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Abstract—An integral part of most security- and safety-critical
applications is a dependable and timely alarm notification.
However, owing to the resource constraints of wireless sensor
nodes (i.e., their limited power and spectral diversity), ensuring
a timely and jamming-resistant delivery of alarm messages in
applications that rely on wireless sensor networks is a challenging
task. With current alarm forwarding schemes, blocking of an
alarm by jamming is straightforward and jamming is very likely
to remain unnoticed. In this work, we propose a novel jamming
detection scheme as a solution to this problem. Our scheme is
able to identify the cause of bit errors for individual packets
by looking at the received signal strength during the reception
of these bits and is well-suited for the protection of reactive
alarm systems with very low network traffic. We present three
different techniques for the identification of bit errors based on:
predetermined knowledge, error correcting codes, and limited
node wiring. We perform a detailed evaluation of the proposed
solution and validate our findings experimentally with Chipcon
CC1000 and CC2420 radios. The results show that our solution
effectively detects sophisticated jamming attacks that cannot be
detected with existing techniques and enables the formation
of robust sensor networks for dependable delivery of alarm
notifications. Our scheme also meets the high demands on the
energy efficiency of reactive surveillance applications as it can
operate without introducing additional wireless network traffic.

I. INTRODUCTION

Initially motivated by battlefield intelligence, wireless sen-
sor networks (WSNs) have expanded into a number of security
and safety critical civilian applications including emergency
response support, fire and burglar alarm systems, and the
protection of critical infrastructures. Common to these appli-
cations is that they rely on dependable and timely delivery of
alarm notifications. These alarms are typically raised by sensor
nodes upon the detection of a sensed event (e.g., presence
of an intruder) and must subsequently be forwarded to the
network authority in a hop-by-hop manner. A sensor network
that supports these applications must therefore guarantee the
timely delivery of alarms even under jamming attacks.

The expected lifespan of such sensor network applications
ranges from months to years and, given the limited power
supply of sensor nodes, places high demands on the energy
efficiency of the running algorithms. To meet these demands,
existing surveillance applications [11], [13], [9], [21] combine
low duty-cycling with reactive notification. Here, alarms are
only transmitted upon detection of an event (i.e., for the
network authority “no news is good news”). While such
behavior is highly desirable in energy-constraint sensor net-

works, in conjunction with the low output power and limited
spectral diversity of sensor node transceivers, it makes the
alarm forwarding highly vulnerable to jamming-based denial-
of-service attacks (i.e., alarm masking); these attacks have
been shown to come at a low cost for the attacker while being
particularly harmful to timely delivery of critical information
[23], [25], [22].

In principle, there are two solutions to counter jamming
attacks on alarm forwarding: jamming mitigation and jamming
detection. However, common spread-spectrum-based jamming
mitigation techniques such as FHSS or DSSS are beyond
the capabilities of current sensor nodes and existing jamming
detection techniques for sensor networks do not suffice to
protect the considered reactive message forwarding. Existing
jamming detection techniques rely on the packet-delivery-ratio
(PDR) and/or the received ambient signal strength as their
main decision criteria [18], [25], [17], [16] and have been
shown to be well-suited for the detection of proactive mid- or
long-term jamming [25], [16]. They are, however, not designed
to detect reactive (packet or single-bit) jamming: To begin
with, existing jamming detection techniques rely only on the
CRC of a packet to decide whether it was received correctly
and therefore can (in general) not distinguish between packet
failures due to weak radio links and interference. Furthermore,
assessing an accurate PDR is not practical in a reactive
forwarding scheme as messages are sent very rarely. Finally,
jamming does not necessarily cause a steady and high received
signal strength (RSS) value as only a small fraction of a
packet has to be interfered with in order for the packet to
be invalid [18], [10], [17]. A reactive jammer can thus keep
the increase in the effective RSS value very low and hence
avoid being detected with current approaches.

In this work, we propose a novel jamming detection scheme
as a solution to these problems. Our scheme is able to
identify the cause of bit errors for individual packets with high
probability by looking at the received signal strength (RSS)
during the reception of these bits; bit errors are detected either
based on predetermined knowledge, error correcting/detecting
codes, or limited node wiring in the form of wired node chains
(n-tuples). The intuition behind this process is that if there was
a bit error although the RSS value was high, this indicates
external interference (intentional or unintentional); if the bit
error was due to a weak signal (e.g., due to fast fading or
shadowing), the RSS value should be low. This additional



information allows an accurate differentiation of packet errors
due to intentional interference from errors due to weak links,
even in the case of a sophisticated (reactive) attacker that jams
only a small portion of a packet.

We discuss the strengths and weaknesses of the proposed
bit-error identification techniques and evaluate their jamming-
detection performance analytically, by simulations, and ex-
perimentally with an implementation on BTnodes [1] and
Tmote Sky nodes [3]. The evaluation results confirm that our
solution meets the performance and accuracy requirements of
(reactive) alarm forwarding protocols and enables the detection
of advanced jamming attacks in which the attacker can freely
choose the duration, strength, and beam width of the jamming
signal. To the best of our knowledge, this work is the first
to present a jamming detection scheme for sensor networks
that enables the detection of reactive (single bit) jamming
or overshadowing on a per-packet basis. In summary, the
contributions of this paper are as follows:
• We present a novel jamming detection scheme for coun-

tering advanced (reactive single bit) jamming attacks in
wireless sensor networks.

• We develop three different techniques for the identifica-
tion of bit errors based on: predetermined knowledge, er-
ror correcting codes, and limited node wiring (n-tuples).

• We evaluate our solution by simulations and experimen-
tally with COTS sensor node platforms (BTnodes and
Tmote Sky nodes).

• We analyze the threats on limited wiring and develop
a low-power wire compromise detection scheme for the
detection of malicious attacks on wires.

• We elaborate an analytical model for random, manual,
and airdrop-based deployment of wired n-tuples.

The remainder of this paper is organized as follows: After
specifying the system and attacker model in Section II, we
discuss the impact and mitigation of reactive jamming in
Section III and highlight the need for an efficient detection of
reactive jamming. Our novel jamming detection scheme is pre-
sented in Sections IV and evaluated in Section V. We present
our wire integrity verification protocol in Section VI, discuss
related work in Section VII, and conclude in Section VIII.

II. SYSTEM AND ATTACKER MODEL

As a typical application scenario for our jamming detection
scheme, we consider the following setting: A wireless sensor
network system is deployed in areaA (e.g., for the surveillance
of a critical infrastructure). The main purpose of the network
is to, upon the detection of an exceptional event (e.g., presence
of an intruder), raise an alarm and forward it to the network
authority. The network behavior is reactive, that is, alarms are
sent when an exceptional event is sensed and they are resent
if they are not acknowledged by the intended receivers. We
assume that the node deployment is dense enough to ensure
that alarm messages reach several neighbors and that, for
security reasons, all traffic is encrypted and authenticated.

In this system, the attacker’s goal is to interrupt or delay the
alarm notification process by means of jamming. We assume
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Fig. 1. Jamming types. (b) Proactive jammers keep the channel permanently
occupied so that no transmissions are possible whereas reactive jammers only
jam once an ongoing transmission has been detected. (c) With reactive packet
jamming, the attacker emits the jamming signal as soon as the transmission
is detected and typically jams for an entire packet length. (d) With reactive
bit jamming, the attacker targets its jamming signal at a specific part of the
packet and keeps the jamming duration to a minimum.

that the attacker is in control of one/several static/mobile
jamming devices but is unable to destroy or deactivate nodes
without being noticed (e.g., tamper-responsive packaging trig-
gers alarm upon misuse); otherwise she could simply dis-
able all nodes. To achieve her goal, the attacker can either
proactively jam the intrusion area (Figure 1(b)) or reactively
jam an alarm message once it is sent (Figure 1(c) and (d)).
More specifically, we consider an attacker J that can freely
choose its jamming location, frequency, rate, and strategy. We
further assume that the maximal transmission power PJ of
the attacker is finite, but we do not impose any restrictions
on the attacker’s energy supply. At each point in time, the
attacker can freely choose the power P ij and beam width θij for
a set {(P 1

j , θ
1
j ), (P

2
j , θ
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either be proactive or reactive [18], [25]: Proactive jammers do
not sense for ongoing transmissions but jam the channel per-
manently whereas reactive jammers initially solely sense for
ongoing transmissions and start jamming only when a packet
transfer has been detected. In order to remain undetected for
as long as possible the attacker might decide to jam only a
certain fraction λj of all packets, to vary the beam direction
and width, and/or to move between individual attacks.

The purpose of our jamming detection scheme is to detect
jamming attacks on the message/alarm forwarding process. We
assume that at least a fraction of all deployed nodes runs our
detection algorithm and participates in the jamming detection.
Upon the detection of a jamming attack, the nodes raise a
jamming alert which is then either locally stored (e.g., as
evidence for later investigations) or reported to the network
authority by means of the existing alarm forwarding scheme.
In the latter case, the attacker might extend the jammed region
during her attack in order to also block these new alarms
caused by her jamming. Consequently, if the jamming alarms
raised by the initial set of nodes cannot escape the jammed



area, these blocked jamming alarms must in turn also be
detected by neighboring nodes and so forth. This means that
the actual jamming detection can be composed of several
iterative detection steps. However, since the same rules and
conditions apply to all these steps, we consider only one such
detection step and do not further discuss the jamming alarm
reporting.

III. IMPACT AND MITIGATION OF REACTIVE JAMMING

Before we present our solution for the detection of reactive
jamming in Section IV, we first highlight the importance of
such a detection scheme by demonstrating how a reactive
jammer can block communication in current wireless sensor
networks with minimal exposure.

The reason for the weak jamming resistance of current
MAC protocols for WSNs roots in the their dependency on
a preamble/sync-byte header to mark the start of the packet
header [15]. This dependency makes the protocols extremely
vulnerable to bit errors in the preamble, sync-byte, or packet
header.

To demonstrate this vulnerability, we investigated the impact
of reactive bit jamming on the performance of typical MAC
protocols for WSNs. The experiments were conducted with
BTnode sensor nodes that use an Atmel ATmega 128L micro-
controller running at 8 MHz and a Chipcon CC1000 radio [1],
the preamble and header length were set to 96 and 8 bytes,
respectively. In order to enable the jamming of single bits
without having to use expensive hardware, the transmission
rate of the sender and receiver was reduced to 2.4 kBaud.
We then implemented the jammer using an additional BTnode
sending random data at a rate of 38.4 kBaud.

Our results clearly show that reactive bit jamming can effi-
ciently block communication that uses current sensor network
protocols with minimal exposure for the attacker. Specifically,
in our experiments, we were able to achieve a jamming success
rate of 90% by jamming only three bits in the packet header
or in the sync byte (see Figure 2). Even more important, if
the jamming was targeted at the sync-byte, the jammed packet
transmissions were not even recognized as such by the network
stack and were thus completely ignored by the nodes and
not counted as packet losses. As a first step towards a better
jamming resistance, we therefore introduce a more robust
packet header detection technique that significantly increases
the minimal duration during which the jammer must interfere
with a packet to block it.

With our header detection technique, before a packet is
transmitted, the sender applies error correcting codes to the
header and shuffles the encoded bits according to a pseudo
random sequence based on the secret key shared by the sender
and the receiver. As we shall see, this process ensures that
a substantial part of the packet header must be jammed to
prevent being decoded. Note that otherwise the MAC protocol
in use is not modified; in particular a possibly required
preamble—for example to account for imprecision in the
nodes synchronization or to announce a transmission if low
power listening is used—is still transmitted.
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Fig. 2. Header delivery rate for our coding-based header detection algo-
rithm and a common preamble/sync-byte-based approach. The lines show
the expected theoretical results, the points the measured results; for each
transmission the bit shuffling was based on a new (secret) seed. According
to these results, a jammer that wants to mask a packet transmission with
a probability of > 90% would have to jam only 3 bits if the common
preamble/sync-byte method is used and more than 21 bits if our coding-based
detection is used. Hence, the coding-based header detection is not only much
more robust than common approaches, but also facilitates the detection of a
jammer as it enforces a longer jamming duration.

The receiver (periodically) samples the channel according
to the schedule of the employed MAC protocol and uses the
received signal strength to assess whether a transmission is
taking place. If a transmission is detected, the sender starts
receiving it. However, as opposed to common practices, the
sender will not wait for a predefined sync-byte to mark the
start of the packet but will try do decode the header itself.
Specifically, the receiver will receive a complete header length,
unscramble the data, and try to decode it. Upon success, he
receives the remainder of the packet; otherwise, he drops the
first (i.e., oldest) bit, appends the newest received bit, and tries
to decode the new input. This process is repeated until a packet
is detected or the transmission ends (i.e., the received signal
strength drops to the noise level for some time).

The main drawback of this packet detection algorithm is
that the error correcting codes increase the header length and
thus the required energy for a packet transmission. Whether
this increase has a noticeable impact on the overall energy
consumption of the sender and/or receiver depends on the
application and the MAC protocol in use. The well-known
B-MAC protocol, for instance, uses preamble lengths which
are several times longer than the packet header [19]. A coding
rate of up to 0.5 (i.e., an encoded header length that is twice
as long as the unencoded header) has thus only a small impact
on the duty-cycle and can usually be neglected.

We evaluated the performance of our proposed header de-
tection scheme experimentally with the aforementioned setup
based on BTnode sensor nodes. For the header encoding we
used a Hamming (8,4) code that allows for correcting single bit
errors, detecting all two bit errors, and detecting some three bit
errors; the bit shuffling was performed with a linear feedback
shift register.

The efficiency of our coding-based header detection algo-
rithm compared to a preamble/sync-byte-based approach is



shown in Figure 2. Assuming a flipping probability of 0.5 for
the jammed bits and a jamming duration of x bits, in theory,
the expected header delivery rate is 2−x for the preamble/sync-
byte method and about

∑x
i=0

(
x
i

)
2−x(1 − 8−1

8·16 )(
i
2) for the

coding-based approach. This has been confirmed by our exper-
iments: A jammer that wants to block a packet transmission
with a probability of > 90% has to jam only 3 bits if the
common preamble/sync-byte method is used but more than
21 bits if our coding-based detection is used. The results thus
show that the coding-based header detection is not only much
more robust than a preamble/sync-byte-based detection, but
also increases the detection probability of a potential jammer
as it enforces a longer jamming duration. However, as we
shall see in the next section, even such a significantly longer
jamming duration does not suffice to recognize jamming by
current jamming detection schemes.

IV. DETECTION OF REACTIVE JAMMING

Traditional approaches for the detection of jamming in
wireless sensor networks use the packet-delivery-ratio (PDR)
and the received ambient signal strength as the main decision
criteria. Jamming is detected as soon as the (averaged) PDR
and/or the ambient signal strength exceeds a pre-defined
threshold (see Section VII). Although these approaches are
well-suited for the detection of proactive (long-term) jamming,
they are not sufficient to protect the considered applications
against targeted reactive jamming: Firstly, existing schemes
rely only on the CRC of a packet to decide whether it was
received correctly and thus can (in general) not distinguish
between packet failures due to weak radio links and interfer-
ence. Secondly, assessing an accurate PDR is not practical in
a reactive forwarding scheme as messages are sent very rarely.
Thirdly, jamming does not necessarily cause a steady and high
received signal strength (RSS) value as only a small fraction
of a packet has to be interfered with in order for the packet
to be invalid [18], [10], [17]. A (reactive) jammer can thus
keep the increase in the effective RSS value very low and can
hence avoid being detected with current approaches.

Our novel jamming detection scheme does not suffer from
these limitations. The central idea of our approach is to
identify the cause of individual bit errors within a packet and
to deduce therefrom whether the packet was jammed or just
sent over a weak link. This is achieved as follows: Whenever
a node receives a packet transmission, it not only receives the
packet, but also records the RSS for each received bit of the
packet1. Given a bit error, a node then deduces the root cause
of this error by looking at the respective RSS value that was
sampled during the reception of this bit. The intuition behind
this process is that if there was a bit error although the RSS
value was high, this indicates external interference (intentional
or unintentional); if the error was due to a weak signal (e.g.,
due to fast fading or shadowing), the RSS value should be low.

1Some radios do not provide this accuracy but compute the averaged RSS
value over a sequence of k bits (e.g. one byte). In these cases the algorithm
as described might not detected jamming that affects less than k bits. This
issue and possible mitigation strategies are further discussed in Section V.
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Fig. 3. Enhanced packet reception and jamming detection. Once a trans-
mission signal is detected, the receiver tries to decode the presumed packet
header. If it fails (i.e., if there is no transmission although the channel is
busy) this might indicate (proactive) jamming and the sequential jamming
test is updated. If the received packet contains bit errors, the root cause of
this errors is analyzed and either the jamming test updated or the packet
ignored.

This additional information allows an accurate differentiation
of packet errors that are caused by (un)intentional interference
from errors that are caused by weak links, even in the case
of a sophisticated (reactive) attacker that jams only a small
portion of a packet.

Our jamming detection algorithm comprises three steps
(see Algorithm 1): (A) error sample acquisition (i.e., packet
reception with RSS recording and identification of bit errors),
(B) interference detection (i.e., error cause analysis), and (C)
sequential jamming test. The function of the last step is to
decide whether a detected interference was malicious or due
to an unintentional packet collision and is only required if
the probability of such a collision cannot be neglected. Next,
we describe each of these steps in detail; the overall packet
reception and jamming detection process that also considers
proactive jamming is outlined in Figure 3.

Algorithm 1 Jamming detection algorithm
RESETJAMMINGTEST()
while true do

(e, s) := GETERRORSAMPLE() (A)
x := DETECTINTERFERENCE(e, s) (B)
y := UPDATEJAMMINGTEST(x) (C)
if y = jamming then

raise jamming suspicion
else if y = no jamming then

RESETJAMMINGTEST()
else

do nothing as we need more evidence
end if

end while

A. Error Sample Acquisition

Whenever a node receives a packet transmission by radio, it
receives the packet (even if it is not the intended receiver) and
also records the RSS value for each received bit of the packet.
That is, a node associates to each packet m a sequence s of
RSS values corresponding to packet bits. Hence, for each bit



in a packet the RSS at the time of its reception is also known;
we denote by m[i] and s[i] the i-th bit in the packet m and
the i-th RSS value in the RSS sequence s, respectively.

The next and generally more challenging task is the iden-
tification of bit errors. In the simplest case, the content of m
is predetermined (at least to a large extent) and known by
the receiver. Finding bit errors thus reduces to comparing m
with the reference packet m̂. More formally, the error vector
e can be computed as e[i] := m[i] ⊕ m̂[i], where ⊕ is the
exclusive or and e[i] = 1 if and only if the i-th bit is false.
This error vector and the RSS sequence are combined to an
error sample (e, s) which is then used as the base for the
interference detection. The main drawback of this approach is
that, because the packet content most be known to the receiver,
the information conveyed by the packet is virtually limited to
at best a few bits.

This limitation can be overcome by means of error detect-
ing/correcting codes. These codes allow for detecting or even
correcting bit errors in arbitrary messages. Where the original
data can be recovered, the bit errors can be precisely detect
by comparing the received and recovered data. If, however,
a code word can be identified as being faulty but cannot be
corrected, all bits in the word might equally be wrong and
are thus marked as false. In addition to this possible loss of
precision, the second drawback of using errorcorrecting codes
is the overhead that the codes introduce. Depending on the
strength of the code, the packet length (and thus the energy
required for its transmission) might be several times higher
than the length of the original packet.

A third, more elaborate way to acquire error samples is
based on limited, short-range sensor node wiring in the form
of wired node chains (n-tuples) as introduced in Section II.
This method leverages the link redundancy (wired/wireless)
provided by these n-tuples. Note that for simplicity, we assume
that errors on the wired links can be neglected or are corrected
(e.g., by forward error correction). If two nodes of a n-tuple
are in the transmission range of a sending node, they will
both receive the same packet transmission and record the
corresponding RSS values. Two such independently received
packet/RSS-sequence pairs (m1, s1) and (m2, s2) from the
same packet transmission are then combined into an error
sample (e, s), where e[i] := m1[i] ⊕ m2[i] and s[i] :=
min{s1[i], s2[i]}. In general, error samples can be obtained
in two ways:

In active monitoring, a node in an n-tuple sends a packet
first over the wired and then over the wireless channel. The
other nodes in the tuple receive both packets and record the
RSS values of the packet received by radio; the RSS values of
the (faultless) packet received by wire are set to infinity. Note
that here the nodes in the tuple know when a packet is being
transmitted and thus can still try to receive and compare its
(payload) data, even if they fail to decode (part of) the header
or payload. In passive monitoring, whenever a node in an n-
tuple receives a packet that does not originate from a node in
the tuple and that has not yet been received by wire, the node
broadcasts the packet over the wire together with its respective

RSS value sequence to all the nodes in the tuple. Each node in
the n-tuple that receives a packet over the wired and over the
wireless channel can then combine them to an error sample.
Note that since the algorithm does not make any assumptions
regarding the content of the packets, any regular application
packet can be used to form a sample.

Being able to work with passive and active monitoring,
our scheme allows to trade off n-tuple deployment density
against energy consumption: In a passive system where the
n-tuples do not introduce any additional network traffic, at
least two nodes of an n-tuple must be in the transmission
range of the sending node to detect jamming. In a (partially)
active system where (some of) the wired nodes periodically
exchange probe messages2, only one node of such an n-tuple
must be included in the jammed region. Moreover, as opposed
to existing solutions, signal overshadowing or cases where the
packet transmission is not (or only partially) recognized by
the receiver’s radio can also be detected.

Algorithm 2 Error Sample Acquisition
function GETERRORSAMPLE()

while true do
receive (m1, s1) by wire
if the related packet (m2, s2) has already been received by

radio then
∀i : e[i] := m1[i]⊕m2[i]
∀i : s[i] := min{s1[i], s2[i]}
return (e, s)

else if neighbor in the tuple will send it next then
receive m2 by radio and record RSS into s2
∀i : e[i] := m1[i]⊕m2[i]
∀i : s[i] := min{s1[i], s2[i]}
return (e, s)

end if
end while

end function

B. Interference Detection

If a received packet contains at least one bit error, a node
uses the measured RSS values to decide whether the identified
errors are due to interference or due to a weak signal. The
main intuition behind this approach is that if there was a bit
error although the RSS value was high, this indicates external
interference (intentional or unintentional); if the error was due
to a weak signal (e.g., due to fast fading or shadowing), the
RSS value should be low.

Here, we present a simple threshold-based mechanism to
decide whether a packet error is due to interference. Let q
be the counter for the number of recently observed packet
errors due to interference. For each bit error in a packet, the
respective RSS value is compared with a threshold S. If for at
least one such case the RSS value is above the threshold S, q is
increased, otherwise it is left unchanged. More formally, given
an error sample (e, s), if ∃i : e[i] = 1∧s[i] > S then q := q+1.
The choice of (an optimal) S depends on the used radio and

2Since all traffic is encrypted, the attacker cannot distinguish probe from
alarm messages and has to jam every message it detects.



modulation scheme; it can be predefined (e.g., as the result
of experiments) or be computed on-the-fly (e.g., as a function
of the RSS values of correctly received bits). If only links of
poor quality are available, more sophisticated (but also more
expensive) decision methods such as likelihood-ratio tests or
Bayes factors can also be used [4]. In our experiments we
achieved good results by adaptively changing S to the average
signal strength of the last 10 successfully received packets.

Algorithm 3 Interference Detection
function DETECTINTERFERENCE(e, s)

if ∃i : e[i] = 1 and s[i] > S then
return 1

else
return 0

end if
end function

C. Jamming Test

If the probability of packet collisions can be neglected, a
node rises an alarm whenever it detects bit errors that were
caused by interference. Otherwise, the result of the interfer-
ence detection is taken as an input to a sequential probability
ratio test (SPRT) [26] which is used to decide whether the
recent packet errors (if any) were due to unintentional packet
collisions or due to jamming. We assume that the nodes can
assess the expected local interference (which is supposed to
be low if the MAC works properly), either based on their
knowledge about the used MAC and neighborhood or by using
more sophisticated procedures such as those proposed in [27].
Let pc be an upper-bound on the expected collision probability,
τFP (τFN ) be the targeted probability for a false alarm (missed
attack), and q be the number of identified packet errors that
were due to interference during the last k error samples. Given
the probability p that the transmission of a packet fails, the
probability that q out of k transmissions fail is

(
k
q

)
pq(1−p)k−q .

The marginal likelihood that the observed packet errors were
solely due to unintentional collisions (i.e., 0 ≤ p ≤ pc,
hypothesis H0) is then p0(k) :=

∫ pc
p=0

(
k
q

)
pq(1−p)k−q dp; the

marginal likelihood that there was jamming (i.e., pc ≤ p ≤ 1,
hypothesis H1) is p1(k) :=

∫ 1

p=pc

(
k
q

)
pq(1− p)k−q dp. Hence,

the log-likelihood ratio for H0 and H1 after k samples is

η(k) = log
p1(k)
p0(k)

= log

∫ 1

p=pc
pq(1− p)k−q dp∫ pc

p=0
pq(1− p)k−q dp

. (1)

Now, if η(k) ≤ log τFN
1−τFP the nodes decide that there is no

jamming and reset the sequence (i.e., set k and q to zero), if
η(k) ≥ log 1−τFN

τFP
jamming is detected and the nodes raise an

alarm, finally if log τFN
1−τFP < η(k) < log 1−τFN

τFP
no conclusive

decision can be made yet and is deferred until there is more
conclusive evidence available.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
jamming detection techniques. We therefore implemented

Algorithm 4 Jamming Test
function RESETJAMMINGTEST

k := 0; q := 0
end function

function UPDATEJAMMINGTEST(x)
k := k + 1; q := q + x;
η(k) := SPRT(k, q)
if η(k) ≥ log 1−τFN

τFP
then

return jamming
else if η(k) ≤ log τFN

1−τFP
then

return no jamming
else

return undefined
end if

end function

them and conducted a series of experiments using COTS
BTnodes (Atmel ATmega 128L microcontroller @ 8 MHz,
Chipcon CC1000 radio) and Tmote Sky sensornodes (TI
MSP430F1611 microcontroller @ 8 MHz, Chipcon CC2420
radio). The experimental setup consisted of four nodes: One
sender (node A), two receivers (node B and C), and one
jammer (node J). For the wire-aided jamming detection, node
B and C were connected over the I2C bus, forming a two-
tuple; a detailed performance and cost analysis of the wired
communication is presented in Section VI-C.

A compilation of exemplary measurements for an undis-
turbed, jammed, and weak link between A and C is shown
in Figure 4. The results confirm the validity or our approach
and show that decoding errors caused by jamming can clearly
be distinguished from errors caused by a weak radio signal
by looking at the corresponding RSS values. However, these
initial experiments also revealed some hardware constraints
that limit the accuracy of the proposed detection techniques:
In cases where the used radios do not provide an RSS
value per bit but instead provide an averaged RSS value
for a set of k bits, the algorithm might not be able to
detected jamming that affects less than k bits. To overcome
this limitation, error correcting codes that enforce a minimal
required jamming duration of > k bits can be applied (see
Section III). Furthermore, packet based radio transceivers
such as the Chipcon CC2420 typically rely on a particular
synchronization preamble or training sequence to detect packet
transmissions. If this preamble or training sequence is jammed,
the corresponding transmission is simply ignored (an auto-
matic CRC verification is usually not an issue as it can mostly
be disabled). Simple bit or byte oriented radio transceivers
such as the Chipcon CC1000 that provide a continuous data
demodulation and RSS estimation are thus better suited for
our purposes. Therefore, we focus in the remainder of this
section on bit or byte oriented radios and present the results
obtained with our implementation for the CC1000 radio (i.e.,
the BTnodes) only. Nevertheless we would like to point out
that our basic considerations apply in general and thus our
detection techniques in principle also work with packet-based
radios.



TABLE I
JAMMING DETECTION PERFORMANCE FOR A STRONG LINK: TRUE POSITIVES / FALSE NEGATIVES — FALSE POSITIVES / TRUE NEGATIVES

number of jammed bits message known or predetermined message encoded with ECCs comparison of two receptions
2 100% / 0% — 0% / 100% 100% / 0% — 0% / 100% 84.9% / 15.1% — 0% / 100%
4 100% / 0% — 0% / 100% 100% / 0% — 0% / 100% 94.1% / 5.9% — 0% / 100%
8 100% / 0% — 0% / 100% 99.9% / 0.1% — 0% / 100% 98.8% / 1.2% — 0% / 100%
≥16 100% / 0% — 0% / 100% 100% / 0% — 0% / 100% 100% / 0% — 0% / 100%

TABLE II
JAMMING DETECTION PERFORMANCE FOR A WEAK LINK: TRUE POSITIVES / FALSE NEGATIVES — FALSE POSITIVES / TRUE NEGATIVES

number of jammed bits message known or predetermined message encoded with ECCs comparison of two receptions
2 100% / 0% — 0% / 100% 100% / 0% — 0% / 100% 85.2% / 14.8% — 0% / 100%
4 100% / 0% — 0% / 100% 100% / 0% — 0% / 100% 94.1% / 5.9% — 0% / 100%
8 100% / 0% — 0% / 100% 99.9% / 0.1% — 0% / 100% 98.7% / 1.3% — 0% / 100%
≥16 100% / 0% — 0% / 100% 100% / 0% — 0% / 100% 100% / 0% — 0% / 100%
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Fig. 4. Sample results obtained with our implementation and a CC1000
radio for three cases. I (adequate links and no jamming): both receivers are
able to decode the packets and the packets do not differ. II (weak link from
A to C): node C receives incorrect bits and thus the packets do not match;
however, since the RSS of node C associated with the bit errors is low, the
errors are correctly identified as non jamming related. III (with jamming): the
RSS values for the observed bit errors are high for both receivers and thus
the interference is correctly detected.

The BTnode implementation uses our advanced header
detection introduced in Section III. To allow for the jamming
of single bits with the jammer node J , the transmission rate
of the sender and receiver was reduced to 2.4 kBaud whereas
the jammer was sending random data at a rate of 38.4 kBaud.

We performed our experiments in two different scenarios:
In the fist scenario the wireless connection between the sender
and the receivers was fairly good, that is, the RSS of A’s signal
at B and C was about -55 dBm; in the second scenario the
connection between A and B was rather weak, that is, the RSS
of A’s signal at B and C was about -70 dBm. To make the
jamming detection most challenging, the transmission power
of the jammer was set to the lowest possible value for which
the jamming was still effective (i.e., >1%), which was 3 dBm
for the scenario with the strong links and -5 dBm for the
scenario with the weak link.

In both scenarios, we measured the performance of the four
bit error detection techniques introduced in Section IV-A. Each
technique was evaluated with a series of 1000 undisturbed

packet transmissions, five times 2000 packet transmissions
were a fraction of 2, 4, 8, 16, or 24 bit was jammed, and three
times 2000 transmissions were a fraction of 8, 16, or 24 bit
was suppressed (i.e., the transmission power at the sender was
reduced to the minimum during their transmission in order to
simulate a temporarily weak signal). The obtained results are
summarized in Table I and II. The second column shows the
results for the case where the received packet is already known
by the receiver, that is, the two techniques were the content of a
packet is either predetermined or was first transmitted over the
wire (active probing). The results in the third column represent
the bit error location technique based error correcting codes
and were obtained with a Hamming (8,4) code that allows
for correcting single bit errors, detecting all two bit errors,
and detecting some three bit errors. The results in the fourth
column, finally, show the results for the case in which two
wired nodes exchange their individual receptions.

First of all we notice that throughout our extensive exper-
iments, no single false positive occurred (i.e., no bit error
was erroneously identified as being caused by jamming).
Furthermore, all false negatives (i.e., jamming-caused errors
that were not identified as such) were due to inaccuracies
in the bit error localization. More precisely, with some small
probability it happens that the bit errors result again in a valid
code word or that the two wired nodes observe exactly the
same bit flips, respectively. We point out that in this respective,
the measured results for the 2-tuple are actually worst case
results because the more nodes are connected by wire, the
less likely it is that all observe exactly the same bit flips.

A. Sequential Jamming Test

We next analyze the performance of the sequential test-
ing which is required in cases where unintentional packet
collisions cannot be neglected. Let λj be the fraction of
all transmissions within the attacker’s jamming range that
she actually jams (i.e., the aggressiveness of the attacker)
and pc be the expected collision that a node observes. The
expected number of channel samples that is faulty due to
interference after k samples is thus q = (1−(1−λj)(1−pc))k.
Inserting this expression into (1) and solving the equation
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Fig. 5. Performance of the sequential jamming test. We observe that the
larger the collision probability pc and the lower the fraction of packets λj
that the jammer jams, the longer it takes to detect the jammer; however, the
lesser is also the impact of the jammer. If the attacker blocks an alarm (i.e.,
if λj = 1) the jamming will be detected after only five channel samples (for
pc ≤ 0.4). Since alarm packets are immediately repeated if not acknowledged
and because the attacker has to jam all alarms, this number will usually be
reached after only a few seconds.

η(k) = log 1−σFN
σFP

for k then yields the expected number of
channel samples that must be processed before the jamming
is detected. The resulting jamming detection performance as
a function of pc and λj is shown in Figure 5. The lines show
the theoretical value, the points and σ-confidence intervals
the results of our experiments. In a typical alarm forwarding
scenario, the most relevant situation is one where the attacker
intends to mask an alarm (i.e., λj = 1). We observe that in
this case the jamming will be detected after only five channel
samples (for reasonable collision probabilities pc ≤ 0.4). Due
to the fact that alarm packets are repeated if not acknowledged
and because the attacker has to jam all alarms, we argue that
this number will usually be reached after only a few seconds.

B. Impact of the Node Density

Having evaluated the detection performance of our scheme
if run on a node or n-tuple, we finally analyze the probability
that the attacker’s jamming activities are observed by a node
or by an n-tuple in her proximity.

1) Monitoring by Unwired Nodes: Ideally, a node would
receive and analyze every packet it overhears. However, given
the stringent energy constaint of current sensor nodes, not all
nodes in the transmission range of a sender usually receive a
packet but only the set of intended receivers.

Let Na be the average number of neighbors of a node, pr
be the probability that a neighbor which is not an intended
receiver of a packet still receives and analyzes it, and pd be
the probability that potential jamming is correctly detected.
As each packet has at least one receiver, the probability
that the jammer is detected by the neighbors of the sender
is ≥ 1 − (1 − pd)1+(Na−1)pr . Let further N be the total
number of nodes deployed in the deployment area A and
R(·) be a function that maps transmission power levels to
distances. The function R(·) depends on the nodes’ radios
and the environment they are deployed in. For the well-known
physical communication model [12], for instance, we have
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Fig. 6. Probability that a jammed packet is detected by at least one of
the nodes in the proximity of the sender. Since the accuracy of the local
jamming detection is already fairly high (i.e., pd ' 0.9) an overall detection
probability of ≥ 0.99 is achieved with only one additional receiver (i.e., if
(Na − 1)pr ≥ 1).

R(P ) := α

√
P
βN0

, where α, 2 < α ≤ 6, is the so-called path-
loss exponent, N0 is the ambient noise power level, and β is
the minimal required signal-to-noise-ratio to receive a packet.
Given the transmission power Pa of a node and assuming
(roughly) uniform node density, the node’s expected number
of neighbors Na can then be estimated as Na ≈ N R(Pa)2π

A .
Figure 6 depicts the probability that the jammer is detected

by the neighbors as a function of pd, Na and pr. We observe
that given the fairly high accuracy of typically pd ' 0.9 for
the nodes’ jamming detection (see above) an overall detection
probability of ≥ 0.99 is already achieved with a single
additional receiver (i.e., if (Na − 1)pr ≥ 1). Note that this
result applies to a single transmission. Since alarm messages
are repeated if not acknowledged, all blocked alarms will
eventually be detected by at least one neighbor in practice.

2) Monitoring by n-tuples: As mentioned in Section IV,
the jamming detection performance depends not only on the
n-tuple density, but also on whether the monitoring is passive
or active. In a passive system at least two nodes of an n-
tuple must be in the transmission range of the sending node
for a minimum of two independent packet receptions are
required. In an active system the sender is part of the n-
tuple and thus only one (additional) node of an n-tuple must
be included in the jammed region. We next evaluate both
scenarios for the case of a manual or airdrop-based node
deployment where the position (orientation) of the n-tuples
is chosen uniformly at random from the deployment area A
(the interval [0, 2π)). More precisely, the considered n-tuple
deployment is as follows:

Let ui := (ui,1, ui,2, . . . , ui,n) denote an n-tuple that is
deployed in the deployment area A. The order of the nodes
in a tuple also determines their wiring: that is, for an n-tuple
ui and 1 ≤ j < n, node ui,j is connected to node ui,j+1. We
assume that all nodes are connected with wires of the same
length lw. The position of a node ui,j in the deployment area
is denoted by pi,j ∈ A.

Given the deployment direction φ and the position pi,1
of the first node of the n-tuple ui, the deployment of the



remaining nodes ui,2 to ui,n can be modeled as follows: For
each node ui,j , 2 ≤ j ≤ n, imagine a disc Dj−1 ⊂ A
centered at ui,j−1 and of radius lw. The position of ui,j
is then chosen from Dj−1 according to a random distribu-
tion defined by the (conditional) probability density function
fD(pi,j |φ, pi,j−1). More formal, let ri,j be the euclidean dis-
tance between node ui,j−1 and ui,j , and αi,j be the deviation
of ui,j’s position with respect to the deployment direction
φ. To each n-tuple ui = (ui,1, ui,2, . . . , ui,n) we can then
associate a (2n−1)-dimensional (continuous) random variable
Pi := (Pi,1, Ri,2,Λi,2, . . . , Ri,n,Λi,n) taking values from the
set {(pi,1, ri,2, αi,2, . . . , ri,n, αi,n) | pi,1 ∈ A ∧ ∀j, 2 ≤ j ≤
n : 0 < ri,j ≤ lw ∧ ∀j, 2 ≤ j < n : −π ≤ αi,j ≤ π}
according to a random distribution defined by the (joint) prob-
ability density function fi(pi,1, ri,2, αi,2, . . . , ri,n, αi,n) =
fP (p1)fΦ(φ)fR,Λ(r2, α2)fR,Λ(r3, α3) · · · fR,Λ(rn, αn). Here,
fP (p1) and fΦ(φ) represent the distributions on A and the
interval [0, 2π), respectively, and fR,Λ(rj , αj) is the (joint)
probability density function for the distance ri,j between node
ui,j−1 and node ui,j as well as the deviation αj of ui,j from
the deployment direction φ.

The probability density function fR,Λ(rj , αj) reflects the
actual deployment conditions and depends on the kind of
deployment (random, manual, or airdrop-based) and on sev-
eral physical parameters (e.g., the local terrain conditions
or the rigidity of the wires). Usually the density function
can be approximated using appropriately parametrized (two-
dimensional) Beta distributions (scaled to the interval [0, lw]
and [−π,+π]). If fP (·), fΦ(·), and fR,Λ(·) represent uniform
distributions on A, the interval [0, 2π), and a disc of radius
lw, respectively, the resulting deployment is truly random. In
any case, once the probability density functions are deter-
mined, the deployment of any set of n-tuples {u1, u2, . . . , um}
can be formally described by the set of random variables
{P1, P2, . . . , Pm}.

In our simulations, the deployment area A is a square
with a side length of a = 500 m. The position of the
nodes in the tuples is chosen according to the probabil-
ity density function fR,Λ(rj , αj) = fR(r)fΛ(α), where
fR(r) = B(ar, br)−1( rlw )ar−1(1 − ( rlw ))br−1 and fΛ(α) =
B(aα, bα)−1(α+π

2π )aα−1(1 − (α+π
2π ))bα−1 are two beta dis-

tributions and B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt. In order to

assess a realistic parametrization, we conducted experiments
using a dummy 3-tuple of 20 m length. Based on our (admit-
tedly limited) experimental results, we chose the parameters
ar = 10, br = 1.76 and aα = bα = 124. For a given
wire length lw, this results in an expected n-tuple length of
0.85(n − 1)lw, σ ≈ 0.1(n − 1)lw and an expected deviation
of α = 0, σ ≈ 0.14π. In the analytical evaluation we assume
for simplicity that all nodes of an n-tuple lie on a straight
line and that any two consecutive nodes in a tuple have the
same distance l/(n−1), where l is the expected length of the
n-tuple.

1. Active Monitoring: In order to determine the probability
pa that the jammed area is monitored by an n-tuple, we

first compute the probability of the event X that at least
one node of an n-tuple lies within a disc of radius r that
is centered at the jammer. In a second step, this result is then
generalized to the case where the attacker does not emit a
single, omnidirectional signal but a set of directional signals.
For simplicity, we assume that all nodes of an n-tuple lie on
a straight line and that any two consecutive nodes in a tuple
have the same distance.

Given the disc with radius r around the jammer, let z be the
distance between the first node of an n-tuple and the center
of the disc. The probability that at least one node of the tuple
lies within the disc is then

pX(r, l) =

∞∫
x=0

P[X|z = x]P[z = x] (2)

=

r+l∫
x=0

P[X|z = x]
2xπdx
|A|

.

Let di = i−1
n−1 l be the distance between the first and the

i-th node in the n-tuple. Now imagine a circle of radius di
centered at the first node in the tuple. Given that the direction
of a tuple is chosen uniformly at random, the probability that
the i-th node lies within the disc is then proportional to the
central angle subtended by the two intersection points of this
circle with the perimeter of the disc to the first node (see
Figure 8(a)). As illustrated in Figure 8(b), this angle is

αX(di, x) :=


0 if x < 0 or x > r + di or x+ r < di,

2π if 0 ≤ x+ di ≤ r,
2 arccos

(
x2+d2i−r

2

2dix

)
otherwise.

(3)
Hence,

P[X|z = x] = max
1≤i<n

αX

(
i

n−1 l, x
) 1

2π
(4)

and thus

pX(r, l) =
r2π

|A|
+

r+l∫
x=r

max
1≤i<n

αX

(
i

n−1 l, x
)

2π
2xπdx
|A|

. (5)

For an omnidirectional jammer the probability that the
jammed area is monitored by a wired node is

pa ≥ 1−
(
1− pX(R(P 1

j ), l)
)m

, (6)

where m is the number of deployed n-tuples and R(P 1
j ) is

the radius of the jammed area (i.e., the area in which jamming
is effective and thus also detectable).

In the case of a general attacker that emits several directional
signals specified by the set {(θ1

j , P
1
j ), (θ2

j , P
2
j ), . . . , (θkj , P

k
j )}

(see Section II), the probability that the jammed area is mon-
itored by a wired node is equal to the probability that at least
one node of an n-tuple lies within one of the respective circular
sectors of central angle θij and radius R(P ij ). Considering only
those n-tuples whose first node is enclosed by one of these
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Fig. 8. Geometric relations between the position/orientation of an n-tuple
and its possible intersections with a disc or a circular sector of radius r; the
figures are not true to scale.

sectors or their extension to a radius of length R(P ij ) + l, this
probability can be approximated as

pw ' 1−
k∏
i=1

(
1−

(
1−

θij
2π
pX(R(P ij ), l)

)m)
. (7)

In order to account for those cases where the intersection
of the (virtual) circles with radii di and r are outside of the
circular sector given by θij (i.e., if θij < π, see Figure 8(c)))
the function αX(di, x) has additionally to be substituted with
min(αX(di, x), α′X(di, x)), where

α′X(di, x) := 4 arcsin(
√
y/(2di)), (8)

y = r2 + (x− di)2 − 2 cos(θij/2)r(x− di)

is the angle subtended by the two intersection points of the
circle with radius di and the radii of the circular sector to the
first node (see Figure 8(d)).

2. Passive Monitoring: Recall that with passive monitoring
at least two nodes of an n-tuple must be in the transmission
range of the sending node to detect a jamming attack. Let Z
denote the event that at least two nodes of an n-tuple lie within
a disc of radius r centered at the sender and let z denote the
distance between the first node of an n-tuple and the center of
this disc. The probability that at least two nodes of the tuple

lie within the disc is then

pZ(r, l) =

∞∫
x=0

P[Z|z = x]P[z = x] (9)

=

r+l∫
x=0

P[Z|z = x]
2xπdx
|A|

.

The probability that two nodes lie within the disc is propor-
tional to the smaller of the two respective center angels. Let

2
max be a function that returns the second largest value. We
obtain

P[Z|z = x] =
2

max
0≤i<n

αX

(
i

n−1 l, x
) 1

2π
(10)

and thus

pZ(r, l) =

r+l∫
x=0

2
max

0≤i<n
αX

(
i

n−1 l, x
)

2π
2xπdx
|A|

. (11)

The probability that the neighborhood of a node is (pas-
sively) monitored by an n-tuple is

pp ≥ 1− (1− pZ(R(Pa), l))m , (12)

where m is the number of deployed n-tuples and R(Pa) the
nodes’ transmission range.

The influence of the number of nodes n per tuple, the wire
length lw, the number of deployed tuples m, the node’s trans-
mission power Pa, and the size of the jammed area (i.e., P ij
and θij) on the jamming detection performance of active and
passive monitoring is depicted in Figure 7 and 9, respectively.
The results show that even for short wires of about 3 m and
a moderate jamming range of 100 m, only 80 3-tuples must
be deployed per 1 km2 in order that the jamming is (actively)
monitored by at least one wired node with pa > 95%. In a
purely passive scenario, about (R(Pj)/R(Pa))2 times as many
n-tuples have to be deployed to achieve the same protection
as in an active scenario.

VI. WIRE INTEGRITY PROTECTION

Our jamming detection scheme can handle sophisticated
jamming attacks as demonstrated in the previous sections.
However, it could be compromised by tampering the wired
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Fig. 9. Probability pp that the neighborhood of a node is monitored by an n-tuple. We observe that for 2-tuples pp decreases for longer wires and becomes
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in a passive scenario about k2 times as many n-tuples have to be deployed than in an active scenario to achieve the same protection (e.g., pp >95%).

connectivity of n-tuples. For example, an attacker with phys-
ical access to the network could disconnect the wires, even
if the sensor nodes themselves are tamper-resistant or not
accessible. In such a way, she could increase her chances to
successfully jam the system alarms without being detected.

In particular, our scheme is vulnerable to four different at-
tacks: disconnection, bridging, wiretapping and wire removal.
In a disconnection attack the attacker achieves permanent
disruption by cutting or unplugging. In a bridging attack,
the attacker inserts a rogue (sensor) node between two wired
sensor nodes. She therefore can control the wire and stay
transparent to the system. In a wiretapping attack, the attacker
instruments a wiretap (e.g., by direct electrical connection or
by induction) and eavesdrops the communication. It can be
used by the attacker to monitor if her malicious activity has
been detected. A wire removal attack consists of removing
wires or capturing entire n-tuples which is similar to a dis-
connection and classical node capture attack [7] respectively.

Given the vulnerability of our system to attacks on the wire
connectivity, we propose a wire integrity verification protocol
suitable for energy-constraint devices and analyze its security
implications. In Section VI-C, we demonstrate the energy
efficiency of our protocol in a real-life implementation.

A. Stream Cipher-based Wire Integrity Verification (SC-WIV)

The SC-WIV protocol provides mutual authentication by
exchanging a sequence c of size l bits generated by a syn-
chronized stream cipher. Node/wire compromise is detected by
using appropriate local timeouts. The protocol is summarized
in Figure 10 where A and B denote the two sensor nodes.

1. Setup: Prior to deployment, A and B are preloaded
with a shared symmetric key KAB and an initialization vector
IVAB . These values are used to initialize the respective
stream ciphers. The local timeouts for wire/node compromise
detection, TA and TB , respectively, are calibrated before
deployment based on measured round-trip times of messages
and session frequency. We assume that both nodes A and B
enter a special preemptive mode when sending and receiving
bits. This mode postpones all other tasks in order to process the
protocol messages as quickly as possible. We further assume

Setup
(A) (B)

Gen. c1..cl (tAs )
c1..cl // (tBr ) Gen. cl+1..c2l

t′ =
`
tAr − tAs

´
(tAr )

cl+1..c2loo (tBs )

A: Verify t′ < TA and B’s authenticated response

(tAs )
c2l+1..c3l // (tBr ) t′′ =

`
tBr − tBs

´
B: Verify t′′ < TB and A’s authenticated response

...

Fig. 10. Single session mutual authentication between A and B based on
synchronous stream cipher. Note that the protocol is executed repetitively at
regular intervals and that A and B alternate as protocol initiators.

that the stream cipher can generate one random bit upon
request for a very long time. Trivium [8] stream cipher can be
used for such a purpose: it can be efficiently implemented in
hardware and generate one bit per clock cycle (up to 264 bits)
from an 80-bit key and an 80-bit initialization vector.

2. Protocol description: A starts the first authentication
session as follows: A sends a sequence of l bits to B and
records the sending time tAs . Upon reception, B sends its
response bits immediately and also records the sending time
tBs . When A receives B’s response, it calculates the elapsed
time t′ =

(
tAr − tAs

)
and verifies that the sequence of bits

is from B and is within the acceptable timeout t′ ≤ TA.
If the verification succeeds, A sends immediately the next
sequence of bits to B. On timeout or if the authentication
fails, an alarm is raised. Similarly, B receives A’s response,
calculates the elapsed time t′′ =

(
tBr − tBs

)
, verifies that the

sequence of bits is correct and with time t′′ ≤ TB . Again,
if the verification succeeds, B schedules to perform the next
mutual authentication session after time TF , where TF is a
shared time between successive protocol rounds.

The SC-WIV protocol is also used to signal whether ap-
plication data will be transferred between the current and
next protocol round: if the received protocol bit sequence c is
inverted then data will be transmitted; if the received sequence
is regular, there will be no data transmission.
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Fig. 11. Energy consumption: a) A typical I2C communication for SC-WIV. Current draw gradually returns to idle and sleep state after a session execution.
b) A comparison of the energy consumption of SC-WIV vs. ISO/IEC-WIV. SC-WIV is more efficient as it does not require encryption operations. c) The
SC-WIV energy efficiency for different wire lengths and bit sequence sizes.

B. Security Analysis

The presented SC-WIV protocol achieves disconnection and
bridging attack. Some types of bridging attacks can still be
possible, but will force the attacker to forward the protocol bit
sequences. Wiretapping cannot be detected by our protocol but
encryption of packets on the application level is an appropriate
mechanism in this case.

In the SC-WIV protocol, if the cipher cannot generate bits
for a sufficiently long time, an initialization vector renewal
procedure must be devised. We acknowledge that the protocol
gives the attacker the possibility to guess the sequence of
bits and thus to delay detection. More precisely, the attacker
must guess one sequence of bits if the protocol session is
initiated by the other entity and two sequences of bits when
she initiates the protocol session. Therefore, the probability to
delay detection for i runs (1 bit exchange) is 2−(i+b i2 c) and
thus decreases exponentially for successive protocol runs.

To summarize, there is a trade-off between energy consump-
tion and timely detection of wire compromise. Optimizing the
energy consumption by reducing the number of bits increases
the attacker’s chances to delay detection. The actual delay gain
depends on the frequency of successive protocol runs.

C. Implementation Results

We implemented the SC-WIV protocol using Tmote Sky
devices running TinyOS 2.x [2]. We used the pseudo-random
number function in TinyOS with shared initialization vector
to generate bits, emulating a stream cipher functionality. The
I2C bus on the Tmote Sky platform was used for wired
communication with shielded and foiled Ethernet cables.

For comparison, we also implemented a standard challenge-
response protocol for mutual entity authentication as described
in ISO/IEC 9798-2. In this protocol two sensor nodes A and
B mutually authenticate themselves at regular intervals and
alternate as session initiators. For the random nonce genera-
tion, we again used the pseudo-random number function in
TinyOS. Symmetric key encryption/decryption was achieved
with Skipjack block-cipher adapted from TinySec [14] for the
TinyOS platform. We refer to that solution as ISO/IEC-WIV.

TABLE III
WIRE LENGTH VS. CLOCK SPEED

Wire length Clock frequency SC-WIV Session Tx Time
1 byte 8 bytes

1 m 95 kHz 1 ms 2.2 ms
20 m 39 kHz 2.1 ms 7.5 ms
50 m 21 kHz 3.5 ms 14 ms

100 m 12 kHz 6 ms 22.5 ms
500 m 3 kHz 25 ms 90 ms

Power consumption was measured at 3V using an Agilent
34411A multimeter. Figure 11(b) compares the ISO/IEC and
SC-WIV protocols. As ISO/IEC-WIV uses Skipjack block
cipher, the minimum size of an authenticated message is the
minimum block size (8 bytes). So, we compared 8 bytes pay-
load for both protocols and the SC-WIV protocol with 1 byte—
the minimum possible payload in the I2C implementation of
the Tmote Sky platform.

From the results, we can see that SC-WIV is more efficient
than the ISO/IEC-WIV protocol. This is especially seen at
high frequencies (10 to 100 ms intervals). Furthermore, SC-
WIV with 1 byte dramatically reduces the power consumption.
Decreasing the ping frequency makes the average power
consumption to converge towards the sensor idle/sleeping state
power consumption. This is consistent as the sleeping state
will be longer for lower frequencies and thus will significantly
affect the average consumption (see Figure 11(a)).

It should be noted that the current I2C specification mini-
mum packet size consists of 7 bits address + 1 byte payload.
Thus, SC-WIV protocol could be optimized to transmit one
bit by changing the I2C protocol. This would further improve
the power consumption of the protocol.

Additionally, we tested SC-WIV over wires of 5, 20, 50,
100, and 500 meters length. (see Figure 11(c)). We found that
I2C can effectively be used for communication over longer
wires. However, long distance wires significantly increase the
energy consumption for both high (10 to 100 ms) and low
(300 to 500 ms) frequencies. These findings also motivate the
design of protocols requiring single bit transmissions. The
higher power consumption for longer wires is due to the



decrease of clock speeds in order to compensate the resistance
and capacitance in longer wires. Table III summarizes the
clock speeds and transmission times required in the SC-WIV
protocol session execution for 1 and 8 bytes.

VII. RELATED WORK

The detection and mapping of jammed areas in the realm
of wireless sensor networks has been studied by Wood,
Stankovic, and Son [24]. Xu et al. advocate the usage of packet
delivery ratio (PDR) along with either signal strength at the
receiver (RSS) or location information as a consistency check
for jamming detection [25]. In the former case, jamming is
detected if the PDR is low although the RSS value is high,
in the latter case if the PDR is low although the senders are
close. We point out that unlike our work, their scheme does
not correlate the RSS measurements on a per-bit basis, but
compares an averaged RSS value with a threshold once the
PDR drops below a specified level. Çakiroǧlu and Özcerit
propose two jamming detection schems based on the PDR, the
bad packet ratio (BPR), and the energy consumption amount
(ECA) of the radio [5]. In the basic scheme, jamming is
detected if the PDR, BPR, or ECA values rise above or fall
below specified thresholds. Altogether, five rules are specified,
each focusing on a different set of jammer types. In the
extended scheme, the nodes base their decision not only on
their local view but exchange query and alarm messages with
their neighbors in order to reduce the number of false positives
at the expense of an increased communication overhead. A
major drawback shared by the aforementioned schemes is
that assessing an accurate PDR is not practical for a reactive
forwarding scheme as messages are sent very rarely. Moreover,
as argued in this and previous work [18], [10], jamming does
not necessarily cause a steady and high RSS value as only a
small fraction of a packet has to be interfered with in order
for the packet to be invalid [17]. A (reactive) jammer can
thus keep the increase in the effective RSS value very low
and can hence avoid being detected by these schemes. Also,
the proposed detection algorithms cannot distinguish between
intentional and unintentional interference and timely delivery
of alarm notifications is not considered.

A sequential jamming detection technique based on the
number of erroneously received messages has been presented
by Li, Koutsopoulos, and Poovendran [16]. The key idea of the
proposed algorithm is that an increased number of observed
message collisions during an observation window compared
to the learned long-term average indicates a jamming attack.
Using Wald’s Sequential Probability Ratio Test they present
optimal jamming attacks as well as network defense policies
with respect to detection and notification time. Other than our
algorithm, that approach cannot distinguish between packet
failures due to weak links and collisions. Thus, it is sensitive
to changes in nodes’ environment that influence the observed
PDR and to (temporary) link failures or unanticipated changes
in the traffic pattern which are likely to cause false alarms.
Finally, other than our work none of the above mentioned

schemes considers overshadowing, where the original packet
is covered by a (maliciously inserted) second message.

The application of additional infrastructure in the form of
wired short-cuts has been proposed before by Chitradurga
and Helmy [6] as well as by Sharma and Mazumdar [20]
with an objective to improve the energy efficiency of wireless
networks. Čagalj, Čapkun, and Hubaux showed how wired
node pairs can be used to build a wormhole in order to
establish communication out of a jammed area [22]. The main
difference between our and their work is that theirs does
not consider the use of wired tuples for jamming detection;
they did neither consider the security of the wired links nor
evaluated to what extent the proposed wirings are feasible.

VIII. CONCLUSION

In this work, we presented a novel jamming detection
scheme for countering advanced (reactive single bit) jamming
attacks in sensor networks. Our detection scheme is able
to identify the cause of bit errors for individual packets by
looking at the received signal strength during the reception of
these bits. The scheme is thus well-suited for the protection
of reactive alarm systems with very low network traffic. We
presented and discussed three different techniques for the
detection and localization of bit errors based on: predetermined
knowledge, error correcting/detecting codes, and limited node
wiring in the form of wired node chains (n-tuples). We further
analyzed the threats on limited wiring and developed a low-
power wire compromise detection scheme for the detection
of malicious attacks on wires. The presented protocols and
algorithm were evaluated analytically, by simulations, and
experimentally on COTS BTnodes and Tmote Sky nodes.
Since our scheme can operate without introducing additional
wireless network traffic, it also meets the high energy effi-
ciency demand of reactive surveillance applications. To the
best of our knowledge, this work is the first to present a
jamming detection scheme for sensor networks that allows
for the detection of advanced (reactive) single bit jamming or
overshadowing on a per-packet basis. We further believe that
this work provides useful insights into the utility of limited
wiring as a means for securing wireless sensor networks.
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