
ETH Library

Performance improvements for
large scale traffic simulation in
MATSim

Conference Paper

Author(s):
Waraich, Rashid A.; Charypar, David; Balmer, Michael; Axhausen, Kay W. 

Publication date:
2009-09

Permanent link:
https://doi.org/10.3929/ethz-a-005864320

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Arbeitsberichte Verkehrs- und Raumplanung 565

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3331-1318
https://doi.org/10.3929/ethz-a-005864320
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Performance Improvements for Large Scale Traffic Simulationin MATSim

Date of submission: 2009-aug-1

Rashid A. Waraich
Institute for Transport Planning and Systems (IVT), ETH Zurich, CH-8093 Zurich
phone: +41-44-633 32 79
fax: +41-44-633 10 57
waraich@ivt.baug.ethz.ch

David Charypar
Institute for Transport Planning and Systems (IVT), ETH Zurich, CH-8093 Zurich
phone: +41-44-633 35 62
fax: +41-44-633 10 57
charypar@ivt.baug.ethz.ch

Michael Balmer
Institute for Transport Planning and Systems (IVT), ETH Zurich, CH-8093 Zurich
phone: +41-44-633 27 80
fax: +41-44-633 10 57
balmer@ivt.baug.ethz.ch

Kay W. Axhausen
Institute for Transport Planning and Systems (IVT), ETH Zurich, CH-8093 Zurich
phone: +41-44-633 39 43
fax: +41-44-633 10 57
axhausen@ivt.baug.ethz.ch

Words: 5752 + (6 Figures) = 7252



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 1

ABSTRACT

Multi-Agent transport simulation models, e.g. MATSim haveproven to be suitable for model-
ing microscopic demand for large scale scenarios based on planning networks. In the recent
years survey methods are using technologies which providesmobility information with a much
higher spatial resolution (e.g. GPS tracking). Therefore,the need to model travel demand on de-
tailed navigation networks rises, which slows down simulation speed significantly. This paper
presents methods to increase the performance of the micro simulation model of MATSim us-
ing event driven concepts as well as a parallel implementation. The performance experiments
with navigation networks of Switzerland containing up to one million roads and 7.3 million
agents clearly show that large-scale, multi-agent micro-simulation can also be applied on high
resolution networks.



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 2

INTRODUCTION

Traffic simulations can be performed at different levels of detail. One common technique is
to model traffic as flows consisting of accumulated number of cars. A different approach is
to model each individual vehicle. Agent-based modeling (representing each person as a simu-
lation agent) combined with traffic flow micro-simulation allows for tracking persons dynam-
ically in time. Of course agent-based modeling is more expensive in terms of computation
power than aggregated models.

The open source Multi-Agent Transport Simulation Toolkit(MATSim, 1) was designed
from the beginning to meet the challenges of simulating large scenarios to optimize travel de-
mand. As shown in Figure 1, the demand optimization is an evolutionary process(2). This
means the iterative loop consisting ofexecution, scoringand replanninghas to be executed
many times before the optimized demand can be analyzed. Thispaper focuses on the perfor-
mance related to the execution part. The traffic simulation (execution) generateseventsfor each
action in the simulation, e.g. enter road, leave road or arrival at destination. These events are
then processed as the simulation is running, e.g. for generating statistical data on the simulation
and for the scoring module.

MATSim is currently facing a major challenge, as more and more applications require sim-
ulation on high resolution networks. A few example applications are listed below:

• Global Positioning System (GPS) Surveys: Travel studies based on GPS data require
high resolution networks to map the GPS tracking data properly to the network(3, 4, 5).

• Intelligent Transportation Systems (ITS): Measurements to improve traffic flow, such
as traffic lights at intersections have often impact on a larger area(e.g. see6). In order
to model the impact of traffic lights and related ITS phenomena, simulation on high
resolution networks is required.

• Commercial Applications: Companies owning street bill-boards need to know the traf-
fic which passes a specific one in order to determine the appropriate price tag for it.
Furthermore the properties of the people driving along these bill-boards are important
(e.g. where they live).

The difference in size of the networks is substantial. Planning networks often used with
MATSim before contained less than 100 thousand links. The new navigation networks are of
much higher resolution and contains more than a million links. This increase puts high pressure
on both the micro-simulation and event processing in MATSim. This paper introduces several
ways to improve the performance of MATSim and any other eventdriven micro-simulation in
this regard together with experiments and results. In the next section related work is presented.

RELATED WORK

MATSim has always focused on large-scale traffic simulationscenarios. In the next subsection
the traffic simulation model underlying the different simulation implementations is discussed.

The Traffic Simulation Model

The general traffic simulation approach used in MATSim is based on queues. In this approach
links are the active element, which move around cars. Each link contains a queue which stores
the entry time of each car. Adjacent links collaborate with each other to assure that the different



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 3

FIGURE 1 Co-evolutionary simulation process of MATSim

traffic parameters and elements are simulated correctly. For example link capacity, free speed
travel time, intersection precedence and space available on the next link are parameters which
are taken into account by the simulation.

In the following subsections the different implementations of this approach are discussed.

QueueSim

The first micro-simulation for MATSim (calledQueueSim) was based on a fixed-increment
time advance model(7) and developed in C++ programming language. The vehicles were
moved along in fixed time steps of one second. Although the model is quite flexible, for larger
simulations it is too slow because of the fixed simulation time step. A parallel version of
QueueSim was implemented leading to significant speed up(8).

DEQSim

A major performance breakthrough was achieved with a new micro-simulation, calledDeter-
ministic Event-Driven Queue-Based Traffic Flow Micro-Simulation (DEQSim,9), also imple-
mented in C++. Instead of performing the simulation along fixed time steps, an event based
model is used performing only discrete actions which are relevant to the model (i.e. entering
and leaving roads). Furthermore, DEQSim has been parallelized making it one of the fastest
large scale transport micro-simulations available(10).

JQueueSim

To improve maintainability of the code, MATSim was re-implemented in Java including the
single CPU version of QueueSim (here calledJQueueSim). Furthermore, the performance of
JQueueSim has been improved significantly over the last few years while the main model (time
step based approach) still remains the same.

Graphical Processing Units

Graphical Processing Units (GPUs) on computer graphic cards perform many more operations
in the same amount of time as CPUs on computer boards. A first successful implementation of
QueueSim on GPUs rendered a speedup of 67 times(11) compared to JQueueSim. The main



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 4

drawback of GPUs is, that the interface between the graphic card and the rest of MATSim mod-
ules poses a bottleneck. Furthermore, current GPUs have an limited amount of memory. For
example the traffic simulation of Switzerland with 7.3 Million agents requires around 60 Gi-
gabyte of memory, depending on different settings. Graphiccards today have often less than
1 GB of memory.

Re-implementing DEQSim in Java

The implementation of MATSim modules in Java means a major speed disadvantage for DE-
QSim: As DEQSim is implemented in C++ the communication of DEQSim with the other
MATSim modules is bridged by a slow file input/output (I/O) interface. Furthermore, exten-
sions in DEQSim are difficult to maintain because of the different programming languages.
Even though, DEQSim is still faster than JQueueSim, JQueueSim has become the de facto
standard micro-simulation for MATSim.

In order to benefit from the speed superiority of DEQSim over QueueSim, a redesign and
re-implementation of DEQSim in Java is presented in the nextsection (calledJDEQSim). Fur-
thermore, the interface between the micro-simulation and MATSim (calledevent handling)
has been redesigned and improved. At last, first preliminaryresults of a parallel version of
JDEQSim are shown.

PERFORMANCE IMPROVEMENTS

Implementation of JDEQSim

Re-implementing DEQSim in Java provided the opportunity to restructure and redesign the
code. The C++ DEQSim code was only taken as a specification requirement and fully ignored
for the implementation of JDEQSim. The initial design of JDEQSim was influenced by OM-
Net++ (12), which is a modular and open-architecture discrete event communication network
simulator. The JDEQSim implementation consists of the following three parts:

• Simulation Units Vehicles and links are the basic building blocks of the traffic simula-
tion.

• MessagesSimulation unitscommunicate with each other by exchanging different kinds
of messages. Each message contains a time stamp, e.g. when a vehicle is allowed to enter
the next link or when a car should start a leg. Each newly created message is sent to the
scheduler.

• SchedulerTheschedulercontains a message priority queue, which is ordered after mes-
sage time and message type. Each received message is put intothis queue. In the begin-
ning of the simulation, the queue is initialized: The first leg of each agent is scheduled
in the queue. Thereafter the scheduler fetches the first message and executes it. Often
this produces a new message, which is put into the queue. The scheduler processes al-
ways only the first message, until all messages have been processed, which terminates
the micro-simulation.

To a certain extent many elements used in JDEQSim are similarto concepts presented by
Axhausen(13).



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 5

Gaps in a Queue

From the beginning DEQSim had an additional feature making the model more realistic, which
is still missing in JQueueSim: Gaps travelling backwards asa queue is dissolving(10). This
makes the traffic model more realistic as when the front car ina queue starts driving, it leaves
behind a gap which travels with a constant speed backwards. Therefore cars behind in the
queue have to wait until such a gap reaches them, before they can start driving.

Prevention of Gridlock

At intersections, during the simulation a gridlock can happen, so that vehicles wait for each
other forever. In the real world when such a situation arises, where it is not clear who has right
of way, humans interact to resolve the ambiguity. In the micro-simulation this is resolved in the
following way: Whenever a situation is detected where a potential gridlock could happen, cars
continue moving to prevent the gridlock(14). This is achieved by temporary allowing more
cars to enter a link than its capacity. This is not problematic in MATSim as agent plans where
this situation occurs are penalized by the scoring module, resulting in fewer gridlocks in the
next iteration.

Transportation Modes

JQueueSim allows simulation of multiple transportation modes which is not implemented in
DEQSim. For example an agent can drive to work and at lunch time walk by foot to a restaurant.
Or a person might take a bike to ride to the bus stop and travel further by bus. JDEQSim has
profited from these developments and has incorporated all these features into the simulation
model from the beginning.

Parallel Event Handling

The communication between the micro-simulation and the rest of MATSim happens viaevents.
Events have different types such asenter/leave linkor start/end activity. Furthermore, the event
also contains information on the location and time where theevent occurred and which agent
was involved. These events can be processed by various modules of MATSim. This is called
event handling. For example by using event handling, travel time statistics can be calculated
for the simulation or events can be written out to a file for later processing. Also modules such
as the scoring module make use of event handling.

During the implementation of JDEQSim and its parallelization it was observed that event
handling is executed on the same CPU as the micro-simulation.Running event handling in
parallel to the micro-simulation has two advantages. Firstly, the micro-simulation can run
faster, because if event handling contains a file writer handler (as by default), this will slow
down the micro-simulation. Secondly when applying MATSim on certain scenarios, custom
handlers are needed which may require lots of computation time. If multiple cores are available
on a machine (as mostly the case nowadays), event handling can be further distributed among
them.

At the moment five event handlers are present in MATSim by default. Figure 2 shows the
relative time proportions of these five handlers to each other. As expected the event writer
(EventWriterTXT) is the most heavy weight event handler in terms of processing time.



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 6

FIGURE 2 The execution time of different default event handlers relative to each other

Implementation of Parallel Event Handling

A common way in Java to use multiple CPUs (or cores) is to make use of threads. For parallel
event handling the user can specify how many threads should be dedicated to parallel event
handling in addition to the micro-simulation. The current implementation applies a round robin
approach(15) to assign event handlers to threads. This means it tries to assign the same number
of event handlers to each thread. It is obvious from Figure 2 that this approach is suboptimal,
because it would be best to put the event handler writing out events on a separate thread and
the others on a second one. Furthermore, it may seem that evenby applying this improved
method, writing events to the hard disk is so slow so that using more than two threads would
not improve performance.

There are several reasons, why the presented approach was chosen and why more than two
threads can actually make the simulation faster. First of all, writing out events to a file is not
part of the communication interface between JDEQSim and MATSim (which is different in
DEQSim). This means, if MATSim is running for 60 iterations only each 10th iteration needs
to be written out. By doing so, full use of parallelization canbe made during 9 of the 10
iterations. One reason for using a simple implementation for parallel event handling is that the
existing framework did not need to be changed and the new implementation could just wrap
the existing implementation into threads.

Parallelization of JDEQSim

In Charyparet al. (10)the parallelization of DEQSim is described. This is done by partitioning
the traffic network into several pieces, which are assigned to a separate CPU of a shared mem-



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 7

ory machine. The Message Passing Interface(MPI, 16) is used for communication between
CPUs. When an agent travels from the network area assigned to one CPU to a different one,
MPI is used for passing the agent data between CPUs. This operation includes periodically
synchronizing the state of links at the border of each network partition. In Java, threads(17)
are commonly used as a basis for parallel programming. In order to pass data between two
threads thesynchronizedkeyword is used. Unlike MPI, the synchronized keyword does not
allow to explicitly specify which data should be transferred between which CPUs.

The advantage of the Java synchronized keyword is, that no explicit data structures have
to be built for transferring data between threads. But in the context of parallelizing JDEQSim,
this is also a major disadvantage: Whereas MPI allows to explicitly specify, which data to
transfer, it is not always obvious what data will be exchanged due to a synchronized statement
in Java. Furthermore usage of the synchronized keyword is a quite expensive operation in Java
in terms of computation time, because often more data is being synchronized between threads
than actually needed. As many elements of data transfer are hidden and handled by the Java
Virtual Machine(JVM, 18), the programmer has little control over them.

Before describing the successful implementation of the parallelization of JDEQSim two
implementation ideas which failed are described (Single Scheduler - Multiple Message Execu-
tors andMultiple Scheduler - Multiple Message Executors). This might help to better follow
why certain elements are present in the final adapted approach (Time Delta between Threads).

Single Scheduler - Multiple Message Executors

In Java each thread can access all data within the JVM. One possible approach might be to
just use one scheduler within the JVM, where all the messagesare queued. Multiplemessage
executorthreads can be used to process messages (e.g. moving vehicles on links). Of course
appropriate synchronization between threads is needed forlink and vehicle objects. Although
this approach might seem promising, the scheduler with the message queue poses a bottleneck:
For insertion of messages into the scheduler queue the synchronized keyword has to be used.
Event adding per thread message buffers into the scheduler does not help much to resolve this
problem.

Multiple Scheduler - Multiple Message Executors

Another approach might be to partition the network into pieces similar to what is done in the
parallelization of DEQSim. In this case each partition is assigned to a separate message ex-
ecutor thread and has its own scheduler. The different threads need to synchronize periodically
for two reasons. First of all for consistency of data, vehicles which enter a new partition of
the network must be synchronized. Secondly border links must be synchronized periodically at
predefined intervals to ensure that one thread does not advance the simulation too much. This
synchronization interval is determined by the travel time needed to travel border links (link
adjacent to a link in a different partition). This is almost identical to how the parallelization of
DEQSim is performed.

Unfortunately this approach does not perform well because of the periodical waiting on
other threads. There are several higher level constructs inJava to wait on other threads, such
aswait andnotify or barriers (17). Furthermore, the most primitive approach is to do busy
waiting (do some dummy computations until the condition is met). All of these approaches did
not render satisfactory results for the problem at hand.



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 8

FIGURE 3 Parallelization of JDEQSim

Time Delta between Threads

The Method In Figure 3 the successful parallelization approach is depicted. The prototype has
been implemented for two CPUs. The traffic network is thereby divided in two parts in vertical
direction, so that about the same number of events will occurduring the day in each part of
the network. This number can be estimated from the journey plans of the agents which are
given as input to the micro-simulation by MATSim. A (messageexecutor) thread is assigned to
each of these partitions, which has a separate scheduler. Border links have been defined, which
are adjacent to links in the other partition. The vehicles objects which pass over border links
are synchronized between the threads. No synchronization of links is required as messages
concerning a certain link are only processed by the thread towhich the link belongs.

Scheduling of messages is done in the following way: As long as the link specified in the
message belongs to the same thread it was scheduled by, no synchronization is required. The
message can simply be put into the corresponding message queue. But if one thread schedules
a message for the other thread, because a vehicle is passing between partitions, synchronized
access to the queue object is required. This is further optimized by using a buffer inside the
queue. As the proportion of vehicles moving between networkpartitions is much smaller than
those travelling inside the same network partition, relatively few synchronization statements
between threads are required.

One problem remains to be handled that is, one thread should not advance too much in
time. At this point the question arises, what does correctness of a parallel simulation mean?
The parallel simulation does not have to generate the same sequence of events as a sequential
simulation in order to be correct. As often events have identical time stamps, the simulation



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 9

can arbitrary select, which of these events to process first.For example, if we have two agents
going to work at exactly 6am in the morning, it is up to the simulation to decide, which event
should be processed first. If both of them might want to enter the same link then one gets to go
first. This decision by the micro-simulation changes the event time for the involved agents but
does not have any significant effect on the overall simulation.

So, for a parallel simulation to be considered correct, it should not change the aggregate
traffic properties of a sequential simulation on average. Keeping this fundamental property in
mind, it is possible to define a small time delta (for example 10 seconds), which a thread is
allowed to advance more than the other threads. This might produce a very small number of
cars, which get lucky at border link intersections and thereby advance one place in the queue
of the next link. But these low probabilistic events should not change the overall properties
of the simulation significantly. It has been verified that thenumber of events and their logical
sequence is not affected by adapting this heuristic. Nevertheless, this phenomenon needs to be
investigated further.

By allowing a small time delta between different threads, there is also the advantage, that
all messages that are within this delta, can be fetched at once and processed by the message
executor thread. Therefore the number of synchronization statements used within the scheduler
are reduced.

Open Issues and Ongoing Work

Load BalancingThe agents’ plans help estimating the number of events that will occur in a
network partition. But the traffic in each area changes over the day. Defining new borders
during the simulation of the day might help in this regard, but its possibility and impact needs
to be further investigated.

The different message types require different amount of processing time. This could also
be taken into account in future. For the experiments presented in this paper, the partitioning of
the network was calibrated manually. This should be automated in future.

Time Synchronization between ThreadsAlthough the approach regarding synchronization of
time between threads seems intuitive, experiments are required to validate that this approach
does not have any significant effect on the relevant parts of the model. For example, it needs to
be investigated, what portion of vehicles have advanced into the other partition before the time
they would have entered it, if a smaller time delta was chosen.

Generalization of the Approach to N CPUsThe prototype has been implemented only for two
CPUs at the moment, but it can be generalized to N CPUs. This can be done by splitting the
link network vertically in N partitions so that each partition contains the same number of events.
Then each of these partitions is assigned to a separate thread.

Adaptation of Parallel Event Handling RequiredThe events processed by event handling must
have an ascending time stamp. When the events are being produced in parallel by JDEQSim,
buffering and sorting of the events is required before they can be sent for event processing. This
requires the implementation of an efficient input buffer at the parallel event handler.



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 10

FIGURE 4 The computation time with different micro-simulati on settings for a single
iteration

EXPERIMENTS AND RESULTS

Overall Speedups

Experiments to compare JQueueSim, DEQsim and JDEQSim were performed on the NAVTEQ
road network(19) for Switzerland (around 882K links). A population sample ofthe people
surrounding the city of Zurich which drives cars was used (around 614K agents). The hardware
used for this experiment is a Sun Fire X4600 M2, with 16 cores (8 dual core CPUs) and 128GB
of memory. For the same setup also the effects of parallel event handling were analyzed. In
Figure 4 runtime measurements for JQueueSim, DEQsim and JDEQSim are shown for the
micro-simulation including event handling. All JQueueSimand and JDEQSim runs with more
than one CPU are using parallel event handling. E.g. the JDEQSim run with 2 CPUs is using
one CPU for the micro-simulation and one for parallel event handling.

Parallel Event Handling

The Figure 4 clearly shows the significant impact of parallelevent handling on both JQueueSim
and JDEQsim. Currently DEQSim cannot use parallel event handling, because the integration
is not implemented. But the impact of parallel event handlingwith DEQSim would not be that
significant: By default DEQSim runs have already turned off the event handler which would
write events to the disk again (because this is already part of the interface between DEQSim
and MATSim).



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 11

The figure also shows, that for the default event handler setting in MATSim using more
than one thread for event handling gives only a small additional speedup.

Amdahl’s Law

Amdahl’s law(20) describes the maximum achievable speedup of a parallel program. It says,
that if a certain portion of a program cannot be parallelized(e.g. because of writing out events
to files), then the maximum achievable speedup is limited even with unbounded computation
power. To give an example of Amdahl’s law: If 5% of a program cannot be parallelized, then it
is not possible to achieve a speedup of more than 20 (even by having one million CPUs).

The figure shows the implication of Amdahl’s law for DEQSim within the MATSim context.
Because of the I/O overhead of the communication between the micro-simulation and MATSim
a speedup of even two seems impossible. This means more than 50% of the micro-simulation
consists of parts, which have to be executed sequentially.

Relative Micro-Simulation Speeds

In order to compare the speed of JDEQSim and JQueueSim micro-simulations only the case
where parallel event handling is turned on is relevant (thistakes away the fraction of event
handling). This shows that JDEQSim is around 3 times faster than JQueueSim for the given
scenario. The JDEQSim micro-simulation is slower than the DEQSim simulation (without
considering the I/O overheads), which can depend on many factors among others that JDEQSim
is running within a JVM, whereas DEQSim is compiled to nativecode.

Most Efficient Configuration

The figure clearly shows, how to make most efficient use of CPUs:Running JDEQSim with
one parallel event handling thread. As the machine used has around 128GB RAMs and the run
above uses less than 15GB of RAMs, up to 8 JDEQSim runs can run inparallel. Furthermore,
as most new desktop computer today have at least two cores, the same solution can provide
significant speed up as till now only JQueueSim was the optionfor them.

Influence of Network Size

In the previous experiment JDEQSim was three times faster than JQueueSim. But this cannot
be generalized, because if the network is congested, then JDEQSim can be tens of times faster
than JQueueSim, because the run time of JQueueSim is directly correlated to the duration of the
simulated period, which is not the case with JDEQSim. Furthermore, the speed of JQueueSim
also varies with the ratio between network size and population (number of agents), which is
highlighted in this experiment. In this experiment all micro-simulations are running using
one CPU. Furthermore parallel event handling is turned usinga single thread. The network
capacity is chosen in such a way that no congestion should happen. The three scenarios which
are considered in Figure 5 are:

• Scenario A: Network with 882K links and 61K agents (36M events)
• Scenario B: Network with 61K links and 616K agents (58M events)
• Scenario C: Network with 882K links and 614K agents (363M events)



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 12

FIGURE 5 The influence of network size on the different micro-simulations

This experiment clearly shows, that C++ DEQSim and JDEQSim scale linearly with the
number of events. Only in scenario A for DEQSim the I/O overhead of loading the network is
immense compared to the actual simulation time.

Scenario A and B have the same magnitude of number of events. But the ratio between net-
work size and population size is rather different. Therefore in scenario A JQueueSim performs
extremely bad. In fact, JDEQSim is more than twelve times faster than JQueueSim.

Multiple Event Handler - Scalability

To test the scalability of parallel event handling, a dummy handler is used which only performed
CPU intensive tasks and did not have any disk I/O. This handleris then added for event handling
several times. This experiment was performed for differentnumbers of threads and handlers to
find the speedup, which is shown in Figure 6.

Currently only a small number of event handlers are present bydefault in MATSim, but
many applications are under development and planned in the MATSim community(1), which
require additional event handlers. The good news is, that the more handlers are added to parallel
event handling, the better the speedup. This is expected, because adding more work to the
handler reduces the relative penalty of synchronization between threads.

Parallel event handling scales linearly up to 4 threads. Although parallel event handling
only makes little use of Java’s synchronized keyword, stillthe performance drops with 8 CPUs
already significantly (speedup only around 6). Similar programs written in C++ with MPI could
easily achieve speedups of around 8 in this case(9).



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 13

FIGURE 6 Scaling of Parallel Event Handling with the number event handlers and
threads

Speedup for Parallel JDEQSim

An experiment with JDEQSim for the whole population of Switzerland (7.3 million agents)
was performed on a network with around one million links. Theagents travelled using different
transportation modes, such as car, bus, bike and by foot. Theexperiment was done with parallel
event handling (single thread) and took around 3 hours and 16minutes for a single iteration
(only micro-simulation and event handling). As MATSim is aniterative process, often more
than 60 iterations containing the micro-simulation execution are needed to reach a relaxed
state(21). Therefore new ways to accelerate the simulation even further (such as parallelizing
JDEQSim) are required in order to simulate even larger scenarios in a reasonable time frame.

As described earlier, a first prototype of the parallelization of JDEQSim for two CPUs has
been implemented. As event handling has to be adapted to properly function with parallel
JDEQSim only measurements of the micro-simulation were done (with event handling turned
off). The experiment consisted of 1.62 million agents residing in the area of Zurich city. The
network contained 163K links. This experiment took 29 minutes 40 seconds with JDEQSim,
while on parallel JDEQSim (2 CPUs), the experiment only took 18 minutes 37 seconds. This
means a speed up of 1.6, which is quite encouraging.

CONCLUSIONS AND FUTURE WORK

In this paper JDEQSim is presented, which accelerates MATSim substantially. Furthermore,
JDEQSim can simulate bigger runs with much fewer CPUs than required till now. This makes it
suitable both for running several runs on machines with lotsof CPUs and to simulate MATSim
runs faster than before on machines with fewer CPUs.



Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 14

As discussed in the section on experiments, the parallel version of DEQSim is limited by
Amdahl’s law within the MATSim context. On the other hand JDEQSim is missing MPI and
has to cope with the JVM threading model and different JVM implementations, which have
different properties on different machines. But nevertheless it is expected, that future JVMs
should be able to handle locking more efficiently, so that it makes sense to pursue the path of
parallelizing JDEQSim further.

This paper only considered the performance gains of the micro-simulation and event han-
dling in MATSim, but there are also other ways to improve the performance of MATSim. For
example some replanning modules such as rerouting are relative slow and could be improved.
Furthermore, by improving the way replanning is being used one can reduce the number of
iterations until the equilibrium is reached and as such the runtime for MATSim overall.

ACKNOWLEDGEMENT

Special thanks to Yu Chen who was the first to try out JDEQSim andgave feedback regarding
first bigger runs. Furthermore, thanks to Marcel Rieser who gave technical advice regarding
MATSim. Thanks also to Prof. Kai Nagel for various conceptual discussions related to MAT-
Sim.

REFERENCES

1. MATSim-T (2008) Multi Agent Transportation Simulation Toolkit, webpage,
http://www.matsim.org.

2. Holland, J. H. (ed.) (1992)Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press,
Cambridge.

3. Casas, J. and C. Arce (1999) Trip reporting in household travel diaries: A comparison
to GPS-collected data, paper presented atthe 78th Annual Meeting of the Transportation
Research Board, Washington, D.C., Jan, Oliver 1999.

4. Du, J. and L. Aultman-Hall (2007) Increasing the accuracyof trip rate information from
passive multi-day GPS travel datasets: Automatic trip end identification issues,Trans-
portation Research Part A: Policy and Practice, 41 (3) 220–232.

5. Schüssler, N. and K. W. Axhausen (2009) Processing GPS rawdata without additional
information, paper presented atthe 88th Annual Meeting of the Transportation Research
Board, Washington, D.C., Jan, Oliver 2009.

6. Balmer, M., A. Horni, K. Meister, F. Ciari, D. Charypar and K. W.
Axhausen (2009) Wirkungen der Westumfahrung Zürich: Eine Anal-
yse mit einer Agenten-basierten Mikrosimulation,Final Report, Baudi-
rektion Kanton Zurich, IVT, ETH Zurich, Zurich, February 2009,
http://www.ivt.ethz.ch/vpl/publications/reports/ab550.pdf.

7. Raney, B., N. Cetin, A. Völlmy, M. Vrtic, K. Axhausen and K. Nagel (2003) An agent-
based microsimulation model of Swiss travel: First results, Networks and Spatial Eco-
nomics, 3 (1) 23–41.

http://www.matsim.org
http://www.ivt.ethz.ch/vpl/publications/reports/ab550.pdf


Waraich, R.A., Charypar, D., Balmer, M. and Axhausen, K.W. 15

8. Cetin, N. (2005) Large-scale parallel graph-based simulations, Ph.D. Thesis, ETH Zurich,
Zurich.

9. Charypar, D., K. W. Axhausen and K. Nagel (2007) An event-driven queue-based traffic
flow microsimulation,Transportation Research Record, 2003, 35–40.

10. Charypar, D., K. W. Axhausen and K. Nagel (2007) An event-driven paral-
lel queue-based microsimulation for large scale traffic scenarios, paper presented
at the 11th World Conference on Transportation Research, Berkeley, June 2007,
http://www.ivt.ethz.ch/vpl/publications/reports/ab425.pdf.

11. Strippgen, D. and K. Nagel (2009) Using common graphics hardware for multi-agent traffic
simulation with cuda, paper presented atSimutools ’09: Proceedings of the 2nd Interna-
tional Conference on Simulation Tools and Techniques, 1–8, ICST, Brussels.

12. OMNeT++ (2009) OMNeT++, webpage,http://www.omnetpp.org.

13. Axhausen, K. W. (1988) Eine ereignisorientierte Simulation von Aktivitätenketten zur
Parkstandswahl, Ph.D. Thesis, University of Karlsruhe, Karlsruhe.

14. Balmer, M. and K. Nagel (2006) Shape morphing of intersection layouts using curb side
oriented driver simulation, in J. P. van Leeuwen and H. J. P. Timmermans (eds.)Innovations
in Design & Decision Support Systems in Architecture and Urban Planning, 167–183,
Springer, Eindhoven.

15. HAHNE, E. (1991) Round-Robin scheduling for max-fin fairness in data networks,IEEE
journal on selected areas in communications, 9 (7) 1024–1039.

16. Snir, M., S. Otto, D. Walker, J. Dongarra and S. Huss-Lederman (1995)MPI: The complete
reference, MIT Press Cambridge, MA, USA.

17. Lea, D. (1999)Concurrent Programming in Java.: Design Principles and Patterns,
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

18. Lindholm, T. and F. Yellin (1999)Java virtual machine specification, Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA.

19. NAVTEQ (2009) NAVTEQ, webpage,http://www.navteq.com.

20. Amdahl, G. (1967) Validity of the single processor approach to achieving large scale com-
puting capabilities, paper presented atSpring joint Computer Conference, 483–485, NY,
USA.

21. Balmer, M., M. Rieser, K. Meister, D. Charypar, N. Lefebvre and K. Nagel (2009)
MATSim-T: Architecture and simulation times, in A. L. C. Bazzan and F. Klügl (eds.)
Multi-Agent Systems for Traffic and Transportation Engineering, 57–78, Information Sci-
ence Reference, Hershey.

http://www.ivt.ethz.ch/vpl/publications/reports/ab425.pdf
http://www.omnetpp.org
http://www.navteq.com

