
DISS. ETH NO. 18544

THE EFFECTS OF SOFTWARE PATENT POLICY ON
THE MOTIVATION AND INNOVATION OF FREE AND

OPEN SOURCE SOFTWARE DEVELOPERS

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

MARCUS MANFRED DAPP

Dipl. Betriebs- und Produktionsingenieur ETH

13.04.1974

citizen of Germany

accepted on the recommendation of

Prof. Dr. Thomas Bernauer, examiner
Prof. Dr. Stefan Bechtold, co-examiner

Prof. Dr. Georg von Krogh, co-examiner

2009

To my parents, Erika and Manfred. Thank you for everything.

Acknowledgements

Writing a dissertation may sometimes be a lonely act, but it is not something done alone.

There are many people who helped me in various ways throughout this journey and to whom I

owe much gratitude.

First of all, my supervisor Thomas Bernauer, who provided me with the proverbial academic

freedom, allowed me to spend the time it takes to explore a new field and who also supported less

conventional doctoral student’ activities such as an own lecture that allowed me to see beyond

free/open source software and really explore the whole field of ‘digital sustainability’. Further, I

thank Georg von Krogh for sharing his enthusiasm for high quality research and for giving me oc-

casional asylum in his research group. I also thank Stefan Bechtold for his invaluable input in le-

gal matters and thorough feedback. And of course, the group of anonymous referees and ETH

Zurich who provided funding (ETH Research Grant TH -2/05-2). Thank you for making this re-

search project possible.

Next I owe a big thanks to my friend Daniel Kammerer, long-term office mate and steady

moral supporter through the highs and lows of our joint academic journey. We made it! I also

thank former and current members of Thomas Bernauer’s research group: Vally Koubi for teach-

ing me how to defend my work; Stéphanie Engels, Jazmin Sejas, Stefanie Walter, and Thomas Sat-

tler for paving the way and letting me learn by example; Anna Kalbhenn, Gabi Ruoff, and Lena

Schaffer for showing me how much I don’t know about statistics; Sophie Perrin, Lucas Beck and

Jürg Vollenweider for moral support and the funny breaks in and outside the office. Good luck

with your projects! Last but not least, I thank Claudia Jenny for being the perfect secretary and

patient proofreader of my papers.

In the local academic neighborhood, I want to thank my friend Matthias Stürmer, peer doc-

toral student and busy FOSS advocate, whose surname is well-deserved. Further, my friends and

colleagues at the Chair of Strategic Management and Innovation at ETH Zurich, especially the fan-

tastic group of post-docs consisting of Stefan Häfliger, Sebastian Späth, and Martin Wallin. Thank

you so much for your ongoing support and valuable feedback! In the wider academic world, I

thank Reto Hilty, Director of the Max Planck Institute for Intellectual Property, Competition and

6

Tax Law for hosting me in Munich, as well as Luigi Innocente and Christophe Geiger for showing

me that nothing is really easy in intellectual property law. Further, I thank Megan Conklin and

James Howison for running the FLOSSmole project as well as Bob English and Charles Schweik for

sharing their project classification data. You all helped me to produce a better survey.

I thank the literally thousands of FOSS developers who suffered through my survey ques-

tionnaire instead of producing excellent software. I will not interrupt you again, promised!

Thanks also go to the survey lottery sponsors: Chris DiBona of the open source program office of

Google Inc., Michael ‘Mickey’ Lauer of Openmoko Inc., and Immo Noack of ETH Zurich’s Neptun

program. Thanks for sponsoring a FOSS developer’s dream collection of cool and hackable gad-

gets.

In my private life, a couple of individuals had to cope with me during most of the disserta-

tion years and showed surprisingly much understanding in the process: my good friend Cornelia,

my brother Thomas, who finally uses Linux, and my Zurich flat-mate Christian, who still does not.

Thanks for your continuous encouragement, moral support, and understanding of ‘why it is tak-

ing so long’.

Finally, I thank my parents, Erika and Manfred, for making it possible for me to stay in

‘school’ so many years before I finally got a ‘real job’. This work is dedicated in its entirety to you.

All programs used for this dissertation are free/open source software, except one: you know who you R!

Table of contents

Summary.. 11

Zusammenfassung.. 13

List of Abbreviations. 15

Introduction.. 17

1. Innovation and the digital age...20

1.1 The legal protection of software..21

1.2 The software patent debate and the ‘promise’ of FOSS..23

1.3 Research questions...24

2. Overview of main findings..26

2.1 Theoretical findings...26

2.2 Empirical findings..27

2.3 Methodological findings...28

3. Policy recommendations..30

4. Limitations and future research..31

5. References..33

Hot Debate about Chilling Effects: Do Software Patents Hamper FOSS
Development?. 35

1. Introduction..38

2. Do Patents Promote Innovation?..40

2.1 Non-digital industries...40

2.2 Proprietary software industry...41

2.3 Patenting of Proprietary Software..44

3. Free/Open Source Software (FOSS)...49

4. Do Software Patents Affect FOSS?...53

4.1 Motivations for participation in FOSS projects...54

4.2 Effects of software patents...55

4.3 Empirical research strategy...61

8 Table of Contents

5. Conclusion...63

6. References..64

Nothing really matters?
Empirical Evidence on the Effects of Software Patents on the Motivation of
Free/Open Source Software Developers. .69

1. Introduction..72

2. Software patents and Free/Open Source software..75

2.1 The blurry legal status of software patents..75

2.2 The FOSS system and the motivation behind..76

3. Software patent presence and FOSS motivation..79

3.1 The proponents view...79

3.2 The opponents view...80

3.3 Do software patents really matter for FOSS?..82

4. Research design and methods ...84

4.1 Data collection and sampling strategy ...84

4.2 Survey and questionnaire..85

4.3 Key variables...86

5. Empirical results...88

5.1 Descriptive statistics ...88

5.2 Regression analysis..91

6. Conclusion...97

7. References..98

8. Appendix A – Descriptive statistics..101

8.1 Motivational factors..101

8.2 Experience...102

8.3 Education and age...103

9. Appendix B – Underlying survey questions..105

Dances with patents – The role of motivation and software patents in the
innovation behavior of FOSS developers. 107

1. Introduction..110

2. Literature review and analytical framework..112

3. Theoretical concepts, arguments, and hypotheses...117

3.1 From code contributions to individual innovation behavior..117

3.2 How motivational setup affects innovation behavior..119

3.3 How software patent presence affects innovation behavior...122

Table of Contents 9

4. Research design..125

4.1 Data collection, sampling strategy, and survey design..125

4.2 Key variables...126

5. Empirical results...128

5.1 Descriptive statistics..128

5.2 Regression analysis..131

6. Conclusion...138

7. References...141

8. Appendix A – Descriptive statistics..145

9. Appendix B – Underlying survey questions..147

Main Appendix A – Survey Questionnaire. .149

Main Appendix B – Invitation Email. 175

Main Appendix C – First Reminder Email. .177

Main Appendix D – Second (Last) Reminder Email. .179

Main Appendix E – Imputation statistics. 181

Summary

Despite ongoing debate about the effects of software patents on software development in general,

no dedicated empirical studies exist that systematically investigate the claims raised by propo-

nents and opponents of software patenting in the context of Free/Open Source software (FOSS).

The question carries additional weight for two reasons: one, because the unorthodox innovation

model of FOSS puts into question some of the assumptions of traditional intellectual property

theories; two, because the empirical support for the general innovation-fostering effects of

patenting is far from being overwhelming – particularly in the proprietary software industry,

where a few empirical studies exist.

In this dissertation, I contribute to the understanding of how software patents affect the in-

novation behavior of developers of Free/Open Source software by introducing a novel theoretical

framework that give the motivational setup of FOSS developers a central role. I also present two

empirical analyses that put the individual developer in the foreground. Methodologically, new

metrics for individual innovation behavior and software patent pressure are constructed and – to-

gether with the hypotheses derived from the theoretical framework – tested on a newly created

set of survey data.

The theoretical framework analyses in detail how the sixteen motivational factors collected

from the FOSS motivation literature may be affected by the presence of software patents. As a re-

sults from the theoretical analysis, I expect software patents to increase the levels of extrinsic

motivation and decrease the level of intrinsic motivation.

In the first empirical study, the effects of software patent presence on selected, representa-

tive motivational factors is investigated. To do that a concept of software patent presence is intro-

duced that not only includes jurisdictional components (legal availability and patent incidents),

but also a new metric that captures the varying patent pressure across software domains. Empiri-

cally, none of the two camps of proponents and opponents of software patents find support: soft-

ware patents do not negatively affect intrinsic motivation as predicted by opponents, but they

also do not positively affect extrinsic motivational factors as proponents predict.

12 Summary

In the second empirical study, the analysis is extended. Here, the effects of software patent

presence and motivational setup on the individual innovation behavior of FOSS developers are in-

vestigated. To do that a new metric for innovation behavior is introduced that ranks individual

code contributions according to their level of innovativeness by distinguishing algorithm-based

from reuse-based contributions. The argument is that algorithm-based contributions are more in-

novative than reuse-based contributions. Beside this ordinal innovation scale, ‘reverse-engineer-

ing’ as a specific type of code contribution that is important to the FOSS world, is also analyzed.

One key result is that intrinsic motivation triggers more innovative code contribution, while

extrinsic motivation correlates with less innovative code contributions. The presence of software

patents (using all three metrics mentioned earlier) does not seem to play a significant role, except

in the case of reverse-engineering. This type of code contribution correlates with a stronger pres-

ence of software patents.

Zusammenfassung

Obwohl die Debatte um die Auswirkungen von Softwarepatenten auf die Softwareentwicklung im

allgemeinen und Freie/Open Source Software (FOSS) im besonderen weiter geführt wird, existie-

ren keine dedizierten Studien, welche die Behauptungen der Befürworter und Gegner von Softwa-

repatenten systematisch und empirisch untersuchen. Die Fragestellung trägt aus zwei Gründen

Gewicht: Erstens, weil das unorthodoxe Innovationsmodell von FOSS einige Annahmen traditio-

neller Theorien Geistigen Eigentums in Frage stellt; Zweitens, weil die empirische Unterstützung

für eine generelle innovationsfördernde Wirkung von Patentierung bei weitem nicht überwälti-

gend ist – insbesondere in der proprietären Softwareentwicklung, wozu es einige wenige empiri-

sche Studien gibt.

In dieser Dissertation erweitere ich unser Verständnis davon, wie Softwarepatente das Inno-

vationsverhalten von Entwicklern Freier/Open Source Software beeinflussen, indem ich einen

neue theoretischen Erklärungsrahmen einführe, in welchem das Motivationsgefüge der FOSS-Ent-

wickler eine zentrale Rolle einnimmt. Ebenso präsentiere ich zwei empirische Analysen, die den

einzelnen Entwickler in den Vordergrund stellen. Aus methodischer Sicht werden neue Metriken

für das individuelle Innovationsverhalten und den von Softwarepatenten ausgehenden Druck

konstruiert, die – zusammen mit den aus dem Theorieteil abgeleiteten Hypothesen – mit Hilfe ei-

nes in einer Online-Umfrage neu erhobenen Datensatzes getestet werden.

Im theoretischen Teil analysiere ich detailliert, wie die sechszehn verschiedenen – aus der

Motivationsliteratur der FOSS-Forschung zusammengetragenen – Motivationsfaktoren auf die

Präsenz von Softwarepatenten reagieren können. Als Ergebnis dieser Analyse ist zu erwarten,

dass Softwarepatente eine verstärkende Wirkung auf extrinsische und eine abschwächende Wir-

kung auf intrinsische Motivationsfaktoren haben.

In der ersten empirischen Studie werden die Effekte von Softwarepatent-Präsenz auf ausge-

wählte, repräsentative Motivationsfaktoren untersucht. Dazu wird das Konstrukt ‚Softwarepa-

tent-Präsenz‘ eingeführt, welches nicht nur jurisdiktionale Elemente (rechtliche Verfügbarkeit

und Patentzwischenfälle) umfasst, sondern auch eine neue Metrik, die den unterschiedlichen Pa-

tentdruck in verschiedenen Software-Bereichen berücksichtigt.

14 Zusammenfassung

Keines der beiden Lager von Befürwortern und Gegnern findet empirische Unterstützung:

Weder beeinflussen Softwarepatente intrinsische Motivation negativ, wie von den Gegnern vor-

ausgesagt; noch beeinflussen sie extrinsische Motivation positiv, wie von Befürwortern vorausge-

sagt.

In der zweiten empirischen Studie wird die Analyse erweitert; nun werden die Auswirkun-

gen der Präsenz von Softwarepatenten auf das Motivationsgefüge und das individuelle Innovati-

onsverhalten der FOSS-Entwickler untersucht. Dazu wird eine neue Metrik eingeführt, welche

individuelle Code-Beiträge gemäss ihrer Innovationskraft ordnet, indem – grob gesprochen – zwi-

schen algorithmen- und wiederverwendungs-basierten Code-Beiträgen unterschieden wird. Die

Ausgangsüberlegung ist, dass algorithmen-basierte Beiträge – das Neuformulieren von Algorith-

men in einer Programmiersprache – einen stärkeren Innovationsgehalt besitzen als Beiträge, die

auf der Wiederverwendung von Softwarecode beruhen. Ausserhalb dieser Ordinalskala wird das

‚reverse-engineering‘ als eigenständiger Typus von Code-Beiträgen analysiert, weil es eine wichti-

ge Rolle in der FOSS-Welt spielt.

Ein zentrales Ergebnis ist, dass intrinsische Motivation tendentiell innovativere Code-Bei-

träge auslöst, während extrinsische Motivation mit weniger innovativen Code-Beiträgen korre-

liert. Die Präsenz von Softwarepatenten (gemessen anhand aller drei erwähnten Metriken)

scheint, ausser im Falle des Reverse-Engineering, keine signifikante Rolle zu spielen: Dieser Typus

an Code-Beiträgen korreliert jedoch mit einer stärkeren Präsenz von Softwarepatenten.

List of Abbreviations

AL1 Algorithm-based code contribution (coding known algorithms)

AL2 Algorithm-based code contribution (creating new algorithms)

COM Communication (software category on SourceForge)

CVS ‘Concurrent Versioning System’ (tool for software development)

DBS Database (software category on SourceForge)

DKT Desktop (software category on SourceForge)

EDU Education (software category on SourceForge)

FMP Frameworks and protocols (software category on SourceForge)

GME Games and entertainment (software category on SourceForge)

EDT Editors (software category on SourceForge)

EPC European Patent Convention

EPO European Patent Office (Munich)

FOSS Free/Open Source software

GNU ‘GNU is Not Unix’ (FOSS project for a free replacement of UNIX)

IP ‘Intellectual Property’ (umbrella term for copyright, patents, etc.)

LIB Reuse-based code contribution (linking libraries), variable

MIM Multimedia (software category on SourceForge)

NET Network (software category on SourceForge)

ODF ‘Open Document Format’ (open ISO standard for document formats)

OFB Office/Business (software category on SourceForge)

OOXML ‘Office Open XML’ (XML-based document standard by Microsoft)

R&D Research and Development

REV Reverse-engineering-based code contribution

ROW ‘Rest of world’

RU1 Reuse-based code contribution (with little code adaption)

RU2 Reuse-based code contribution (with much code adaption)

SCE Scientific/Engineering (a software category on SourceForge)

SEC Security (software category on SourceForge)

SF ‘SourceForge.net’ (popular FOSS portal)

SWD Software development tools (software category on SourceForge)

SWP Software patent

16 List of Abbreviations

SYS System software (software category on SourceForge)

TRIPS Trade-Related Aspects of Intellectual Property (annex to WTO agreement)

USPTO United States Patent and Trademark Office

WIPO World Intellectual Property Organization (a UN agency)

WTO World Trade Organization

Chapter I

Introduction

Abstract

Chapter I introduces the topic of the dissertation and presents the key findings, derived policy

recommendations, and some thoughts on limitations and future research. The first section intro-

duces the reader unfamiliar with the research field to the general debate of innovation in the dig-

ital age. It starts with a brief history of the legal protection of software that also describes the

basics about copyright and patent law. Then a more detailed presentation of the debate between

the ‘individual innovation’ camp and the ‘collective innovation’ camp is given using the example

of software patents and Free/Open Source software (FOSS), respectively. The two main research

questions addressed in this dissertation conclude the introduction.

The second section presents a summary of the findings. Theoretical findings are rooted in

the legal and motivational differences of the FOSS innovation model compared to the proprietary

software model. Under empirical findings the new metrics proposed to measure domain-specific

software patent pressure and innovation behavior at the individual level are presented first. They

are followed by the more substantive results concerning the correlations between motivational

setup and innovation behavior as well as software patent presence and innovation behavior.

Methodological findings present in some detail the choice of the unit of analysis, how the two

new metrics are motivated and constructed, and, finally, how data collection was organized to en-

sure high data quality.

Based on the findings, the third section offers a few policy recommendations. One key ad-

vice is to consider the correlation found between intrinsic motivation and higher levels of innova-

tion behavior compared to extrinsic motivation and lower levels of innovation behavior in future

policy decisions. FOSS is not just another ‘industry sector’ where patents as instruments function

just as expected. In addition, the characteristics of FOSS (public-good-like availability of software)

give it a potential for social benefit that the proprietary software sector cannot offer.

The final section briefly discusses some limitations of the dissertation and related ideas for

future research. The main challenges were the measurement of software patent presence in a

non-trivial yet simple way and the sampling bias introduced by focusing on ‘alive’ FOSS projects

for the survey. Derived from these challenges are the ideas for future research: to continue work-

ing on metrics for software patent presence and dedicate studies to ‘dead’ projects to identify

causes of death; and, finally, to figure out why FOSS developers do reverse-engineering!

20 1. Innovation and the digital age

1. Innovation and the digital age

At first glance, the research questions investigated in this dissertation appear to cover a rather

narrow field, of interest only to software experts, legal scholars, innovation economists, and digi-

tal freedom activists – and maybe not even all of them. Yet, the arguments raised and results dis-

cussed here are only examples in a much wider debate about the sources of innovation and

originality in works of the human mind and their adequate level of legal protection.

These questions were answered a few hundred years ago; with ‘copyright’, ‘patents’, and

other types of ‘intellectual property’ (Menell 2000). The digital age, however, requires that we ad-

dress these questions anew. Over the last decades, we have all experienced, how personal comput-

ers have dramatically accelerated the speed with which we can create and modify works of the

mind. But we have only just begun to see the fundamental change and potential, the Internet is

bringing to individual innovation processes. On the downside, we are debating software patents

and longer copyright for scientific and other literary works as well as unauthorized sharing of

music and movies; on the plus side we are contemplating the potential of free/open source soft-

ware, the open access paradigm to scientific knowledge, or Wikipedia, openstreetmap, and many

other non-commercial collective efforts to produce useful knowledge that were impossible before

networked digital technology (Benkler 2006). The research in this dissertation connects two of the

examples above. Software patents, the symbol for the traditional understanding of innovation as

the individual genius inventor who needs protection, are on one side; Free/Open Source software

(FOSS), showing how innovation can also happen by applying legal protection instruments in any

but the traditional way, are on the other side.

This introductory section provides a contextual background to the research presented in

this dissertation, because its interdisciplinary nature brings technical and legal complexity with

it. It starts by briefly summarizing the historical origins of software protection through copyright

and patents. Then, the patenting development is contrasted with the emergence of free/open

source software as the two symbols for individual and collective paradigms of innovation. The

section concludes by formulating the research questions addressed in this dissertation. The fol-

lowing section highlights the main theoretical and empirical findings of the dissertation. Policy

recommendations are suggested in the section thereafter. The final section addresses some of the

limitations encountered during the whole research project and also provides ideas for future re-

search.

1. Innovation and the digital age 21

1.1 The legal protection of software

Does innovation only require an individual genius or is a larger group of humans needed to come

up with something new? The question of whether innovation is an individual or a collective

process is not only an academic, but also a very practical one. The traditional systems of patents

and copyright are rooted in the individual paradigm (Lévěque and Ménière 2004) and have diffi-

culties in accommodating new forms of collective innovation and authorship. However, net-

worked digital technology enables exactly such collective innovation with FOSS being the

pioneering example (Lessig 2002; Benkler 2006; see also Suber (1998) for a philosophical introduc-

tion to the concept of software).

Why are patents (and copyright) designed the way they are? The reoccurring key argument

is that the creation of new knowledge is costly and can very easily be appropriated by a free-

rider.1 To protect the inventor (or author in copyright terms), he2 is handed an exclusive, time-

bound right excluding everybody else from the commercial exploitation of his invention (or

work). The only way to access the invention or work is by paying for a license (lat. ‘permission’).

Today, we have license fees for TV shows, music performances, sports training programs, images,

videos, and all sorts of technical inventions.

Despite this common basis, there are two fundamental differences between copyright and

patents, which are explained briefly as they both are relevant to the discussion of software. Copy-

right protects the form/expression of an idea or concept. Einstein’s books on the theory of rela-

tivity are copyrighted, but the theory itself (the idea) is not. Therefore, anyone could write a book

on the theory of relativity and compete on the book-shelf. Patents work in the exact opposite

way: they protect the underlying idea/concept and thereby all possible forms covered by this

idea. Therefore, if I patent a vehicle with two wheels and a chain propulsion mechanism powered

by a human, I have patented a bicycle. But if I leave the number of wheels (or humans!) unspeci-

fied, my patent also covers tricycles, tandems, etc. The scope of a patent is defined by the patent

claims it contains and usually the patent applicant is interested in obtaining broad patent protec-

tion.

1 Easy copying is usually considered a problem, especially in ‘developed’ knowledge economies. Opinions, however,
may change over time. Gerster (2001:6) provides the interesting historical example of Switzerland’s chemical
industry in the 19th century, whose success stemmed from not having a patent law and hence no legal basis for
patents that rivaling Germany could use. Switzerland was accused of being a ‘pirate state’. Yet, the industry
prevented every attempt of legislating a patent law – quite contrary to the standpoint of today’s Swiss chemical
industry, as Gerster points out (Ibid:22). Boldrin and Levine (2008, chapter 8) give a more systematic analysis of
Switzerland’s case.

2 Throughout this dissertation “he” refers to both genders.

22 1. Innovation and the digital age

The second difference between copyright and patents can be derived from the first differ-

ence. Patents require an explicit registering and granting process, during which the application

has to pass a ‘patentability test’. Patents costs money to obtain. In contrast, copyright is implicit

and you get it for free the moment you create an original work, such as a dissertation.

It is interesting to see how the question of legal protection has been answered differently at

various times in the young history of software (Grassmuck 2004, chapter “Geschichte der Soft-

ware-Entwicklung”). In the first phase (1960s), the computer market consisted of huge main-

frames that were sold with software included as an “instruction manual”. Most of the software

needed was written by the users themselves – and widely shared. Software was not considered a

product by itself and no separate software market existed. In the early 1970s, the US Department

of Justice brought pressure to break up IBM because of its monopolistic position. To avoid the

break-up, IBM decided to unbundle its hardware- and software-business, therewith creating the

nucleus of today’s software industry. During that time, many of the large and now well-known

software companies were created (Microsoft 1975; Apple 1976; Oracle 1977). It is remarkable to

note that the software industry got established without software having any legal protection for

several more years.

The second phase started with the gradual adoption of the copyright system for software in

more and more countries.3 Yet, this decision was neither obvious nor the result of a general inter-

national understanding of the matter. In fact, in the late 1970s, the World Intellectual Property

Organization (WIPO) was working on a new so-called sui generis (lat. ‘of its own kind’) protection

mechanism explicitly designed to accommodate the specific characteristics of software because

copyright and patents were considered unsuitable for the protection of software. The US, how-

ever, created a fait accompli in 1980 by deciding that software should fall under copyright law.

Other countries were persuaded by the US to also adopt copyright as the protection mechanism

of choice (Hilty and Geiger 2005). The following two decades the software industry skyrocketed,

frequently creating monopolistic/oligopolistic market constellations that gave rise to anti-trust

law suits. (A discussion why software may have an inherent propensity to create monopolistic

market structures – and how copyright and patents may reinforce that – can be found in the first

chapter.)

3 See Scotchmer (2004) for a general, yet compact introduction to the political economy of the international
intellectual property (IP) system, including a brief history of the international IP system.

1. Innovation and the digital age 23

1.2 The software patent debate and the ‘promise’ of FOSS

A third phase in software history can be identified with the rise of patent protection for software.

The origins lie in the US, where several court decisions beginning in the 1980s started to dilute

the hitherto self-understood exclusion of software from patentability (Jaffe 2000), hence called

the ‘software patent experiment’ by Bessen and Hunt (2004). Consequently, software in the US is

copyrighted and can be patented at the same time, resulting in complex legal analyses and ever

more law suits (ibid.). The EU was following close on the heels of the US with a directive proposal

on the ‘patentability of computer-implemented inventions’ that the European Commission intro-

duced in 2002. After a long and heavy debate with strong lobbying from software patent propo-

nents and opponents, the proposal was finally rejected in second reading by the EU parliament in

2005. Thus, software in the EU cannot be patented de jure, but de facto several thousand patents

have been granted that qualify as software patents.

In a fourth phase, the 1980s saw a renaissance of the original idea of unprotected software

at just the time the “proprietary” software industry, whose business model fundamentally relies

on copyright and trade secrets (keeping the modifiable source code secret), was quickly expand-

ing. The ‘free software movement’ has been promoting ‘software freedom’ ever since, meaning

that every user should have the freedom to run, modify, copy, and distribute software as he

pleases (Free Software Foundation 2006; see Stallman (1984) for the philosophical motivation of

the ‘GNU project’ that was aimed at building a free replacement to the UNIX operating system

and constitutes a big part of most Linux versions today). Interestingly, free software is made ‘free’

by applying the same copyright mechanism, but for a whole different purpose: instead of exclu-

sion, the typical aim of copyright, the aim is inclusion by enabling everyone to participate.

A technical precondition for modifications is that the program is available in its source code

form. In the early 1990s, ‘Linux’ was created and quickly completed the GNU system, leading to a

fully equipped free operating system. To promote it and to remove the political connotation of

“freedom”, the term “open source software” (Open Source Initiative 2006) was introduced in the

late 1990s to make the idea more appealing to business. Therefore, throughout this dissertation I

use the acronym FOSS, standing for ‘Free/Open Source software’.

Linux came along just at the right time to take advantage of the emerging Internet in the

early 1990s. The collaboration and sharing that for much of the GNU project had taken place by

sending magnetic types or using telephone lines to send packages of code in a one-to-one ap-

24 1. Innovation and the digital age

proach, was given a boost through the possibilities offered by the Internet: Massive sharing and

exchange of program code has been made possible at very low cost, on a global scale. As every de-

veloper contributes small pieces to the mosaic, every developer and even non-developers benefit

from free access to large and constantly improved software systems. FOSS developers are driven

by a broad spectrum of motivations (Krishnamurthy 2006) and many, though by far not all, con-

tribute code without monetary compensation. This model is shaking the established software in-

dustry and directly undermining its business model of selling copyright licenses to allow

customers to use their software.

1.3 Research questions

The dissertation addresses two developments. The first is the concept of patenting software that

transfers the arguments of patent proponents to the software realm: Innovation in software (as in

other fields) happens if individual genius creators have enough monetary incentive to invent. The

second is the FOSS phenomenon that is characterized by collective innovation, shared ownership

(using copyright) and often volunteer contributions of many developers around the world.

The dissertation is located at the intersection of these two developments and connects

them theoretically by raising the following research questions:

Question 1: How does the presence of software patents affect the motivational setup of FOSS

developers?

Motivational setup is one of the most investigated fields in FOSS research. As will be shown

in the first chapter, the spectrum of motivational factors is broad and includes monetary and

other factors. It is important to analyze which of these factors can (theoretically) be affected by

software patents in order to be able to formulate hypotheses about the effect.

Question 2: How does the presence of software patents and the motivational setup together

affect the innovation behavior of FOSS developers?

Software patenting is one of the least investigated fields in FOSS research. Although motiva-

tional setup is important in the FOSS system, the ultimate performance benchmark for patents is

innovation. Do they affect the innovation behavior of FOSS developers and if yes, in which ways?

1. Innovation and the digital age 25

The questions are further developed into sets of testable hypotheses relating software

patent presence and motivational setup (chapter III) and software patent presence and innova-

tion behavior (chapter IV).

In addition, as this study is the first to address these specific questions and link theories of

patenting and FOSS motivation, some new concepts and measurements had to be developed that

will also be described in the next section.

26 2. Overview of main findings

2. Overview of main findings

2.1 Theoretical findings

Theoretical findings can be summarized by legal and motivational differences in the innovation

models of the FOSS and the proprietary software system.

Legal differences in the innovation model. Proprietary software and FOSS development rely on

very different innovation models. The former relies on very restrictive copyright practices and,

depending on the jurisdiction, also on patenting functional features of software. The FOSS com-

munity uses a permissive form of copyright protection, which is designed mainly to prevent pri-

vate appropriation of FOSS, and patents are usually an anathema. Patents could, in principle, also

be obtained on FOSS, but (self-)selected community developers are, by-and-large, either not inter-

ested in or openly hostile to patenting of software. This has led to the hypothesis that patents

that are sought and/or granted on proprietary software have either no effect or a negative effect

on FOSS development.

Motivational differences in the innovation model. Particularly the broad spectrum of motiva-

tional factors has made the theoretical analysis of software patent effects a tedious undertaking.

The first model presented in chapter II specified potential effects of patents on extrinsic and in-

trinsic motivations of FOSS developers on a still abstract level that was further detailed for the

empirical studies. The argument chains for both claims, that of FOSS advocates that opportunities

for software patenting have negative effects on FOSS and that of software patent proponents that

patents will help foster innovation in the FOSS field, too, have been difficult to construct. One re-

sult, however, is that traditional utilitarian patent theories that are based on incentives, rewards,

and disclosure seem to trigger primarily extrinsic motivational factors – not unexpectedly, as

patents are designed with extrinsic motivation in mind. Yet, these extrinsic factors are of less im-

portance to FOSS developers.

As can be seen below, empirical findings also suggest that intrinsic motivation affects the

innovation behavior of FOSS developers in a different way compared to extrinsic motivation.

2. Overview of main findings 27

2.2 Empirical f indings

The empirical findings are divided into three groups: first, results concerning software patent

presence; second, results connecting software patent presence and motivation setup; third, re-

sults connecting software patent presence, motivational setup, and innovation behavior. The sec-

tion concludes by interpreting the results in a comparative way.

Software patent presence. Although the general approach of applying a broad concept of soft-

ware patent presence and using different metrics is still useful, most of the metrics used have

shown little predictive power. One clear result, however, is that software patent incidents are a

very rare event: Only 2.7% of the respondents reported such an incident.

The newly constructed patent pressure index (used in chapter III and IV) proved useful, as it

clearly shows the differences in perceived patent pressure between different software domains.

The fourteen categories of SourceForge that were also used in the survey (see the list of abbrevia-

tions for all explanations) indicate three groupings: few domains such as multimedia (MIM) and

formats and protocols (FMP) show a high patent pressure, and few domains such as education

(EDU) and text editors (EDT) show nearly no pressure, which leaves a rather large group in the

middle with only slight variation in the patent pressure level.

Motivational setup. Software patents do not appear to show a strong effect on FOSS developer

motivation in general. This is true for both camps in the software patent debate: the presence of

software patents has no positive effects on monetary and skills-related motivation, as argued by

proponents; it also does not show negative effects on joy- and self-expression-related motivation,

as argued by opponents. In contrast and counter-intuitively, joy-related motivation seems to be

positively influenced by the presence of software patents.

Innovation behavior. Software patent presence per se has no observable empirical effect on

innovation behavior, be it positive or negative, with the exception of reverse-engineering, which

seems to be more frequent when software patents are present. One possible explanation is that

FOSS developers who are motivated by the philosophical idea of ‘free software’ choose fields in

which software patents are strongly present – exactly to provide free alternatives that are also

‘freed’ from patent claims.

The newly introduced innovation metric – code contribution types – allows the distinction

between more (algorithm-based) and less (reuse-based) innovative code contributions. In the ab-

28 2. Overview of main findings

sence of established systemic metrics, it is proposed to focus on the individual level when mea-

suring FOSS innovation. Outside the algorithm/reuse logic, reverse-engineering as a special con-

tribution type that is relevant to the FOSS community has been included as well.

Concerning the effects of motivation on innovation behavior, strong support can be re-

ported for the following result: Above-average intrinsic motivation (joy and self-expression in

code-writing) increases the odds for more algorithm-based code contributions, while above-aver-

age extrinsic (monetary and skills-related) motivation seems to decrease the odds. In connection

with reuse-based contributions, the opposite relationship finds moderate support as well: Above-

average extrinsic motivation increases the odds for reuse-based contributions, while above-aver-

age intrinsic motivation decreases the odds. The third result relates to reverse-engineering: None

of the five motivational factors included in the analysis seem to explain why FOSS developers en-

gage in reverse-engineering activities.

Concerning the effects of software patent presence on innovation behavior, the empirical

results are less conclusive. Neither SWP opponents nor proponents will find support for their po-

sitions that the presence of SWP decreases or increases the odds for innovative, algorithm-based

contributions by FOSS developers. None of the three metrics used to capture SWP presence lends

sufficient support to either side – be it positive or negative. Support is found, however, for the hy-

pothesis related to reverse-engineering: stronger SWP presence attracts reverse-engineering-

based contributions by FOSS developers.

2.3 Methodological findings

From a methodological point of view, several new approaches were taken: the individual instead

of the project as unit of analysis; a new metric for individual innovation behavior; measuring soft-

ware patent presence in new ways; and constructing a new data-set from a controlled survey.

Unit of analysis. The individual project leader was chosen as unit of analysis. The argument is

that the leader of a FOSS project has the best overview of interferences caused by software

patents, and because it was (or still is) a developer himself who is strongly attached to the project,

he is the best source for information on motivation and software patent situation.

Measuring innovation behavior. A new metric for measuring innovation behavior on the indi-

vidual level was developed and used for the empirical analysis. Based on the thought that differ-

2. Overview of main findings 29

ent levels of innovativeness should be reflected by the type of code contributions FOSS developers

make, an ordinal scale was developed that captures 5 different levels of code contribution types.

They are roughly separated by the idea that writing new algorithms (two levels) is more innova-

tive than reusing existing code pieces (three levels). A sixth type of code contribution – reverse

engineering – was also included in the analysis but was not part of the ordinal scale because it is

very different from the other five types of contributions: reverse-engineering replicates function-

ality of existing programs without having access to the source code.

Measuring software patent presence. Measuring the presence of software patents proved to be

rather difficult. Aside from the legal availability of software patents that depends on the jurisdic-

tion, a second measure depending on the software domain was introduced. Anecdotal evidence

shows that different software domains (e.g., multimedia or office programs) are differently af-

fected by software patents. The ‘wisdom of the crowds’ approach was used to generate a new met-

ric for this pressure – by asking the sampled respondents for their assessments. Together with a

simple measure for software patent incidents, a range of three metrics was available to measure

software patent presence: legal availability of software patent in a jurisdiction, incidents, and do-

main-specific patent pressure. Measuring software patent presence through different metrics is a

worthwhile approach to follow in the future, as the construct of a dichotomous ‘SWP Law’ vari-

able proved to be too coarse as a predictor. Further research is needed, however, in finding and re-

fining jurisdictional and non-jurisdictional measures.

Data collection. For empirical testing a new data-set was created from an online survey in

which 2441 project leaders of FOSS projects responded with information about their motivations,

code contributions, and contacts the project had with software patents during the two-year pe-

riod from August 2005 until August 2007. Special care has been taken to avoid self-selection of re-

spondents, a typical weakness of previous FOSS developer surveys that used open invitations on

mailing lists to attract participants. Instead, a sampling frame of all FOSS projects hosted on

SourceForge in August 2006, which had an ‘alive’ status according to the metric of English and

Schweik (2007), was created. A simple random sample of 11,000 was drawn and contacted in an

automatic way. I expect that personalized invitations, a separate lottery drawing, and the impos-

sibility of self-registration greatly reduced self-selection bias in that regard. Yet, only allowing

alive projects to be randomly selected again introduced a sampling bias, which will be addressed

in the research design sections of chapters III and IV.

30 3. Policy recommendations

3. Policy recommendations

This debate is relevant not only from an academic point of view, but also for regulators who are

trying to build effective innovation systems without putting a particular innovation model at a

disadvantage.

One key result is that intrinsic motivation leads to comparably higher levels of innovation

behavior, while lower levels of innovation behavior need extrinsic incentives. An important find-

ing that, if shown reliable, gives a clear direction for organizations and policy-makers who want

to foster FOSS innovation. Intrinsic motivation appears to not only keep the FOSS system alive

and kicking, but more of it also seems to lead to more innovative contributions. Simply put: ‘Pro-

gramming challenging, new stuff is fun’. On the other hand, it appears that reuse-based contribu-

tions with a lower innovation level – often needed for ‘the last mile’ before a program is end-user-

ready, an area where FOSS suffers – can be supported by offering extrinsic incentives.

At the same time, the recommendation is to proceed carefully in this complex and unex-

plored field, as there is currently no empirical support for either the software patent proponents’

nor the opponents’ position. The results from this study suggest that US-based FOSS developers

have gained no advantages from the strong presence of SWP in their country. Therefore, if the EU

is planning to introduce a similar SWP policy (as it has tried in the past), it should provide com-

pelling evidence of how the FOSS community’s motivational setup – an important source for its

performance – would be affected with regard to the key result mentioned above.

For policy-makers in innovation and intellectual property policy fields the challenges are (a)

to decide whether FOSS deserves a special case when debating software patents because of its

unique way of creating software for the common good; (b) to continue treading carefully in the

field of software patents before jumping to legislation. The FOSS market has reached a size where

harm cannot be considered collateral damage as it may have in the past. Although the results

have not shown systematic harm to the FOSS communities, there is still no empirical support that

the traditional arguments in favor of patents do hold for the FOSS system – or software in general,

as some continue to argue.

4. Limitations and future research 31

4. Limitations and future research

As with most initial studies in a new field, there are some limitations to be acknowledged, which

should be addressed in future research. First, measuring the software patent situation in a sys-

tematic, quantitative way was a considerable challenge. The crude measure for SWP law applied

in this study has most probably obscured some geographical and/or cultural effects, leading to bi-

ased results and lowered predictive power.

Second, much effort was made to produce a sample of alive FOSS projects that would re-

spond to a survey call. Yet, this effort in itself has led to a sample bias. A future study looking

specifically at why dead FOSS projects actually died – or new ones were never born – would be an

important addition to these results. One starting point is to include all the ‘dead’ projects omitted

from this study in a new survey. The response rate may be quite low, but an additional well-de-

signed series of case studies could still deliver a richer picture of the situation than we have today.

Third, taking the individual developer as unit of analysis ignores explanatory factors only

visible on project level that can also influence innovation behavior, such as project size and orga-

nizational structure. The larger a project is, the more elaborate its organization structure be-

comes, the more contributors tend to specialize in their contributions – up to a point where

dedicated roles may emerge. Such a division of labor is putting a systematic bias on the measure-

ment of individual innovation behavior.

Fourth, the descriptive results about individual innovation behavior (e.g., FIGURE 1 on page

128) and the number of actual software patent incidents (e.g., TABLE 3 on page 90) indicate no

clear differences between jurisdictions with regard to software patent presence. That raises the

question whether there is de facto any large difference with regard to software patents? In other

words, the possibility that software patent presence has no observable effect on the motivation

and innovation behavior of FOSS developers is not yet completely ruled out. Further research is

needed here.

Fifth, the representativity of the sample can be debated as none of the large FOSS projects

was included and hence none of the projects that are backed by corporations. Both aspects affect

the motivation and innovation setup of participating developers. New factors like project size,

governance structure on project level, as well as firm level factors like business model, their posi-

tion on software patenting would need to be considered.

32 4. Limitations and future research

For researchers, the challenges raised in this study are (a) to develop an easy-to use yet non-

trivial metric to measure the presence of software patents empirically; (b) to quantify their effect

on the FOSS system, helping policy-makers make better-informed decisions. For future research,

it would be useful to verify some of the findings using other data sources. CVS logs have been

used in the past for code contribution analysis. A method to classify ‘real’ code into the code con-

tribution types proposed in this work would provide a powerful mechanism for replication of the

results. In any case, the challenge to investigate the effects of software patents on innovation be-

havior of FOSS developers continues to be relevant because only if they foster innovation, should

they be present in the FOSS system. With the US starting to rethink its software patent path and

the EU still undecided on whether to follow in some way or choosing its own path, the timing may

be just right for more research in this area.

 What still remains opaque from a theoretical and empirical point of view is the question of

why developers engage in reverse engineering. After all, it is an important activity in the FOSS

world. A broader analysis of motivational factors is needed here and a dedicated study focusing

on projects with a high ratio of reverse-engineering may be adequate. Furthermore, this research

is highly relevant, too. The ODF-OOXML controversy is but one example of the rising issue of

‘patents in (open) standards’ – a natural neighbor to the ‘patents in (open) software’ debate.

5. References

Benkler, Y. (2006). The Wealth of Networks. New Haven and London: Yale University Press.

Bessen, J., Hunt, R. (2004). The Software Patent Experiment. In OECD (Ed.), Patents, Innovation and Economic
Performance (pp. 247-263). Paris: OECD Publishing.

English, R., Schweik, C.M. (2007). Identifying Success and Tragedy of FLOSS Commons: A Preliminary
Classification of Sourceforge.net Projects. UPGRADE, (IX)6, 54-59.

Free Software Foundation (2006). Free Software Definition. Retrieved 22.04.06 from
www.fsf.org/licensing/essays/free-sw.html.

Grassmuck, V. (2004). Freie Software – Zwischen Privat- und Gemeineigentum, 2nd edition. Bonn:
Bundeszentrale für Politische Bildung.

Hilty, R.M., Geiger, C. (2005). Patenting Software? A Judicial and Socio-Economic Analysis. International
Review of Intellectual Property and Competition Law, (36)6, 615-754.

Jaffe, A. (2000). The U.S. patent system in transition: policy innovation and the innovation process.
Research Policy, (29), 531-557.

Krishnamurthy, S. (2006). On the intrinsic and extrinsic motivation of FLOSS developers. Knowledge,
Technology, & Policy, (18)4, 17-39.

Lessig, L. (2002). The Future of Ideas – The Fate of the Commons in a connected World. New York: Vintage.

Lévěque, F., Ménière, Y. (2004). The Economics of Patents and Copyright. Berkeley: Berkeley Electronic Press.

Menell, P.S. (2000). Intellectual Property: General Theories. In Bouckaert, B., De Geest, G. (Eds.),
Encyclopedia of Law and Economics (pp. 129-187). Cheltenham: Edward Elgar.

Open Source Initiative (2006). Open Source Definition. Retrieved 22.04.06 from
http://www.opensource.org/docs/definition.php.

Stallman, R.M. (1984). The GNU Manifesto. Retrieved 22.06.206 from www.gnu.org/gnu/manifesto.html.

Suber, P. (1998). What is Software?. Journal of Speculative Philosophy, (2)2, 89-119.

CHAPTER II

Hot Debate about Chilling Effects: Do Software
Patents Hamper FOSS Development?

Co-authored with Thomas Bernauer

Earlier versions of this paper were presented at the ’Frontiers of Regulation’ CPR/CRI conference 2006 in Bath

(UK), the Strategic Management and Innovation seminar at ETH Zurich, and the Oxford Internet Institute’s

Summer Doctoral Programe 2005 in Beijing (PRC). We thank all participants for helpful comments.

Abstract

The innovation model in the free/open source software (FOSS) domain differs fundamentally

from the innovation model in the proprietary software domain. Many FOSS advocates claim that

opportunities for software patenting, which have recently been expanded in some countries and

are used primarily in the proprietary software realm, have negative effects on FOSS. This paper

reviews the available evidence and concludes that we know surprisingly little about the empirical

relevance of this claim. It argues that, if the claim holds true, negative effects of software patent-

ing should be observable at the level of individual FOSS developers. We outline an explanatory

model and research strategy to shed light on this question. The model specifies potential effects

of patents on extrinsic and intrinsic motivations of FOSS developers, assuming that such motiva-

tions are necessary conditions for participation in FOSS projects and ultimately also innovation.

Empirical testing of this model will have to be based on surveys administered to random samples

of FOSS developers from different jurisdictions (with variation in software patent availability)

and different domains of FOSS activity (with variation in “patent exposure”).

38 1. Introduction

1. Introduction

“The dialectic of intellectual property rights is driven by the interaction of three conceptions; a pragmatic or economic
point of view, a view that focuses on the property rights of creators, and a view that focuses on the uncircumscribed nature

of ideas and the inherently communal nature of the creative process. The first point of view is the typical ideology of
legislators, the second that of authors and publishers, and the third that of users.” Mitchell (2005)

Computer software has over the past few decades become an ubiquitous and indispensable re-

source in all except the most impoverished economies. Two contrary developments have, since

the 1990s, turned software development into a delicate subject for innovation policy. The first de-

velopment is the tendency to extend and deepen the legal protection of software and other digital

artifacts through copyright (Lessig, 2002) and patent policies (Bessen and Meurer, 2008) at na-

tional and international levels.4 The intention of such policies is that temporary monopolies gen-

erated by patents (and copyrights) will allow innovators to appropriate the (monetary) benefits of

their respective innovation. Conversely, the assumption is that in the absence of these monopo-

lies, innovations would create excessive positive externalities (benefits primarily to actors other

than the innovator) that would discourage investment in innovative activities.

The second development is the emergence and impressive growth of Free/Open Source

Software (FOSS).5 Viewed as an innovation system, FOSS has distinct characteristics that differ

fundamentally from the common understanding of how software is produced and distributed: it is

characterized by open access to and shared ownership of software code instead of proprietary

code that is locked away. Most projects are further characterized by decentralized self-gover-

nance instead of a strict command-and-control hierarchy. They are often driven by many volun-

teer developers who maintain and expand the code base – instead of employees directed and paid

by a firm. Larger projects are usually more tightly organized and/or centralized and several firms

employ developers to work on FOSS (we return to this issue further).

Critics have attacked recent efforts to enhance opportunities for software patenting from

two angles. Some argue that commercial software innovation differs from innovation activities in

non-digital areas, and that software patents are at best inefficient and potentially even protec-

4 On software patenting in the USA see Jaffe (2000). For the EU, see Haunss and Kohlmorgen (n.d.) and
http://ec.europa.eu/internal_market/copyright/documents/documents_en.htm (accessed on 15.10.2008). Efforts
to introduce stronger legal protection are also manifest in international treaties such as the Trade-related Aspects
of Intellectual Property Rights (TRIPS) annex to the WTO agreement or the World Intellectual Property
Organization (WIPO) Copyright Treaty.

5 Besides the acronym FOSS, we use the two primary terms interchangeably, although open source (Open Source
Initiative, 2006) usually stresses more the innovation system aspect, while free software (Free Software
Foundation, 2006) stresses more the property rights perspective. Klang (2004) provides a detailed comparison.

1. Introduction 39

tionist and obstacles to innovation. Other critics have pointed to “collateral damage” in the sense

that patents on proprietary software could hamper innovation in the FOSS area (Free Software

Foundation, 2008). While research on the first type of criticism has produced some, albeit still

contested, results there is very little research on the second type of criticism. In view of the fact

that a rapidly increasing number of companies, governments, non-profit organizations, and other

actors are using FOSS6 – examples include the Linux system, the OpenOffice.org suite and the Fire-

fox browser– the need to fill this research gap is pressing.

The existing literature offers some insights into the determinants of FOSS developers’ moti-

vations (Krishnamurthy, 2006; Lerner and Tirole, 2002) and also the potential effects of software

patenting on FOSS (Bessen and Hunt, 2007; Blind et al., 2005; Hoppen et al. 2003). However, to ex-

amine the effects of patenting on innovation in the FOSS domain we need to connect hitherto

separate parts of the literature, particularly those on patents and on motivations. We submit that

the most useful approach is to construct an explanation that accounts for individual FOSS devel-

opers’ motivation, and to assess the effect of patents in that framework. The basic hypothesis to

be tested is that, controlling for other factors that may influence the motivation of FOSS develop-

ers to engage in software innovation, patents have a negative effect.

The paper is structured as follows. We start by discussing the issue of patenting in tradi-

tional industries and the proprietary software industry. The following part examines the principal

characteristics of FOSS in comparison to proprietary software, with an emphasis on the role of

copyrights and patents and the underlying innovation model. We then outline three potential ap-

proaches to studying the effects of software patents on FOSS and focus on the third approach in

the remainder of the paper. This approach illuminates whether participation in FOSS projects is

negatively affected by patents. Building on the existing literature we outline an explanatory

model that accounts for individual FOSS developers’ motivations and place software patent avail-

ability and pressure in that model. The paper ends with suggestions for how the empirical rele-

vance of the model and its hypotheses could be tested.

6 See also European Information Technology Observatory (2004:128), Wheeler (2007), UNCTAD (2003), and OSOR
(2008). Academic interest in the topic has increased as well. The new International Journal of Open Source
Software & Processes will be launched in 2009. In 2003, the journal Research Policy published a special issue on
FOSS (von Hippel and von Krogh, 2003b).

40 2. Do Patents Promote Innovation?

2. Do Patents Promote Innovation?

The characteristics of innovation processes differ strongly between traditional industries that

produce physical goods and the software industry, which produces digital goods. These differ-

ences have important implications for arguments on the role of patents in promoting innovation.

2.1 Non-digital industries

“If we did not have a patent system, it would be irresponsible, on the basis of our present knowledge of its economic
consequences, to recommend instituting one. But since we have had a patent system for a long time, it would be

irresponsible, based on our present knowledge, to recommend abolishing it.” Machlup (1958)

A patent is a set of exclusive rights granted by the state to an inventor for a limited period of time

(Scotchmer, 2004, ch. 3). It provides the right to prevent others from making, using, selling, offer-

ing for sale, or importing the patented invention. An idea is patentable if it is an invention. To

qualify as such it has to be new, non-obvious, and suitable for industrial application. Once a

patent is granted, all implementations require permission of the patent-holder. In return, the

patent-holder has to disclose the invention to the public, so that skilled persons can replicate it.

Studying the patent controversy in the mid-19th century, Machlup and Penrose (1950) out-

lined a typology of justifications for patents that is still widely accepted today (see also Fisher,

2005; Mazzoleni and Nelson, 2004; van Dijk, 1994).7 The first justification, reward theory, holds that

an inventor deserves compensation and reward for his up-front investment and risk, proportional

to the usefulness of the invention to society. The latter relates to the extent to which the inven-

tion allows social/economic actors to perform tasks better or satisfy needs more effectively

and/or at lower cost. The second justification, incentive theory, is “probably the most quoted argu-

ment in favour of patents” (Dutton, 1984:20). It claims that patents promote innovation because,

by preventing imitation, they motivate the individual to invent and commercialize inventions. In

other words, patents increase the profit of the inventor and discourage competitors from free-

riding. Because useful inventions increase society’s welfare8 and patents are inexpensive incentive

providers, patents should be used to stimulate innovation (Fisher, 2005:14; Mazzoleni and Nelson,

2004; Merges, 1997; Campbell-Kelly and Valduriez, 2005). The third justification, exchange theory,

argues that patents offer a fair balance between the public’s and the inventor’s interests. They en-

7 We skip natural rights theory, one of the justifications listed by Machlup and Penrose, which uses a moral
argument based on Lockean labor theory (Locke, 1690, Sect. 27; Drahos, 1996:43), and focus on economic
justifications that focus on free-riding and preventing others from exploiting an invention without compensation.

8 Menell (2000:134) offers an interesting empirical analysis of the social value of innovation in the 19th century.

2. Do Patents Promote Innovation? 41

courage innovation and make the invention publicly available by requiring disclosure and moti-

vating the inventor to commercialize the invention.

All three justifications argue hat patents motivate economic actors to innovate in ways that

are also useful to society. Critics have persistently claimed, however, that patents are unnecessary.

For example, they have noted that other types of rewards for innovators exist, for instance awards

by private or public institutions (Menell, 2000). They have argued that inventions can take place

independently, making disclosure likely because keeping an invention a shared secret without

knowing from whom is difficult. They have also pointed out that exploiting an invention without

disclosing it is hardly possible (van Dijk, 1994).

Empirical research on whether patents promote innovation has produced mixed results.

Patents appear to be most effective in promoting innovation in the drugs, chemical, and biotech

industry, but seem to have little or no effect on innovation in other industries (Sakakibara and

Branstetter, 2004; Cohen et al., 2000; Arora et al., 2003), particularly when compared to other

strategies and mechanisms designed to commercially exploit inventions (Sattler, 2003; Arundel,

2001; Harabi, 1995; Bessen and Hunt, 2004a; Mazzoleni and Nelson, 2004).

2.2 Proprietary software industry

“Information is information, not matter or energy.” Wiener (1961)

The fact that software is digital has legal and economic implications. Software developers write so

called source code. This code can be read by humans, but not by computers. Source code is trans-

lated into object code via compiler software. The end user only needs the object code, which can

be read by computers but not humans, whereas software developers who seek to improve or mod-

ify software require access to the source code. At the source code level, it is often possible to

achieve a specific program functionality via different solutions. This possibility is important for

the discussion of legal protection of software. All countries that have joined the Berne Convention

protect source code through copyright law. This implies that the copyright holder of a given piece

of source code can decide how the software can be used. Owners of proprietary software normally

allow customers to use the software but reserve all other rights on the software (“all rights re-

served”). Consequently, end users of proprietary software have access to the object code but not

the source code. In some jurisdictions, notably the USA and Japan, proprietary software develop-

ers can – in addition to copyright protection – also obtain patent protection on the functionality

42 2. Do Patents Promote Innovation?

of software as implemented in its object code. That is, software developers in these countries can

protect the source code through copyright and, in addition, functionalities in the object code

through patents.

The remainder of this section discusses the principal characteristics of the proprietary soft-

ware industry and the underlying innovation model. Based on this discussion we examine the role

of patents in the subsequent section.

Software has pronounced public good characteristics because it is to a large degree non-ri-

val and excluding people from using it is costly (Hess and Ostrom, 2003:119). Non-rivalry exists to

the extent one person’s use of a program does not limit or reduce the utility of this program to

another person. In most cases the other person can simply copy the program, and the costs of do-

ing so are usually small. People can only be excluded from using a particular software if physical

access is barred. Because software is an experience good exclusion can be counterproductive from

the software producer’s viewpoint: programs that are very difficult to get access to and use are of

litte value. Exclusion also cuts against network effects (see also below), which are very important

for the commercial success of software. Yet, making software easily available allows for free-rid-

ing. The software industry has used legal and technical protection measures to mitigate this prob-

lem (Quah, 2002).

The fixed costs of developing software vary considerably (Shapiro and Varian, 1999), but

compared to industries producing physical goods the entry barriers in the software business are

low (Federal Trade Commission, 2003:45). Moreover, the fact that software can be copied at close

to zero cost creates strong scaling effects and increasing returns to scale for producers. Scaling ef-

fects are strong because a producer can, within a very short time-period, scale up (or down) pro-

duction (Hoppen, 2005). Strong scaling effects also imply that a producer can reach a large market

share in a rather short time (ibid.). This makes first mover advantages important and helps ex-

plain the financial success of many software firms (Cohen and Lemley, 2001:4; Blind et al., 2003).9

Another important characteristic of software is interoperability. Programs are called inter-

operable if they are technically capable of processing the same data formats or understand the

same protocols. The value of using a given program increases, the larger the pool of users is with

9 Strong first mover advantages help explain why a few pioneering US software companies ended up dominating
the software market. Low entry barriers help explain why European companies still established their own
software market despite the US’s advance; but also why the European market mostly consists of small- and
medium-sized enterprises.

2. Do Patents Promote Innovation? 43

whom one can exchange data. Conversely, switching to another, non-interoperable program im-

poses considerable costs on customers. Interoperability thus creates positive network externali-

ties (Quah, 2002) and can reinforce first mover advantages.

The proprietary software industry uses interoperability strategically to defend markets and

lock in customers. For example, firms promote internally developed “back-box” data formats and

standards in their programs to create barriers for competitors and increase switching costs for

customers. Doing so creates and/or maintains a steady income stream as long as customers stay

with the product – customers in fact end up using programs because many other people use

them, too. For example, OpenOffice.org, a FOSS product, is widely considered sufficiently similar

in functionality to the office suite of Microsoft, but potential users hesitate to switch because the

long built-up pools of documents and peer users are vast. Similarly, many software firms try to at-

tract new customers with a low-price strategy in the beginning. After a critical mass of users is

reached and kept through non-interoperability strategies, network effects set in. Non-interoper-

ability combined with scaling effects makes the size of the install base a critical success factor. For

example, Skype’s proprietary protocols for internet telephony prevent Skype users from commu-

nicating with non-Skype users and thus lock out software suppliers using different protocols.

Yet another characteristic of software is functional utility. Software is useful because it pro-

cesses information faster and more precisely than the human brain. Its value is derived from that

problem-solving capability. Customers’ willingness to pay for that capability determines the

price, rather than the property value of the software per se. This mechanism gives rise to differ-

ential pricing strategies, where the same program has different prices, depending on who the cus-

tomer is (Shapiro and Varian, 1999). Utility is dynamic and tends to degrade over time because

users’ needs change. At the point when a new program appears, its value is highest. Unless the

software is adapted and upgraded, its utility decays and drops rapidly when a new, improved ver-

sion becomes available. Marketing uses functional utility because selling software is difficult if the

customer cannot see and feel the improvements. The more visible the changes, the easier it is to

market the program. However, there is a problem of diminishing returns. A steeper learning curve

can challenge users and harm adoption of the new version. Increased complexity (“feature bloat”)

through more and more functions can reduce overall utility. Nevertheless, software prices are pri-

marily justified by new functions and competition usually focuses on functionality and comfort.

44 2. Do Patents Promote Innovation?

2.3 Patenting of Proprietary Software

As shown in the two preceding sections the characteristics of software and its underlying innova-

tion and business model differ quite strongly from those of non-digital goods. Do these differ-

ences imply that standard policy instruments designed to promote innovation, such as patents,

are inappropriate for software. As shown by a recent statement by the European Patent Office this

question is highly controversial: “According to some, granting patents for computer-implemented inven-

tions stimulates innovation because the financial and material investment that is needed to develop sophis-

ticated and specialised software is protected. Others, however, believe that such patents stifle competition

and act as a brake on innovation.” (http://cii.european-patent-office.org, accessed on 15.04.2007).

Lack of concise definitions and varying use of legal terminology are major hurdles when one

tries to make sense of the controversy over patenting of software. To start with, the terms idea,

invention, and innovation have specific legal meanings. An invention differs from an idea in that

it must meet the “3-step-test” for patents. It has to be new, non-obvious to a layperson, and ap-

propriate for industrial application. Critics claim that software fails the first and second test: first,

software’s cumulative nature stems from the combination of a myriad of small ideas, whereas any

single element is too simple to qualify as an invention in legal terms; second, obviousness is rela-

tive: no matter how large and complex a big software system is, it is composed of smaller-sized

pieces that are easy to understand for skilled developers. The digital nature of software also blurs

the traditional invention-innovation distinction. Fagerbert notes that “[i]nvention is the first oc-

currence of an idea for a new product or process, while innovation is the first attempt to carry it

out into practice” (Fagerberg, 2005:4). All digital goods are created through programs – including

programs themselves. Software can thus be seen as the universal means of digital production, the

“quintessential digital good” (Quah, 2002:29). It has the triple role of being the blueprint, the pro-

ducing machine, and the final product all in one. From that perspective, the moment of invention

and the moment of “physical manifestation” of that invention are identical, and innovation is the

“first instantiation of a digital good” (Quah, 2002:7). Invention and innovation are thus, from the

viewpoints of critics of software patenting, virtually the same.

Moreover, software patent is a term with no commonly accepted legal definition. Bessen

and Hunt define software patents as covering “a logic algorithm for processing data that is imple-

mented via stored instructions; that is, the logic is not hard-wired” (Bessen and Hunt, 2007:8). Al-

lison and Lemley define the term in the sense of “inventions solely embodied in software”

(Allison and Lemley, 2000:10). Legal practice in the United States, where software patenting is par-

2. Do Patents Promote Innovation? 45

ticularly pronounced, has evaded clear-cut definitions and has resorted to a “doctrine of the

magic words” (Cohen and Lemley, 2001:9). Existing software patent specifications have been

drafted in ways that conceal their reference to software. For purposes of empirical research (see

further below) we will define software patent availability as the presence or absence of the possi-

bility to obtain patent protection for software in a given jurisdiction. Availability is bound to a ju-

risdiction: a patent is only valid in those jurisdictions in which it has been applied for and

granted. Software patent availability becomes observable in two ways: for a software developer or

company applying for patent protection, and when a software developer or company is con-

fronted with a patent claim by another party.

The existing literature offers a considerable array of arguments for positive and negative ef-

fects of software patenting. We mainly concentrate on the negative claims because this paper fo-

cuses on whether there are in fact negative effects.10 The following arguments have been

advanced against software patents (summarized from Federal Trade Commission, 2003; Blind et

al., 2005; Blind et al., 2003:11-34; Levine and Saunders, 2004:7; Scotchmer, 2004; Committee for

Economic Development, 2006:34).

The argument that patenting requires disclosure – which fosters incremental and sequential

improvement and thus increases diversity and interoperability – rests on the assumption that the

disclosed information is sufficient for replication and further improvement. Patent language usu-

ally describes software inventions in abstract terms – much like language used to specify the de-

sign of a software. That is, it describes what the software ought to do, but does not reveal how it

does so. When we add Cohen and Lemley’s ‘magic words doctrine’ argument mentioned above, it

becomes questionable to what extent the disclosure argument is valid in the case of software

patents.

Cumulative innovation such as in software development may be slowed down or even halted

by a fundamental generational trade-off between inventors. Given to the first inventor, a patent

creates obstacles for the next; given to the second, it reduces incentives for the first, who may

10 The following arguments have been advanced in favor of software patents (Federal Trade Commission, 2003, ch. 5;
Blind et al., 2005; Blind et al., 2003:11-34; Levine and Saunders, 2004:7): a) Patenting requires disclosure, and
disclosure fosters incremental and sequential improvement that increases diversity and interoperability. It may
also help in avoiding inefficient, parallel development of the same software by someone else. b) Patents prolong
otherwise short innovation cycles and thus increase innovation pressure on companies. c) Patents direct
investment into areas that would otherwise be neglected. They also motivate firms to seek broad application of a
patent. d) Small and medium enterprises and startups can, through patents, protect valuable knowledge and
obtain easier access to credit for further innovation and commercialization. e) Patents increase market
transparency and decrease transactions costs, particularly in cross-license deals between companies.

46 2. Do Patents Promote Innovation?

then not produce the first invention. The challenge is to compensate early innovators while en-

suring incentives for later innovators (Scotchmer, 2004, ch. 5).

Using patents to prolong otherwise short innovation cycles may create advantages for some

companies, but can negatively affect the economy as a whole. As the average duration of the

patent examination process tends to be longer than the typical software time-to-market, the ex-

pected prolongation effect may in fact not be achieved. Several studies have investigated the

patent examination process. Harhoff and Wagner (2006:17) for example note that the examination

of a patent application usually takes several years, and around 4.3 years in the case of the Euro-

pean Patent Office (EPO). They attribute this rather long examination period to decision-making

procedures, the complexity and volume of applications, and strategic behavior of applicants.

Popp, et al. (2004:4) observe that the patent examination process takes around 2.4 years on aver-

age in the case of the United States Patent and Trademark Office (USPTO). They conclude that

“[a]pplications in newer, more complex technologies such as biotechnology or computers take

significantly longer than other patent applications.“ (Ibid.:41).11 In comparison, the typical release

cycles of FOSS projects are measured in months or a few years in extreme cases.

Several authors argue that patents tend to restrict imitation and thus reduce the potential

for sequential innovation and positive network effects. Scotchmer (1991), for instance, criticizes

the application of economic incentive theory to patents as being too simplistic in view of the

modern economy. She argues that such application does not take into account the cumulative na-

ture of innovation and the cumulative effects between generations of inventors. Moreover, as ar-

gued by Cohen and Lemley (2001:17-18) and Samuelson and Scotchmer (2002:1584), patents may

also hamper reverse engineering of patented software because patent law does not provide for a

reverse engineering right and disclosing the implementing source code is not required. Patent

law does, therefore, not support potential innovators interested in learning how patented soft-

ware functions. By implication these authors claim that free-riding in the form of imitation or re-

verse engineering, which is considered advantageous in software innovation (Levine and

Saunders, 2004:7), is negatively affected by patents.

If network effects are present, patents can favor monopolies. The software industry’s mar-

ket is more prone to monopolistic structures than other markets because software exhibits strong

11 Most patent offices experience a considerable backlog. In a November 2005 press release, the USPTO mentioned a
backlog of more than half a million patent applications. In May 2008, the controller of the EPO stated in an
interview with the Intellectual Asset Management Journal that the USPTO will soon reach 1 million applications
and the EPO will be there “within 5 years”.

2. Do Patents Promote Innovation? 47

positive network externalities (Katz and Shapiro, 1985). The size of the network effect is deter-

mined by the degree of interoperability: programs tend to inter-operate more efficiently if they

adhere to commonly agreed, open standards; and less so if they are built on secret, proprietary

standards. Most proprietary software companies follow a non-interoperability strategy that in-

creases the customer’s cost of switching to a competitor (see above). This can lead to ‘vendor

lock-in’ and, conversely, lock-out of competitors who cannot easily develop inter-operable soft-

ware interfaces. Under such conditions first-mover advantages can create monopolies faster and

easier than in other industries and lead to an “industry structure that is socially and economically

not optimal” (Tuomi, 2005:450). Patents can reinforce this tendency because they keep switching

costs high and hamper independent development of inter-operable programs. The incentive to

“invent around” patented software code may diminish interoperability as well because it may not

be possible to develop inter-operable, non-infringing software code. Non-inter-operable software

is perceived by users as of limited utility even if it is more innovative (Palmer, 1989:302).

Critics also argue that patents on software may create legal uncertainties. They protect an

idea in all possible forms based on a list of ‘claims’. To judge which claims are violated – where ex-

actly infringement happened and to what extent – is usually decided by specialized courts be-

cause the validity of a specific infringement claim may be difficult to assess. In principle,

infringement decisions cannot be more clearly defined than the patent boundaries they are based

on, and Bessen and Meurer (2008, ch. 9) in fact argue that the boundaries of software patents are

particularly fuzzy and thus uncertain from a legal viewpoint.

To the extent several or many fuzzy patents overlap so called “patent thickets” may emerge

(Shapiro, 2001; Federal Trade Commission, 2003:6). This problem is particularly relevant in the

area of software, where innovative ideas can be implemented in a variety of ways. Consequently,

even a single software patent could block many different solution paths (algorithms). In the short

run, legal uncertainty and transaction costs may thus increase. In the long run, patent thickets

may reduce the amount of knowledge that is freely accessible to future innovators. Underprovi-

sion of knowledge can result in less innovation, a situation usually called the “tragedy of the anti-

commons” (Heller, 1997). Copyright law, in contrast, is widely accepted “as a means to prevent

software from being copied” (Rossi, 2004:26); it protects a specific expression (source code) but

not the underlying concept and functionality of a particular software.

Patents may be inefficient solutions to the problem of protecting property rights. Whereas

the marginal costs of copying/providing software converge on zero, the costs of exclusion

48 2. Do Patents Promote Innovation?

through patents, in contrast, are rather high. In many cases, therefore, exclusion costs will thus

exceed provision costs and spending resources on excluding non-purchasers would thus be an in-

efficient investment (Palmer, 1989).

Patent critics claim, moreover, that smaller companies face disadvantages. Applying for a

patent is costly in terms of the application process, managing the patent portfolio, handling li-

cense agreements, and litigation in case of infringements. Larger companies are therefore in a

better position to run a patent portfolio strategy because they have more resources (Blind et al.,

2003:24).

While the list of potentially negative effects of software patenting that one encounters in

the literature is longer than the list of potentially positive effects (the latter are used to justify

patenting) the empirical evidence is surprisingly thin. In a survey of 50 small software companies,

Mann found that software patents are of considerable value to established firms and that they are

of decreasing value, the younger the firm is. Startups hardly benefit from patents (Mann, 2004).

Bessen and Hunt (2007) identified algorithmically 130,650 software patents that were granted to

US companies in 1976-1999. They found that differences in software patent propensity across dif-

ferent parts of the software industry are large. Propensity is not highest in the software publish-

ing industry as one might have expected, but in the electronics and computer industry. They also

found that “the very large increase in software patent propensity over time is not adequately ex-

plained by changes in R&D investments, employment of computer programmers, or productivity

growth” (ibid.:1). In other words, existing studies do not tell us much about whether software

patents have positive, negative, or no effects on innovation in the proprietary software industry.

3. Free/Open Source Software (FOSS) 49

3. Free/Open Source Software (FOSS)

“In any discussion of information (including digital software) it is useful to remember that information is a human artifact (…)
a ‘flow resource’ that must be passed from one individual to another to have any public value.”

 Hess and Ostrom (2003:131)

We now examine how free/open source software (FOSS) differs from proprietary software. We

show that FOSS represents a process innovation system in software development that exploits ba-

sic software characteristics differently than the proprietary system. Amabile (1996) defines inno-

vation as the implementation of ideas through social, commercial or organizational activities.

Because it exhibits distinct activities on all three dimensions, the FOSS innovation system itself

can be considered a process innovation. This analysis leads to a discussion of potential effects of

software patenting on FOSS.

Free/open source software (FOSS) differs in important ways from proprietary software. Pro-

prietary software is protected through restrictive copyrights on source code (users are allowed to

use the object code, but have no access to the source code) and in some cases also patents on

functionalities expressed in the object code. In contrast, users and developers of FOSS obtain a

greater set of rights, in particular the right to copy, modify and pass on source code as well as ob-

ject code.12 Patents on FOSS software are possible, depending on the jurisdiction, but are rare be-

cause they are widely regarded as incompatible with the innovation paradigm of the FOSS

community.

Sharing of source code is the principal social activity in the open source innovation system.

The continued access to source code – a key prerequisite for sharing – is the backbone of this sys-

tem. Benkler (2006:4-5) argues that the personal computer as a cheap, universal means of produc-

tion and the internet as an ubiquitous and cheap means of many-to-many communication has

removed the physical constraints on information production that required market-based strate-

gies based on exclusive rights to undertake the high investments needed. Declining infrastructure

costs allow non-market, non-proprietary production of information goods through

“coordinate{d} effects of the uncoordinated actions of a wide and diverse range of individuals and

organizations acting on a wide range of motivations”.

12 FOSS licenses can differ. The Open Source Initiative and the Free Software Foundation offer license reviews and
comparisons: http://www.fsf.org/licensing/licenses/, http://www.opensource.org/approval (retrieved
2009/03/10).

50 3. Free/Open Source Software (FOSS)

Decentralized, large-scale collaborative software development is the primary activity of the

open source system. Developers join virtual communities that gather around software projects

hosted on openly accessible websites. The internet allows for fast communication and coordina-

tion and represents a low entry barrier for new contributors. Code is written, copied, and recom-

bined with other code, while access to all code is legally guaranteed. Very large projects often

establish nonprofit foundations that can assume a variety of protective roles (O’Mahony, 2005).

Giving source code away without charging royalties is the ‘commercial’ activity of the open

source system. Programs could be sold, but this is usually not practiced among FOSS community

members because further distribution for free would be allowed anyway. Much weaker market

forces are at play, however, because traditional royalty-based producer-consumer-relationships

do not exist. Consequently, a project’s success can only partially be measured in commercial

terms.13 While open source projects compete on the technical merits of the software and the at-

traction of capable developers, companies engaged in open source development continue to com-

pete in the typical services of the software business: maintenance, customization, support, and

training. Hence, producing software in a collaborative manner and giving it away for free is not

incompatible with a software business: companies such as IBM, Red Hat or Canonical have built

business models in line with the open source development model. Goldman and Gabriel (2005)

and Krishnamurthy (2005) provide analyses of FOSS-based business models.

In managing four characteristics of software in a manner that differs from the proprietary

software industry, the open source system uses a different innovation mechanism. (1) The positive

network externalities and public goods character of software are viewed as an advantage rather

than a problem because FOSS is deliberately made non-excludable. On the demand side, various

factors encourage the wide distribution of programs: low costs, a permissive copyright regime,

and the adaptability of the software to each user’s own needs. On the supply side, many users

make a project large and visible and help attract more developers, supporting further project

growth. (2) Developing software primarily based on technical considerations is easier than under

additional market pressures. That is, functional utility rather than marketing considerations are

at the center of development efforts. (3) For the same reason, developers can pursue interoper-

ability as a technical goal, instead of trying to lock in customers. Interoperability makes code

sharing easier, helps programs to interact more effectively, and reduces switching costs. (4) FOSS

life cycles tend to be even shorter than in the proprietary system, because development happens

13 Scotchmer (2004, ch. 2) offers an economic analysis of why public goods should be provided for free.

3. Free/Open Source Software (FOSS) 51

incrementally, with many more small changes and shorter release periods than in the proprietary

system. With no time-to-market pressure and no market-driven deadlines to meet, code can be

tested more thoroughly before release.

The core activities in FOSS development – sharing code, giving it away for free, and collabo-

rating in “virtual” and decentralized communities – lead to two characteristics that are unique to

FOSS. These can be described using Saviotti’s evolutionary innovation model that analyses inno-

vations as mutations that generate variety (Saviotti, 1997; Marinova and Phillimore, 2003).

First, code variety in FOSS tends to be greater than in the proprietary software realm. This

means that a greater diversity of solution paths to solve a specific problem is pursued than in the

proprietary system because the number of participants is not limited to firms. Complementary

innovation, i.e. unrestricted numbers of independent parallel pursuits, may achieve an innovation

goal with higher speed and probability – if solutions are shared and accessible to all (Bessen and

Maskin, 2000). Greater variety in solutions occurs because users’ needs and developers’ interests

are coming together on a much larger scale than in a proprietary setting, thus leading to more

heterogeneity (Bessen, 2005): a variety of developers see a variety of prospects to build on when

confronted with a certain programming task. If no consent on the overall direction of a project

can be found, a split (called ‘fork’) may result. Forking adds to the variety of approaches to solve a

given problem, but also splits and therefore dilutes community resources.

Second, FOSS development is cumulative and an example for reproduction and inheritance

in the evolutionary model: many developers make many small changes and recombinations, thus

building up the code base over many iterations, to expand its functionality and constantly adapt

it to their own problems (Quah, 2002:29). The complementary and cumulative nature of innova-

tion, particularly in high-tech industries, is widely recognized (Hoppen, 2005). The concepts of in-

cremental (Scotchmer, 1991) and sequential (Bessen and Maskin, 2000) innovation are based on

the same idea, though they stress different aspects. A software program may grow to a level of

complexity where a single person cannot understand the whole anymore. Yet code modulariza-

tion enables a skilled programmer to continue contributing. Consequently, even large groups of

isolated individuals can effectively collaborate in large systems. In the proprietary system, soft-

ware can also be shared within a firm, but the firm’s organizational boundaries and code secrecy

towards the outside limit the efficiency of this approach. Within a company hierarchy, a “culture

of reuse and incremental improvement” is much harder to implement (Cohen et al., 2000:4).

52 3. Free/Open Source Software (FOSS)

Several studies offer theoretical models to explain how decentralized innovation, motiva-

tional setup, and legal regimes sustain the open source innovation system. They tend to view

FOSS innovation as resembling the academic way of sharing and building upon the results of oth-

ers rather than a market in which goods are sold (Lerner and Tirole, 2004). Von Hippel (2005) ar-

gues that users innovate more quickly and effectively than manufacturers if they are – legally,

technically, and economically – enabled to, because they (tacitly) know best what their needs are.

Unlike the producer, they do not have to make compromises for a diverse market (Chesbrough,

2003).Von Hippel and von Krogh (2003a) have developed a “private-collective model of innova-

tion”. They argue that programmers contribute freely to the provision of a public good because

they garner private benefits from doing so. Direct private benefits improve the cost/benefit calcu-

lus of the single developer, and aligned private benefits and public interest sustain the system.

Benkler notes that technical (moving to a digital environment) as well as economic changes (mov-

ing from an industrial to a networked information economy) have altered the way in which infor-

mation is produced and exchanged. He calls this third model of information production – besides

market-based capitalism and central-planning communism – “commons-based peer production”

(Benkler, 2002:8). The network enables a production mode that is “radically decentralized, collab-

orative, and nonproprietary; based on sharing resources and outputs among widely distributed,

loosely connected individuals who cooperate with each other without relying on either market

signals or managerial commands” (Benkler, 2006:60).

In summary, the FOSS system deals with production, ownership, and distribution of soft-

ware in ways that differ fundamentally from the proprietary software system. FOSS is a freely

provided complex public good (Bessen, 2005) that is privately produced (Weber, 2004) and self-

protecting (O’Mahony, 2003). It can in fact be regarded as “an experiment in social organization

around a distinctive notion of property rights.” (Weber, 2004:227).

4. Do Software Patents Affect FOSS? 53

4. Do Software Patents Affect FOSS?

The principal justification for software patents is that they encourage innovation in the propri-

etary realm of software development. Does this imply that they are simply irrelevant to innova-

tion in the FOSS realm because the FOSS innovation model operates in a very different mode? Or

do patents generate, as critics argue, negative spill-over effects from the proprietary to the FOSS

innovation system? If so, are such effects similar in nature to the ones critics have voiced with re-

spect to the effects of patents in the proprietary software area itself? How can we study this claim

empirically to establish whether the critics are right? We can think of at least three potential ap-

proaches to studying the effects of patents on FOSS empirically.

First, we could identify whether FOSS developers have in fact become targets of litigation

over infringements on software patents. In principle, patents can affect the proprietary and the

FOSS domain, but patent violations are probably easier to prove in the FOSS domain, where the

source code can easily be inspected.14 We do not know of any systematic studies of this first type.

However, even if they existed they could not illuminate the “true” nature of the effect of patents.

If, for example, we observed 100 cases of litigation we would still not know whether these are the

tip of the proverbial iceberg – FOSS developers might be bullied by patent holders to an extent

that formal litigation is unnecessary, or they might simply stay away from areas where patent

density is high – or just a drop in the ocean of FOSS developer activity.

Second, we could examine whether, controlling for other determinants, FOSS innovation is

slower or weaker in areas where patenting in the related proprietary software domain is

“thicker”. Such a study would capture the aggregate net effects of software patenting. It could be

implemented in the form of a global comparison across specific types of software and/or over

time. We do not know of any studies of this second type. One of the main difficulties with this ap-

proach is to define the dependent variable (innovation) in aggregate terms that would be empiri-

cally useful across different types of software as well as the proprietary and FOSS area. This takes

us to the third approach where we argue that effects of patents should be observable when we

study innovation from the perspective of the individual developer.

Third, we could examine whether participation in FOSS projects is negatively affected by

patents. In other words, the hypothesis in need of testing is that, controlling for all other influ-

14 See, for example, www.groklaw.net and www.chillingeffects.org (visited on 21.07.2008).

54 4. Do Software Patents Affect FOSS?

ences, participation in FOSS projects is negatively affected by patents. To test this hypothesis, we

need to start with a baseline model that accounts for developer participation in FOSS projects. We

think that the third approach is the most feasible and useful one and hence focus on this ap-

proach in the remainder of the paper.

4.1 Motivations for participation in FOSS projects

Several recent studies have examined the driving forces of participation in FOSS projects. Rossi

(2004) points out, however, that an integrated and coherent explanation of the different types of

incentives is still missing. Krishnamurthy (2006) provides an overview of several empirical studies

of this kind. He observes that “…both intrinsic and extrinsic motivational components are impor-

tant and do exist…” and that “…the evidence is mixed on the relative value of intrinsic and extrin-

sic motivational components…” (ibid., 27). Ryan and Deci (2000) argue that intrinsic motivation is

present when the respective actor behaves in a certain manner because such behavior is inher-

ently interesting or enjoyable, for instance because of the fun or the challenge it involves. Extrin-

sic motivation is present when the respective actor behaves in a certain manner because such

behavior leads to a separable outcome – instantly (reward) or with a time delay (incentive). Draw-

ing on the framework of Rossi and Bonaccorsi (2005), we submit that research should consider the

motivational factors summarized in Tables 1 and 2. Table 1 offers an overview of extrinsic motiva-

tional factors. Note that only two of the eight factors are monetary ([M]) in nature.

TABLE 1 Extrinsic motivations

Rewards (instant) Incentives (delayed)

Learning of new skills (Ye and Kishida, 2003; von Krogh et
al., 2003; Lakhani and Wolf, 2005)

Expecting others to give back, reciprocity (Raymond,
2001)

Helping yourself by developing own solutions (Weber,
2004; Lerner and Tirole, 2004; Raymond, 2001; von Hippel,
2005)

Peer recognition, reputation (Dalle and David, 2005;
Lerner and Tirole, 2001; Hars and Ou, 2002)

Low sharing costs compared to return of code shared by
others (Kollock, 1999; Ghosh, 1998; Bonaccorsi and Rossi,
2003)

[M] Future career benefits through self-marketing
(Lerner and Tirole, 2004; Hars and Ou, 2002)

[M] Direct monetary reward, income (Zeitlyn, 2003; Feller
and Fitzgerald, 2002)

Fighting proprietary software, the ‘joint enemy’ (Weber,
2004)

4. Do Software Patents Affect FOSS? 55

Table 2 offers an overview of intrinsic motivational factors. Drawing on Lindenberg (2001) we can

distinguish them further in terms of enjoyment- and obligation-based factors.

TABLE 2: Intrinsic motivational factors

Enjoyment-based factors Obligation-based factors

Fun, hedonism (Torvalds and Diamond, 2002; Hars and
Ou, 2002; Lakhani and Wolf, 2005)

Identification and sense of community (Hars and Ou,
2002; Weber, 2004)

Self-expression, ‘coding as art’ (Weber, 2004) Observance of community norms like, e.g., sharing (Zeit-
lyn, 2003)

Helping others, altruism (Hars and Ou, 2002; Bitzer et al.,
2004; Zeitlyn, 2003)

Political mission, ‘software must be free’ (Stallman, 1984;
Raymond, 2001)

Ego-boosting through solving difficult problems, chal-
lenge (Weber, 2004)

How one is viewed by significant others, e.g. family,
friends (Hertel et al., 2003)

Empirical studies offer considerable support for the influence of the factors listed in Tables 1 and

2 (e.g., Ghosh et al., 2002, Hertel et al., 2003). However, the list is broad and diverse – empirically,

no single motivation appears to stand out as particularly important. In addition, the relative im-

portance of extrinsic vs. intrinsic factors remains unclear. Hars and Ou (2002) identify effects of

extrinsic factors, Lakhani and Wolf (2005) find that intrinsic factors are important, whereas

Roberts, et al. (2006) find no impact of intrinsic motivation15. By implication, the findings with re-

spect to “social arguments” vis-à-vis “more narrow conceptions of individual benefits” are mixed

(Committee for Economic Development, 2006:22).

4.2 Effects of software patents

How can we connect the software patent issue to a model accounting for participation in FOSS de-

velopment? There are two possibilities. First, we could simply view the explanation of participa-

tion in terms of an additive, linear process, in which software patent availability influences the

propensity of individuals to participate in FOSS development alongside the intrinsic and extrinsic

factors discussed above. Second, we could view the effects of software patents in terms of effects

on motivations to participate in FOSS development. We believe that the second option is analyti-

cally more appropriate. Figure 1 summarizes the main components of such a model. The remain-

der of this section will discuss the principal variables and causal effects in more detail.

15 Roberts, et al. (2006) studied three main web server related projects of the Apache Software Foundation that are
commercially very important. The largely commercial nature of this project may have influenced the findings.

56 4. Do Software Patents Affect FOSS?

The research approach we suggest concentrates on innovation from the developer rather than the

user perspective. It does so for several reasons. Proprietary and FOSS systems differ not only with

respect to the process of innovation (how software is developed), but also with respect to the

product innovation dimension. The proprietary system usually applies a user-centric innovation

perspective: “new” means new for the user. However, a user may perceive a new software feature

as new even when the underlying source code is not new from a developer’s perspective. Con-

versely, two software programs performing the same task may do so in different ways and, even if

one implementation is more innovative than the other, a user may not recognize the difference.

From this perspective, the argument by Klincewicz (2005) that most FOSS projects are ‘me-too’

clones of existing proprietary programs and are not innovative on their own appears questionable

(Wheeler, 2001).16

16 Generally, software innovation is driven by two main sources: competition between independent ideas, i.e.,
different, independent paths can all lead to competing programs with equivalent functionality; imitation, i.e.
building on and extending previous work. The FOSS system utilizes imitation more extensively than the
proprietary system (Bessen and Maskin, 2000).

FIGURE 1 : Effects of software patent availability on participation in FOSS development

4. Do Software Patents Affect FOSS? 57

Wheeler (2001) argues that most FOSS activity at the source-code level consists, much like

in the proprietary software domain, of recombination or integration of existing components and

is not innovative. He proposes a definition under which only new programming paradigms qualify

as innovations (ibid.). This very demanding definition allows for only a few innovations per

decade and is not very useful for our purposes. A more practical approach is to relate individual

code contributions to specific levels of innovativeness. At the low end of the innovation scale, we

can place unaltered use of libraries and reuse of code fragments with varying degrees of adapta-

tion. At the high end, we can place new implementations of existing algorithms or newly devised

algorithms.17 Table 3 shows a set of ordinal categories to that end.

TABLE 3: Levels of code contributions as a proxy for FOSS innovation

Innovation level Type of code contribution

5 inventing new algorithms/methods before coding (»algorithm II«)

4 coding of known algorithms/methods from scratch (»algorithm I«)

3 recombining existing FOSS components with much adaption (»reuse II«)

2 integrating existing FOSS components with little adaption (»reuse I«)

1 linking to existing FOSS libraries (»library«)

X reverse-engineering/imitating functionality from non-FOSS programs

Note: reverse engineering is a specific way of producing code and should be considered sepa-

rately.

As discussed above, innovation behavior is affected by two types of motivational factors (ex-

trinsic and intrinsic). We can, as a starting point, simply assume that any type of motivation has a

positive effect on the frequency and extent of innovation behavior. A full model would, of course,

also have to include a set of control variables (e.g., skills, income, age, number of other developers

in the project).

Patent availability and exposure can be measured both from the developer’s (subjective)

viewpoint and from a legal expert perspective. Both measures will have to rely on surveys of FOSS

developers. Measures of the former type will generate information about the application domains

(for example multimedia, security, office, etc.) in which patents appear, from the developer per-

spective, particularly prevalent and strong. Such surveys could also identify specific incidences

where patent pressure has inhibited FOSS participation. Measures of the second type will estab-

17 Klemens (2005) raises the question of whether algorithms, which are essentially math, should be patentable
subject matter at all.

58 4. Do Software Patents Affect FOSS?

lish where individual developers are located geographically and to what types of FOSS projects

they contribute. This information can then be combined with assessments by legal experts of

patent availability and related legal practices in specific countries and software areas. Most FOSS

projects only exist in cyberspace and have no legal representation through a foundation, com-

pany or association within the boundaries of a particular country. Each contributor, however, is

resident in a specific jurisdiction and thus subject to that jurisdiction’s rules and practices con-

cerning software patenting. We can therefore examine whether patent effects differ depending

on software area and the jurisdiction out of which the developer operates.

Whether and to what extent software patent availability affects extrinsic and intrinsic moti-

vations in positive or negative ways is empirically open, and no systematic research on this issue

exists. As depicted in Figure 1 we propose to focus on three extrinsic and two intrinsic motiva-

tional factors. In the remainder of this section we discuss how patent availability might affect

these factors and hence also participation in FOSS projects. Table 4 summarizes arguments for the

situation where a FOSS developer faces a software patent claim emanating from the proprietary

software domain.

4. Do Software Patents Affect FOSS? 59

TABLE 4: Potential effects of software patents on extrinsic and intrinsic motivations

Motivational Factor Positive effects Negative effects

Extrinsic (instant)

Earn money/income (monetary) none (-) Legal defense costs reduce income

Learn skills (disclosure) (+) May reveal useful knowledge. (-) Knowledge revealed is insufficient

Help yourself (disclosure) (+) May reveal useful knowledge. (-) Knowledge revealed is insufficient

(-) Legal risk of including code

Net gain from code none (-) Legal risk of including code

Extrinsic (delayed)

Future career (monetary) none (-) May threaten project, in which de-
veloper engages to demonstrate his
skills

Intrinsic (enjoyment-based)

Joy none (-) Legal risk reduces fun

Altruism none (-) Legal risk increases costs of altru-
istic behavior

Artistic self-expression none (-) Limits self-expression in writing
code

Solve difficult problems (ego-boosting) none (-) Limits options when writing code

Intrinsic (obligation-based)

Observance of community norms (+) threat strengthens community,
“rally round the flag” effect

none

Identification with community (+) threat strengthens community,
“rally round the flag” effect

none

Software freedom (+) Directed efforts to circumvent
patents may lead to innovations

none

Note: other types of motivations listed in Tables 1 and 2 but not in Table 4 are less likely to be af-

fected by patents. Hence we omit them here. Such motivations include: [extrinsic] reciprocity,

peer recognition, fighting proprietary software; [intrinsic] opinions of significant others about

someone’s FOSS engagement.

Software patents are likely to have negative effects on all extrinsic factors, though effects

on learning and self-help are perhaps less clear because they depend on whether the knowledge

embedded in a patent is accessible for replication. The lack of source code in patent letters is one

of the problems in this regard. As discussed above, knowledge in the FOSS system is publicly avail-

able down to the source code level, whereas the typical (software) patent language is intention-

ally kept broad and abstract and source code is kept secret.

60 4. Do Software Patents Affect FOSS?

As to the intrinsic motivations, enjoyment-based factors may be reduced by the availability

of software patents, whereas obligation-based factors may be strengthened when developers face

patent pressure. The negative effect on enjoyment-based factors is likely because patents reduce

the freedom of action of FOSS developers. Legal risk and potential legal costs are also likely to re-

duce fun and altruistic behavior. Self-expression means that writing FOSS code is perceived as an

art: the aim is to write ‘beautiful’ code that performs its intended purpose in an elegant way. This

source of motivation may suffer if the concrete form of expression has to be compromised to ac-

commodate software patents. Obligation-based factors may be positively affected because a

“patent threat” may increase the sense of community. It may also increase the resolve of FOSS de-

velopers to provide non-infringing free substitutes. One example is the OGG format, a free re-

placement of the MP3 audio format that is argued to allow for smaller file size and higher quality.

Even though this is probably very rare18, we should also consider the situation in which a

FOSS developer holds a software patent. Table 5 summarizes the arguments. As in Table 4, motiva-

tional factors that are most likely to remain unaffected by patents are not listed.

TABLE 5: Potential effects of holding software patents on extrinsic and intrinsic motivations

Motivation factor Positive effects Negative effects

Extrinsic (instant)

Earn money/income (monetary) (+) Royalties provide additional in-
come.

(-) Cost of defending patent reduces
income.

Learn skills (disclosure) (+) Patent pursuit focuses search for a
new solution = learning.

none

Extrinsic (delayed)

Future career (monetary) (+) Developer perceived as innovative
is more attractive for employers.

none

Intrinsic (enjoyment-based)

Artistic self-expression (+) Owning a patent generates self-af-
firmation

none

Solve difficult problems (ego-boost-
ing)

(+) Owning a patent generates self-af-
firmation

none

Intrinsic (obligation-based)

Observance of community norms none (-) Community sanctions “traitors”

18 We are not aware of such cases except for the RTLinux patent debate in 2001.

4. Do Software Patents Affect FOSS? 61

Finally, it could be interesting to also explore whether intrinsic and extrinsic motivations

affect each other and how the relationship between them is affected by patents. One possibility is

that patents enhance extrinsic at the expense of intrinsic motivations and thus amplify crowding-

out effects.

4.3 Empirical research strategy

By-and-large, most of the potential effects of patents on extrinsic and intrinsic motivations to

participate in FOSS development, and therefore also on FOSS innovation as a whole, appear to be

negative. Yet, empirical research will have to show whether these arguments do in fact support

the claims of software patent critics. Such research will have to rely on surveys administered to

random samples of FOSS developers from different jurisdictions (with variation in terms of

stronger and weaker software patent availability) and different domains of FOSS activity (with

variation in terms of “patent exposure”). Such surveys could use the theoretical model outlined

above as the basis for specific survey items.

Empirical research along these lines will have to cope with several challenges, the most im-

portant of which concerns sampling. FOSS developers use different types of web-based portals.

Some of these, for example SourceForge (www.sourceforge.net), host a very large number and

range of projects and involve tens of thousands of developers. Others host very specific FOSS

projects – one example is the OpenOffice project (www.openoffice.org). We submit that empirical

research should start with sampling from a very large and diverse FOSS portal, such as Source-

Forge, to obtain maximum variation on the explanatory variables and a large enough sample for

meaningful statistical analysis. Technical challenges in sampling from such portals include distin-

guishing idle or “dead” from “alive” projects, and obtaining access to developers’ email addresses

in order to draw a proper random sample – simply posting a survey on a FOSS portal and waiting

for self-selected developers to respond would produce unacceptable sample bias. The approach

sketched here may of course result in some sample bias as well because it excludes specific FOSS

projects (such as OpenOffice or Linux) as well as FOSS projects based at individual companies. Fol-

low-up research will thus have to compare results obtained for samples drawn from different

FOSS portals. Another very tricky sampling issue to be tackled is how to deal with the possibility

that patent exposure has already driven the more risk adverse developers into low exposure FOSS

projects or out of FOSS altogether. In the extreme case, we would then not observe any negative

effects of software patenting simply because those developers who have experienced negative ef-

62 4. Do Software Patents Affect FOSS?

fects are less likely to be included in the sample. Yet another challenge pertains to measuring

software patent availability and exposure. While we think that FOSS developers’ motivation is pri-

marily affected by (subjectively) perceived patent exposure, irrespective of how strong or weak

opportunities for software patenting are in a strictly legal sense, it would be useful nonetheless to

develop more “objective” indicators on patent pressure based on systematic legal analysis.

5. Conclusion 63

5. Conclusion

FOSS has in recent years experienced a strong expansion while, at the same time, public and ex-

pert debates on the desirability of patents on software have intensified. These two phenomena

have been connected in that critics of software patents have claimed that such patents have nega-

tive spill-over effects on FOSS development. Proprietary software and FOSS development rely on

very different innovation models. The former relies on very restrictive copyright practices and,

depending on the jurisdiction, also on patenting functional features of software. The FOSS com-

munity uses a permissive form of copyright protection, which is designed mainly to prevent pri-

vate appropriation of FOSS, and patents are usually an anathema. Whether software patents are

conducive to innovation in the proprietary realm remains contested and the very few empirical

studies that exist are inconclusive. Whether software patents have any effect on innovation in the

FOSS realm is almost completely open. Patents could, in principle, also be obtained on FOSS, but

developers (self-) selected into the FOSS community are, by-and-large, either not interested in or

openly hostile to patenting of software. Therefore, it is likely that patents that are sought and/or

granted on proprietary software have either no effect or a negative effect on FOSS development.

We have outlined three potential research strategies for studying the effects of software

patents on FOSS innovation: identification of whether FOSS developers have in fact become tar-

gets of litigation over infringements on software patents; analysis of whether, controlling for

other determinants, FOSS innovation is slower or weaker in areas where patenting in the related

proprietary software area is “thicker”; analysis of whether FOSS developers’ participation in

terms of code contributions is negatively affected by patents.

We have argued that the third strategy is likely to produce the most interesting results. To

that end we have presented a model and empirical research strategy that illuminate the effects of

patents on extrinsic and intrinsic motivations of FOSS developers, assuming that strong motiva-

tions are a necessary condition for innovation. We hope that this model and research strategy can

serve as a starting point for a concerted effort to investigate whether software patents have any

effect on the FOSS community and, if so, whether this effect is negative, how it operates, and

what could be done to avoid negative side-effects of software patenting in the proprietary realm.

64 6. References

6. References

Allison, J., Lemley, M. (2000). Who's Patenting What? An Empirical Exploration of Patent Prosecution.
Vanderbilt Law Review, (53), 2099.

Amabile, T.M. (1996). Creativity in Context. Boulder, CO: Westview Press.

Arora, A., Ceccagnoli, M., Cohen, W.M. (2003). R&D and the Patent Premium. NBER, Working Paper No.
9431. www.nber.org/papers/w9431

Arundel, A. (2001). The relative effectiveness of patents and secrecy for appropriation. Research Policy,
(30), 611-624.

Benkler, Y. (2006). The Wealth of Networks. New Haven and London: Yale University Press.

Benkler, Y. (2002). Coase's Penguin, or Linux and the Nature of the Firm. Yale Law Journal, (112)369, 1-79.

Bessen, J. (2005). Open Source Software: Free Provision of Complex Public Goods. Research on Innovation,
Working Paper. www.researchoninnovation.org/opensrc.pdf

Bessen, J., Hunt, R. (2007). An Empirical Look at Software Patents. Journal of Economics & Management
Strategy, (16)1, 157-189.

Bessen, J., Hunt, R. (2004a). The Software Patent Experiment. Business Review. Federal Reserve Bank of
Philadelphia, (Q3), 22-32.

Bessen, J., Maskin, E. (2000). Sequential Innovation, Patents, and Imitation. MIT Dept. of Economics,
Working Paper No. 00-01. http://www.researchoninnovation.org/patrev.pdf

Bessen, J., Meurer, M.J. (2008). Patent Failure - How Judges, Bureaucrats, and Lawyers Put Innovators as
Risk. Princeton: Princeton University Press.

Bitzer, J., Schrettl, W., Schröder, P.J.H. (2004). Intrinsic Motivation in Open Source Software Development.
Free University Berlin, Working Paper No. 2004/19.
http://opensource.mit.edu/papers/bitzerschrettlschroder.pdf

Blind, K., Edler, J., Friedewald, M. (2005). Software Patents: Economic Impacts and Policy Implications.
Northampton, MA: Edward Elgar.

Blind, K., Edler, J., Nack, R. et al. (2003). Software-Patente: eine empirische Analyse aus ökonomischer und
juristischer Perspektive. Heidelberg: Physica.

Bonaccorsi, A., Rossi, C. (2003). Why open source can succeed. Research Policy, (32)7, 1243–1258.

Campbell-Kelly, M., Valduriez, P. (2005). An Empirical Study of the Patent Prospect Theory: An Evaluation
of Antispam Patents. SSRN, Working Paper .

Chesbrough, H.W. (2003). Open innovation : the new imperative for creating and profiting from technology.
Boston, MA: Harvard Business School Press.

Cohen, J.E., Lemley, M.A. (2001). Patent Scope and Innovation in the Software Industry. California Law
Review, (89)1, 1-57.

Cohen, W.M., Nelson, R.R., Walsh, J.P. (2000). Protecting Their Intellectual Assets: Appropriability
Conditions and Why U.S. Manufacturing Firms Patent (or Not). Cambridge, MA: NBER Working
Paper 7552.

Committee for Economic Development (2006). Open Standards, Open Source, and Open Innovation:
Harnessing the Benefits of Openness. Washington: www.ced.org.

Dalle, J., David, P.A. (2005). Allocation of Software Development Resources in Open Source Production
Mode. In Feller, J. (Ed.), Perspectives on free and open source software (pp. 297-328). Cambridge,
MA: MIT Press.

6. References 65

Deci, E.L., Ryan, R.M. (1985). Intrinsic Motivation and Self-Determination in Human Behavior. New York:
Springer.

Drahos (1996). A Philosophy of Intellectual Property. Aldershot: Darthmouth.

Dutton (1984). The Patent System and Inventive Activity During the Industrial Revolution 1750-1852. Dover:
Manchester University Press.

Earnshaw, N.C. (2004). The Samba Project: Transformation of Self through Open Source Software
Development (Honour's thesis). Retrieved 21.06.2006 from
http://samba.org/samba/news/articles/earnshaw_thesis.pdf.

European Information Technology Observatory (2004). EITO 2004 Report. Frankfurt: EITO.

Fagerberg, J. (2005). Innovation - A Guide to the Literature. In Fagerberg, J., Mowery, D.C., Nelson, R.R.
(Eds.), The Oxford Handbook of Innovation (pp. 1-26). Oxford: Oxford University Press.

Federal Trade Commission (2003). To Promote Innovation: The Proper Balance of Competition and Patent
Law and Policy. Retrieved 27.04.2005 from www.ftc.gov/opa/2003/10/cpreport.htm.

Feller, J., Fitzgerald, B. (2002). Understanding open source software development. Boston, MA: Addison–
Wesley.

Fisher, M. (2005). Classical Economics and Philosophy of the Patent System. Intellectual Property
Quarterly, (1), 1-26.

Free Software Foundation (2008). Examples of Software Patents that hurt Free Software. Retrieved
18.09.2008 from http://www.gnu.org/patent-examp/patent-examples.html.

Free Software Foundation (2006). Free Software Definition. Retrieved 22.04.06 from www.fsf.org/licensing/
essays/free-sw.html.

Ghosh, R.A. (1998). Cooking Pot Markets: An Economic Model for the Trade in Free Goods and Services on
the Internet. First Monday, (3)3, no pagination.

Ghosh, R.A., Glott, R., Kreiger, B. et al. (2002). The Free/Libre and F/OSS Software Developers Survey and
Study—FLOSS Final Report. Retrieved 22.06.2006 from www.infonomics.nl/FLOSS/report.

Goldman, R., Gabriel, R. (2005). Innovation happens elsewhere : open source as business strategy.
Amsterdam: Elsevier.

Harabi, N. (1995). Appropriability of technical innovations. An empirical analysis. Research Policy, (24),
981-992.

Harhoff, D., Wagner, S. (2006). Modeling the Duration of Patent Examination at the European Patent Office.
University of Mannheim GESY, Working Paper No. 170.

Hars, A., Ou, S. (2002). Working for free? Motivations of Participating in Open Source Projects.
International Journal of Electronic Commerce, (6)3, 25-39.

Haunss, S., Kohlmorgen, L. (n.d.). Political claims-making in IP conflicts. In Haunss, S., Shadlen, K.C.
(Eds.), The Politics of Intellectual Property (p. n. pag.). Cheltenham: Edward Elgar Publishing
(forthcoming).

Heller, M. (1997). The Tragedy of the Anticommons: Property in the Transition from Marx to Markets.
Harvard Law Review, (111), 621-688.

Hertel, G., Niedner, S., Hermann, S. (2003). Motivation of software developers in the Open Source projects:
An Internet–based survey of contributors to the Linux kernel. Research Policy, (32)7, 1159–1177.

Hess, C., Ostrom, E. (2003). Ideas, Artifacts, and Facilities: Information as a Common-Pool Resource. Law
and Contemporary Problems, (66)1/2, 111-145.

Hoppen, N. (2005). Software Innovations and Patents - A Simulation Approach. Stuttgart: ibidem.

Hoppen, N., Beimborn, D., König, W. (2003). The impact of software patents on the structure of the software
market. Proceedings of the Eleventh European Conference on Information Systems. Naples, Italy.

66 6. References

Jaeger, T., Metzger, A. (2002). Open Source Software : Rechtliche Rahmenbedingungen der Freien Software.
München: Verlag C.H. Beck.

Jaffe, A. (2000). The U.S. patent system in transition: policy innovation and the innovation process.
Research Policy, (29), 531-557.

Katz, M., Shapiro, C. (1985). Network Externalities, Competition, and Compatibility. The American
Economic Review, (75)3, 424-440.

Klang, M. (2004). Free software and open source: The freedom debate and its consequences. First Monday,
(10)3, no pagination.

Klemens, B. (2005). Math you can't use. Washington, DC: Brookings Institution Press.

Klincewicz, K. (2005). Innovativeness of open source software projects. Tokyo Institute of Technology,
Working Paper. http://opensource.mit.edu/papers/klincewicz.pdf

Kollock, P. (1999). The Economies of Online Cooperation: Gifts and Public Goods in Cyberspace. In Smith,
M., Kollock, P. (Eds.), Communities in Cyberspace (pp. 200-269). London: Routledge.

Krishnamurthy, S. (2006). On the intrinsic and extrinsic motivation of FLOSS developers. Knowledge,
Technology, & Policy, (18)4, 17-39.

Krishnamurthy, S. (2005). An Analysis of Open Source Business Models. In Feller, J. (Ed.), Perspectives on
free and open source software (pp. 279-296). Cambridge, MA: MIT Press.

Lakhani, K.R., Wolf, R.C. (2005). Why Hackers Do What They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects. In Feller, J. (Ed.), Perspectives on free and open source software
(pp. 3-21). Cambridge, MA: MIT Press.

Lerner, J., Tirole, J. (2004). The Economics of Technology Sharing: Open Source and Beyond, Working
Paper No. 10956. www.nber.org/papers/w10956

Lerner, J., Tirole, J. (2002). Some simple economics of open source. Journal of Industrial Economics, (50)2,
197–234.

Lerner, J., Tirole, J. (2001). The open source movement: Key research questions. European Economic
Review, (45), 819-826.

Lessig, L. (2002). The Future of Ideas – The Fate of the Commons in a connected World. New York: Vintage.

Levine, L., Saunders, K. (2004). Software Patents: Innovation or Litigation? In Fitzgerald B., Wynn, E.
(Eds.), IT Innovation for Adaptability and Competitiveness, IFIP 8.6 Working Conference on IT
Innovation for Adaptability and Competitiveness (pp. 229-242). Leixlip, Ireland: IFIP.

Lindenberg, S. (2001). Intrinsic Motivation in a New Light. Kyklos, (54)2/3, 317-342.

Locke, J. (1690). Two Treatises of Government, Book II. Of Civil-Government. Project Gutenberg:
www.gutenberg.org/etext/7370.

Machlup, F. (1958). An Economic Review of the Patent System. Study No. 15. Washington, DC: U.S. Senate
Judiciary Committee Subcommittee on Patents, Trademarks, and Copyrights.

Machlup, F., Penrose, E. (1950). The Patent Controversy in the Nineteenth Century. Journal of Economic
History, (10), 10-26.

Mann, R. (2004). The Myth of the Software Patent Thicket. University of Texas School of Law, Working
Paper No. 44. http://law.bepress.com/alea/14th/art44/

Marinova, D., Phillimore, J. (2003). Models of Innovation. In Shavinina, L.V. (Ed.), The International
Handbook on Innovation (pp. 44-53). Oxford: Elsevier.

Mazzoleni, R., Nelson, R.R. (2004). Economic Theories about the Benefits and Costs of Patents. In Maskus,
K.E. (Ed.), The WTO, intellectual property rights and the knowledge economy (pp. 148-169).
Cheltenham: Edward Elgar.

6. References 67

Menell, P.S. (2000). Intellectual Property: General Theories. In Bouckaert, B., De Geest, G. (Eds.),
Encyclopedia of Law and Economics (pp. 129-187). Cheltenham: Edward Elgar.

Merges, R. (1997). Intellectual Property in the New Technological Age. New York: Aspen Publishers.

Mitchell, H.C. (2005). The Intellectual Commons: Toward an Ecology of Intellectual Property. Lanham:
Lexington Books.

O’Mahony, S. (2005). Nonprofit Foundations and Their Role in Community-Firm Software Collaboration. In
Feller, J. (Ed.), Perspectives on free and open source software (pp. 393-446). Cambridge, MA: MIT
Press.

O’Mahony, S. (2003). Guarding the commons: how community managed software projects protect their
work. Research Policy, (32)7, 1179-1198.

Open Source Initiative (2006). Open Source Definition. Retrieved 22.04.06 from http://www.opensource.org/
docs/definition.php.

OSOR (2008). Open Source Observatory and Repository for European public administrations . Retrieved
05.09.2008 from http://www.osor.eu.

Palmer, T. (1989). Intellectual Property: A nonPosnerian Law and Economics Approach. Hamline Law
Review, (12)2, 261-304.

Popp, D., Juhl, T., Johnson, D.K. (2004). Time In Purgatory: Examining the Grant Lag for U.S. Patent
Applications. Topics in Economic Analysis & Policy, (4)1, Article 29.

Quah, D.T. (2002). Digital Goods and the New Economy. London School of Economics, Working Paper No.
3846. cep.lse.ac.uk/pubs/download/dp0563.pdf

Raymond, E.S. (2001). The cathedral & the bazaar: Musings on Linux and open source by an accidental
revolutionary. Sebastopol, CA: O'Reilly.

Roberts, J.A., Hann, I., Slaughter, S.A. (2006). Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache Projects.
Management Science, (52), 984-999.

Rossi, C. (2004). Decoding the »Free/Open Source (F/OSS) Software Puzzle« A Survey of Theoretical and
Empirical Contributions. Working Paper No. 424. http://www.econ-pol.unisi.it/quaderni.html

Rossi, C., Bonaccorsi, A. (2005). Intrinsic vs. extrinsic incentives in profit–oriented firms supplying Open
Source products and services. First Monday, (10)5, no pagination.

Ryan, R.M., Deci, E.L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions.
Contemporary Educational Psychology, (25), 54–67.

Sakakibara, M., Branstetter, L. (2004). Do stronger patents induce more innovation? Evidence from the 1988
Japanese patent law reform. In Maskus, K.E. (Ed.), The WTO, intellectual property rights and the
knowledge economy (pp. 544-567). Cheltenham: Edward Elgar.

Samuelson, P., Scotchmer, S. (2002). The Law and Economics of Reverse Engineering. The Yale Law
Journal, (111), 1575-1663.

Sattler, H. (2003). Appropriability of product innovations: an empirical analysis for Germany. International
Journal of Technology Management, (26)5/6, 502-516.

Saviotti, P.P. (1997). Innovation systems and evolutionary theories. In Edquist, C. (Ed.), Systems of
innovation: technologies, institutions and organizations (pp. 180-199). London: Pinter.

Scotchmer, S. (2004). Innovation and incentives. Cambridge, MA: MIT Press.

Scotchmer, S. (1991). Standing on the Shoulders of Giants: Cumulative Research and the Patent Law.
Journal of Economic Perspectives, (5)1, 29-41.

68 6. References

Shapiro, C. (2001). Navigating the Patent Thicket: Cross Licenses, Patent Pools, and Standard Setting. In
Jaffe, A.B., Lerner, J., Stern, S. (Eds.), Innovation Policy and the Economy, Volume 1 (pp. 119-150).
Cambridge (MA): NBER.

Shapiro, C., Varian, H.R. (1999). Information rules : A strategic guide to the network economy. Boston, MA:
Harvard Business School Press.

Stallman, R.M. (1984). The GNU Manifesto. Retrieved 22.06.206 from www.gnu.org/gnu/manifesto.html.

Torvalds, L., Diamond, D. (2002). Just for fun: The story of an accidental revolutionary. New York:
HarperBusiness.

Tuomi, I. (2005). The Future of Open Source. In Wynants, M., Corneli, J. (Eds.), How Open is the Future?
(pp. 429-459). Brussels: VUB Brussels University Press.

UNCTAD (2003). E-Commerce and Development Report 2003. UNCTAD/SDTE/ECB/2003/1. Retrieved
10.05.06 from www.unis.unvienna.org/unis/pressrels/2003/tad1967.html.

van Dijk, T. (1994). The Economic Theory of Patents: A Survey. MERIT Research Memorandum, (2)17, 1-
39.

von Hippel, E. (2005). Open Source Software Projects as User Innovation Networks. In Feller, J. (Ed.),
Perspectives on free and open source software (pp. 267-278). MA: MIT Press.

von Hippel, E., von Krogh, G. (2003a). Open Source Software and the "Private-Collective" Innovation
Model: Issues for Organization Science. Organization Science, (14)2, 209-223.

von Hippel, E., von Krogh, G. (2003b). Special issue on open source software development. Research
Policy, (32)7, 1149-1157.

von Krogh, G., Lakhani, K., Späth, S. (2003). Community, joining, and specialization in open source
software innovation: A case study. Research Policy, (32)7, 1217–1241.

Weber, S. (2004). The Success of Open Source. Cambridge, MA: Harvard University Press.

Wheeler, D.A. (2007). Why Open Source Software / Free Software (OSS/FS, FLOSS, or FOSS)? Look at the
Numbers!. Retrieved 05.09.2008 from http://www.dwheeler.com/oss_fs_why.html.

Wheeler, D.A. (2001). The Most Important Software Innovations. Retrieved 26.02.2006 from
http://www.dwheeler.com/innovation/innovation.html.

Wiener, N. (1961). Cybernetics, or control and communication in animal and machine. Cambridge, MA:
MIT Press.

Ye, Y., Kishida, K. (2003). Toward an Understanding of the Motivation of Open Source Software
Developers. Proceedings of the International Conference on Software Engineering (ICSE). Portland.

Zeitlyn, D. (2003). Gift economies in the development of open source software: Anthropological reflections.
Research Policy, (32)7, 1287–1291.

CHAPTER III

Nothing really matters?
Empirical Evidence on the Effects of Software

Patents on the Motivation of
Free/Open Source Software Developers

I thank Reto Hilty, Luigi Innocente, and Christophe Geiger of the Max Planck Institute for Intellectual Prop-

erty, Competition and Tax Law (Munich, Germany) for long discussions and helpful comments. I also thank

Bob English and Charles Schweik for providing project information for the sampling, and Google, OpenMoko,

and ETH Zurich’s Neptun program for sponsoring the lottery prizes for the survey.

Abstract

The debate about software patents (SWP) in the EU has been accompanied by massive lobbying by

both proponents and opponents. Particularly Free/Open Source software (FOSS) advocates have

expressed concerns that SWP will affect FOSS developers negatively. Yet, policy makers have no

systematic data that would enable them to decide on this question, which in the past has led to

divergence in software patent policies of the US and the EU. This study presents a first attempt to

tackle this question empirically by focusing on the effects on developer motivation as one of the

key driving forces behind the performance of the FOSS system. Arguments and hypotheses for

both sides are formulated and tested against a new data-set from a large, dedicated developer sur-

vey. Initial findings are: (1) actual SWP incidents are rare events and the presence of SWP in gen-

eral has no significant effect on FOSS developer motivation; (2) empirical results do not lend

significant support to neither SWP proponents’ nor SWP opponents’ hypotheses; (3) measuring

the presence of SWP in a meaningful way proved to be very difficult; accordingly, three different

measures are discussed. The conclusion offers some advice for policy makers and suggestions for

further research.

72 1. Introduction

1. Introduction

Many Free/Open Source software (FOSS) advocates have expressed concerns that software

patents have a negative influence on FOSS development. This article investigates to what extent

this concern is warranted by focusing on the effects of patenting software on FOSS developer mo-

tivation. Arguments of proponents and opponents related to intrinsic and extrinsic motivational

factors are condensed into five hypotheses. They are then tested using a survey of FOSS project

leaders conducted in autumn 2007.

Two trends have been affecting the software industry over recent years. First, Free/Open

Source Software (FOSS) has emerged as a dynamic phenomenon: software that is freely available

attracts more and more users. Some advocates expect that the unorthodox regime of collabora-

tive development and shared code ownership will largely impact the industry’s royalty-based

business model and oligopolistic market structure. Second, being able to patent software – “the

quintessential digital good” (Quah 2002:29) – presents a case of particular debate for policy mak-

ers, researchers, and the proprietary and open source software industry. Opponents consider soft-

ware patents (SWP) the largest threat to the FOSS community. They fear the opaque SWP system,

arguing that it causes legal uncertainty and doubt, which reduces developers’ motivation to con-

tribute and may threaten the viability and performance of the FOSS system. Important motiva-

tions like joy or self-expression in writing software are adversely affected. Lastly they point out

that FOSS projects usually have no income or legal representation, which makes them more vul-

nerable to lawsuits than proprietary software businesses.

Yet, one may wonder if this fear is really warranted. Why do SWP matter for individuals

who reside in different countries and have no formal legal representation, and who furthermore –

carefully observant of copyright law – share software code among themselves via servers that can

in turn be located in different countries? It does matter, because each contributing developer

does reside within the boundaries of a national territory, a jurisdiction that either does or does

not allow software to be patented. If it does, the creation, distribution, sale, export, and related

activities are bound by patent law, which by definition only gives the patent-holder an exclusive

right for such activities. Anecdotal evidence shows that SWP can put restrictions on the distribu-

tion of FOSS, but we still lack systematic knowledge of how software patents affect the creation of

FOSS by the developer community.

1. Introduction 73

Research has been conducted on the broad motivational spectrum of FOSS developers (see

Krishnamurthy (2006) for an overview) and on software patenting in the US (Bessen and Maskin

2006). Only initial theoretical work exists that links both fields (Dapp and Bernauer 2009). This ar-

ticle further investigates the causal mechanisms relating SWP and FOSS developer motivation and

presents a first empirical study comparing two regions with significant differences in the pres-

ence of SWP.

Two ‘worlds’ related to SWP are established to serve as a theoretical frame. In the first world

SWP have a strong presence: They are easy to obtain and are found in various software domains.

The second world features a low presence of SWP: they are more difficult to obtain and the legal

backing is weaker. SWP proponents support the first world, as it offers, in their eyes, an effective

means to foster innovation by triggering monetary motivation among FOSS developers – much

like it does in other domains where patents on inventions can be obtained. In contrast, opponents

identify a fundamental incompatibility between how patents function and how software is devel-

oped, particularly under the FOSS regime. They argue that non-monetary, joy-related motivation

suffers, and thus support the second world with a SWP presence as low as possible.

The US and the EU are good real-world examples of these two SWP worlds: the US features a

significantly stronger presence of SWP than the EU. US patent policy and a series of landmark

court decisions over the last two decades made it very easy to patent software and the numbers

rose significantly (Levine and Saunders 2004; Bessen and Hunt 2004). In contrast, the EU experi-

enced a lengthy debate about ‘computer-implemented inventions’ over the last several years be-

fore the proposal for a related directive by the European Commission was finally rejected in the

European Parliament in 2005. Consequently, the SWP policies of both regions are diverging and

establishing different legal environments for the FOSS communities to operate. Interestingly,

while the ‘Free Software Foundation’, the ‘Open Source Initiative’ and many popular FOSS projects

that originated in the US are fighting against the country’s SWP policy, parts of the EU consider

FOSS to be strategic in gaining ground against the dominant US software industry.19

Through a survey conducted in autumn 2007 among 1,815 US- and EU-based project leaders

from the largest FOSS portal called SourceForge, a new data-set was built. Respondents were

asked about their motivations and their experiences with software patents during the time period

August 2005-August 2007. The data was used to test the hypotheses put forward in this article.

19 The ‘Open Source Observatory and Repository for European public administrations (OSOR)’ tracks FOSS adoption
across countries, regions, and cities in the EU. See http://osor.eu.

74 1. Introduction

Neither the proponents’ nor the opponents’ positions are significantly supported by the

empirical results. The empirical results do not lend support to proponents’ arguments for positive

effects on monetary and skills-related motivation. They also do not lend support to opponents’

arguments for negative effects on joy- and self-expression-related motivation. Of particular inter-

est was the measurement of SWP presence, for which three approaches are presented and dis-

cussed. None, however, proved to be an overwhelmingly good single predictor for FOSS developer

motivation.

The introductory section summarizes the software patent debate and describes the FOSS

system and what role motivation plays. The following section describes the two theoretical SWP

worlds and the arguments of SWP proponents and opponents, leading to hypotheses for each

side. The section on research design and methods is followed by the results section, including sta-

tistical analysis and interpretation of the results. The final section concludes and offers sugges-

tions for future research.

2. Software patents and Free/Open Source software 75

2. Software patents and Free/Open Source software

2.1 The blurry legal status of software patents

Patents are state-granted, time-bound exclusive rights to prevent others from commercial ex-

ploitation of an invention (Lévěque and Ménière 2004). They are built on the assumption that in-

ventors are primarily motivated by money and that they disclose their invention to the public

only in return for monetary compensation. When a patent is granted on an invention other im-

plementations of it require permission of the patent-holder, who in return, is obliged to disclose

the invention to the public, so that a skilled layperson can replicate it. Furthermore, a patent cov-

ers all implementations of an underlying idea. A consequence of this logic is that independent in-

vention can be infringing as well (in contrast to copyright, where only identical copies are

infringing). If an independently developed invention falls under the claims of a patent, the devel-

oper becomes liable – even if unknowing and unaware.

For three reasons it is difficult to say whether or not software can be patented in a particu-

lar jurisdiction. First, there is no commonly accepted definition of what a software patent is. Not

only are the semantics of the term disputed but also whether the term itself is adequate. The se-

mantic debate is about what a software patent actually encompasses: is it the software itself

(‘software patent’) or the combination of software and hardware (‘computer-implemented inven-

tion’) as titled by the European Commission (2005)? Second, Cohen and Lemley argue that patent

granting practice in the US has created a “doctrine of the magic words” (Cohen and Lemley

2001:9) as patent specifications have been drafted to conceal the fact that they actually refer to

software. When drafting patent claims lawyers deliberately use broad language. The applicant’s

interest to gain broad protection for his invention only reinforces this tendency since a single

patent protecting one concept/idea typically covers multiple ways of implementation into soft-

ware code. Third, there can be a gap between the letter of patent law and the granting practice of

patent offices. To give an example: Despite the fact that art. 52 of the European Patent Convention

explicitly forbids patenting of software, approximately 70,000 of patents qualifying as software

patents have been accorded by the European Patent Office during 1982-2004 (Rentocchini and De

Prato 2006), often using similar wording as in the US.

The US is considered the country with the highest presence of SWP. Several policy develop-

ments have led to this situation (Jaffe 2000:1) the creation of the US Court of Appeals for the Fed-

76 2. Software patents and Free/Open Source software

eral Court pools patent cases at one place; 2) the Baye-Dohle Act allows patentability of federally

funded R&D; 3) the WTO agreement on trade-related aspects of intellectual property rights per-

mits patentability of “all fields of technology” (TRIPS, art. 27); 4) key court decisions have gradu-

ally expanded patentable subject matter to include software and business methods (Levine and

Saunders 2004). As a result, the number of US software patents has increased significantly (Bessen

and Hunt 2004): until 2001 roughly 80,000 US software patents had been granted. Cohen and Lem-

ley (2001:3) state that the question of whether or not software is patentable in the US is a matter

“for the history books” and no debate anymore. In contrast, the European Parliament rejected a

proposed directive on ‘computer-implemented inventions’ in 2005, after long debate and massive

lobbying on both sides (Haunss and Kohlmorgen n.d.). Despite that difference, SWP have been

granted by the EPO; but their legal enforceability is much less clear than in the US. In sum, SWP

presence is stronger in the US than in the EU: while it is intentional in the US, it is rather a faux

pas in the EU, as the legal frame there would suggest a different situation.

2.2 The FOSS system and the motivation behind

The way software is produced, managed, and distributed under the FOSS system is very different

from the rules and processes known from the proprietary part of the industry. Three distinct fea-

tures of FOSS cause this difference (Dapp and Bernauer 2009). Firstly, enabled by the Internet and

affordable personal computers, large numbers of developers engage in massive decentralized, col-

laborative development of software. Developers regularly exchange source code from FOSS projects.

Most projects of a certain size adhere to a meritocratic governance structure that can be quite so-

phisticated but is not comparable to typical firm hierarchies since developers freely choose if and

how they contribute. No formal contract relations exist, and often the project does not even have

a legal status. Geographically, developers and servers hosting source code can be located in differ-

ent jurisdictions. Secondly, developers license their source code under an open source copyright li-

cense. Everybody is allowed to run, copy, modify, and redistribute the software as they see fit.

Thus, developers give up most of the control over the code that traditional copyright grants them.

Having many developers contribute under this regime leads to a system of shared copyright and

ownership that prevents effective control by one individual. Some licenses include a so-called

‘copyleft’ mechanism to prevent users from appropriating the code in proprietary software.

Thirdly, open source copyright licenses require source code to be freely available for everybody, usu-

ally downloadable from the Internet. As a consequence, there is no royalty-based revenue stream

from license sales for developers.

2. Software patents and Free/Open Source software 77

If there is no money to be made, why do developers contribute to FOSS at all? They do it be-

cause their motivation is broader than money alone. Ryan and Deci (2000) call motivation intrin-

sic when something is done because it is inherently interesting or enjoyable, for instance, because

of the fun or the challenge it involves. Extrinsic motivation is present when someone acts because

such activity leads to an additional, separate outcome – an instant reward or an incentive with a

time delay.

The role of motivation was one of the first topics FOSS research tackled: Krishnamurthy

(2006) provides a synopsis of several empirical studies investigating the motivational setup of

FOSS developers. He concludes that both intrinsic and extrinsic components of motivation are im-

portant and finds that “the evidence is mixed on the relative value of intrinsic and extrinsic moti-

vational components” (ibid., 27). Different studies support this heterogeneous picture (Ghosh et

al. 2002; Hars and Ou 2002; Hertel et al. 2003; Lakhani and Wolf 2005; Roberts et al. 2006).

TABLE 1 provides an overview of all motivational factors that Dapp and Bernauer (2009, Ta-

ble 4) identified as potentially affected by SWP. To meet space constraints in this article, a repre-

sentative selection of five factors, marked (*), was made for further analysis: MONEY and SKILLS

in the group of extrinsic factors relate to the main aspects of SWP, monetary incentive and knowl-

edge disclosure. From the group of enjoyment-based intrinsic factors, JOY as the most important

motivational factor overall (FIGURE-A 1) and SELF-EXPRESSION as the most directly affected fac-

tor by SWP restrictions have been selected. From the group of obligation-based factors, SOFT-

WARE FREEDOM was selected because one can argue for effects of SWP in both directions and

developers motivated by ‘software freedom’ may be more sensitive towards SWP issues than other

FOSS developers.

Software patents are feared by FOSS developers since they may limit their freedom to write

software – up to a point where they can block development completely. The Free Software Foun-

dation (2008) and the Foundation for a Free Information Infrastructure (2009) maintain a list of

cases where SWP had negative effects on open source or proprietary software programs.20 The

risk is considered high because many patents have already been granted and a single broad

enough patent could block broad areas of functionality, resulting in many infringing programs at

once. As a consequence, developers would have to pay license fees or make do with less function-

ality.

20 See http://www.gnu.org/patent-examp/patent-examples.html and http://eupat.ffii.org/patents/effects/,
retrieved 13.03.2009.

http://www.gnu.org/patent-examp/patent-examples.html
http://eupat.ffii.org/patents/effects/

78 2. Software patents and Free/Open Source software

TABLE 1: motivational factors potentially affected by SWP

Instant Rewards (extrinsic) Enjoyment-based (intrinsic)

SKILLS (*). Learn new coding skills by reading and writ-
ing code.

JOY (*). Programming as a fun activity, such as a hobby.

SELF-HELP. Ability to help oneself by improving pro-
grams.

SELF-EXPRESSION (*). Ability to express oneself aestheti-
cally through software code. Code writing as an art form.

NET GAIN. A developers gets access to the whole pro-
gram, although he contributes only small parts.

ALTRUISM. Provide freely available useful software to
support other users.

MONEY (*)(M). Direct monetary reward, e.g., when being
hired to write code for a FOSS project.

CHALLENGE. The intellectual challenge of solving diffi-
cult programming problems.

Delayed Incentives (extrinsic) Obligation-based (intrinsic)

CAREER (M). Signal skills to potential future employers,
self-marketing.

IDENTIFICATION. Identification and belonging to a com-
munity.

NORMS. Observance of community norms like, e.g., shar-
ing.

SOFTWARE FREEDOM (*). ‘Software must be free’ as a po-
litical mission.

Based on Dapp and Bernauer 2009.

Anecdotal evidence aside, however, we have very little systematic knowledge about the ef-

fects of software patents on FOSS developers’ motivation. We lack theoretical work investigating

how the presence of SWP influences certain motivational factors and we lack empirical studies

testing such hypotheses. Does motivation differ for developers who face different levels of SWP

presence? If, controlling for other factors, correlations can be observed empirically, they will

merit further research since motivation is an important cornerstone of the FOSS system.

3. Software patent presence and FOSS motivation 79

3. Software patent presence and FOSS motivation

For the ‘model worlds’ with differing levels of SWP presence, I define SWP presence on two levels:

availability and prevalence. While SWP availability relates to the legal opportunity to patent soft-

ware, SWP prevalence relates to the willingness of the players to make use of that opportunity,

leading to varying patent presence and SWP incidents. Proponents of SWP should be interested in

increasing the presence of SWP, while opponents are interested in decreasing it. This section

presents the arguments on both sides.

3.1 The proponents view

“Patents play useful roles in the open source environment.” (EICTA 2000:4)

Having strong confidence in patents as effective monetary incentive instruments, proponents

support a high-SWP-presence world. They argue that the FOSS field should not be excluded, as it

is not different from other industries in terms of patentability: Patents work in FOSS as well as in

other innovation fields. Therefore, they are in favor of extending the patent system to FOSS and

they expect a positive effect on extrinsic, especially monetary, motivation of FOSS developers.

Two of the three classical utilitarian/economic patent theories are related to money (Fisher

2005). Incentive theory, “probably the most quoted argument in favor of patents” (Dutton 1984:20),

argues that patents enhance innovation because they give an incentive to the individual to make

the needed up-front investments to invent and later commercialize the invention (Mazzoleni and

Nelson 2004). Reward theory argues that patents “secure inventors their just reward, proportional

to the usefulness of the invention to society” (Fisher 2005:8). Patents increase the profit of the in-

ventor, discourage competitors from free-riding, and therefore help to prevent imitation. Inven-

tors deserve an exclusive right since an invention’s potential to perform tasks more efficiently or

satisfy needs more effectively represents a measurable cost-saver to users.

In the FOSS system, SWP proponents argue that developers also make considerable invest-

ments when writing software, but in contrast to proprietary software producers, they have no li-

cense income to compensate for their time commitment. Here, SWP present a means of

compensation and an incentive for them to continue. Consequently, FOSS developers should be

more motivated by money when they reside in regions with a high presence of SWP.

80 3. Software patent presence and FOSS motivation

HYPOTHESIS 1: A high presence of SWP increases developers’ monetary motivation to con-

tribute to FOSS projects.

Exchange theory, the third classical utilitarian patent theory, argues that patents offer a fair

balance between the interests of the public and the inventor (Fisher 2005): Through the patent

letter the public gets access to the knowledge embedded in the invention, while the inventor gets

exclusive rights in exchange for disclosing the invention. Through the construction of a time-

bound exclusive monopoly right that balances the interests of the inventor and the public,

patents encourage both the invention and its publication.

In the FOSS system, proponents (EICTA 2000:4) argue that a SWP discloses underlying con-

cepts of a software invention in a way source code cannot. While source code is low-level and de-

tailed, patent letters offer conceptual knowledge in a form that is more appropriate for learning

about the invention, identifying directions for future code development and thus learning new

skills. Therefore, the level of skills-related motivation should be higher among FOSS developers

residing in places with a high presence of SWP.

HYPOTHESIS 2: A high presence of SWP increases developers’ skills-related motivation to

contribute to FOSS projects.

3.2 The opponents view

“Software patents are the software project equivalent of land mines: each design decision
carries a risk of stepping on a patent, which can destroy your project.” (Stallman 2004)

Being skeptical about whether the patent logic is compatible with the FOSS development process,

opponents support a low-SWP-presence world. They point out that the FOSS field should be ex-

cluded, as it is fundamentally different from other industries in terms of patentability: in their

view, SWP fail not only in FOSS but also in the proprietary software industry. Empirical studies

showing that 26% of US patent lawsuits in 2002 involved software patents indicate that there is a

problem (Bessen and Meurer 2008, ch. 9). They argue that the logic of patents – to protect a single

idea as broad as possible – is incompatible with software, because software contains thousands or

millions of ideas. Since software is built incrementally by re-using many existing ideas, patent in-

fringements would be the rule rather than the exception. Therefore, opponents are in favor of

limiting the reach of the patent system, while they expect a negative effect of SWP on intrinsic,

especially joy-based, motivation among FOSS developers

3. Software patent presence and FOSS motivation 81

Following the incompatibility argument, SWP have the potential to slow down innovation or

even block software development in the FOSS, as well as in the proprietary software industry. In

the FOSS field, however, the threat is higher and the defense weaker. FOSS projects are more vul-

nerable for several reasons: first, open access to source code makes infringements easier to de-

tect. Second, FOSS projects have very little legal backing. SWP are perceived as a risk that is hard

to identify and quantify because detecting infringement is difficult. In addition, many developers

are volunteers for programming: researching patent databases for potential infringements in or-

der to assess the legal risk exposure is something hardly any FOSS developer would do. As a con-

sequence, the opaque SWP system causes fear. Third, individual developers have no effective

defense strategy. They could set up organizations dealing with legal issues, but building up bar-

gaining power by creating own patent portfolios is practically impossible for lack of knowledge

and financial resources. For proprietary companies this is not an issue: Bill Gates of Microsoft

wrote in 1991 that “[i]f people had understood how patents would be granted when most of to-

day’s ideas were invented, and had taken out patents, the industry would be at a complete stand-

still today.” He suggested, that “[t]he solution to this is patent exchanges with large companies

and patenting as much as we can.” (Memo “Challenges and Strategy”, 16. May 1991).

In sum, writing software in a patent-dense domain exposes the developer to incalculable le-

gal risk, with few or no defense options. The fear of becoming legally liable affects the joy devel-

opers experience from contributing and sharing code. Thus, we would expect the level of joy-

related motivation to be lower when SWP presence is high. This may be so where SWP can be ob-

tained easily and/or developers operate in a patent-dense software domain where infringement

claims are often raised.

HYPOTHESIS 3: A high presence of SWP decreases developers’ joy-related motivation to con-

tribute to FOSS projects.

A further implication of the potential of SWP to block software development is the restric-

tion imposed on developers to freely formulate code details. Dapp and Bernauer (2009) note that

one important motivation for FOSS developers is to write not only functional, but also elegant or

aesthetic code. A SWP traps many possible code implementations by broadly protecting a single

idea, which restricts developers’ artistic freedom of self-expression and to formulate code as they

deem best.

82 3. Software patent presence and FOSS motivation

HYPOTHESIS 4: A high presence of SWP decreases developers’ self-expression-related moti-

vation to contribute to FOSS projects.

3.3 Do software patents really matter for FOSS?

“I think people will always invent anything that is useful and good,
if it will answer their purpose to do so, even without reference to a patent.”

President, UK Institute of Civil Engineering 1851 (Fisher 2005:15)

Despite the arguments discussed above, one may think of reasons why the presence of SWP

may be inconsequential for developer motivation. First, there may be no “need to stimulate in-

vention” (Fisher 2005:14) in a monetary sense. Positive effects of SWP on monetary motivation

may not be present since a substantial amount of motivational factors driving the FOSS system

are non-monetary, such as “joy” (Krishnamurthy 2006). Second, there may be no observable nega-

tive effect on joy or self-expression because developers do not experience an actual threat. Patent

holders may not hunt down infringing developers because there are too many and they are not a

financially worthwhile target. As long as infringement remains unsanctioned, patents may have

no observable negative effect. Third, how a FOSS developer deals with a software domain clut-

tered with patents is not clear per se. Depending on the self-conception of the developer, he may

belong to one of two camps within the community: politically motivated ‘software freedom fight-

ers’ or ‘open source pragmatists’. The first group is more motivated by software freedom and thus

develops software to provide free alternatives. The second group is less motivated by political mo-

tives but rather by pragmatic aspects. Such a developer may be more inclined to withdraw his en-

gagement and avoid certain software domains when facing patent issues. Therefore, one may

expect a ‘freedom fighter’ to target his efforts at patent-cluttered areas – precisely to provide

patent-free alternatives here as well. These developers search the “dangerous neighborhood” of

patented technology to provide an escape: an equivalent patent-free solution that is available to

everybody as FOSS. Ogg Vorbis, a patent-free open-source audio file format, is an example of a

technology invented to avoid a patent-covered technology called MP3. In other words, a high SWP

presence potentially attracts developers with a high software-freedom-related motivation.

HYPOTHESIS 5: A high presence of SWP attracts developers with a high software-freedom-

related motivation to contribute to FOSS projects.

3. Software patent presence and FOSS motivation 83

Which camp dominates is an empirical question, and one that is hard to answer since

projects that effectively ceased because software patent issues made developers leave are very

hard to identify. Potential consequences of this selection effect are discussed in the next section.

84 4. Research design and methods

4. Research design and methods

4.1 Data collection and sampling strategy

The online survey targeted leaders of FOSS projects registered on SourceForge.net (SF) to find out

about their experiences with SWP. FOSS developers who held a project leader function were se-

lected for several reasons: First, SWP can only be assigned to natural or legal persons, and many

projects are not represented by a legal person. If a project is attacked, the project leadership will

be first to know. Second, having been a developer who has contributed code in the past, he or she

is well equipped to answer questions related to individual motivation. Third, having the role of a

project leader, he or she should also be able to answer questions related to the project as a whole.

SF was chosen because it is the largest FOSS developer community portal. It offers a broad

variance in geographical location of developers and in software application domains that may

also be relevant to the SWP question. In addition, employment status also varies for SF develop-

ers. Large ‘top shot’ projects (e.g., Linux kernel, Apache web server, OpenOffice.org productivity

suite), with their own websites, have not been included in the sample. The developer community

of such projects is less representative, as many work for companies sponsoring these projects as

part of their business model. Software domain variance would be limited, as one large project

usually covers only very few software domains, often only one. These projects also tend to be

‘over-surveyed’, as many studies have focused on them in the past.

Two sources have been useful in building the sample. First, the main problem with SF –

abandoned or ‘dead’ projects – had to be countered by setting up a well-defined sampling process

that excluded such projects. English and Schweik (2007), who developed a metric to separate

failed and successful projects using release numbers and time intervals between releases, kindly

provided me with a list of 57,085 names of ‘alive’ projects that had produced at least one code re-

lease by August 2006. Second, I chose FLOSSmole (Howison et al. 2006), a data collection project

led by Megan Conklin at Syracuse University, which provides a central repository uniting data

from different FOSS portals, including SF to extract information about project leaders.21 Thus, the

sample frame included project leaders of all 57,085 ‘alive’ projects hosted on SF as of August 2006.

From these a random sample of 11,000 was drawn and invited to a web-based survey. In total,

21 See http://ossmole.sourceforge.net/.

http://ossmole.sourceforge.net/

4. Research design and methods 85

2,441 individuals responded (22% overall response rate), of which 1,815 resided in the US or the

EU.

‘Failed’ projects were not considered for the survey because abandoned projects are much

less likely to respond and provide reliable answers. Hence, the sample does also not include devel-

opers who abandoned projects or who never got involved in a project because of SWP issues. An

ideal sample would of course include past, current, and future FOSS developers. That being impos-

sible for practical reasons, the question is in which ways does this selection effect distort the sam-

ple? Having only ‘motivated’ developers who were active during the survey period means that

developers with low motivation levels are underrepresented in the sample. As a consequence, sta-

tistical results based on this sample will give more support to hypotheses arguing for increasing

motivation levels (H1, H2) and give less support to hypotheses arguing for decreasing motivation

levels (H3, H4) than they actually should. In other words, statistical analysis will report smaller ef-

fects than there actually are. (The effects on H5 are more complicated and will be discussed in the

results section.) If SWP incidents are rare events as argued earlier, there should not be much sam-

ple distortion, as only a very small number of developers would have abandoned their projects

due to SWP. The finding by Arundel et al. (reported in Ghosh and Aigrain (2006:121)) – that 10% of

firms in ICT producing and ICT- intensive sectors change or avoid lines of research because of

concerns that others have patents in that area – may serve as an upper boundary. In any case, the

decision to fully abandon a project is the action of last resort for a FOSS developer. Up to that

point, SWP have the potential to hinder or delay the development process and accordingly affect

the motivation of the involved developers.

4.2 Survey and questionnaire

A questionnaire was designed and tested in two pilot phases preceding the main survey run. A lab

pilot among 20 researchers and FOSS developers was used to get feedback on the online setup as

well as on questions of wording and answer categories (Fowler 2002; Fowler 1995; Dillman 2000;

Czaja and Blair 1996). Subsequently, a field pilot with a sub sample of 1% of the target sample was

run with a first questionnaire: this pilot collected answers on a few open questions that were clus-

tered and recoded into multiple choice questions for the main run.22 In autumn 2007, the main

survey was run in three parallel batches of one-week intervals to reduce the risk of a technical

failure stopping the survey process. Over four weeks, respondents of every batch received four

22 Only answers from the field pilot (response rate 24.5%) were included in the final data-set. Data from the lab pilot
was not used.

86 4. Research design and methods

emails: one invitation, two reminders, and a last call. As a result, the main survey took six weeks

to run.

A general challenge in surveys is to avoid sample distortion by biased respondents. The

main cause of such distortion is self-selection of participants. To avoid the practice used by previ-

ous developer surveys of recruiting participants through a ‘snow-ball’-like system, where the set

of potential respondents is not defined ex ante, a controlled survey environment was set up, with

a pre-defined sample frame (see above), simple random sampling, targeted personal invitations,

and mechanisms to prevent non-invitees from participating. These measures helped minimize

coverage and sampling errors (Dillman 2000:9).23

4.3 Key variables

The dependent variables are motivational factors. Respondents had to rank the importance of each

motivational factor between ‘not important at all’ to ‘very important’ on a 6-point Likert scale.

The following factors (see TABLE 1) were analyzed: MONEY, SKILLS, JOY, SELF-EXPRESSION, and

SOFTWARE FREEDOM. FIGURE-A 1 in the appendix shows the means of all motivational factors.

On the predictor side, SWP presence is the key explanatory factor.24 The concept is repre-

sented by three different variables. (a) Accounting for the intricacies of patent laws across coun-

tries would require dedicated legal studies for each country to construct a comparative index

measuring the strength of the SWP regime. A simplified classification was used instead: a high

presence of SWP in a jurisdiction was coded as ‘1’, the low presence as ‘0’. Therefore, the US (and

Japan) was assigned a ‘1’ for the highest SWP presence, the EU and remaining countries a ‘0’.

Levine and Saunders (2004) and Bessen and Hunt (2007) provide detailed support for these assign-

ments. (b) SWP prevalence is measured in two ways: first, SWP incidents can only occur if the ju-

risdiction provides legal ground for them. Thus, respondents have been asked whether the project

they led had faced any SWP incident. The according yes/no dummy was included as INCIDENT. (c)

The second measure for SWP prevalence is bound to the software domain of the FOSS project.

Anecdotal evidence suggests that certain software domains, like cryptography or multimedia,

23 Instead of using a mailing list or website to announce the survey, a project leader for each project was identified
(using the FLOSSmole database) and invited by email. Invitations contained a personalized web link to prevent
non-invitees from participation. After the respondent had completed the questionnaire, the questionnaire was
closed and further access denied. (LimeSurvey was used to manage the survey.) A lottery with gadgets attractive
for the target group was offered to counter possible selection bias that only ‘SWP-haters’ would participate.

24 Based on the concept that ‘software patents’ are inventions embodied in software (Allison and Lemley 2000), I use
the definition by Bessen and Hunt: software patents cover a “logic algorithm for processing data that is
implemented via stored instructions; that is, the logic is not hard-wired” (Bessen and Hunt 2004:8).

4. Research design and methods 87

face higher SWP prevalence than other domains. From the list of 14 domains by which projects

hosted on SF are categorized, respondents were asked about the top four domains with highest

patent pressure. From this an index for patent pressure was constructed (TABLE 2) and grouped

into three pressure levels: High, low, and no domain pressure. The first two are included as

dummy variables: HI DOM PRESS and LOW DOM PRESS.

The following control variables are included: (a) SWP RESEARCH indicates whether or not a

project conducted research into the patent situation in their field; (b) whether a developer has di-

rect (by coding) or indirect (other FOSS-related work) income from FOSS is captured in the di-

chotomous variable FOSS INCOME; (c) HIGHER EDU captures whether or not a respondent has an

advanced education degree (bachelor or higher); (d) experience is measured in two dimensions: in

terms of years of engagement (EXP [yrs]) and number of projects contributed (EXP [pjs]); (e) in-

formation on age is represented in a simplified way by cutting the age group curve (FIGURE-A 2 in

the appendix) at the median category: AGE>30 flags when respondent was above 30 years old.

Gender differences were insignificant during analyses and have been omitted.

88 5. Empirical results

5. Empirical results

5.1 Descriptive statistics

This section presents descriptive statistics about the dependent variables (five motivational fac-

tors), the predictor variables used to measure SWP presence (law, patent pressure by domain, and

SWP incidents) and some background information about the survey population (employment and

income situation).

The survey covers the 2-year period from August 2005 to August 2007. During that time, 637

(26,1%) respondents resided in the US, 1,178 (48,3%) in the EU, and 626 (25,7%) in the ‘rest of the

world’ (ROW), yielding a total of 2,441 respondents (response rate 22%). The two dominant age

groups (26-30 and 31-35 year-olds) mark the top of the bell curve (c.f. FIGURE-A 3 in the appendix)

and make up for 51.5% of the sample – 16.4% are younger and 32.1% are older. The majority of re-

spondents are male (1.5% females) and well educated (81.8% with a university degree), which is in

line with the ‘FLOSS study’ that reported 70% developers with a university degree and a ratio of

1.1% females (Ghosh et al. 2002).

Figure 1 shows the aggregated importance levels (mean values) of the five motivational fac-

tors, broken down by region. Across all regions, joy-related motivation has the highest, monetary

motivation the lowest overall level. Motivation related to self-expression and skills share the sec-

ond position and software freedom is in third place. This suggests the relative importance of in-

trinsic over extrinsic factors compared to previous studies in which Hars and Ou (2002) stressed

extrinsic factors; Lakhani and Wolf (2005) found intrinsic factors to be important, whereas

Roberts et al. (2006) found no impact of intrinsic motivation on code contribution. We still miss a

clear picture of the motivational FOSS landscape.

Almost identical levels within regions (except for money earning and software freedom)

would suggest that the motivation levels do not differ much between them. Yet, further investiga-

tion is appropriate since these aggregated values do not show all possible influencing factors. The

geographical breakdown only captures the legal availability of SWP, not all differences in SWP

presence. Focusing only on the geographical location may not be enough; the software domain a

program belongs to may be a strong predictor as patent pressure may vary more across software

domains than across jurisdictions.

5. Empirical results 89

TABLE 2 shows the index constructed to measure patent pressure across software domains.

The index values are shown together with the share of sampled projects. One can see that respon-

dents perceive a moderate patent pressure in most software domains, except the last three.

Two cut points have been identified to divide the software domains into high pressure (in-

dex >0.5), low pressure category (0.1<index<0.4) and no pressure (index <0.1) categories. These

categories are used in the statistical analysis.

TABLE 2: Patent pressure index by software domain

Software domain Pressure Share (%)

[HIGH] Multimedia 0.513 170 (7.0)

Formats/Protocols 0.505 32 (1.3)

[LOW] Office/Business 0.342 98 (4.0)

Communications 0.318 148 (6.0)

Security 0.296 64 (2.6)

Software development 0.261 390 (16.0)

Science/Engineering 0.260 257 (10.5)

FIGURE 1: Relative importance of motivational factors by region (mean values)

90 5. Empirical results

Internet 0.257 351 (14.4)

System 0.256 160 (6.6)

Desktop 0.220 62 (2.5)

Database 0.172 96 (3.9)

Game/Entertainment 0.170 282 (11.6)

[NO] Education 0.044 79 (3.2)

Text editors 0.019 29 (1.2)

Other 0.000 223 (9.1)

(total sample) 2,441 (100.0)

The third predictor variable for SWP presence measures SWP incidents. To better identify

differences between perception of SWP and actual incidents, respondents were also asked about

how they perceived the role SWP played for their project (positive, none, negative). TABLE 3 shows

a cross tabulation of the SWP incident dummy with this auxiliary perception variable ‘SWP role’,

broken down by region.

TABLE 3: Actual patent incidents vs. perceived role of SWP, by region

Patent role US EU ROW Total (%)

SWP incident? No Yes No Yes No Yes

Positive 6 0 12 2 9 0 29 (1.7)

None 362 1 683 5 349 5 1,405 (85.0)

Negative 54 11 86 14 49 6 220 (13.3)

Total 422 12 781 21 407 11 1,654 (100)

N<2,441 because respondents had the option of not answering these questions.

An incident – a holder of a SWP approaching the project – was reported in 44 of 1,654 cases,

making SWP incidents a rare event (2.7%). That remarkable result is consistent across all regions

(EU 2.8%, US 2.7%, ROW 2.7%) meaning that the probability for a SWP incident is largely indepen-

dent of the jurisdiction and its patent law. A low SWP presence is no safeguard for fewer inci-

dents, while a high presence does not necessarily lead to more incidents.

Despite an equal incident risk-level on this aggregation level, seven times more respondents

perceived SWP to have played a negative (13.3%) rather than a positive (1.7%) role for their

project, while the large majority (85%) stated SWP did not play any role at all. (Two EU respon-

dents reported a positive role, although they had one incident. The explanation is that both

5. Empirical results 91

projects had patents of their own and belonged to a protection scheme/patent pool providing le-

gal defense.)

An important aspect when analyzing motivation and patents is the employment and in-

come situation. How were the respondents employed, and did they earn money related to FOSS?

Figure 2 shows employment situation and income source. The majority (86.1%) was employed or

self-employed and only 11.5% were unpaid students (Ntot=2,429). For those earning money, the in-

come source is mostly not connected to FOSS (69-76%, depending on region). This is a higher value

than Ghosh et al. (2002) reported, where 46% of developers did not earn money from FOSS. Con-

versely, only 9-11% of the employees earned money from FOSS-related work (coding and other).

This is considerably lower than the 40% “paid contributors” that Lakhani and Wolf (2005) found in

their study and the 50% of directly paid, salaried or contract developers reported by Hars and Ou

(2002).

5.2 Regression analysis

Logistic regression was used to model the specific effects of SWP presence on motivation. Missing

values in the dependent variables and predictors were imputed using multiple imputation proce-

dures for Stata (Allison 2002; Royston 2005). See part E of the main appendix for complete imputa-

tion statistics.

FIGURE 2: Employment and income situation by region

92 5. Empirical results

The dependent variables are the five motivation variables MONEY, SKILLS, JOY, SELF-EX-

PRESSION, and FREEING SOFTWARE. In the survey, they were ordinal-scaled on a 6-point Likert

scale ranging from ‘not important at all’ up to ‘very important’. For the analysis, they are di-

chotomized at their means, yielding two categories. Placing the cut-off point between category 3

and 4 would assume that respondents have similar interpretations of what the six categories de-

note. Cutting at the mean does not make this assumption, but instead indicates above- or below-

average motivation for each factor using 1 or 0.

The concept SWP presence is represented by three different predictors yielding three models

for each hypothesis test. First, SWP LAW proxies the legal situation regarding software patents in

the US and the EU, equaling ‘1’ if SWP are legally available (US), ‘0’ if otherwise (EU). (For other ju-

risdictions this variable could not be defined. Those observations have been omitted for this anal-

ysis, reducing the number to N=1,815.) Second, HIGH DOM PRESS and LOW DOM PRESS are the top

two levels of an ordinal variable indicating the patent pressure on the software domain the re-

spondent’s project operates in based on the index described in TABLE 2 (the reference category

‘no pressure’ is omitted from the regression). Third, INCIDENT is a dummy for patent incidents,

equaling ‘1’ if the project had a SWP incident during the survey period and ‘0’ if otherwise.

The following control variables are not part of the theoretical argument, but may influence

the motivations considered: SWP RESEARCH flags whether the project conducted research into

SWP in patent databases or not. FOSS INCOME signals when the income source is related to FOSS;

equals ‘1’ if respondents had income from coding FOSS or non-coding work related to FOSS as

shown in Figure 2. FOSS experience is measured in terms of years, EXP [yrs], and number of

projects, EXP [pjs] (FIGURE-A 2). HIGHER EDU flags advanced education; equals ‘1’ if respondents

had a bachelor, master, or Ph.D. (FIGURE-A 3). AGE>30 flags when respondents are older than 30

years, the median category (FIGURE-A 3).

TABLE 4 reports parameter estimates as odds ratios for the proponents’ hypotheses that a

high SWP presence increases developers’ monetary (H1) and skills-related (H2) motivation to con-

tribute to FOSS projects.

5. Empirical results 93

TABLE 4: Proponents: logistic regression for MONEY and SKILLS

MONEY (H1) SKILLS (H2)

A B C A B C

SWP LAW 1.038
(0.121)

 1.056
(0.119)

HI DOM PRESS 1.463
(0.358)

 1.228
(0.278)

LOW DOM PRESS 1.212
(0.199)

 1.466
(0.219)**

INCIDENT 0.683
(0.286)

 1.232
(0.574)

SWP RESEARCH 1.410
(0.251)*

1.393
(0.250)*

1.440
(0.257)**

1.226
(0.213)

1.260
(0.219)

1.217
(0.214)

FOSS INCOME 5.135
(0.657)***

5.171
(0.665)***

5.164
(0.663)***

0.886
(0.108)

0.878
(0.107)

0.885
(0.108)

HIGHER EDU 1.135
(0.167)

1.125
(0.166)

1.133
(0.166)

0.712
(0.104)**

0.713
(0.105)**

0.712
(0.104)**

EXP [yrs] 0.991
(0.016)

0.992
(0.016)

0.992
(0.016)

0.962
(0.014)**

0.963
(0.014)**

0.963
(0.014)**

EXP [pjs] 1.183
(0.098)**

1.176
(0.097)**

1.183
(0.098)**

1.134
(0.093)

1.131
(0.092)

1.129
(0.092)

AGE >30 1.089
(0.132)

1.103
(0.133)

1.095
(0.132)

0.703
(0.081)***

0.708
(0.081)***

0.706
(0.081)***

AIC 2041 2040 2040 2123 2119 2123

BIC 2085 2090 2084 2167 2168 2167

* p<0.10, ** p<0.05, *** p<0.01. Estimates displayed as odds ratios (eβ) with robust standard errors. N=1815.

H1: None of the predictor variables for SWP presence show a significant influence on devel-

opers’ motivation to earn money. When gaining income from FOSS, the odds to be motivated

above average by money are expected to increase by a factor of 5, holding all other variables con-

stant. More project experience increases the odds by 18%, and doing SWP research increases the

odds by 41%. In sum, the results do not lend support for H1: factors related to SWP presence have

no observable effect.

H2: Only coding in an environment with low patent pressure (compared to no pressure at

all) has a significant effect on respondents to learn new skills: it increases the odds by 47%. By

contrast, the odds to be motivated above average are reduced by higher education (factor 0.71),

more project experience (0.96) and growing age (0.71). The result gives light support for H2, based

on patent pressure. SWP law or incidents are not significant.

94 5. Empirical results

TABLE 5 reports estimates for the opponents’ hypotheses that a high SWP presence decreases de-

velopers’ joy-related (H3) and self-expression-related (H4) motivation to contribute to FOSS.

TABLE 5: Opponents: logistic regression for JOY and SELF-EXPRESSION

JOY (H3) SELF-EXPRESSION (H4)

A B C A B C

SWP LAW 1.268
(0.139)**

 1.072
(0.120)

HI DOM PRESS 0.905
(0.204)

 1.383
(0.319)

LOW DOM PRESS 1.043
(0.157)

 1.384
(0.208)**

INCIDENT 1.036
(0.448)

 1.293
(0.618)

SWP RESEARCH 0.704
(0.117)**

0.724
(0.121)*

0.712
(0.119)**

1.179
(0.210)

1.190
(0.214)

1.169
(0.209)

FOSS INCOME 0.670
(0.079)***

0.668
(0.079)***

0.671
(0.080)***

0.951
(0.117)

0.948
(0.117)

0.948
(0.117)

HIGHER EDU 0.832
(0.113)

0.832
(0.113)

0.829
(0.112)

0.993
(0.139)

0.990
(0.139)

0.991
(0.139)

EXP [yrs] 1.020
(0.016)

1.025
(0.015)

1.025
(0.015)

1.007
(0.016)

1.009
(0.016)

1.009
(0.016)

EXP [pjs] 1.358
(0.114)***

1.337
(0.110)***

1.335
(0.110)***

1.096
(0.090)

1.090
(0.089)

1.090
(0.089)

AGE >30 0.675
(0.075)***

0.688
(0.076)***

0.690
(0.076)***

0.718
(0.083)***

0.727
(0.084)***

0.722
(0.083)***

AIC 2212 2218 2217 2102 2099 2102

BIC 2256 2268 2261 2146 2149 2146

* p<0.10, ** p<0.05, *** p<0.01. Estimates displayed as odds ratios (eβ) with robust standard errors. N=1815.

H3: Legal availability of SWP increases the odds for joy-related motivation to be above aver-

age by 27%. In contrast, SWP research, FOSS income, and age over 30 years all reduce the odds by

a factor of 0.71, 0.67, and 0.68 respectively. In contrast, project experience increases the odds for

‘joy’ to be above average by 35%. The result shows an opposite relation as predicted by H3. This

counterintuitive result may stem from the over-representation of high ‘joy’ levels due to the se-

lection bias in the sampling. In addition, the variable SWP LAW may pick up more than just SWP

differences between the US and the EU, including a cultural bias that makes US respondents re-

port higher motivation levels than EU respondents.

5. Empirical results 95

H4: A low patent-pressure environment increases the odds for self-expression-related moti-

vation to be above average by 38%. Being over 30 years old decreases the odds by a factor of 0.72.

The results do not lend support to H4.

TABLE 6 reports the parameter estimates for the hypothesis that a high SWP presence attracts de-

velopers with a high software-freedom-related motivation to contribute to FOSS projects.

TABLE 6: Logistic regression for SOFTWARE FREEDOM

SOFTWARE FREEDOM (H5)

A B C

SWP LAW 0.670
(0.074)***

HI DOM PRESS 0.776
(0.174)

LOW DOM PRESS 0.918
(0.139)

INCIDENT 1.369 (0.592)

SWP RESEARCH 1.116
(0.180)

1.108
(0.181)

1.074 (0.176)

FOSS INCOME 1.393
(0.165)***

1.380
(0.162)***

1.381
(0.162)***

HIGHER EDU 0.660
(0.089)***

0.672
(0.090)***

0.669
(0.090)***

EXP [yrs] 1.002
(0.015)

0.995
(0.015)

0.995 (0.015)

EXP [pjs] 1.183
(0.092)**

1.220
(0.094)**

1.214
(0.094)**

AGE >30 0.773
(0.086)**

0.743
(0.082)***

0.747
(0.082)***

AIC 2220 2234 2233

BIC 2264 2284 2277

* p<0.10, ** p<0.05, *** p<0.01. Estimates displayed as odds ratios (eβ) with robust standard errors. N=1815.

H5: Legal availability of SWP decreases the odds for above-average software-freedom-re-

lated motivation by a factor of 0.67. The odds for above-average motivation are also reduced by

having an advanced degree (0.67) and being over 30 years of age (0.75). FOSS income and experi-

ence in projects, however, increases the odds to be motivated above average by 39% and 20% re-

spectively.

96 5. Empirical results

Further analysis of the sample reveals that 36.6% of all respondents identify with the prag-

matist ‘Open Source’ and 20.8% with the ideologist ‘Free Software’ camp (42.6% make no distinc-

tion/belong to both), but 49.4% of the Free Software camp reside in the EU and only 16.8% in the

US. If we assume that developers did not switch countries because of the SWP situation, it would

explain that residing in the US – which equals having SWP LAW=1 – leads to a reduced motivation

level. The variable ‘SWP Law’ may also include other, e.g., cultural, differences between the US

and the EU unrelated to the legal SWP situation that led to the turn in direction.

6. Conclusion 97

6. Conclusion

This study offers first insights into the largely unexplored question of how software patents affect

the motivation of FOSS developers. The results can be summarized as follows: First, software

patent incidents seem to be very rare events: only 2.7% of the respondents reported such an inci-

dent. Second, software patents do not appear to show a strong effect on FOSS developer motiva-

tion in general. The presence of software patents has no positive effect on monetary and skills-

related motivation, as argued by proponents. Third, it also does not show negative effects on joy-

and self-expression-related motivation, as argued by opponents. In contrast and counter-intu-

itively, joy seems to be positively influenced by SWP. Fourth, approaching the measurement of

‘SWP presence’ through different variables is a worthwhile approach to follow in the future, as

the construct of a dichotomous SWP Law variable proved to be too coarse. Further research is

needed, however, in finding and refining non-jurisdictional measures like patent pressure.

For policy makers, the recommendation is to proceed carefully in this complex and unex-

plored field, as there is currently no empirical support for either the proponents’ nor the oppo-

nents’ position. The results from this study suggest that US-based FOSS developers have no

advantages through the high presence of SWP. Therefore, if the EU is planning to introduce a sim-

ilar SWP policy (as it has tried in the past), it should provide compelling evidence of how the FOSS

community’s motivation – an important source for its performance – would be positively affected.

As with most initial studies in a new field, there are some limitations to be acknowledged,

which should be addressed in future research. First, measuring the software patent situation in a

systematic, quantitative way is a considerable challenge. The coarse measure for SWP law applied

in this study have most probably obscured some geographical and/or cultural effects, leading to

biased results. Second, much effort was made to produce a sample of alive FOSS projects that

would respond to a survey call. Yet, this effort in itself has led to a sample bias. A future study

looking specifically at why dead FOSS projects actually died – or new ones were never born –

would be an important addition to these results.

This study focused on developer motivation as one of the key ingredients for the FOSS sys-

tem to function. A next challenge will be to investigate the effects of software patents on innova-

tive behavior of FOSS developers because only if they foster innovation, should they be present in

the FOSS system.

98 7. References

7. References

Allison, J., Lemley, M. (2000). Who's Patenting What? An Empirical Exploration of Patent Prosecution.
Vanderbilt Law Review, (53), 2099.

Allison, P.D. (2002). Missing Data. Thousand Oaks, CA: Sage Publications.

Bessen, J., Hunt, R. (2007). An Empirical Look at Software Patents. Journal of Economics & Management
Strategy, (16)1, 157-189.

Bessen, J., Hunt, R. (2004). The Software Patent Experiment. In OECD (Ed.), Patents, Innovation and Economic
Performance (pp. 247-263). Paris: OECD Publishing.

Bessen, J., Maskin, E. (2006). Sequential Innovation, Patents, and Imitation. Institute for Advanced Study, School
of Social Science, Working Paper Economics No. 0025.
http://www.researchoninnovation.org/patrev.pdf

Bessen, J., Meurer, M.J. (2008). Patent Failure - How Judges, Bureaucrats, and Lawyers Put Innovators as Risk.
Princeton: Princeton University Press.

Cohen, J.E., Lemley, M.A. (2001). Patent Scope and Innovation in the Software Industry. California Law
Review, (89)1, 1-57.

Czaja, R., Blair, J. (1996). Designing surveys : a guide to decisions and procedures. Thousand Oaks, CA: Pine Forge
Press.

Dapp, M., Bernauer, T. (2009). Hot Debate about Chilling Effects : Do Software Patents Hamper Free/Open Source
Software Development?. Center for Comparative and International Studies, ETH Zurich, Working Paper
40/2009.

Dillman, D.A. (2000). Mail and internet surveys: the tailored design method. New York: Wiley.

Dutton, H. (1984). The Patent System and Inventive Activity During the Industrial Revolution 1750-1852. Dover:
Manchester University Press.

English, R., Schweik, C.M. (2007). Identifying Success and Tragedy of FLOSS Commons: A Preliminary
Classification of Sourceforge.net Projects. UPGRADE, (IX)6, 54-59.

European Commission (2005). Patentability of computer-implemented inventions. Retrieved 24.04.2008 from
http://ec.europa.eu/internal_market/indprop/comp/index_en.htm.

European Information and Communications Technology Industry Association (EICTA) (2000). Response to
the European Commission's Consultation Paper on "The Patentability of computer-iomplemented inventions".
Retrieved 05.02.2009 from ec.europa.eu/internal_market/indprop/docs/comp/replies/eicta_en.pdf.

Fisher, M. (2005). Classical Economics and Philosophy of the Patent System. Intellectual Property Quarterly,
(1), 1-26.

Foundation for a Free Information Infrastructure (2009). Software Patents in Action. Retrieved 13.03.2009
from http://eupat.ffii.org/patents/effects/.

Fowler, F.J. (2002). Survey Research Methods. Thousand Oaks, CA: Sage Publications.

Fowler, F.J. (1995). Improving Survey Questions : Design and Evaluation. Thousand Oaks, CA: Sage Publications.

Free Software Foundation (2008). Examples of Software Patents that hurt Free Software. Retrieved 18.09.2008
from http://www.gnu.org/patent-examp/patent-examples.html.

Ghosh, R.A., Aigrain, P. (2006). Economic impact of open source software on innovation and the competitiveness of
the ICT sector in the EU. Retrieved 20.01.2007 from
http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf.

Ghosh, R.A., Glott, R., Kreiger, B. et al. (2002). The Free/Libre and F/OSS Software Developers Survey and Study—
FLOSS Final Report. Retrieved 22.06.2006 from www.infonomics.nl/FLOSS/report.

7. References 99

Hars, A., Ou, S. (2002). Working for free? Motivations of Participating in Open Source Projects. International
Journal of Electronic Commerce, (6)3, 25-39.

Haunss, S., Kohlmorgen, L. (n.d.). Political claims-making in IP conflicts. In Haunss, S., Shadlen, K.C. (Eds.),
The Politics of Intellectual Property (p. n. pag.). Cheltenham: Edward Elgar Publishing (forthcoming).

Hertel, G., Niedner, S., Hermann, S. (2003). Motivation of software developers in the Open Source projects:
An Internet–based survey of contributors to the Linux kernel. Research Policy, (32)7, 1159–1177.

Howison, J., Conklin, M., Crowston, K. (2006). FLOSSmole: A collaborative repository for FLOSS research
data and analyses. International Journal of Information Technology and Web Engineering, (1)3, 17-26.

Jaffe, A. (2000). The U.S. patent system in transition: policy innovation and the innovation process.
Research Policy, (29), 531-557.

Krishnamurthy, S. (2006). On the intrinsic and extrinsic motivation of FLOSS developers. Knowledge,
Technology, & Policy, (18)4, 17-39.

Lakhani, K.R., Wolf, R.C. (2005). Why Hackers Do What They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects. In Feller, J. (Ed.), Perspectives on free and open source software (pp.
3-21). Cambridge, MA: MIT Press.

Lévěque, F., Ménière, Y. (2004). The Economics of Patents and Copyright. Berkeley: Berkeley Electronic Press.

Levine, L., Saunders, K. (2004). Software Patents: Innovation or Litigation?. In Fitzgerald B, Wynn, E. (Eds.),
IT Innovation for Adaptability and Competitiveness, IFIP 8.6 Working Conference on IT Innovation for
Adaptability and Competitiveness, (pp. 229-242). Leixlip, Ireland: IFIP.

Mazzoleni, R., Nelson, R.R. (2004). Economic Theories about the Benefits and Costs of Patents. In Maskus,
K.E. (Ed.), The WTO, intellectual property rights and the knowledge economy (pp. 148-169). Cheltenham:
Edward Elgar.

Quah, D.T. (2002). Digital Goods and the New Economy. London School of Economics, Working Paper No. 3846.
cep.lse.ac.uk/pubs/download/dp0563.pdf

Rentocchini, F., De Prato, G. (2006). Software Patents and Open Source Software in the European Union:
Evidences of a Trade-Off?. In Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (Eds.), Open
Source Systems (pp. 349-351). Boston: Springer.

Roberts, J.A., Hann, I., Slaughter, S.A. (2006). Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache Projects.
Management Science, (52), 984-999.

Royston, P. (2005). Multiple imputation of missing values: update. The Stata Journal, (5)2, 188-201.

Ryan, R.M., Deci, E.L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions.
Contemporary Educational Psychology, (25), 54–67.

Stallman, R.M. (2004). Fighting Software Patents - Singly and Together. Retrieved from http://www.gnu.org/
philosophy/fighting-software-patents.html.

8. Appendix A – Descriptive statistics

8.1 Motivational factors

FIGURE-A 3: Importance of motivational factors

102 8. Appendix A – Descriptive statistics

8.2 Experience

FIGURE-A 4: Respondents' coding and project experience

8. Appendix A – Descriptive statistics 103

8.3 Education and age

FIGURE-A 5: Respondents’ level of education and age group

9. Appendix B – Underlying survey questions

Here, the questions and answer categories from the survey questionnaire used for this study are

listed. The variable names used in the regression analysis are mentioned in bracketed capitals.

Motivation. Please rank how important the following motives are for you to contribute code

to FLOSS projects!

- - -

Not at
all

- - - + + + + + +

Very

No an-
swer

I simply enjoy programming. (JOY) O O O O O O O

I want to create beautiful and elegant programs. (SELF-EXPRES-
SION)

O O O O O O O

I seek the challenge of solving programming tasks. O O O O O O O

I feel good about helping others with my programs. O O O O O O O

I value the goals of the FLOSS community. O O O O O O O

I support the technical goals of my project. O O O O O O O

I think software should be free. (SOFTWARE FREEDOM) O O O O O O O

How my family/friends see my engagement is ... O O O O O O O

I get back more than I contribute. O O O O O O O

I develop my programming skills. (SKILLS) O O O O O O O

I solve my own programming problems. O O O O O O O

I earn money from it. (MONEY) O O O O O O O

I build a reputation as a good developer. O O O O O O O

I improve my future career perspectives. O O O O O O O

I think it is fair to give back when you take. O O O O O O O

I fight against proprietary software. O O O O O O O

Software patent influence. According to your knowledge, which application domains are

mostly affected by software patents? Select a maximum of four (4) domains!

O Communications O Database O Desktop Environment

O Education O Formats and Protocols O Games/Entertainment

O Internet O Multimedia O Office/Business

O Scientific/Engineering O Security O Software Development

O System O Text Editors

CHAPTER IV

Dances with patents – The role of motivation
and software patents in the innovation

behavior of FOSS developers

Preliminary results from this paper were presented at the OpenExpo conference in Berne (CH). I thank Bob

English and Charles Schweik for providing project information for the sampling, and Google, OpenMoko, and

ETH Zurich’s Neptun program for sponsoring the lottery prizes for the survey.

Abstract

Free/Open Source software (FOSS) is investigated for its exceptional way to produce software in a

collaborative, ownership-sharing, often non-commercial manner. Advocates consider FOSS to be

very vulnerable towards software patenting because of its unorthodox setup. This article investi-

gates how the motivational setup in connection with the presence of software patents affects in-

dividual innovation behavior of FOSS developers. It proposes a new metric for innovation

behavior and an additional metric for software patent pressure. Hypotheses are tested against a

new data-set from a large developer survey. Findings are that (1) intrinsic motivation leads to

more innovative, and extrinsic motivation leads to more reuse-based code contributions; (2) soft-

ware patent presence per se has no observable empirical effect on innovation behavior, be it posi-

tive or negative, except (3) for reverse-engineering contributions, which seem to correlate with

software patent presence.

110 1. Introduction

1. Introduction

The debate whether software patenting helps or hurts Free/Open Source software (FOSS) devel-

opment is ongoing. Opponents express concerns about the restrictive consequences of a strong

presence of software patents (Foundation for a Free Information Infrastructure 2009), while pro-

ponents do not see Free/Open Source software as a special case warranting exceptions (European

Information and Communications Technology Industry Association 2000). This article investigates

how the presence of software patents affects the innovation behavior of FOSS developers, while

considering the particularities of the developers’ motivational setup. A set of hypotheses is pro-

posed and empirically tested against a new set of data from a large-N survey of FOSS developers.

Methodologically, new metrics to measure individual innovation behavior and software patent

(SWP) presence are proposed.

One may argue that in every field where patents exist, legal issues occur and lawsuits take

place; they are just part of the game where one party has exclusive rights that can challenge or be

challenged by other parties. Yet, it has been argued that the FOSS system is particularly vulnera-

ble to this threat because of its open and collaborative approach to software innovation. Some

FOSS principles, such as operating voluntarily and giving away software licenses, raise the ques-

tion whether monetary incentive instruments such as patents are adequate for this environment.

The motivational setup, especially non-monetary factors, has shown to be an important charac-

teristic of the FOSS system (Krishnamurthy 2006).

How does the presence of SWP influence the FOSS system and its actors? Despite long and

heavy debates about software patenting in the US and the EU, especially its effects on the FOSS

system, policy-makers still have only little systematic research to go on when trying to make

their decisions. The situation is furthermore dissatisfying as policies in the US and the EU have

been diverging: Empirical data that would support the pro-patent course of the US is lacking; and

FOSS developers in the EU are not reassured that the EPO practice of patenting software on a

case-by-case basis is not clearly prevented.

Despite this real-world relevance, this specific question still represents a gap in extant liter-

ature because the fields on patent theories and FOSS motivation are still mostly isolated. Based on

initial theoretical work connecting both fields (Dapp and Bernauer 2009), the article develops a

theoretical argument and proposes a set of hypotheses that link SWP presence and important mo-

1. Introduction 111

tivational factors to the innovation behavior of FOSS developers. For that, a new metric is pre-

sented to measure innovation behavior based on code distribution type. Also, different metrics

are proposed to capture ‘SWP presence’. Besides measuring SWP availability and incidents in a

country, a patent pressure index based on software domains is proposed.

The article structure differs from the typical theory-hypotheses-operationalization flow. As

the hypotheses make use of the proposed new theory-driven metrics, the new metrics are dis-

cussed with the theoretical arguments before deriving the hypotheses. To help the reader, the

next section provides not only a brief literature review, but includes an overview of the new con-

cepts making up the analytical framework for this study. The section after that discusses in detail

the theoretical arguments for each concept and derives two sets of hypotheses for empirical test-

ing: the first set connects motivation and innovation behavior, the second connects SWP presence

and innovation behavior. The research design section describes the survey process and describes

in detail the operationalization of variables. The results section describes the statistical results

and provides interpretations. The final section gives a summary and offers recommendations to

policy-makers and ideas for future research.

112 2. Literature review and analytical framework

2. Literature review and analytical framework

This section gives a very brief introduction how the FOSS system works before presenting the

three main concepts used in this study: innovation behavior and motivational setup of FOSS de-

velopers, and the presence of software patents. It concludes with an analytical description of how

these concepts relate to each other in order to prepare the reader for the details of the theoretical

argument presented in the following section.

Free/Open Source software (FOSS) such as Linux is software that is freely available on the In-

ternet for everyone to use and contribute. It is provided by a large number of developers who

may be volunteers, but who may also be hired by companies to contribute. Thus, FOSS is pro-

duced and distributed under much different conditions compared to traditional, so-called propri-

etary software, which is based on registered license agreements, such as products by Microsoft.

This massive, often anonymous, online collaboration to produce software has been made

possible since the Internet is widely available and personal computers have become comparably

cheap. FOSS development is organized in projects. A project can be compared to an association

that an interested developer can join. The developers communicate, coordinate their work, and

share code fragments using web portals in the Internet such as SourceForge (www.source-

forge.net) or own dedicated websites if the project is large (e.g., www.openoffice.org). From an or-

ganizational perspective, different relations have developed and co-exist today: they can range

from an individual hobbyist developer who spends his spare time contributing code to a project

of his choice to more recent setups in which employees are hired by a company to work on a FOSS

project because it forms part of that company’s offering to clients. A more detailed introduction

to the FOSS system and its particularities can be found in Dapp and Bernauer (2009).

Measuring innovation behavior. The traditional, manufacturing-centric distinction between

invention, innovation, and diffusion (OECD 1997:9) does not adequately capture the service sector

and its intangible output (Smith 2005:169), which includes FOSS too, as the development process

is closer to delivering a service than a product. Also, a price-based market for FOSS code like the

market for proprietary software products does not exist. Money is paid for services around the

code and sometimes for customized software development. A third aspect is that innovation is

usually understood as something happening in a company context, as many contributions in the

Oxford Handbook on Innovation illustrate (Fagerberg 2005). Yet, the FOSS community creates new

2. Literature review and analytical framework 113

and useful software in a context characterized by ad-hoc organization, volunteering, and shared

ownership of code. O’Mahony (2005) identifies parallels to common pool resource management,

and other scholars have described it as a »private-collective model of innovation« (von Hippel and

von Krogh 2003a) or »commons-based peer production« (Benkler 2002). FOSS innovation resem-

bles the academic way of sharing and building upon the results of others (Lerner and Tirole

2004:31), and Saviotti’s evolutionary model of innovation (Marinova and Phillimore 2003:49) ade-

quately explains many aspects of the FOSS innovation system, although more research is needed

here.

In the absence of the commercially driven distinction between an invention and an innova-

tion offered on a market, only newness (cf. Rogers 2003:12) as the essence of innovation remains to

characterize FOSS innovation. According to Bessen and Maskin (2006:2), FOSS development offers

two paths to how innovation occurs: sequential and complementary. ‘Sequential’ means that each

successive invention builds on the preceding one, while ‘complementary’ means that every inno-

vator independently follows his own research line, which increases the overall probability to

reach a particular innovation goal within a given time frame (Ibid.). Thus, ‘newness’ stems from

two equally important sources. First, the competition of independent ideas – different, independent

paths that can all lead to competing programs with equivalent functionality; second, the imitation

of existing ideas – building on and extending existing programs. Blind et al. (2003:84) support this

claim empirically by reporting a code reuse share of 30% among German software companies

compared to a 70% share among independent developers in the FOSS community. This aspect is

relevant for the discussion about copyright and patent protection of software (see next section)

because both protection mechanisms foster the first and hinder the second source of innovation

in FOSS. Finally, FOSS contests the notion that organizations are the locus of innovation. Watts

(2003), for example, argues that the final sources of new inventions are very often traced back to

individuals, while the transformation into market innovations is done by networks.

The proprietary software industry usually applies a user-centric innovation perspective:

“new” meaning new for the user. However, a user may perceive a new software feature as new

even when the underlying source code is not new from a developer’s perspective. Conversely, two

software programs performing the same task may do so in different ways and, even if one imple-

mentation is more innovative than the other, a user may not recognize the difference. From this

perspective, the argument by Klincewicz (2005) that most FOSS projects are ‘me-too’ clones of ex-

isting proprietary programs and are not innovative on their own appears questionable (Wheeler

114 2. Literature review and analytical framework

2001). Wheeler argues for measuring innovation on the developer side. He also claims that most

FOSS development consists of recombination or integration of existing components, just as in the

proprietary software industry – and is thus not innovative. He proposes a definition under which

only new programming paradigms qualify as innovations. Yet, this very demanding definition allows

for only a few innovations per decade and is not practical for most FOSS studies spanning a few

years at most. In the next section, a developer-centric, but less demanding, metric is presented.

Motivational setup. ‘FOSS’ as a mechanism of having large groups of volunteers contribute to

a public good useful to many, where free-riding by non-contributors is encouraged rather than

sanctioned, has raised the interest of scientists. The question why developers engage in FOSS

without a direct monetary reward was one of the first tackled (Lerner and Tirole 2001; von Hippel

and von Krogh 2003b). Motivational factors are divided into extrinsic and intrinsic factors. If a de-

veloper feels motivated to contribute because he finds it – for different reasons – inherently en-

joyable for himself, such motivation is called ‘intrinsic’ (Ryan and Deci 2000). Intrinsic factors can

be divided into enjoyment- and obligation-based factors. Enjoyment-based factors are related to

the single individual, while obligation-based factors relate to the larger community. Extrinsic fac-

tors, on the other hand, motivate by providing additional and separate benefits such as money or

new skills. They are further grouped into a) factors materializing instantly and thus acting as re-

wards and b) factors that come with a delay, thus acting as incentives.

From the broad spectrum of possible motivations (Krishnamurthy 2006), Dapp and Bernauer

(2009, Table 4) identified a list they argue as potentially affected by software patents (cf. TABLE 2

in the next section). The next section will discuss in more detail which factors have been used for

the study and why.

Software patent presence. In order to understand the issues of patenting software, particularly

FOSS code, it is important to understand the differences between copyright and patents. Copy-

right regulates the make, use, sale and other distribution of exact copies of a work or parts

thereof. Copyright protects the form of a work, not the underlying idea or concept described. For

example, Albert Einstein is the author of several books on the theory of relativity, yet copyright

allows everyone to also write books on the subject – as long as no text from the original author is

copied without permission.

Software, whether proprietary or FOSS, is subject to copyright law (beginning 1973 in the

US, gradually introduced in other countries; since 1991 regulated on EU level). Today’s business

2. Literature review and analytical framework 115

model in the software industry is mainly based on the exclusive rights given by copyright law:

users buy licenses to obtain the right to use the software. Other activities, such as copying, modi-

fying or distributing are not allowed unless the software vendor allows it (“All rights reserved”).

As only the vendor owns and controls the code, this type of software is called “proprietary”. Pro-

ducing similar software independently is allowed, however, since copyright law only protects the

form and not the underlying ideas. Thus, different programs for similar tasks are available, and

competition is undistorted. Dapp and Bernauer (2009) argue, however, that technical attributes of

software help monopolistic structures to arise more easily than in other industries.

Although FOSS is covered by copyright, the FOSS community applies copyright law with a

very different goal compared to proprietary software vendors. To make sure that the access and

sharing of code – the key activities making the FOSS system work – are not hampered, copyright li-

censes have been developed that legally enshrine the rights to run, modify, copy, and distribute

code by anybody. This constitutes the legal basis for intensive combining and reusing of code in-

side the FOSS community.

Patents, on the other hand, protect the underlying concept, thus covering all possible forms

of implementation. A patent is a set of exclusive rights granted by the state to an inventor for a

limited period of time (Scotchmer 2004, ch. 3) to prevent others from making, using, selling, offer-

ing for sale, or importing the patented invention. A new concept or an idea is patentable if it is an

invention. To qualify as such it has to be new, non-obvious, and suitable for industrial application

(‘three-step-test’). Once a patent is granted, all implementations require permission of the patent

holder. In return, the patent holder has to disclose the invention to the public, so that skilled per-

sons can replicate it. See Dapp and Bernauer (2009) for a more detailed discussion related to

patenting of software.

The presence of software patents is most directly determined by the patent law of a jurisdic-

tion. If the patenting of software is possible, software patents may be present. If the patent law

does not allow patenting of software, they should not be present. For two reasons, the situation is

not as clear-cut as one would expect: first, patent law itself can leave room for debate. Article

52(1) of the European Patent Convention (EPC) states that ‘programs for computers’ are not in-

ventions, whereas article 27(1) of the Trade-Related Aspects of Intellectual Property Rights

(TRIPS) annex to the WTO agreement states that “patents should be available (…) in all fields of

technology” and the proposed, and rejected, EU directive on computer-implemented inventions

based patentability on the construct of a ‘technical’ distinction between technical software and

116 2. Literature review and analytical framework

software ‘as such’.25 This led to the interesting discussion what technical software is and how it

differs from software as such. The US, on the other side, is less vague as several court decisions

have lowered the barrier to obtain (and defend) software patents over the last decades (Cohen

and Lemley 2001), which led to what Bessen and Hunt (2004) called the ‘software patent experi-

ment’.

This study introduces a second metric for SWP presence based on the patent pressure in a

software domain. Certain domains of software, such as multimedia or file formats, can be more

prone to software patents than others, because the players belong to industries more used to

patenting (e.g., electronics or semiconductors) or because patents are considered an easy means

to block competitors.

How do the three concepts – innovation behavior, motivational setup, and SWP presence –

connect? The fundamental proposition put forward in this article is that FOSS developers choose

their code contributions – thereby the level of their innovation behavior – in accordance to their

motivational setup, while the presence of software patents can influence this choice. The general ex-

pectation is that higher levels of motivation lead to higher levels of innovation behavior. As to the

effect of a stronger presence of software patents, arguments of SWP proponents and opponents –

who predict opposite effects – are discussed and tested.

In this model, SWP presence and motivation are considered as independent factors. No em-

pirical support for a direct causal relationship between these factors has been found in a study by

Dapp (2009).

25 The original paragraph (European Commission 2002:6) reads: “Under Art. 52(2) of the EPC, programs for
computers "as such" are defined as not being inventions and are thus excluded from patentability. The Boards of
Appeal of the EPO have held that it is fundamental to all inventions that they have a technical character. Similarly,
Article 27(1) of the TRIPS Agreement confirms that patents shall be available for inventions in all fields of
technology. Accordingly, the EPO Boards of Appeal and courts of the Member States have held that computer-
implemented inventions can be considered as patentable when they have a technical character, i.e. when they
belong to a field of technology. Computer-implemented inventions which meet this condition are not considered
to fall under the exclusion in Article 52(2) as they are considered not to relate to programs for computers “as
such”. In fact, the exclusion has been interpreted by the Boards of Appeal of the EPO as relating to those
computer-implemented inventions which have no technical character.”

3. Theoretical concepts, arguments, and hypotheses 117

3. Theoretical concepts, arguments, and hypotheses

This section has three aims: First, it discusses in detail the main theoretical concepts – innovation

behavior, SWP presence, and motivational setup. Second, new metrics to measure innovation be-

havior at the individual level and SWP presence related to domain-specific patent pressure are

proposed. Third, based on theoretical arguments and the proposed metrics, two sets of hypothe-

ses are put forward: the first set links SWP presence and innovation behavior, the second set links

motivational setup and innovation behavior.

3.1 From code contributions to individual innovation behavior

For the purpose of this study, FOSS innovation is defined on the level of the individual developer

and his code contributions. A new metric is proposed as shown in TABLE 1: depending on the type

of code contribution, a developer is considered more or less innovative. Contributions are thus ar-

ranged in three groups: writing algorithms, reusing code, and reverse-engineering code. While

writing algorithms is considered to be more innovative than reusing existing code, reverse-engi-

neering is not part of the ordinal scale because it is a very specific way of creating code.26

TABLE 1: Measuring innovation behavior of individual code contributions

Type of code contribution Category Variable

1
Inventing new algorithms/methods to be implemented in code algorithm-

based

AL2

Coding of known algorithms/methods (e.g., from literature) from scratch AL1

2

Recombining existing FOSS components with much adaption
reuse-
based

RU2

Integrating existing FOSS components with little adaption RU1

Linking to existing FOSS libraries LIB

3 Reverse-engineering, i.e., imitating functionality from non-FOSS programs - REV

The first category encompasses implementing algorithms, the ‘mathematical recipes’ for

solving problems with a computer. Devising a new algorithm for a problem is considered the

highest level of innovation behavior (variable AL2). This means the developer invents a new algo-

rithm/method to solve a problem and implements it in source code. Example: Devising a new way

of scheduling trains in a country and writing software based on this new algorithm. Translating

an existing algorithm into a computer program is next on the scale (AL1). This means the devel-

oper implements an algorithm that he learned or read about in a textbook, without access to

26 »Bug-fixing« (i.e., correcting defective code) is not considered for the purpose of this study.

118 3. Theoretical concepts, arguments, and hypotheses

other programs solving the same or similar problems. Example: An audio engineer needs a pro-

gram capable of performing Fourier-transformations on his wave data. He transforms the algo-

rithm described in mathematical terms in a book into software code using a programming

language. Depending on his expertise, the program can be faster of more efficient than other pro-

grams performing the same.

The second category encompasses code reuse. Three forms are distinguished: Recombining

existing components from other FOSS projects with a considerable amount of adaption (RU2) is

considered to be more innovative than simply integrating existing components with only little

adaption to make them work together (RU1). The lowest level of innovation is “linking libraries”

(LIB), when developers include library functionality in own programs. Example: A graphics pro-

gram needs to be able to draw rectangles with a mouse. This functionality has been implemented

in various programs and may even be ready for use by linking to one of the graphics libraries

available.

The third category is not rated within the innovation scale as it denotes a very specific way

of writing code: Reverse engineering is “the process of extracting know-how or knowledge from a

human-made artifact” (Samuelson and Scotchmer 2002:1577). Reverse engineering (variable REV)

is used in cases where the object code form of a program can be used (the program can be “run”),

but no access to the source code form is available, thus no modifications are possible. Technically,

it means to disassemble and decompile the machine-readable object code into human-readable

source code with the help of specialized software tools. From the resulting code fragments infer-

ences can be drawn of how the original software was programmed. This original functionality is

then reproduced by writing a new program based on the extracted code fragments. Thus, ‘reverse

engineering’ reverses the default process of software development: a developer writing source

code that is translated into object code.

How innovative is reverse engineering? Usually, reverse engineering is not done to be inno-

vative but for the purpose of interoperability – to make two programs interact with each other

and/or exchange data better. Therefore, it is not ‘competition of independent ideas’ since existing

software is replicated. Yet, it is not simple imitation either because comparable efforts are re-

quired to reverse-engineer software as are needed to write it in the first place (Mitchell 2005:27).

Free-riders avoid such efforts when making (identical) copies, whereas developers go through the

whole development process when reverse-engineering. Example: To be able to inter-operate and

3. Theoretical concepts, arguments, and hypotheses 119

exchange documents, the developers of the OpenOffice.org project reverse-engineered the docu-

ment format used by Microsoft Office, which is not publicly documented.

The metric from TABLE 1 is used to measure the innovation behavior of code contributing indi-

viduals. The three groups of different code contributions are represented by the following vari-

ables on a 6-point ordinal scale. For the group with the highest innovation level, algorithm-based

code contributions, two variables distinguish whether the developer implements new (AL2) or

known (AL1) algorithms in code. For the next category, reuse-based code contributions, RU2 denotes

reuse by recombining with much manual adaption by the developer and RU1 denotes reuse by in-

tegrating with only little manual adaption. The lowest level, linking to libraries to access their func-

tionality, is measured by LIB. The last variable, REV, is outside the innovation scale as it measures

code contributions based on reverse engineering.

3.2 How motivational setup affects innovation behavior

Dapp and Bernauer (2009) identified a set of motivational factors of FOSS developers, shown

in TABLE 2, that is potentially affected by the presence of software patents.

TABLE 2: Motivational factors potentially affected by SWP

Instant Rewards (extrinsic) Enjoyment-based (intrinsic)

SKILLS (*). Learn new coding skills by reading and writ-
ing code.

JOY (*). Programming as a fun activity, like other hob-
bies.

SELF-HELP. Ability to help oneself by improving pro-
grams.

SELF-EXPRESSION (*). Ability to express oneself aestheti-
cally through software code. Code writing as an art form.

NET GAIN. A developer gets access to the whole program,
although he contributes only small parts.

ALTRUISM. Provide freely available useful software to
support other users.

MONEY (*)(M). Direct monetary reward, e.g., when being
hired to write code for a FOSS project.

CHALLENGE. The intellectual challenge of solving diffi-
cult programming problems.

Delayed Incentives (extrinsic) Obligation-based (intrinsic)

CAREER (M). Signal skills to potential future employers,
self-marketing.

IDENTIFICATION. Identification and belonging to a com-
munity.

NORMS. Observance of community norms like, e.g., shar-
ing.

SOFTWARE FREEDOM (*). ‘Software must be free’ as a po-
litical mission.

Based on Dapp and Bernauer (2009)

120 3. Theoretical concepts, arguments, and hypotheses

The following five factors (*) have been selected from TABLE 2 because of their overall im-

portance and their relationship to software patents as well as to be comparable with the study of

Dapp (2009) about the effects of SWP presence on motivation.

From the group of extrinsic factors, SKILLS and MONEY are selected as they relate directly

to two important theoretical justifications of software patents: while MONEY relates to incentive

theory, SKILLS relates to exchange theory (see next sub section for details on patent theories).

From the group of intrinsic factors, JOY is selected because it is reported in this study as the over-

all most important motivational factor (FIGURE-A 1 in the appendix shows the importance of all

factors). SELF-EXPRESSION is the factor most directly affected by the restrictions SWP impose on

code writing. A SWP reduces the number of options of how to formulate code because some will

be covered by the SWP and hence be an infringement if used. The more SWP are present, the less

free choice FOSS developers have to express themselves through code. From the group of obliga-

tion-based factors, SOFTWARE FREEDOM is of specific interest in the argument related to reverse-

engineering-based code contributions. The level of this motivation may also be influential in a de-

veloper’s decision to stick with a project or withdraw his engagement when facing a strong pres-

ence of software patents. These arguments will become clearer as the hypotheses are introduced

below.

Motivational setup and code contributions. FOSS developers are driven by intrinsic and extrinsic

motivation and they engage in different types of code contributions. Intrinsic factors like joy and

self-expression are easier to trigger by programming tasks that are challenging and require the

creation of new solutions than by tasks that can be done by reusing and combining existing code.

It is more interesting and more fun to take up a challenge. Dealing with new code also accommo-

dates the developers need to express themselves (in code) better because it gives them the oppor-

tunity to write code they way they prefer – not unlike artists who are allergic towards constraints.

Good code in the eyes of FOSS developers is not only functional, but also aesthetic or elegant.

Consequently, such original contributions are highly regarded in the community. As developers

build reputation based on contributions their focus will be on challenging algorithms rather than

on code reuse – if they can choose freely.

On the other hand, extrinsic motivational factors like money and learning skills may trigger

reuse-based rather than algorithm-based contributions. Many FOSS projects suffer from the ‘in-

complete-last-mile’ phenomenon: Most technically challenging tasks are already completed, what

3. Theoretical concepts, arguments, and hypotheses 121

is left are the less interesting tasks to make a program more user-friendly, et cetera. Tasks that are

often repetitive across programs and usually include more code reuse than new code develop-

ment. Developers who are eager to learn programming skills may start here; read existing code

and learn recombining and adapting it before suggesting own modifications or improvements to

the community. In other words, learning skills and reuse-based contributions should occur to-

gether. Ease-of-use and polished user interfaces are often considered very important from a user

perspective. Therefore, users or customers (in the case of companies offering FOSS solutions) may

offer payment to developers to complete the ‘last mile’ since intrinsic motivation alone may not

be enough to get the job done. Developers motivated by money may indeed be attracted to this

type of setup. In contrast, the paying party has strong influence on the developers’ contribution,

which may reduce the self-expression-related motivation. Combining all these arguments leads to

the following two hypotheses:

HYPOTHESIS 1: FOSS developers with above-average joy- and self-expression-related (in-

trinsic) motivation are more likely to contribute algorithm-based code. FOSS developers with

above average monetary and skills-related (extrinsic) motivation are less likely to contribute algo-

rithm-based code.

HYPOTHESIS 2: FOSS developers with above-average monetary and skills-related (extrinsic)

motivation are more likely to contribute reuse-based code. Developers with above-average joy-

and self-expression-related (intrinsic) motivation are less likely to contribute reuse-based code.

Reverse engineering is a different situation. It is mostly carried out to create a free, open

source alternative that is functionally equivalent or capable of inter-operating with a proprietary

program, with the goal of reducing dependence on that program. Developers engaging in such

projects are usually strongly motivated by the ‘free software’ philosophy – of having as much soft-

ware as possible free (e.g., the Free Software Foundation regularly calls for support to create re-

placements for targeted proprietary programs). Hence, high rates of reverse engineering should

go together with high levels of software freedom-related motivation.

HYPOTHESIS 3: FOSS developers with above-average software-freedom-related motivation

are more likely to contribute reverse-engineering-based code.

122 3. Theoretical concepts, arguments, and hypotheses

3.3 How software patent presence affects innovation behavior

Incentive theory, reward theory, and exchange theory are the classical utilitarian justifications for

patents as instruments to foster innovation (Fisher 2005). The most prominent theory, incentive

theory, argues that patents enhance innovation because they give an incentive to the individual to

invent and commercialize the invention. Patents generate the necessary up-front investments

needed for development (Mazzoleni and Nelson 2004). Reward theory argues that patents “secure

inventors their just reward, proportional to the usefulness of the invention to society” (Fisher

2005:8). The exclusive right to commercialize the invention is justified because its potential to

perform tasks more efficiently or satisfy needs more effectively represents a cost saver to users

that is measurable in monetary terms. Patents increase the profit of the inventor and discourage

competitors from free-riding. Exchange theory argues that patents – because of the disclosure re-

quirement – offer a fair balance between the interests of the public and the inventor. Through the

patent letter, the public gets access to the knowledge embedded in the invention, while the inven-

tor gets exclusive rights in exchange for disclosing the invention. Through the construction of a

time-bound exclusive right that balances the interests of the inventor and the public, patents en-

courage both the invention and the making public of it.

On the other hand, critics claim patents to be unnecessary or even detrimental to innova-

tion. They have noted that other types of rewards for innovators exist, for instance awards by pri-

vate or public institutions (Menell 2000). They have argued that commercial incentive would still

be sufficient even without patents (Boldrin and Levine 2008). Specific to software, Bessen and

Maskin (2006) have argued that patents are detrimental for markets with sequential innovation

like the software industry. Klemens (2005) raised the question whether software code is a

patentable subject matter at all as algorithms are essentially math; and math is not, according to

traditional justification and logic, patentable.

Empirical research about the innovation effect of patents is not conclusive. Patents appear

to be most effective in the drugs, chemical, and biotech industries, but seem to have very little in-

novation effects in other industries (Cohen et al. 2000; Arora et al. 2003; Sakakibara and Branstetter

2004) – particularly compared to other strategies to commercially exploit inventions such as lead

time or secrecy (Sattler 2003; Arundel 2001; Harabi 1995). Whether the negative or the positive ef-

fects of patents prevail in the software industry is a particularly heavy debate. See Dapp and

Bernauer (2009) for a summary of the arguments.

3. Theoretical concepts, arguments, and hypotheses 123

Based on the concept that ‘software patents’ are inventions embodied in software (Allison

and Lemley 2000), I use the definition by Bessen and Hunt (2004:8): software patents cover a “logic

algorithm for processing data that is implemented via stored instructions; that is, the logic is not

hard-wired”.

SWP presence is defined based on two concepts: SWP availability relates to the legal question

whether patents on software can be obtained in a certain jurisdiction and will be measured by

one variable; SWP prevalence relates to the question of how strongly SWP are present in such a

jurisdiction and will be measured with two variables.

SWP availability looks at patent law to determine whether SWP are at all legally available in

a jurisdiction. It is only in such jurisdictions that SWP can be granted to patent holders and patent

infringement can occur. Unfortunately, comparing patent law across different jurisdictions is a

very complex process and dedicated legal studies on a per-country basis would be required to

come up with a comparative index that captures the intricacies of patent law across countries –

and it is uncertain whether it would be possible to come up with a simple-to-use index. To solve

this problem, a simplified dichotomous classification for the variable SWP availability is used (cf.

sub section on key variables). Levine/Saunders (2004) and Bessen/Hunt (2007) provide support

for such an assignment.

SWP prevalence is measured by two different approaches. (a) As patent holders can defend

their patents, patent infringements may lead to legal incidents (e.g., cease-and-desist letters, law

suits). (b) The second measure is constructed orthogonal to jurisdictional borders. Anecdotal evi-

dence suggests that certain software domains, like cryptography or multimedia, face higher SWP

prevalence (‘patent density’) than other domains. A patent pressure index was constructed (cf.

FIGURE 3) based on estimates given by respondents in the survey. From the list of 14 domain cate-

gories used on SF, respondents were asked to select the top four with the highest perceived patent

pressure according to their knowledge and assessment.

How does SWP presence influence individual code contributions and hence innovation be-

havior? Based on Dapp (2009), the arguments put forward by SWP proponents and opponents can

be summarized as follows:

SWP opponents argue that the presence of SWP decreases innovative activity and leads to

less algorithm-based code contributions because SWP presence negatively affects joy- and self-ex-

124 3. Theoretical concepts, arguments, and hypotheses

pression-based motivation (cf. hypothesis 1). A developer who contributes mainly for these two

reasons is not willing to face a lot of legal risk from SWP for making his contributions public –

particularly if it is not a commercial activity for him. Furthermore, as only very few of the broad

spectrum of motivational factors are monetary, the presence of SWP does not present an addi-

tional incentive for FOSS developers to engage in highly innovative contributions; it is rather the

opposite, it has a negative effect because it restricts developers in freely expressing their new

ideas in code (cf. hypothesis 2).

HYPOTHESIS 4 (opponents): Stronger SWP presence reduces the odds for above-average al-

gorithm-based code contributions by FOSS developers.

On the other hand, SWP proponents argue that the presence of SWP increases innovative

activity and leads to more algorithm-based code contributions. This is because SWP provide a

means of compensation and an incentive to write new code since developers cannot earn money

with selling FOSS code. Furthermore, the disclosure of the invention to the public through a

patent reveals knowledge about the invention on a conceptual level that is more appropriate than

low-level source code. Both mechanisms, triggered by the presence of SWP, lead to a higher po-

tential for new and innovative code contributions.

HYPOTHESIS 5 (proponents): Stronger SWP presence increases the odds for above-average

algorithm-based code contributions by FOSS developers.

How does SWP presence affect reverse-engineering? The argument of hypothesis 3 can be

extended, as the software-freedom-related motivation does not only refer to software code but to

the patent situation as well. A proprietary program in a software domain that is additionally cov-

ered by SWP calls out even more for a ‘free solution’ that is not only free in the sense of copyright

(“FOSS”) but also free in the sense of patent claims. For this reason, the presence of SWP in a soft-

ware domain may additionally trigger reverse-engineering code contributions.

HYPOTHESIS 6: Stronger SWP presence increases the odds for above-average reverse-engi-

neering-based code contributions by FOSS developers.

4. Research design 125

4. Research design

4.1 Data collection, sampling strategy, and survey design

Data collection. Data about innovation behavior, motivational setup and (partly) SWP presence was

collected using an online survey targeted at leaders of FOSS projects registered on Source-

Forge.net (SF). SF hosts a broad set of projects from different software domains with many devel-

opers dispersed across different jurisdictions. Likewise, their employment status is expected to

vary more than the population of a single large FOSS project such as the Linux kernel.

Sampling strategy. The typical difficulty with SF – to distinguish between abandoned (‘dead’)

and alive projects – was mitigated with support from English and Schweik (2007). They developed

a metric to separate successful projects from failed ones using release numbers and time intervals

between releases, and kindly provided me with a list of 57,085 names of ‘alive’ projects that had

produced at least one code release by August 2006. Project and developer information was ex-

tracted from the FLOSSmole database project (Howison et al. 2006), whose aim is to collect data

about many FOSS projects for academic research. The sample frame included project leaders of all

57,085 ‘alive’ projects hosted on SF as of August 2006. From these a random sample of 11,000 was

drawn and invited to participate in the web-based survey. In total, 2,441 individuals responded

(22% overall response rate), of which 1,815 resided in the US or the EU. The latter form the basis

of this study.

Sampling bias. An intended selection bias is contained in the sample, as ‘failed’ projects are

not considered in the survey since abandoned projects are much less likely to respond and pro-

vide reliable answers in a survey setup. As a consequence, the sample does not include developers

who abandoned projects or who never got involved in a project because of SWP issues outside the

2-year period of the survey. An ideal sample would of course include past, current, and future

FOSS developers. That being impossible for practical reasons, the question is in what way does

this selection effect bias the sample and the results? I submit that the bias should not have sys-

tematic selection effects on the dependent variables, i.e., the code contribution types. There is an

unintended bias on the predictor side, however, because motivation levels are most likely to be

higher in the sample than in the population, as only ‘motivated’ and still actively engaged devel-

opers had a chance to participate in the survey. Vice versa, developers with low motivation levels

are underrepresented in the sample. Since the bias happens on the predictor side, the empirical

126 4. Research design

results are biased accordingly, but the general relationship argued for in the hypotheses is not af-

fected as the dependent variables are not affected by the sampling bias.

Survey design. A questionnaire was designed and tested in two pilot phases – a lab pilot and a

field pilot – preceding the main survey run (Fowler 2002; Fowler 1995; Dillman 2000; Czaja and

Blair 1996). The lab pilot was used to get feedback from 20 researchers and FOSS developers on

the online setup as well as on wording used. The field pilot with a sub sample of 1% of the target

sample was run with a first questionnaire: this pilot collected answers on a few open questions

that were clustered and recoded into multiple-choice questions for the main run.27 In autumn

2007, the main survey was run in three parallel batches of one-week intervals to reduce the risk of

a technical failure stopping the survey process. Over four weeks, respondents in every batch re-

ceived four emails: one invitation, two reminders, and a last call. Consequently, the main survey

took six weeks to run.

A general challenge in surveys is to avoid sample distortion by biased respondents. The

main cause of such distortion is self-selection of participants. To avoid the practice used by other

developer surveys of recruiting participants through a ‘snow-ball’-like system where the set of

potential respondents is not defined ex ante, a controlled survey environment was set up, with a

pre-defined sample frame, simple random sampling, targeted personal invitations, and mecha-

nisms to prevent non-invitees from participating using the project data by FLOSSmole and Eng-

lish/Schweik.

4.2 Key variables

Dependent variables. For statistical analysis, the 6-point ordinal code contribution variables are di-

chotomized at their means to control for individual perception effects: not all respondents think

of 3 on a 6-point scale as the same level of code contribution. This leads to a 1/0-scaling of the

variables, where ‘1’ denotes an above-average and ‘0’ a below-average frequency in the respective

code contribution type compared to the sample average.

In the predictor set for motivational setup, the importance of each motivational factor is mea-

sured on a 6-point Likert scale ranging from ‘not important at all’ to ‘very important’. The follow-

ing factors are incorporated in the analysis: MONEY, SKILLS, JOY, SELF-EXPRESSION, and

SOFTWARE FREEDOM. To balance out self-rating effects, they have been dichotomized for the

27 Only answers from the field pilot (response rate 24.5%) were included in the final data set. Data from the lab pilot
was not used.

4. Research design 127

analysis. Thus, ‘1’ means an above-average level in that motivation factor, while ‘0’ means below-

average; always compared to the sample. (FIGURE-A 1 in the appendix shows descriptive statistics

for all motivational factors.)

The predictor set for SWP presence consists of three variables. Legal SWP availability in a ju-

risdiction is captured in SWP LAW. The availability of SWP is coded as ‘1’, the unavailability of

SWP as ‘0’. This means respondents residing in the US were assigned a ‘1’, respondents residing in

the EU a ‘0’. Whether a FOSS project faced such an incident or not is captured in the dummy vari-

able INCIDENT. The newly built patent pressure index of the 14 software domains used by SF has

been categorized using a 3-point ordinal scale for the empirical analysis: high, low, and no domain

pressure, with according variables HI DOM PRESS and LOW DOM PRESS included in the analysis.

‘No pressure’ serves as reference category and is left out to avoid model over-specification.)

Control variables. The following variables are included to control for effects outside the theo-

retical scope discussed: (a) SWP RESEARCH indicates whether or not a project researched the

patent situation in its field, for instance using a patent database. (b) Whether a developer has di-

rect (by coding) or indirect (other FOSS-based work) FOSS income is captured in the dichotomous

variable FOSS INCOME. (c) HIGHER EDU captures whether or not a respondent has an advanced

education degree (bachelor or higher). (d) Coding time is the time spent per week on FOSS devel-

opment. CODTIME>5 flags if the developer spent more than 5h per week on FOSS projects, which

is the median category of the sample population. (e) Experience with FOSS projects is measured in

terms of number of projects (PJEXP). PJEXP>5 equals ‘1’ if the developer has contributed to at

least 5 FOSS projects. (f) Age information is represented in a simplified way by cutting the age-

group curve at the median category: AGE>30 flags when a respondent is above 30 years old. Gen-

der differences and project experience in terms of years were insignificant in the analyses and

have been omitted.

128 5. Empirical results

5. Empirical results

5.1 Descriptive statistics

This section presents descriptive statistics for the dependent variables (five types of code contri-

butions), the predictor variables used to measure motivation (five factors) and SWP presence (law,

patent pressure by domain, and SWP incidents), plus some background information about the

survey population. The list of relevant questions used in the survey to collect this data can be

found in the appendix.

Population. The survey asked participants to provide information about the 2-year period

August 2005 to August 2007. 637 (26,1%) respondents resided in the US, 1,178 (48,3%) in the EU,

and 626 (25,7%) in the ‘rest of the world’ (ROW), yielding a total of 2,441 respondents (response

rate 22%). The age groups 26-30 and 31-35 make up 51.5% of the sample – 16.4% are younger and

32.1% older. The large majority of respondents are male (1.5% females) and well educated (81.8%

with a university degree), which is in line with the ‘FLOSS’ study that reported 70% developers

with a university degree and a ratio of 1.1% females (Ghosh et al. 2002).

FIGURE 1: Reported frequency of different code contributions (variable names in
brackets)

5. Empirical results 129

Dependent variables. FIGURE 1 shows frequencies of the different types of code contributions

with the respective variable name given in brackets. One can see that developers in all regions re-

ported more activity in the algorithm-based than in the reuse-based categories, except for reuse

of libraries. The low prevalence of reverse-engineering was to be expected because only a small

group of FOSS developers engages in this activity. Most developers appear to create sophisticated

code – or at least they perceive it this way. A second observation is that the frequencies within a

contribution type do not vary across geographic regions, indicating low variation in innovation

behavior as well.

Predictor set ‘motivation’. FIGURE 2 shows how important the different motivational factors

are for respondents to contribute code. The overall picture for different regions is quite similar,

with joy ranging as the top motivation and earning money at the end of the list. The middle field

consists of self-expression, learning skills, and ‘software freedom’ – the motivation to support the

philosophy of ‘free software’ as declared by the Free Software Foundation (2006). FIGURE-A 1 in

the appendix gives a graphical overview of all motivation items used in the survey.

Predictor set ‘SWP presence’. Besides the geographic indication of SWP presence by jurisdiction

(cf. FIGURE 1), a second measure was introduced – patent pressure related to software domains.

FIGURE 2: Reported importance of different motivational factors

130 5. Empirical results

The top chart in FIGURE 3 shows to which software domain the sample projects belong. Some do-

mains such as Software development (SWD), networking (NET), and games/entertainment (GME)

are strongly represented, while others such as formats/protocols (FMP) or editors (EDT) are only

weakly represented in the sample.

The bottom chart in FIGURE 3 shows the patent pressure index created from the assess-

ments of the respondents concerning the patent situation in the different software domains. They

were asked to name the four domains they expected to show the strongest presence of SWP. The

top domains in this regard are multimedia (MIM) and formats/protocols (FMP), which is in line

with anecdotal evidence that many SWP issues raised by the FOSS community often relate to

these domains: formats in multimedia show a high patent pressure because many audio and video

formats are covered by one or more patents; the most famous being the MP3 format. Most do-

mains (from OFB to GME) range in the middle area, with education (EDU) and editors (EDT) show-

ing very weak patent pressure.

To integrate this index information in the statistical analysis, two cut points were defined.

They divide the patent pressure index into three ordinal categories: high (index >0.5), low (0.1<in-

dex<0.4) and ‘no pressure’ (index <0.1). High and low pressure categories are inserted in the speci-

fications, ‘no pressure’ as the reference category is left out to avoid over-specification of the

logistic model.

FIGURE 3: Software domains and patent pressure

5. Empirical results 131

The third variable used to measure SWP presence indicates whether a project experienced

an actual SWP incident – a patent holder approaching a project – during the reporting period. 44

out of 1,654 cases (respondents could skip the question) reported a SWP incident; that is 2.7%.

5.2 Regression analysis

Logistic regression was used to empirically model the effects of motivation and SWP presence on

code contribution. Missing values on the dependent variables and predictors were imputed using

multiple imputation procedures (Allison 2002) from Royston’s package for Stata (Royston 2005).

See part E of the main appendix for complete imputation statistics.

For each code contribution type, a logistic regression model was calculated with three dif-

ferent model specifications differing in the representation of the ‘SWP presence’ concept. The

first specification includes the jurisdictional predictor (SWP LAW), the second patent pressure in-

dicators (HI/LOW DOM PRESS), and the third SWP incidents (INCIDENT). Results are reported as

odds ratios. The percentage figures given in brackets express the odds that a certain predictor

triggers code contribution to ‘jump’ from below-average to above-average (i.e., from 0 to 1 in the

logistic regression model).

As hypotheses make statements about more than one dependent variable at once, the pre-

sentation of the results is ordered by code contribution type. In other words, one table is used for

more than one hypothesis.

The hypotheses related to motivation (H1-H3) are discussed below their respective table:

TABLE 3 shows results for algorithm-based contribution types (AL2, AL1). Accordingly, hypothesis

1 is discussed directly below. TABLE 4 and TABLE 5 show results for reuse-based contribution

types (RU2, RU1, LIB), with hypothesis 2 being discussed. TABLE 5 also shows results for reverse-

engineering. Accordingly, hypothesis 3 is discussed directly below.

The hypotheses related to SWP presence (H4-H6) are jointly discussed after all tables have

been shown because they make references to all code contribution types across all result ta-

bles.H1: TABLE 3 shows the effects of motivation (and SWP presence) on algorithm-based code

contributions. It reports parameter estimates for H1, which contains two predictions about algo-

rithm-based contributions: FOSS developers with stronger joy- and self-expression-related (intrinsic) mo-

132 5. Empirical results

tivation are more likely to contribute algorithm-based code. FOSS developers with stronger monetary and

skills-related (extrinsic) motivation are less likely to contribute algorithm-based code.

TABLE 3: Effects on algorithm-based code contributions (AL2, AL1)

Level 2 (AL2) Level 1 (AL1)

A B C A B C

SWP LAW 1.154
(0.132)

 0.989
(0.113)

HI DOM PRESS 0.686
(0.156)*

 1.038
(0.238)

LOW DOM PRESS 0.964
(0.148)

 1.041
(0.160)

SWP INCIDENT 0.562
(0.262)

 0.827
(0.371)

xM: MONEY 1.114
(0.127)

1.123
(0.128)

1.112
(0.127)

0.826
(0.094)*

0.825
(0.094)*

0.825
(0.094)*

xM: SKILLS 0.741
(0.086)***

0.739
(0.086)***

0.741
(0.086)***

1.085
(0.121)

1.083
(0.121)

1.085
(0.121)

iM: JOY 1.260
(0.144)**

1.265
(0.144)**

1.269
(0.145)**

1.441
(0.169)***

1.441
(0.168)***

1.440
(0.168)***

iM: SELF-EXPRESSION 1.367
(0.157)***

1.373
(0.158)***

1.371
(0.157)***

1.207
(0.144)

1.205
(0.143)

1.208
(0.144)

iM: SW FREEDOM 0.906
(0.097)

0.889
(0.095)

0.897
(0.096)

0.884
(0.097)

0.886
(0.097)

0.886
(0.097)

SWP RESEARCH 1.589
(0.283)***

1.657
(0.299)***

1.655
(0.298)***

1.853
(0.346)***

1.854
(0.347)***

1.870
(0.352)***

FOSS INCOME 0.942
(0.129)

0.932
(0.128)

0.952
(0.131)

1.126
(0.156)

1.125
(0.156)

1.128
(0.156)

HIGHER EDU 1.065
(0.147)

1.072
(0.148)

1.060
(0.146)

0.980
(0.135)

0.980
(0.136)

0.980
(0.136)

CODTIME >5 1.459
(0.167)***

1.462
(0.168)***

1.456
(0.167)***

1.268
(0.149)**

1.268
(0.149)**

1.269
(0.149)**

PJEXP >5 0.942
(0.137)

0.943
(0.138)

0.937
(0.136)

0.782
(0.109)*

0.783
(0.109)*

0.783
(0.109)*

AGE >30 1.047
(0.114)

1.056
(0.114)

1.070
(0.115)

1.202
(0.135)

1.201
(0.134)

1.201
(0.133)*

aic 2215 2215 2215 2171 2173 2171

bic 2287 2293 2287 2242 2250 2242

* p<0.10, ** p<0.05, *** p<0.01. Estimates displayed as odds ratios (eβ) with robust standard errors. N=1815.

5. Empirical results 133

Joy-related motivation increases the odds for above-average algorithm-based contributions

by +26% (AL2) and +44% (AL1), respectively. For self-expression-related motivation the increase is

only significant for AL2 (+37%). This result supports the first prediction of H1 concerning joy-re-

lated motivation, but gives only weak support concerning self-expression-related motivation.

 Support for the second prediction (extrinsic motivation) is still weaker: Monetary motiva-

tion decreases the odds for above-average algorithm-based contributions only in the case of AL1

(-17%), while skill-related motivation decreases them only for AL2 (-26%). Of the control variables,

patent research (plus 58-87%) and above-average time investment (plus 27-46%) both increase the

odds for algorithm-based contributions.

Altogether, the results indicate that extrinsic and intrinsic motivations affect algorithm-

based code contributions in opposite directions, as predicted. The empirical support for H1, how-

ever, is mixed: strong for intrinsic and weak for extrinsic motivational factors.

H2: TABLE 4 and the left side of TABLE 5 (see next two pages) show the effects of motivation

(and SWP presence) on reuse-based code contributions (RU2, RU1, LIB). Thus, they report param-

eter estimates for H2, which contains two predictions about reuse-based contributions: FOSS de-

velopers with above-average monetary and skills-related (extrinsic) motivation are more likely to contribute

reuse-based code. Developers with above-average joy- and self-expression-related (intrinsic) motivation are

less likely to contribute reuse-based code.

Comparing both tables, one can observe the following: monetary motivation increases the

odds for above-average reuse-based contributions only in the case of library reuse (+31%). Skill-re-

lated motivation increases the odds only in the case of reuse with much adaption (RU2, +35%).

Hence, the first prediction of H2 related to extrinsic motivation gets only very weak support. The

same holds for the second prediction of H2 related to intrinsic motivation: joy-related motivation

decreases the odds for above-average reuse-based contributions only in the case of reuse with lit-

tle adaption (RU1, -20%). Self-expression-related motivation decreases the odds only in the case of

reuse with much adaption (RU2, -22%). The following control variables have an increasing effect

on reuse-based contributions: above-average coding time per week (plus 37-55%), patent research

(plus 47-65%) and higher education (only for RU1 and LIB, plus 35-47%), and FOSS income (only

for RU2 and LIB, plus 38-43%).

134 5. Empirical results

TABLE 4: Effects on reuse-based code contributions (RU2, RU1)

Level 2 (RU2) Level 1 (RU1)

A B C A B C

SWP LAW 1.282
(0.148)**

 0.908
(0.103)

HI DOM PRESS 0.987
(0.235)

 1.380
(0.321)

LOW DOM PRESS 0.881
(0.144)

 1.033
(0.163)

SWP INCIDENT 1.470
(0.662)

 1.262
(0.562)

xM: MONEY 1.175
(0.141)

1.177
(0.141)

1.179
(0.141)

1.221
(0.147)*

1.215
(0.147)

1.222
(0.147)*

xM: SKILLS 1.355
(0.169)**

1.362
(0.170)**

1.350
(0.168)**

1.206
(0.138)

1.208
(0.139)

1.206
(0.138)

iM: JOY 0.822
(0.100)

0.835
(0.101)

0.836
(0.101)

0.801
(0.091)*

0.800
(0.091)**

0.797
(0.091)**

iM: SELF-EXPRESSION 0.782
(0.097)**

0.786
(0.098)*

0.782
(0.097)**

0.969
(0.115)

0.965
(0.115)

0.968
(0.115)

iM: SW FREEDOM 1.359
(0.158)***

1.329
(0.154)**

1.326
(0.154)**

1.284
(0.139)**

1.301
(0.141)**

1.293
(0.140)**

SWP RESEARCH 1.189
(0.207)

1.191
(0.208)

1.182
(0.208)

1.655
(0.282)***

1.602
(0.275)***

1.626
(0.281)***

FOSS INCOME 1.388
(0.192)**

1.403
(0.193)**

1.389
(0.191)**

1.191
(0.162)

1.202
(0.164)

1.184
(0.161)

HIGHER EDU 1.117
(0.165)

1.105
(0.164)

1.108
(0.164)

1.485
(0.212)***

1.474
(0.210)***

1.488
(0.213)***

CODTIME >5 1.556
(0.184)***

1.542
(0.182)***

1.542
(0.182)***

1.372
(0.162)***

1.370
(0.162)***

1.375
(0.162)***

PJEXP >5 1.156
(0.169)

1.139
(0.166)

1.142
(0.166)

0.858
(0.125)

0.854
(0.125)

0.860
(0.125)

AGE >30 1.136
(0.136)

1.176
(0.141)

1.173
(0.140)

1.115
(0.125)

1.112
(0.123)

1.100
(0.122)

aic 2024 2030 2028 2169 2169 2169

bic 2096 2107 2099 2240 2246 2240

* p<0.10, ** p<0.05, *** p<0.01. Estimates displayed as odds ratios (eβ) with robust standard errors. N=1815.

In sum, although the results are significant only in one third of the cases (two out of six co-

efficient blocks), all significant effects are predicted correctly. Accordingly, the results lend mod-

erate support to H2.

5. Empirical results 135

H3: The right side of TABLE 5 shows the effects of motivation (and SWP presence) on re-

verse-engineering code contributions (REV). Thus, it reports parameter estimates for H3: FOSS de-

velopers with above-average software-freedom-related motivation are more likely to contribute reverse-

engineering-based code.

TABLE 5: Effects on reuse-based (LIB) and reverse-engineering (REV) code contributions

Library-linking (LIB) Reverse-engineering (REV)

A B C A B C

SWP LAW 0.788
(0.088)**

 1.253
(0.153)*

HI DOM PRESS 0.952
(0.217)

 1.473
(0.370)

LOW DOM PRESS 1.034
(0.160)

 1.310
(0.236)

SWP INCIDENT 0.750
(0.349)

 2.532
(1.156)**

xM: MONEY 1.314
(0.149)**

1.311
(0.149)**

1.308
(0.148)**

1.062
(0.137)

1.058
(0.137)

1.071
(0.138)

xM: SKILLS 1.145
(0.129)

1.144
(0.128)

1.148
(0.129)

1.123
(0.134)

1.109
(0.133)

1.117
(0.134)

iM: JOY 1.186
(0.134)

1.169
(0.132)

1.169
(0.132)

1.141
(0.135)

1.164
(0.137)

1.159
(0.137)

iM: SELF-EXPRESSION 1.057
(0.120)

1.055
(0.120)

1.057
(0.120)

1.021
(0.128)

1.011
(0.127)

1.017
(0.128)

iM: SW FREEDOM 1.099
(0.116)

1.120
(0.118)

1.123
(0.118)

1.060
(0.119)

1.045
(0.117)

1.034
(0.116)

SWP RESEARCH 1.482
(0.255)**

1.468
(0.253)**

1.478
(0.257)**

2.191
(0.369)***

2.210
(0.376)***

2.129
(0.360)***

FOSS INCOME 1.434
(0.194)***

1.420
(0.192)***

1.431
(0.193)***

1.080
(0.157)

1.091
(0.159)

1.071
(0.155)

HIGHER EDU 1.347
(0.182)**

1.358
(0.183)**

1.354
(0.182)**

1.137
(0.170)

1.125
(0.167)

1.132
(0.168)

CODTIME >5 1.429
(0.163)***

1.439
(0.164)***

1.438
(0.164)***

1.341
(0.168)**

1.325
(0.165)**

1.329
(0.165)**

PJEXP >5 0.804
(0.112)

0.816
(0.114)

0.814
(0.114)

0.729
(0.115)**

0.720
(0.114)**

0.718
(0.114)**

AGE >30 1.010
(0.111)

0.977
(0.106)

0.979
(0.106)

0.736
(0.087)***

0.766
(0.090)**

0.755
(0.088)**

aic 2227 2234 2231 2019 2021 2018

bic 2299 2311 2303 2090 2098 2089

* p<0.10, ** p<0.05, *** p<0.01. Estimates displayed as odds ratios (eβ) with robust standard errors. N=1815.

136 5. Empirical results

None of the motivation factors, including software-freedom, appear to have a significant ef-

fect on reverse-engineering-based contributions. The following control variables, however, show

significant effects: Patent research (+120%) and above-average time investment (+34%) increase

the odds for above-average reverse-engineering-based contributions, while project experience

and age decrease the odds (-27%).

Altogether, the results lend no support to H3.

After the first set of motivation-related hypotheses, I now discuss the hypotheses related to

SWP presence (H4-H6). The opposing hypotheses on algorithm-based contributions put forward

by SWP opponents (H4) and proponents (H5) are discussed first, followed by the hypothesis on re-

verse-engineering (H6).

H4+H5. While SWP opponents claim that ‘stronger SWP presence reduces the odds for above-av-

erage algorithm-based code contributions by FOSS developers’ (H4), SWP proponents argue for the odds

to increase (H5).

None of the three SWP-presence variables show to have a consistently significant effect on

any of the contribution types. First, the patent law situation increases the odds for above-average

reuse-based contribution (RU2, TABLE 4) and decreases them for library reuse (LIB, TABLE 5). Sec-

ond, neither of the two pressure variables has a significant effect except a high domain pressure

that decreases the odds for above-average algorithm-based contributions (AL1, TABLE 3). Third,

SWP incidents have no significant effect on either algorithm- or reuse-based contributions. (For

the influence of motivational factors and other control variables, see again the discussion for H1.)

In sum, H4 and H5 cannot be confirmed based on the empirical results from this sample as

neither hypothesis gets significant support.

H6. The right side of TABLE 5 shows the effects of SWP presence on reverse-engineering-

based contributions. Thus, it reports parameter estimates for H6, stating that stronger SWP pres-

ence increases the odds for above-average reverse-engineering-based code contributions by FOSS develop-

ers.

TABLE 5 shows that the legal availability of SWP (+25%) and SWP incidents (+153% !) increase

the odds for above-average reverse-engineering-based code contributions. Patent pressure does

not play a significant role. The control variables show that patent research (+120%) and above-av-

5. Empirical results 137

erage coding time (+33%) increase the odds, while above-average project experience (-28%) and

being older than 30 years (-25%) decrease the odds for reverse-engineering activities.

Altogether, stronger SWP presence and above-average reverse-engineering contributions

appear to go together. Further support is given by the control variable for patent research. The

results lend strong support to H6.

138 6. Conclusion

6. Conclusion

This study offers a first empirical investigation into the effects of motivation and SWP presence

on individual innovation behavior of FOSS developers. A new metric is proposed to measure indi-

vidual innovation behavior based on code contribution types: in this scale, algorithm-based code

contributions are rated more innovative than reuse-based contributions. In a separate analysis,

the effect of motivation and SWP presence on reverse-engineering as a special contribution type

is analyzed as well. Another new metric is proposed to measure SWP presence: instead of only

considering the legal situation of a jurisdiction, the patent pressure within a software domain is

also included. A survey was conducted to provide a new data-set for the empirical analysis.

Concerning the effects of motivation on innovation behavior, strong support can be re-

ported for the following result: Above-average intrinsic motivation (joy and self-expression in

code-writing) increases the odds for more innovative, algorithm-based code contributions, while

above-average extrinsic (monetary and skills-related) motivation seems to decrease the odds. In

connection with reuse-based contributions, the opposite relationship finds moderate support:

Above-average extrinsic motivation increases the odds for reuse-based contributions, while

above-average intrinsic motivation decreases the odds. The third result relates to reverse-engi-

neering: None of the five motivational factors included in the analysis seem to explain why FOSS

developers engage in reverse-engineering activities.

These results emphasize the role of motivation within the FOSS system. Particularly intrin-

sic motivation appears to not only keep this system alive and kicking, but more of it also seems to

lead to more innovative contributions. Simply put: ‘Programming challenging new stuff is fun’. On

the other side, it appears that reuse-based contributions with a lower innovation level – often

needed for ‘the last mile’ before a program is end-user-ready – can be supported by offering ex-

trinsic incentives. What still remains opaque from a theoretical point of view is the question why

developers engage in reverse engineering. A broader analysis of motivational factors is needed

here.

Concerning the effects of SWP presence on innovation behavior, the empirical results are

less conclusive. Neither opponents nor proponents of SWP will find support for their positions

that the presence of SWP decrease or increase respectively the odds for innovative, algorithm-

based contributions by FOSS developers. None of the three metrics used to capture SWP presence

6. Conclusion 139

lends sufficient support to either side – be it positive or negative. Support, however, is found for a

hypothesis related to reverse-engineering: stronger SWP presence attracts reverse-engineering-

based contributions by FOSS developers.

These results confirm several challenges for research as well as for policy-makers. Both con-

tinue to lack a broad, sound empirical foundation to discuss the effects of software patents on

FOSS innovation.

For researchers, the challenges raised in this study are (a) to develop an easy-to use yet non-

trivial metric to measure the presence of software patents empirically; (b) to quantify their effect

on the FOSS system, helping policy-makers make better-informed decision. For future research, it

would be useful to verify some of the links argued for in this study using other data sources. CVS

logs have been used in the past for code contribution analysis. Maybe the innovation metric pro-

posed here could be helpful in that regard.

For policy-makers in innovation and intellectual property policy fields the challenges are (a)

to decide whether FOSS deserves a special case when debating software patents because of its

unique way of producing software for the common good; (b) to continue treading carefully in the

field of software patents before jumping to legislation. The FOSS market has reached a size where

harm cannot be considered collateral damage as it may have in the past. Although the results

have not shown systematic harm to the FOSS communities, there is still no empirical support that

the traditional arguments in favor of patents do hold for the FOSS system – or software in general

as some continue to argue.

Some limitations of the study deserve mentioning. First, taking the individual developer as

unit of analysis ignores explanatory factors on project level that can also influence innovation be-

havior, such as project size and organizational structure. The larger a project is, the more elabo-

rate its organization structure becomes, the more contributors tend to specialize in their

contributions – up to a point where dedicated roles may emerge. Such a division of labor biases

the measurement of individual innovation behavior. Second, it is impossible to investigate

whether software patents caused projects to stop by only surveying ‘alive’ projects from SF as it

has been done in this study. To obtain a complete picture, it is necessary to run a dedicated study

on failed projects – even if the response rate will be very low.

7. References

Allison, J., Lemley, M. (2000). Who's Patenting What? An Empirical Exploration of Patent Prosecution.
Vanderbilt Law Review, (53), 2099.

Allison, P.D. (2002). Missing Data. Thousand Oaks, CA: Sage Publications.

Arora, A., Ceccagnoli, M., Cohen, W.M. (2003). R&D and the Patent Premium. NBER, Working Paper No. 9431.
www.nber.org/papers/w9431

Arundel, A. (2001). The relative effectiveness of patents and secrecy for appropriation. Research Policy, (30),
611-624.

Benkler, Y. (2002). Coase's Penguin, or Linux and the Nature of the Firm. Yale Law Journal, (112)369, 1-79.

Bessen, J., Hunt, R. (2007). An Empirical Look at Software Patents. Journal of Economics & Management
Strategy, (16)1, 157-189.

Bessen, J., Hunt, R. (2004). The Software Patent Experiment. In OECD (Ed.), Patents, Innovation and Economic
Performance (pp. 247-263). Paris: OECD Publishing.

Bessen, J., Maskin, E. (2006). Sequential Innovation, Patents, and Imitation. Institute for Advanced Study, School
of Social Science, Working Paper Economics No. 0025.
http://www.researchoninnovation.org/patrev.pdf

Blind, K., Edler, J., Nack, R. et al. (2003). Software-Patente: eine empirische Analyse aus ökonomischer und
juristischer Perspektive. Heidelberg: Physica.

Boldrin, M., Levine, D.K. (2008). Against intellectual monopoly. New York: Cambridge University Press.

Cohen, J.E., Lemley, M.A. (2001). Patent Scope and Innovation in the Software Industry. California Law
Review, (89)1, 1-57.

Cohen, W.M., Nelson, R.R., Walsh, J.P. (2000). Protecting Their Intellectual Assets: Appropriability Conditions and
Why U.S. Manufacturing Firms Patent (or Not). Cambridge, MA: NBER Working Paper 7552.

Czaja, R., Blair, J. (1996). Designing surveys : a guide to decisions and procedures. Thousand Oaks, CA: Pine Forge
Press.

Dapp, M. (2009). Nothing Really Matters? Empirical Evidence on The Effects of Software Patents On the Motivation of
Free/Open Source Software Developers. Available at SSRN: http://ssrn.com/abstract=1422720 (19.06.09).

Dapp, M., Bernauer, T. (2009). Hot Debate about Chilling Effects : Do Software Patents Hamper Free/Open Source
Software Development?. Center for Comparative and International Studies, ETH Zurich, Working Paper
40/2009.

Dillman, D.A. (2000). Mail and internet surveys: the tailored design method. New York: Wiley.

English, R., Schweik, C.M. (2007). Identifying Success and Tragedy of FLOSS Commons: A Preliminary
Classification of Sourceforge.net Projects. UPGRADE, (IX)6, 54-59.

European Commission (2002). DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the
patentability of computer-implemented inventions COM(2002) 92 final. Retrieved from http://eur-
lex.europa.eu/LexUriServ/site/en/com/2002/com2002_0092en01.pdf.

European Information and Communications Technology Industry Association (EICTA) (2000). Response to
the European Commission's Consultation Paper on "The Patentability of computer-iomplemented inventions".
Retrieved 05.02.2009 from ec.europa.eu/internal_market/indprop/docs/comp/replies/eicta_en.pdf.

Fagerberg, J. (2005). Innovation - A Guide to the Literature. In Fagerberg, J., Mowery, D.C., Nelson, R.R.
(Eds.), The Oxford Handbook of Innovation (pp. 1-26). Oxford: Oxford University Press.

Fisher, M. (2005). Classical Economics and Philosophy of the Patent System. Intellectual Property Quarterly,
(1), 1-26.

Foundation for a Free Information Infrastructure (2009). Software Patents in Action. Retrieved 13.03.2009
from http://eupat.ffii.org/patents/effects/.

142 7. References

Fowler, F.J. (2002). Survey Research Methods. Thousand Oaks, CA: Sage Publications.

Fowler, F.J. (1995). Improving Survey Questions : Design and Evaluation. Thousand Oaks, CA: Sage Publications.

Free Software Foundation (2006). Free Software Definition. Retrieved 22.04.06 from
www.fsf.org/licensing/essays/free-sw.html.

Ghosh, R.A., Glott, R., Kreiger, B. et al. (2002). The Free/Libre and F/OSS Software Developers Survey and Study—
FLOSS Final Report. Retrieved 22.06.2006 from www.infonomics.nl/FLOSS/report.

Harabi, N. (1995). Appropriability of technical innovations. An empirical analysis. Research Policy, (24), 981-
992.

Howison, J., Conklin, M., Crowston, K. (2006). FLOSSmole: A collaborative repository for FLOSS research
data and analyses. International Journal of Information Technology and Web Engineering, (1)3, 17-26.

Klemens, B. (2005). Math you can't use. Washington, DC: Brookings Institution Press.

Klincewicz, K. (2005). Innovativeness of open source software projects. Tokyo Institute of Technology, Working
Paper . http://opensource.mit.edu/papers/klincewicz.pdf

Krishnamurthy, S. (2006). On the intrinsic and extrinsic motivation of FLOSS developers. Knowledge,
Technology, & Policy, (18)4, 17-39.

Lerner, J., Tirole, J. (2004). The Economics of Technology Sharing: Open Source and Beyond. , Working Paper No.
10956. www.nber.org/papers/w10956

Lerner, J., Tirole, J. (2001). The open source movement: Key research questions. European Economic Review,
(45), 819-826.

Levine, L., Saunders, K. (2004). Software Patents: Innovation or Litigation?. In Fitzgerald B, Wynn, E. (Eds.),
IT Innovation for Adaptability and Competitiveness, IFIP 8.6 Working Conference on IT Innovation for
Adaptability and Competitiveness
 (pp. 229-242). Leixlip, Ireland: IFIP.

Marinova, D., Phillimore, J. (2003). Models of Innovation. In Shavinina, L.V. (Ed.), The International Handbook
on Innovation (pp. 44-53). Oxford: Elsevier.

Mazzoleni, R., Nelson, R.R. (2004). Economic Theories about the Benefits and Costs of Patents. In Maskus,
K.E. (Ed.), The WTO, intellectual property rights and the knowledge economy (pp. 148-169). Cheltenham:
Edward Elgar.

Menell, P.S. (2000). Intellectual Property: General Theories. In Bouckaert, B., De Geest, G. (Eds.),
Encyclopedia of Law and Economics (pp. 129-187). Cheltenham: Edward Elgar.

Mitchell, H.C. (2005). The Intellectual Commons: Toward an Ecology of Intellectual Property. Lanham: Lexington
Books.

O'Mahony, S. (2005). Nonprofit Foundations and Their Role in Community-Firm Software Collaboration. In
Feller, J. (Ed.), Perspectives on free and open source software (pp. 393-446). Cambridge, MA: MIT Press.

OECD (1997). Oslo Manual : Proposed guidelines for collecting and interpreting technological innovation data. : OECD.

Rogers, E. (2003). Diffusion of Innovations. New York: Free Press.

Royston, P. (2005). Multiple imputation of missing values: update. The Stata Journal, (5)2, 188-201.

Ryan, R.M., Deci, E.L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions.
Contemporary Educational Psychology, (25), 54–67.

Sakakibara, M., Branstetter, L. (2004). Do stronger patents induce more innovation? Evidence from the 1988
Japanese patent law reform. In Maskus, K.E. (Ed.), The WTO, intellectual property rights and the
knowledge economy (pp. 544-567). Cheltenham: Edward Elgar.

Samuelson, P., Scotchmer, S. (2002). The Law and Economics of Reverse Engineering. The Yale Law Journal,
(111), 1575-1663.

7. References 143

Sattler, H. (2003). Appropriability of product innovations: an empirical analysis for Germany. International
Journal of Technology Management, (26)5/6, 502-516.

Scotchmer, S. (2004). Innovation and incentives. Cambridge, MA: MIT Press.

Smith, K. (2005). Measuring Innovation. In Fagerberg, J., Mowery, D.C., Nelson, R.R. (Eds.), The Oxford
Handbook of Innovation (pp. 148-177). Oxford: Oxford University Press.

von Hippel, E., von Krogh, G. (2003b). Special issue on open source software development. Research Policy,
(32)7, 1149-1157.

von Hippel, E., von Krogh, G. (2003a). Open Source Software and the "Private-Collective" Innovation Model:
Issues for Organization Science. Organization Science, (14)2, 209-223.

Watts, D.J. (2003). Six degrees: The science of a connected age. New York: Norton.

Wheeler, D.A. (2001). The Most Important Software Innovations. Retrieved 26.02.2006 from
http://www.dwheeler.com/innovation/innovation.html.

8. Appendix A – Descriptive statistics

FIGURE-A 1: Reported importance of motivational factors: (e)njoyment, (o)bligation,
and (i)nstant

9. Appendix B – Underlying survey questions

Here, the questions and answer categories from the survey questionnaire used for this study are

listed. The variable names used in the regression analysis are mentioned in bracketed capitals.

Code contributions. When you contributed code to <project-name> during the last two years,

how did you typically create source code?

0

Never

X XX XXX XXXX XXXX
X

Always

No an-
swer

By linking to existing FLOSS libraries. (LIB) O O O O O O O

By integrating existing FLOSS components with little adaption.
(REUSE 1)

O O O O O O O

By recombining existing FLOSS components with much adap-
tion. (REUSE 2)

O O O O O O O

By reverse-engineering/imitating functionality from non-
FLOSS programs. (REV)

O O O O O O O

By coding known algorithms/methods from scratch. (ALGO-
RITHM 1)

O O O O O O O

By inventing new algorithms/methods before coding. (ALGOR-
TIHM 2)

O O O O O O O

Motivation. Please rank how important the following motives are for you to contribute code

to FLOSS projects!

- - -

Not at
all

- - - + + + + + +

Very

No an-
swer

I simply enjoy programming. (JOY) O O O O O O O

I want to create beautiful and elegant programs. (SELF-EXPRES-
SION)

O O O O O O O

I seek the challenge of solving programming tasks. O O O O O O O

I feel good about helping others with my programs. O O O O O O O

I value the goals of the FLOSS community. O O O O O O O

I support the technical goals of my project. O O O O O O O

I think software should be free. (SOFTWARE FREEDOM) O O O O O O O

How my family/friends see my engagement is ... O O O O O O O

I get back more than I contribute. O O O O O O O

I develop my programming skills. (SKILLS) O O O O O O O

I solve my own programming problems. O O O O O O O

I earn money from it. (MONEY) O O O O O O O

I build a reputation as a good developer. O O O O O O O

148 9. Appendix B – Underlying survey questions

- - -

Not at
all

- - - + + + + + +

Very

No an-
swer

I improve my future career perspectives. O O O O O O O

I think it is fair to give back when you take. O O O O O O O

I fight against proprietary software. O O O O O O O

Software patent influence. According to your knowledge, which application domains are

mostly affected by software patents? Select a maximum of four (4) domains!

O Communications O Database O Desktop Environment

O Education O Formats and Protocols O Games/Entertainment

O Internet O Multimedia O Office/Business

O Scientific/Engineering O Security O Software Development

O System O Text Editors

Main Appendix A – Survey Questionnaire

Please note:

• The online survey questionnaire was implemented using the survey tool LimeSurvey.org,

which uses typical interactive web features like drop-down boxes, etc. These features can-

not be replicated directly in this document. Instead, the options respondents were able to

choose from are shown as a list.

• Also, the survey tool offered to show a different question flow depending on the answers

to previous questions. Such forking is shown with directional statements in brackets such

as “[Only answer this question if ...]”. Aside from that, the questions, answers, and com-

ments are shown as in the original survey questionnaire.

• The questionnaire starts with a short introduction page helping the respondents using the

online tool. Questions are presented in six sections A to F. Depending on the answers

given, some sections were skipped and not visible for the respondent.

• Finally, the text also contains automatic text fields (e.g., <project-name>) that were used to

personalize the questionnaire.

150 Main Appendix A – Survey Questionnaire

FLOSS, Software Patents, and Innovation

Dear <SF-login-name>, please read the following carefully before you start!

What? Background information about the research project behind this survey can be found here.

The project is financed through ETH research grant No. TH -2/05-2.

SSL In case you did not get an SSL connection automatically, please add an 's' after 'http' in the

URL before you continue. The SSL certificate belongs to ETH Zurich, Switzerland.

Javascript must be enabled to allow the survey to function properly. You can browse back and

forth as long as you have not pressed the [submit] button on the last page. Please note that ques-

tions marked as mandatory (*) need an answer.

Answers are not saved automatically page by page! Only when you press [submit] at the end of

the survey, all answers are saved at once. If you allow cookies, you can interrupt the survey, save

your answers (password protected) and continue later.

What do we do to protect your privacy knowing that this is a sensitive topic? In general, we ad-

here to the Guide on Ethical Online Research by the Association of Internet Researchers (AOIR). In

particular, SF login, email address and projectname are only used to communicate with you dur-

ing this survey. They will be removed from the final data-set and at no time be passed on to third

parties. Only aggregated results (not on project level) will be published, so no conclusions can be

drawn from the results to identify projects.

Results will be made available on this website in an open data format and licensed under a suit-

able permissive copyright license (e.g., CC). We thank all free/libre/open source software (FLOSS)

communities for providing the software to make this survey possible, particularly LimeSurvey.org

and FLOSSmole.

Thanks for your trust and your invaluable contribution! And good luck with the lottery. :-)

Best regards
Prof. Thomas Bernauer, ETH Zurich CIS
Prof. Georg von Krogh, ETH Zurich SMI
Prof. Gérard Hertig, ETH Zurich L&E
Marcus M. Dapp, ETH Zurich CIS/SMI

Main Appendix A – Survey Questionnaire 151

Part A - Your experience

a1-comm: Community. In this survey, we will always use the umbrella term 'Free/

Libre Open Source Software (FLOSS)' , knowing that many developers make a dis-

tinction. Do you think of yourself as part of the Free/Libre Software or of the

Open Source community?

Please choose only one of the following:

I think of myself as part of the Free/Libre Software community.

I think of myself as part of the Open Source Software community.

I do not make this distinction.

a2-exp: Years of experience. What year did you start contributing source code to

FLOSS projects?

Please choose only one of the following:

2006

2005

2004

2003

2002

2001

2000

(...)

1989

1988

1987

1986

1985

1984

Earlier than 1984

152 Main Appendix A – Survey Questionnaire

a3-pjs: Project track record. To how many FLOSS projects have you been actively

contributing source code since then?

Please choose only one of the following:

1

2-5

6-10

11-20

21-30

30+

a4-insp: Sources of inspiration. Where from do you get ideas/input/inspiration

for code contributions?

Please select a maximum of three (3) sources.

Please choose all that apply:

From my own needs/use.

From other FLOSS projects.

From other proprietary programs.

From feature requests.

From bug reports.

From talks with people inside our project.

From talks with people outside the project.

From research in books, magazines, etc.

From web research in blogs, wikis, fora, etc.

From reading published patents.

From 'flashes of genius' (e.g., in the shower/bathtub).

From my daily work.

Other: _____

Main Appendix A – Survey Questionnaire 153

* a5-motive: Motivation. Please rank how important the following motives are for

you to contribute code to FLOSS projects!

Please choose the appropriate response for each item:

Not at all
impor-

tant

- - - - - - + + +

Very im-
portant

+ + +
No an-
swer

I simply enjoy programming. O O O O O O O

I want to create beautiful and elegant programs. O O O O O O O

I seek the challenge of solving programming tasks. O O O O O O O

I feel good about helping others with my programs. O O O O O O O

I value the goals of the FLOSS community. O O O O O O O

I support the technical goals of my project. O O O O O O O

I think software should be free. O O O O O O O

How my family/friends see my engagement is ... O O O O O O O

I get back more than I contribute. O O O O O O O

I develop my programming skills. O O O O O O O

I solve my own programming problems. O O O O O O O

I earn money from it. O O O O O O O

I build a reputation as a good developer. O O O O O O O

I improve my future career perspectives. O O O O O O O

I think it is fair to give back when you take. O O O O O O O

I fight against proprietary software. O O O O O O O

154 Main Appendix A – Survey Questionnaire

* a6-income: Income. Was developing FLOSS your main source of income in the

last two years, i .e . the period August 2005 until August 2007?

The "last two years" in this survey always means the period from August 2005 until August 2007.

Please choose only one of the following:

I was paid mainly for developing FLOSS.

I was paid for FLOSS-related work (e.g., admin, support) with no or only little FLOSS code develop-

ment work.

I was not paid for any FLOSS-related work.

* a7-time: Time. On average, how many hours per week - work and free time com -

bined - did you contribute source code to FLOSS projects in the last two years?

How many hours per week have you been paid on average?

0h <2h 2-5h 6-10h 11-20h 21-40h >40h
No an-
swer

In an average week, I coded for ... O O O O O O O O

From that time, I have been paid for ... O O O O O O O O

* a8-icsrc: Sources of code. When you contributed code to <project-name> during

the last two years, how did you typically create source code?

Please choose the appropriate response for each item:

Never

o x x x x x x x x x x

Always

x x x x x

No
an-

swer

By linking to existing FLOSS libraries. O O O O O O O

By integrating existing FLOSS components with little adaption. O O O O O O O

By recombining existing FLOSS components with much adaption. O O O O O O O

By reverse-engineering/imitating functionality from non-FLOSS
programs.

O O O O O O O

By coding known algorithms/methods from scratch. O O O O O O O

By inventing new algorithms/methods before coding. O O O O O O O

Main Appendix A – Survey Questionnaire 155

Part B - The project

* b1-appdom: Application domain. Under which primary category in Source-

Forge's Software Map is your project registered?

If your project is listed under more than one category, please choose the primary/main category. If your primary cate-

gory is any of {terminals|printing|sociology|religion} and is not listed here, please choose "Other".

Please choose only one of the following:

Communications

Database

Desktop Environment

Education

Formats and Protocols

Games/Entertainment

Internet

Multimedia

Office/Business

Scientific/Engineering

Security

Software Development

System

Text Editors

Other category or not categorized.

156 Main Appendix A – Survey Questionnaire

* b2-codesrc: Sources of code. When you think about all code contributions to

<project-name> during the last two years, how did the developers typically create

source code?

Please choose the appropriate response for each item:

Never

o x x x x x x x x x x

Always

x x x x x

No
an-

swer

By linking to existing FLOSS libraries. O O O O O O O

By integrating existing FLOSS components with little adaption. O O O O O O O

By recombining existing FLOSS components with much adaption. O O O O O O O

By reverse-engineering/imitating functionality from non-FLOSS
programs.

O O O O O O O

By coding known algorithms/methods from scratch. O O O O O O O

By inventing new algorithms/methods before coding. O O O O O O O

* b3-position: Positioning. How would you rate the <project-name> project com-

pared to similar, competing projects during the last two years?

Please choose the appropriate response for each item:

Below aver-
age

(-)

Average

(=)

Above aver-
age

(+) No answer

In terms of innovative new functionality, we are O O O O

In terms of growing the user base, we are O O O O

In terms of vibrancy of the developer community, we are O O O O

Main Appendix A – Survey Questionnaire 157

Part C - Software patents in general

c1-patknow: Patent knowledge. My knowledge about . . .

Please choose the appropriate response for each item:

Zero

o

Poor

x

Fair

x x

Good

x x x

Excellent

x x x x No answer

how patents work in general is ... O O O O O O

the software patent debate in general is ... O O O O O O

the software patent situation in my country is ... O O O O O O

c2-affdoms: Software patent influence. According to your knowledge, which ap -

plication domains are mostly affected by software patents?

Select a maximum of four (4) domains!

Please choose all that apply:

Communications

Database

Desktop Environment

Education

Formats and Protocols

Games/Entertainment

Internet

Multimedia

Office/Business

Scientific/Engineering

Security

Software Development

System

Text Editors

158 Main Appendix A – Survey Questionnaire

* c3-natlaw: National law. According to your knowledge, did the national law of

your country allow software patents during the last two years?

This question is about the situation according to the law, not the practice of the patent office.

Please choose the appropriate response for each item:

Yes No No answer

The law allowed software patents: O O O

* c4-patoff : Patent offices. According to your knowledge, how frequently were

software patents granted in the last two years. . .

This question is about the patent office practice, not the legal situation (law).

Please choose the appropriate response for each item:

Never

o x x x x x x x x x x

Always

x x x x x
No an-
swer

by the national patent office in -your- country? O O O O O O O

by the European Patent Office for European countries? O O O O O O O

Main Appendix A – Survey Questionnaire 159

Part D - The project & software patents

* d1-patres: Patent Research. Have developers of the <project-name> project ever

done research in patent databases?

Research can be done for different reasons: to check for infringements, to get new coding ideas, etc.

Please choose the appropriate response for each item:

Yes No No answer

Patent research was done: O O O

* d2-patrole: Role of patents. From what you know, have software patents actu-

ally played any relevant role for the <project-name> project?

Please focus on facts and your experience in the project and avoid opinions you may have otherwise.

Please choose only one of the following:

Yes, patents played a negative role.

Yes, patents played a positive role.

No, patents did not play any role.

No answer.

160 Main Appendix A – Survey Questionnaire

Part D2 - The project & software patents (cont'd.)

[Only answer this question if you answered 'Yes, patents played a negative role.' to question 'd2-patrole ']

dn1: Incidents. Was the project ever contacted by someone raising patent claims

on functionality in <project-name>s code base?

Please choose only one of the following:

No, never.

Yes, once.

Yes, several times from the same patent holder.

Yes, several times from different patent holders.

No answer.

[Only answer this question if you answered 'Yes, once.' or 'Yes, several times from the same patent holder.' or 'Yes, sev-

eral times from different patent holders.' to question 'dn1 ' and if you answered 'Yes, patents played a negative role.' to

question 'd2-patrole ']

dn2: Patent holder. Who was raising patent claims?

Information and Communication Technologies (ICT) include more than just software.

Please choose the appropriate response for each item:

Never

o x x x x x x x x x x

Always

x x x x x
No an-
swer

A software company offering a competing program. O O O O O O O

A software company that is not directly competing. O O O O O O O

An ICT company that is not primarily software-producing. O O O O O O O

A company outside the ICT field. O O O O O O O

A company acquiring patents for the purpose of asserting
them against others ("patent troll").

O O O O O O O

Other. O O O O O O O

Main Appendix A – Survey Questionnaire 161

[Only answer this question if you answered 'Yes, once.' or 'Yes, several times from the same patent holder.' or 'Yes, sev-

eral times from different patent holders.' to question 'dn1 ' and if you answered 'Yes, patents played a negative role.' to

question 'd2-patrole ']

dn3: Incident evolution. How did this/these incident/s evolve?

"Letters" can be on paper or via email.

Please choose the appropriate response for each item:

Never

o x x x x x x x x x x

Always

x x x x x
No an-
swer

We received a written letter of notice offering a license for
free.

O O O O O O O

We received a written letter of notice offering a license
against a fee.

O O O O O O O

We received a formal cease-and-desist letter threatening to
take legal steps.

O O O O O O O

We were sued. O O O O O O O

[Only answer this question if you answered 'No, never.' or 'No answer.' to question 'dn1 ' and if you answered 'Yes,

patents played a negative role.' or 'Yes, patents played a positive role.' to question 'd2-patrole ']

dn3-alt : Clarification. Please clarify briefly: What actually happened in the

project related to software patents?

Thanks for providing a few sentences of clarification.

Please write your answer here:

162 Main Appendix A – Survey Questionnaire

[Only answer this question if you answered 'Yes, patents played a positive role.' to question 'd2-patrole ']

dn3-pos: Positive role. Please describe briefly what positive role software patents

played in your project!

Please write your answer here:

[Only answer this question if you answered 'Yes, once.' or 'Yes, several times from the same patent holder.' or 'Yes, sev-

eral times from different patent holders.' to question 'dn1 ' and if you answered 'Yes, patents played a negative role.' to

question 'd2-patrole ']

dn4: Short-term. How did the <project-name> project react?

Please choose the appropriate response for each item:

Never

o x x x x x x x x x x

Always

x x x x x
No an-
swer

We ignored the request and continued development. O O O O O O O

We complied by making the code non-infringing. O O O O O O O

We complied by signing a license deal. O O O O O O O

We defended the project legally. O O O O O O O

Main Appendix A – Survey Questionnaire 163

[Only answer this question if you answered 'Yes, once.' or 'Yes, several times from the same patent holder.' or 'Yes, sev-

eral times from different patent holders.' to question 'dn1 ' and if you answered 'Yes, patents played a negative role.' to

question 'd2-patrole ']

dn5: Long-term. What were the consequences for the <project-name> project in

the long run?

Please choose the appropriate response for each item:

Never

o x x x x x x x x x x

Always

x x x x x
No an-
swer

We had delays in code development. O O O O O O O

We had to use a non-infringing, inferior substitute. O O O O O O O

We came up with a non-infringing, superior substitute. O O O O O O O

We had to leave out infringing functionality with no
substitute.

O O O O O O O

We had to pay license fees to comply. O O O O O O O

We had legal defense costs. O O O O O O O

People contributed less code. O O O O O O O

People left the project. O O O O O O O

The project's existence was in danger. O O O O O O O

Other consequences. O O O O O O O

[Only answer this question if you answered 'Yes, patents played a negative role.' or 'Yes, patents played a positive role.'

to question 'd2-patrole ']

dn6: Effects on motivation. How would you rate the effects of all that on develop -

ers' motivation?

Please choose the appropriate response for each item:

Decreased

(-)

Stayed the same

(=)

Increased

(+) No answer

My personal motivation: O O O O

Overall motivation of the team: O O O O

164 Main Appendix A – Survey Questionnaire

Part E - Project Environment

* e1: Licensing. According to SourceForge data from August 2006, the source code

of <project-name> is licensed under the following l icense(s): <project-l icense>.

Please choose the appropriate response for each item:

Yes No
No an-
swer

Did software patents play a role in choosing the license(s) in the past? O O O

Are there plans to switch to other licenses containing software patent provisions (e.g. GPLv3)? O O O

e2: Protection from patents. Different organisations offer legal protection

schemes for FLOSS projects through patent pools, pledges or insurances. What is

the situation with <project-name> in that regard?

Examples for such organisations are Open Invention Network (OIN), Patent Commons or OSRM.

Please choose all that apply:

We seek to become a member of a protection scheme.

We are member of a protection scheme.

We seek to get a patent litigation insurance.

We have a patent litigation insurance.

* e3: Legal representation. Does an organisation represent the <project-name>

project in legal matters?

Please choose only one of the following:

Yes, a non-profit foundation/association.

Yes, a for-profit company.

Yes, an academic institution/university.

No, we are just a group of individuals.

Don't know.

Main Appendix A – Survey Questionnaire 165

[Only answer this question if you answered 'Yes, a non-profit foundation/association.' or 'Yes, a for-profit company.' or

'Yes, an academic institution/university.' to question 'e3 ']

e5: Country. In which country was that organisation located in the last two years?

Please choose only one of the following:

Argentina

Australia

Austria

Belgium

Brazil

Canada

Chile

China

Cyprus

Czech Republic

Denmark

Estonia

Finland

France

Germany

Greece

Hungary

Iceland

India

Ireland

Israel

Italy

Japan

Latvia

166 Main Appendix A – Survey Questionnaire

Lithuania

Luxembourg

Malta

Mexico

Netherlands

New Zealand

Norway

Poland

Portugal

Romania

Russian Federation

Singapore

Slovakia

Slovenia

South Africa

South Korea

Spain

Sweden

Switzerland

Turkey

United Kingdom

United States of America

Other

Main Appendix A – Survey Questionnaire 167

[Only answer this question if you answered 'Yes, a for-profit company.' or 'Yes, a non-profit foundation/association.' or

'Yes, an academic institution/university.' to question 'e3 ']

e6: Rights. Does that organisation hold legal rights to the project's code base?

Please choose the appropriate response for each item:

Yes No
No an-
swer

It holds parts of the copyrights to the code base. O O O

It holds all copyrights to the code base. O O O

It holds software patents related to the code base. O O O

[Only answer this question if you answered 'No' to question 'e6 ' and if you answered 'Yes, a non-profit foundation/as-

sociation.' or 'Yes, a for-profit company.' or 'Yes, an academic institution/university.' to question 'e3 ']

e7ra: Reasons against software patents. Why does the organisation not hold own

software patents?

The reasons are shown in random order.

Please choose all that apply:

Software patents give too little protection.

Infringements are hard to prove.

The granting process for software patents is long.

To apply for and enforce software patents is expensive.

The code's innovativeness is too low for software patents.

Doubts to disclose know-how contained in the code.

Software patents are not relevant for its business model.

Knowledge in the patent application process is lacking.

Doubts whether software patents hinder innovation in software.

Doubts about the image of software patents in the market.

Doubts about the patentability of software in general.

Doubts about the enforceability of software patents.

Other.

168 Main Appendix A – Survey Questionnaire

[Only answer this question if you answered 'Yes' to question 'e6 ' and if you answered 'Yes, a non-profit foundation/as-

sociation.' or 'Yes, a for-profit company.' or 'Yes, an academic institution/university.' to question 'e3 ']

e7rf: Reasons for software patents. Why does the organisation hold own software

patents?

The reasons are shown in random order.

Please choose all that apply:

To protect itself from imitation.

To Increase its market advantage.

To block out competition.

Patents are important in the EU.

Patents are important in the US.

Patents are important in Japan.

To increase the software's financial value.

To get better access to the capital market.

To have a portfolio for cross-licensing deals.

To get access to patent pools.

To generate income from licensing.

Other.

[Only answer this question if you answered 'Yes' or 'No' to question 'e6 ' and if you answered 'Yes, a non-profit founda-

tion/association.' or 'Yes, a for-profit company.' or 'Yes, an academic institution/university.' to question 'e3 ']

e8: Comment about reasons. If you want to make a comment about the reasons,

please do so here!

Please write your answer here:

Main Appendix A – Survey Questionnaire 169

e9: Company involvement. Are companies directly involved in the software devel-

opment for the project?

An example of direct involvement is when the company has hired developers to write code for the project.

Please choose only one of the following:

Yes, more than one company.

Yes, one company.

No.

170 Main Appendix A – Survey Questionnaire

Part F - Demographics

* f1-resid: Country. What was your main country of residence in the last two

years? If you have been living in different countries, please choose the one you

have been l iving in longest.

Please choose "other" (at the end of the list) if your country is not listed.

Please choose only one of the following:

Argentina

Australia

Austria

Belgium

(… abbreviated, see question ‘e5’ for full country list …)

Switzerland

Turkey

United Kingdom

United States of America

Other.

f2-nation: Nationality. Which country's nationality do you have?

Please choose "other" (at the end of the list) if your country is not listed.

Please choose only one of the following:

Argentina

Australia

Austria

Belgium

(… abbreviated, see question ‘e5’ for full country list …)

Main Appendix A – Survey Questionnaire 171

Switzerland

Turkey

United Kingdom

United States of America

Other.

f3-employ: Employment. How would you describe your main employment situa-

tion in the last two years?

Please choose only one of the following:

Self-employed.

Employed.

Unemployed.

Student, unpaid work.

Other.

f4-edu: Level of education. What is the highest level of eduction that you com -

pleted?

Please choose only one of the following:

Elementary School

High School

Apprenticeship

Bachelor (university)

Master (university)

Ph.D. (university)

172 Main Appendix A – Survey Questionnaire

f5-sex: Gender. What is your gender?

Please choose only one of the following:

Female

Male

f6-age: Age group. To which age group do you belong?

Please choose only one of the following:

15 yrs and less

16-20 yrs

21-25 yrs

26-30 yrs

31-35 yrs

36-40 yrs

41-45 yrs

46-50 yrs

51-55 yrs

56-60 yrs

61 yrs and more

No answer

Main Appendix A – Survey Questionnaire 173

f7-comment: Final comment. Is there anything else you want to tell us?

Please write your answer here:

Thank you for completing this survey!

Main Appendix B – Invitation Email

Dear {FIRSTNAME}!

There is considerable debating in the FLOSS community about software patents; but what do we

really know about their effects? What are your own experiences? To get a representative picture

on the software patent situation, we cordially invite you to participate in this global scientific sur-

vey:

 {SURVEYNAME} -- {SURVEYDESCRIPTION}

 »» {SURVEYURL}

 Participation is customized and by invitation only!

You have been randomly selected from project leaders/key developers of all SF projects active in

August 2006. To improve statistical power of the survey, we are using a controlled survey setting

with direct email invitations. You can rest assured that all data will be aggregated and completely

anonymous. Details on data handling can be found following the survey link.

The survey is a joint project of the Center for Comparative and International Studies (CIS) and the

Chair for Strategic Management and Innovation (SMI) at ETH Zurich, Switzerland[1]. Financial

support through ETH Research Grant No. TH-2/05-2 is kindly acknowledged.

To show we are serious to have you participate, we invite all participants who complete the ques-

tionnaire to participate in our lottery. The cool prizes we raised for this dedicated group of indi-

viduals are:

 1st prize - A "One Laptop Per Child" device, sponsored by Google's Open Source Program

Office[2]

 2nd prize - A Neo1973 free-your-phone, sponsored by OpenMoko/FIC[3]

 3rd prize - In progress. We aim for similar coolness as the other prizes :-)

176 Main Appendix B – Invitation Email

 Please submit your response before: ..., xx.yy.2007!

Answering the multiple choice questions will be easy. We hope you find coming up with answers

as exciting as we found coming up with questions. Thank you very much for your interest, time

and invaluable contribution!

With kind regards,

Professor Thomas Bernauer, CIS

Professor Georg von Krogh, SMI

Professor Gérard Hertig, L&E

Marcus M. Dapp, CIS/SMI

If you face technical problems, email Marcus at {ADMINEMAIL}

[1] http://www.ethz.ch, http://www.smi.ethz.ch, and http://www.cis.ethz.ch

[2] http://www.laptop.org

[3] http://www.openmoko.org

Marcus M. Dapp | WEC C 19 | ETH-Zentrum | CH-8092 Zurich | Switzerland

Main Appendix C – First Reminder Email

Dear {FIRSTNAME},

We want to remind you that our research study, which is surveying the potential effects of soft-

ware patents on free/libre/open source projects, is still open. -- This is a joint research project [0]

of the Center for Comparative and International Studies (CIS), the Chair for Strategic Manage-

ment and Innovation (SMI), and the Chair for Law&Economics; all at the Federal Institute of Tech-

nology (ETH) in Zurich, Switzerland: http://www.ethz.ch. It is fully funded by an ETH research

grant.

We make sure that all participating projects/individuals remain anonymous and all results will be

aggregated as we are aware of the sensitive nature of the research topic. Identifying information

(login/projectname/email address) is only used for this email conversation and only handled by

one individual. More about our privacy policy is on the information page before the actual ques-

tionnaire.

Participation is by invitation only. We are including only a random sample of project leaders/key

developers of SF projects as of August 2006. Therefore, your contribution is crucial and will di-

rectly improve the overall data quality.

Thanks for helping us by submitting your response within the next days. Multiple choice ques-

tions will make answering straightforward. If you face technical problems, please email Marcus at

{ADMINEMAIL} with the subject line: 'bug-report-ig'.

=> {SURVEYURL}

178 Main Appendix C – First Reminder Email

As an additional benefit besides publishing the results, we include all completed questionnaires in

a lottery.

1st -- A green 'XO' (OLPC) laptop, sponsored by Google's Open Source Program Office[1]

2nd -- A free 'Neo1973' mobile phone, sponsored by OpenMoko/FIC[2]

3rd -- Be surprised. We aim for similar 'coolness' as the other prizes ;-)

Thank you very much for your time.

Professor Thomas Bernauer, http://www.cis.ethz.ch

Professor Georg von Krogh, http://www.smi.ethz.ch

Professor Gérard Hertig, http://www.hertig.ethz.ch

Marcus M. Dapp, Ph.D. candidate & survey responsible

[0] https://www.rdb.ethz.ch/projects/project.php?proj_id=13158

[1] http://www.laptop.org

[2] http://www.openmoko.org

Marcus M. Dapp | WEC C 19 | ETH-Zentrum | CH-8092 Zurich | Switzerland

Main Appendix D – Second (Last) Reminder Email

Dear {FIRSTNAME},

The research study of ETH Zurich on software patents and FLOSS projects is still open. If you want

to discard this email, please read it before you do so. :-)

1) This study adheres to academic standards. This is a joint research project [0] of the Center for

Comparative and International Studies (CIS), the Chair for Strategic Management and Innovation

(SMI), and the Chair for Law&Economics; all at the Federal Institute of Technology (ETH) in

Zurich, Switzerland: http://www.ethz.ch. It is fully funded by an academic research grant by ETH.

We added an SSL certificate to the survey website to prove who we are.

2) This is a sensitive, legal issue for some projects. We know. Therefore, we do all we can to ensure

that all participating projects/individuals remain anonymous and all results will be aggregated.

Identifying information (login/projectname/email address) is only used for this email conversa-

tion and only handled by one individual. More details about our privacy policy is on the informa-

tion page before the actual questionnaire.

3) Why is participation by invitation only? Because we want a random sample of projects, not just

the ones with/or without software patent issues. In fact, we do not know anything about your

project in connection with software patents; it was randomly drawn. Getting a representative pic-

ture about the software patent situation is the goal of the survey. Therefore, -all- answers are im-

portant. In other words, please participate, no matter what the situation in your project is. You

can explain us in the survey.

4) Interesting, but I am not the right person. We are including only a random sample of project

leaders/key developers of SF projects as of August 2006. Therefore, your contribution is crucial

and will directly improve the overall data quality. If, for whatever reason, you think someone else

is better suited to represent the {LASTNAME} project from a project leader/key developer per-

spective in the period Aug05-Aug07, we would appreciate if you could send us an alternative email

address to invite that person. (Yours will be removed.)

180 Main Appendix D – Second (Last) Reminder Email

Thanks for helping this academic endeavor by submitting your response within the next days. If

you face technical problems, please email Marcus at {ADMINEMAIL} with the subject line: 'bug-re-

port-sg'.

=> {SURVEYURL}

As an additional benefit to you, besides orderly publishing of the results, we include all completed

questionnaires in a lottery with prizes:

1st: A green 'XO' (OLPC) laptop, sponsored by Google's Open Source Program Office[1]

2nd: A free 'Neo1973' mobile phone, sponsored by OpenMoko/FIC[2]

3rd: Working on it; will be comparable to the 1st prize in nature.

Thank you very much for your time.

Professor Thomas Bernauer, http://www.cis.ethz.ch

Professor Georg von Krogh, http://www.smi.ethz.ch

Professor Gérard Hertig, http://www.hertig.ethz.ch

Marcus M. Dapp, Ph.D. candidate & survey responsible

[0] https://www.rdb.ethz.ch/projects/project.php?proj_id=13158

[1] http://www.laptop.org

[2] http://www.openmoko.org

Marcus M. Dapp | WEC C 19 | ETH-Zentrum | CH-8092 Zurich | Switzerland

Main Appendix E – Imputation statistics

The following table lists all variables and the fraction of missing and hence imputed values.

Variable name # Missing % Missing

Experience [years] 6 0,2

Experience [projects] 11 0,5

Motivation: joy 24 1

Motivation: beauty 32 1,3

Motivation: challenge 29 1,2

Motivation: helping others 21 0,9

Motivation: community goals 51 2,1

Motivation: project goals 97 4

Motivation: SW must be free 68 2,8

Motivation: significant others 170 7

Motivation: net gain 77 3,2

Motivation: skills 35 1,4

Motivation: self-help 44 1,8

Motivation: money 65 2,7

Motivation: reputation 39 1,6

Motivation: future career 42 1,7

Motivation: reciprocity 51 2,1

Motivation: fight proprietary SW 76 3,1

Income 0 0

Coding time: total 61 2,5

Coding time: paid 159 6,5

Code contribution: LIB 181 7,4

Code contribution: RU1 183 7,5

Code contribution: RU2 191 7,8

Code contribution: AL1 157 6,4

Code contribution: AL2 174 7,1

Code contribution: REV 181 7,4

Application domain of project 0 0

Patent research 256 10,5

182 Main Appendix E – Imputation statistics

Variable name # Missing % Missing

Role of SWP 212 8,7

Patent claims against project 222 9,1

Country of residence 0 0

Nationality 25 1

Employment 12 0,5

Education 22 0,9

Sex 29 1,2

Age group 30 1,2

	Summary
	Zusammenfassung
	List of Abbreviations
	Introduction
	1. Innovation and the digital age
	1.1 The legal protection of software
	1.2 The software patent debate and the ‘promise’ of FOSS
	1.3 Research questions

	2. Overview of main findings
	2.1 Theoretical findings
	2.2 Empirical findings
	2.3 Methodological findings

	3. Policy recommendations
	4. Limitations and future research
	5. References

	Hot Debate about Chilling Effects: Do Software Patents Hamper FOSS Development?
	1. Introduction
	2. Do Patents Promote Innovation?
	2.1 Non-digital industries
	2.2 Proprietary software industry
	2.3 Patenting of Proprietary Software

	3. Free/Open Source Software (FOSS)
	4. Do Software Patents Affect FOSS?
	4.1 Motivations for participation in FOSS projects
	4.2 Effects of software patents
	4.3 Empirical research strategy

	5. Conclusion
	6. References

	Nothing really matters?
Empirical Evidence on the Effects of Software Patents on the Motivation of
Free/Open Source Software Developers
	1. Introduction
	2. Software patents and Free/Open Source software
	2.1 The blurry legal status of software patents
	2.2 The FOSS system and the motivation behind

	3. Software patent presence and FOSS motivation
	3.1 The proponents view
	3.2 The opponents view
	3.3 Do software patents really matter for FOSS?

	4. Research design and methods
	4.1 Data collection and sampling strategy
	4.2 Survey and questionnaire
	4.3 Key variables

	5. Empirical results
	5.1 Descriptive statistics
	5.2 Regression analysis

	6. Conclusion
	7. References
	8. Appendix A – Descriptive statistics
	8.1 Motivational factors
	8.2 Experience
	8.3 Education and age

	9. Appendix B – Underlying survey questions

	Dances with patents – The role of motivation and software patents in the innovation behavior of FOSS developers
	1. Introduction
	2. Literature review and analytical framework
	3. Theoretical concepts, arguments, and hypotheses
	3.1 From code contributions to individual innovation behavior
	3.2 How motivational setup affects innovation behavior
	3.3 How software patent presence affects innovation behavior

	4. Research design
	4.1 Data collection, sampling strategy, and survey design
	4.2 Key variables

	5. Empirical results
	5.1 Descriptive statistics
	5.2 Regression analysis

	6. Conclusion
	7. References
	8. Appendix A – Descriptive statistics
	9. Appendix B – Underlying survey questions

	Main Appendix A – Survey Questionnaire
	Part A - Your experience
	Part B - The project
	Part C - Software patents in general
	Part D - The project & software patents
	Part D2 - The project & software patents (cont'd.)
	Part E - Project Environment
	Part F - Demographics

	Main Appendix B – Invitation Email
	Main Appendix C – First Reminder Email
	Main Appendix D – Second (Last) Reminder Email
	Main Appendix E – Imputation statistics

