mzuriCh ETH Library

Performance improvements for

large scale traffic simulation in
MATSIm

Conference Paper

Author(s):
Waraich, Rashid A.; Charypar, David; Balmer, Michael; Axhausen, Kay W.

Publication date:
2009-09

Permanent link:
https://doi.org/10.3929/ethz-a-005864 320

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Arbeitsberichte Verkehrs- und Raumplanung 565

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3331-1318
https://doi.org/10.3929/ethz-a-005864320
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Performance Improvements for Large Scale Traffic Simulationin MATSIim
Date of submission: 2009-aug-1

Rashid A. Waraich

Institute for Transport Planning and Systems (IVT), ETHigy CH-8093 Zurich
phone: +41-44-633 32 79

fax: +41-44-633 10 57

waraich@ivt.baug.ethz.ch

David Charypar

Institute for Transport Planning and Systems (IVT), ETHigy CH-8093 Zurich
phone: +41-44-633 35 62

fax: +41-44-633 10 57

charypar@ivt.baug.ethz.ch

Michael Balmer

Institute for Transport Planning and Systems (IVT), ETHigy CH-8093 Zurich
phone: +41-44-633 27 80

fax: +41-44-633 10 57

balmer@ivt.baug.ethz.ch

Kay W. Axhausen

Institute for Transport Planning and Systems (IVT), ETHigy CH-8093 Zurich
phone: +41-44-633 39 43

fax: +41-44-633 10 57

axhausen@ivt.baug.ethz.ch

Words: 5752 + (6 Figures) = 7252

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 1

ABSTRACT

Multi-Agent transport simulation models, e.g. MATSim haeven to be suitable for model-
ing microscopic demand for large scale scenarios basedaomiplg networks. In the recent
years survey methods are using technologies which prowddslity information with a much
higher spatial resolution (e.g. GPS tracking). Thereftbreneed to model travel demand on de-
tailed navigation networks rises, which slows down simataspeed significantly. This paper
presents methods to increase the performance of the miordation model of MATSIim us-
ing event driven concepts as well as a parallel implemeantaffhe performance experiments
with navigation networks of Switzerland containing up teeanillion roads and 7.3 million
agents clearly show that large-scale, multi-agent migraikation can also be applied on high
resolution networks.

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 2

INTRODUCTION

Traffic simulations can be performed at different levels efad. One common technique is
to model traffic as flows consisting of accumulated numberao$.c A different approach is
to model each individual vehicle. Agent-based modelingr@senting each person as a simu-
lation agent) combined with traffic flow micro-simulatioaals for tracking persons dynam-
ically in time. Of course agent-based modeling is more egpenin terms of computation
power than aggregated models.

The open source Multi-Agent Transport Simulation TOOATSim, E) was designed
from the beginning to meet the challenges of simulatingdatenarios to optimize travel de-
mand. As shown in Figurel 1, the demand optimization is anutiasiary proces@). This
means the iterative loop consisting eéfecution scoring and replanninghas to be executed
many times before the optimized demand can be analyzed.pé@pisr focuses on the perfor-
mance related to the execution part. The traffic simulagxe¢ution) generateventgor each
action in the simulation, e.g. enter road, leave road ovalret destination. These events are
then processed as the simulation is running, e.g. for géngrstatistical data on the simulation
and for the scoring module.

MATSim is currently facing a major challenge, as more andevapplications require sim-
ulation on high resolution networks. A few example applwad are listed below:

e Global Positioning System (GPS) SurveysTravel studies based on GPS data require
high resolution networks to map the GPS tracking data ptppethe network@,@,@)

¢ Intelligent Transportation Systems (ITS). Measurements to improve traffic flow, such
as traffic lights at intersections have often impact on aclaegea(e.qg. se@). In order
to model the impact of traffic lights and related ITS phenomesimulation on high
resolution networks is required.

e Commercial Applications: Companies owning street bill-boards need to know the traf-
fic which passes a specific one in order to determine the apptepprice tag for it.
Furthermore the properties of the people driving alongdHal-boards are important
(e.g. where they live).

The difference in size of the networks is substantial. Hlzgnmetworks often used with
MATSim before contained less than 100 thousand links. Themevigation networks are of
much higher resolution and contains more than a milliondinkhis increase puts high pressure
on both the micro-simulation and event processing in MAT.SIis paper introduces several
ways to improve the performance of MATSIim and any other ederen micro-simulation in
this regard together with experiments and results. In tikegection related work is presented.

RELATED WORK

MATSim has always focused on large-scale traffic simulasioenarios. In the next subsection
the traffic simulation model underlying the different simtibn implementations is discussed.

The Traffic Simulation Model

The general traffic simulation approach used in MATSim iseldasn queues. In this approach
links are the active element, which move around cars. Ea&ttlhntains a queue which stores
the entry time of each car. Adjacent links collaborate wédhbleother to assure that the different

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 3

FIGURE 1 Co-evolutionary simulation process of MATSIim

initial - execution scoring = analysis
demand !
replanning

traffic parameters and elements are simulated correctlyeXxample link capacity, free speed
travel time, intersection precedence and space availabileeonext link are parameters which
are taken into account by the simulation.

In the following subsections the different implementasiaf this approach are discussed.

QueueSim

The first micro-simulation for MATSIim (calleQueueSimwas based on a fixed-increment
time advance mode@) and developed in C++ programming language. The vehicles were
moved along in fixed time steps of one second. Although theetiedyuite flexible, for larger
simulations it is too slow because of the fixed simulationetistep. A parallel version of
QueueSim was implemented leading to significant spee(E)Jp

DEQSim

A major performance breakthrough was achieved with a newasgonulation, calledeter-
ministic Event-Driven Queue-Based Traffic Flow Micro-Semion (DEQSim,@), also imple-
mented in C++. Instead of performing the simulation alongditiene steps, an event based
model is used performing only discrete actions which areveeit to the model (i.e. entering
and leaving roads). Furthermore, DEQSim has been paratklnaking it one of the fastest
large scale transport micro-simulations availe(@).

JQueueSim

To improve maintainability of the code, MATSim was re-implented in Java including the
single CPU version of QueueSim (here callBgueueSim Furthermore, the performance of
JQueueSim has been improved significantly over the last &axsywhile the main model (time
step based approach) still remains the same.

Graphical Processing Units

Graphical Processing Units (GPUs) on computer graphicsgaedorm many more operations
in the same amount of time as CPUs on computer boards. A firsessiul implementation of
QueueSim on GPUs rendered a speedup of 67 t(ﬁ)ﬁ:ompared to JQueueSim. The main

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 4

drawback of GPUs is, that the interface between the grapinccand the rest of MATSim mod-
ules poses a bottleneck. Furthermore, current GPUs havendaed amount of memory. For
example the traffic simulation of Switzerland with 7.3 Mili agents requires around 60 Gi-
gabyte of memory, depending on different settings. Grapaids today have often less than
1 GB of memory.

Re-implementing DEQSim in Java

The implementation of MATSIim modules in Java means a majeegpulisadvantage for DE-
QSim: As DEQSim is implemented in C++ the communication of [H®Q with the other
MATSim modules is bridged by a slow file input/output (I/O}erface. Furthermore, exten-
sions in DEQSim are difficult to maintain because of the d#fe programming languages.
Even though, DEQSim is still faster than JQueueSim, JQueu&3s become the de facto
standard micro-simulation for MATSim.

In order to benefit from the speed superiority of DEQSim ovae@Sim, a redesign and
re-implementation of DEQSim in Java is presented in the segtion (calledDEQSim. Fur-
thermore, the interface between the micro-simulation arlI ®m (called event handlin
has been redesigned and improved. At last, first preliminesylts of a parallel version of
JDEQSim are shown.

PERFORMANCE IMPROVEMENTS
Implementation of JDEQSim

Re-implementing DEQSim in Java provided the opportunityesinucture and redesign the
code. The C++ DEQSim code was only taken as a specificationreegent and fully ignored
for the implementation of JDEQSim. The initial design of JP&mM was influenced by OM-
Net++ (@), which is a modular and open-architecture discrete evantranication network
simulator. The JDEQSim implementation consists of theofoilhg three parts:

e Simulation Units Vehicles and links are the basic building blocks of the tcadfmula-
tion.

e MessagesSimulation unitcommunicate with each other by exchanging different kinds
of messages€ach message contains a time stamp, e.g. when a vehidewgdlto enter
the next link or when a car should start a leg. Each newly etkatessage is sent to the
scheduler

e SchedulerTheschedulercontains a message priority queue, which is ordered after me
sage time and message type. Each received message is phisrgaeue. In the begin-
ning of the simulation, the queue is initialized: The firg l&f each agent is scheduled
in the queue. Thereafter the scheduler fetches the firstagesand executes it. Often
this produces a new message, which is put into the queue. chieglgler processes al-
ways only the first message, until all messages have beeegs®d, which terminates
the micro-simulation.

To a certain extent many elements used in JDEQSim are sitnileoncepts presented by

Axhauser(@).

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 5

Gaps in a Queue

From the beginning DEQSim had an additional feature makiegriodel more realistic, which
is still missing in JQueueSim: Gaps travelling backwarda gsieue is dissolvin@). This
makes the traffic model more realistic as when the front cargoneue starts driving, it leaves
behind a gap which travels with a constant speed backwartierefore cars behind in the
gueue have to wait until such a gap reaches them, before &mestart driving.

Prevention of Gridlock

At intersections, during the simulation a gridlock can heqppso that vehicles wait for each
other forever. In the real world when such a situation arigé®re it is not clear who has right
of way, humans interact to resolve the ambiguity. In the oagimulation this is resolved in the
following way: Whenever a situation is detected where a ga@kgridlock could happen, cars
continue moving to prevent the gridlo@). This is achieved by temporary allowing more
cars to enter a link than its capacity. This is not problemiatiMATSim as agent plans where
this situation occurs are penalized by the scoring modetlting in fewer gridlocks in the
next iteration.

Transportation Modes

JQueueSim allows simulation of multiple transportationde® which is not implemented in
DEQSim. For example an agent can drive to work and at luncdwadk by foot to a restaurant.
Or a person might take a bike to ride to the bus stop and traveddr by bus. JDEQSim has
profited from these developments and has incorporated edktlfeatures into the simulation
model from the beginning.

Parallel Event Handling

The communication between the micro-simulation and thisofdd ATSim happens viavents
Events have different types sucheager/leave linlor start/end activity Furthermore, the event
also contains information on the location and time whereetrent occurred and which agent
was involved. These events can be processed by various es0dUMATSim. This is called
event handling For example by using event handling, travel time statst&n be calculated
for the simulation or events can be written out to a file foetairocessing. Also modules such
as the scoring module make use of event handling.

During the implementation of JDEQSim and its parallelizatit was observed that event
handling is executed on the same CPU as the micro-simulaiumning event handling in
parallel to the micro-simulation has two advantages. lyjréhe micro-simulation can run
faster, because if event handling contains a file writer len@s by default), this will slow
down the micro-simulation. Secondly when applying MATSim eertain scenarios, custom
handlers are needed which may require lots of computatios. tif multiple cores are available
on a machine (as mostly the case nowadays), event handlnigecturther distributed among
them.

At the moment five event handlers are present in MATSim byuef&igure2 shows the
relative time proportions of these five handlers to eachrotlds expected the event writer
(EventWriterTX7 is the most heavy weight event handler in terms of procgdsime.

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 6

FIGURE 2 The execution time of different default event handles relative to each other

LegHistogram

CalcLegTimes

EventsToScore

Event Handler Name

TravelTimeCalculator

S
o
R
eveneweierrr | S S S

=
[
a2
[#5]
=
u
[=3]
~J
oo
[¥s]

10 11 12

Event Processing Time
[relative to each other]

Implementation of Parallel Event Handling

A common way in Java to use multiple CPUs (or cores) is to maketihreads For parallel
event handling the user can specify how many threads shautieticated to parallel event
handling in addition to the micro-simulation. The currenplementation applies a round robin
approaci@)to assign event handlers to threads. This means it triesitgrathe same number
of event handlers to each thread. It is obvious from Figliea2 this approach is suboptimal,
because it would be best to put the event handler writing eents on a separate thread and
the others on a second one. Furthermore, it may seem thatogvepplying this improved
method, writing events to the hard disk is so slow so thatgusiore than two threads would
not improve performance.

There are several reasons, why the presented approach esenand why more than two
threads can actually make the simulation faster. Firstlpialting out events to a file is not
part of the communication interface between JDEQSim and $IAT (which is different in
DEQSim). This means, if MATSim is running for 60 iterationslypeach 10th iteration needs
to be written out. By doing so, full use of parallelization da@ made during 9 of the 10
iterations. One reason for using a simple implementatiopéoallel event handling is that the
existing framework did not need to be changed and the neweimghtation could just wrap
the existing implementation into threads.

Parallelization of JDEQSIm

In Charyparet al. @)the parallelization of DEQSim is described. This is done astifoning
the traffic network into several pieces, which are assigoedgeparate CPU of a shared mem-

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 7

ory machine. The Message Passing Interf@d®l,) is used for communication between
CPUs. When an agent travels from the network area assignecet@Bb to a different one,
MPI is used for passing the agent data between CPUs. Thistapenmacludes periodically
synchronizing the state of links at the border of each ndtwartition. In Java, threac(ﬁ)
are commonly used as a basis for parallel programming. lerdapass data between two
threads thesynchronizedkeyword is used. Unlike MPI, the synchronized keyword doets n
allow to explicitly specify which data should be transferteetween which CPUSs.

The advantage of the Java synchronized keyword is, that plicéxdata structures have
to be built for transferring data between threads. But in thaext of parallelizing JDEQSim,
this is also a major disadvantage: Whereas MPI allows to @Xplispecify, which data to
transfer, it is not always obvious what data will be exchahdwge to a synchronized statement
in Java. Furthermore usage of the synchronized keyword ista expensive operation in Java
in terms of computation time, because often more data iggt®inchronized between threads
than actually needed. As many elements of data transferiddernand handled by the Java
Virtual Machine(JVM, @), the programmer has little control over them.

Before describing the successful implementation of thellgdization of JDEQSim two
implementation ideas which failed are describ8thgle Scheduler - Multiple Message Execu-
tors andMultiple Scheduler - Multiple Message Execujor$his might help to better follow
why certain elements are present in the final adapted app(@ace Delta between Threads

Single Scheduler - Multiple Message Executors

In Java each thread can access all data within the JVM. Orglpp@sapproach might be to
just use one scheduler within the JVM, where all the messagequeued. Multiplenessage
executorthreads can be used to process messages (e.g. moving samdiaeks). Of course
appropriate synchronization between threads is needduhkoand vehicle objects. Although
this approach might seem promising, the scheduler with th&sage queue poses a bottleneck:
For insertion of messages into the scheduler queue the symizbd keyword has to be used.
Event adding per thread message buffers into the schedcadsrribt help much to resolve this
problem.

Multiple Scheduler - Multiple Message Executors

Another approach might be to partition the network into pgesimilar to what is done in the
parallelization of DEQSim. In this case each partition isigised to a separate message ex-
ecutor thread and has its own scheduler. The differentdsreaeed to synchronize periodically
for two reasons. First of all for consistency of data, vedsalvhich enter a new partition of
the network must be synchronized. Secondly border linkg imeisynchronized periodically at
predefined intervals to ensure that one thread does not eelthe simulation too much. This
synchronization interval is determined by the travel tineeaed to travel border links (link
adjacent to a link in a different partition). This is almaosentical to how the parallelization of
DEQSim is performed.

Unfortunately this approach does not perform well becadgbe periodical waiting on
other threads. There are several higher level constructava to wait on other threads, such
aswait and notify or barriers m’) Furthermore, the most primitive approach is to do busy
waiting (do some dummy computations until the condition et)mAll of these approaches did
not render satisfactory results for the problem at hand.

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 8

FIGURE 3 Parallelization of JDEQSIm

Partition 4 (processed by thread A) Partition B (processed by thread B)

N,
HEEEEE | > HEEEEE

¥

Scheduler and queue of thread A Few riessates scheduled for Schedulerand queue of thread B
other partiion {only forvehicles
crassing partition boundry)

Most messages scheduled
inside same partition

Boundry of partition (each road Traffic netwarl:
belongs ta exactly ane partition)

Time Delta between Threads

The Method In Figure[3 the successful parallelization approach isatedi The prototype has
been implemented for two CPUs. The traffic network is therebigled in two parts in vertical
direction, so that about the same number of events will odauing the day in each part of
the network. This number can be estimated from the journagsbf the agents which are
given as input to the micro-simulation by MATSim. A (messagecutor) thread is assigned to
each of these patrtitions, which has a separate scheduleteBorks have been defined, which
are adjacent to links in the other partition. The vehiclegadis which pass over border links
are synchronized between the threads. No synchronizafitinks is required as messages
concerning a certain link are only processed by the threadhtoh the link belongs.

Scheduling of messages is done in the following way: As lasitha link specified in the
message belongs to the same thread it was scheduled by, cloregization is required. The
message can simply be put into the corresponding message.dset if one thread schedules
a message for the other thread, because a vehicle is pastimgdn partitions, synchronized
access to the queue object is required. This is further agauinby using a buffer inside the
gueue. As the proportion of vehicles moving between netwarkitions is much smaller than
those travelling inside the same network partition, red&yi few synchronization statements
between threads are required.

One problem remains to be handled that is, one thread shatlddvance too much in
time. At this point the question arises, what does corresstroé a parallel simulation mean?
The parallel simulation does not have to generate the saguesee of events as a sequential
simulation in order to be correct. As often events have idahtime stamps, the simulation

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 9

can arbitrary select, which of these events to process fistexample, if we have two agents
going to work at exactly 6am in the morning, it is up to the dition to decide, which event

should be processed first. If both of them might want to emtesame link then one gets to go
first. This decision by the micro-simulation changes thenetiene for the involved agents but

does not have any significant effect on the overall simutatio

So, for a parallel simulation to be considered correct, @usth not change the aggregate
traffic properties of a sequential simulation on averageepii®y this fundamental property in
mind, it is possible to define a small time delta (for exampeséconds), which a thread is
allowed to advance more than the other threads. This migliyze a very small number of
cars, which get lucky at border link intersections and thgradvance one place in the queue
of the next link. But these low probabilistic events should clvange the overall properties
of the simulation significantly. It has been verified that thuenber of events and their logical
sequence is not affected by adapting this heuristic. Nleglass, this phenomenon needs to be
investigated further.

By allowing a small time delta between different threadsyehs also the advantage, that
all messages that are within this delta, can be fetched a and processed by the message
executor thread. Therefore the number of synchronizataetements used within the scheduler
are reduced.

Open Issues and Ongoing Work

Load BalancingThe agents’ plans help estimating the number of events thabecur in a
network partition. But the traffic in each area changes overddly. Defining new borders
during the simulation of the day might help in this regard, iipossibility and impact needs
to be further investigated.

The different message types require different amount ofgssing time. This could also
be taken into account in future. For the experiments presntthis paper, the partitioning of
the network was calibrated manually. This should be autedat future.

Time Synchronization between Threadlshough the approach regarding synchronization of
time between threads seems intuitive, experiments arareefjio validate that this approach
does not have any significant effect on the relevant partseofitodel. For example, it needs to
be investigated, what portion of vehicles have advancexti other partition before the time
they would have entered it, if a smaller time delta was chosen

Generalization of the Approach to N CPU$e prototype has been implemented only for two
CPUs at the moment, but it can be generalized to N CPUs. Thiseaote by splitting the
link network vertically in N partitions so that each paditicontains the same number of events.
Then each of these partitions is assigned to a separatelthrea

Adaptation of Parallel Event Handling Requirelthe events processed by event handling must
have an ascending time stamp. When the events are being pbduparallel by JDEQSim,
buffering and sorting of the events is required before tteylwe sent for event processing. This
requires the implementation of an efficient input bufferret parallel event handler.

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 10

FIGURE 4 The computation time with different micro-simulati on settings for a single
iteration

04:00:00
[|
03:30:00
03:00:00
|

02:30:00
e
=
2
= 02:00:00 B JQueueSim
]E * DEQSIM

01:30:00 + JDEQSImM

01:00:00 . *

00:30:00

00:00:00

0 1 2 3 4 5 6 7 8 9
Number of CPUs

EXPERIMENTS AND RESULTS
Overall Speedups

Experiments to compare JQueueSim, DEQsim and JDEQSim weiamed on the NAVTEQ
road networkdE) for Switzerland (around 882K links). A population sampletioé people
surrounding the city of Zurich which drives cars was usedyad 614K agents). The hardware
used for this experiment is a Sun Fire X4600 M2, with 16 co8adu@al core CPUs) and 128GB
of memory. For the same setup also the effects of paralleitévendling were analyzed. In
Figure[4 runtime measurements for JQueueSim, DEQsim and3D& are shown for the
micro-simulation including event handling. All JQueueSind and JDEQSim runs with more
than one CPU are using parallel event handling. E.g. the JD&@8 with 2 CPUs is using
one CPU for the micro-simulation and one for parallel evemidiag.

Parallel Event Handling

The Figuré # clearly shows the significant impact of paraent handling on both JQueueSim
and JDEQsim. Currently DEQSim cannot use parallel eventlmandecause the integration
is not implemented. But the impact of parallel event handiuiitp) DEQSim would not be that
significant: By default DEQSim runs have already turned off ¢ent handler which would
write events to the disk again (because this is already pditeointerface between DEQSIm
and MATSim).

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 11

The figure also shows, that for the default event handlemgeit MATSIim using more
than one thread for event handling gives only a small addatispeedup.

Amdahl’'s Law

Amdahl’s Iaw@) describes the maximum achievable speedup of a parallefgrodt says,
that if a certain portion of a program cannot be paralleli@d. because of writing out events
to files), then the maximum achievable speedup is limitech evigh unbounded computation
power. To give an example of Amdahl’s law: If 5% of a programrmat be parallelized, then it
is not possible to achieve a speedup of more than 20 (everMoyghane million CPUS).

The figure shows the implication of Amdahl’s law for DEQSintln the MATSim context.
Because of the I/O overhead of the communication betweenitre+simulation and MATSIim
a speedup of even two seems impossible. This means more@B&wofihe micro-simulation
consists of parts, which have to be executed sequentially.

Relative Micro-Simulation Speeds

In order to compare the speed of IDEQSim and JQueueSim sirtndations only the case
where parallel event handling is turned on is relevant (thies away the fraction of event
handling). This shows that JIDEQSim is around 3 times fabi@n 1QueueSim for the given
scenario. The JDEQSim micro-simulation is slower than teQSim simulation (without
considering the 1/0 overheads), which can depend on matyrfaamong others that IDEQSIm
is running within a JVM, whereas DEQSim is compiled to nateee.

Most Efficient Configuration

The figure clearly shows, how to make most efficient use of CARIsIning JDEQSim with
one parallel event handling thread. As the machine usedrbas@128GB RAMs and the run
above uses less than 15GB of RAMSs, up to 8 JDEQSim runs can mparallel. Furthermore,
as most new desktop computer today have at least two coeesathe solution can provide
significant speed up as till now only JQueueSim was the ofitiothem.

Influence of Network Size

In the previous experiment JDEQSim was three times fastar IQueueSim. But this cannot
be generalized, because if the network is congested, thEQ3Dn can be tens of times faster
than JQueueSim, because the run time of JQueueSim is glicectelated to the duration of the
simulated period, which is not the case with JDEQSim. Funtoee, the speed of JQueueSim
also varies with the ratio between network size and pomnathumber of agents), which is
highlighted in this experiment. In this experiment all nekgimulations are running using
one CPU. Furthermore parallel event handling is turned uaismgle thread. The network
capacity is chosen in such a way that no congestion shoulgemaf he three scenarios which
are considered in Figufe 5 are:

e Scenario A: Network with 882K links and 61K agents (36M eggnt
e Scenario B: Network with 61K links and 616K agents (58M evgnts
e Scenario C: Network with 882K links and 614K agents (363M ¢&sken

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 12

FIGURE 5 The influence of network size on the different micro-smulations

03:00:00
02:30:00
02:00:00
B
2 _a
= 01:30:00 / JQueuesim
E / == C++ DEQSIm
01:00:00 /--' _./ﬁ —+—JDEQSIM
00:30:00 *’/Jf
00:00:00 T
0 20 100 150 200 230 300 330 400
Number of Events (in Million)

This experiment clearly shows, that C++ DEQSim and JDEQSiatedmearly with the
number of events. Only in scenario A for DEQSim the 1/0 ovearhef loading the network is
immense compared to the actual simulation time.

Scenario A and B have the same magnitude of number of eventsh@ratio between net-
work size and population size is rather different. Therefarscenario A JQueueSim performs
extremely bad. In fact, JDEQSim is more than twelve timetefakan JQueueSim.

Multiple Event Handler - Scalability

To test the scalability of parallel event handling, a dumragdier is used which only performed
CPU intensive tasks and did not have any disk I/O. This haigltten added for event handling
several times. This experiment was performed for differemhbers of threads and handlers to
find the speedup, which is shown in Figlie 6.

Currently only a small number of event handlers are presemdigult in MATSim, but
many applications are under development and planned in ¥ESimn community@), which
require additional event handlers. The good news is, tieatibre handlers are added to parallel
event handling, the better the speedup. This is expectedube adding more work to the
handler reduces the relative penalty of synchronizatidwéen threads.

Parallel event handling scales linearly up to 4 threadshadgh parallel event handling
only makes little use of Java’s synchronized keyword, #tél performance drops with 8 CPUs
already significantly (speedup only around 6). Similar paogs written in C++ with MPI could
easily achieve speedups of around 8 in this c@)se

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 13

FIGURE 6 Scaling of Parallel Event Handling with the number event handlers and
threads

8 /
7 /
6 /
5
/ =438 Handlers

a ==16 Handlers

/ 32 Handlers
3 === Perfect Speedup

Speedup

0 1 2 3 4 5 6 7 8 9

Number of Threads

Speedup for Parallel JIDEQSIm

An experiment with JDEQSim for the whole population of Switand (7.3 million agents)
was performed on a network with around one million links. @gents travelled using different
transportation modes, such as car, bus, bike and by footeXeriment was done with parallel
event handling (single thread) and took around 3 hours anaiihGtes for a single iteration
(only micro-simulation and event handling). As MATSIm is iégrative process, often more
than 60 iterations containing the micro-simulation exexutre needed to reach a relaxed
state). Therefore new ways to accelerate the simulation evendufguch as parallelizing
JDEQSim) are required in order to simulate even larger st@nen a reasonable time frame.

As described earlier, a first prototype of the parallelmatf JDEQSim for two CPUs has
been implemented. As event handling has to be adapted t@fgydpinction with parallel
JDEQSim only measurements of the micro-simulation wereedwaith event handling turned
off). The experiment consisted of 1.62 million agents riegjdn the area of Zurich city. The
network contained 163K links. This experiment took 29 masud0 seconds with JIDEQSIm,
while on parallel JDEQSim (2 CPUSs), the experiment only toBkriinutes 37 seconds. This
means a speed up of 1.6, which is quite encouraging.

CONCLUSIONS AND FUTURE WORK

In this paper JDEQSim is presented, which accelerates MATsibstantially. Furthermore,
JDEQSim can simulate bigger runs with much fewer CPUs thaumnmedjtill now. This makes it

suitable both for running several runs on machines withddtSPUs and to simulate MATSIm
runs faster than before on machines with fewer CPUSs.

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 14

As discussed in the section on experiments, the parallsiareiof DEQSim is limited by
Amdahl’s law within the MATSim context. On the other hand JR&m is missing MPI and
has to cope with the JVM threading model and different JVM lenpentations, which have
different properties on different machines. But nevertbel is expected, that future JVMs
should be able to handle locking more efficiently, so thatakes sense to pursue the path of
parallelizing JDEQSim further.

This paper only considered the performance gains of theossicnulation and event han-
dling in MATSIim, but there are also other ways to improve teef@grmance of MATSim. For
example some replanning modules such as rerouting ar&veetfdw and could be improved.
Furthermore, by improving the way replanning is being used can reduce the number of
iterations until the equilibrium is reached and as such ainéime for MATSim overall.

ACKNOWLEDGEMENT

Special thanks to Yu Chen who was the first to try out JDEQSimgave feedback regarding
first bigger runs. Furthermore, thanks to Marcel Rieser whe gechnical advice regarding
MATSim. Thanks also to Prof. Kai Nagel for various conceptliacussions related to MAT-
Sim.

REFERENCES

1. MATSIm-T (2008) Multi Agent Transportation Simulation odlkit, webpage,
http: 7/ ww. nat si m or gk

2. Holland, J. H. (ed.) (1992\daptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Aidial Intelligence MIT Press,
Cambridge.

3. Casas, J. and C. Arce (1999) Trip reporting in householcltrdiaries: A comparison
to GPS-collected data, paper presentethat78th Annual Meeting of the Transportation
Research BoardNashington, D.C., Jan, Oliver 1999.

4. Du, J. and L. Aultman-Hall (2007) Increasing the accurafctrip rate information from
passive multi-day GPS travel datasets: Automatic trip elehtification issuesJrans-
portation Research Part A: Policy and Practjetl (3) 220-232.

5. Schissler, N. and K. W. Axhausen (2009) Processing GPSla&avwithout additional
information, paper presented thie 88th Annual Meeting of the Transportation Research
Board Washington, D.C., Jan, Oliver 2009.

6. Balmer, M., A. Horni, K. Meister, F. Ciari, D. Charypar and K..W
Axhausen (2009) Wirkungen der Westumfahrung Zdrich: EinenalA
yse mit einer Agenten-basierten Mikrosimulation,Final Report Baudi-
rektion Kanton Zurich, IVT, ETH Zurich, Zurich, February @®,
http://ww. 1vt.ethz.ch/vpl/publications/reports/ab550. pdtl

7. Raney, B., N. Cetin, A. Vollmy, M. Vrtic, K. Axhausen and K. Nead2003) An agent-
based microsimulation model of Swiss travel: First reslitistworks and Spatial Eco-
nomics 3 (1) 23-41.

http://www.matsim.org
http://www.ivt.ethz.ch/vpl/publications/reports/ab550.pdf

Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 15

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cetin, N. (2005) Large-scale parallel graph-based sitionis, Ph.D. Thesis, ETH Zurich,
Zurich.

Charypar, D., K. W. Axhausen and K. Nagel (2007) An eveivetir queue-based traffic
flow microsimulation,Transportation Research Reco2D03 35—40.

Charypar, D., K. W. Axhausen and K. Nagel (2007) An eveived paral-

lel queue-based microsimulation for large scale trafficnades, paper presented
at the 11th World Conference on Transportation ResearBlerkeley, June 2007,
http: 7/ ww. 1 vt.ethz. ch/vpl/publications/reports/ab425. pdf.

Strippgen, D. and K. Nagel (2009) Using common graphacdware for multi-agent traffic
simulation with cuda, paper presentedSanutools '09: Proceedings of the 2nd Interna-
tional Conference on Simulation Tools and Technigades8, ICST, Brussels.

OMNeT++ (2009) OMNeT++, webpaget t p: / / ww. ormet pp. or g.

Axhausen, K. W. (1988) Eine ereignisorientierte Sirtiatavon Aktivitdtenketten zur
Parkstandswabhl, Ph.D. Thesis, University of Karlsruhe]dtahe.

Balmer, M. and K. Nagel (2006) Shape morphing of intefsedayouts using curb side
oriented driver simulation, in J. P. van Leeuwen and H. Jifmiermans (edslhnovations
in Design & Decision Support Systems in Architecture andddrlPlanning 167-183,
Springer, Eindhoven.

HAHNE, E. (1991) Round-Robin scheduling for max-fin fagsén data networksEEE
journal on selected areas in communicatip@i$7) 1024—1039.

Snir, M., S. Otto, D. Walker, J. Dongarra and S. Huss-treda (1995MPI: The complete
reference MIT Press Cambridge, MA, USA.

Lea, D. (1999)Concurrent Programming in Java.: Design Principles and Patg
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Lindholm, T. and F. Yellin (1999Java virtual machine specificatipidddison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA.

NAVTEQ (2009) NAVTEQ, webpaght t p: / / ww. navt eq. com

Amdahl, G. (1967) Validity of the single processor agatoto achieving large scale com-
puting capabilities, paper presentedSatring joint Computer Conferencd83-485, NY,
USA.

Balmer, M., M. Rieser, K. Meister, D. Charypar, N. Lefebvred &K. Nagel (2009)
MATSIm-T: Architecture and simulation times, in A. L. C. Barzand F. Kligl (eds.)
Multi-Agent Systems for Traffic and Transportation Engrimeg 57—78, Information Sci-
ence Reference, Hershey.

http://www.ivt.ethz.ch/vpl/publications/reports/ab425.pdf
http://www.omnetpp.org
http://www.navteq.com

