HUN, Hungary)

continental 48 11.51 9.32 0.8 4.04

Hegyhatsal
(HUN, Hungary)

continental 115 10.69 8.72 0.8 3.86

Mace Head,
(MHD, Ireland)

coastal 15 6.26 3.87 0.81 -0.34

3.4 The spatiotemporal pattern of the fossil fuel CO2

3.4.1 The spatial pattern

In the annual mean, computed from data from all times of the day, the fossil fuel component
of atmospheric CO2 in the surface layer (∼10 m above ground) amounts to more than 10 ppm
across wide swaths of central Europe (Fig. 3.4a). In large metropolitan areas, such as in western
Germany (Ruhrgebiet), Berlin, London, Paris, and Milan, the annual mean fossil fuel component
exceeds even 30 ppm. To first order, the distribution of the surface fossil fuel CO2 reflects the
distribution of the emissions (see Fig. 3.1), suggesting a somewhat limited efficiency of atmo-
spheric transport and mixing to disperse the signal laterally. In mountainous regions this is clearly
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a consequence of topographic constraints; elsewhere this is largely a result of the strong spatial
gradients in emissions, which remain conserved in the annual mean due to the overall diffusive
nature of the dispersion. Nevertheless, a substantial amount of the emitted CO2 is being trans-
ported away, leading to a sizeable fossil fuel CO2 signal extending far into the oceans surrounding
Europe, especially the North Sea.

Despite this lateral transport, the relatively good conservation of the spatial gradients in emis-
sions sets our results distinctly apart from previous studies, where the fossil fuel CO2 signal was
modeled to be very smooth in space and on average also substantially smaller. For example, com-
pared to the results obtained with the medium-resolution (0.5◦) Regional Model (REMO) (Peylin
et al., 2011), one can detect in our simulations nearly all major metropolitan regions and other
fine-scale features, such as individual fossil-fuel fired power plants (e.g., in eastern Germany).
This is primarily the result of the high horizontal and vertical resolution of COSMO permitting
this model to conserve the spatial gradients well. This good conservation is particularly well
illustrated when considering snapshot distributions of the fossil fuel CO2 for individual seasons
(Fig. 3.5). This figure also shows the strong impact of the transport and dilution by the diurnal
variations of the planetary boundary layer, whose impact is particularly strong in summer.

For much of Europe, the fossil fuel component is the dominant contributor to the spatial gra-
dients in annual mean atmospheric CO2 (Fig. 3.4b-d). In many places it accounts for nearly
all of the spatial gradients, with the contribution of the background and the terrestrial biospheric
component being substantially smaller. The latter shows gradients up to 10 ppm (Fig. 3.4c),
while the background signal does not exceed a few ppm (Fig. 3.4d). In the big cities, the fossil
fuel CO2 component represents even a sizeable fraction (10%) of the total CO2 concentration.
This dominance of the fossil fuel component together with its highly patterned nature owing to
the many point sources leads to a hotspot pattern in the near surface map of total atmospheric CO2

over much of Europe (Fig. 3.4b). However, due to lower emissions in southwestern Europe, the
fossil fuel CO2 signal is less strikingly visible there compared to central Europe, while the bio-
spheric signal is stronger. This results in a relatively uniform spatial pattern of atmospheric CO2

across Europe (Fig. 3.4b). Also the relatively low CO2 concentrations in the mountain regions,
such as the Alps, Apennines, Pyrenees and central France, reflect the much lower contribution
from the fossil fuel component.

Naturally, when investigating the column averaged dry air mole fractions (XCO2), i.e., the
property typically measured by remote sensing from a satellite, the annual mean gradients of the
fossil fuel component are much smaller than those seen at the surface (see Fig. 3.6a). This
is a consequence of the lateral gradients being much weaker aloft, owing to a more effective
transport and mixing. As a result, most of the hotspot nature seen in the surface concentration
pattern is blurred in XCO2. Also the magnitude of the signal is much weaker. While the surface
signal of the fossil fuel CO2 signal amounted to more than 30 ppm in strong emissions regions,
the signal in the column averaged annual mean XCO2 hardly exceeds 2 ppm. The impact of
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Figure 3.4 Maps of the model simulated annual mean components of atmospheric CO2 in the sur-
face layer (10 m above ground). (a) fossil fuel component, (b) total atmospheric CO2, (c) terrestrial
biosphere component, and (d) background CO2 component. The results are shown as dry air mole
fraction with units of ppm.

Figure 3.5 Instantaneous snapshot of the model simulated fossil fuel CO2 in the surface layer. (a)
Snap shot on July 1st at 06 00 GMT, (b) as (a) but at 18 00 GMT, (c) snapshot on January 1st at
06 00 GMT, (d) as (c) but at 18 00 GMT.

the predominant westerly air-flow becomes much more obvious in the column averaged dry air
mole fraction XCO2, with the fossil fuel component revealing a clear eastward increase that is
substantially stronger than the gradient in the underlying emissions.

The relative dominance of the fossil fuel component over the other components of atmo-
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Figure 3.6 As Figure 3.4, but for whole air column averaged dry air mole fraction in units of ppm
.

spheric CO2 is much weaker when considering the column averaged dry air mole fraction of CO2

(see Fig. 3.6b-d). As a result, the total XCO2 is made up of three relatively equally sized contri-
butions, with the fossil fuel CO2 signal continuing to dominate the XCO2 variations in the major
metropolitan areas. Contrary to the annual surface pattern, where CO2 tends to increase eastward,
the highest XCO2 are found in southwestern Europe with a trend toward lower values going east-
ward. This is partly a consequence of the lateral boundary conditions for atmospheric CO2, which
tend to lead to the advection of high background CO2 into the domain from the southwest. But
the most important reason is the strong negative terrestrial biosphere signal over Europe, reflect-
ing the sizeable carbon sink in European forests in the last decade (Reuter et al., 2016, in press).
Interestingly, the relatively uniform negative distribution for XCO2 contrasts with a more pat-
terned biospheric signal in the lowest atmosphere (Figure 3.4c), where the strong negative signal
is restricted to central Europe, while much of southern Europe has a positive annual mean bio-
spheric signal. The likely reason for this difference is the biospheric rectification effect (Denning
et al., 1995), which tends to lead a vertical redistribution of CO2, i.e. positive values in the lower
atmosphere and negative ones aloft. In most of Europe, this rectification signal is relatively small
in comparison to the annual mean biospheric component, so that the latter determines the overall
signal. But in southern Europe, where the biospheric fluxes tend to be smaller in magnitude and in
the annual mean to be near zero, the rectifier effect can dominate, explaining the positive signals
in the surface layer (Figure 3.4c) and simultaneously the negative signals when the biospheric
signal is integrated vertically (Figure 3.6c).
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3.4.2 The temporal variability

The temporal variability of the fossil fuel CO2 signal at the surface is very large, leading to a
standard deviation around the annual mean of 30 ppm or more in the hotspot regions (Figure
3.7a). These hotspots correspond largely to the regions of highest emissions (Figure 3.1). But
this high variability is not only a result of the temporal variability of the emissions, but arises
also from the interaction of variability in atmospheric transport and mixing with the strong lateral
gradients seen in the snapshot figures (see Fig. 3.5).

A similar pattern of variability is seen in surface atmospheric CO2 (Figure 3.7b), suggesting
that the fossil fuel CO2 is a major determinant not only of the annual mean spatial distribution of
atmospheric CO2, but also of its temporal variability. This is confirmed by Figure 3.8a, which
shows the relative contribution of the fossil fuel CO2 signal to the temporal standard deviations
of atmospheric CO2. In many places, particularly in Europe’s major metropolitan areas, but also
in many urban areas across Europe, the fossil fuel signal dominates the variability in atmospheric
CO2. But the high fossil fuel contribution is not limited to the urban areas. In fact, the region
delineated by having a 50% contribution or more extends over much of northern central Europe,
including the North Sea (see Fig. 3.8a).

In order to better understand the origin of the strong variability, we decomposed the variability
into seasonal, synoptic and diurnal contributions. The seasonal variation component was derived
by averaging the data on a monthly basis and by subtracting the annual mean. The synoptic
component was then computed by subtracting from the data the time series of the monthly means
and then forming daily averages of these deseasonalized data. Finally, the diurnal variability was
derived by subtracting the seasonal and synoptic components from the data.

This decomposition reveals that the contribution of the fossil fuel CO2 to the total variabil-
ity of atmospheric CO2 varies greatly depending on the temporal scale considered (Figure 3.8).
While the fossil fuel contribution is comparably small on seasonal timescales (Figure 3.8b), the
contribution on synoptic and particularly on diurnal timescales is actually very large, exceeding
60% across nearly the entire northern part of central Europe (Figure 3.8c-d). The small con-
tribution on the seasonal timescales is the result of the dominance of the seasonal cycle of the
biospheric fluxes in most of Europe. An exception are a few places in northern Europe and in
the very south of our European domain. We interpret this to be caused primarily by the relatively
strong seasonality of the fossil fuel emissions in these regions, owing to the strong summer-time
requirement for cooling in the south and the strong winter-time demand for heating in the north.

The pattern of the fossil fuel contribution on synoptic timescales is very similar to that of the
total contribution, meaning its contribution is one of the dominant contributions to the total tem-
poral variability. This is consistent with synoptic variations also being among the strongest con-
tributors to atmospheric variability, owing to baroclinic waves and frontal systems being formed
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Figure 3.7 Maps of the annual standard deviation of (a) the fossil fuel component and (b) atmo-
spheric CO2 in the surface layer.

Figure 3.8 Maps of the contribution of fossil fuel CO2 variability to total atmospheric CO2 vari-
ability on various timescales in percent. (a) Contribution over all timescales; (b) contribution for
the seasonal timescale only; (c) contribution for the synoptic timescale only; (d) contribution for the
diurnal timescale only.

out of the strong baroclinicity that characterize the mid-latitudes. These synoptic weather events
transport the emitted CO2 also quite efficiently outside the main metropolitan areas, explaining
the widespread signal of the fossil fuel contribution to the total variance of atmospheric CO2.
Even larger than the fossil contribution to synoptic variability is the contribution on the diurnal
timescale, with the fossil fuel CO2 contributing more than half of the variability over most of
Europe. This high variability comes from the interaction of the diurnal variability of the fossil
fuel emissions, with the strong diurnal variability of atmospheric transport, particularly the diur-
nal mixing of the planetary boundary layer. This co-variability between fossil fuel emissions and
atmospheric transport exceeds that between the biospheric fluxes and atmospheric transport over
the entire year, owing to the latter fluxes being large and relevant only during the spring/summer
period, while the fossil fuel emissions are relatively high during most of the months of the year,
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particularly close to the sources.

3.5 Discussion

The analyses of the results raise a number of questions that we would like to discuss next. First,
why is the diurnal variability so high, and in particular, what is the contribution of our consid-
eration of diurnal (and seasonal) variations in CO2 emissions on the simulated fossil fuel CO2

signal? Further, is there an impact beyond the variability, e.g., on the mean fossil fuel CO2 sig-
nal? Second, what is the contribution of the various sectors on the fossil fuel CO2 signal and in
what way do emissions from one country influence the fossil fuel CO2 signal in another country?
Third, how can we use the insights gained from the study of the fossil fuel CO2 signal to develop
optimal strategies for detecting changes in fossil fuel CO2 emissions? We discuss each of these
three questions next.

3.5.1 The impact of variations in fossil fuel emissions on atmospheric CO2

In order to elucidate the role of the temporal variations in fossil fuel emissions on the fossil fuel
CO2, we contrast the results of our standard simulation with time-varying emissions with those
where the fossil fuel emissions were kept constant over time. The annual emissions are identical
for the two cases, but the time constant case has, on average, considerably higher emissions in
summer and at night.

The contrast between these two cases shows only a small change in the high diurnal vari-
ability of atmospheric CO2 seen in Figure 3.8d, implying that the contribution of the diurnal
variations in fossil fuel emissions is less important than other factors (results not shown). The
largest contributions are found around some of the large metropolitan areas (e.g., London, Paris,
Milan), but they do not exceed 10%. Thus the majority of the diurnal variability in the fossil fuel
CO2 stems from the diurnal variations in atmospheric transport and mixing acting on the strong
horizontal gradients in emissions.

While not contributing much to the diurnal variability in the fossil fuel CO2, the considera-
tion of the time-varying emission matters quite substantially for the annual mean distribution of
the fossil CO2 signal. Figure Fig. 3.9a reveals that the annual mean fossil CO2 signal in the
simulation with time varying emissions is substantially lower over wide swaths of Spain, Italy,
the Benelux countries, (western) Germany and the UK compared to the simulation where fossil
fuel emissions were kept constant. The strongest negative signals are found close to the strongest
emitters in these countries, with magnitudes exceeding several ppm. But the magnitude of the
signal does not correspond to the magnitude of emissions, since regions with comparably low
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emissions such as Spain, have signals that are as large as those in high emission regions of the
Netherlands. The relatively large signals in southern Europe are likely due to the stronger PBL dy-
namics in these regions throughout the year in comparison to central and northern Europe. Some
regions also have a positive signal from the time- varying emissions, such as parts of France and
northeastern Germany. Thus the interaction between the variations in fossil fuel emissions and
the variations in atmospheric transport and mixing leads to a substantial net signal in atmospheric
CO2, even though the total emissions in both cases are identical.

This net signal represents a fossil fuel-driven rectification effect (Zhang et al., 2016) in anal-
ogy to the rectification effect associated with the terrestrial biosphere (Denning et al., 1996; Lar-
son and Volkmer, 2008), i.e., a signal that is due to the co-variance of emissions and atmospheric
transport/mixing. Its (mostly) negative sign emerges from the fact that when the emissions are
large, e.g., during the day, the transport and mixing away from the surface is strong, diluting the
fossil fuel signal in atmospheric CO2. In contrast, when the emissions are small, e.g., during the
night, the transport and mixing tends to be weak. Taken together, this results in a more efficient
dilution of the emissions in the time-varying emission case compared to the time- invariant case,
thus explaining the mostly negative sign of the fossil fuel rectification effect.

This explanation is supported by the mostly positive correlation between the height of the
planetary boundary layer (PBL) and the fossil fuel emissions, since the height of the PBL is a
direct measure of the magnitude of the dilution in the lowest levels of the atmosphere (Figure Fig.
3.9b).

But there are a number of notable exceptions. For example, wide swaths of northeastern Ger-
many and Poland and some places in central France have a positive rectification signal. Further,
there are places where the co-variation of fossil fuel emission and the PBL is negative, yet the
fossil-fuel rectification effect is still negative (e.g. the Ruhr valley region in western Germany),
suggesting that our explanation does not cover all aspects. In response, one first needs to recog-
nize that not only PBL but also other temporally varying phenomena, such as local atmospheric
circulation patterns (e.g. mountain winds, sea-breezes) can lead to co- variability between emis-
sions and transport/mixing, creating a rectification signal that can differ in sign. The contribution
of the sea-breeze can be identified quite clearly by the strong negative sign along most of the
coastline between southern Europe and the Mediterranean. Second, the local timing between the
growth and decay of the PBL and the emissions can be quite different, owing in part, to the sub-
stantially different time functions for the different emission categories and their different local
contributions (Figure 3.1). For example, in regions with a large contribution from road trans-
portation, the local emissions have a strong peak in the early morning hours, when the PBL is
still shallow, leading to a high signal there, while emissions are lower when the PBL is at its max-
imum in the early afternoon. This would create a positive rectification signal. Finally, in certain
places, also the seasonal rectification appears to play a role, i.e., the seasonal co-variations of the
emissions with the PBL height. In fact, in many places the magnitude of the correlation between
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Figure 3.9 Maps of the impact of the consideration of time-varying fossil fuel emissions. (a) Dif-
ference in annual mean surface CO2 between the case with time varying and time-constant fossil
fuel emissions. This difference represents the fossil fuel rectification effect. (b) Linear correla-
tion between the fossil fuel emissions and the height of the planetary boundary layer height in the
COSMO-7 model. Pixels with emissions smaller than 0.06 gC m−2 yr−1 are not plotted. The
positive correlation implies high emissions when the PBL is deep, and vice versa. Most of this
correlation stems from the diurnal time-scale, but the correlation is enhanced through the (mostly)
positive correlation also on seasonal timescales.

emission and PBL height on seasonal timescales exceeds that on diurnal timescales. This seasonal
variation is particularly large for residential heating, which is maximum in winter when the PBL
is low, leading to a positive seasonal rectification. This effect likely contributes to the negative
correlations between emissions and PBL height in large urban centers such as Paris (Figure Fig.
3.9b). We suspect that such seasonal effects are also the primary reason for the positive rectifi-
cation signal in northeastern Germany and northern Poland. In southern Europe, these seasonal
co- variations tend to lead to a negative fossil-fuel rectification effect, since the emissions peak in
summer (Figure 3.2b), when the PBL height is at its seasonal maximum.

The magnitude of the fossil fuel rectification effect is smaller than the rectifier effect induced
by the exchange fluxes with the terrestrial biosphere (Zhang et al., 2016), but still quite substantial.
Thus, the fossil fuel rectification effect clearly needs to be taken into consideration when model-
ing the atmospheric fossil fuel CO2 signal, highlighting the need to use and apply accurate time
functions. Our results thus clearly support the results of Nassar et al. (2013), who demonstrated
the substantial impact of the consideration of time-varying emissions on atmospheric CO2. We
extend their result by demonstrating an effect on the annual mean fossil fuel CO2, suggesting that
special attention needs to be given to the relative timing of variations in atmospheric transport and
mixing and fossil fuel emissions. Our results confirm the recent findings by Zhang et al. (2016)
who demonstrated the fossil fuel rectification effect for the first time in a global model. Their
signal is locally smaller than ours, owing to their using a much coarser resolution model, but they
also show that the sign of the fossil fuel rectification effect tends to vary between timescales, with
the diurnal being primarily negative, while the seasonal rectification effect being positive. This
supports our explanation for the positive signals in northeastern Germany and northern Poland.



3.5. Discussion 67

3.5.2 Fossil fuel CO2 signal from different sources

Near the surface, the fossil fuel emissions from a particular region create a distribution that stays
mostly within the region of origin (see Fig. 3.10 a,b). The fossil fuel CO2 is highly concentrated
near the localized areas of high emissions and then drops off quickly by distance with an e-
folding spatial scale of a few hundred kilometers. As a result, the fossil fuel signal tends to be
relatively small outside the region of origin, rarely exceeding 1 ppm in contrast to the > 20 ppm
signal close to the sources. The different magnitudes of the fossil fuel CO2 signals from different
regions largely reflects the total emissions, but also the emission intensity, i.e., the emission per
unit area. For example, with a total emission of 0.59 Pg CO2 yr−1, Germany is the biggest source
of fossil fuel CO2 within Europe, nearly double that of the second biggest emitter, i.e., France, yet
Germany is almost half the size of France, resulting in a considerably higher emission intensity
over Germany.

A different picture emerges when considering XCO2, i.e., the column averaged dry air mole
fraction CO2. After having been transported aloft, where the fossil fuel signal can be much
more readily dispersed, the imprint of the emissions of any particular region to the fossil fuel
CO2 within another region is actually quite large (Figure 3.10 c,d). In a small country, such
as Switzerland, only 20% of the fossil fuel signature in XCO2 above its territory stems from
emissions within, while the contribution of Germany alone is 21% and that of France 18% (Figure
3.10). A similar distribution of sources is found for other small countries, such as Austria. In
contrast, the fraction of the territorial emissions to the total fossil fuel signal is quite a bit larger
for large countries/regions, such as France or Germany. In the latter case, more than 50% of its
total fossil fuel CO2 signal stems from emissions within, with 4 countries contributing most of
the remainder. The countries/regions with high overall emissions contribute, of course, also most
strongly to the fossil fuel CO2 signal in other countries, with Germany contributing 18% to the
signal in France, 11% to that in Italy and 20% to that in the Netherlands. Owing to its lower total
emissions, France just contributes 9% to the signal in Germany and 8% to that in Italy. Thus, as
is the case with classical air pollution, the fossil fuel CO2 does not stop at the national borders,
but extends to continental scales.

Among all the processes, the CO2 emissions from power plants dominate the fossil fuel dis-
tribution, with concentrations reaching up to 16 ppm in the northern part of the domain (see Fig.
3.12). The point-source nature of this emission sector is clearly visible in the surface distribu-
tion, as is the spatially distinct distribution owing to the large differences in power production
in the different countries of central Europe. While France has very few fossil-fuel fired power
plants as a result of its high reliance on nuclear and hydroelectric power plants, Germany, Italy,
the Netherlands and Poland rely strongly on coal- and gas-fired power plants for their electricity
production. This leads to a highly heterogeneous fossil fuel CO2 signals of the power plant sector.
In total, this sector contributes 31.8% to the total fossil fuel CO2 signal in central Europe, which
is slightly smaller than its contribution to emissions (32.8%). This small difference emerges from
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Figure 3.10 Maps of the annual mean fossil fuel CO2 generated by different countries/regions. (a)
Surface pattern created by the emissions from Germany, (b) as (a), but for the France. (c) Column
averaged pattern created by the emissions from Germany, and (d) as (c), but for France.

the somewhat stronger loss of the signal across the lateral boundaries from this sector relative to
the signal from the other sectors.

The second largest fossil fuel CO2 signal is generated by the emissions from the road trans-
portation sector (22.0%) (Fig. 3.12d), with this share actually being somewhat larger than its
share in total emissions (21.1%). The transportation sector signal is very smooth, owing to the
distributed nature of the emissions from this sector (see also Fig. 3.1).

The CO2 signal from the industrial and residential sectors are more granular than that from
the transportation sector, but still not as distinct as the power plant sector, as there are less coun-
try specific policies impacting the CO2 emissions from these sectors. The emissions and conse-
quently the CO2 signal largely follow population density. The residential sector (mostly heating)
contributes 18.1% to the total fossil fuel signal in atmospheric CO2, slightly larger than the emis-
sions from the industrial sector (17.4%). These two shares in the signal very nearly reflect their
shares in total emissions. The emissions from the ‘other ‘sectors (e.g., shipping, waste incinera-
tion, etc) is smaller, in comparison (10.7%), but not negligible.

The relative contribution of the emissions from the different sectors to the fossil fuel CO2

vary strongly by region (Fig. 3.13). Clearly, close to major fossil-fuel fired power plants, this
sector dominates, but elsewhere, any of the four major sources can take the leading role. For
example, in Switzerland, Paris, and London, the emissions from the residential sector dominate
the signal, while over much of southern and western Europe, the transportation sector dominates.
The industrial sector dominates the signal in a few hotspot areas, where its emissions are high,
but where there is no major fossil fuel fired power plants nearby.
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Figure 3.11 Pie charts depicting the origin of the fossil fuel CO2 signal for each country/region.
The percentages represent the contribution of each country/region of origin to the total fossil fuel
signal in the averaged over the air column. The pie chart for Switzerland reveals, for example, that
only 20% of the fossil fuel CO2 signal over its territory stems from its territorial emission. Here,
CH: Switzerland; DE: Germany; FR: France; IT: Italy; AT: Austria; NL: Netherlands; SW: countries
in southwest of the domain; UK: United Kingdom; EA: countries in eastern domain; OT: the rest of
countries.

These high spatial variations in the relative contribution puts the findings of Vogel et al.
(2013) into a spatial context, as they reported for the Heidelberg site a dominance for emissions
from power plants (28%), while the transportation sector contributed only 15%. This is a typical
value for much of western Germany, reflecting the relative contribution of the different emis-
sion sectors (see also Fig. 3.1). But the contributions are very different, for example, for the
CarbCount CH sites in Switzerland (Oney et al., 2015). At Beromünster, the transportation sec-
tor dominates over the other sectors, with nearly 70% stemming from this sector alone, while
the contribution from power plant emissions is very low at this site, since Switzerland does not
operate any fossil fuel power plants.

These large differences in the relative contribution from the different emission sectors have
major implications for the analysis of the fossil fuel CO2 and how it may change in response to
mitigation measures. For example, these large differences will lead to substantial spatial gradients
in the CO to CO2 ratio in the fossil fuel signal, as the different emission sectors have very different
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Figure 3.12 Maps of the annual mean surface fossil fuel CO2 stemming from different sectors in
units of ppm. (a) fossil-fuel fired power plants, (b) residential heating, (c) industrial processes, and
(d) road transportation.

Figure 3.13 Maps of the annual mean relative contribution of each sector to the total surface fossil
fuel CO2. a) fossil-fuel fired power plants, (b) residential heating, (c) industrial processes, and (d)
road transportation.

CO to CO2 emission ratios. Since CO is often used to identify the fossil fuel component from
atmospheric CO2 observations, these variations need to be carefully disentangled in order to
properly diagnose the fossil fuel component. The strong variations in the contributions from the
different sectors thus adds a substantial amount of uncertainty to the CO method (Oney, 2016;
Vardag et al., 2015). A second consequence concerns the detection of changes in emissions from
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the different sectors. Thus, with the transportation sector contributing little to the very large fossil
fuel signal in much of the northeastern part of our domain, reductions in this sector will be difficult
to discern in that region. In contrast, the high relative contribution of the transportation sector
to the total signal in southwestern Europe makes it actually quite feasible to detect mitigation
measures in this sector in that part of Europe, even though the overall signal might not be that
high.

An important caveat of our simulations is the fact that the effective height of the emissions
above surface was not considered, but rather all CO2 was released into the lowest model level.
As a consequence, the surface CO2 signals from elevated stack emissions from power plants and
residential heating are likely biased high relative to those from the transportation sector. Given
the large contribution from power plant emissions, it will be important to accurately consider the
effective emission height (including plume rise) in future simulations, a point that was also raised
by Vogel et al. (2013).

3.5.3 The response of atmospheric CO2 to an emission reduction

According to their intended nationally determined contributions filed with the United Nations
Framework Convention on Climate Change (UNFCCC) in late 2015, the European Union and its
member states have agreed to a binding target of an at least 40% domestic reduction in greenhouse
gases emissions by 2030 compared to 1990 (http://www4.unfccc.int/Submissions/
INDC/Published%20Documents/Latvia/1/LV-03-06-EU%20INDC.pdf). A ma-
jor question driving international policy making is to what degree such a reduction can be veri-
fied through independent means, such as through the monitoring of atmospheric CO2 (Ciais et al.,
2014, 2015). To address this question, we conducted several sensitivity experiments to investigate
how various reductions in the magnitude and types of emissions affect not only the annual mean
fossil fuel CO2 signal, but also its variability. The goal is to determine whether reduced fossil fuel
emissions might be detectable by current and future observing systems, especially satellites.

Since CO2 is a conservative tracer in the atmosphere at the time scales considered here, a
uniform reduction in the emissions leads to a uniform and directly proportional reduction of its
current distribution, i.e., a 30% reduction of total fossil fuel emission would simply lead to a 30%
reduction of the fossil fuel CO2 signal at the surface (Fig. 3.4a) and throughout the atmospheric
column (Fig. 3.6a). Concretely, the fossil fuel CO2 would be reduced by more than 4 ppm near
the surface for vast stretches of central and northern Europe, with maximum reductions of 10
ppm or more in the emission hotspots (Figure 3.14a). This contrasts with the reduction in the
averaged column annual mean XCO2 amounting to just over 0.2 ppm in the regions where the
surface decreases by 4 ppm or more (Figure 3.14b). A reduction of 0.5 ppm is reached in just
a few isolated locations, generally characterized by a high density of point sources, primarily
fossil-fuel fired power plants. Thus, given current measurement accuracies of better than 0.1

http://www4.unfccc.int/Submissions/INDC/Published%20Documents/Latvia/1/LV-03-06-EU%20INDC.pdf
http://www4.unfccc.int/Submissions/INDC/Published%20Documents/Latvia/1/LV-03-06-EU%20INDC.pdf
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ppm for a ground-based observing network (Zellweger et al., 2016), a 30% reduction in the fossil
fuel emissions is fundamentally easily detectable for such a system, although one needs to bear
in mind the non-trivial task to separate the signal from the background variability. In contrast,
such a reduction in the fossil fuel emissions is not trivial to detect by satellite observations for
most regions (except around the big power plants) as it is very challenging to obtain and maintain
accuracies better than 0.5 ppm by current space- based observing systems (Buchwitz et al., 2015).
Furthermore, such high accuracies are only achieved when the data are averaged over large scales,
i.e., order of 1000 km or more. Nevertheless, taking 0.5 ppm as the threshold for detection within
a single pixel, a 30% reduction in fossil fuel emissions thus appears to be beyond the detectability,
except for a few hotspot regions(Figure 3.14b). Even a 50% reduction would not be trivial to
detect for a satellite-based system on the basis of changes in the column averaged dry air mole
fraction .

Given these challenges, a potentially attractive second avenue for determining changes in fos-
sil fuel emissions is the reduction in temporal variability of atmospheric CO2 that goes alongside
the reduction in the mean signal. This is particularly promising given the very high contribution
of the fossil fuel CO2 signal to the variability in atmospheric CO2 (see Fig. 3.8). As is the case
for the mean, the conservative nature of atmospheric CO2 implies that a uniform reduction of the
emissions will lead to a uniform and proportional reduction of the variability of the fossil fuel
signal as well. However, this is not the case for the variability in total atmospheric CO2, since
co-variations between the fossil fuel signal and the signal from e.g., the terrestrial biosphere can
lead to non-linear effects. For example, a negative correlation between the two components would
lead to a situation where the variability of atmospheric CO2 was smaller than that of the individual
components. In such a case, a reduction of the fossil fuel emission would lead to a smaller de-
crease in variability than expected. If the two components were positively correlated, the opposite
would occur, i.e., the variability in atmospheric CO2 would decrease more than expected.

Near the surface, the reduction in the temporal standard deviation and in the mean have
nearly the same amplitude for most places (Figure 3.14c). This makes the analysis of changes
in the temporal variability indeed an attractive option to enhance the detectability of changes in
fossil fuel emissions. This is much less the case for the annual mean XCO2, where the standard
deviation changes are in general much smaller than the changes in the mean, with just a few
isolated places revealing changes in the standard deviation of 0.5 ppm or more that might be
discerned by the current generation of satellites.

But in these isolated places, the analysis of the temporal variability might be an interesting
option even for satellite-based measurement systems (Fig. 3.15). In those places, indicated by
the green circles in (Figure 3.14c), the changes in the temporal standard deviation are very large.
Even for changes in emissions of around only 30%, the changes would be detectable for current
satellites (Fig. 3.15). But the number of such sites is very low across Europe, making this not a
general, but rather a specialized option.
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Figure 3.14 Changes in annual mean atmospheric CO2 and its standard deviations resulting from
a 30% reduction in the fossil fuel emissions from all sectors. (a) Change in surface mean CO2. (b)
Change in the column averaged CO2, i.e., XCO2. (c) Change in the standard deviation of surface
CO2 (all seasons). (d) Change in the standard deviation of the column averaged CO2, i.e., XCO2.
The standard deviation refers to the differences of the afternoon data (at 1:00 PM) to the annual
afternoon average.

Figure 3.15 Impact of reductions in power plant emissions on the mean and standard deviation of
the fossil fuel CO2 signal . (a) probability density distribution of the surface atmospheric CO2 for
the present and for a case when the power plant emissions were reduced by 50% at a site in eastern
Germany (50.32◦N,13.19◦E). (b) Relationship between the changes in the mean and the standard
deviation of the column averaged CO2 for a given reduction in power plant emissions, with different
color representing representing different sites with different characteristics in their response to this
reduction in emission: Blue (50.32◦N, 13.19◦E), Cyan (50.32◦N, 6.59◦E), Red (42.48◦N, 6.51◦W),
Orange (49,28◦N, 6.14◦E) (Locations shown in Figure 14b with green circles).

The detection challenge is not simpler for other potential emission reduction scenarios, as
outlined, for example in the EU roadmap (http://ec.europa.eu/clima/policies/
strategies/2050/index_en.htm). A 50% reduction in the emissions from power plants
alone (representing a reduction of the overall emissions by 16%), results in the mean surface con-
centration of atmospheric CO2 going down by more than 2 ppm over large parts of northwestern

 http://ec.europa.eu/clima/policies/strategies/2050/index_en.htm
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Europe, following the pattern of the surface signal of this sector (cf. Fig. 3.12a). Alongside we
find a substantial reduction of the standard deviation of surface atmospheric CO2 by more than 2
ppm in these regions, with the hotspots of power plant emissions seeing a reduction in the stan-
dard deviation of atmospheric CO2 of 5 ppm or more. The reduction of the average annual mean
column XCO2 is much smaller than that of atmospheric CO2 at the surface, amounting to little
more than 0.2 ppm over wide swaths of northern Europe. The maximum reductions are of the
order of 0.5 ppm in the proximity of large clusters of fossil-fuel fired power plants, i.e., generally
too small to be detected. But, in these regions, the changes in the variability in XCO2 is quite
high, making this method again potentially attractive for detecting changes. In fact, in several
regions, including some major cities, a 19% reduction of the fossil fuel emissions would result
in a change of more than 0.5 ppm in the standard deviation, i.e., above detection level. This thus
supports the findings of Pillai et al. (2016) that changes in fossil fuel emissions are fundamentally
detectable over major cities or major point sources, but it also shows that this detection is very
challenging.

The signals get even more difficult to discern if the emission reductions occur in individual
sectors other than the power plants. For example, detectable signals by current generation satel-
lites occur only if industrial emissions are cut by more than 80% or if residential emissions are cut
by more than 90%. Also country level emissions are not trivial to be clearly detected. A reduction
in Germany by 50% is potentially detectable by current satellites, with a maximum reduction of
XCO2 by 0.95 ppm. For most other countries, however, a 50% reduction in emissions is difficult
to be detected.

All the analyses here relied on using the model output on all available days, i.e., we assumed
perfect temporal coverage. This is overly optimistic, since cloud cover and other complicating
factors (e.g., aerosol layers) will cause the coverage to decrease considerably, complicating the
detection.

But regardless of this additional challenge, there is much additional information contained
in high frequency observations of atmospheric CO2. As we demonstrated above, the temporal
variations are potentially highly useful for detecting fossil fuel emissions changes from various
sources, especially those with a strong spatial granularity such as power plants or individual
cities. For a routine monitoring of strong point sources, Velazco et al. (2011) therefore proposed
a constellation of 5 satellites of type CarbonSat that combine imaging capability with a relatively
wide swath (Bovensmann et al., 2010). Such a constellation would offer daily global coverage,
though the presence of clouds would reduce the effective coverage considerably. As the precision
and accuracy of satellite retrieved XCO2 will improve in the future, that minimum change will go
down as well.
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3.6 Summary and conclusions

We have investigated the fossil fuel signal in atmospheric CO2 over southern and central Europe
using a regional high-resolution atmospheric model forced with temporally and spatially highly
resolved variations in the fossil fuel emissions. The assessment of the modeled atmospheric
CO2 with in-situ measurements across multiple sites across Europe reveals good to excellent
agreement on all timescales considered with biases of less than 1 ppm, with the exception of the
tall tower site Hegyhatsal in central Hungary. The model is also able to capture the reconstructed
fossil fuel component at two sites quite successfully. Although the model tends to underestimate
the amplitude of the daily averaged fossil fuel CO2 in winter, the simulation matches fossil fuel
CO2 from both sites very well most of the time, revealing the high quality of the transport model
and reasonable time profiles of the fossil fuel emissions used as input.

Over much of Europe, the fossil fuel CO2 is a dominant component of the spatial variability of
atmospheric CO2, particularly near the surface. In some places, it even contributes significantly to
the total (including background) CO2, up to 110% in large urban centers and power plant plumes.
Also the contribution to the temporal variability is very substantial. Fossil fuel CO2 makes a
particularly large contribution at synoptic and diurnal time scales whereas the seasonal variability
is dominated by biospheric activity. The influence is not only large over the hot spot regions of
fossil fuel emissions, but also over large areas downstream. In case of diurnal variability, fossil
fuel CO2 is the dominant component over wide areas of northern and western Europe.

Temporal variability of the emissions has a non-negligible influence on annual mean fossil
fuel CO2 mole fractions near the surface, due to diurnal and seasonal rectifier effects. Differences
between annual mean values with temporally variable and constant emissions can be up to a few
ppm in the hot spot regions, but are mostly below 1 ppm elsewhere. This implies that temporal
variability of fossil fuel emissions needs to be accurately represented for realistic simulations,
confirming the results of Zhang et al. (2016). It is also important for reliably detecting fossil fuel
emission changes from specific sources since different sources have different temporal profiles.

Simulating fossil fuel emissions from different countries and sectors suggests that the major
part of the signal near the surface remains in the country of origin. Ground-based in situ obser-
vations are thus most sensitive to fossil fuel emissions from the country where they are located.
A different picture emerges for column averaged dry air mole fractions (XCO2) as measured by
satellites, for which the signal is much more dispersed. Only over Germany, the contribution from
emissions within the country is larger than 50%, whereas over France the signal from neighbor-
ing countries dominates (66%). An important reason for these contrasting results seems to be the
differences in electricity production, which mostly relies on nuclear power in France but on fossil
fuels in its neighboring countries including Germany, UK and Italy. Over small countries such
as Switzerland or the Netherlands, the contribution from abroad is typically the dominating com-
ponent. Among all the processes, fossil fuel emissions from power plants contributes the most
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(approx. one third) to the total fossil fuel signal of CO2 both at the surface and in the column.
However, the power plant signal at the surface is likely overestimated in our simulations, since
all emissions were released into the lowest model level without considering the true elevation of
the source. The signal from power plant emissions has a pronounced and distinct spatial pattern
that provides us an opportunity to discern changes in from power plant emissions from changes
in other sources.

Based on a number of sensitivity studies, we show that reductions in fossil fuel emissions
not only leave a distinct signal in the time mean distribution of atmospheric CO2, but also in
its temporal variability. This opens potentially additional ways to detect and verify emission
reductions. But this opportunity exists primarily for surface based measurement networks, while
the satellite based systems that measure the column-averaged XCO2 will see too small changes,
in general, relative to their current measurement capabilities. An important exception are a few
hotspot sites, where the satellites will be able to detect fairly modest changes of about 30% when
assuming an accuracy of the satellite observations of 0.5 ppm.

As both satellite and surface measurements have advantages and disadvantages, combining
surface measurements with satellite data and increasing the frequency and coverage of the latter
will be the optimal path forward to enhance the possibility of detecting future changes in fossil
fuel emissions.
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Chapter 4

CarbonTracker Switzerland: Evaluation of
the transport model COSMO and tests of
the high-resolution atmospheric CO2

inversion system with synthetic data

Abstract

The confidence one has in the biospheric flux results from an atmospheric CO2 inversion hinges
critically on two aspects: Fidelity of the atmospheric transport model, and robustness of the
method. The latter requires a well-tested inversion system, whose critical elements are well iden-
tified and understood. In this chapter, we pursue these two tasks by first evaluating the high-
resolution atmospheric transport model COSMO using observed CO2 at a diverse set of central
European sites, and then testing thoroughly the CarbonTracker Switzerland system with synthetic
data.

To evaluate the model, we simulate atmospheric CO2 for the year 2013 using the central
European COSMO-2 grid with 7 km resolution. As boundary conditions, we use the fossil fuel
emissions from MeteoTest and EDGAR with the time functions developed in chapter 3, hourly
resolved land biosphere flux estimates from the Vegetation Photosynthesis and Respiration Model
(VPRM) model, and background CO2 data from CarbonTracker EU. The modeled atmospheric
CO2 matches the observed CO2 from the four CarboCount CH sites, from Jungfraujoch and from
two sites in southern Germany and northern Italy excellently, both in amplitude and variability
with biases of less than 1 ppm, and correlations exceeding 0.8 for all seasons. An important
exception is the Gimmiz site, whose location makes it prone to very local influences that are
not well captured by our model. This good agreement in CO2 across several sites suggests that
COSMO is a well suited transport model for atmospheric CO2 inversion studies.
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In the second part of the study, the ensemble Kalman filter-based CarbonTracker Switzer-
land system is then thoroughly assessed and tested with synthetic observations obtained from the
forward simulation conducted in the first part. In the standard setup, despite strong perturba-
tions to the initial prior flux estimates, CarbonTracker Switzerland is able to recover the ”true”
fluxes in most of the regions in the domain, i.e., the biospheric fluxes used in the forward simu-
lation. Alongside, the inversion was able to reduce the error by 80%. Next, we tested the system
with regard to the following elements: (i) network size, (ii) localization methods, (iii) inversion
method, (iv)errors in the fossil fuel footprint, (v) errors in the background CO2, and (vi) errors
in both background and fossil fuel. The background errors were not added in a random manner,
but using an autoregressive model whose parameters were fit from the mismatch between the
observations and the model results analyzed in the first part.

Regarding the network size, the results reveal that 5 sites are enough for retrieving fluxes with
less than 10% error inside the footprint, and 8 sites are enough for removing most of the prescribed
error from scaling factors or uncertainties of fluxes in the domain except for the western region.
The tests for different localization methods reveal very little impact. Nevertheless, for a more
robust result for the cropland ecoregion inside the footprint, the CT2007 localization method is
recommended.

In contrast, the fluxes inside and outside of the footprint are much more sensitive to the
inversion method, with the percentage based inversion giving around 20% more error reduction
and 10% less posterior error than an ecoregion dominant based inversion.

Results from the sensitivity tests to assess the impact of the background biases indicate that
the cropland ecoregion inside the footprint and the deciduous forest ecoregion in the northern
part of the domain suffer the most from background CO2 biases. For more robust posterior
fluxes, especially for the cropland ecoregion, longer spatial and temporal correlations (1 month)
are needed in order to remove the biases in the background CO2. Under current settings, i.e., not
adopting longer correlations, the percentage inversion method (optimizing the fluxes eco regions
based on their coverage of percentage in the pixel) was able to correct for a background error with
a standard deviation 2 ppm very well.

The biases from fossil fuel have an influence on the posterior biosphere fluxes only in summer
(with an error of around 8% of the true fluxes), with less to no influence in the other seasons.
However, this influence from fossil fuel uncertainties is relatively weaker than the influence from
background CO2 biases. The tests of combining NEE error, fossil fuel error and background error
imply that the fossil fuel error and background error dominate the NEE error in the posterior
results.
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4.1 Introduction

While atmospheric CO2 inversion-based estimates of the global land uptake and its large scale
distribution tended to converge in recent years (Ciais et al., 2010; Peylin et al., 2013), large
uncertainties exist with regard to the fluxes at the regional scale, with different estimates showing
substantial discrepancies. Perhaps this is, in part, a result of this being a newer type of inversion
for which the community has gained less experience so far. But there are several distinct elements
that differentiate regional inversions from global ones (see also introduction), making them more
demanding on the one hand, while making them also possibly less error prone, on the other hand.

The first differentiation is the error associated with the atmospheric transport model, which
tends to be accentuated on regional scales compared to global ones. But the much higher reso-
lution transport models that are being used for regional inversions tend to reduce also the spatio-
temporal representation error, i.e., the mismatch between the modeled spatial and observation
scales (Peylin et al., 2013). Nevertheless, the transport error tends to dominate. In response, sev-
eral methods have been developed for dealing with this source of error (see (Ciais et al., 2010;
Carouge et al., 2008; Baker et al., 2006; Steinkamp, 2011; Kretschmer et al., 2012)). Of particular
importance is the work from high resolution atmospheric transport models at regional scale in
the framework of ACT-America (http://act-america.larc.nasa.gov/science.
html), which has focused on the quantification of the transport uncertainties in atmospheric
models and on developing methods to decrease them. They show in a synthetic experiment, for
example, that the transport model error could be controlled artificially and that the impact of er-
rors in the background or fossil fuel on the inverted result could be separated and investigated.
Also Lauvaux et al. (2009) and Broquet et al. (2011) recommended methods for calculating the
model error or uncertainties by using result from ensemble statistics or stable tracers as reference
for model transport errors.

Modeling the atmospheric transport is particularly challenging in complex terrain where the
topography requires the model to adequately reconstruct mesoscale flow patterns around moun-
tains and valleys, or along coastline. Historically, and particularly in global-scale inversions,
atmospheric CO2 data from mountain tops tended to be excluded, or statistically less weighted
(larger uncertainty). Also a stronger temporal data filtering was applied to these sites, making
the improvement in the mismatch between observation and model mainly restricted to the flat re-
gions (Geels et al., 2007). But this is clearly not an option for regional scale inversions, where the
objective is to estimate fluxes also in regions with mountainous terrain. In a method called spa-
tial localization and widely adopted in the weather forecasting community, some of the problems
arising from transport errors have been addressed by decreasing the background error covariance
terms, such that at some good distance, the errors at two sites are no longer correlated (Gaspari
and Cohn, 1999) or there is no correction from the system (Lauvaux et al., 2012) in order to ex-
tract the correct information from observation sites. Kang et al. (2011) extended on this concept

http://act-america.larc.nasa.gov/science.html
http://act-america.larc.nasa.gov/science.html
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and showed that their variable localization algorithm is able to improve estimations, especially
when the surface fluxes change with time and when the transport model error becomes significant.
Zupanski et al. (2007) introduced the covariance localization method into a Maximum Likelihood
Ensemble Filter using a distance function defined in the information space and claimed that the
system could work very well even with a small ensemble size. These methods were primarily
applied over flat regions with rather homogenous land cover, not over complex mountain regions.
We will test different localization methods at complex mountain region in this study.

The second major problem that gives rise to inconsistencies at the regional scale are the er-
rors associated with the CO2 boundary inflow conditions as they have been shown to substantially
shift the posterior spatial pattern and amplitude (Göckede et al., 2010; Gourdji et al., 2012). In
certain cases, biases in this signal, commonly referred to as the background CO2, rival the mag-
nitude of uncertainty due to the posterior fluxes. Thus, the precise definition of the advected
background CO2 mixing ratios is paramount for inverse modeling frameworks operating on re-
gional to continental scales (Lauvaux et al., 2012). Various methods were adopted to alleviate the
bias from background CO2 in regional inversion systems, pre-processing of the boundary condi-
tions or the use of observed boundary conditions directly as observations in the inverse system.
A mean correction could be applied to remove this background error, or the sensitivity to error
was simply tested by adding arbitrary values to test the potential limits of the influence (Göckede
et al., 2010). Using a constant correction can not capture the dynamics of the variability of the
background CO2 error, which might bias the inverted fluxes at short time scale, and potentially
at longer time (synoptic scale) periods for the regional inversion system. In other studies, aircraft
profile measurements were used to correct potential biases in the lateral background conditions
(Lauvaux et al., 2012; Schuh et al., 2013). The fast and slow changes in the inflow errors were
considered in these studies, i.e., the hourly correction, or the correction at the synoptic scale.
However, the aircraft measurements are generally available for only short time period. In addi-
tion, none of these studies consider the autocorrelation of the residuals between the modeled and
observed background CO2 at the scale of the these inflow errors and calculate their influence of
the carbon budget.

Another issue in the regional inversion system is the error or influence from fossil fuel emis-
sions, because global or continental inversion systems could avoid the influence of fossil fuel
emissions by choosing far field measurements site. However, regional inversions are more sensi-
tive to errors in fossil fuel emissions, particularly given its fine-grained pattern and its temporal
evolution (see also chapter 3). Although some studies show that different time profiles for the
fossil fuel emissions do not affect the inverted fluxes(Göckede et al., 2010), these results were
obtained for a region with relatively low emission intensity. In contrast, Peylin et al. (2011)
showed that for a region like Europe, where the emission intensity is generally high (chapter 3),
different fossil fuel inventories substantially affected the inverted net biospheric flux results. To
investigate whether the fossil fuel CO2 errors have influence on the inverted net biospheric fluxes,
we use ensemble of fossil fuel CO2 with a spread that represents their uncertainty to investigate
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the influence of fossil fuel CO2 emission errors on posterior fluxes.

Finally, there is uncertainty associated with the assimilation method itself, largely the aggre-
gation error originating from the tiling of the land surface into a number of discrete regions (irre-
spective of whether these are based on geography or ecoregions or something similar) (Kaminski
et al., 2001). The solutions for this problem are either the adoption of smaller tiles, e.g., going all
the way to a pixel-based assimilation, or the balancing between smoothing error and aggregation
error, or using a similarity matrix to reduce the aggregation error (Turner and Jacob, 2015). Tolk
et al. (2011) and Meesters et al. (2012) highlighted the importance of a pixel-based inversion and
the precise specification of the land surface properties for a local scale inversion system. But the
very large degrees of freedom of a pixel-based inversion would lead to instabilities in the solutions
without some form of regularization. This is achieved by the definition of covariances between
the pixels, i.e., by generating off-diagonal structures in the prior error correlation or error covari-
ance matrix (Wu et al., 2011). This effectively reduces the degrees of freedom substantially, but
does not solve the issue that a pixel-based inversion has a very large covariance matrix that leads
to the need for very substantial computational resources in order to minimize the cost function.

Despite the fundamental superiority of a pixel-based inversion, at the end result might not be
that different at regional scale. For example, Tolk et al. (2011) compared a pixel-based inversion
for the Netherlands with one that tiled the land surface into ecoregions and showed that there is
no significant difference of the mismatch between modeled and observed CO2 between the two
inversion systems. That is why we will not use pixel method given the no significant improvement
and smoothing error brought by too many unknowns. Instead, we limited ourselves to an eco
region based inversion.

A further issue to which regional-scale atmospheric inversion systems are likely more sen-
sitive to than global-scale inversions is how subgrid scale variations in vegetation (eco)types or
plant communities are dealt with. In most inversions undertaken so far, the flux in a grid cell
was assigned to the dominant plant community, disregarding the contribution of the other plant
communities in that grid cell. In coarse resolution inversion, this results in a nearly complete
loss of important ecotypes, but rarely dominant ecotypes. This issue is somewhat alleviated in
the regional inversions by the smaller sizes of the grid cells, but given the fine-grained patterning
of the plant communities in many regions, these grid cells are still much larger than the typical
length scale of a patch of a particular plant community. So far, it has not been determined, how
large the potential error of this simplification is.

The objectives of this chapter are: i) to assess the fidelity of the high resolution transport
model by evaluating the results with the observations from the CarboCount CH network in a
complex topographic environment and quantify the transport and measurement error; ii) to assess
how the assimilation system behaves at regional scale and how sensitive the system is to the
various EnKF settings; and iii) to check how the background and fossil fuel error affects the
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spatial and temporal error of the posterior fluxes.

First, we introduce the method and data, followed by the evaluation of the forward run. Then
we show the results from sensitivity tests. Finally, we come to discussion and conclusion.

4.2 Method

4.2.1 Forward Simulation

The numerical weather prediction model COSMO is used as the observation operator, i.e., trans-
port model, to convert the fluxes into the high resolution observation space. We provide a short
summary here, while the reader is referred to chapter 2 for details. The model domain for Carbon-
Tracker Switzerland is the same domain as the central European domain of MeteoSwiss, i.e., that
of COSMO-2 but with a resolution of 7 km, covering the region from 42.72◦ N 2.25◦ E (lower
left) to 49.76◦ N 17.25◦ E (upper right) with Switzerland in the center of the domain (Figure 4.1).

CarbonTracker Switzerland separately models the atmospheric distribution of a total of 53
CO2 tracers, each covering one piece of the total information, and expressed as dry air mole
fractions, i.e., CO2. These tracers separately represent (i) the background CO2 signal, (CObg

2 ) (ii)
the fossil fuel signal, (COff

2 ) (iii) the oceanic CO2 signal (COoce
2 ), (iv) the signal of GPP from each

considered ecoregion, i.e., COgpp, r
2 , and (v) the signal of total ecosystem respiration from each

considered ecoregion, i.e., COra, r
2 . The atmospheric CO2 mole fraction is then computed by the

sum of all components, with the GPP and respiration components being scaled with the respective
scaling factors, λ(r,frac,GPP) and λ(r,frac,ra)(see equation 2.24).

The CO2 concentration from CarbonTracker Europe (Peters et al., 2010) were used for the
lateral boundary conditions, i.e., to constrain CObg

2 at the boundaries. The fossil fuel emissions
for CO2 were generated by merging a relatively coarse emission inventory for the regions outside
Switzerland (EDGAR v4.2, 10 km, (Janssens-Maenhout et al., 2012)) with a high-resolution (0.5
km) emission inventory for Switzerland. We used the same sector-based set of time functions
described in chapter 3 to produce hourly emission flux densities for each grid cell of the model
domain. These emission databases were developed for the year 2009. We scaled them uniformly
in order to match the total fossil fuel emissions for the year 2013. Given the relatively flat emis-
sions in the recent years, the required scaling was small. Not considered in our scaling are the
potential shifts in the different sectors, leading to different spatial and temporal distributions. As
the contribution of the oceanic CO2 in our domain was very small, we set it as 0. For the different
biospheric fluxes, i.e., GPP and total ecosystem respiration, we used the hourly terrestrial bio-
spheric fluxes from the Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan
et al., 2008) with all optimization parameters, λ set to 1. The net biospheric flux, i.e., GPP minus
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 inside    south   north inside    south   north

Footprint of CarboCount sites 

Figure 4.1 Map showing the simulation domain of COSMO-2 and the dominant ecoregions at
each grid cell of the model: 1-3: Mixed Forest; 4-6: Deciduous Forest; 7: grassland; 8-11: crop-
lands, white area: others. The darker colors indicate the ecoregions that are inside the footprint of
the observing sites of the CarboCount CH network, with the footprint boundary shown as a black
line. While only the dominant ecoregion is shown, the inversion actually considers the relative con-
tribution of each ecoregion present in a grid cell. The white areas belong to the group of ’others’,
which is not solved for in the inversion as their CO2 fluxes are very small.

total respiration corresponds to the net ecosystem exchange (NEE) flux.

The meteorological model was initialized with the archived COSMO-7 analyses undertaken
by MeteoSwiss as part of is operational weather forecasting, and then the meteorological model
was run forward without assimilation of any meteorological data, but using the lateral boundary
conditions from the same COSMO7 analyses. The inverse simulation covers the period from
Jan 1, 2013 until December 31, 2013 to coincide with the first year with full observations of the
CarboCount CH network. The CO2 tracers were transported online as passive tracers, with the
initial fields taken from CarbonTracker EU.



84 Chapter 4. Evaluation of COSMO and synthetic tests of CarbonTracker Switzerland

4.2.2 Observations and synthetic data

In order to assess the model, we are using the atmospheric CO2 observations for the year 2013
from the four CarboCount CH sites, i.e., Beromünster (BRM), Lägern Hochwacht (LHW), Frue-
buehl (FRU), Gimmiz (GIM) (Oney et al., 2015). In addition, we will be using high quality
observations from the other 5 CO2 sites within our domain, namely Jungfraujoch (JFJ) (Oney
et al., 2015), Schauinsland (SSL) in southern Germany, Monte Cimone (CMN) and Plateau Rosa
(PRS) in northern Italy, and Sonnblick (SBN) in Austria (see Table in chapter 2 for details).

The synthetic data needed for testing the CarbonTraker Switzerland inversion system were
generated by sampling the results from the forward simulation at the observing sites and heights
in the same manner as the observations would do. To obtain the relevant atmospheric CO2 con-
centration, we used equation 2.24 and set the scaling factors λ for each ecoregion r to unity. The
sampled synthetic CO2 data are assimilated using the CarbonTracker Switzerland system with
the goal to optimize the biospheric scaling factors λ. These optimized λ are then compared with
the ”true” state, i.e., the λ = 1 value used to generate the synthetic data. This will permit us to
directly evaluate the performance of the system with regard to the many decision elements that
go into the inversion. The fundamental details of the system are described in chapter 2.

In order to better mimic reality and to challenge the inversion system in a more realistic man-
ner, we added errors to the fossil fuel and the background signals. The error we added to the fossil
fuel signal at each observing site was estimated on the basis of the spread of observation-based
estimates of the fossil fuel signals (Oney et al., 2016, in review). Concretely, these authors esti-
mated the fossil fuel signature at the CarboCount CH sites Beromünster and Lägern Hochwacht
on the basis of the concurrently observed carbon monoxide (CO), using the CO observations from
Jungfraujoch as an estimate of the background. The ensemble was generated on the basis of dif-
ferent assumptions about the CO:CO2 ratio and different ways to generate the background signal.
The uncertainty was estimated from the spread of this ensemble (Oney et al., 2016, in review).
We took the fossil fuel CO2 concentration at Lägern and Beromünster and fit the mean and stan-
dard deviation of the all the fossil fuel CO2 concentration with a linear function at each site. The
regression function at 2 sites are σBRM = µBRM ∗ 0.07 + 0.52 and σLHW = µLHW ∗ 0.2 + 0.407.
σ and µ are the standard deviation and mean of the ensemble runs at different sites calculated by
Oney et al. (2016, in review). Then the slope 0.07 and 0.2 are served as the standard deviation of
the white noise at the measurement sites. We assume the uncertainties include the fossil fuel CO2

uncertainties both from the transport models and the inventory dataset.

The error for the background CO2 signal was estimated based on the model’s performance at
the Jungfraujoch site, whose elevation results in its CO2 variations to reflect primarily variation of
the background signal. Concretely, we simulated the error to mimic the statistics of the residual
between the forward simulation and the observations at JFJ for 2013, i.e., the error is modeled
to have the same variance and temporal autocorrelation. Concretely, the background biases were



4.2. Method 85

generated by the following steps: 1) Calculate the residuals between the forward model and
observations at JFJ; 2) Generate an ARIMA process for the error to get the variance, temporal
autocorrelation length (5 days) and parameters (P<0.05) based on the residuals from former step;
3) Simulate the error structure at other sites using the autocorrelation length and parameters from
the former step. The resulting error estimate was then added to the synthetic observations.

4.2.3 Temporal autocorrelations

The scaling factors, λ in equation 2.24 are calculated based on the analysis from previous steps
and the a-priori:

λf
t =

t=n∑
t=n-T+1

Wt(λ
a
t + λp) + G (4.1)

where superscript a refers to the analyzed quantities from previous steps, superscript f refers to
the background values for the new step, and superscript p refers to real a-priori values. λp is set to
make sure the first term on the right side of function equals to 1.0 to ensure that the parameters in
the system eventually revert back to the predetermined prior values when there is no information
coming from the observations(Peters et al., 2005, 2007). n is the current time step (the time
cycle relate to the very initial step of the simulation). Here T is determined by the temporal
autocorrelation in the prior fluxes error structure, not just based on ad hoc method. Kountouris
et al. (2015) and Broquet et al. (2013) showed that the temporal autocorrelation error of NEE in
Europe is usually around 1 month. Hence, we adopted 1 month as the temporal correlation length,
which is divided by the time cycle 4 days, resulting in T=6 in the 2-month test (the 7th 4-day time
cycle is for λp). In former studies, a uniform weight was assigned to different time cycles, or the
weights following some bias errors (Peng et al., 2014). Here we set W as the weight for different
time cycle, based on the different contribution from different time cycle. In the base run, we
follow what Peters et al. (2007) did, but tested additionally different weights from improvement
or information from different cycles, where the total cycle number was deduced from the temporal
autocorrelation window. G is the white noise for all ecoregions, with standard deviation of 0.9,
except for the 12th ecoregion that contains the urban, snow, water, built-up, tree & grasses, and
shrubs ecotypes, i.e., what we summarized as ’others’. This category is not optimized because of
its low contribution to the prior terrestrial biospheric fluxes.

Next we elaborate on the specific choices made for the application of this system to invert
atmospheric CO2 observations from the CarboCount CH network. These choices include: (i)
tiling the land surface into ecoregions, (ii) parameter settings with regard to the assimilation
system, (iii) generation of the covariance matrices, etc.
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4.2.3.1 Ecoregions

In order to tile the land surface into ecoregions, we used the same set of ecoregions as VPRM
model with resolution of 12 KM. Since this land cover map used a different classification scheme
from other methods, with the same ecoregion appeared in different patchy ecoregion types, some
remapping was necessary. We merged the evergreen forests with the mixed forests since the
former represents only a small fraction of the land cover in the domain. Further, we grouped
a number of ecoregions with a very small land cover and very small biospheric CO2 fluxes,
such as lakes and cities into the group ’others’. In the end, we only retained the following five
ecoregions: Mixed forest, deciduous forest, grassland, croplands and others. Taking advantage of
the much higher resolution of the land cover map, we first created the ecoregion map at the full
resolution of the land cover map, and then aggregated the information to the 7 km resolution of
our inversion system, while retaining the relative contribution of each ecoregion to each grid cell,
i.e., we explicitly account for the subgrid scale heterogeneity of the land cover.

We then split the broadly distributed ecoregions also geographically in order to reflect the
fact that the four measurement sites of the CarboCount CH network, i.e., BRM, LHW, FRU,
and GIM, have a footprint that can likely constrain only a part of the overall domain. We thus
divided each ecoregion into a part inside the footprint of the CarboCount CH network, and a
part that is outside. The boundary for this footprint was taken from the Lagrangian model-based
footprint analysis of Oney et al. (2015). We further separated some forest types and the croplands
outside the footprint into a northern, western, and southern part, in order to reflect the fact that
the impact of fluxes from these regions barely overlap, i.e., to avoid the generation of an overly
strong aggregation error. This resulted in the generation of 12 ecoregions (see Figure 4.1). The
CO2 fluxes from croplands dominate in our domain, with their contribution being almost 4 times
larger than the second largest one from the deciduous forests.

4.2.3.2 Prior covariance matrix

Different methods have been used to calculate the prior error covariance for the scaling factors,
including information from models, observations, and statistical considerations (Chatterjee et al.,
2012; Chatterjee, 2012; Wecht et al., 2014; Turner and Jacob, 2015).

Here, we follow a spatial and ecoregion-based approach similar to the method of Lauvaux
et al. (2009). Namely, we give a high correlation between the ecoregions inside the footprint
and inside the same grid cell, or to the same ecoregions in different grid cells, but separated
geographically. For example, a high correlation is assigned between the northern croplands (eco
10) and the western croplands (eco 11), while a low correlation is assigned between the northern
croplands and the northern deciduous forests. To calculate the spatial correlation, we assumed
that the correlation decreases exponentially with a scaling distance of 100km, which is on the
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long side compared to other studies (Kountouris et al., 2015).

Lauvaux et al. (2009) kept one with minimum ecosystem fraction in the same grid for cal-
culating the ecosystem-based correlation. As the minimum percentage in our grid is quite small,
we keep the fraction parameters as 1 in the correlation function, which also help avoiding double
counting the fraction parameters during the process of inversion.

We apply a space localization method in the construction of the prior covariance matrix, as
this avoids spurious correlations between distant locations in the background covariance matrix
caused by the limited ensemble size (Hunt et al., 2007; Peng et al., 2014). This method also
reduces the impact of transport errors (Kang et al., 2011). Here, we compare two different local-
ization methods and contrast them also with a case where no localization is used: the first method
is that employed in CarbonTracker (van der Laan-Luijkx et al., 2017) (referred as CT2007), while
the second method is the covariance localization method of Zupanski et al. (2007). A covariance
localization means that the influence of any observation is confined to the area wherein the pos-
terior covariance remains within a certain level of the prior covariance. Diverging from Zupanski
et al. (2007), we do not consider the covariance inflation here.

4.2.3.3 Base inversion

In the base inversion, the synthetic data from the 8 observations sites within the domain are
being used in order to recover the ”true” biospheric fluxes, i.e., BRM, LHW, FRU, GIM, CMN,
SSL, PRS, and SNB. To perturb the initial guesses for the scaling factors, we added a random
perturbation (with standard deviation of 0.9 following a Gaussian distribution) to the scaling
factors due to the much higher biospheric fluxes comparing to other data sources. In order for the
base run to match the real case as closely as possible, we also added the errors for the fossil fuel
and background components to the synthetic observations. This synthetic inversion was then run
for one year with an ensemble size of 25 and with the other settings (such as smoother windows,
etc.) given in Table 4.1.

Table 4.1 Settings of the base inversion.

Time cycles 7 days Smoother window 2 days
Ensemble members 25 Unknown parameters 11

Time period 2013.01 - 12 Localization method CT2007

Spatial correlation 100km Prior Covariance error 0.64

Stddev. of perturbation 0.9 Number of sites for inversion 8
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4.2.3.4 Sensitivity Experiments

Table 4.2 provides an overview of the sensitivity simulations that we explored in order to test the
CarbonTracker Switzerland system thoroughly and to explore its sensitivity to the many choices
associated with an atmospheric inversion. We ran the majority of the sensitivity cases for the 2
months of July and August 2013 only, to make use of the computational resources as efficiently
as possible. Further, the NEE is largest during these months, so that we expect to see the biggest
impact during these months.

For all simulations, biases and root mean squared error (RMSE) between the prior/posterior
and the truth are used for judging the quality of the inversions. Overall, we ran three sets of
sensitivity cases. In the first set, we did not consider the error in the background and the fossil
fuel signal, permitting us to isolate the particular issue at hand in more detail. In the second set,
we added just the background error, and in the third set, we just considered the fossil fuel error.

4.3 Atmospheric CO2 variations over Switzerland and model
evaluation

The forward simulation of atmospheric CO2 and of its components reveals rich spatiotemporal
variations both at the surface and aloft. In this first part, we investigate these variations and use
them to evaluate the high resolution atmospheric transport model.

4.3.1 Model evaluation with atmospheric CO2

To evaluate the model, the simulated results are compared with the four observation sites of
the CarboCount CH network as well as with the 5 additional observing sites located within our
domain, i.e., SSL, CMN, PRS, SNB, and JFJ. Here we choose only afternoon observations for
the evaluation because this is the time of the maximum height of the planetary boundary layer.
We thus minimize the potential transport error stemming from problems with the diurnal cycle
in the PBL. This is standard practice, as the modeling of the PBL height is one of the persistent
areas of model problems (Brunner et al., 2015).

The model captures the mean observed atmospheric CO2 at the CarboCount CH sites very
well with the exception of Gimmiz. At the well matched sites, i.e., at BRM, LHW, and FRU,
the annual mean bias is less than 1 ppm (see Table 4.3 and Fig 4.2). The model is also able
to capture the variability very well, with excellent agreement regarding the magnitude of the
standard deviations, although with a very small tendency to underestimate it. Also the seasonal
variations are mostly captured very well, leading to high annual correlations of between 0.86 to
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Table 4.2 Summary of inversions with CarbonTracker Switzerland, including control and sensi-
tivity tests.

Experiment code background
error

fossil fuel
error

site
num-
ber

period(2013) Comment

Control(with Back-
ground error, fossil
fuel errors and NEE
errors)

S1 standard standard 8 Jan-Dec 26 standard simula-
tion

Base:only NEE er-
rors

S2 no no 8 Jul-Aug 26 baseline with no
error

Only NEE errors S2.1 no no 1-8 Jul-Aug 26 baseline to study
network size

Only NEE errors S2.2 no no 8 Jul-Aug 26 baseline to study
localization
methods

Only NEE errors S2.3 no no 8 Jul-Aug 26 baseline to study
no ecoregion
subgridscale
variations

Background and
NEE errors

S3.1 standard no 8 Jul-Aug 26 Background only,
100 km correla-
tion

Background and
NEE errors

S3.2 short/long
corr

no 8 Jul-Aug 26 Background only,
30 (S3.21),300
(S3.22)km corre-
lation

Background and
NEE errors

S3.3 standard no 8 Jul-Aug 26 Background only,
1 month temporal
correlation,

Fossil fuel and NEE
errors

S4 no yes 8 Jan-Dec 26 Fossil fuel error
only

0.90 (Table 4.3).

The model behaves best in spring, with smaller RMSE than other seasons at all measurement
sites. In summer, all the new measurement sites have relative high RMSE comparing to JFJ, due
to the strong local influence. The RMSE at BRM is almost the same as at FRU, might due to the
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well mixed CO2 at these two size in the summer afternoon that their influence overlay each other.
The high RMSE in autumn and winter time are mainly from the not well captured fossil fuel CO2

signals during this time period (see chapter 3).

The exception is the Gimmiz (GIM) site, where the annual bias is more than 4 times larger
than at the other sites (not shown here), i.e., more than -4 ppm (not shown here). Due its location
on top of a short water tower within a relatively flat area, this site has the smallest footprint of
all sites (Oney et al., 2015). Further, due to its location within an area of intense agricultural
activity and its proximity to urban emissions (the town of Aarberg is located only 2km away),
this site is strongly influenced by rather local processes, making it the least representative site in
our network to reflect the larger scale fluxes over the Swiss plateau (Oney et al., 2015). The role
of the near field signals is readily seen in the higher standard deviation at this site, but particularly
in the seasonal biases. In winter, the model has a mean bias of more than -17 ppm, reflecting
primarily the underestimating of the local fossil fuel signal, likely owing to its underestimating
the strength of the local stratification during this season, i.e., the model is not able to capture the
very strong inversion conditions that often characterize this region in the fall and winter. Given
this strong local nature of the signals at Gimmiz, we focus our evaluation subsequently on the
other sites. We also will not include Gimmiz later in the inversion (see chapter 5).
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Figure 4.2 Comparison of average CO2 concentration in the afternoon (from 12:00 to 15:00 UTC)
between observation and model in 2013 at 8 different sites.

The substantially better performance at the other CarboCount CH sites is also seen in their
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Table 4.3 Comparison between observations and modeled CO2 concentration in the afternoon
(from 12:00 to 15:00 UTC). Unit for RMSE and std are ppm.

Site LHW BRM FRU CMN SSL PRS SNB JFJ

Lat 47.48 47.19 47.12 44.20 47.92 45.93 47.05 7.99

Lon 8.4 8.18 8.54 10.70 7.92 7.7 12.95 46.55

Height used(masl) 860 797 982 2165 1205 3480 3106 3580

Correlation Coefficient 0.86 0.89 0.9 0.78 0.89 0.94 0.90 0.88

Annual mean bias -0.73 -0.43 0.98 -2.06 0.32 0.48 0.41 -0.23

Annual RMSE 6.5 4.98 5.55 3.9 4.94 2.04 2.64 2.27

Spring RMSE 4.90 4.14 4.78 3.75 3.63 1.76 2.1 1.76

Summer RMSE 6.32 5.35 5.41 4.9 5.49 2.77 3.41 2.86

Autumn RMSE 6.61 4.51 5.45 / 4.8 2.23 2.8 2.0

Winter RMSE 7.9 5.74 6.41 3.79 5.69 1.36 2.11 2.26

Annual std of model 12 10.33 11.68 4.95 9.77 4.84 5.05 4.49

Annual std of obs 12.32 10.86 11.9 5.5 10.47 5.52 5.90 4.75

Spring std of model 7.51 7.87 8.34 3.67 / 1.84 2.79 1.80

Spring std of obs 8.79 8.33 9.04 4.44 7.29 2.35 3.35 2.16

Summer std of model 5.15 4.59 5.20 6.99 5.48 4.52 4.25 4.31

Summer std of obs 6.09 4.78 4.92 3.2875 5.50 4.70 4.234 3.81

Autumn std of model 9.6 9.17 10.48 / 7.30 2.87 3.19 2.91

Autumn std of obs 11.07 10.61 11.54 / 8.95 3.96 5.15 3.68

Winter std of model 6.32 6.41 6.95 2.68 6.29 2.53 2.40 2.32

Winter std of obs 8.92 10.27 10.04 4.62 9.16 3.14 3.41 3.62
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having much smaller seasonal biases compared to Gimmiz. But it is of note that the model tends
to underestimate consistently the summer CO2 concentrations at all CarboCount CH sites. As
demonstrated also by Oney (2016), at least part of this comes from our employed ecosystem
model (VPRM) likely overestimating net ecosystem exchange during summer.

The model performance at the other CO2 observation sites within the model domain, i.e., at
JFJ, SSL, CMN, PRS, and SNB is comparable to that at the CarboCount CH sites (BRM, LHW,
and FRU), with also these additional sites confirming the negative model bias in summer, while
not showing a comparable bias in the other seasons. This confirms our previous interpretation that
most of the summer mismatch seems to stem from the biospheric signal, while the background
and fossil fuel signals that dominate the winter variability are well captured. Further confirmation
comes from the analysis of the modeled signal at Jungfraujoch, whose variability is primarily
determined by the background signal (see below).

4.3.2 Spatiotemporal variability of CO2

4.3.2.1 Contribution of different CO2 components

To illustrate the relative importance of the contribution of the different components to the total
CO2 concentration, we show the time series at the Beromünster site, but note that the picture is
very similar at the other sites ( see Fig. 4.3). While the fossil fuel contribution clearly dominates
in winter, the biospheric signal dominates the summer time variations, but with opposite signs.
The figure also reveals the importance of the background signal, having a similar level of vari-
ability as both the fossil and the biospheric fluxes, highlighting how critical the accuracy of the
boundary data is, especially as our model domain is relatively small.

The annual spatial pattern of the total CO2 in central Europe is dominated by the fossil fuel
CO2 signal, as the magnitude of this component exceeds 5 ppm not only in the urban areas, but
also across wide swaths of the domain (see Fig. 4.4) (cf. chapter3). In contrast, the distribution of
the background CO2 is rather homogeneous, although with substantial gradients. The reduction
of the background signal toward the center of the domain is due to an increasing contribution of
the background CO2 from air aloft, which tends to have lower CO2 concentrations (see below).
The annual mean biospheric signal has a distinct bimodal distribution, with net negative signals
over much of Switzerland, and the alpine arc, and net positive signals over much of the rest of
the domain. This reflects not only the net annual fluxes that were prescribed by VPRM, but also
the interaction between the seasonal cycles of the fluxes and the seasonal cycle of transport and
mixing, i.e., the seasonal rectifier effect (see discussion of vertical distribution below).
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Figure 4.3 Time series of the different component contributing to atmospheric CO2 (ppm) at
daytime at the Beromünster site (selected from 12:00 to 15:00 UTC).

4.3.2.2 Diurnal and seasonal cycles

The dominant modes of variability in atmospheric CO2 are the diurnal and the seasonal cycle.
While we will not make use of the former in the atmospheric CO2 inversion, it is nevertheless
instructive to investigate how well the model is able to capture the diurnal ups and downs of
atmospheric CO2. We determined the mean diurnal cycle in the model and observations by sim-
ply bin averaging the data over the respective seasons. The seasonal cycle was determined by
smoothing the daily averaged time series with a 1 month running mean filter. We depict the
diurnal and seasonal cycles relative to Jungfraujoch (JFJ), as this permits us to retain the mean
gradients between the different sites.

The modeled annual mean diurnal cycle of total CO2 has the highest diurnal cycle at Lägern(∼
7 ppm, might be due to the underestimated sampling height from the model) and Gimmiz (∼ 6
ppm), but the diurnal cycles at Beromünster and Früebüehl are also substantial (Figure 4.5a). The
majority of the annual mean diurnal signal stems from the summer (Figure 4.5b), reflecting not
only the very strong diurnal signal of the biospheric fluxes, but also the strong diurnal variations
of the PBL, which tends to create concentration differences simply by controlling the degree of
dilution of the surface signal with the concentrations aloft.

The stronger diurnal cycles at Lägern and Gimmiz likely reflect their higher exposure to
the local biospheric fluxes, as discussed already for Gimmiz above. For Lägern, this is likely a
consequence of it being located in the middle of a forest, i.e., its direct exposure to the strong
variations in photosynthesis and respiration.

Overall, the modeled mean diurnal cycles compare reasonably well with those discussed by
Oney et al. (2015), but also with some distinct differences. In summer, the model overestimates
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Figure 4.4 Spatial distribution of annual mean total CO2 mole fraction (ppm) at height 10 me-
ter(lowest level in the model) in 2013, with the 9 measurement sites indicated by symbols, i.e., 5
sites inside Switzerland (LHW, FRU, BRM, GIM, JFJ), 2 in Italy (PRS,CMN), 1 in Austria (SBN),
and 1 in Germany (SSL). The solid line indicates the path for the north-south cross section along
LHW, BRM and JFJ.

the diurnal cycles at Beromünster compared to Oney et al. (2015) and underestimates the diurnal
cycle at Gimmiz and Fruebuel. At Lägern, the model simulates the amplitude of the diurnal cycle
very well.

The CO2 observations at the CarboCount CH sites reveal a distinct seasonal cycle in their
gradient relative to JFJ with an amplitude of 10-15 ppm (Figure 4.6). At the sites outside Switzer-
land, i.e., at SSL and CMN, the seasonal cycles relative to that at JFJ are smaller (about 10 ppm).
The lower seasonal amplitude at SSL is likely due to a stronger dilution of the biospheric signal
owing to it being a mountain top site and thus being more exposed to the large-scale flow. The
lower amplitude at CMN is likely due to a similar reason, although this being a high altitude
sites, the dilution likely occurs with air from aloft, which carries essentially the hemispheric scale
seasonal cycle also recorded at JFJ.

The low altitude sites in Switzerland as well as SSL have their seasonal minima relative to
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Figure 4.5 Modeled diurnal cycles of CO2 concentration (ppm) from model simulation: differ-
ence between each site and site JFJ. a) annual mean diurnal cycle (January to December in 2013);
b) Summer mean diurnal cycle (June to August in 2013); c) winter mean diurnal cycle (December,
January and February in 2013).

JFJ in June, while the minimum occurs slightly later at the high altitude site CMN. Again, this is
likely a result of the different degree of dilution of the local/regional signal with the large-scale
hemispheric signal aloft, which tends to be delayed relative to the period of maximum CO2 uptake
by the land biosphere. The relative timing at the different CarboCount CH sites also depends on
the fossil fuel signal, which is in relative terms the weakest in summer at BRM, while it is stronger
at FRU and LHW. Particularly the latter site has a rather strong summer-time signal from fossil
fuel, resulting in its CO2 concentration taking an upswing in late summer, when CO2 at BRM still
stays low.

4.3.2.3 Vertical distribution

The vertical north-south cross section of atmospheric CO2 reveals strong vertical gradients in the
annual mean, most of which is generated by the fossil fuel component and the background CO2

(Fig 4.7). Since the latter includes a strong vertical gradient in the fossil fuel signal as well, this
vertical gradient is actually almost entirely driven by the fossil fuel emissions at the surface. The
fossil fuel signal that stems from emissions within the domain contribute a substantial fraction
of the signal at all sites, as was already seen in the horizontal cross section in Figure 4.4. Even
Jungfraujoch is modeled to have an annual mean signal from fossil fuel emissions within the
domain of 0.6 ppm. Although the altitude difference between Lägern and Beromünster is small
(860 m versus 1009 m a.s.l. (highest observation), the Lägern site is exposed to a substantially
higher fossil fuel signal. This is, of course, also due to the Lägern site being closer to the most
intense fossil fuel emissions in Switzerland, i.e., the Zurich metropolitan area (see also Fig. 4.4).
This implies that attention may need to be paid when using this site for data assimilation, since it
makes it more prone to biases in the fossil fuel CO2 signal.

The strong vertical gradient in the background signal confirms our prior interpretation of its
horizontal gradients being caused by dilution from air aloft (Fig. 4.4). This dilution is actually
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Figure 4.6 Modeled seasonal cycle of atmospheric CO2 at 6 sites within the model domain for
the year 2013 (ppm). Shown is the difference between each site and JFJ. To emphasize the seasonal
cycle, the records were smoothed with 1 month running mean filter.

quite effective so that the strong vertical gradients present at the boundaries are relatively quickly
diluted, so that the vertical gradients are substantially smaller inside the domain, resulting in our
CarboCount CH sites seeing, in the annual mean, more or less the same background as JFJ. This
is much less the case for the Schauinsland site.

The biospheric CO2 component contributes overall little to the annual mean vertical gradients,
but with a somewhat unexpected distribution. Rather than having the strongest signal where
the fluxes are being generated, the strongest (negative) signals are found aloft, well recorded
by our high altitude site JFJ. This vertical distribution is the vertical expression of the seasonal
biospheric rectifier. In winter, the high biospheric CO2 signal caused by the excess of respiration
over photosynthesis tends to be trapped near the surface due to inefficient vertical transport. In
summer, the low biospheric CO2 signal caused by the excess of photosynthesis over respiration
tends to be transported aloft. This causes a positive rectification signal at the surface, while at the
same time creating a negative signal aloft. This pattern is particularly strong in the inneralpine
valleys with its topographically more strongly restricted vertical exchange.
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Figure 4.7 North-south vertical section of the annual mean total CO2 and its components along the
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(JFJ) (ppm). (a) Total CO2, (b) Background CO2 component, (c) fossil fuel CO2 component, and
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4.4 Base run

The base inversion is the case that aims to simulate most closely an inversion of true observations.
Namely, it includes the consideration of all major sources of errors, namely the potential biases
emanating from fossil fuel and the background CO2 components. This inversion was run over
the full annual cycle of the year 2013, with a cycling time step of 7 days and a 2 day smoother
window (see Table 4.1). We use 8 sites to constrain the system, i.e., all observing sites inside
the domain. The prior biospheric fluxes were perturbed by drawing a random number from a
Gaussian distribution with a standard deviation of 0.9 and assigning this to the scaling factor.
This resulted in a relative error of about 50% to 60% in the regions located inside the footprint
(see Fig. 4.8 b) and c)) relative to the true biospheric fluxes. The relatively low prior error in
central Switzerland is due to the low biospheric flux values in the Alps.
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4.4.1 Error reduction

The CarbonTracker Switzerland assimilation system is able to reduce the prior error in the domain
substantially, achieving an error reduction in the inner part of the domain of more than 80%, and a
reduction of over 50% nearly everywhere else (see Fig. 4.8). The small uncertainty reduction in
the southern part of the domain is due to the presence of only one observing site with a footprint
in this area.
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Figure 4.8 Results from the base run for the period of the whole year in 2013. (a) Map of error
reduction, calculated from the ratio between the posterior and prior variances, i.e., 1-(posterior
variance/prior variance); (b) Map of mean NEE fluxes from VPRM, taken here as the true fluxes
µmol m−2s−1; (c) bias of prior fluxes relative to true fluxes, calculated as prior - truth; (d) bias of
posterior fluxes relative to true fluxes: calculated as posterior fluxes - truth fluxes.

The net fluxes we imposed from the VPRM model (corresponding to NEE) and that we use
as the true fluxes here show in the annual mean strong sinks (around 2 µmol m−2s−1) over most
of the domain (Figure 4.8b), with the exception of the Alpine arc and a few other regions. In the
inner part of the domain, the small prior biases remain largely unchanged. In the regions outside
the footprint of the CarboCount CH observing sites, the posterior bias turns out to be actually
larger than the prior ones. This is the result of the addition of the error in the background and in
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the fossil fuel emissions that tend to pull the posterior fluxes away from the truth in regions with
relatively weak constraints, i.e., the outer parts of our domain. In contrast, for the inner parts of
our domain, and particularly for Switzerland, CarbonTracker Switzerland is able to recover the
true fluxes despite the large perturbations. This demonstrates that the system works overall well.
A similar analysis for the summer time reveals an even larger error reduction (not shown).

Fig 4.9 shows the true, prior, and posterior fluxes from 12 ecoregions in the domain, in
which the mixed forests and deciduous forests inside the footprint have almost the same amount
of NEE as grassland over the whole domain, which is around 1/3 of NEE fluxes from croplands
inside the footprint. This means the perturbations are mainly added to the croplands and that
any uncertainty associated with this ecoregion will bring strong biases towards the result. This
figure shows that the system drags posterior mean from the prior mean towards the true mean
significantly in cropland inside the footprint.
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Figure 4.9 Integrated fluxes per ecoregions for of the whole year in 2013 estimated by the base
run in units of mol/region/s.
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4.4.2 Seasonal fluxes and error

In order to look into the details of the NEE fluxes and attribute the annual flux error to smaller
scales, we analyze the flux errors from the base inversion in different seasons. The system behaves
quite well in spring, with reduced flux errors in the western part of the domain. In addition, the
sources in the northern part of Italy are well recovered given the underestimated sources in the
a prior. However, the system fails to catch the strong sink in central Italy (see Fig. 4.10). The
underestimated NEE in spring is mainly due to an underestimation of GPP, implying that a higher
weighted GPP over Ra for calculating NEE might be better in the assimilation system if trying to
fit to the truth, i.e., smaller ratio of Ra to GPP brought less biases to posterior fluxes(Tolk et al.,
2011).

As expected, the system could not recover NEE in the northern part and southern part outside
the footprint, and the posterior pattern does not change much relative to the a prior. This is due
to the sparse network and high background CO2 biases in these regions in summer. The system
could resolve the error inside the footprint and the eastern part of the domain very well. The
high uncertainties of the fluxes are related to the high fluxes, both in GPP and Ra. The sources
dominate Italy and France in autumn are due to the strong respiration and weak photosynthetic
activities. As a result of the biases of background, the assimilation system removes the sources in
northern France, while it attributes sinks to the southern France and northern Germany, reiterating
the importance of prior information once more. In winter, the NEE is mainly dominated by
respiration. Due to small NEE, the system underestimates NEE in small part of the domain, even
though the perturbation of fossil fuel is quite high in winter (see Fig. 4.10).

The system could reduce the summer and autumn biases, especially in summer. However, the
amplitude of increased bias in summer might be partly due to the large fossil fuel error (as shown
in Fig. 4.19).

4.4.3 Time series

In order to check the performance of the base inversion at individual locations, we compare the
prior and posterior fluxes at 5 FLUXNET measurement sites where eddy covariance towers are lo-
cated. The time series of the prior and posterior flux errors are compared with true fluxes at 5 sites.
At 3 sites (from 1.20 µmol m−2s−1 to 1.03 µmol m−2s−1 at OE2, 1.26 µmol m−2s−1 to 0.99µmol
m−2s−1 at LAE, from 0.38) the posterior NEE is improved, while degraded at Davos(see Fig.
4.11).

In summer, when the fossil fuel error is relatively small and the background CO2 error is
high, the system could still resolve these errors quite well, except at times when the fluxes are
degraded by the optimization process.



4.4. Base run 101

1
0.6
0.2
-0.2
-0.6
-1

2
1.6
1.2
0.8
0.4
0
-0.4
-0.8

-1.2
-1.6

-2

0.5
0.3
0.1
-0.1
-0.3
-0.5

NEE,spring

NEE,winter

NEE,summer

NEE,autumn

GPP,spring Ra,spring

GPP,summer

GPP,autumn

Ra,summer

Ra,autumn

GPP,winter Ra,winter

μmol m-2 s-1

Figure 4.10 Seasonal mean flux biases relative to the truth (unit: µmol m−2s−1): the first row are
errors of NEE, GPP, Ra in spring (March-May of 2013); the second row are errors of NEE, GPP, Ra
in summer(June-August of 2013); the third row are errors of NEE, GPP, Ra in autumn (June-August
of 2013); the fourth row are errors of winter (December, January, February of 2013).

In autumn, the system could correct the wrong prior from sources into sinks. Compared to
other sites, the system does not change much at DAV, due to the large contribution of unimproved
eco regions (over 80%) for this grid. However, if we only used the dominated eco regions, then
there would be no optimization at all, implying that the percentage assimilation method offers
more realistic conditions.

In the system there is more uptake at site OE2 due to the added background and fossil fuel
CO2 biases that the system attributes erroneously to biosphere fluxes. This results in underes-
timated posterior fluxes at these sites, or even a change of the NEE from sources into sinks at
some sites. Another possible reason for the unrealistic uptake is the higher standard deviation
of the initial error (around 1) than the standard deviation of the spread of the ensembles (0.8),
which allows the correction factors to change sign and the ensemble assimilation could not drag
this back to the original sign given the perturbed fossil fuel CO2 error and background CO2 error.
This shows the disadvantage of the arbitrary set of the covariance matrix of the prior.
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Figure 4.11 Time series of weekly NEE fluxes at 5 measurement sites in 2013: unit (µmol
m−2s−1).

4.5 Sensitivity studies

4.5.1 Control run: only errors in NEE (S2)

To set the stage for the subsequent sensitivity cases, we first run a control case (S2), where we
only considered the errors in NEE, i.e., the errors in fossil fuel and background were eliminated.
The resulting maps of error reduction are overall similar to those of the base run, but reveal a
better performance of the system, particularly for the summer (Figure 4.12). This is as expected
given the fewer perturbations added in the synthetic inversion.

A similar conclusion can be drawn from the consideration of the ecoregion wide integration
of the NEE fluxes (Figure 4.13).
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Figure 4.12 Results of the control run (S2) for July to August, 2013. a) Map of error reduction,
calculated as 1-(posterior variance/prior variance); b) Map of mean true fluxes µmol m−2s−1; c)bias
of prior fluxes relative to true fluxes, calculated as prior - truth; d) bias of posterior fluxes relative to
true fluxes: calculated as posterior fluxes - truth fluxes.

4.5.1.1 Different network choices (S2.1)

In order to understand how different network choice affect the posterior errors and the contribu-
tion from different sites, we start with 1 site, and then add sites one by one to trace each site’s
contribution or influence. More sites generally favour more uncertainty reduction, such as 1 site
could only reduce the uncertainty by 20-30% in the footprint region, no matter if it was a tall
tower site (BRM, 121m), or a short tower site (LHW, 32 m), due to their similar sensitivity region
in summer. Combining these 2 sites together eliminates 10-15% more uncertainty, while the total
RMSE is still worse than using LHW alone, and this condition does not change until we increase
the number of sites to 4. The 4 added measurement sites provide an improvement of the error
by 30-40% inside the footprint and north part of the domain. Five sites inside the footprint could
reduce the uncertainty by over 80% inside the footprint whereas the rest of the 3 sites mainly help
decrease the uncertainties outside the footprint.
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Figure 4.13 Integrated fluxes per eco regions, unit mol/region/s: over July to August in 2013.

Very few sites are not enough for generating robust result for different eco regions, but to
have more sites is not always critical for reducing the biases of posterior fluxes (see Fig. 4.14).

With one site only, the posterior NEE fluxes from croplands are still biased (negative inside
footprint and in the southern domain, positive in the northern and western part of the domain).
Both mixed and deciduous forests inside footprint are well constrained even by only one site. One
reason might be the relatively low prior error compared to the croplands as shown by Fig 4.9.

Another reason might be that these sites already reflect proper information from forests due
to the location of these sites (Oney et al., 2015), when comparing the posterior and posterior
fluxes error from grassland. This test also shows that under perfect transport conditions, short
towers perform almost the same as the tall towers when comparing RMSE of the total or different
ecoregion posterior fluxes. The total RMSE when using both LHW and BRM is still worse than
just using LHW.

With the added site FRU, the RMSE of posterior CO2 fluxes of most eco regions, such as,
cropland inside footprint, or cropland in northern domain still have the same magnitude of bias
as those from the 2-site inversion. This situation improved by adding GIM site, for most of the
eco regions, e.g. cropland inside footprint, grassland, mixed forest inside footprint, suggesting a
significantly benefit from this site under the perfect transport conditions. The only eco region not
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Figure 4.14 Sensitivity test to different network choices from July to August. Different shape are
from different simulations, and different color representing different eco regions.

improved is the cropland in the western domain, which could be constrained partly by the 5th site
SSL.

Five sites resolve almost half of the error in the western and northern part of the domain,
while there is not much improvement in the southeast of the domain due to the low influence
of the sites here. The RMSE of integrated fluxes over the whole domain is reduced from 0.76
mol s−1 to 0.27 mol s−1, with posterior errors or RMSE from all the eco regions significantly
small enough, meaning 5 sites are enough to accurately invert the NEE fluxes in the middle of
the footprint. The test with 8 sites shows that both the RMSE of posterior CO2 concentration
and biases of fluxes are less spread among different eco regions, indicating the additional 3 sites
outside of the footprint reduce the biases of fluxes of cropland outside the footprint significantly
and help reducing RMSE to half of the RMSE from 5 sites simulation (see Fig. 4.14) .

4.5.1.2 Different localization method (S2.2)

Among all the localization methods, the 50% cut-off covariance method performs most poorly
with regard to RMSE of posterior CO2 concentrations. Compared to the CT2007 localization
(which is the method used for base run), the system with 50% cut-off performs better for the
biases of the ecoregions, such as, the posterior fluxes from cropland in the northern domain,
mixed forest, cropland in west domain are better simulated under 50% cut-off than CT 2007,
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while the fluxes from cropland in the southern domain are worse under this method. Generally,
these 2 methods behave similar with both cropland and deciduous forest inside the footprint.

The 10% cut-off covariance method works better than the CT2007 localization, with slightly
better RMSE of posterior CO2 concentrations and half of total RMSE less than the CT2007
localization, and smaller optimized CO2 RMSE. In addition, due to the complex topography and
small eco regions compared to other studies, CT2007 might cutoff some useful information in
the central Italy, which results in slightly less uncertainty reduction. While 10% cut off method
catches the information in the middle Italy, and resulting in better results. Eco regions behave
differently under these 2 localization methods due to the correction of the Kalman gain based on
different rules, such as cropland in northern domain is strongly negative biased under CT2007
simulation, but slightly positive biased with the covariance 10% cut-off localization method. In
addition, most eco regions perform better under the covariance 10% cut-off localization than the
CT2007 localization, e.g., the biases of deciduous forests in northern domain, mixed forest inside
footprint and grassland are just half of biases under CT2007 localization (see Fig. 4.15). However,
the 10% cut-off covariance method does not work well as CT2007 method in the posterior fluxes
from cropland inside footprint and in western and southern domain, which might due to a too
strict cut off in the cropland from these 2 regions with 10% cut-off method, because fluxes from
these 2 regions are almost the same as the no localization method.
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Figure 4.15 Sensitivity tests to different localization methods for the months July to August. Dif-
ferent symbols indicate different simulations, and different colors represent different eco regions.

Although cut-off should decrease with the increasing ensemble size (Zupanski et al., 2007),
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we tested different cut-off ratio with the same ensemble size, and these 2 methods behave differ-
ently in both RMSE of posterior CO2 concentration and on biases from different eco regions as
well. 10% cut-off localization performs better than 50%, implying the ensemble size is enough
for these simulations.

No localization is slightly better than 50% cut-off and CT2007, implying that the measure-
ment sites are enough for the domain and separated eco regions and that we do not need the
localization for the spurious error for most of the eco regions, except cropland in the western
domain. But generally, all these localization methods could catch the error, and estimate good
results with high confidence (see Fig. 4.15). For robust fluxes for cropland inside the footprint,
the CT2007 and 50% cut-off method are better choices than others, while covariance localiza-
tion with 10% cut-off for forest and grassland. As fluxes from cropland are much higher than
grassland inside footprint, we would recommend CT2007 localization method in this system.

4.5.1.3 Role of subgrids cale ecoregion variations (S2.3)

The percentage inversion provides more robust results than the dominant eco region inversion due
to the more realistic consideration of the eco types in each grid cell. The percentage inversion
reduces uncertainties by more than 80% in most of the domain (as discussed in the base run),
while the uncertainty reduction from dominant ecoregion inversion has the same amount as the
percentage eco region method in 1 ecoregion inside the footprint. The rest of the domain has 10%
higher uncertainties than the dominant method, with almost 70% more error in south of Switzer-
land. The reason for the difference is that in the percentage inversion system, the information that
retrieved fluxes locally for an ecosystem type is now available and is applied far away from that
location. However, in the dominant eco region inversion system, the ecosystem was restricted to
only grids where it is dominant. This means that the the correlations in space have been signif-
icantly increased and the information have been spread more widely in the percentage inversion
system.

In addition, the system using dominant eco region maps can not remove all the error compared
to the truth. There are still around 10-20% of error compared to the truth, while the error from
percentage eco region inversion has less than 5% error in most of the regions. Furthermore,
the dominant method underrepresents the ecoregion that are less dominant, leading to a patchy
uncertainty reduction map and posterior biases map. In contrast, the more homogenous structure
from the percentage results are due to the smoothing effect from different eco regions in the
pixels. In sum, the fractional grid information help the system achieve a downscaling of the
(same) available observational constraints.
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4.5.2 Second set: Sensitivity to background CO2

Here all the posterior errors are the difference between posterior fluxes in each simulation and in
base run, meaning that there is no impact from NEE error, only the influence from background
CO2 biases.

4.5.2.1 Background error at 8 sites with 100 km spatial correlation (S3.1)

The assimilation system could remove all the error substantially in the southern and the eastern
part of domain compared to the truth (see Fig. 4.17 a)), which is essentially due to the well
simulated eco regions, such as forest, grassland and croplands in the southern domain. The mean
posterior biases in southern and eastern domain are less than 0.4 µmol m−2s−1, i.e., less than 10%
relative to the truth, mainly from the overestimated deciduous forest. The assimilation system
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has difficulties in the prediction in the northern part of the footprint and northern domain, owing
primarily to the unrealistic overestimation in cropland (with posterior error around -1.4 µmol
m−2s−1), while the dramatic underestimation in footprint is from the cropland, even though 5 sites
are adopted here to constrain NEE inside the footprint that results in 90% reduction of uncertainty.
By virtue of the perturbed background CO2, the system overestimates the total average fluxes,
following the same sign as the prior fluxes (overestimated prior), with high uncertainty.

4.5.2.2 Different spatial correlation (S3.2)

Longer spatial correlation resolves the background CO2 biases far better than shorter spatial cor-
relation. Fig 4.17 b) shows that the posterior error from 300 km (S3.22) spatial correlation in the
western part of domain, such as i.e., posterior fluxes from inside footprint and western domain,
are very well modeled comparing to simulation with 100km (S3.1) and 30km (S3.21), with pos-
terior error 1 µmol m−2s−1 in the footprint in S3.22, almost half of the posterior error from S3.1
and S3.21. In addition, the RMSE of posterior CO2 concentration also demonstrate that 300 km
performs better.

The posterior fluxes of eco regions benefits from longer spatial correlation, such as the bias
of posterior fluxes of cropland inside the footprint is significantly improved by around 1/3 in
S3.22 than S3.1 and S3.21, although still far from 0. In addition, fluxes of cropland in western
domain could even be recovered with almost no bias, compared with are overestimated by S3.1
and S3.21. Longer spatial correlation does not improve the performance of cropland in southern
domain, might due to the already low bias in this ecoregion. Higher spatial correlation results
in better results might due to the separation of inside and outside the domain, that the higher
spatial correlation could spread the information from the measurement site to more eco regions.
Here the 30 km (S3.21) works slightly better than 100km (S3.1), when considering the RMSE
of posterior CO2 concentration, and also the cropland in northern domain, This might be due to
the balance of spatial correlation and localization method, as the shorter spatial correlation in the
prior covariance matrix also spread less uncertainties in the prior knowledge (Kadygrov et al.,
2015).

In summary, for the area inside footprint, a higher spatial correlation (300km) gives more
robust results.

4.5.2.3 Different temporal correlation (S3.3)

Longer temporal correlation behaves better than shorter temporal correlation by reducing the
average posterior NEE error, mainly in the western and southern domain (Fig 4.17d). Although
the posterior CO2 concentration is not improved relative to S3.1, longer temporal correlation
reduces the biases of posterior fluxes from inside footprint, western and northern part of cropland,
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due to the spread of smoothing effect along time that might bring more prior knowledge to the
posterior fluxes.

In addition, higher temporal correlation generates more homogeneous error structure between
southern and western domain, indicating there are some spatial smoothing effects from long tem-
poral correlation. The temporal correlation has less effect on improving the biases of posterior
fluxes, compared to the improvement brought by longer spatial correlation. But generally, the
1 month fluxes correlation is important for both inside footprint and total fluxes in the whole
domain, similar to other research that we should consider the fluxes error correlation.
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Figure 4.17 Sensitivity test to background CO2 biases with 8 sites: unit:µmol m−2s−1: a) 100km
spatial correlation and 8 days temporal correlation; b) 30km spatial correlation and 8 days tem-
poral correlation; c) 300km spatial correlation and 8 days temporal correlation; d) 100km spatial
correlation and 30 days temporal correlation.
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4.5.3 Third Set: Sensitivity tests to fossil fuel emissions uncertainties (S4)

The fossil fuel biases have small impact on the annual posterior NEE fluxes, such as, the posterior
error is less than 0.1 µmol m−2s−1, less than 5% error in most of the region, as shown in Fig 4.18.
One must pay attention that the prior error is quite low, such as, the prior error inside footprint is
around -0.3 µmol m−2s−1, but the high prior error is relatively high in southern domain, where
the NEE fluxes are underestimated by around 1 µmol m−2s−1. The system behaves different at
different season, due to the combination of fossil fuel and fluxes error combination at different
time scales.

In spring, the prior underestimates the NEE by 0.4 µmol m−2s−1 inside the footprint (see Fig.
4.19). The small prior error is partly due to the low photosynthesis. There are high prior errors in
northern domain and southern domain. After inversion, there is less than 1% error in the domain.
These results show that when fossil fuel uncertainties are relatively high the system is able to still
remove the error due to the small NEE fluxes error. In summer, the prior error is relative high
in most of the area (overestimated by 0.6-0.8 µmol m−2s−1 inside footprint, and underestimated
in southern domain by more than 1.5 µmol m−2s−1), the system is able to remove most of the
NEE prior fluxes error and fossil fuel error in southern domain, but only remove part of the biases
from cropland inside the footprint. This leaves some error in the middle of the footprint where the
mixed forest is located, even when the fossil fuel uncertainties are low in summer. This means
the posterior fluxes from mixed forest in the footprint might be biased by the fossil fuel CO2

concentration. The system could remove the fossil fuel biases in autumn (see Fig. 4.19) and
winter, due to the low NEE fluxes error, even though the fossil fuel biases are relatively higher in
winter. Here we consider both fossil fuel error and fluxes error.

Note that the error of perturbed fluxes is not excluded here. As the control simulation just was
run from May to December, we could only know the pure effect of fossil fuel error in summer and
autumn, when the photosynthesis are most active, and as discussed in the former part, the prior
error in most of the domain are from the perturbed fluxes. While the system could remove the
fluxes error quite well, it performed poorly for the fossil fuel in the mixed forest in the southern
domain. This uncertainty should be considered in the inversion system with observation data.

4.6 Discussion

4.6.1 Forward simulation and implication for inverse run

The good modeled results from the forward simulation allow us to trust the transport model in
the Alpine regions. Among all the 4 CarboCount CH sites in Switzerland, the Beromünster has
the smallest influence from fossil fuel CO2, making it a good site for estimating the land uptake.
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Figure 4.18 Map of annual mean fluxes biases relative to the truth with added fossil fuel
biases(unit:µmol m−2s−1), calculated as average of prior or posterior fluxes minus true fluxes.

Both Frubuel and Lägern are affected by fossil fuel in summer, which makes it necessary to test
how much these fossil fuel signals might affect the inverted NEE. The vertical distribution shows
that JFJ could also see some regional NEE in summer time, hence it might bias the result if we
just use the gradient of JFJ and other sites for the inverted NEE fluxes in summer time.

4.6.2 Assimilation method, network and correlation length

In this paper, the RMSE of posterior CO2 mixing ratios and biases of posterior fluxes are sig-
nificantly improved when considering the sub grid percentage information. This is in contrast
to other pixel based assimilation from EnKF (Tolk et al., 2011; Peylin et al., 2013). Tolk et al.
(2011) compared different methods in the Netherlands and found no significant difference of CO2

mixing ratio RMSE from pixel-based inversion compared to the eco region inversion method over
all hour analysis and the daytime analysis, and the information of sub grid information remained
lost in both of these methods.

We assume that the inversion system would benefit from using percentage information also in
a pixel based inversion. It’s still questionable to define the correlation for the eco regions in each
grid cell for the percentage assimilation methods. The 8 sites are enough for robust results in the
footprint. The spatial sensitivity tests of the site LHW and BRM are similar and the observed CO2

concentration at these sites are highly correlated (> 0.8), leading to the mismatch of the pace of
improving uncertainty reduction and biases of posterior NEE fluxes. This study also shows that
both RMSE of posterior CO2 and biases of posterior NEE fluxe are reduced when increasing the
spatial correlation length from 30km or 100km to 300km, similar to the regional inversion system
from Lauvaux et al. (2012); Kadygrov et al. (2015). However, in some areas from Kadygrov et al.
(2015), shorter correlation length decreases prior uncertainty and hence behaves better due to
the different inversion method. Hence, we assume that CarbonTracker Switzerland might behave
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Figure 4.19 Seasonal mean fluxes biases relative to the truth with added fossil fuel biases (unit:
µmol m−2s−1), calculated as average of prior or posterior fluxes minus true fluxes: the first column
are seasonal error of prior NEE; the second column are error of posterior NEE; spring (March-
May of 2013), summer (June-August of 2013), autumn (June-August of 2013), winter (December,
January, February of 2013)

different at different areas if optimizing the scale factors at grid scale.

Different temporal smoothing window discussed by Peters et al. (2005) and Babenhauser-
heide et al. (2015) for global inversions. Babenhauserheide et al. (2015) showed that longer
smooth windows could reduce the posterior error. Gourdji et al. (2010) and Basu et al. (2016)
introduced temporal correlation in the prior error. We do not show different temporal windows
here as more temporal windows require significantly more computation time, but by adding the
temporal correlation function for scaling factors. We still found that longer smoothing window
reduces the error of posterior fluxes, similar to Broquet et al. (2013) and Chevallier et al. (2012).
It is still questionable how to generate the optimal weight for other simulations using different
vegetation inventories, or for real observation data assimilation. As we did not test the night time
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data with higher temporal window, the uncertainties from this part still remain unknown.

4.6.3 Data error

Based on the sensitivity test, the system could resolve the background error with standard devia-
tion 2 ppm in summer time (July and August), which is higher than the constant error added by
other studies (1 ppm), and also within the range of background error encountered in high resolu-
tion regional inversions(Lauvaux et al., 2012), implying that this system could generally remove
the background error.

The footprint where we are focusing on in our project has very robust posterior fluxes no
matter the given fossil fuel uncertainties (with just 7.95% posterior flux error from fossil fuel
uncertainties, equivalent to 0.0034µmol m−2s−1, or given background biases or combination of
them from May to December in 2013 (with just 2.6% posterior flux error relative to truth from
combined fossil fuel and background errors, or 0.0011µmol m−2s−1). The offset between the
combined fossil fuel uncertainties and background CO2 errors results in smaller posterior error
than the posterior error from just the fossil fuel uncertainty or background CO2 error. This gives
us some confidence about the posterior results in this assimilation system. In addition, the fluxes
from Austria and eastern part of France are robust due to the high spatial correlation between the
cropland in western part of the domain and inside footprint.

Although the combined fossil fuel uncertainties and background CO2 error slightly bias the
inverted fluxes in the footprint, the system generally produced a robust result from May to De-
cember in 2013. The error brought by the fossil fuel uncertainties is much lower than the error
from Kadygrov et al. (2015), or the uncertainty target from CarbonSat (around 0.5 C m−2 s−1),
and also much lower than 47% shift of NEE from Göckede et al. (2010).

This system could easily remove the NEE fluxes error with standard deviation 0.9, which
including the range of the difference from different flux dataset (such as MTE or CLM data),
implying that the robustness of system under current prior fluxes, the fossil fuel and background
error are more important in these experiments. The main limitation of these tests is that we do
not consider model transport error, which might require further constrain in the real observation
assimilation system.

4.7 Conclusions

In this paper, we evaluated and tested the newly developed high-resolution CarbonTracker Switzer-
land system using both real observations (to evaluate the transport model and the priors) and syn-
thetic data (to test the robustness of the inversion system). For the latter, we added as realistic
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uncertainties as possible to the data.

The forward simulation shows that the model performs very well in predicting the CO2 con-
centration compared to the amplitude and variability at all the new measurement sites in Switzer-
land, annually and seasonally. Summer biases are higher than during other seasons, due to toos
high NEE fluxes. The vertical distribution shows that the Lägern site is exposed to relatively high
fossil fuel CO2 (around 4.2 ppm), while Beromünster seems to be better suited for the inversion
of NEE due to it being somewhat less polluted from fossil fuel CO2.

The base run with all uncertainties and errors shows that the CarboCount CH system could
remove most of the NEE fluxes error, particularly in the inner parts of the domain that are well
covered by the CarboCount CH sites. The posterior fluxes are biased by the background CO2

error with the croplands inside the footprint and the deciduous forests in the northern part of the
domain suffering most from background CO2 biases. The system could resolve the background
error with a standard deviation of 2 ppm. Overall the base run in contrast to the control inversion
without errors shows that the fossil fuel error and background error dominate the NEE error in
the posterior results.

Sensitivity tests to the network density and localization method were conducted to check the
assimilation’s performance in the complex terrain. Five sites are enough to reduce the uncertainty
inside the footprint, while 3 more sites outside help to reduce the biases of the posterior NEE
fluxes, but even more sites would help to reduce the uncertainty in the western domain. Different
spatial localization methods do not lead to statistically distinguishable differences for the total
biases in the domain, but for robust cropland results, we recommend the CT2007 localization
method, while the covariance location method appears to be a good choice for the other ecore-
gions. The sensitivity cases also reveal that the redistribution pattern of background CO2 biases
is affected by the spatial length and temporal correlation. Both higher spatial and temporal cor-
relation could reduce the errors from the inside footprint cropland, whose error is most essential
inside the footprint, implying both of them should be chosen for more robust posterior fluxes in
the footprint.

In conclusion, the evaluation and synthetic tests of CarbonTracker Switzerland demonstrate
that this system, together with the CarboCount CH and other observing sites, is potentially well
suited to determine the net biospheric fluxes over central Europe and especially Switzerland.
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Chapter 5

CarbonTracker Switzerland: Quantifying
the net terrestrial biospheric carbon fluxes
in central Europe and Switzerland for 2013

Abstract

We estimate the net CO2 sources and sinks of the terrestrial biosphere, i.e., net ecosystem ex-
change (NEE), for 2013 in central Europe, especially Switzerland, using CarbonTracker Switzer-
land. This newly developed high resolution atmospheric CO2 inversion system uses an Ensemble
Kalman Filter to assimilate atmospheric CO2 observations from 6 sites in central Europe and es-
timates twice-weekly NEE for a suite of 12 ecoregions in the domain. It uses the weather model
COSMO as the atmospheric transport model, configured at 7 km resolution for the central Euro-
pean COSMO-2 domain. As prior, CarbonTracker CH uses the hourly photosynthesis and total
ecosystem respiration fluxes from the Vegetation Photosynthesis and Respiration Model (VPRM).

The inversion system is evaluated using 3 independent atmospheric measurement sites that
were not used in the assimilation, and the optimized fluxes for Switzerland are compared to the
inventory data from the Swiss Federal Office for the Environment (BAFU). The inversion system
successfully reduces the data-observations misfits at the independent sites by more than 50%,
especially in summer, when the contribution of the biospheric fluxes to the total CO2 variations
is the largest. The error reduction is around 80% in the inner part of the domain, i.e., roughly
the Swiss Plateau, and less in the other parts of the domain, largely due a much lower density of
observing sites there. The optimized seasonal cycle of NEE is reduced by about 10% largely due a
strong reduction in cropland NEE in July relative to the prior VPRM-based estimates, presumably
due to harvest.

The total biospheric carbon sink in Switzerland estimated by CarbonTracker CH for 2013

117
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amounts to about 1.4 Tg CO2, in excellent agreement with inventory data for all ecoregions
together. This substantial sink corresponds, however, only to 3% of the fossil fuel emissions
in Switzerland for that year. The largest uptake is driven by cropland, followed by forests and
grassland. In addition, the atmospheric CO2 observation tell us that croplands absorb more CO2

than prior VPRM and also substantially more than the bottom-up inventory would suggest. Mixed
forests appear to have suffered more than the other vegetation types from the early hot summer in
2013.

5.1 Introduction

The increasing CO2 levels in the atmosphere are the most important driver of current climate
change, which is the motivation for the global efforts to reduce CO2 emissions (Thompson et al.,
2016). At the COP21 meeting in 2015, the EU committed itself to reduce its fossil fuel emissions
by 40% by 2030 to alleviate the most dangerous effects of climate change. This CO2 reduction
policy requires a detailed understanding of the main sources and sinks country by country. This
includes not only the CO2 emissions from the burning of fossil fuels, but also the possible CO2

sources and sinks from the terrestrial biosphere (Tian et al., 2016).

However, estimating the carbon exchange between the terrestrial biosphere and the atmo-
sphere is a complicated and imprecise endeavor, largely due to the lack of a method to directly
measure it over larger scale regions. As a result, one has to rely on non-direct methods to infer
these fluxes, commonly grouped into two sets of methods. The first set are the bottom-up meth-
ods, in which the fluxes are estimated by in situ measurements (e.g., forest inventories or eddy
covariance measurements) and then scaled up using various types of statistical models and large
scale observations such as those determined by satellites. Alternatively one may just analyze the
measured data to detect the changes of the fluxes (Ballantyne et al., 2012; Ciais et al., 2005; Piao
et al., 2009; Jung et al., 2011; Beer et al., 2010). Different studies using this method have helped
us to better understand the role of e.g., beetles and fires (Seidl et al., 2014), nutrient availability
(Fernandez-Martinez et al., 2014), or droughts and other extreme events (Reichstein et al., 2013;
Schwalm et al., 2012) for controlling the ecosystem and the carbon balance. The second set of
methods are the top-down methods, wherein measured atmospheric CO2 gradients are used to
infer the surface biospheric fluxes, namely NEE, through various inversion techniques (Gurney
et al., 2002; Peters et al., 2007; Peylin et al., 2013; Chevallier et al., 2014; Feng et al., 2016b). The
results from such inversion systems have begun to converge recently on hemispheric scales, but
still tend to diverge substantially at regional scales, especially in the tropics (Ciais et al., 2013b;
Steinkamp and Gruber, 2013).

Recent studies have pushed the inversions towards regional scales. This was made possible by
the increasing spatial density of atmospheric CO2 measurements, reduced uncertainties in other
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datasets (e.g., fossil fuel emissions) as well as improvements of transport models on regional
and local scales and better parameterized land surface models (Peters et al., 2010; Jiang et al.,
2016; Ciais et al., 2010). Such regional inversions share many of the same challenges as the
global ones (e.g., time window for the inversion (Gourdji et al., 2012), prior error uncertainties
(Chatterjee et al., 2012), different inversion methods (Meesters et al., 2012) or the choice of the
observation network (Lauvaux et al., 2012)), but also a different set of challenges emerges. This
includes biases in the background CO2, i.e., that part of the total CO2 that is transported into
the domain from its boundaries (Lauvaux et al., 2012; Alden et al., 2016) and the influence of
high temporal and spatial variations in the fossil fuel CO2 source (Peylin et al., 2011), and the
problem that stations may be assimilated twice in the local and regional model, and the system
may be recirculated through the outer domain (Rödenbeck et al., 2009). Furthermore, despite
a generally higher density of observing stations, regional inversions might be more sensitive to
transport errors than global ones, owing to a stronger exposure to local to regional variations in
both fluxes and transport.

While there still exists substantially less experience for regional-scale inversions compared
to global-scale inversions, much progress in addressing these challenges has been made. In fact,
Broquet et al. (2011) concluded from a series of synthetic tests that the inversion of the seasonal
NEE variability by means of regional-scale atmospheric CO2 inversions is by now robust at the
scale of entire Europe. But estimates from different studies still diverge strongly.

Current estimates for the net carbon sink in Europe (Atlantic to Ural) fall into the range from
near zero to 1.5 Pg C yr−1 across all methods (Reuter et al., 2016, in press), with top-down
methods tending to give higher sinks in general (Janssens et al., 2003; Turner et al., 2011; Piao
et al., 2011; Kondo et al., 2015). The EU-25 countries have been found to take up CO2, although
with different amplitude from different methods (Ciais et al., 2013b; Schulze et al., 2009; Peters
et al., 2010; Chevallier et al., 2014; Feng et al., 2016a). Most of the uptake is assumed to take
place by the forests, with a smaller amount by grassland, while almost no uptake is assumed for
croplands(Ciais et al., 2010). More uptake in Europe was inferred from an inversion system with
satellite based measurements than with in-situ measurements (Reuter et al., 2014).

Most of the regional to local-scale inversions and comparisons between top-down and bottom-
up methods have focused on flat regions, trying to avoid complex topography. In contrast, we
focus here on a mountainous region, i.e., central Europe with Switzerland at its center (Luyssaert
et al., 2012; Ramonet et al., 2010). The atmospheric dynamics in this region is more complex, and
includes mesoscale mountain flows such as Föhn, but also much smaller scale phenomena such
as those associated with the diurnal mountain valley winds (Zardi and Whiteman, 2013). Then
there is more orographic precipitation. It is also influenced by episodic maritime air masses, with
lower evapotranspiration rates due to lower temperatures in the Alps. This adds to uncertainties
not only in the modeled rates of photosynthesis and respiration from process models, but also in
atmospheric transport models, owing to the interaction between evapotranspiration, air temper-
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atures and atmospheric circulation (Imer et al., 2013). These contrasting environments result in
different responses of the terrestrial biosphere to weather and climate fluctuations, depending on
the altitude and location (FOEN, 2013; Etzold et al., 2011).

Switzerland’s forestry and the harvested wood products absorbed 2.83 Tg CO2 eq in 2013(FOEN,
2015). The croplands were a source with contribution of 0.84 Tg CO2, and forests is a strong sink
of 2.26 Tg CO2 in 2013 based on the bottom-up methods, with higher carbon sequestration inten-
sity than average European forest (Etzold et al., 2011; FOEN, 2015).

The objectives of this chapter are: First, apply the high-resolution regional atmospheric CO2

inversion system CarbonTracker Switzerland in order to quantify the terrestrial biospheric CO2

fluxes in central Europe, especially in Switzerland, using atmospheric observations at 4 new mea-
surement sites; Second, to compare the posterior fluxes with bottom-up methods to provide the
first independent assessment of the biospheric sources and sinks in Switzerland.

This paper is structured as follows. First, the method and data used for this paper are intro-
duced, followed by the evaluation with measured atmospheric CO2 concentrations in Switzerland.
Then we show the results from our inversion system. Finally, we discuss the results and end with
our conclusions.

5.2 Method and data

5.2.1 CarbonTracker Switzerland

The regional atmospheric CO2 inversion is undertaken using the newly developed CarbonTracker
CH inversion system. Its main elements are described in chapter 2, while chapter 4 provides a
detailed assessment of its performance with a set of synthetic observations. Here, we provide
a summary as well as describe the more detailed choices needed for the assimilation of real
observations.

CarbonTracker Switzerland uses the weather and climate model COSMO as its transport
model (Baldauf et al., 2011). COSMO is a non-hydrostatic Regional Circulation Model developed
by the Consortium for Small-scale Modeling (COSMO) and used as the weather prediction model
by several weather services, including the German and Swiss Weather (MeteoSwiss) services. For
the atmospheric CO2 inversions, the COSMO-7 (7 km) configuration developed by MeteoSwiss is
employed, but applied only for the central European COSMO-2 domain to limit the computational
demand. COSMO is run in fully dynamic mode, i.e., atmospheric transport and mixing of CO2

is computed online from COSMO’s solving the main equation of motion given the initial and
boundary conditions provided. The CO2 is simulated at the same time with the weather in this
fully coupled model, which is different from former inversion studies (Peters et al., 2010).
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CarbonTracker Switzerland uses a merged product to prescribe the fossil fuel emissions in-
side its domain, namely a combination of a high resolution (500m*500m) inventory data devel-
oped by the company MeteoTest for the Swiss emissions and EDGAR v4.2-7T for the regions
outside (see chapter 3). Diurnal, weekly and monthly time profiles based on different sectors or
different countries were added in order to create hourly varying emissions for each grid cell of the
model. The prior terrestrial biosphere fluxes, split into Gross Primary Production (GPP) and to-
tal ecosystem respiration(Ra) were taken from the high resolution Vegetation Photosynthesis and
Respiration Model (VPRM), which is based on the assimilation of satellite based measurements
of the fraction of the absorbed photosynthetically available radiation (FPAR) from the MODIS
satellite.

The boundary conditions for the background CO2 are taken from CarbonTracker EU, and
updated every three hours(Peters et al., 2010). The ecotypes and the ecoregion map are taken from
VPRM with some adjustments (see chapter 2). When creating the ecoregion map for COSMO
at 7 km, we kept the detailed percentage information inside each grid cell, i.e., an attempt is
made to represent the subgrid scale variability in ecoregions in the inversion. Table 5.1 shows the
contribution of the different ecotypes to the grid cells where the measurement sites are located.
The fluxes are proportionally adjusted based on this percentage.

As the footprint of the CarboCount CH network covers mostly the area of the Swiss Plateau
and tapers off quickly thereafter, we separated the ecoregions also by geography, i.e., into a set
of ecoregions that are located inside the main footprint, and another set located outside. The
croplands dominate as an ecoregion in our domain, being responsible for nearly twice the fluxes
than all the others. To account for spatial heterogeneity, we decomposed the original croplands
into 4 different regions, due to similar behavior and species at different regions, such as rice
primarily dominating in the southern part of our domain, while cropland tends to dominate in the
dry land regions in the northern domain. The grassland is kept as one ecoregion in the whole
domain due to its small contribution to total NEE.

Table 5.1 Percent contribution of ecotypes at the CO2 measurement sites considered in the inver-
sion

Site Mixed forest Deciduous forest Grassland Cropland Others
[%] area [%] area [%] area [%] area [%] area

Lägern Hochwacht (LHW) - 18.8 - 68.9 12.3
Beromünster (BRM) 10.8 45.5 33.1 10.7 -

Früebüel (FRU) 14.5 19.9 - 19.8 45.9
Gimmiz (GIM) - 17.4 - 82.6 -

Schauinsland (SSL) 64.4 35.6 - - -
Plateau Rosa (PRS) - - 28.6 - 71.5

Mounte Cimone (CMN) - 86.6 - 13.4 -
Sonnblick (SNB) 11.2 - 50.2 - 38.58



122 Chapter 5. Net terrestrial biospheric carbon fluxes in central Europe and Switzerland

The meteorological forcings at the boundaries of the COSMO-2 domain are extracted from
the COSMO-7 analysis performed by MeteoSwiss. All these data were extracted and interpolated
to the COSMO-2 domain at 7 km and hourly resolution using the Int2LM package. The back-
ground CO2 data and the meteorological forcing data are read in by COSMO every 3 hours, while
the fossil fuel emissions and terrestrial biospheric fluxes are fed hourly. The model is run from
December 1st of 2012 onward until December 31 of that year in order to generate the initial CO2

concentrations in the domain. In addition, we do not use the 2-way nested system because the
driving data are from the European domain, and we assume that the amount of CO2 re-entering
to the domain after 8 days is negligible in the current domain.

5.2.2 Simulations

The inversion system was run for two different time periods in 2013: from January 1 until Oc-
tober and from September until December, with the initial CO2 field taken from the one month
simulation in December 2012. For the Ensemble Kalman Filter, an assimilation time step of 4
days and a 2 smoother windows were chosen. The choice of 4 days was based on the test from
Lagrangian models(Oney et al., 2016, in review). This means that the scaling factors are opti-
mized twice, while the daily observation(average in the afternoon) in each 4 days are used just
once to optimize the fluxes in the 1 smooth window (4 days) before.

The time stepping in the Ensemble Kalman Filter consists of a number of concrete steps.
First, an ensemble of scaling factors is generated. Thereafter the transport model is called and
run to generate an ensemble of 3-D CO2 concentration fields that is then sampled by the python
code to do the inversion step. Finally, new runs are performed with a posterior ensemble. The
CO2 mixing ratio fields generated by the (ensemble of) fluxes is propagated every 3 hours.

The observation error matrix R is prescribed to evolve with time, with lower values in sum-
mer and higher ones in winter. But within each season this matrix is kept constant. The prior
covariance matrix contains information about the prior assumption of the flux distribution and
the correlations between different ecoregions. The spatial correlation length is chosen as 100
km, while the covariance inside each ecoregion is assumed to be 0.64. The off-diagonal for the
correlation between ecoregions inside or outside the CarboCount CH footprint is a function of
spatial correlation and percentage of the coverage, with the covariance between ecotypes in the
same geographic area (such as inside footprint, or southern domain) are 0.49, and the covariance
between the ecoregion in the same grid is 0.64, while the covariance between different ecotypes
inside and outside the footprint is 0, except if it is the same ecotype. Although sensitivity tests
indicated that no localization works best, here we would like to obtain more robust results from
forests and croplands, and hence we kept the CT2007 localization method.

The number of CO2 observing sites used for the assimilation is kept constant throughout
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the inversion. In the present configuration, the system assimilates data from six stations inside
the domain, namely Beromünster (BRM), Früebüel (FRU), Monte Cimone (CMN), Schauinsland
(SSL), Plateau Rosa (PRS), and Sonnblick (SNB) (see Table 2.2 for details). The remaining three
sites, namely Lägern Hochwacht (LHW), Gimmiz (GIM), and Jungfraujoch (JFJ) were used for
validation. Average afternoon (13-16h local time) CO2 concentration are used for the inversion
and evaluation at the lower altitude sites, whereas the high altitude sites were sampled at night,
i.e., from 0-6h local time. The former choice reflects the deep PBL during the afternoon, giving
each site a much larger footprint (Oney et al., 2015).

Lägern Hochwacht is kept for the independent validation of the assimilation system due to its
high correlation (over 0.8) with the CO2 concentration at Lägern and at Beromünster. In addition,
this site sits on an east-west ridge with some rather complex up-downwind slope circulations,
which implies that COSMO will have difficulties to fully resolve the observations given its 7 km
resolution. The reason of using Gimmiz as a validation site stems from the high misfits between
the model and observations discussed in chapter 4. At the tall tower station Beromünster, only
data from the top level are assimilated to avoid over-weighting information from this station and
to avoid dealing with correlations in the model error between the top and the bottom levels of a
given station. The top level is selected because it has the largest footprint.

The model-data mismatch matrix contains transport model error, representation errors, and
observation error. Here we use the seasonal average error of observation and modeled CO2 con-
centration (RMSE) from the forward run. During synoptic events, the highly variable measured
CO2 are less reliable due to the pollution by anthropogenic CO2 signals. The model-data mis-
match is usually smaller than the RMSE.

5.3 Results

5.3.1 Evaluation

Fig 5.1 shows a comparison of the observed and the modeled CO2 concentration series at the
sites LHW, GIM and JFJ, i.e., the sites that were not used in the assimilation. Both the prior
and posterior modeled atmospheric CO2 are able to reproduce the observed variations well. At
Lägern und Gimmiz, the misfit as expressed by the Root Mean Square Error (RMSE) is reduced
in the posterior substantially, particularly in summer (Table 5.2). However, in the annual mean,
the RMSE reduction is less than 10%. This is because in wintertime, when the biospheric fluxes
are low, the optimization can reduce the difference between prior and observed CO2 concentration
only by a minimal amount. Thus, for much of the seasonal cycle, the errors are retained. The
posterior CO2 concentrations tend to stay very close to the prior values at Jungfraujoch. This
is expected since this very high altitude site is practically ”blind” to the biospheric fluxes of the
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domain, as it records primarily the background CO2 variations. The low prior RMSE at JFJ means
that the background CO2 concentration is well reproduced, which suggests that the magnitude
and vertical profile in the background signal is well captured by CarbonTracker, meaning that
the potential bias from this component is likely low. This alleviates a major concern in regional
atmospheric CO2 inversion systems.
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Figure 5.1 Comparison of modeled prior and posterior CO2 concentration (ppm) with the ob-
served one at 3 independent sites in 2013: LHW, GIM and JFJ. At LHW and GIM data are com-
pared for the afternoon 12-15h local time, while for JFJ, the night time data are used, i.e., 0-6h local
time.

Both, mean and variance are reduced significantly in the residuals of the posterior compared
to prior CO2 concentration in summer and autumn (Figure 5.2). In fact, the inversion is very
successful in removing the prior bias at these validation sites, such that the median of the posterior
residuals is mostly around 0.

The more complete assessment of the prior versus posterior misfits in Table 5.2 shows that
especially in summer and autumn there are large biases in the prior CO2 concentration, mostly
stemming from the VPRM model overestimating the strength of the NEE (see also chapter 4).
The inversion system is able to reduce this bias substantially, especially at FRU, SSL, and BRM.
Transport errors, errors in the flux model (Tolk, 2013), and errors in fossil fuel emissions might
contribute to the remaining residuals. Our tests with the synthetic data revealed that the errors
introduced by the background CO2 and fossil fuel emissions could significantly be reduced in the
inner part of the domain. Hence, we attribute the remaining error to errors in the prior fluxes and
transport error. The fact that the posterior biases are much smaller than the prior biases in CO2

concentration, gives us confidence into the estimated posterior NEE fluxes.
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Table 5.2 Comparison of modeled with observed CO2 concentrations at the 9 observing sites
within the domain : Difference between observed, prior and posterior CO2 concentrations (daytime
averaged) for all stations and seasons. All values are in ppm. The sites LHW, GIM and JFJ are used
for independent evaluation.

Site prior
RMSE

posterior
RMSE

prior
RMSE

posterior
RMSE

prior
bias

posterior
bias

annual annual summer summer summer summer

Lägern (LHW) 6.4 6.0 6.5 5.6 -1.32 -1.12

Beromünster (BRM) 5.0 4.2 5.0 3.2 -1.01 -0.82

Früebüel (FRU) 5.6 5.1 5.3 4.2 -0.97 -0.004

Gimmiz (GIM) 11.1 11.0 5.5 4.2 -3.22 2.69

Monte Cimone (CMN) 4.1 3.7 6.3 5.5 -2.03 0.67

Schauinsland (SSL) 5.0 4.4 5.3 4.2 -0.38 0.62

Plateau Rosa (PRS) 3.4 3.4 4.3 4.2 4.32 4.28

Sonnblick (SNB) 3.3 3.3 3.9 3.8 3.28 3.22

Jungfraujoch (JFJ) 2.8 2.9 2.7 2.7 2.18 2.22

5.3.2 Source/sink behavior of CO2 in the domain

5.3.2.1 Error reduction

Fig. 5.3 shows the relative improvement of the uncertainty obtained by CarbonTracker CH, plot-
ted as the annual relative error reduction. The largest error reduction is achieved in the central
part of the domain, i.e., in the footprint region of the CarboCount CO2 measurement sites in
Switzerland and of Schauinsland (SSL) in southern Germany. The strongest errors occurs for
the mixed forests, deciduous forests, grasslands and the cropland in the inner part of the domain
(Swiss Plateau). In contrast, the error reduction in the Alpine regions is very small. But this is
largely due to the insensitivity of this ecoregion. This is a result of its small fluxes owing to much
of it consisting of bare land and glacier.



126 Chapter 5. Net terrestrial biospheric carbon fluxes in central Europe and Switzerland

May Jul Sep
 

Prior

Posterior

Obs

Jun Aug
370

375

380

385

390

395

400

405

410

415

 

 

Oct

LAG

GIM

JFJ

 

370

375

380

385

390

395

400

405

410

415

 

 

375

380

385

390

395

400

405

410

415

GIM

Time

A
tm

os
ph

er
ic

 C
O

2 
co

nc
en

tr
at

io
n(

pp
m

)

LHW

R
es

id
ua

ls
 (

C
O

2 
co

nc
en

tr
at

io
n(

pp
m

))

−25
−20

−15
−10

−5
0

5
10

15
20

0 2 4 6 8 10 12 14 16 18 20

−25
−20

−15
−10

−5
0

5
10

15
20

0 5 10 15 20 25

−6
−4

−2
0

2
4

6
8

10
0 5 10 15 20 25

Figure 5.2 Comparison of prior and posterior CO2 concentration (ppm) from May to September
at the three independent sites, i.e., LHW, GIM and JFJ: the left column shows the time series of the
CO2 concentration, and the right column a histogram of the residuals.
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Figure 5.3 Relative measure of error reduction achieved by CarbonTracker CH by assimilating the
CO2 observation from 6 sites in the domain. The relative error reduction is obtained by computing
1 - posterior variance/prior variance.

5.3.2.2 Annual and seasonal average NEE

The annual mean NEE maps indicate for both prior and posterior estimates relatively homoge-
neous sinks (see Fig. 5.4). The average uptake is reduced from -0.79 µmol m−2s−1 in the prior to
-0.75 µmol m−2s−1 in the posterior (see Fig. 5.4). The inversion system also slightly reduces the
magnitude of the spatial variations of the fluxes, with the average prior fluxes ranging from -2.3
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to 0.8 µmol m−2s−1, while the average posterior fluxes range from -2.3 to 0.7 µmol m−2s−1.

1.5

0.9

−0.3

0.3

−0.9

−1.5

a) Prior b) Posterior c) Difference μmol m-2 s-1

Figure 5.4 Annual mean NEE fluxes in 2013. (a) prior mean fluxes, (b) posterior mean fluxes,
c) absolute difference, with negative fluxes indicating a carbon sink. All panels have units of µmol
m−2s−1.

The changes in the annual fluxes are located mainly in the northern and western part of
the domain and inside the footprint of the domain. The sink is very small along the Alps and
northern part of the domain, while it is strong in southern Italy and France. Compared to the
prior VPRM data, the sinks in central Germany and northern Italy are smaller while they are
stronger in the western part of France, and southern Germany. Although regions outside the
footprint such as western France should remain mostly unchanged by the inversion system, there
are still some correlations in the scaling factor of croplands, which caused the changes there. The
spatial distribution of the posterior annual mean NEE is highly correlated with the prior NEE,
with correlation coefficients over 0.9, indicating that the prior fluxes data might already match
the annual atmospheric signal quite well and the system mainly allocate the fluxes inside of the
domain. There are some ocean regions where prior and posterior fluxes appear, which might be
caused by the interpolation of the land use map. Another explanation might be due to ”leakage”,
i.e., the system redistributes the prior fluxes from land to coaster regions (Gurney, 2004).

Fig. 5.5 shows the seasonally averaged NEE fluxes over Switzerland. Larger seasonal changes
can be observed in the western and northern parts of the domain. Spring shows strong uptake in
the southern and western part of the footprint region (over 1.5 µmol m−2s−1). The relatively large
source in Italy presumably comes from the cultivation of rice, as the preparation and tilling of the
land before the planting of rice tend to cause substantial CO2 emissions. The land biosphere acts
as a sink almost over the whole domain in summer. Our assimilation reduces the sinks in central
Germany, Poland and part of Czech Republic. This suggests a stronger management or harvest
in cropland and grassland than the process model VPRM predicts. The winter NEE flux map is
dominated by sources in both prior and posterior results, with fewer sources in western part of
the domain. Generally, the western domain shows larger changes and higher uncertainties which
suggests that more constraints by observations are needed in this region.

Considering the monthly mean fluxes, we found the changes of posterior pattern from month
to month to be similar to the prior fluxes. Generally, sources dominate the domain from October
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Figure 5.5 Seasonal mean fluxes (µmol m−2s−1) in 2013: upper left: spring (March, April, May);
upper right: summer (June, July, August); lower left: autumn (September, October, November);
lower right: winter (December, January, February).

until December and January until March. There are smaller sources in January in posterior fluxes
(CarbonTracker-CH reduces the prior fluxes from 0.45 to 0.35 µmol m−2s−1 ), while in April,
there are stronger sinks in the posterior NEE (drag the fluxes from -0.33 to -0.35 µmol m−2s−1 ).
In the northern and western part of Italy, there are strong sources, due to cropland management.

There is strong uptake in June, due to the very high uptake from cropland in the western part
of the domain. Sensitivity tests show that the setup of the inversion system could affect the uptake
in the western part of the domain. Whether the strong uptake in western part of the domain in
June is real or not, and how large the uptake in this area is, still requires further investigation.

5.3.3 Carbon budget of Switzerland

The total NEE in Switzerland amounts to about 1.28 Tg CO2 yr−1 (Figure 5.6), with about half
of it stemming from croplands, followed by mixed and deciduous forests. The contribution of
grasslands is relatively small. Even though the assimilation of the atmospheric CO2 observations
by CarbonTracker Switzerland does not change these annual integrated fluxes in a significant
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manner, it reduces the uncertainty of these fluxes very substantially.
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Figure 5.6 Integrated annual ecoregion fluxes in Tg CO2 yr−1 for Switzerland. Errorbars repre-
sent normalized 1σ uncertainty.

While the annual mean NEE shift little between prior and posterior estimate, monthly NEE in
Switzerland changes more substantially (see Fig. 5.7). The maximum NEE in Switzerland shifted
from July to June, with a 0.29 Tg CO2 reduction in the seasonality, i.e., 40% reduction compared
to the prior fluxes. Additionally, even though May was colder than normal in 2013, the CO2 in the
atmosphere indicates large posterior fluxes than the prior NEE of the ecosystem model VPRM. In
the other months, the shifts are minor. It is unlikely that the shift in seasonality is caused by the
transport model, so we assume that this represents a true shift in NEE, driven by distinct changes
in the observed CO2.

Separated into the seasonal cycles for each ecoregion, the shifts become even more evident
(Fig. 5.3.3). The posterior seasonal cycle of different ecosystems in Switzerland behave rather
differently compared to the prior. For example, the mixed forest (including evergreen forest) have
almost 0.06 Tg CO2 less uptake than the prior estimate in June (corresponding to a halving of the
prior fluxes), but then the uptake recovers to the prior level in July, resulting in almost no change
in the annual uptake of this ecoregion. The deciduous forest behaves differently, with more



130 Chapter 5. Net terrestrial biospheric carbon fluxes in central Europe and Switzerland

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

JAN FEU MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Time

N
E

E
(T

g 
C

O
2 m

on
th

-1
)

Prior
Posterior

Figure 5.7 Seasonal cycle of NEE in Switzerland. Shown is the prior (purple) and posterior
estimate (green), i.e., the estimate after the assimilation of the atmospheric CO2 data.

uptake in June than July. These difference might reveal different sensitivities of the ecoregions to
different controlling parameters, for example, the deciduous forest might be more sensitivity to
the high temperatures in July, or there are other mechanisms causing a lag of drought impact on
the NEE fluxes in deciduous forest.

The grasslands have a similar seasonal pattern as the deciduous forest, i.e., slightly larger
sinks in June, with a 40% uptake reduction in July as compared to the prior. The most dramatic
change occurs in cropland, with nearly 0.1 Tg CO2 more uptake than the prior VPRM data in
spring, i.e., the posterior fluxes almost doubled from the prior during this period. But in July,
the reverse is diagnosed, i.e., a 68% reduction (=0.146 Tg CO2) in sinks in July. The shift in
seasonality among different ecoregions needs to be investigated further to see if our results are
robust, such as assigning all the prior fluxes to forest, or cropland, or using other prior fluxes data
and ecoregion maps, or zero prior fluxes.

Table 5.3 shows that the posterior annual terrestrial biospheric uptake integrated over Switzer-
land for the year 2013 is around -1.33 Tg CO2, very close to the uptake from estimated the in-
ventory data(FOEN, 2015). For comparison, the integrated fossil fuel emission for Switzerland
is around 43 Tg, implying that the Swiss ecosystems could only absorb around 3% of the fossil
fuel emissions emitted by Switzerland.

Both inventory data and the top-down method indicate that the forests in Switzerland are
strong sinks. However, the annual integral posterior flux from forest is around -0.5 Tg CO2

equivalent, strongly inconsistent with the inventory data (80% less than the inventory data). Both
methods estimate grassland as close to neutral in Switzerland. In contrast, cropland is found to be
a strong sink by the top-down method, while the inventory data suggests that it is a weak source.
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Figure 5.8 Seasonal cycle of NEE by different ecoregions in Switzerland: a
Mixed forest; b) Deciduous forest; c) Grassland; d) cropland.

Although there are large uncertainties after the inversion, the CarbonTracker CH estimates are far
away from the inventories. Thus, further investigations are clearly required for this ecosystem.

5.4 Discussion

5.4.1 Posterior fluxes

This study is the first regional atmospheric CO2-based inversion for terrestrial biospheric CO2

fluxes for Switzerland. Although eddy covariance methods can measure these fluxes directly, their
very limited spatial footprint makes it impossible to scale up these fluxes without sophisticated
statistical methods.

Compared to the prior NEE provided by VPRM, there are shifts of the seasonality in the
different ecoregions, such as a significant reduction of the uptake by mixed forests, which consists
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Table 5.3 Carbon budget of Switzerland. Comparison of the CarbonTracker CH results with the
inventory data (unit: Tg CO2 yr−1 ).

Ecoregion Prior fluxes Posterior fluxes Inventory

Whole Switzerland -1.28 -1.33 -1.48

Forests -0.54 -0.5 -2.68

Grasslands -0.07 -0.06 0.3

Croplands -0.65 -0.75 0.87

in Switzerland primarily of conifers. Given their relatively high soil moisture sensitivity, this may
reflect the impact of the dry June of 2013 affecting the NEE in this month, and subsequently for
the entire year. The deciduous forest appears to have been less affected by the dry weather in
June, but the dry weather in June may have had some influence on the posterior fluxes in later
months.

The stronger sinks in April and May in the posterior cropland fluxes compared to the prior,
might be due to the relatively wet conditions during these months, promoting their growth. How-
ever, there were also some rather cool days between March to April, but apparently, they did not
leave a strong imprint.

Though the improvement of the total fluxes compared to the prior is not large, the uncertain-
ties in the posterior fluxes are substantially reduced. The comparatively small improvement in the
posterior for spring is mainly due to the low vegetation fluxes. Almost no improvement could be
achieved in winter when NEE is low, thus requiring huge changes in the scaling factors to shift
the predicted atmospheric CO2 in a substantial manner.

5.4.2 Uncertainties related to the CarbonTracker CH system

In chapter 4, we showed that errors in the background CO2 concentration affect the posterior
fluxes only slightly in Switzerland even when they were combined with fossil fuel uncertainties.
Thus, it is reasonable to assume that this is also the case here with the real observations, i.e., that
the results here are reliable from May to December, with only a relatively small error stemming
from fossil fuel in summer. Another potential bias may be caused by the meteorological forcing
data, as errors in wind speed or direction might lead to errors in transport and thereafter fit of the
observation to a false ecoregions (Lin and Gerbig, 2005; Miller et al., 2014). For this paper, we
use the analysis data from MeteoSwiss who have worked for years with COSMO to improve its
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skills owing to their use of this model for weather prediction. Although this error source cannot
be excluded, we believe that no big bias is introduced through these means.

A good estimate of the planetary boundary layer is vital for the atmospheric CO2 inversion,
as an overestimate of the estimated PBL height during the day will result in higher sinks, because
higher surface fluxes are needed to generate the same concentration level (Turner et al., 2011).
Rossa et al. (2012) showed that COSMO-2 tends to indeed underestimate the PBL height during
the day compared to observations, which would lead to an underestimation of the carbon sinks by
our assimilation system. A mechanism different from Stephens et al. (2007), where the inversion
system overestimated the sinks due to the positive mixed layer height in summer. However, the
good comparison of total NEE fluxes in Switzerland compared to inventory data, and the well
estimated GPP data alleviate such concerns.

While we do not think there is a large impact of errors in the fossil fuel emission in winter as
shown by Tolk (2013), more sensitivity tests should be conducted in order to conclude more robust
posterior fluxes for different ecoregions. These tests might include inversions with different prior
fluxes, although the sensitivity test with synthetic data and a perfect transport model showed that
the prior NEE does not matter much. There might be some bias in the posterior fluxes in cropland
and forests, because we added the negligible coverage (i.e., ecoregions with coverage lower than
10%) to the ecoregions with highest coverage. The cropland is the dominated ecoregion in most
grid, while the forests cover less than 10% in many grids (see chapter 2). In addition, we separate
the prior total fluxes into different portions based on the coverage of different ecoregions by
assuming that all the ecoregions in Switzerland has the same fluxes density all year around. In the
future, we need to test the robustness with more extreme cases, such as distributing wrong portion
to different ecoregions, or change the correlation function between different ecoregions, to check
the possible uncertainties in the posterior fluxes from different ecoregions. Another test should
consider the use of a different fossil fuel dataset, although the fossil fuel CO2 does not contribute
much to potential biases in NEE owing to its primary contribution being in winter when NEE is
low. The last set of tests could concern the use of different settings in the inversion system, such as
the values in the prior covariance matrix. However, the decreased spatial correlation or different
localization methods won’t change the posterior fluxes much as demonstrated with synthetic data
presented in chapter4.

In this paper we explicitly considered the subgrid scale heterogeneity in the inversion by
retaining the relative contribution of different ecotypes to any grid cell of the model. Of course,
this inversion system only solve it by simply taking the ecoregion based inversion method, and
the spatial correlation between ecotypes in the same grid cell or same ecotypes among different
grid cells are difficult to quantify. However, the concept implemented here could be transferred or
applied to other regional or global inversion system as well. In the future, the spatial correlation
needs to be better described and pixel-based inversion might be adopted here for finer budgets,
such as at the scale of states, or regions.
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Some researchers are pushing inversion towards the parameter inversion with multi data
sources, hoping to better constrain the inversion system. This system could be extended to use
column data from high resolution satellite data, or adjusting the parameters in the fluxes field
at the same time to constrain the system, and just need to carefully check the potential error or
biases in the data to the system.

As Tolk (2013) shows that the pixel inversion to some extent kept the stochastic properties
of the prior fluxes, this high resolution inversion might not help much to solve this problem. It is
thus doubtful that the finer inversion method would lead to better improvement of the total fluxes
than the cut-off domain method as we adopted here.

5.4.3 Top-down and bottom-up methods

Both the top-down and bottom-up methods agree that the forests in Switzerland are strong sink
for atmospheric CO2. This can be expected for a forest that is heavily managed, as the man-
agement keeps the mean age young, resulting in most trees growing fast and vigorously (Turner
et al., 2011). The two methods also agree that grasslands are a small sink, in agreement with the
expectation that grasslands are generally in steady state(Turner et al., 2011).

The inversion with CarbonTracker Switzerland reveals a large and unexpected difference
from the inventory data for cropland. One reason might be due to the different consideration
of atmospheric view of the CO2 from cropland, i.e., the source is assigned to the regions with
large consumption, while the cropland keeps as strong net uptake(Peters et al., 2007). Another
explanation might be the underestimated soil variability from inventory data, as the amount of
CO2 absorbed by crops itself is small and consistent from year to year, while the soil carbon con-
tributes to most of the changes. Besides the uncertainties in the top-down method we discussed
before, the various sources of uncertainties in the bottom up method, such as errors in the map-
ping of parameterization of biogeochemistry, errors in estimating autotrophic and heterotrophic
respiration would affect the result of the bottom-up method. The limitation in the bottom-up
method lies in the data for the model inputs (such as high uncertainties in the satellite input data)
and the uncertainties associated with the model parameters(Turner et al., 2011).

5.5 Summary and Conclusion

The high resolution assimilation system CarboCount CH was successfully applied to a new set
of CO2 concentration observation in order to estimate the biospheric CO2 fluxes for the first time
from such a top-down method.

We run the system for 2013 using six sites for the assimilation, while keeping another three
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for validation. The system could optimize the CO2 concentration at the three independent sites
with an almost 50% improvement in summer, and with a 60% to 80% flux uncertainty reduction
inside the footprint of the model, indicating that the current measurement setup is sufficient to
estimate the CO2 fluxes of Switzerland. A comparison of the posterior GPP data to MODIS
confirms the good performance of the system.

The inversion system does not change the total fluxes in the domain, but it shifts the fluxes
between different ecoregions. Northern and western domain fluxes are strong NEE sinks, and
optimized by adjusting the cropland contribution in the system, while only minor changes are
needed inside the footprint. The posterior seasonal cycle is estimated to be about 40% lower
than the prior due to the management in cropland in July, comparing to prior VPRM data. The
reduction of posterior fluxes in mixed forest in June partly offsets the seasonality of the total
fluxes, which has very different pattern from other ecoregions. The grassland showed smaller
seasonal change due to a reduced carbon uptake.

A shift occurs in the seasonal cycle of Switzerland, which is mainly due to an adjustment of
the cropland, much smaller uptake in July in posterior due to the harvest or field management.

The total sink in Switzerland is about 1.3 Tg yr−1 in 2013, consistent with the inventory
data. In addition, the atmospheric CO2 observation tells us that cropland absorbs more CO2 than
prior VPRM, while mixed forest suffered from the early hot summer more than other species with
reduced posterior uptake in June, which is confirmed by in-situ surface observation. The grassland
is mostly neutral, and forests are strong sinks in both methods, with much lower posterior fluxes
compared the inventory data.
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Chapter 6

Summary, conclusions and outlook

6.1 Background

The goal of this thesis was to develop CarbonTracker Switzerland, i.e., a system to provide high
resolution estimates of a regional inversion system aimed at accurately quantifying the terrestrial
biospheric fluxes in central Europe and, in particular Switzerland, and to compare this top-down
based estimate with bottom-up based estimates, such as forest inventories. The long-term ob-
jective of the CarboCount CH project that this thesis is part of, is to track the response of the
biospheric carbon fluxes to climate variations and to develop an understanding and ultimately
predictive capability of the role of climate change on the carbon balance of Central European
ecosystems.

Concretely, CarbonTracker Switzerland uses an Ensemble Kalman Filter (EnKF) technique
to combine the atmospheric transport model COSMO with the new CarboCount CH based obser-
vations of atmospheric CO2 in order to optimally estimate a set of scaling factors that determine
the magnitude of the net exchange fluxes for a total of 12 discrete ecoregions.

The questions I tried to answer in this thesis are:

1. How well can the high resolution transport model COSMO reconstruct the atmospheric
CO2 concentration from the different components, especially that from fossil fuel emissions
at different spatial scales, at individual measurement sites and across the entire domain,
with high temporal resolution of the input data?

2. What are the key sources of error of the estimates of CO2 fluxes, and how much do the input
data uncertainties and biases, mainly those associated with the background CO2 contribute
to the uncertainties of inverted fluxes? How important are fossil fuel CO2 errors in the local
inversion system?

137
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3. What are the sources and sinks of CO2 in Switzerland and what causes differences between
top-down and bottom-up systems?

I addressed the first question by conducting extensive forward simulations with the atmospheric
transport model COSMO for both the (nearly) entire European domain as well as for the central
European domain. The second and third questions were addressed through the use of the Carbon-
Tracker system using synthetic observations from the forward run and then the new observations
from the CarboCount CH project.

Although this is not the first high resolution atmospheric CO2 inversion system in Europe
(Tolk, 2013), it is the first focusing on central Europe and Switzerland. Further, it is the first
study that uses the new CO2 measurement data to assess the sources and sinks from different
ecoregions from bottom-up inventory data. It represents a new regional inversion system method
for characterizing and predicting regional CO2 fluxes. Others have previously developed regional
inversion systems with coarse temporal resolution (typically seasonal) and also often with spatial
resolutions of more than 10 km (Meesters et al., 2012; Tolk et al., 2011). In this work I developed
an EnKF-based system with a transport model that has a resolution of 7 km, i.e., one that is
at the higher end of the spectrum of previous studies and also covers a more extensive domain
compared to previous high-resolution studies. Further, my inversion system accounts for the
transport of separate tracers for gross primary production and total ecosystem respiration taken
from the high temporal and spatial resolution vegetation model VPRM.

The CarbonTracker CH system is based on previous versions of CarbonTracker (Peters et al.,
2010), but had to be adjusted to the regional scale by explicitly considering the role and contribu-
tion of the lateral boundary conditions. In addition, several new elements have been implemented.
First, hourly resolved variations in the high resolution fossil fuel emissions were implemented in-
stead of the commonly assumed time constant, or just seasonally resolved emissions (Peylin et al.,
2011). Second, a covariance localization method (Zupanski et al., 2007) (typically not adopted for
such models) was implemented in this system to check the influence from the topography on the
optimization process. Third, instead of using the approach of retaining a single dominant ecore-
gion within each grid cell (Peters et al., 2010; Tolk, 2013), I retained the ecological composition
within each grid cell to explicitly account for the subgrid scale heterogeneity of the ecoregions.
Fourth, I used a weighted average of the different smoothing windows to represent the temporal
correlation in generating the prior scaling factor, and the system was tested with more realistic
error structure, i.e., with varying biases following a Gaussian distribution for fossil fuel emissions
and with a 5-day autocorrelation in the case of background CO2 concentrations (representing the
synoptic error).
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6.2 Summary and general conclusions

In Europe, the fossil fuel component is the dominant contributor to the surface spatial gradients
in atmospheric CO2. The fossil fuel footprint contributes to more than half of the total temporal
variations in atmospheric CO2 in most areas of northern and western central Europe. Some of
the largest variations tend to occur at diurnal scales owing to the combination of diurnal varia-
tions in emissions and atmospheric mixing/transport out of the surface layer. The covariations
of these two factors, i.e., the fossil-fuel diurnal rectifier effect, leads to a difference as large as
several ppm compared to a case with time-constant emissions. Each of the fossil fuel emission
sector has its own distinct footprint, with that from fossil fuel fired power plant having the most
distinguishable one owing to its stationarity and its extremely high emission density. Various
simulations show that a reduction in fossil fuel emission by 30% from a given power plant is at
the edge of detectability by the current generation of satellites (e.g., OCO2), although changes
in the variance could be seen already at lower levels of reduction. This indicates that changes in
variability might provide an additional method for the monitoring and verification of changes in
fossil fuel emissions. Increase in the frequency of satellite overpasses will enhance the possibility
of detecting the fossil fuel emissions changes in the future.

Extensive tests with synthetic data fed to the CarbonTracker CH system reveal that the current
CO2 observation network is enough for removing more than 90% error from prior net biospheric
(NEE) fluxes. This suggests that the complicated topographic region with patchy ecoregions does
not prevent a successful application of a relatively standard inversion system. The tests also show
that the biospheric fluxes are sensitive to a number of parameters and choices associated with
the inversion system. For example, an inversion that accounts for the subgrid scale variability
in ecoregions gives an around 20% higher error reduction and 10% less posterior error than an
inversion that just accounts for the dominant ecoregion. Further, croplands in the core region, i.e.,
defined through the footprint of the CarboCount CH observing stations, and deciduous forests in
the northern part of the domain suffer most from background CO2 biases. Longer spatial and
temporal correlations (1 month) are required to remove the biases in the background CO2 for
robust posterior fluxes, even though a background error with standard deviation as large as 2
ppm could be removed by the system. The influence of uncertainties from fossil fuel emissions
on the posterior fluxes mainly occurs in summer, and this influence is relatively weaker than
the background CO2 biases. The tests of combining NEE error, fossil fuel error and background
error imply that the fossil fuel error and background error dominate the NEE error in the posterior
results. With combined biases from fossil fuel and background CO2, the system underestimates
the fluxes in the northern domain and overestimates in the southern part in summer, and produces
robust results in the eastern and central part of the footprint from May to December in 2013.

Using real measured atmospheric CO2 data to estimate the posterior fluxes for Switzerland
with CarbonTracker CH resulted in high-confidence estimates owing to the significant improve-
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ment in both posterior CO2 concentration and posterior GPP comparing to the independent mea-
surements or MODIS observation. The inversion system has a small impact on the total annual
biospheric fluxes in the domain, but shifts the fluxes between different ecoregions and between
seasons.

The fluxes in the northern and western domain are optimized due to the prevalence of crop-
land. However, the amplitude of the posterior seasonality from cropland inside the footprint is
reduced by about 17% relative to the VPRM-based prior likely owing to the management of
cropland in July. The reduction of the posterior fluxes in mixed forests in June partly offsets
the seasonality of the total fluxes, the former having a very different seasonal pattern from other
ecoregions. The grassland showed a smaller seasonal change due to lesser carbon uptake. The
shift occurring in the seasonal cycle of Switzerland is mainly from cropland, with much less
uptake in July in posterior fluxes comparing to the prior VPRM fluxes, due to harvest or field
management.

The total sink in Switzerland is 1.33 Tg yr−1 in 2013, commensurate with the inventory data.
More than half of the carbon sink is contributed by cropland. The forest are sinks suggested by the
top-down method, with posterior uptake of 0.5 Tg yr−1. Possibly because mixed forest suffered
from the early hot summer more than other ecoregions, their posterior uptake was reduced in
June. The grassland is almost neutral.

6.3 Caveats and outlook

The CarbonTracker CH inversion system is an ecoregion-based inversion, that is, the entire ecore-
gion in a domain is adjusted at the same time. Even though we split the spatial domain into
subregions using a combination of footprint sensitivity and climatic/topographic gradients, such
an ecoregion based method might still bring some problems for complex topographic regions,
e.g., the grassland in Switzerland at high altitude may behave differently from the grassland at
lower altitudes, and hence sites such as Berom̈unster and Früebüel might act as different types of
grassland. One way to solve this problem is to implement a pixel based inversion system, though
the comparison from Tolk (2013) showed that the posterior fluxes did not differ much between a
pixel and an ecoregion based inversion. Any future pixel and percentage based inversion method
would require better description of the spatial correlation of fluxes in concert with the computa-
tional power, for example the problem of correlation of different ecoregions inside one pixel and
correlation between neighbouring pixels to avoid inflating an already underdetermined problem
given current observation density.

In addition, this thesis mainly focused on monthly or seasonal improvements of the prior
biospheric fluxes. In the future, it would be highly attractive from an ecosystem point of view
to take advantage of the high temporal resolution observations in order to improve the estimates
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at shorter timescales, even down to the diurnal cycle. The latter would also help to improve our
understanding of the seasonal cycle, which requires reducing inconsistencies with night time data
in the inversion system, because night time CO2 generally degrade the inverted results.

Furthermore, any transport model error is biasing the inverted fluxes, e.g. imperfectly esti-
mated PBL can result in misinterpreted fluxes in the inversion system, or lead to the inaccurate
determination of meteorological variables (primarily wind speed). As the mismatch between the
observation and model is relatively small relative to the spread of the ensemble members, I did
not quantify how such potential biases may influence the optimized results. The main reason is
that this was viewed as being beyond the focus of this thesis.

Another source of error in the system are the boundary conditions. The boundary conditions
used in this thesis for the COSMO-2 domain were taken directly from CarbonTracker Europe,
which might be too coarse for its direct use in my regional inversion system and potentially bias
the results, although available test results in chapter 4 suggest that the boundary condition do
not lead to large biases in the budget of CO2 inside the footprint when combined with fossil fuel
uncertainties. One possible solution to improve the inverted fluxes is to optimize the background
CO2 using observations, which requires either aircraft measurements or other direct measure-
ments that could provide accurate background CO2 for the domain (Alden et al., 2016). This
system follows the traditional way to deal with fossil fuel CO2 with no associated uncertainty,
which might result in spatial and temporal biases in posterior NEE, i.e., carryover bias (Basu
et al., 2016). New approaches could be adopted where tracer based estimates are used to infer the
fossil fuel footprint (Oney, 2016), having the potential to reduce the errors in regional NEE es-
timation in the inversion system with more realistic assumption about transport errors will affect
the results.

More sensitivity tests to generate more robust results for different ecoregions would be worth-
while, such as how uncertainties in the fossil fuel emission inventory affect the inverted fluxes
(Thompson et al., 2016; Peylin et al., 2011). In addition, although our tests in chapter 4 demon-
strated that the inverted fluxes converge very well to the ”truth”, even when the priors are per-
turbed by up to 90%, these tests were done in a perfect transport setting. Thus we cannot exclude
the potential biases in the fluxes from the land surface models or process models (since the spread
of different transport models are significant at the regional scale (Geels et al., 2007)). More sen-
sitivity tests yield more robust results using different prior fluxes or different transport models.

Multiple data streams could be assimilated into the system to reduce the uncertainties of
fluxes and hence improve the optimization, such as the satellite data (from the recently launched
OCO2). In addition, optimizing a set of model parameters related to photosynthesis in a process-
based model that incorporates different data sources might benefit the whole inversion method as
well (MacBean et al., 2016), such as by using eddy covariance flux measurements, FAPAR prod-
ucts, and soil moisture data. These multiple data streams might correct some poorly parametrized
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processes or even help discover missing processes in the terrestrial ecosystem model.

The last issue in the data assimilation is that we found the residuals between the observations
and the model to be non-Gaussian distributed. Some system have already incorporated methods
for accounting for the non-Gaussian distribution of residuals between models and observations,
such as Gaussian Mixture method. we tested one extreme event that has a very large mean with
small standard deviation outliers for one month (with standard 10 times less than mean errors), but
further tests are necessary for the evaluation of more common scenarios, such as uniform noise
with smaller mean and higher standard deviation; how would this noise affect the assimilation
system in the growing period when the photosynthesis is strong, and so on.
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A. Gomez-Pelaez, D. Griffith, F. Hase, et al. Global CO2 fluxes inferred from surface air-
sample measurements and from TCCON retrievals of the CO2 total column. Geophysical

Research Letters, 38(24), 2011.

F. Chevallier, T. Wang, P. Ciais, F. Maignan, M. Bocquet, M. Altaf Arain, A. Cescatti, J. Chen,
A. J. Dolman, B. E. Law, H. A. Margolis, L. Montagnani, and E. J. Moors. What eddy-
covariance measurements tell us about prior land flux errors in CO2-flux inversion schemes.
Global Biogeochem. Cycles, 26:1–9, 2012. doi: 10.1029/2010GB003974.

F. Chevallier, P. I. Palmer, L. Feng, H. Boesch, C. W. ODell, and P. Bousquet. Toward
robust and consistent regional CO2 flux estimates from in situ and spaceborne measure-
ments of atmospheric CO2. Geophysical Research Letters, 41(3):1065–1070, 2014. doi:
10.1002/2013GL058772. 2013GL058772.

P. Ciais, M. Reichstein, N. Viovy, a. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buch-
mann, C. Bernhofer, a. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein,
T. Grünwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Mat-
teucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Sous-
sana, M. J. Sanz, E. D. Schulze, T. Vesala, and R. Valentini. Europe-wide reduction in primary
productivity caused by the heat and drought in 2003. Nature, 437(7058):529–533, 2005. doi:
10.1038/nature03972.

P. Ciais, P. Rayner, F. Chevallier, P. Bousquet, M. Logan, P. Peylin, and M. Ramonet. Atmospheric
inversions for estimating CO2 fluxes: Methods and perspectives. Clim. Change, 103(1-2):69–
92, jul 2010. doi: 10.1007/s10584-010-9909-3.

P. Ciais, T. Gasser, J. D. Paris, K. Caldeira, M. R. Raupach, J. G. Canadell, A. Patwardhan,
P. Friedlingstein, S. L. Piao, and V. Gitz. Attributing the increase in atmospheric CO2 to
emitters and absorbers. Nat. Clim. Chang., 3(10):926–930, 2013a. doi: 10.1038/nclimate1942.

P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Gal-
loway, M. Heimann, C. Jones, C. L. Quere, R. B. Myneni, S. Piao, P. Thornton, P. C. France,
J. Willem, P. Friedlingstein, and G. Munhoven. 2013: Carbon and Other Biogeochemical Cy-
cles. Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov.

Panel Clim. Chang., pages 465–570, 2013b. doi: 10.1017/CBO9781107415324.015.

P. Ciais, A. Dolman, A. Bombelli, R. Duren, A. Peregon, P. Rayner, C. Miller, N. Gobron, G. Kin-
derman, G. Marland, et al. Current systematic carbon-cycle observations and the need for im-
plementing a policy-relevant carbon observing system. Biogeosciences, 11:3547–3602, 2014.
doi: 10.5194/bg-11-3547-2014.



164 Bibliography

P. Ciais, D. Crisp, H. Van Der Gon, R. Engelen, M. Heimann, G. Janssens-Maenhout, and
M. Scholze. Towards a European operational observing system to monitor fossil CO2 emissions
(Final Report from the expert group). European Commission, JRC98161, Brussels, 2015.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell. Acceleration of global warm-
ing due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809):184187, nov
2000. doi: 10.1038/35041539.

W. Cramer, A. Bondeau, F. I. Woodward, I. C. Prentice, R. A. Betts, V. Brovkin, P. M. Cox,
V. Fisher, J. A. Foley, A. D. Friend, C. Kucharik, M. R. Lomas, N. Ramankutty, S. Sitch,
B. Smith, A. White, and C. Young-Molling. Global response of terrestrial ecosystem structure
and function to CO2 and climate change: Results from six dynamic global vegetation models.
Glob. Chang. Biol., 7(4):357–373, 2001. doi: 10.1046/j.1365-2486.2001.00383.x.

D. Crisp, R. M. Atlas, F. M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney,
I. Y. Fung, D. J. Jacob, C. E. Miller, D. OBrien, S. Pawson, J. T. Randerson, P. Rayner, R. J.
Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C.
Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon,
and S. Schroll. The Orbiting Carbon Observatory (OCO) mission. Adv. Sp. Res., 34(4):700–
709, 2004. doi: 10.1016/j.asr.2003.08.062.

E. L. Davin, E. Maisonnave, and S. I. Seneviratne. Is land surface processes representation a
possible weak link in current Regional Climate Models? Environ. Res. Lett., 11(7):74027,
2016.

F. Deng, D. Jones, T. Walker, M. Keller, K. Bowman, D. Henze, R. Nassar, E. Kort, S. Wofsy,
K. Walker, et al. Sensitivity analysis of the potential impact of discrepancies in stratospheretro-
posphere exchange on inferred sources and sinks of CO2. Atmospheric Chemistry and Physics,
15(20):11773–11788, 2015.

A. S. Denning, I. Y. Fung, D. Randall, et al. Latitudinal gradient of atmospheric CO2 due to
seasonal exchange with land biota. Nature, 376(6537):240–243, 1995. doi: 10.1038/376240a0.

A. S. Denning, D. A. Randall, G. J. Collatz, and P. J. Sellers. Simulations of terrestrial carbon
metabolism and atmospheric CO2 in a general circulation model. Tellus B, 48(4):543–567,
1996. doi: 10.1034/j.1600-0889.1996.t01-1-00010.x.

A. J. Dolman, C. Gerbig, J. Noilhan, C. Sarrat, and F. Miglietta. Detecting regional variability in
sources and sinks of carbon dioxide: a synthesis. pages 1015–1026, 2009.

A. J. Dolman, A. Shvidenko, D. Schepaschenko, P. Ciais, N. Tchebakova, T. Chen, M. K. Van Der
Molen, L. Belelli Marchesini, T. C. Maximov, S. Maksyutov, and E. D. Schulze. An estimate
of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion
methods. Biogeosciences, 9(12):5323–5340, 2012. doi: 10.5194/bg-9-5323-2012.



Bibliography 165

F. DOrtenzio, D. Antoine, and S. Marullo. Satellite-driven modeling of the upper ocean mixed
layer and air-sea CO2 flux in the Mediterranean Sea. Deep. Res. Part I Oceanogr. Res. Pap.,
55:405–434, 2008. doi: 10.1016/j.dsr.2007.12.008.

I. G. Enting, C. M. Trudinger, and R. J. Francey. A Synthesis Inversion of the Concentration and
δC13 of Atmospheric CO2. Tellus, 47(1-2):35–52, 1995. doi: 10.1034/j.1600-0889.47.issue1.
5.x.

S. Etzold, N. K. Ruehr, R. Zweifel, M. Dobbertin, A. Zingg, P. Pluess, R. Häsler, W. Eugster,
and N. Buchmann. The carbon balance of two contrasting mountain forest ecosystems in
switzerland: similar annual trends, but seasonal differences. Ecosystems, 14(8):1289–1309,
2011.

G. Evensen. Data Assimilation - The Ensemble Kalman Filter. 2009. doi: 10.1007/
978-3-642-03711-5.

S. Fan. A Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic
Carbon Dioxide Data and Models. Science, 282(5388):442–446, 1998. doi: 10.1126/science.
282.5388.442.

S. M. Fan, T. L. Blaine, and J. L. Sarmiento. Terrestrial carbon sink in the Northern Hemisphere
estimated from the atmospheric CO2 difference between Mauna Loa and the South Pole since
1959. Tellus, Ser. B Chem. Phys. Meteorol., 51:863–870, 1999. doi: 10.1034/j.1600-0889.
1999.t01-4-00001.x.

L. Feng, P. Palmer, H. Boesch, S. Dance, L. Feng, P. Palmer, H. Boesch, and S. Dance. Estimating
surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble
Kalman Filter. Atmos. Chem. Phys., 9(8):26192633, 2009. doi: 10.5194/acp-9-2619-2009.

L. Feng, P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Suss-
mann. Estimates of European uptake of CO2 inferred from GOSAT Xco2 retrievals: sensitivity
to measurement bias inside and outside Europe. Atmos. Chem. Phys., 16:1289–1302, 2016a.
doi: 10.5194/acp-16-1289-2016.

S. Feng, T. Lauvaux, S. Newman, P. Rao, R. Ahmadov, A. Deng, L. I. Dıaz-Isaac, R. M. Duren,
M. L. Fischer, C. Gerbig, et al. Los Angeles megacity: a high-resolution landatmosphere
modelling system for urban CO2 emissions. Atmos. Chem. Phys., 16(14):9019–9045, 2016b.
doi: 10.5194/acp-16-1289-2016.

S. Feng, T. Lauvaux, S. Newman, P. Rao, R. Ahmadov, A. Deng, L. I. Dıaz-Isaac, R. M. Duren,
M. L. Fischer, C. Gerbig, et al. Los Angeles megacity: a high-resolution landatmosphere
modelling system for urban CO2 emissions. Atmos. Chem. Phys., 16(14):9019–9045, 2016c.
doi: doi:10.5194/acp-16-9019-2016.



166 Bibliography

M. Fernandez-Martinez, S. Vicca, I. A. Janssens, J. Sardans, S. Luyssaert, M. Campioli, F. S.
Chapin III, P. Ciais, Y. Malhi, M. Obersteiner, D. Papale, S. L. Piao, M. Reichstein, F. Rodà,
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multiple data streams in a carbon cycle data assimilation system. Geosci. Model Dev. Discuss.,
(March):1–44, 2016. doi: 10.5194/gmd-2016-25.

P. Mahadevan, S. C. Wofsy, D. M. Matross, X. Xiao, A. L. Dunn, J. C. Lin, C. Gerbig, J. W.
Munger, V. Y. Chow, and E. W. Gottlieb. A satellite-based biosphere parameterization for net
ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model(VPRM). Global

Biogeochemical Cycles, 22(2), apr 2008. doi: 10.1029/2006GB002735.

A. D. McGuire, S. Sitch, J. S. Clein, R. Dargaville, G. Esser, J. Foley, M. Heimann, F. Joos, J. Ka-
plan, D. W. Kicklighter, R. A. Meier, J. M. Melillo, B. Moore, I. C. Prentice, N. Ramankutty,



Bibliography 175

T. Reichenau, A. Schloss, H. Tian, L. J. Williams, and U. Wittenberg. Carbon balance of the
terrestrial biosphere in the Twentieth Century: Analyses of CO2 , climate and land use effects
with four process-based ecosystem models. Glob. Biogeochem. Cycles, 15(1):183–206, 2001.
doi: 10.1029/2000GB001298.

K. McKain, S. C. Wofsy, T. Nehrkorn, J. Eluszkiewicz, J. R. Ehleringer, and B. B. Stephens. As-
sessment of ground-based atmospheric observations for verification of greenhouse gas emis-
sions from an urban region. P. Natl. Acad. Sci. USA, 109(22):8423–8428, may 2012. doi:
10.1073/pnas.1116645109.

A. G. C. A. Meesters, L. F. Tolk, W. Peters, R. W. A. Hutjes, O. S. Vellinga, J. A. Elbers, A. T.
Vermeulen, S. van der Laan, R. E. M. Neubert, H. A. J. Meijer, and A. J. Dolman. Inverse
carbon dioxide flux estimates for the Netherlands. J. Geophys. Res. Atmos., 117, 2012. doi:
10.1029/2012JD017797.

M. Meinshausen, N. Meinshausen, W. Hare, S. C. B. Raper, K. Frieler, R. Knutti, D. J. Frame,
and M. R. Allen. Greenhouse-gas emission targets for limiting global warming to 2 degrees C.
Nature, 458(7242):1158–1162, 2009. doi: 10.1038/nature08017.

A. M. Michalak, L. Bruhwiler, and P. P. Tans. A geostatistical approach to surface flux estimation
of atmospheric trace gases. Journal of Geophysical Research: Atmospheres, 109(D14), 2004.

A. M. Michalak, A. Hirsch, L. Bruhwiler, K. R. Gurney, W. Peters, and P. P. Tans. Maximum
likelihood estimation of covariance parameters for Bayesian atmospheric trace gas surface flux
inversions. J. Geophys. Res. Atmos., 110:1–16, 2005. doi: 10.1029/2005JD005970.

A. M. Michalak, R. Jackson, G. Marland, and C. Sabine. A U.S. Carbon Cycle Science Plan.
Eos, Trans. Am. Geophys. Union, 90:81, 2011. doi: 10.1029/2009EO120003.

J. B. Miller, S. Lehman, J. Turnbull, J. Southon, P. Tans, W. Peters, J. Elkins, and C. Sweeney.
Using atmospheric 14CO2 measurements to quantify fossil fuel emissions and evaluate atmo-
spheric transport. North, 109(4):2004–2004, 2007. doi: 10.1029/2006JD008184.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kort, A. E. Andrews, S. C. Biraud, E. J.
Dlugokencky, J. Eluszkiewicz, M. L. Fischer, G. Janssens-Maenhout, et al. Anthropogenic
emissions of methane in the united states. Proceedings of the National Academy of Sciences,
110(50):20018–20022, 2013.

S. M. Miller, A. M. Michalak, and P. J. Levi. Atmospheric inverse modeling with known physical
bounds: An example from trace gas emissions. Geosci. Model Dev., 7:303–315, 2014. doi:
10.5194/gmd-7-303-2014.

S. M. Miller, M. N. Hayek, A. E. Andrews, I. Fung, and J. Liu. Biases in atmospheric CO2

estimates from correlated meteorology modeling errors. Atmos. Chem. Phys., 15:2903–2914,
2015. doi: 10.5194/acp-15-2903-2015.



176 Bibliography

K. Miyazaki, T. Maki, P. Patra, and T. Nakazawa. Assessing the impact of satellite, aircraft, and
surface observations on CO2 flux estimation using an ensemble-based 4-D data assimilation
system. J. Geophys. Res. Atmos., 116:1–20, 2011. doi: 10.1029/2010JD015366.

T. Miyoshi and M. Kunii. The local ensemble transform kalman filter with the weather research
and forecasting model: experiments with real observations. Pure and applied geophysics, 169
(3):321–333, 2012.

S. Mystakidis, E. L. Davin, N. Gruber, and S. I. Seneviratne. Constraining future terrestrial
carbon cycle projections using observation-based water and carbon flux estimates. Global

change biology, 2016.

R. Nassar, L. Napier-Linton, K. R. Gurney, R. J. Andres, T. Oda, F. R. Vogel, and F. Deng. Im-
proving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission
data sets. J. Geophys. Res-Atmos., 118(2):917–933, jan 2013. doi: 10.1029/2012JD018196.

S. Newman, S. Jeong, M. L. Fischer, X. Xu, C. L. Haman, B. Lefer, S. Alvarez, B. Rappenglueck,
E. a. Kort, a. E. Andrews, J. Peischl, K. R. Gurney, C. E. Miller, and Y. L. Yung. Diurnal
tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring
2010. Atmos. Chem. Phys., 13:4359–4372, 2013. doi: 10.5194/acp-13-4359-2013.

S. M. Ogle, K. Davis, T. Lauvaux, A. Schuh, D. Cooley, T. O. West, L. S. Heath, N. L. Miles,
S. Richardson, F. J. Breidt, J. E. Smith, J. L. McCarty, K. R. Gurney, P. Tans, and A. S. Denning.
An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric
CO2 concentration data. Environ. Res. Lett., 10(3):1–11, 2015. doi: 10.1088/1748-9326/10/3/
034012.

B. Oney, S. Henne, N. Gruber, M. Leuenberger, I. Bamberger, W. Eugster, and D. Brunner. The
carbocount ch sites: characterization of a dense greenhouse gas observation network. Atmos.

Chem. Phys., 15(19):11147–11164, 2015. doi: 10.5194/acp-15-11147-2015.

B. Oney, N. Gruber, S. Henne, M. Leuenberger, and D. Brunner. A CO-based method to determine
the regional biospheric signal in atmospheric CO2. Tellus B, 2016, in review.

B. J. Oney. Toward using atmospheric carbon dioxide observations to estimate the biospheric

carbon flux of the Swiss Plateau. PhD thesis, ETH ZURICH, 2016.

E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. Patil,
and J. A. Yorke. A local ensemble kalman filter for atmospheric data assimilation. Tellus A, 56
(5):415–428, 2004.

S. W. Pacala, C. D. Canham, J. Saponara, J. A. Silander, R. K. Kobe, and E. Ribbens. Forest
models defined by field measurements: estimation, error analysis and dynamics. Ecological

monographs, 66(1):1–43, 1996.



Bibliography 177

Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shv-
idenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire,
S. Piao, A. Rautiainen, S. Sitch, and D. Hayes. A large and persistent carbon sink in the worlds
forests. Science, 333(6045):988–93, 2011. doi: 10.1126/science.1201609.

P. K. Patra, M. Ishizawa, S. Maksyutov, T. Nakazawa, and G. Inoue. Role of biomass burning and
climate anomalies for land-atmosphere carbon fluxes based on inverse modeling of atmospheric
CO2. Global Biogeochemical Cycles, 19(3), 2005.

K. S.-H. Peh, R. T. Corlett, and Y. Bergeron. Routledge Handbook of Forest Ecology. Routledge,
2015.

Z. Peng, M. Zhang, X. Kou, X. Tian, and X. Ma. A regional carbon flux data assimilation system
and its preliminary evaluation in East Asia. Atmos. Chem. Phys. Discuss., 14:20345–20381,
2014. doi: 10.5194/acpd-14-20345-2014.

G. Peters, G. Marland, C. Le Quere, T. Boden, J. G. Canadell, and M. R. Raupach. Rapid growth
in CO2 emissions after the 2008-2009 global financial crisis. Nat. Clim. Chang., 2:2–4, 2011.
doi: 10.1038/nclimate1332.

W. Peters, J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruh-
wiler, and P. P. Tans. An ensemble data assimilation system to estimate CO2 surface fluxes
from atmospheric trace gas observations. J. Geophys. Res. Atmos., 110:1–18, 2005. doi:
10.1029/2005JD006157.

W. Peters, A. R. Jacobson, C. Sweeney, A. E. Andrews, T. J. Conway, K. Masarie, J. B. Miller,
L. M. P. Bruhwiler, G. Petron, A. I. Hirsch, D. E. J. Worthy, G. R. van der Werf, J. T. Randerson,
P. O. Wennberg, M. C. Krol, and P. P. Tans. An atmospheric perspective on North American
carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. U. S. A., 104:18925–18930,
2007. doi: 10.1073/pnas.0708986104.

W. Peters, M. Krol, G. Van Der Werf, S. Houweling, C. Jones, J. Hughes, K. Schaefer, K. Masarie,
A. Jacobson, J. Miller, et al. Seven years of recent European net terrestrial carbon dioxide
exchange constrained by atmospheric observations. Glob. Chang. Biol., 16:1317–1337, 2010.
doi: 10.1111/j.1365-2486.2009.02078.x.

A. Petzold, A. Volz-Thomas, V. Thouret, J. Cammas, and C. Brenninkmeijer. Iagos–in-service
aircraft for a global observing system. 3rd International Conferene on Transport, Atmosphere

and Climate, Germany, pages 25–28, 2012.

P. Peylin, D. Baker, J. Sarmiento, P. Ciais, and P. Bousquet. Influence of transport uncertainty on
annual mean and seasonal inversions of atmospheric CO2 data. J. Geophys. Res. Atmos., 107,
2002. doi: 10.1029/2001JD000857.



178 Bibliography

P. Peylin, P. Bousquet, C. Le Quere, S. Sitch, P. Friedlingstein, G. McKinley, N. Gruber, P. Rayner,
and P. Ciais. Multiple constraints on regional CO2 flux variations over land and oceans. Global

Biogeochem. Cycles, 19(1):1–21, 2005. doi: 10.1029/2003GB002214.

P. Peylin, S. Houweling, M. C. Krol, U. Karstens, C. Rödenbeck, C. Geels, A. Vermeulen,
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