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ABSTRACT
 
Gene expression is a multi-step process that shapes the most central aspects of a cell including its 
physiology and metabolism. As such, it is governed by precise regulatory mechanisms so that the 
protein levels can respond swiftly and precisely to stimuli. The regulatory cascade includes 
transcription, translation and protein degradation, yet the relative contributions of these regulation 
levels are not well studied on a systems-wide level, especially for plants. 

In this study, I quantified four aspects of gene expression on a time-resolved, genome-wide scale 
using RNA sequencing (RNA-Seq, transcription), ribosome footprint profiling (Ribo-Seq, translation), 
quantitative mass spectrometry with spike-in stable isotopic labelling with amino acids in cell 
culture (SILAC MS, protein abundance) and dynamic SILAC MS (protein degradation). All datasets 
were obtained from the same Arabidopsis suspension cell cultures after stimulation with the 
pathogen-associated molecular pattern (PAMP) flg22, the elicitor-active epitope of bacterial 
flagellin, or under control conditions.  

In the process of obtaining these datasets, I developed an improved SILAC method for plant cell 
cultures, created an optimized Ribo-Seq protocol for plant samples, identified gene-specific 
differences in translational efficiency, showed that protein turnover is modelled more accurately 
with a logistic decay model compared to an exponential decay model, and determined the baseline 
half-lives for over 2500 Arabidopsis proteins. This is the largest plant protein turnover dataset 
obtained so far and the first one acquired with dynamic SILAC.  

Statistical analyses of the data revealed that transcription showed the largest response to flg22 
stimulation both in size of the fold-changes and the number of regulated genes. The translational 
response reflected the transcriptional response. In fact, I found only few examples with some 
regulation of translational efficiency upon flg22 treatment. Analysis of the quantitative proteomics 
data revealed that some protein abundances did not follow the transcriptional and translational 
changes. For the proteins that maintained constant protein levels despite transcriptional and 
translational upregulation, I could show that the protein degradation rates increased 
correspondingly, counteracting the raised protein synthesis. Downregulation of gene expression is 
determined by a more gradual reduction in transcription, which slowly affects the protein 
abundance. The speed in which the protein level responds to the transcriptional downregulation 
presumably depends on the turnover rate of the individual protein.   
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I conclude that most protein upregulation is determined by transcriptional upregulation and to a 
lesser degree by regulation of protein degradation. These results highlight the importance of further 
research to resolve the molecular mechanisms that govern the identified targeted protein 
degradation in defense response. 

 

 

1.1 Zusammenfassung 

Genexpression ist ein mehrstufiger Prozess, der viele Aspekte einer Zelle reguliert wie deren 
Physiologie und Metabolismus. Es ist daher für Zellen lebensnotwendig die Genexpression durch 
präzise und effiziente Regulationsmechanismen zu kontrollieren, damit Protein-Level schnell und 
präzise auf Stimuli angepasst werden können. Die Regulationsmechanismen der Transkription, 
Translation und Proteindegradation sind wohl bekannt, aber der relative Einfluss dieser 
Mechanismen auf das Gesamtsystem ist insbesondere in Pflanzen nicht gut untersucht.  

In dieser Studie habe ich vier Aspekte der Genexpression systemweit und zeitsensitiv mittels RNA-
Sequenzierung (RNA-Seq, Transkription), ribosome footprint profiling (Ribo-Seq, Translation), 
quantitativer Massenspektrometrie von Isotopen-markierten Proteinen (SILAC MS, Protein-
Abundanz) und dynamischen SILAC MS (Protein-Degradierung) analysiert. Alle Datensätze wurden 
von der gleichen Arabidopsis Suspensions-Zellkultur unter Kontrollbedingung oder nach 
Behandlung mit einem Stimulus  erhoben. Die Stimulierung der Zellkultur erfolgte durch Zugabe 
von dem Pathogen-assoziierten molekularen Muster (PAMP) flg22, dem Elicitor-aktiven Epitop 
bakteriellen Flagellins.  

Im Rahmen dieser Untersuchungen habe ich ein robustes plant SILAC Protokoll entwickelt, die Ribo-
Seq Methodik für pflanzliche Proben optimiert, habe Gen-spezifische Unterschiede in der 
Translations-Effizienz identifiziert, habe gezeigt, dass Protein-Degradierungskurven mit einem 
logistischen Degradationsmodell akkurater beschrieben werden können als mit einem 
exponentiellen, und habe die  Halbwertszeit von mehr als 2500 Arabidopsis Proteinen unter 
Standardbedingungen bestimmt. Dies stellt den aktuell größten pflanzlichen Proteinumsatz-
Datensatz dar und den Ersten, der mit dynamischem SILAC gemessen wurde. 

Die statistische Analyse der vier Datensätze zeigt auf, dass die größte Reaktion auf flg22-Stimulation 
- sowohl in Bezug auf die Anzahl respondierender Gene als auch die Stärke der induzierten 
Veränderungen - auf Ebene der Transkription erfolgt. Flg22-induzierte Veränderungen der 
Translation folgen grundsätzlich der Transkriptions-Reaktion, tatsächlich konnten nur wenige Fälle 
von regulierter Translationseffizienz gefunden werden. Die Analyse der Protein-Level zeigt, dass 
viele Proteine nicht der transkriptionellen und translationalen Regulation folgen. Für Proteine, die 
trotz Induktion der Transkription und Translation unveränderte Abundanzen aufzeigen, konnte 
gezeigt werden, dass die Protein-Degradierung entsprechend verstärkt wurde um der gesteigerten 
Protein-Produktion entgegenzuwirken. Proteine, deren Abundanz durch flg22-Stimulation reduziert 
wurde, zeigten eine graduelle Reduktion der Transkription auf. Die Geschwindigkeit, mit der die 
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veränderten Transkriptions-Level die Protein-Abundanz beeinflussen, scheint von der Halbwertszeit 
der jeweiligen Proteine abzuhängen. 

Zusammengefasst wird die Anpassung der Genexpression nach Stimulation am stärksten durch 
transkriptionelle Veränderungen bestimmt und zu einem geringen Anteil durch Veränderungen der 
Protein-Degradierung. Diese Ergebnisse weisen auf die Notwendigkeit zukünftiger Studien hin, um 
die molekularen Mechanismen der hier identifizierten gezielten Protein-Degradierung aufzudecken.
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INTRODUCTION
S 

2.1 Gene expression 

Gene expression describes the process of transferring genetic information (genotype) to a 
physiological representation (phenotype), i.e. the production of the respective gene products. 
Consequently, gene expression regulation refers to regulating the abundance of gene products, 
which in the majority of cases are proteins. The central dogma of molecular biology describes the 
information flow from the biomolecules involved in gene expression: The DNA-encoded sequence 
information is passed on to RNAs and then to proteins (Crick & others, 1970). Yet while the flow of 
information and the respective encoding are clearly defined, there is no direct relationship 
determining the concentrations of these molecules, as each of the molecules occurs in different copy 
numbers, as each of the biosynthesis steps can be separately regulated, and as these molecules are 
not only produced, but also constantly degraded. 

The lack of a clear correlation between RNAs and proteins indicates the high complexity of gene 
expression regulation, which can take place on the level of DNA (chromatin modification, genetic 
variation), RNA (transcriptional regulation, degradation, splicing, processing, RNA interference, and 
sequestration), and protein (degradation, secretion, subcellular localization and post-translational 
modifications (PTMs) ) (Payne, 2015). The relative extent by which these regulatory mechanisms 
influence protein expression is not well understood and demands a new type of research, where the 
quantities of RNAs and proteins and their changes over time are compared on a systems-wide level 
(Payne, 2015). This defines one hallmark of the modern field of science termed systems biology. 

With the advent of high-throughput technologies for transcriptomic and proteomic analyses, 
information on the influence of the different gene expression regulatory mechanisms became 
accessible. Absolute mRNA and protein concentrations across various species, tissues and time 
points grown at steady state correlate only moderately with correlation coefficients between 0.4 and 
0.6 (Baerenfaller et al, 2008; de Sousa Abreu et al, 2009; Koch et al, 2014). This led to the conclusion 
that protein abundances are only partly determined by transcriptional regulation and that 
regulation of translation and protein degradation may be equally important in determining protein 
levels  (Vogel et al, 2010; Schwanhäusser et al, 2011). However, some of the  interpretations in these 
studies seem to be arguable and it was suggested that transcriptional regulation might account for 
up to 81% of the overall variation in protein expression (Li et al, 2014b).  
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These analyses and interpretations were based on biological systems at steady-state. Alternatively, 
the contributions of the different gene expression regulation mechanisms can be studied by 
stimulating a steady-state biological system and determining how much of the measured proteomic 
variation can be observed on the different regulatory levels (Liu et al, 2016). Using this approach, 
transcription was deemed the most prevalent regulatory mechanism, followed by translational 
regulation and only to a small extent by protein degradation (Kristensen et al, 2013; Jovanovic et al, 
2015). However, studies that acquire such genome-wide datasets from the same biological system 
are still rare (Kuersten et al, 2013; McManus et al, 2015), especially for plant systems. 

Recently, these considerations and more were excellently reviewed by Liu et al, (2016). 

2.2 Protein synthesis 

Regulation of gene expression manifests as changes in protein synthesis or protein degradation. 
Protein synthesis is determined by the number of mRNAs per gene and their rate of translation. 

2.2.1 Transcription 
The first step of gene expression is transcription, where the genetic information on the DNA is copied 
to mRNAs by RNA polymerases. After splicing, capping and polyadenylation, the mature mRNAs are 
transported from the nucleus into the cytosol where they are translated by ribosomes.  

Transcriptional analyses have made major progress in recent years with the advent of next-
generation sequencing technologies, resulting in unprecedented precision and coverage of the 
transcriptional landscape (Metzker, 2010). In an mRNA sequencing approach, usually abbreviated as 
RNA-Seq, the mRNA is extracted from the biological sample, depleted from rRNAs either by 
enrichment of poly-adenylated transcripts by oligo-dT capture or by negative hybridization with 
anti-rRNA oligomers. rRNA-depletion allows also the detection of regulatory, non-protein coding 
RNA species that are not polyadenylated. The enriched RNAs are then fragmented, transcribed to 
cDNA, ligated to barcoded adapters, amplified by polymerase chain reaction (PCR) and sequenced 
by various chemical approaches. Third generation sequencers like the Oxford nanopore minION  
(Eisenstein, 2012), are characterized by detecting single molecules and therefore can omit PCR 
amplification (Mikheyev & Tin, 2014). Combined with new approaches of separating individual cells 
to perform cell-specific cDNA reverse-transcription and barcoding (Masoko et al., 2015), 
transcriptional profiles can now be obtained at single-cell resolution, which allows deciphering 
transcriptional networks (Shalek et al, 2013, 2014).  

For transcriptomics, the main benefits of using sequencing-based technologies compared to earlier 
microarray methodologies are that they can 1) resolve RNA-isoforms resulting from differential 
splicing, 2) allow absolute quantitation if standards are mixed into the sample and 3) massively 
increases the coverage and the accuracy of quantitation (Liu et al, 2016).  
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2.2.2 Translation 
Translation describes the process in which ribosomes produce proteins and polypeptides based on 
the information encoded on mRNAs. 

The translation process can be separated into three steps. 1) In the initiation step, one of the 
ribosome subunits with its associated proteins binds to the mRNA and scans along it to find a START 
codon, where the translationally competent ribosome is fully assembled. 2) During elongation, the 
ribosome translocates along the mRNA in steps of 3 nucleotides, translating the genetic information 
from the mRNA into an elongating polypeptide chain.  3) Translation is terminated when the 
translation machinery reaches a STOP codon on the mRNA (usually UAA, UAG or UGA), where the 
ribosome-mRNA complex is disassembled. Therefore, only the mRNA sequence between the START 
and STOP codon is actually translated and is defined as open reading frame (ORF), but not the 5’ or 
3’ untranslated regions (UTRs) of the mRNA sequence. In eukaryotes, 5’ UTRs can contain upstream 
open reading frames (uORFS)  that contain a START codon, where translation can start, which 
usually affects translational efficiency of the main ORF (Morris & Geballe, 2000; Gaba et al, 2001; 
Meijer & Thomas, 2002; Kim et al, 2007; Von Arnim et al, 2014). For Arabidopsis, it was found that 
around 30% of all mRNAs contain uORFS in their 5’UTRs (Kim et al, 2007). 

In a process called leaky scanning, it is also possible for ribosomes to bypass an AUG start codon and 
to start translation at a later start codon (Herzog et al, 1995). This can give rise to a multitude of 
differentially translated proteins. 

2.2.2.1 Quantifying translation 
Three techniques are primarily employed to measure the gene-specific translational activity: 
Polysomal profiling, translating ribosome affinity purification (TRAP), and ribosome footprint 
profiling (reviewed in King & Gerber, 2016). Polysomal profiling separates mRNA-ribosome 
complexes by ultracentrifugation on a sucrose density gradient. Highly translated mRNAs have 
multiple ribosomes attached to them, which forms a complex called polyribosomes or polysomes. 
The complex has a high density so that it sediments during ultracentrifugation in a sucrose density 
gradient. This separates the highly translated from the lowly translated mRNAs with less than two 
ribosomes that have a lower density. The lowly and highly translated parts of the transcriptome can 
then be compared by high throughput sequencing or microarray hybridization. The enrichment ratio 
in the polysomal fraction can be compared between treated and untreated biological systems to 
determine translational regulation of expression. This method is well established, also for plants 
(Loraine, 2009), can be applied to multiple organisms and relies on standardized sequencing 
methods.   
In plants, various stimuli were analyzed for translational regulation effects, including dehydration 
stress (Kawaguchi et al, 2004), cold stress (Juntawong et al, 2013), light regulation (Juntawong & 
Bailey-Serres, 2012), oxygen deprivation / hypoxia (Branco-Price et al, 2005), or sucrose levels 
(Gamm et al, 2014). Many of these studies detected large global changes in the actively translated 
part of the transcriptome and determined gene-specific changes in translation rates of up to 100 
fold. The mechanism of this regulation could partially be described by the activity of oligouridylate 
binding protein 1 (UBP1) which selectively sequesters mRNAs when stimulated by hypoxia 
(Sorenson & Bailey-Serres, 2014). 
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Alternatively, building upon an approach in yeast (Inada et al, 2002), Zanetti et al, (2005) developed 
an approach called TRAP (translating ribosome affinity purification) in which the  ribosomal protein 
RPL18 is fused with a His6-FLAG dual epitope tag and overexpressed in Arabidopsis. The FLAG-tag is 
used to precipitate the ribosomes and all bound RNAs, which are then quantified by microarray 
hybridization.  Mustroph et al, (2009b) expanded on that approach by using a tissue specific 
promoter for the expression of the FLAG-tagged RPL18 to determine the translation profiles on a 
tissue-specific level. The enrichment of the TRAP method is comparable to the polysome profiling 
(Mustroph et al, 2009), and is also compatible with modern sequencing methodologies (Reynoso et 
al, 2015). 

Both ribosome profiling and TRAP will give a quantitative measure of the amount of mRNA present 
in polysomes or associated with ribosomes. However, it will not reveal information on translation 
efficiency, i.e. the number of ribosomes associated with a given mRNA, as polysomes can have 
varying numbers of more than two ribosomes attached. Furthermore, no information on the 
localization of the translating ribosomes on the respective mRNAs will be obtained. 

2.2.2.2 Ribo-Seq 
In 2009, Ingolia et al, reported a new method to query translational activity, which they named 
ribosome footprint profiling, now often termed Ribo-Seq. Similar in concept to DNase footprinting, 
this method uses endonucleases to digest all nucleic acids that are not bound by a protein. In the 
case of Ribo-Seq, an RNase is used to digest unbound mRNAs while the translating ribosomes block 
the RNase, resulting in ribosome “footprints” on the mRNA (Figure 2.1). In detail, cycloheximide is 
added to the cells beforehand to stall the translating ribosomes on the mRNAs. Then, the cells are 
lysed and RNase is added to digest all mRNA sequences that are not bound by a ribosome. The 
ribosome-mRNA-complexes are then enriched by sucrose cushion ultracentrifugation. The mRNA 
fragments are purified from the proteins and depleted of rRNAs by subtractive hybridization (e.g. by 
using the Ribo-Zero kit, Illumina). Oligo-dT enrichments cannot be used as these fragments do not 
contain poly-A tails. The rRNA-depleted mRNA fragments are then separated by denaturing 
polyacrylamide gel electrophoresis (PAGE) and the ribosome-protected fragments (RPFs) in the area 
of 25-35 nt are excised. Then adapters are ligated to the RNA fragments, the ligation products are 
circularized, amplified by PCR and finally sequenced. The resulting reads are then mapped onto the 
organism’s transcriptome, where successfully mapped, true RPFs display a length of 25 to 32 nt. The 
amount of reads that map to the ORF of a gene is indicative for the abundance of the corresponding 
mRNA and the number of bound ribosomes,  and can thus be used as a quantitative measure of the 
translation rate. True Ribo-Seq reads should map only to translated areas of the mRNA, i.e. not the 
5’ and 3’ UTRs.  

The strength of this approach is that the position of a ribosome on the mRNA can be determined 
with single-codon resolution. This allows in-depth analyses of translational regulation events, such 
as the effect of untranslated regions (UTRs), sequence-specific translation speeds and identification 
of alternatively spliced transcripts, to predict open reading frames (ORFs) and alternative translation 
start sites, or events of ribosome stalling. Hu et al, (2016) used Ribo-Seq data for instance to identify 
5360 potentially translated uORFs in 2051 transcripts of the Arabidopsis genome. Using 
harringtonin, lactimidomycin or puromycin, which stall initiating ribosomes instead of elongating 
ribosomes, exact translation start sites can be determined (Ingolia, 2016). A key metric for the 
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annotation of ORFs is the periodicity of the mapped RPFs, as true ORFs should follow the 3 
nucleotide periodicity of the ribosomal movement following the triplet code (Ingolia et al, 2014). 
Ribo-Seq data can also be used to identify actively translated short or alternative open reading 
frames (sORFs and altORFs), which could have regulatory effects on gene expression. However, 
experimental evidence and functional characterizations of the resulting polypeptides are still rare 
(Mackowiak et al, 2015; Landry et al, 2015; Tavormina et al, 2015; Lauressergues et al, 2015). 
Similarly, it could be shown that the number of mass spectrometrically identified proteins can be 
increased by 2.5% when the Ribo-Seq derived translatome is used instead of the transcriptome as 
the reference database to assign the MS spectra to peptide sequences (Koch et al, 2014). The 
ribosome profiling approach can also be applied on TRAP-isolated ribosome-mRNA complexes 
(Juntawong et al, 2014), which allows to resolve tissue-specific translational changes. 

For our purposes, however, the most interesting feature is the dynamic range of Ribo-Seq in 
quantifying translational activity, as each ribosome bound to an mRNA is quantified independently. 
It can therefore be distinguished whether an mRNA is bound by two or by many more ribosomes and 
thereby allows to assess the translational rates more accurately than the polysome fractionation 
approach mentioned before. To calculate translation rates or efficiencies from Ribo-Seq data, the 
Ribo-Seq counts have to be compared to the mRNA-Seq counts derived from the same sample 
(Ingolia et al, 2009; Larsson et al, 2010; Xiao et al, 2016). 

Ribo-Seq was first developed in yeast (Ingolia et al, 2009) and was then employed to various other 
biological systems,  including mice (Guo et al, 2010), mammalian embryonic stem cells (Ingolia et al, 
2011), and plants, which are discussed in more detail below.  

Juntawong et al, (2013a) enriched ribosome-mRNA complexes by ultracentrifugation in a 60 % (w/v) 
sucrose cushion. The pellet was taken up in an RNase digestion compatible buffer and the mRNAs 
were digested. Then, a second, differential ultracentrifugation in a 0 to 40 % (w/v) sucrose gradient 
was performed to extract the monosomal ribosome-mRNA complexes. This is an adaptation from 
their frequently applied polysome profiling protocol (Loraine, 2009). They compared these 
quantifications with Ribo-Seq data from TRAP-isolated ribosome-mRNA complexes. Biologically, 
they analyzed the effect of hypoxia on Arabidopsis seedlings and saw a global decline in translation 
initiation, consistent with earlier polysome profiling and TRAP studies (Branco-Price et al, 2005; 
Mustroph et al, 2009).  

Liu et al, (2013) analyzed translational regulation in etiolated Arabidopsis seedlings after exposure 
to light for 4 h. By using a fold-change cut-off of greater than 2 on the translation efficiencies they 
identified 294 downregulated and 519 upregulated genes. They report that uORFs with an 
alternative CUG START codon have a stronger translation repression effect than AUG initiated 
uORFs. Furthermore, they reported that light exposure reduced the number of RPFs that bind to the 
5’ and 3’ UTRs of the mRNAs. As translating ribosomes are not expected to bind in 3’UTR, the 
identified 3’UTR-binding RPFs can either be indicative for alternative splicing events that are 
currently not covered in the genome annotation or represent sequencing or mapping artifacts. 
Experimentally, Liu et al, (2013)  followed the protocol for mouse embryonic stem cells (Ingolia et al, 
2011) but scaled it up from 100 μLcell lysate in the original protocol to 14 mL. 
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Merchante et al, (2015) studied the effect of ethylene on the translational regulation in Arabidopsis 
seedlings and identified several genes with differential translational efficiencies. These genes 
included EBF1 and EBF2, which encode F-box proteins involved in the degradation of the key 
transcriptional regulators EIN3/EIL1. Experimentally, they used the lysis buffer developed for plant 
polysomal profiling followed by the Ribo-Seq protocol developed for yeast cells (Ingolia et al, 2009). 
They report only a low correlation of R2 = 0.22 between Ribo-Seq and RNA-Seq fold-changes.  

Lei et al, (2015) assessed the global translational response in maize seedlings upon drought stress. 
They found that photosynthesis genes have an increased translational efficiency and detected 
global changes in translational efficiency induced by the drought stress of over 3 orders of 
magnitude. Experimentally, they used the same method as Juntawong et al, (2013a).  

Chotewutmontri et al, (2016) analyzed the translational changes of maize leaves over four stages of 
development, focusing especially on chloroplast-encoded genes. They determined 2- to 4fold 
changes in translational efficiency over the developmental stages. Experimentally, they did not 
enrich the ribosomes-mRNA complexes before RNase digestion and therefore used high amounts of 
RNase I (3500 U) in a high amount of lysate (2.5 mL). 

Chung et al, (2015) performed Ribo-Seq on Chlamydomonas and mouse samples. The focus of the 
paper is on the implementation of sequence-unspecific rRNA depletion approaches using DNA-
duplex-specific nucleases. Experimentally, they employed the approach developed for yeast cells 
(Ingolia et al, 2009), but had to take 40 times more RNase I for the Chlamydomonas preparations 
than for the murine samples.     

  
Figure 2.1: Schema of the Ribo-Seq procedure. 

  



2. INTRODUCTION   

10   

2.3 Proteomics 

The centerpiece of the gene expression cascade is the protein level. Quantifying proteins however, 
requires substantial technology prowess, especially if the analysis is to be performed on a system-
wide scale. Various approaches have been developed depending on organism and sample types, all 
with their own benefits and shortcomings. In the following, I will give an overview of the current state 
of quantitative high-throughput proteomics and explain the analytical approach we have chosen. 

2.3.1 Mass spectrometric proteomics 
There are various approaches to quantify proteins biochemically, including microscopy, cell 
cytometry, and immunoblotting. But only mass spectrometric (MS) approaches can quantify 
proteins in high throughput at a near genome-wide scale. MS ionizes the analytes and separates the 
ions according to their mass to charge value (m/z). As intact proteins don’t ionize easily, typical 
bottom-up MS-based proteomics approaches digest the protein extraction by an endoprotease such 
as trypsin. For a typical eukaryote, this results in a mixtures that can exceed 1 million unique 
peptides, so that a separation by liquid chromatography before ionization is advised. This approach 
is called LC-MS, where the liquid eluting from the LC is ionized constantly, typically by means of 
electrospray ionization (ESI). The ionized particles including the peptide ions are then transported 
with ion optics into the MS and their mass to charge values are determined. 

Typically, an MS frequently obtains MS1 survey scans that detect all inflowing ions. Ion species 
identified in these survey scans can then be isolated and fragmented in a subsequent fragmentation 
scan (MS2). The fragment spectra give information on the chemical structure of the precursor ions, 
which means in the case of peptide precursor ions that the peptide’s amino acid sequences can be 
deduced from the MS2 spectra.  

This is the most widely used proteomics approach, called data-dependent acquisition (MS1 scans 
trigger MS2 scans), bottom-up (based on peptides, rather than on whole proteins) LC-MS 
proteomics.  

2.3.2 Label-free proteomics 
Mass spectrometry approaches are great for their throughput and depth of analysis, but by itself, MS 
is highly variable and not quantitative. Each analyte has a unique ionization efficiency and signal 
response, which cannot be predicted from the chemical structure of the analyte. Over the last 
decades, mass spectrometrists have developed various technologies to normalize MS proteomics so 
that the technology can be used to not just identify analytes but also to quantify their abundances. 

Early quantitation approaches were based on spectral counting, where the number of MS2 spectra 
associated to a protein is used as a proxy for its abundance. This is based on the idea that sampling 
for MS2 fragmentation events occurs equally over the LC-MS run, and that peptides from a more 
abundant protein will be picked more frequently for MS2 fragmentation. This spectral counting 
value has to be normalized for several factors like the number of observable peptides per protein, 
which is included in the normalization methods such as emPAI (Ishihama et al, 2005) and APEX (Lu 
et al, 2007).  
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Alternatively, the MS1 intensity of the peptide ions can be used to quantify protein abundance. 
Examples of this approach are the Top3 method (Silva, 2005), MaxLFQ (MaxQuant’s label-free 
quantification (Cox et al, 2014)) or Progenesis QI from Nonlinear Dynamics. Comparisons of label-
free quantification approaches showed that MS2-based spectral counting approaches have a lower 
dynamic range than the MS1-based quantitations (Grossmann et al, 2010; Arike et al, 2012; Ahrné et 
al, 2013; Fabre et al, 2014).   

Another label-free approach that quantifies peptides based on their MS1 intensities is SWATH-MS 
(Gillet et al, 2012). In contrast to the before mentioned approaches, SWATH-MS does not work in a 
data-dependent fashion, where the mass spectrometer selects the MS2 precursors from MS1 data. 
Instead, SWATH-MS lets the mass spectrometer scan over the MS1 range with small m/z windows 
(swaths), fragmenting all ions within these ranges. The resulting fragment ions are then mapped 
back onto a precursor ion according to their shared LC-elution behavior. SWATH-MS approaches are 
discussed to hold a high potential to increase the reproducibility of MS-proteomics (Navarro et al, 
2016). 

The mentioned schemes give relative quantifications of the same protein in different samples 
measured in the same experiment.  Absolute quantities of different proteins within a given sample 
are not readily obtained. In absolute quantification approaches such as iBAQ (intensity-based 
absolute quantification, (Schwanhäusser et al, 2011)), proteins with known concentrations are 
spiked as references into the samples. The MS1 signal intensity of histones can also be used as a 
reference for absolute quantification without additional spiked-in proteins (Wiśniewski et al, 2014).  
The benefit of such absolute quantification is that it allows to create large repositories, such as the 
drafts for the tissue-specific human proteome (Kim et al, 2014; Wilhelm et al, 2014). However, the 
reliability of these large-scale repositories are being debated (Li et al, 2014b; Ezkurdia et al, 2015). 

2.3.3 Labeling proteomics 
The downside of label-free MS studies is that all the quantitative comparisons are done in silico after 
the actual measurements (Karp & Lilley, 2007). Alternatively, samples can be labeled isotopically and 
can be combined earlier during sample processing. They are then measured as a mixture and de-
multiplexed in the mass spectrometer according to their isotopic label. Technical variations during 
sample processing, LC or MS affect both samples equally, leading generally to more stable and less 
variable quantitation. 

Depending on the type of labeling, the samples will be mixed at various levels of the proteomic 
sample processing workflow – be it at the peptide , protein, or tissue level (Russell & Lilley, 2012). 
The earlier the integration, the more technical variation can be avoided. 
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Figure 2.2: The key difference in label-free, post-preparation labeling and 
metabolic labeling proteomics is the time point when the samples are compared or 
mixed together (modified from Russell & Lilley (2012)).  

2.3.4 Post-preparation labelling 
Labelling approaches can be separated into metabolic labeling and post-preparation labeling. For 
the latter, the samples are mixed as peptides, after separate protein extraction and proteolysis. 
There are various chemical strategies available to label the peptides, such as ICAT (Gygi et al, 1999), 
iTRAQ (Ross et al, 2004b), Tandem Mass Tag (TMT, Thermo Scientific), and dimethyl labeling 
(Boersema et al, 2008). All approaches use different isotope combinations to label the peptides, but 
differ in their quantitation strategy. Dimethyl and ICAT labeling, for instance, result in peptides that 
differ in their absolute masses, leading to m/z shifts on the MS1 level. iTRAQ and TMT tags, on the 
other hand, add isobaric  masses to the peptides so that the different label states can be quantified 
on the MS2 level, allowing for higher quantitative accuracy and higher sample multiplexing (Mertins 
et al, 2012). MS3 quantitation schemes are also possible, increasing the multiplexing capabilities to 
10 samples within the same LC-MS run (Viner et al, 2013). Increasing the number of samples that can 
be combined massively reduces the required MS runtime, one of the most expensive factors for 
proteomics experiments. 

The key benefits of these post-preparation labeling schemes are their high quantification accuracy, 
their multiplexing potential, and a straightforward application to different organisms or sample 
types. The downside of such approaches is that the labeling efficiencies could vary between the 
labeling reactions and that the labeling agents are comparatively expensive, with the exception of 
dimethyl labeling. 

2.3.5 Metabolic labelling 
Metabolic labeling approaches allow mixing samples one step earlier in the sample preparation 
procedure than the before mentioned post-preparation labeling schemes. Metabolic labeling 
utilizes the protein biosynthesis machinery of the biological system itself to create differentially 
labeled proteins so that samples can be combined as tissues or protein extracts. 

Generally, metabolic labeling approaches supply the organism with an isotopically labeled 
compound that is introduced into the analyte in an ideally unbiased fashion. The most fundamental 
metabolic labeling strategies change the isobaric status of a nutrient source, for instance using 15N-
labelled nitrate as the sole nitrogen source (Engelsberger et al, 2006; Bindschedler et al, 2008; 
Kierszniowska et al, 2009). Theoretically, all biochemically incorporated elements - C, H, O, S, P, and 
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N - can be used for metabolic labeling, though with varying degrees of practicality (Nelson et al, 
2014b). P, for instance, cannot be used for metabolic labeling, as it has no stable isotope. S has a 
stable isotope, but not all peptides contain S atoms. 2H is also a stable isotope but can have 
detrimental effects on the biological system during the labeling (Yang et al, 2010). The stable isotope 
18O was effectively applied to label mice without apparent side effects (Zhou et al, 2012). However, 
the employed H2

18O is rather expensive. As O represents about 10% of all atoms of a peptide, 18O 
labeling creates complex mass spectra, yet the isotope envelopes of 18O-labeled peptides are 
uniquely shaped due to the 2 Da mass shift of the label. Most naturally occurring isotope variants 
induce only a 1 Da mass shift. 

About 1% of all natural C atoms are in the form of the stable 13C isotope. Using it as a labeling agent 
holds great promise as it has no detrimental side effects. Yet full labeling would require exchanging 
all medium components with their 13C counterparts, which is either very costly or outright 
impossible. But also partial labeling with a 13C-labelled carbon source can be informative, for 
instance for tracking metabolic fluxes through organisms (Hiller et al, 2011) or for the interrelation 
of subcellular amino acid pools (Allen et al, 2012). Auxotrophic organisms can be labeled with 13CO2, 
but working with gaseous labeling agents is experimentally challenging (Kölling et al, 2013) and 
results in non-complete labeling rates (Young et al, 2011; Ishihara et al, 2015). 

In proteomics, the most frequently employed elemental labeling uses the stable isotope 15N.  
Peptides contain at least one N per amino acid so that peptides are effectively labeled by 15N. Yet the 
labeling creates a sequence-specific mass shift so that label pairs are more difficult to match. 15N-
labeling results in mass spectra with broad isotope envelopes that can be challenging to interpret 
and quantify.  

Yet, 15N labelling is rising in popularity in part due to its low cost and straightforward application for 
autotroph organisms, where simply the N-source in the form of inorganic salts has to  be exchanged 
(Engelsberger et al, 2006; Bindschedler et al, 2008; Kierszniowska et al, 2009; Höhner et al, 2013). For 
non-autotrophic organisms, the 15N-label has to be introduced into all compounds of the medium or 
feed, so that the medium has to be prepared for instance from 15N-labelled algae. Still, 15N-labelling 
was applied to various biological systems, including mammalian cells  (Conrads et al, 2001),  E. coli 
(Ross et al, 2004a), yeast (Kolkman et al, 2006), algae (Höhner et al, 2013), Arabidopsis cell culture 
(Engelsberger et al, 2006), Arabidopsis hydroponic plants (Bindschedler et al, 2001), and even whole 
mice (Price et al, 2010). The low cost of 15N-labelling makes it the method of choice for studies where 
bulk amounts of biological material are needed such as quantitative enrichments of low abundant 
phosphorylated peptides (Kline et al, 2010).  

All mentioned elemental metabolic labeling strategies compare between the labeled and unlabeled 
protein populations, allowing for 2-fold multiplexing. 

2.3.6 Metabolic labelling with amino acids 
For prototrophic organisms, however, a different labeling technology gained favor in the field. 
Prototrophs have to take up their essential amino acids from the growth medium. These can easily 
be exchanged to an isotopically labeled version, resulting in high labeling rates without any known 
side effects. Labeling the proteins themselves allows mixing the samples either as complete cells or 
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after protein extraction. All subsequent biochemical procedures including the trypsination and the 
LC-MS measurements are then performed on the mixture of the samples. This minimizes technical 
variabilities and allows for reliable quantitations (Russell & Lilley, 2012). 

This approach was called stable isotope labeling with amino acids in cell culture, coining the 
acronym SILAC (Ong, 2002). It leads quickly to high labeling efficiencies of >97%, close to the 
theoretical limit of the isotopic purity of the labeling agent (Ong & Mann, 2006). If supplied in excess, 
non-essential amino acids such as valine, tyrosine or methionine can also be used for SILAC (Ong, 
2002). However, such approaches have lower labeling efficiencies. 

A prime benefit of SILAC over other metabolic labeling strategies is the simplicity of the resulting 
spectra. SILAC was first designed with leucine as the labeled essential amino acid (Ong, 2002), but 
was quickly adapted to lysine (K) and arginine (R) labeling. The frequently used endoprotease 
trypsin cleaves after exactly these two amino acids, creating ideally peptides with exactly one 
differentially labeled amino acid. This massively simplifies the search space that peptide search 
algorithms have to analyze. Given that there is only one differentially labeled amino acid per 
peptide, the delta mass between a labeled and unlabelled peptide is identical for all peptides of an 
experiment. This allows to identify the labeling partner of a peptide even if the amino acid sequence 
can only be assigned to one peptide of the pair.  

SILAC peptide pairs can be quantified on the MS1 level with a variety of software solutions with 
MaxQuant (Cox & Mann, 2011) as the most commonly used tool.  

As expressed by its name, SILAC works best in a cell culture, where the amino acids are fully 
dispersed and equally available to all cells.  It was originally developed for mammalian cell culture 
(Ong, 2002), but is equally applicable to bacteria and archaea (Veenstra et al, 2000), yeast (Gruhler 
et al, 2005a),or unicellular algae (Naumann et al, 2005). However, also multicellular organisms can 
be labeled by feeding SILAC-labelled yeasts or algae over an extended period. This leads to a slowly 
increasing but complete, organism-wide labeling. This approach opened up SILAC labeling to most 
model organisms such as Drosophila melanogaster (Sury et al, 2010), Caenorhabditis elegans 
(Fredens et al, 2011), Mus musculus (Krüger et al, 2008; Zanivan et al, 2012), Danio reio (Nolte et al, 
2014), chicken (Doherty et al, 2005), and even the newt Notophthalmus viridescens (Looso et al, 2012).  

As the labeling has to be passed on through the food chain, labeling a full organism is costly. It is 
thus more economical for such approaches to purchase pre-labeled tissue samples and use them as 
a common reference to the non-labelled samples (called spike-in SILAC if derived from a single 
reference (Geiger et al, 2011) or Super-SILAC if derived from a mix of references (Geiger et al, 2010)). 
Such spike-in references can even be employed across organismal borders. SILAC-labelled mouse 
tissue was used for instance as a reference for human serum samples (Zhao et al, 2013). Partially 
labeled organisms can also be used as spike-in references, substantially reducing the cost for the 
SILAC labeling (Looso et al, 2012). 

It is important to remember that all SILAC peptides are produced by the protein biosynthesis 
machinery of the biological system itself and that the absolute concentration of each peptide is 
unknown. In comparison to SRM, where a synthetic peptide with a known concentration can be 
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spiked into the analyte mixture to obtain absolute quantifications, SILAC by itself does only allow 
for relative quantifications between the sample and its reference. 

SILAC labeling schemes with delta masses of up to 16 Da were designed, which allows to combine 
up to 5 labeling states, without creating a strong overlay of the isotope envelopes (Chen et al, 2015). 
Alternatively, NeuCode was proposed to expand SILAC’s multiplexing capacity (Hebert et al, 2013). 
It suggests separating SILAC populations in the MS based on the neutron binding energy variations 
of stable isotopes. The ~1 Da mass shift of a 15N atom differs slightly from the mass shift of a 13C or 2H 
atom. Consequently, a lysine molecule with a ~8 Da delta mass can be labeled with up to 39 different 
isotopologue combinations, creating unique mass shifts just within the minuscule delta mass range 
of 8.12 to 8.16 Da. Current high-performance mass spectrometers with a resolution higher than 
200’000 are able to resolve some of these differences, but resolutions of up to 1’000’000 are needed 
to fully resolve all 39 proposed NeuCode label states. 

2.3.7 Calculating labeling efficiencies 
On a side note, there are different ways of calculating the labeling efficiency, which is a quantitative 
value indicative of the amount of labeled proteins compared to the amount of unlabeled proteins.  
Most protein abundance studies do not have to assess the labeling efficiency, as they only compare 
the labeled peptide pools. However, when using metabolic labeling including SILAC, the labeling 
efficiency is a crucial factor to quantify as a non-complete labeling efficiency would create a bias in 
the common case of quantifying a labeled vs an unlabeled culture.  

Incomplete labeling can occur, when the labeling phase was not long enough or when a non-
essential amino acid is used for labeling and the endogenously produced unlabeled amino acid can 
be incorporated instead. On top of that, labeling compounds such as isotopically labelled amino 
acids are only enriched for a chemical isotope, which means that they always contain trace amounts 
of different labels. SILAC amino acids can be purchased with isotopic purities in the range of 97 to 99 
%. The commonly employed SILAC quantification software MaxQuant uses a median centralization 
on the labelled-to-unlabeled ratio to balance out small differences in labeling efficiencies (Cox & 
Mann, 2008). 

In the SILAC field, the following formula is used frequently to determine the labeling efficiency (LE, 
website of Prof. Mathias Mann’s group, Max Planck Institute of Biochemistry, Martinsried 
http://www.biochem.mpg.de/221777/SILAC , and e.g. (Schütz et al, 2011; Visscher et al, 2016)): 

=  = 1 − = 1 −    

In the protein turnover field, the relative isotope distribution (RIA) is rather used to make statements 
on the labeling efficiency and the progression of a label swap.  

 =
+ ℎ

=  
1

1 +  
 

  
 

The RIA is limited to a range of 0 to 1, while the LE can range from 1 to negative infinite (Figure 2.3). 
The difference is negligible at high labeling rates, but a 1:3 mix of heavy to unlabeled proteins 



2. INTRODUCTION   

16   

computes a RIA of 25 %, while the LE leads to an illogically negative value of -200 %. Therefore, I 
consider the RIA as a more appropriate measure of the labeling efficiency and employ the RIA 
calculation within this thesis if not noted otherwise. Relative isotope fraction (RIF), as proposed by 
Rahman et al, (2016), is actually a more accurate term than RIA, but it is used less frequently in the 
scientific literature as of yet. We therefore remain with the term RIA. 

For triple labeling, these formulas translate into:  
=  

  _   

  _
  

 =   _

  _   
  

 

 
Figure 2.3: Relative isotope distribution (RIA, solid line) and Labelling Efficiency 
(LE, dashed line) as a function of the amount of heavy-labeled compounds. 

 

2.3.8 Metabolic labeling in plant proteomics 
Plants, like all prototrophic organisms, lend themselves ideally to metabolic labeling with inorganic 
compounds such as 15N-labelled nitrate and ammonium or 13CO2 (reviewed in e.g. Matthes et al, 
(2014); Nelson et al, (2014)). Labeling with complex organic molecules like amino acids in SILAC is 
employed only infrequently, as the labeling efficiencies are inconsistently low and as even 
physiological side-effects of high amino acid supplementation were reported (Gruhler et al, 2005b).  

In the algae Chlamydomonas reinhardtii, the strain CC-424  is used frequently for SILAC studies 
(Naumann et al, 2005; Terashima et al, 2010; Mastrobuoni et al, 2012). CC-424 is prototrophic for 
arginine, as it has a dysfunctional argininosuccinate lyase (arg2).  

In Arabidopsis, I found three SILAC studies:   

1. (Gruhler et al, 2005b): This first plant SILAC study tested the labeling efficiencies when using 
isotopically labelled lysine, arginine or leucine in Arabidopsis suspension cell cultures. By adding 
one dose of 760 µM arginine or 800 µM leucine, they reaching incorporation rates of 70-80% after 8 
days of growth. Adding 330 µM lysine led to a comparatively low incorporation rate of 45%. All three 
labeling rates were deemed too low for thorough proteomics approaches. Gruhler and colleagues 
did not detect any decrease in culture viability from the labeling procedure but discuss potential 
negative side-effects regarding lysine labeling as lysine affects the biosynthesis of several amino 
acids. 
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Lysine inhibits Dihydrodipicolinate synthase (DHDPS or DapA, IC50 of 15 μM, (Ghislain et al, 1990)), 
which catalyzes the first unique reaction of the lysine biosynthesis in plants, which is the 
condensation of aspartate-semialdehyde (ASA) and pyruvate. Lysine also inhibits Aspartate kinase 
(AK, IC50 of 750 μM (Heremans & Jacobs, 1997)), an enzyme preceding DapA in the lysine biosynthesis 
pathway.  AK is essential for the biosynthesis of lysine, methionine, and threonine, which is also a 
direct precursor for isoleucine. As threonine also inhibits AK, the addition of 1 mM of both lysine and 
threonine leads to growth inhibition of maize callus cultures, which can be recovered by 
supplementation with  1 mM of methionine or homoserine, a methionine precursor (Green & Phillips, 
1974). Adding only 1 mM of lysine to the growth medium did not have a negative effect on the maize 
callus cultures. In wild-type Arabidopsis seedlings, 2 mM of lysine is sufficient to inhibit growth 
(Heremans & Jacobs, 1997). 

 
Figure 2.4: Overview of the biosynthesis pathways of threonine, lysine, 
methionine, and isoleucine together with the known inhibitory activities (upward 
red arrows) (Galili, 1995; Wang & Larkins, 2001).  

 

2. (Schütz et al, 2011): This study substantially improved the general SILAC strategy in Arabidopsis 
suspension cell cultures by comparing medium-heavy-labeled 4H2-Lys4 cultures with heavy-labeled 
13C6

15N2-Lys8 cultures (Figure 2.5). This overcomes elegantly the problem of incomplete labeling 
efficiencies, as the unlabeled Lys0 peptides should amount to the same quantity in the two 
compared cultures. The Lys0 peptides can therefore be excluded from the quantitation and just the 
Lys4- and Lys8-labelled subproteome are compared. 

Additionally, Schütz et al increased the labeling efficiency to 91%, coming close to the range of 
mammalian systems, by 1) adding substantially more labeled amino acids to the culture (daily 
supplementation of 350 µM lysine, ~5x more than in the standard mammalian protocol (Ong & Mann, 
2006), and  7x more than in (Gruhler et al, 2005b)), 2) reducing the nitrogen content of the growth 
medium by 66% (20.6 mM nitrogen from 10.3mM NH3NO4 instead of 60.2 mM nitrogen from 20.6mM 
NH3NO4 and 19mM KNO3), 3) cultivating the cells in the dark, which decreases the number of 
chloroplasts, the compartment of endogenous lysine biosynthesis, and 4) extending the labelling 
period to 12 days. When they employed  their approach on the same cell culture grown in the light, 
the labeling rate was decreased to only 58% and the variability of the labeling was increased (Schütz 
et al, 2011). So, although effective, the prerequisite of growing the cells in the dark was deemed by 
(Holper et al, 2014) to “not represent a particularly meaningful condition for most plant 
physiological studies”. The study by Schütz and colleagues was purely methodological and did not 
address a biological question.  
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Figure 2.5: Improved plant SILAC strategy (Schütz et al, 2011).  
In contrast to classical SILAC (left), the improved plant SILAC can cope with incomplete 
labeling. The plant cell culture’s proteomes are compared by quantifying the red heavy 
Lys8-labelled proteins with the blue medium-heavy Lys4-labelled proteins. The black, 
unlabeled part of the proteome arises from the endogenous lysine biosynthesis and is 
excluded from the quantitation as an unchanging contaminant. 

 

3. (Lewandowska et al, 2013): In this study, Arabidopsis seedlings were grown in liquid culture 
supplemented with both arginine and lysine. The seedlings were germinated in the liquid medium 
itself and after 19 days of labeling, labeling efficiencies of >95% could be determined for 
representative peptides. The seedlings were supplied every 2 days with fresh Gamborg B5 medium 
supplemented with 1 mM of labeled lysine and arginine. The labeled seedlings were used to quantify 
the response to salt stress after treating the seedlings with 80 mM NaCl.  

Although these studies gained high attention from the community and are mentioned in numerous 
reviews, I could only find these three published proof-of-concept studies and no reproduction of the 
approaches neither from the same nor independent laboratories.  

 

2.4 Protein degradation 

Protein abundances are regulated either by changes in protein synthesis or in protein degradation. 
The main route of protein degradation is through proteasomal degradation, but it can also occur 
through authophagy or through the action of proteases. Protein degradation through proteases is 
especially important in plastids and mitochondria, as these organelles do not possess proteasomes. 
Instead, they contain prokaryote-related ATP-dependent proteolytic machineries, such as the 
carboxy-terminal processing protease CtpA, the stromal Clp, the lumenal serine-type protease DegP 
and the ATP-dependent thylakoidal metalloprotease FtsH (Sakamoto, 2006; Chi et al, 2012; 
Nishimura et al, 2016).  

Autophagy describes the process of orderly degradation of cellular material by engulfing large 
cytoplasmic volumes, potentially containing whole organelles, in a double-membrane structure 
called autophagosome (Levine et al, 2011). In mammalian cells, these structures fuse with 
lysosomes, while in plants and fungi these fuse with the vacuole for degradation of the formerly 
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cytoplasmatic cargo via acidic lysosomal hydrolases. This process is also described as 
macroautophagy and can be differentiated from microautophagy, where cytoplasmatic material 
gets directly introduced into the lysosome or vacuole by membrane invagination (Li et al, 2012b). 
The third mode is called chaperone-mediated autophagy (CMA) where proteins are selectively 
bound by chaperones such as Hsc70 (Heat shock 70 kDa protein 8 ) or Hsp90 (heat shock protein 90) 
and are threaded in an active process through the double membrane into the lysosome or vacuole 
(Bandyopadhyay et al, 2008). Compared to the other two non-selective modes of autophagy, CMA 
describes a protein-specific, targeted process. In yeast, mammals and plants autophagy is primarily 
regulated via TOR signaling (Díaz-Troya et al, 2008), which integrates nutrition signaling and affects 
biosynthesis regulation (Hay & Sonenberg, 2004). 

2.4.1 Proteasomal degradation 
In comparison to autophagy and protein degradation through proteases, protein degradation by the 
ubiquitin 26S-proteasome system (UPS) is a more targeted method, in which proteins are degraded 
in the 26S proteasome. This is one of the largest protein complexes in a cell, consisting of the 
cylindrical 20S core particle and two cap like structures. The 20S core is composed of four stacked 
rings, each consisting of 7 β subunits in the case of the two central two rings and  7 α subunits  in the 
case of the outer two rings (Smith et al, 2007). These rings form a hollow cylinder in which multiple 
proteolytic sites are located. These degrade entering proteins by chymotrypsin-like, trypsin-like and 
peptidylglutamyl-peptide hydrolyzing mechanisms (Wilk & Orlowski, 1983). On both sides of the 20S 
particle, cap-like 19S regulatory particles are situated, which are large multi-protein complexes that 
regulate and support all steps required for protein degradation (Zwickl et al, 1999).  In place of the 
19S particle, a protein complex called 11S regulatory particle can also bind to the ends of the 20S 
core particle, which also regulates and supports proteolysis (Förster et al, 2005). 

The signal that marks a protein for proteasomal degradation is the attachment of a polyubiquitin 
tag. Ubiquitin is a small 8.5 kDa regulatory protein that is bound to a lysine residue of the target 
protein in a cascade consisting of three steps: activation of the ubiquitin by ubiquitin-activating 
enzymes (E1s), conjugation by ubiquitin-conjugating enzymes (E2s), and ligation to the target 
protein by ubiquitin ligases (E3s) (Pickart & Eddins, 2004). In each step of the enzymatic cascade an 
increasing number of unqiue proteins is involved. The genome of Arabidopsis encodes 2 E1s, at least 
37 E2s and potentially over 1400  E3s, which sum up to 10-times more genes involved in the UPS than 
in the same pathway in yeast  (Vierstra, 2003, 2009). 

Once a single ubiquitin is attached to the target protein (monoubiquitylation), more ubiquitin 
moieties can be bound to one of the lysine residues of that ubiquitin. The linkages of these 
polyubiquitylations define different outcomes for the protein they are attached to, while 
polyubiquitylation at K48 or K11 is in general associated with protein degradation (Ikeda et al, 2010; 
Komander & Rape, 2012). Polyubiquitin chains can also be removed from the target protein by a 
class of enzymes called deubiquitinating enzymes (DUBs, Reyes-Turcu et al, (2009)).  

With the ubiquitin proteins, the E1s, E2s and E3s, the proteasome complex subunits and the DUBSs,  
about 6% of the proteome (> 1’600 loci) are involved in the UPS (Vierstra, 2003, 2009). With this 
genomic complexity, protein degradation by the UPS was suggested to be equally important for 
plant cell regulation as transcriptional regulation or protein kinase cascades (Vierstra, 2003).  
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2.4.2 Theory of measuring protein degradation 
The degradation of any molecule at constant speed can be described by a first order exponential 

decay reaction:  
∆

∅. This is used in physics for instance to describe the decay of 
radioactive material, where the degradation rate is a property of the molecule itself and is 
unaffected by any factors. In biology, we employ this framework to describe various processes 
including the degradation of proteins. 

Mathematically, such a degradation reaction can be described by the following formula for 
exponential decay: 

[ ]  =  [ ]  ∗  (   ∗  )  

It is based on an initial concentration at time point zero [MoleculeT0] multiplied by an exponential 
function of the negative degradation rate constant kdeg multiplied by time x. At an initial 
concentration of 1 for the molecule, this creates the following trajectories for a kdeg of 10 (red), 1 
(blue) and 0.1 (green). The half-lives are indicated by dashed vertical lines (the green trajectory does 
not reach the half-life in the indicated time. 

  

The kdeg parameter is an abstract term and can be unwieldy to work with, so the notion of half-life is 
frequently used to describe decay processes in a more graspable manner. A molecule’s half-life 
describes the time until the molecule’s population is being reduced to half of its initial value. By 
transformation, this results in the following formula: 

At half-life:  [ ] = ½ ∗  [ ]   =  
 
½∗ [ ]

[ ]
 

 
=  
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For exponentially decaying molecules, the degradation rate and the half-life are constant and can 
be determined at any time point during the degradation.  

In contrast to radioactively decaying material, proteins can also be synthesized anew. Under steady-
state conditions, a protein’s abundance does not change. The proteins are constantly degraded to 
the same extent as they are replenished, so the degradation and synthesis rates are equal. In that 
context, the notion of a protein’s turnover time was put forth to describe the average lifetime of a 
protein before it is replaced by newly synthesized protein. The turnover time is a crucial term for 
cellular protein homeostasis and is calculated by the concentration of a molecule divided by its flow-
through rate (Dettmann, 2008).  

Only under steady-state conditions, one can truly speak of turnover times where ksyn and kdeg are the 
same and don’t have to be delineated. Under these conditions, the turnover time can therefore be 
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calculated by dividing the molecule concentration with either the degradation or synthesis rate. 
However, true steady-state conditions can only rarely be upheld in biological experiments. 
Optimally, one would need a combined turbidostat and chemostat fermenter for such an 
experiment. Still, obtaining only the synthesis rate can be an informative parameter for protein 
homeostasis (Schwanhäusser et al, 2009). However, when quantifying newly synthesized proteins, 
it has to be taken into consideration that these proteins also undergo degradation processes. 

If a biological system is not in steady state, the synthesis rate (ksyn) and the degradation rate (kdeg) 
can be non-equal and have to be delineated by measuring at least two of the three components of 
the formula: [ ]  =  – .  

The degradation rate kdeg can be determined experimentally by labeling the molecule of interest and 
tracking the loss of this label over time. When acquiring this label-loss rate kloss in a biological system, 
one has to consider that these rates are obtained in growing and dividing cells. Even under steady-
state conditions with constant molecule levels, the labeled molecules are diluted by cell expansion. 
This process can be factored in by subtracting kdil, the rate of dilution by cell growth, from the label-
loss rate to obtain the true rate of degradation: k  =  k – k  (Pratt et al, 2002). 

2.4.3 Experimental assessment of protein degradation  
Several techniques have been developed to experimentally determine the degradation rate kdeg. I 
will describe in the following paragraphs the four main approaches, depicted schematically in Figure 
2.6. 

 
Figure 2.6: Schematic depiction of the main experimental approaches to obtain 
protein degradation rates adapted from Hinkson & Elias, (2011) and Eden et al 
(2011).  
 

The first developed approach to obtain protein degradation rates is to quantify protein abundances 
over time by e.g. quantitative Western Blot while inhibiting de novo protein synthesis. Chemicals 
such as cycloheximide arrest mRNA-bound ribosomes by inhibiting translocation elongation so that 
no de novo protein synthesis can occur. This will lead to a decrease in protein abundance over time, 
as protein degradation proceeds normally. From these decreasing abundance values one can then 
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extrapolate the protein degradation rate. This approach is still employed today (e.g. Ferretti et al, 
(2016)) due to its straightforward methodology, but it has severe limitations. The cycloheximide 
treatment affects all cellular protein biosynthesis and therefore disrupts the overall protein 
homeostasis, which will eventually kill any cell. Therefore, the reliability of these degradation rates 
has to be considered carefully. Additionally, this approach requires specific and reliable antibodies 
to quantify the protein of interest and is generally labor intensive as it does not allow multiplexing. 

Secondly, the degradation of proteins can be quantified microscopically when they are tagged with 
fluorophores. Protein-bound fluorophores can be inactivated with a strong light impulse without 
affecting protein abundance. The reemergence of the fluorescence signal is then informative for the 
protein synthesis time. This approach is called bleach-chase strategy (Eden et al, 2011) and gives in 
vivo kinetics of high temporal resolution on single cell level. The downside of this approach is that it 
requires substantial genetic engineering work and that tagged proteins might not behave equally to 
native proteins. Also, the intensity of the bleaching light pulse has to be balanced carefully so that it 
does not harm the cells. This issue can be avoided by fusing two fluorescence tags with unique 
maturation kinetics to the protein of interest. The ratio of the fluorescence from the two tags is then 
informative of the average protein age, which can be used to determine differences in the age of 
proteins in subcellular compartments (Khmelinskii et al, 2012).  

The third approach allows to obtain protein turnover rates without genetic engineering or affecting 
protein abundances. These so-called pulse-chase metabolic labeling experiments can be split into 
two parts: During the pulse phase, a labeling agent such as a radiolabeled amino acid is added to 
proliferating cultured cells, which gets taken up by the cells and is incorporated into the proteome. 
In the following chase phase, the labeling agent is removed so that any newly synthesized protein 
does not incorporate the label. The time it takes for the cells to replace the preexisting labeled 
proteins by new unlabeled ones is the turnover time. Given the exponential decay characteristics, 
the labeling does not have to be complete. Also partial labeling can result in meaningful data 
(Doherty et al, 2005; Looso et al, 2012), but the higher the labeling rate, the better the dynamic range 
of the turnover assessment. 

35S- radiolabeled methionine is the most frequently employed labeling agent for such experiments. 
Without biochemical fractionation, the decay of the radioactivity in the protein extract is informative 
of the turnover rate of the whole proteome. To obtain protein-specific turnover rates, (immuno-) 
affinity enrichments have to be used. This approach, therefore, requires protein-specific antibodies 
or protein tagging and does not allow for multiplexed analyses. To improve the throughput, the 35S-
methionine labeled proteins can also be separated by 2D polyacrylamide gel electrophoresis (2D-
PAGE), which allows assessing the turnover rates of more than 100 proteins in parallel (Galland et al, 
2014).  

As an interesting alternative imaging-based approaches were presented recently by Shen et al, 
(2014). Labeling phenylalanine with 13C atoms results in a shift in the Raman scattering spectrum of 
38 cm-1 compared to the 12C-labelled isoform.  This physical property was used by Shen and 
colleagues to determine the in vivo subcellular turnover of the full proteome of a mammalian cell 
line using a pulse-chase strategy. 
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2.4.4 Mass spectrometric assessments of protein degradation  
The fourth and currently most frequently employed approach to assess protein degradation utilizes 
the ability of MS to differentiate between stable, non-radioactive, isotopically-labelled 
subpopulations of proteins. Employing the same pulse-chase strategy as described before, protein 
populations can be labeled with an isotopic marker and the decrease of the labeled population over 
time during the chase period is informative of the degradation rate. MS-based proteomics resolves 
the kinetics of individual proteins, giving this approach the highest throughput compared to the 
approaches described above. Nowadays, MS approaches have reached a stage of maturity that 
allows to reliably assess thousands of proteins in parallel, reaching near-proteome coverage for 
bacteria and small eukaryotes (Aebersold & Mann, 2016). In our view, dynamic mass spectrometry-
based proteomics, therefore, represents the most powerful strategy for obtaining proteome-wide, 
protein-specific degradation rates. It is also important to note that a metabolic labeling approach 
does not affect proteome homeostasis, compared to the first discussed translation-arrest approach. 
Yet, compared to the imaging-based approaches, it can only obtain population-wide turnover data 
and cannot assess the variations on a single cell level.  

Protein subpopulations can be labeled with different approaches. In theory, any compound that is 
taken up and integrated into proteins can be used for such protein turnover studies. This includes 
stable isotopes from all biological elements C, H, O, S, or N (Nelson et al, 2014b). P cannot be 
included on this list, as it does not have a stable non-radioactive isotope.  

For autotrophic organisms, it is possible to apply non-organic substances such as CO2, H2O or 
NH4NO3 for metabolic labeling schemes. By supplying culture medium with differentially labeled 
inorganic salts complete labelling can be achieved. For plants the method to compare protein 
abundances of completely 15N-labelled proteins is well established. The plants used in such 
experiments are grown hydroponically and all nitrate and ammonium in the hydroponic medium 
are exchanged by their 15N-labelled counterparts (Engelsberger et al, 2006; Nelson et al, 2007; 
Bindschedler et al, 2008; Kierszniowska et al, 2009; Arsova et al, 2012). The advantage here is that 15N 
labeling has no physiological side effect on growth rates or yield (Li et al, 2012). 

A challenge of this approach is that the mass shift between a 100% 14N labeled peptide and a 100% 
15N labeled peptide depends on the peptide’s individual amino-acid sequence. To identify labeling 
pairs, the amino acid sequence of the peptide has first to be determined to identify the number of N 
atoms, which results in complex data analysis schemes. 15N quantifications are consequently only 
well established for 100%-labelled proteomes, where next to every N-atom is isotopically labeled 
exclusively in the 15N configuration.  

However, protein turnover studies require that intermediately labeled peptides can also be 
quantified, which represents an analytically much more difficult task. A typical 10 amino acid tryptic 
peptide contains 11 to 20 nitrogen atoms, all of which can be labeled in either 14N or 15N 
configuration. This creates a broad isotope pattern over a range of 20 Da (Figure 2.7, discussed in 
(Li et al, 2012a; Nelson et al, 2014b)). Combined with the naturally occurring isotope envelope from 
13C isotopes, this creates highly convoluted mass spectra both at MS1 and MS2 level that are difficult 
to identify and even more difficult to quantify. On top of this comes the fact that every amino acid 
has a unique half-life ranging from 3 to 70 h, resulting in a non-stable 15N labeling rate for each amino 
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acid (Li et al, 2012). Consequently, the labeling efficiency of every amino acid would have to be taken 
into consideration for the overall protein turnover. Additionally, photorespiration in photosynthetic 
tissues produces unlabeled ammonium that can exceed the primary nitrogen uptake of a cell, which 
consequently affects the nitrogen labeling efficiency of that particular tissue (Keys et al, 1978; Nelson 
et al, 2014b) 

Nowadays, different algorithms are available that quantify such dynamic 15N labeling changes (Li et 
al, 2012a; Nelson et al, 2013; Lyon et al, 2014; Trouillard et al, 2015; Fan et al, 2016), but no consensus 
has yet been established in the field. But even with modern algorithms, such a convoluted labeling 
means that many spectra have to be discarded as they are not interpretable (88.7% of all mass 
spectra in (Nelson et al, 2014a)). 

To overcome the limitations mentioned above, various approaches have been developed. To name 
a few:  Helbig et al, (2011) quantified the label change by only quantifying the decrease of the pure 
14N envelope without quantifying the emerging 15N envelope. Li et al, (2012a) recommended to use 
MALDI-MS, which produces preferentially single charged peptides that are easier to interpret and 
quantify. They also established an approach to separate the protein sample at first by 2D-gel-
electrophoresis to further reduce the protein complexity for the MS analysis. Naturally, this 
decreased the throughput and coverage of that study. Trouillard et al, (2015) presented a novel 
algorithm that quantifies intermediary labeled 15N peptides by matching their spectra to a 
multimodal m/z distribution. Fan et al, (2016) recommended to spike a known concentration of 
unlabeled 14N proteins into the 15N sample so that there is always an ion species with known N 
composition to anchor the isotope envelope to. It also helps with the identification of the peptides, 
as intermediary labeled fragmentation spectra are difficult to assign to peptide sequences due to 
increased complexity of the spectrum. 

  

 

Figure 2.7: 15N-labelled 
peptides produce complex 
mass spectra (Price et al, 
2010).   
A Cofilin-1 tryptic peptide is 
shown during 15N-pulse 
labeling of mice. Both the 
intensity and the centroid 
mass (indicated by 
arrowheads) of the newly 
synthesized peptides 
change over the course of 
the labeling. 
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In summary, 15N labeling has been successfully applied to determine protein turnover rates after 
adoption of special experimental workflows or algorithms. In part because of the cheap and easy 
labeling procedure, 15N labeling is rising in popularity and is being applied to quantify protein 
turnover levels in e.g. mice (Price et al, 2010; Guan et al, 2011; Turck et al, 2016),  Arabidopsis (Li et 
al, 2012a; Nelson et al, 2013; Huang et al, 2015; Fan et al, 2016),  micrococcus algae (Martin et al, 
2012), Medicago truncatula (Lyon et al, 2014), barley (Nelson et al, 2014a), and Caenorhabditis 
elegans (Dhondt et al, 2016). Dynamic 15N labeling is a powerful methodology that was used for 
instance to identify very long lived proteins such as nucleoporins, histones, and proteins of the 
cornea that hardly degrade over the lifetime of a cell (Toyama et al, 2013). 

2.4.5 SILAC for protein degradation assessments 
As metabolic labeling with isotopic elements creates mass spectra that are convoluted and difficult 
to interpret and quantitate, the method termed stable isotope labeling with amino acids in cell 
culture, SILAC (Ong, 2002)), has gained large popularity for protein turnover studies. This is due to a 
rather straightforward labeling and quantitation methodology. SILAC can be used with any amino 
acid, but especially essential amino acids allow quick incorporation and high labeling efficiencies of 
~97%, close to the theoretical limit of the isotopic purity of the supplied amino acid (Ong & Mann, 
2006). Classically, SILAC studies use both lysine and arginine, as they account for all terminal amino 
acids of fully trypsinized peptides. This creates peptide pairs that are differentially labeled by exactly 
one amino acid per trypsinized peptide and therefore only have two labeling states (native light label 
vs artificial heavy label). This results in mass spectra with only moderately increased complexity, 
which often allows for the peptide assignment to fragmentation spectra from both labeled and 
unlabeled peptides. Each peptide pair has a clear fixed mass shift (e.g. a shift of +8 Da for Lys0 vs 
Lys8 labeled peptides) and can be identified with a variety of software solutions such as MaxQuant 
(Cox & Mann, 2008) or Mascot (Perkins et al, 1999). Quantification of SILAC is also rather 
straightforward, as the monoisotopic MS1 intensity of the labeled and unlabeled peptide pair can 
be compared directly in good approximation. In contrast to labeling with isotopic elements, where 
protein turnover leads to peptides with partial labelling states and therefore shifts in isotope 
envelopes, in SILAC it leads to an exchange of labelled peptide with unlabeled peptide or vice versa. 
SILAC is also compatible with selected reaction monitoring (SRM) data-independent MS that gives 
superior quantitation accuracy and sensitivity for dynamic SILAC turnover studies (Holman et al, 
2016). Furthermore, supplementation with stable-isotope labeled  amino acids does not have 
detrimental effects compared to supplementation with their natural occurring counterparts (Ong, 
2002) - in comparison to for instance 2H-labelling (Yang et al, 2010).  

2.4.6 Noteworthy dynamic SILAC studies 
The earliest MS-based protein turnover study used a SILAC labeling approach with 2H10-leucine and  
could determine protein turnover rates for 50 proteins in a chemostat yeast culture (Pratt et al, 
2002). In a proof-of-concept study, (Doherty et al, 2005) showed that protein degradation rates can 
also be obtained from living higher organisms. They labeled live chicken by feeding them with a diet 
of 50% 2H8-valine and obtained protein turnover rates for 8 proteins. In 2009, Doherty and colleagues 
followed up on this study with a ground-breaking, truly large-scale study, coining the term dynamic 
SILAC for pulse-chase SILAC approaches (Doherty et al, 2009). They could obtain turnover rates for 
600 proteins in cultured human cells using 13C6-arginine labeling. This chase period was performed 
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on a comparatively short timescale of 8 h, so proteins with long half-lives were not well resolved. 
Still, with this wealth of data, Doherty and colleagues could challenge several protein-degradation 
theories that are based on lower-throughput data, e.g. the N-end rule, the influence of disorder of a 
protein’s structure, or the effect of PEST sequences (protein stretches enriched in proline (P), 
glutamic acid (D), aspartic acid (E) and serine (S) or threonine (T) residues). 

Claydon et al, (2012) measured protein turnover in higher throughput in whole organisms. They 
labeled mice with 50% 8H2-valin feed and determined the protein turnover with 2D-PAGE MALDI-ToF 
MS/MS. This approach allowed to determine tissue-specific turnover rates, showing a correlation 
between tissue-specific growth rate and turnover time. Also, they showed circadian fluctuations of 
labeling rates and assessed protein recycling rates. 

In 2009, Schwanhäusser et al, showed that protein synthesis rates quantified with pulsed SILAC are 
equally informative for the protein turnover rate at steady-state as pulse-chase designs. This 
reduces the experimental complexity of most designs. 

Holman et al, (2016) designed SRM assays witch which they could determine protein turnover with 
unprecedented accuracy and precision. Data-independent SRM is several times more accurate than 
data-dependent shotgun proteomics, but with substantially decreased throughput. 

Nowadays, the high speed and mass accuracy of modern mass spectrometers allow to create more 
multiplexed and convoluted labeling schemes that allow to disentangle synthesis, degradation and 
protein abundance in a single labeling scheme (Jayapal et al, 2010; Dephoure & Gygi, 2012; Boisvert 
et al, 2012; Fierro-Monti et al, 2013). This also allows to obtain degradation rates under non-steady-
state conditions.  

The turnover studies that currently have the  highest coverage include reports by Schwanhäusser et 
al, (2011)  who used pulsed SILAC to quantify proteins with differential synthesis rates, and by 
Jovanovic et al, (2015), who combined protein turnover assessments with transcriptomics to study 
the impact of transcription, translation and protein degradation on protein homeostasis. 

2.4.7 Protein turnover in Plants 
All before mentioned SILAC studies were conducted in mammalian or bacterial systems, because 
these organisms are prototrophic and incorporate supplemented amino acids quickly, which results 
in next to complete labeling efficiencies. Autotrophic systems will still incorporate SILAC amino 
acids, yet get labeled at lower rates (Gruhler et al, 2005b). This complicates dynamic SILAC 
approaches for autotrophic organisms but does not make them generally inadmissible. 

2.4.8 Implications of non-steady-state conditions 
A major challenge of MS-based metabolic labeling studies is that they obtain only relative 
quantifications between the protein subpopulations with the old or new label. Changes in these 
labeling rates can thus be caused by 1) the decrease of the old labeled population by protein 
degradation or 2) the increase of the newly-labeled population by increased protein synthesis.  

To overcome this problem, most studies mentioned before are conducted under the steady-state 
assumption. This requires that all physiological conditions stay constant over the course of the 
experiment including - most importantly - protein abundances. An assumption that is most likely 



                                                                                                                                                                                                                    2. INTRODUCTION 

  27 
 

not valid for experimental conditions in which developmental processes (Doherty et al, 2005; Nelson 
et al, 2014a) or reaction to stimuli (Trotschel et al, 2012; Jovanovic et al, 2015) are analyzed. 

Consequently, it is crucial in such non-steady-state metabolic labeling studies to disentangle protein 
synthesis and protein degradation by quantifying at least two of the three factors: abundance, 
synthesis, and degradation. This has been done for instance by quantifying protein abundances 
separately by additional MS assays (Piques et al, 2009), difference 2D gel electrophoresis (DIGE) (Li 
et al, 2012a) or multiplexed labeling schemes (Boisvert et al, 2012; Jovanovic et al, 2015). The latter 
two studies reached the highest proteomic coverage by spiking an unlabeled Lys0 protein 
population into Lys4- to Lys8-labeled protein turnover samples. The Lys0 population was then used 
as a reference for protein level changes of the combined Lys4 and Lys8 subpopulations. With this 
approach, protein turnover and abundance could be determined in one MS assay. 

 

2.5 Plant defence mechanisms  

In the present study, we stimulated the biological system with one of the best studied and one of the 
most important processes for plant systems, the defense mechanism against bacteria and microbes. 

In the course of the never-ending molecular arms race of plants and microbial pathogens, a two 
layered plant innate immune defense system evolved. The first layer of defense response is induced 
by transmembrane pattern recognition receptors (PRRs, mostly receptor-like kinases (RLKs) or 
receptor like proteins (RLPs)) (Zipfel, 2014). They bind and respond to common classes of 
biomolecules from invasive species, such as bacterial cold shock proteins, elongation factors (e.g. 
EF-Tu), lipopolysaccharides, peptidoglycans, chitin and chitosan as well as the here employed flg22 
peptide from bacterial flagellin (Felix et al, 1999; Zipfel et al, 2004; Das et al, 2015). These molecules 
are classified as pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) which, 
when sensed by PRRs, induce the so called PAMP-triggered immune response (PTI). PTI can also be 
induced by endogenous damage-associated molecular patterns (DAMPs) (Seong & Matzinger, 2004; 
Lotze et al, 2007) 

Microbial pathogens can overcome detection of the PTI system, e.g. by translocating suppressive 
cytoplasmic effectors into the plant cell. To oppose this mechanism, Plants have a second layer of 
defense mechanisms that do not act at the cell membrane but inside of the cell (Schneider & 
Collmer, 2010). There, plant disease resistance (R) proteins sense the pathogen transduced virulence 
effectors and induce a secondary, usually stronger effector-triggered immune (ETI) response, which 
often culminates in a hypersensitive response and cell death.  ETI can be induced by nucleotide-
binding domain leucine-rich repeat-containing receptors (NLRs) (Zebell & Dong, 2015). 
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2.5.1 Response to flg22 
To induce a strong PTI signal, we used one of the most potent stimulants known for plant systems, 
flg22. This 22 amino acid long peptide is the elicitor-active epitope of bacterial flagellin (Felix et al, 
1999; Navarro et al, 2004). It is derived from the conserved N-terminal part of flagellin and induces a 
multilevel PTI response in plants. Flg22 is bound by the PRR FLS2 (flaggelin sensing 2, Chinchilla et 
al, (2006)), which responds to picomolar concentrations of flg22. After binding of flg22, FLS2 
dimerizes with BAK1 (BRI1-associated kinase1), which leads to reciprocal phosphorylation of their 
kinase domains (Chinchilla et al, 2007). This initiates an intracellular calcium/calmodulin-mediated 
signaling cascade (Cheval et al, 2013) as well as a rapidly and transient activation of three major 
mitogen-activated protein kinases (MAPKs), MPK3, MPK4, and MPK6 (Pitzschke et al, 2009). The 
result of these cascades is a multilevel defense response including the production of reactive oxygen 
species (ROS), stomatal closure, ethylene and jasmonic acid production, salicylic acid production, 
callose deposition, and glucosinolate activation (Clay et al, 2009; Li et al, 2016). WRKY transcription 
factors are upregulated upon PTI signaling (Eulgem et al, 2000), including WRKY33, which modulates 
the biosynthesis of camalexin (Mao et al, 2011), the main phytoalexin of Arabidopsis (Schlaeppi et 
al, 2010). Camalexin is synthesized from tryptophan, which is also strongly upregulated upon PTI 
stimulation (Ishihara et al, 2008; Consonni et al, 2010). 
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2.6 Aim of the study and experimental design 

In the presented study, we aimed to increase our understanding of gene expression regulation by 
quantifying in a systems biology approach the impact of transcription, translation, and protein 
degradation on the regulation of protein abundance in response to a strong stimulus. We therefore 
wanted to acquire genome-wide datasets for transcription, translation, protein abundance and 
protein turnover after elicitation of a defense response, and to compare them statistically to assess 
the size of the individual contributions of transcription, translation and protein degradation on the 
induced changes in protein abundances.  

We aimed to conduct the experiment in a coherent and as uniform as possible plant system where 
we can induce a system-wide stimulus without tissue-specific variations. As we wanted to take the 
biological material for establishing all four datasets from exactly the same biological samples we 
would need rather large amounts of biomass. We therefore chose to conduct the experiment in 
undifferentiated cultured Arabidopsis thaliana suspension cells that can easily be cultivated in a 
uniform fashion at large scale.  

The proteomic part of the experiment requires that the proteins of the cell cultures are labeled by 
heavy isotopologues of lysine. The cultures are therefore cultivated for 12 days in growth medium 
supplemented with either Lys4 or Lys8. After the labeling, the densely grown cell culture is split into 
two parts. One part of the samples is used for acquiring the data on transcription, translation and 
protein abundance, and the other part for the protein turnover study, where the previously 
established lysine-labeling is switched, Lys4 labelled cultures are labelled with Lys8 and vice versa. 
After a brief adjustment to the new cultivation conditions of 2 h, half of the cultures are treated with 
flg22, while the other half are mock-treated. The treatment was split between the two differentially 
labelled cultures, treating two Lys4-labelled cultures (L41 and L43) and one Lys8-labelled culture 
(L82), while one Lys4-culture (L42) and two Lys8-lableld cultures (L81 and L83) were mock-treated. 
The samples for the protein turnover part are collected over a timeline of 72 h, while the samples for 
establishing the transcription, translation and protein abundance data are collected over a timeline 
of 8 h.  

The experimental design is outlined in Figure 2.1 together with the employed color scheme for the 
samples. All flg22-treated samples are colored in blue, while untreated control samples are colored 
in red. Cultures labeled with Lys4 are colored in a darker tone, while Lys8 cultures have a lighter 
tone. Individual samples are encoded by the initial labeling condition (L4 or L8), followed by the 
replicate number (1 to 3) and the time after treatment in hours (T0 to T72). Samples taken 0.5 h after 
treatment are encoded by T1 to facilitate computational analyses. We strive to employ this naming 
and color scheme throughout the thesis. 
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Figure 2.8: Experimental design and color scheme. 

 

2.7 Contributions of the author 

All experimental, statistical and computational analyses were conducted by the author with exception 
to the library generation and sequencing of the RNA-Seq samples (chapter 4) and the sequencing of 
the Ribo-Seq libraries (chapter 5), which were performed by Catharine Aquino and Dr. Maria Domenica 
Moccia from the Functional Genomics Center Zurich (FGCZ). All mass spectrometric measurements 
were performed by the author at the Functional Genomics Center Zurich under the excellent 
supervision of Dr. Bernd Roschitzki. 

Chantal Ernst supported the analysis of differential translational efficiencies (chapter 5.6) during a 
semester project in our group. 
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MATERIAL AND METHODS
3.1 Suspension cell culture 

Leaf derived Arabidopsis suspension cell cultures ecotype Columbia were cultured similarly to 
(Schütz et al, 2011). In brief, the cultures grew in liquid Murashige and Skoog (MS) medium with 3% 
(w/v) sucrose, and supplemented with 2mg/L Indole-3-acetic acid, 0.2 mg/L kinetin, 0.1mg/mL 2,4-
dichlorophenoxyacetic acid and MS vitamins (2.0 μg/ml glycine, 100ug/ml myo-inositol, 0.50 μg/ml 
nicotinic acid, 0.50 μg/ml pyridoxine hydrochloride, 0.10 μg/ml thiamine hydrochloride). The 
cultures were grown under shaking (120 rpm) in Erlenmeyer flasks (filled to 30% of the flask’s 
volume) at 22° C in the dark. Cultures were passaged every 7 days, transferring 10% of the growing 
culture to fresh medium, inoculating at >30 mg/mL. 

During the SILAC experiments, the cultures grew in medium depleted to 70% of the original MS 
nitrogen that is 14 mM NH4NO3 an 7.5 mM KNO3. Additionally, the cultures were supplemented daily 
with 350 μM isotopically labeled L-lysine, either Lys4 (4,4,5,5-H2) or Lys8 (13C6

15N2) (Cambridge 
Isotope Laboratories). After 12 days of labeling, including one passage at day 6, pooled Lys4 or Lys8 
cultures were split into three replicates each and treated either with 100 nM flg22 (RP19986, 
GeneScript) or with water.  

The same pool of Lys4 or Lys8 labeled cultures was used to inoculate the cultures used for protein 
turnover assessments. These cultures were washed two times with 1 volume of growth medium 
without any lysine, were transferred to fresh nitrogen depleted medium at a density of 100 mg/mL 
and got supplemented with 350 μM of the reciprocally labeled lysine. After an acclimation period of 
2 h, the cultures were treated with either 100 nM flg22 or water. The supplementation of 350 μM 
heavy lysine was repeated every 24 h. 

3.1.1 Assessing culture densities 
There are numerous ways to determine the growth of a suspension cell culture (Mustafa et al, 2011), 
with even some non-invasive ones. As it provides good sensitivity in low concentrations independent 
of the shape of the culturing flask, we decided to determine the culture density by determining the 
culture’s fresh weight using the following method: 3 times 300 or 500 μL cell culture were taken from 
the suspension cell culture and put into a pre-weighed tube, using a cut-off, wide-bore 1 mL pipet 
tip. The aliquots were spun for 1 min at >16'000 x g and all supernatant was taken off using a 200 μL 
pipet tip. The tube with the leftover cell pellet was weighed.  
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This method’s accuracy can vary with the granularity of the cell line. 

3.1.2 TTC reduction assay  
The suspension cell culture’s viability was determined by measuring the mitochondrial 
oxidoreductase activity by reducing TTC (2,3,5-triphenyl tetrazolium chloride) to insoluble formazan 
(Castro-Concha et al, 2006), as it has a low tendency for false positive results. In brief, culture aliquots 
of equal mass (50 mg usually), were spun 1 min at >2'000 x g (higher speed harms the cultures and 
gives false negative readouts), the supernatant was taken off, and the cells were washed once in 1 
mL 50 mM phosphate buffer pH 7.5. Then, 125 mM TCC dissolved in 1 mL phosphate buffer were 
added. The cultures are shaken for 30 min at room temperature in the dark. The cells are pelleted 
for 1 min at >16'000 x g and all supernatant was discarded. The resulting formazan crystals were 
dissolved in 300 μL DMSO during 10 min incubation at 37° C. The formazan amount was quantified 
at 485 nm wavelength using a Nanodrop spectrophotometer. A sample without cells provides a 
negative control and 2mM DTT acted as a positive control. 

3.2 Transformation of cultured Arabidopsis cells by Agrobacterium 

The transformations were performed according to the protocol by Shimamoto et al. (2005). In brief, 
plasmid-containing agrobacterium cultures were grown at 27° C in 20 mL LB medium to an OD600 of 
1.0, peletted, washed with 10 mL MS medium and added to a 50 mL, 3 day old Arabidopsis culture 
grown in MS medium supplemented with 1 mM lysine. After 48 h, 25 µg/mL cefotaxime is added to 
kill the agrobacterium. 48 h later, 15 mL of the transformed Arabidopsis culture is transferred to 
35 mL of fresh MS medium together with 1 mM lysine, 50 µg/mL cefotaxime and the plasmid-
compatible antibiotics. After 48 h of cultivation, the transformed culture are spread on petri dishes 
with jellified, ½-concentrated MS medium containing 1 mM lysine, 50 µg/mL cefotaxime and the 
plasmid-compatible antibiotics. After 1 week of growth, individual cell clumps were transferred to 
liquid MS medium with 1 mM lysine but without antibiotics for further propagation. 

3.3 RNA-Seq 

RNA was extracted using the Qiagen RNeasy Plant Mini Kit using the proprietary RLT buffer and an 
on-column DNase digestion following the manufacturer’s instructions. The purified RNA was 
sequenced on an Illumina HiSeq 2000 (12 samples per lane, 125bp single-end reads) using the 
Illumina TruSeq stranded mRNA library preparation kit including an oligo-dT enrichment, RNA 
fragmentation, and random hexamer-primed cDNA synthesis. 

The reads were processed with the sushi pipeline framework of the FGCZ Zürich (http://fgcz-
sushi.uzh.ch/, Hatakeyama et al, 2016). The reads were de-multiplexed and trimmed by 
Trimmomatic (Bolger et al, 2014), resulting in 7 to 30 million reads per sample, and mapped in a 
stranded fashion with STAR (Dobin et al, 2013) to the TAIR10 genome (downloaded 07.09.2012). 
Reads aligned to TAIR10 genes and natural antisense transcripts (NATs, annotations created from 
(Matsui et al, 2008; Okamoto et al, 2010)) were counted with featureCounts of the R package Subread 
(Liao et al, 2014). Genes with less than 1 count per million mapped reads in more than 3 samples 
were discarded. Differentially expressed genes were identified with a generalized linear model tool 
from the edgeR package (Robinson et al, 2009; Chen et al, 2014). We set the lysine background as the 
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blocking factor and testing for changes at any time point between all flg22 and control cultures. We 
used TMM normalization (Robinson & Oshlack, 2010)  and a tag-wise estimation of the dispersion.  

3.4 Ribo-Seq 

The ribosome-mRNA complexes were enriched similarly to Juntawong et al, (2013). In brief, ~5 mL 
Arabidopsis suspension cell culture were incubated for 1 min at room temperature with 100 μg/mL 
cycloheximide. The culture was centrifuged for 1 min at 2'000 x g, the medium was discarded and 
the cells (>1 g) were snap frozen. The cells were ground to a powder in liquid nitrogen and were 
thawed in 1 volume of polysomal extraction Buffer (PEB, 0.2 M Tris pH 9.0, 0.2 M KCl, 25 mM EGTA, 
35 mM MgCl2, 1 % (w/v) polyoxyethylene(23)lauryl ether (Brij-35), 1 % (v/v) Triton X-100, 1 % (v/v) 
octylphenyl-polyethylene glycol (Igepal CA 630), 1% (v/v) polyoxyethylene sorbitan monolaurate 20 
(Tween 20), 1 % Sodium Deoxycholate (DOC), 5 mM DTT, 2x Roche cOmplete Protease Inhibitor, 
100 μg/mL cycloheximide). The extraction was incubated for 20 min at RT. Cell debris was 
precipitated by centrifuging twice for 15 min at >16'000 x g at 4°C, transferring the supernatant to a 
clean tube each time. The spun supernatant was loaded onto a 1 mL 60 % sucrose cushion (1.75 M 
sucrose, 0.4 M Tris pH 9.0, 0.2 M KCl, 5 mM EGTA, 35 mM MgCl2, 100 μg/mL cycloheximide. The sucrose 
was added directly to a 10x stock solution of the salts, only few additional water was needed to bring 
the solution to the full volume. The sucrose was dissolved by heating it up in a <70° C water bath). 
The sucrose cushion was overlaid with the extract and were spun for 150 min at 80'000 rpm in a MLA-
80 rotor (Beckman Coulter). The cushion and supernatant were discarded and the clear ribosome-
mRNA pellet was further processed with the ARTseq ribo profile mammalian kit (Illumina Epicentre). 
In brief, the pellet (~ 20 μg RNA) was dissolved in 200 μL 1x ARTseq mammalian polysome extraction 
buffer and digested for 2 h at room temperature by addition of 50 U TruSeq nuclease (ARTseq kit, 
Illumina/Epicenter). The RNA digestion was stopped with 50 U SUPERase•In RNase Inhibitor (Life 
Technologies), and purified by RNA Clean & Concentrators-25 (Zymo Research). 5 μg of the purified 
ribosome protected fragments (RPFs) were depleted of rRNAs using the Ribo-Zero plant leaf kit 
(Illumina), repeating the magnetic separation step of the rRNA bound beads.  
 From the purified RPFs, a sequencing library was prepared following the instructions of the ARTseq 
ribo profile kit (Illumina/Epicenter), continuing the protocol with the PAGE purification of the RPFs. 
The cut-out PAGE gel pieces were extracted by the crush-and-soak method (Buratowski & Chodosh, 
2003), incubating the crushed gel pieces for 2 h at 30° C and separating the gel pieces from the eluate 
by spinning for 2 min at 2’000 rpm in a QiaShredder spin column. It was deemed useful in our 
approaches to clean up all PCR amplified libraries by denaturing PAGE to separate adapter 
amplicons, as discussed in the ARTseq protocol.   
The final RPF libraries were sequenced with 125 bp single-end reads on an Illumina HighSeq 2000 
(12 samples per lane). 

The Illumina reads were processed equally to the RNA-Seq reads (chapter 3.2). The only difference 
being that we used Bowtie2  (Langmead et al, 2009) to align the reads to the TAIR 10 genome using 
the default settings (minimum read length of 20 nt, and a minimum average alignment quality of 10). 
As discussed in chapter 5.3.4, we excluded all reads that map to the following genes containing non-
reproducible artifact reads: AT2G01021, AT3G55850, AT1G70185, AT3G52700, AT2G23880, 
AT3G55850, AT1G70185, ATMG00030. We excluded all lowly transcribed genes that did not have 
more than 5 counts per million mapped reads in more than 8 samples.  



3. MATERIAL AND METHODS 

34   

3.5 Proteomics 

3.5.1 Protein extraction and FASP 
All cell culture samples used in proteomics analyses were centrifuged for 1 min at 4'000 x g, spent 
supernatant was discarded, and the pellet was washed once in 1 volume of 50mM phosphate buffer 
pH 7.5, before being snap frozen in liquid nitrogen. The cell pellet was ground in liquid nitrogen and 
taken up in 1.5 volumes of 40 mM Tris base, 4 % SDS, 2x cOmplete Protease Inhibitor Cocktail 
(Roche). The extracts were incubated for 30 min at room temperature and were cleared of cell debris 
by spinning twice for 10 min at >16'000 x g. After determining the protein concentration by a Pierce 
BCA assay (Thermo Fischer Scientific), the extract was reduced by adding 50 mM DTT. The protein 
extracts from the protein abundance experiment were mixed with the same amount of protein from 
a reference protein mixture, as described in chapter 6. 

Up to 200 μg protein extract were digested each with 4 μg (1:50, 2 % of the protein input) of trypsin 
(Promega) following the FASP procedure (Wisniewski et al, 2009) using Microspin YM-30 
concentrators (Millipore). The eluted peptides were dried in a vacuum concentrator and purified 
with Finisterre C18 SPE columns (Teknokroma). In brief, the SPE columns were wetted with 1 mL 
MeOH, equilibrated with 1 mL 0.1 % trifluoroacetic acid (TFA) in 60 % ACN and 2 ml 0.1 % TFA. The 
dried peptides were dissolved in 0.6 mL 0.1 % TFA, loaded onto the column, washed two times with 
1 mL 0.1 % TFA and eluted with 0.8 mL 0.1% TFA in 60 % ACN. The purified peptides were dried again 
in a vacuum concentrator at 37°C. 

3.5.2 Peptide separation by HILIC 
The trypsinized peptides were separated into 5 fractions using an Agilent 1200 series HPLC system 
with a YMC-Pack Polyamine II, 250 x 3.0 mm, 5 μm, 120 Å HILIC column. The sample were dissolved 
in 100 μL Buffer A (75% ACN, 8 mM KH2PO4, pH 4.5) and separated with Buffer B (5% ACN, 100mM 
KH2PO4, pH 4.5). The samples got injected in 100% A at a flow rate of 300 μL/min. From 7.5 min to 
37.5 min, Buffer A decreased linearly to 50%. Till 42.5 min B increased linearly to 100%; during 1 min 
the buffer were switched to 100% A to re-equilibrate the column till 60 min. The eluate of these HILIC 
runs were separated into 24 fractions of 750 μL each. These fractions were pooled to 5 samples so 
that each sample contained an equal amount of peptides according to the UV absorption. We pooled 
the HILIC fractions 6-10, 11-12, 14-15, and 16-22. Fraction 13 contained the apex of the HILIC elution 
curve and was not pooled further. These combined fractions were dried at 37 °C in a vacuum 
concentrator and desalted by Finisterre C18 SPE columns using 4 washes of 1 mL 0.1% TFA each. 

3.5.3 Mass spectrometry 
The fractionated and desalted peptide pools were analyzed by LC-MS using an Eksigent nanoLC-
Ultra and a Thermo Orbitrap Fusion mass spectrometer. The LC was performed with a 150 x 0.075 
mm column heated to 50° C, packed in-house with 1.9 µm ReproSil-Pur C18 AQ particles with 120 Å 
pores (Dr. Maisch GmbH, Ammerbuch, Germany). 

The samples (1 μg peptides) were separated with the following linear gradients of Buffer A (0.1% FA 
in water) and Buffer B (0.1% FA in Acetonitrile) using a conserved flow of 300 nl/min: B increases 
linearly from 3% to 25% till 60 min; then B increases over 10 min to 35%; then to 97% over 5 min; 
then the column was washed for 5 min at 97% B and was re-equilibrated at 3% B during another 5 
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min. For the most complex samples (the middle fractions of the HILIC: fraction 11-12, 13, 14-15), the 
first linear elution phase to 35% B was extended from 60 min to 90 min. 

The Orbitrap mass analyzer was set to a resolution of 240'000 FWHM at a scan range of 300-1500 m/z. 
The injection time was capped to maximally 50 ms. Precursors for MS2 scans were selected using 
the Monoisotopic Precursor Selection filter, including charge states 2 to 7, and using an intensity 
threshold of minimally 5E3. Starting with the most intense precursors, a maximum of 250 ms 
injection time was allowed for the ion trap. The precursors were isolated using a 1.6 m/z window and 
got fragmented at 30% HCD collision energy. The ion trap ran in "top speed" setting at the "rapid" 
scan rate. After a single fragmentation, precursors were excluded from fragmentation for the next 
25 sec.  

3.5.4 MaxQuant 
The proteomic data were analyzed with MaxQuant Version 1.5.3.3 (Cox & Mann, 2008), with disabled 
re-quantification and 1 min "match between runs" using a 20 min run alignment window. The 
spectra were compared against a trypsin-digested Arabidopsis TAIR10 database (downloaded on 
17.10.2011) including common contaminants. A reverted decoy database of these sequences was 
added. The comparison algorithm allowed for variable acetylation of the protein N-terminus and 
methionine oxidation, while carbamidomethylation of cysteines was set as a fixed modification. The 
mass accuracy was set for 20 ppm for the orbitrap, and 0.5 Da for the ion trap. A maximal false 
discovery rate (FDR) of 1% was allowed on the peptide level and 1% on the protein level. 
Quantification events were limited to unmodified, unique peptides, requiring at least 2 
quantification events. The “re-quantify” option was not enabled, as each sample was mixed with a 
reference sample that should contain all peptides and every peptide should be paired to the 
unlabeled Lys0 isoform, reaching 15% of the labeled peak’s intensity. MaxQuant was used with a 
multiplicity of 2 for the protein abundance data set (Lys4 or Lys8 as the labeling state) and with a 
multiplicity of 3 for the protein turnover dataset (no-label, Lys4, or Lys8). 
For quantifying a protein, a minimum of 2 peptides in that samples was required (called “Min. Ratio 
Count” settingin MaxQuant).    

3.6 Bioinformatics 

All analyses were performed with R (version 3.2.5, (Environment & for statistical computing. Vienna, 
2015)) with the libraries given in the results chapters. All turnover models were fitted with the nls() 
function of the base R package. All R scripts are available upon request.  

3.7 Gene set enrichment 

Gene ontology biological process (GO) enrichments were performed with PANTHER (version 10.0) (Mi 
et al, 2016), using the statistical overrepresentation test with Bonferroni correction for multiple 
testing and a 5% adjusted p-value cutoff (Mi et al, 2013). The reference gene list to test for 
enrichment were taken from all quantified genes of the particular dataset. The GO enrichments were 
visualized with VirtualPlant (Katari et al, 2010).  
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TRANSCRIPTION
 

In the following, I will present the results of the experiment divided into the four chapters, one for 
each genome-wide dataset including its interpretation and comparison to the other obtained 
datasets.  

4.1 Experimental design and quality control 

We used RNA-Seq to assess the transcriptional response of Arabidopsis suspension cell culture AtB 
to flg22-treatment.  We took samples from three flg-22 treated and three control cultures before 
treatment and 0.5, 2, 4 and 8 hours after treatment (Figure 4.1A,B). We extracted the RNAs, enriched 
for mRNAs by oligo-dT hybridization, fragmented the mRNAs with divalent cations under elevated 
temperature, transcribed the RNA to cDNA, and sequenced 125 nt long strand-specific reads with an 
Illumina HiSeq sequencer. Library preparation and sequencing were performed by Catharine Aquino 
from the Functional Genomics Center Zürich (FGCZ). The quality of the sequencing was verified by 
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). All samples showed a good 
mean quality per read and per base of >36 points on the Phred score (negative logarithm of base 10 
of the base-calling error probability, Figure 4.1C,D).  

The reads were trimmed and mapped strand-specifically to the TAIR10 genome. On average, 14.8 
million reads were mapped for each sample, and each sample had at least 5 million mapped reads 
(Figure 4.1E). Reads mapping to open reading frames (ORFs) were counted and normalized to the 
total number of mapped reads, resulting in counts per million mapped reads (cpm) values for each 
ORF. ORFs with less than 1 cpm in at least 3 samples were discarded. This resulted in transcript 
expression values for 18’892 ORFs with on average of 51 cpm over 26 samples (Figure 4.1F). This data 
matrix was used to assess the transcriptional response of Arabidopsis to flg22 treatment. 
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Figure 4.1: RNA-Seq Quality Control.  
 A: Experimental design. B: Naming and color scheme of the samples. All flg22-treated 
samples are colored in blue, while untreated control samples are colored in red. 
Cultures labeled with Lys4 are colored with darker colors, while Lys8 cultures are 
colored lighter. We strive to employ this color scheme throughout all plots of the thesis. 
C: Quality score per base of a representative RNA-Seq sample. It is typical for an Illumina 
sequencer to have a slightly lowered quality score for the very first bases. D: Quality 
score per read of a representative sequencing sample. E: Number of reads per sample 
that mapped to TAIR10 open reading frames. F: Frequency plot of the average cpm per 
gene. The median expression value is indicated by the red line. 

4.2 Dimensionality reduction visualizations 

To assess such a large quantitative transcriptional dataset in a nonparametric way, dimensionality 
reduction methods can be very helpful. Both the principal coordinate analysis (PCoA, Figure 4.2A) 
and the multidimensional scaling plot (MDS, Figure 4.2B) display the same pattern. Replicates of 
the same treatment and time point cluster closely together, while both time and treatment 
separate the clusters. In the PCoA, the first principal coordinate (33.24 % of the variance) mostly 
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indicates changes in time, while the second coordinate (18.87 % of the variance) indicates changes 
induced by the treatment.  

Samples treated with flg22 show especially at the first time point (0.5 h after treatment, named T1 
here) large differences to their corresponding control samples. The MDS displays these differences 
particularly striking as it restricts the analysis to the 500 transcripts with the largest standard 
deviation over all samples. The flg22-treated samples collected at 4 h and 8 h after treatment (T4 
and T8) group considerably closer to their respective untreated clusters, indicating an attenuation 
of the treatment effect. 

A consistent difference between the Lys4- and Lys8-labelled samples can be seen. Especially the 
MDS indicates a small but consistent shift between these two labeling backgrounds (Figure 4.2C), 
which is discussed in more detail in chapter 4.7.   

  

  

 

Figure 4.2: Dimensionality reduction plots of the transcription dataset.  
A: Principal coordinate analysis (PCoA). The position of the samples is indicated by the 
dot. B: multidimensional scaling plot (MDS) calculated by using the version available in 
limma (Smith, 2005). The experimental timeline is indicated by connecting with an 
arrow the centers of each replicate cluster. The samples are colored according to the 
legend to the bottom right. 
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4.3 Flg22-induced differential transcription 

We tested for differential expression of genes with the edgeR framework (Robinson et al, 2009). To 
estimate the dispersion, we used the tag-wise, that is gene-wise, dispersion (Figure 4.3A), which is 
recommended for a multi-parametric experimental design (Chen et al, 2014). We included the lysine 
labeling background of the cultures as a regression coefficient of the statistical test (Figure 4.3B) and 
the total number of reads of each sample (LibrarySize) so that the gene-specific number of reads 
(counts) depends on the lysine labeling, treatment and sampling time:  

 ~ + + +  

We tested for differential expression over all time points (Figure 4.3C), or each time point separately 
(Figure 4.3D-G). We observed the highest number of differentially regulated transcripts at the first 
time point, 0.5 h after treatment. The more time passed after the treatment, the fewer differentially 
regulated genes were detected. In the following text, we will discuss the results from the test for 
differential expression at any time point. 

 
Common BCV = 0.1239 

 

488 down     1199 up 

 
125 down     722 up 

 
176 down      560 up 

 
110 down      472 up 

 
138 down,    133 up 

Figure 4.3: EdgeR tests for flg22-induced differentially transcribed genes.   
A: Plot of the biological coefficient of variation (BCV) against the average expression in 
cpm to estimate the dispersion. We chose the tag-wise dispersion estimate for our 
statistical analysis. B: Schema of the statistical design. C-G: Volcano plots of the 
differentially expressed genes over all time points (C) or at the individual time points: 
0.5 h (D), 2 h (E), 4 h (F), 8 h (G) after treatment. In C, the genes are plotted on the x-axis 
according to the highest log2-transformed fold-change at any time point (maxlogFC).  
The numbers of differentially expressed genes are given below the volcano plots. The 
threshold for differential transcription was set at Bonferroni-Holm-adjusted p-value < 
0.01 and |log2(fold change)| > 2. In total, 18’894 genes were tested statistically. 
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The up- and downregulated response differ in their consistency and / or length of the response: 
While only 4.3 % (38 transcripts) of all downregulated transcripts are found significantly 
downregulated in more than one time point (Figure 4.4A), 60.2 % of all significantly upregulated 
transcripts (580 transcripts) are determined to be upregulated in more than a single time point 
(Figure 4.4B), 48 of which were upregulated over all four time points. 

downregulated 

 

upregulated 

 

Figure 4.4: Venn diagram of the significantly downregulated (A) or upregulated (B) 
genes.  

 

The 1199 genes with increased transcription under flg22 treatment were enriched in a plethora of 
GO categories (Table 4.1, Figure 4.5), of which nearly all can be related to plant defense responses. 
The 488 downregulated genes were associated with only one GO term (water homeostasis, 5 genes, 
adjusted p-value 0.011).  
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Table 4.1: Gene ontology biological process enrichment for the 1199 genes with 
increased transcription upon flg22 treatment (adjusted p-value <5 %).   
Underrepresented GO categories, where the number of transcripts were less frequently 
observed than expected by pure chance, are listed at the bottom of the table, separated 
by a black bar. In total, 134 GO terms were significantly enriched and only the child 
nodes of the GO categories are listed. The enrichment analysis was performed with 
Panther (Mi et al, 2013) and all expressed genes were used as the reference list. 

GO BIOLOGICAL PROCESS  # IN 
REFERENCE 

# IN 
QUERY 

# EXPECTED IN 
QUERY 

FOLD 
ENRICHMENT 

ADJUSTED P-
VALUE 

indole-containing compound catabolic 
process 

6 5 0.26 19.4 1.62E-02 

defense response by callose deposition in 
cell wall 

15 10 0.64 15.52 3.91E-06 

camalexin biosynthetic process 9 6 0.39 15.52 7.03E-03 

chorismate metabolic process 11 6 0.47 12.7 2.18E-02 

response to chitin 108 54 4.64 11.64 3.38E-35 

tryptophan biosynthetic process 20 8 0.86 9.31 7.21E-03 

induced systemic resistance 28 10 1.2 8.31 1.22E-03 

defense response to bacterium 281 52 12.07 4.31 1.77E-14 

cellular response to hypoxia 23 8 0.99 8.1 1.97E-02 

cellular response to decreased oxygen 
levels 

26 9 1.12 8.06 5.71E-03 

sulfur compound catabolic process 40 11 1.72 6.4 4.16E-03 

response to karrikin 104 28 4.47 6.27 1.20E-10 

toxin catabolic process 43 11 1.85 5.95 8.22E-03 

glutathione metabolic process 56 13 2.41 5.4 3.22E-03 

cellular modified amino acid metabolic 
process 

103 17 4.42 3.84 8.49E-03 

hydrogen peroxide catabolic process 70 16 3.01 5.32 2.55E-04 

response to wounding 179 39 7.69 5.07 1.39E-12 

glucosinolate metabolic process 82 17 3.52 4.83 4.04E-04 

cellular amino acid biosynthetic process 152 31 6.53 4.75 6.75E-09 

phenylpropanoid biosynthetic process 104 21 4.47 4.7 2.40E-05 

phenylpropanoid metabolic process 130 27 5.58 4.83 1.12E-07 

lignin metabolic process 69 13 2.96 4.39 2.93E-02 

response to jasmonic acid 173 31 7.43 4.17 1.60E-07 

response to salicylic acid 164 28 7.05 3.97 3.68E-06 

regulation of defense response 180 30 7.73 3.88 1.70E-06 

flavonoid biosynthetic process 110 18 4.73 3.81 5.03E-03 

ethylene-activated signaling pathway 135 22 5.8 3.79 4.28E-04 

response to oxidative stress 360 55 15.47 3.56 5.91E-12 

response to salt stress 415 48 17.83 2.69 3.71E-06 

cellular response to acid chemical 342 34 14.69 2.31 2.09E-02 

defense response to fungus 425 39 18.26 2.14 2.91E-02 

response to inorganic substance 687 61 29.51 2.07 3.66E-04 

protein phosphorylation 828 72 35.57 2.02 6.35E-05 

oxidation-reduction process 1293 93 55.55 1.67 3.14E-03 

peptide biosynthetic process 537 6 23.07 0.26 5.00E-02 

amide biosynthetic process 554 6 23.8 0.25 2.84E-02 

DNA metabolic process 403 2 17.31 < 0.2 9.82E-03 

RNA processing 412 1 17.7 < 0.2 7.28E-04 
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4.4 Clustering transcriptional response to flg22-treatment 

To disentangle the complex response to flg22-treatment, we performed a hierarchical clustering of 
the flg22-treatment over control fold-changes of all significantly changing genes. The 1’199 
upregulated genes were clustered into 3 groups (Figure 4.6A): Cluster 1up comprises transcripts 
that are upregulated at 0.5 h and return quickly to basal levels, while clusters 2up and 3up showed 
more long lasting, later-stage responses.  

All three clusters are enriched for defense response genes. The GO categories plant-type 
hypersensitive response and regulation of cellular defense response were only enriched in the early 
response cluster 1up. Cluster 2up is enriched in hydrogen peroxide catabolic process, indicating 
compensatory mechanisms to the ROS produced by the defense mechanism. Metabolic responses 
such as tryptophan, phenylpropanoid, and glutathione biosynthetic processes are found 
predominantly in the mid- to late-stage clusters. 

The downregulated genes were clustered into 4 groups (Figure 4.6B): cluster 3down contains genes 
that respond only at the first time point, cluster 2down contains mostly late stage responding 
genes, and cluster 1down contains a large group of variably responding genes. Cluster 4down 
contains two genes (AT1G49200 and AT4G20270) with 0 cpm in one control group, leading to 
atypical high fold-changes. The separate clustering of these genes is therefore not biologically 
relevant.  

The downregulated genes are enriched for only few GO terms. Cluster 1down contains the 5 genes 
associated with water homeostasis. Interestingly, the early-stage downregulated genes from 
cluster 3down are enriched for developmental and transcriptional regulation function. The same 
enrichment did emerge when analyzing all genes downregulated 0.5 h after treatment, while the 
other time points were not significantly enriched for any GO term.  
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Figure 4.6: Gene-wise hierarchical clustering of the log2-transformed fold changes 
of all differentially changing transcripts.   
Clustering of the 1’199 upregulated genes (A) and 488 downregulated genes (B). The 
number of clusters was chosen manually to split the genes into groups specific for 
temporal responses. Significantly enriched biological process GO terms for each cluster 
are listed with their corresponding adjusted p-values. 
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4.5 Response of bacterial defence genes to flg22 treatment  

Flg22 is a well-studied PAMP, so we verified our biochemical and statistical analysis with defense 
response markers, such as the flagellin receptor-like kinase 1 (FRK1), and the transcription factors 
WRKY29, WRKY22, WRKY30, MYB15, MYB51 and PEP3 (Asai et al, 2002; Lee et al, 2011). All of these 
factors are highly significantly upregulated upon flg22 treatment (Figure 4.7A-G). WRKY30 was 
expressed too low to be included in the statistical analysis, yet the expression plot also shows a clear 
transcriptional induction by flg22 (Figure 4.8D). 

  

  

  

 

 

Figure 4.7: Transcriptional expression of well–characterized defense response 
markers. maxlog2FC represents the highest flg22-induced log2-tranformed fold-
change at any measured time point. 
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Flg22 treatment induces only small to no changes for infection or systemic acquired resistance 
markers such as PR1 and NPR1 (Cao et al, 1994) and disease markers or markers such as PAD4 and 
EDS1 (Feys et al, 2001). EDS1 is stronger upregulated as it is also involved in the plant 
hypersensitive response (HR). 

  

  
Figure 4.8: Exemplary infection and disease markers.  
maxlog2FC represents the highest flg22-induced log2-tranformed fold-change at any 
measured time point.  

To assess this more systematically, we compared all genes that are associated in TAIR to defense 
against bacteria (236 genes), defense against fungus (161 genes), defense against virus (35 genes) 
and systemic acquitted resistance (53 genes). There is a partial overlap of the genes in these 
categories (Figure 4.9A).  

We determined highly significant differences in the log2-transformed fold changes induces by the 
flg22-treatment for defense against bacteria transcripts (p-value = 3.474e-16, Wilcoxon rank sum 
test, Figure 4.9D) and defense against fungus transcripts (p-value = 1.172e-09). Systemic acquitted 
resistance transcripts were only slightly differentially expressed (p-value = 0.034), while the fold-
changes of the defense against virus group were not significantly affected by flg22 (p-value = 0.456). 
The highly flg22-responsive genes of the defense against virus category are overlapping with 
defense genes against fungal or bacterial infection such as WRKY8 (discussed in more detail in 
4.6.1) and the lipid acyl hydrolase patatin-like protein 2 (PLP2, Figure 4.9C). PLP2 is also associated 
with cell death execution upon fungal infection (La Camera et al, 2009).  
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Figure 4.9: Analysis of genes associated with defense related GO categories.  
A: Venn-diagram of all genes associated with defence–associated categories. B: 
Boxplots of the highest flg22-induced fold-change at any time point for all the genes 
assigned to the different categories. C: Transcript expression profile of PLP2. D: Volcano 
plots of the genes associated with the different categories.   
def_bacterium = 236 defence against bacteria genes, def_fungus = 161 defence against 
fungus genes, def_virus = 35 defence against virus genes, def_systemic = 53 systemic 
acquitted resistance, all = all 18’894 genes assessed in this study.  

4.6 Comparison to other transcriptional flg22-studies 

The transcriptional response of Arabidopsis to bacterial infection or flg22 treatment has been 
analyzed in three previous genome-wide studies (Thilmony et al, 2006; Howard et al, 2013; Li et al, 
2014a). Surprisingly, the overlap of the significantly regulated genes is only moderate (Figure 4.10A-
D). There are a multitude of possible reasons for the low overlap: differences in the quantitative 
method (microarrays in Thilmony et al. (2006), RNA-Seq in the other three), in the analyzed tissue 
(seedlings for Li et al (2014), fully grown plants in Howard et al. (2013) and Thilmony et al. (2006), 
and tissue culture in our case), the time points investigated, stimulant (flg22 for Li et al. (2014) and 
here, Pseudomonas syringae infection for Howard et al (2013), and Pseudomonas syringae and 
Escherichia coli treatment for Thilmony et al. (2006)) or the statistical framework and significance 
thresholds.  

The highest overlap was seen with the methodologically most similar study by Li et al. (2014), where 
RNA-Seq was used to study the transcriptional response of Arabidopsis seedlings after 30 min of 
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flg22 treatment. The flg22-induced fold-change and adjusted p-values correlate highly with our data 
0.5 h after stimulation (Figure 4.10E,F). 

 
 

   

 

R2 = 0.3195, rho  = 0.476, 
 

R2 = 0.0079, rho = 0.415 

Figure 4.10: Comparison with other genome-wide bacterial defense response 
studies. 
 A: Venn diagram of the genes assessed as significantly changing in the indicated 
studies. B - D: The genes identified as differentially expressed in the indicated study are 
highlighted in the Volcano plot displaying the transcriptional response in our data set. 
Our threshold for assessing significant changes are indicate by dashed vertical 
(|maxlogFC| > 2) and horizontal (FDR-adjusted p-value < 0.01) lines E: Correlation of the 
flg22-induced fold-change our study and from Li et al, (2014). A regression line is 
indicated in blue with its correlation statistics listed below the plot. F: Correlation of the 
gene-wise p-values from our study and Thilmony et al. (2006). The regression line is 
plotted in blue, adjusted R2 = 0.0029 
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4.6.1 WRKY transcription factor superfamily 
WRKY transcription factors are defined by two WRKY domains, which are about 60 amino acids long 
with the WRKYGQK sequence followed by a C2H2 or C2HC zinc finger motif. Arabidopsis encodes 72 
WRKY genes, 52 of which are expressed under our experimental conditions. Of these, 7 genes are 
significantly down- and 17 are upregulated upon flg22 stimulation, making it a highly responsive 
class of genes with a significantly different average fold-change (p-value = 0.000179, Wilcoxon rank 
sum test). The WRKY transcription factor family is highly redundant for their function (Eulgem et al, 
2000).  

In our data set we identify four WRKY transcription factors (WRKY18, WRKY33, WRKY40, and WRKY46) 
that respond actually more sharply to the flg22 treatment than the classically reported WRKY factors. 
These transcription factors are reported to be regulated also by other stimuli such as abscisic acid 
application (Geilen & Böhmer, 2015), drought (Luo et al, 2013), osmotic, salt or metal stress (Van 
Aken et al, 2013; Carrio-Segui et al, 2016). To disentangle their exact molecular function in the flg22-
signaling cascade would be of high interest.  

The expression of some members of the WRKY family also peaks at later time points. These  late-
response transcription factors are actually described to be immune modulators or even antagonistic 
regulators of the defense mechanism, as WRKY17 (Ali et al, 2014), WRKY8 (Chen et al, 2013; Hu et al, 
2013), and WRKY63 overexpression downregulates the expression of flg22-responsive genes (Van 
Aken et al, 2013). WRKY48 is a plant defense repressor (Xing et al, 2008), whose transcription peaks 
early on and elevated expression rates are maintained over the later time points unlike any other 
WRKY factor. The transcriptional increase of these WRKY transcription factors could initiate the 
downregulation of defense response as a measure to return to steady-state. 

Interestingly, FRK1, the flagellin receptor-like kinase 1 also shows a more delayed transcriptional 
response similar to the group of WRKY immune modulator genes (Figure 4.7A). After stimulation, the 
membrane-bound FRK1 gets activated and internalized. To return to steady state, the amount of 
non-activated FRK1 has to be replenished on the cellular membrane. A transcriptional increase of 
FRK1 therefore does not necessarily mean an increase in signaling, like for the WRKY-transcription 
factors. It could rather be an indication that the flg22 signal has already been passed on.  

In our understanding, this is indicative for differences in signal propagation. While FRK1 is a kinase 
that passes on the signal by phosphorylation, transcription factors have to increase in abundance to 
“pass on the signal”. An increase in FRK1 thus means a return to non-signaling steady state.  

This highlights that our transcriptional dataset allows studying the kinetics of flg22 signal 
propagation in Arabidopsis cells. We can identify early response genes, and genes that are working 
antagonistically to a pathogen response – all within the same superfamily of genes. 
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Figure 4.11: Transcriptional expression of flg22-responsive WRKY transcription 
factors.  
A: Volcano plot of flg22-induced transcriptional changes over all time points with the 52 
expressed WRKY genes indicated in red. B-F: Examples of early-peaking WRYK genes. G-
J: WRKY genes that could regulate the plant defense response in an antagonistic 
manner. maxlog2FC represents the highest flg22-induced log2-tranformed fold-change 
at any measured time point. 
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4.6.2 Programmed cell death 
We found that transcripts associated with programmed cell death (PCD) regulation are also 
regulated by flg22-treatment (Figure 4.12A). The strongest upregulation could be seen for transcripts 
associated in TAIR to the keyword ‘PCD downregulation’. For example Cyclase1 (AT4G34180, Figure 
4.12B) is strongly upregulated, which is a negative regulator of cell death and regulates pathogen-
induced symptom development (Smith et al, 2015). Only one transcript of the genes associated in 
TAIR to the keyword ‘PCD associated’ shows a strong trasncriptional response upon flg22 treatment. 
This gene, cysteine-rich receptor-like kinase 20 (CRK20, AT4G23280, (Figure 4.12C), is described to 
be a modulator of the plant defence response and promotes conditions that are favorable for 
infection (Ederli et al, 2011).  

 

 
Red     =   PCD downregulation 
Blue     =  PCD upregulation 
Green  =  PCD associated 

 

 
Figure 4.12: Response of transcripts associated to programmed cell death.  
A: Volcano plot highlighting all transcripts associated to with three indicated PCD 
categories. The genes were selected by a keyword search in TAIR. B-C: Exemplary 
transcriptional responses of genes associated with PCD. 
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4.6.3 Regulation of Cyclins 
Cyclins affect the progression of cells through the cell cycle by activating cyclin-dependent kinases 
(Galderisi et al, 2003). They contain a structural motif called a cyclin box of about 100 amino acids 
length. Of the 66 genes that were associated in TAIR to the keyword cyclin-dependent protein 
serine/threonine kinase regulator activity, 56 were detected in our transcriptional dataset. These 
genes have a significantly lower average log2-transformed fold change of -0.6 compared to all 
quantified genes (average of 0.0494, p-value = 4.811e-05, Wilcoxon rank sum test, Figure 4.13A). The 
majority of cyclins show a steady and stable transcriptional downregulation upon flg22-stimulation 
(Figure 4.13C-T), while one undescribed cyclin-associated protein shows a spiked increase at 2 h 
post treatment (AT5G48640, Figure 4.13Q). The transcription of retinoblastoma-related 1 (RBR1) 
remains unaffected by flg22-treatment (Figure 4.13B). 

Interestingly, many cyclins show a shift in transcript expression between Lys4 and Lys8-labeleld 
cultures at the beginning of the experiment. The cyclins from Lys4-labelled cultures have a lower 
expression compared to Lys8 cultures, except for cyclin P1;1 (AT3G63120, Figure 4.13T), which is 
described to be a negative regulator of CDKA1 (Torres Acosta et al, 2004). Again, the differences 
between the Lys4 and Lys8 cultures reduces with time. At the latest two hours after the treatment, 
the trajectories align according to the flg22-treatment rather than the labeling background. 

In summary, the transcriptional status of the cyclins hint at a slowed cell cycle progression when 
treated with flg22, which would reduce the growth rate of the treated cultures. In chapter 7.2, the 
actual growth rates over of the treated cultures are discussed in more detail. 
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Figure 4.13: Effect of flg22 on transcript expression of cyclins.   
A: Flg22-induced expression changes of all detected cyclins. B-T: Exemplary flg22-
affected cyclins and cyclin-related proteins. T: Note the transcriptional increase of 
cyclin P1;1 (AT3G63120) in Lys4 cultures.   
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4.7 Differences between lysine-labelled cultures 

Schweizer et al. (2013) identified 41 transcription factors that were responsive to herbivory by the 
leafworm Spodoptera littoralis, including AZF2, BT1, ATRD26, ANAC019, ZAT10, and ZAT12 (Figure 
4.14). Most of these transcription factors are only moderately regulated upon flg22-treatment (FC < 
2.0). Interestingly, though, many of these genes indicate an upregulation in the Lys4-labelled culture 
before any flg22-treatment. This might hint towards an explanation for the differences between 
Lys4- and Lys8-labelled cultures indicated in the MDS plot (Figure 4.2). Herbivory can be excluded, 
yet some signaling process might have been triggered for the Lys4 cultures – potentially to wounding 
during the passaging of the cultures or to senescence as the Lys4 culture grew quicker. For most of 
these genes, the expression trajectories of the Lys4- and Lys8-labelled cultures align again at the first 
measurement after the treatment (0.5 h). Despite of the Lys-labeling effect, the flg22-treatment 
affects gene expression of these transcription factors more prominently. 

   

   

Figure 4.14: Exemplary expression profiles of herbivory-induced genes (Schweizer 
et al. 2013). 

When testing systematically for differences between Lys4 and Lys8 cultures over all time-points, we 
identify 36 differentially expressed genes when applying the significance thresholds defined before 
(Figure 4.15A). These genes are not enriched for a stringent set of GO categories. Only the GO 
category cellular response to ozone was enriched at an adjusted p-value cutoff of 0.05, yet by 
containing only two superoxide dismutase genes (Figure 4.15B-C).  

However, testing explicitly for differences between the two untreated Lys4- and Lys8-labelled 
cultures at the onset of the experiment, we identify 104 differentially expressed genes (log2(FC) >2 & 
cpm > 15) that are significantly enriched for the GO categories response to chitin (9 genes, adj. p-
value 1.34E-05) and ethylene-activated signaling pathway (6 genes, adj. p-value 4.49E-02). Genes 
from these categories show strong expression differences between Lys4- and Lys8-labelled cultures 
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at the onset of the experiment, but their expression trajectories align again 0.5 h after treatment 
(Figure 4.15D-I). 

We conclude that the Lys4- and Lys8-labelled cultures are differently affected by a signaling process, 
which is most likely caused by slight differences in growth rate or handling of the cultures. It is 
important to note though that the effects disappear quickly after the treatment and are substantially 
smaller than the response to flg22. 

   

   

   
Figure 4.15: Differences in transcription expression between Lys4- and Lys8-
labeled cultures.  
 A: Volcano plot for genes affected by the type of lysine labeling at any time point. B-I: 
Exemplary genes that are differentially expressed in Lys4- and Lys8-labelled cultures. 
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TRANSLATION  
 

 

5.1 Development of a plant Ribo-Seq protocol 

As we wanted to perform the Ribo-Seq study on the same isotopically labelled culture material as 
the RNA-Seq and proteomics studies, we aimed to minimize input of cell material for successful RFP 
enrichment. In the studies by Juntawong et al. (2013a) and Li et al. (2013), extensive amounts of 
plant material was used to enrich for RFPs. One reasons for this is that previous Ribo-Seq protocols 
and commercial kits, notably the ARTseq kits by Epicenter / Illumina, were developed for yeast and 
mammalian cell cultures and are designed to lyse the cells in high concentrations and in buffers that 
are compatible with RNase degradation (Figure 5.1A). Plant extracts in comparison are more diluted 
due to the large vacuole (>90% of the cell’s volume) and contain secondary metabolites that hamper 
effective Ribo-Seq RNase digestion.   

In our understanding, another bottleneck in the protocol published by Juntawong et al. (2013a) is 
that the first ultracentrifugation is performed in a Type70Ti rotor.  The tubes for this rotor must be 
filled to 36 mL, thus  requiring extensive centrifugation (3 - 18 h at 170’00 rpm) and high amounts of 
cell material (about 5 g (Loraine, 2009)). We adapted that approach by scaling down the volume 
during ultracentrifugation using a MLA-80 rotors (2 h 30 min at 80'000 rpm, 1 mL 60 % sucrose 
cushion and 1.5 mL cell extract) or a TLA 120.1 rotor (3 h at 80'000 rpm, 1 mL 60 % sucrose cushion 
and 0.8 mL extract). These ultracentrifugations have the same clearing factor (k factor) as the one in 
the Type70Ti rotor, yet require less volume and less cell material. With this we obtained frequently 
>20 µg enriched mRNA-ribosome complexes from 1 g cell material. 10 µg RNA are sufficient for the 
subsequent steps of the Ribo-Seq protocol.  

The pelleted mRNA-ribosomes complexes were resuspended in RNase-compatible buffer and 
digested with RNase. The resulting ribosome-protected fragments (RPFs) were then purified by 
denaturing PAGE, where we cut out the 20-35 nt area. This circumvents the additional differential 
centrifugation step performed by Juntawong et al. (2013a), which further decreases the extraction 
efficiency. We had more success digesting the mRNA-ribosome complexes with the ARTseq RNase 
(Epicenter / Illumina) than with RNase I (New England Biolabs, Figure 5.1B). Using the approach 
employed for yeast and mammalian cell culture (Ingolia et al, (2013), ARTseq kit Epicenter / Illumina) 
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without prior polysome enrichment with ultracentrifugation in a sucrose cushion did not lead to 
efficient degradation with either RNase. 

We also tested enriching the ribosome-mRNA complexes by size exclusion chromatographic spin 
columns (S-400 HR columns, GE Healthcare) as suggested by Freeberg et al, (2013). The spin columns 
can be loaded with maximally 100 μL sample volume, making them well suited for the yeast and 
mammalian extracts. Yet, the cell extracts from plant material usually exceed 1 mL in volume, 
making it expensive and cumbersome compared to ultracentrifugation enrichment. 

We conclude that the enrichment and buffer exchange achieved by pelleting the mRNA-ribosome complexes is highly recommended 
for efficient RNase digestion in plant Ribo-Seq studies as it removes metabolites and other cellular components that might interfere 
with the subsequent steps. The proposed small-scale ultracentrifugation is effective and should also be applicable for sucrose 
gradient polysome profiling studies.  

 

  

Figure 5.1: Plant Ribo-Seq optimization.  
A: Enrichment strategies for RPFs as employed by Ingolia et al. (2011), ARTseq kit 
(Epicenter / Illumina, Freeberg et al, (2013)), Junatwong et al. (2013a) and as 
implemented here. B: Optimization of RNase digestion in mRNA-ribosome enrichments 
by RNase I (NEB) or ARTseq nuclease (Illumina / Epicenter), analyzed by denaturing 
PAGE. We obtained more efficient degradation using at least 50 U ARTseq nuclease. The 
RPFs are excised from the blue dashed area of 25-35 nt. C: Digestion efficiency reference 
from the ARTseq protocol (Illumina/Epicenter). They assessed that digestion with 60 U 
ARTseq nuclease was optimal for digesting the mRNA-ribosome complexes of that 
sample. 

A 

B C 



5. TRANSLATION

58   

5.2 Ribo-Seq results 

To assess the translational response of flg22 in Arabidopsis suspension cell culture AtB, we 
performed Ribo-Seq on the same cell culture samples as the RNA-Seq (chapter 4) and protein 
abundance samples (chapter 6). To reiterate, these cultures were supplemented for 12 days with 
daily doses of 350 μM Lys4 or Lys8 and were passaged to fresh medium on day 6 of the experiment. 
On day 12, the two labeled cultures were split into three cultures each and one-half of the cultures 
were treated with 100 μM flg22 and the other half remained untreated. The treatment was added to 
two Lys4-labelled cultures (L41 and L43) and one Lys8-labelled culture (L82), while one Lys4-culture 
(L42) and two Lys8-lableld cultures (L81 and L83) remained untreated. We took samples from the 
cultures before the treatment and 0.5 h, 2 h, 4 h, and 8 h after the treatment and analyzed their 
translational profile with the plant Ribo-Seq method established before (chapter 5.1). 

 

 

 
Figure 1.3: Experimental design schema of the Ribo-Seq part of the study, where 
we analyzed the translational response of Arabidopsis cell  culture AtB on flg22. We 
use the color code in the legend to the bottom right throughout this thesis. 

 

5.3 Ribo-Seq quality control 

5.3.1 Mapping rate 
We sequenced on average 21 million reads per sample with a good per-base sequencing quality (>36 
phred score, Figure 5.2A, C). After trimming of the adapters, the sequences displayed a length of 
14 - 38 nt and a mode of 28 nt (Figure 5.2D).  

When mapping the reads to the Arabidopsis genome with Bowtie2 ((Langmead et al, 2009), 20 nt 
minimum read length and minimum average alignment quality of 10), we could map on average only 



                                                                                                                                                                                                                        5. TRANSLATION 

  59 
 

37.7 % of all reads (Figure 5.2B). For comparison, > 95 % of the RNA-Seq reads of chapter 4 could get 
mapped. The mapping rates vary substantially between the samples (standard deviation of 15.62 
percentage points), yet no batch effect or pattern could be observed that would link it to an 
experimental procedure such as RNase digestion, library preparation or PCR amplification.  

We also tested other alignment algorithms such as STAR (Dobin et al, 2013) and CLC Genomics 
Workbench (Qiagen Bioinformatics), but obtained worse mapping rates (> 50% fewer mapped reads 
per sample). Lowering the Bowtie2 minimal alignment cutoff increases the mapping rate, yet with 
unclear consequences for the subsequent biological analysis. We therefore decided for the strict but 
reliable average alignment quality cutoff of 10. It remains unclear what caused this variation in 
mapping rates, yet mapping short reads such as RPFs will always be a challenging task for any 
algorithm. 

Juntawong et al. (2014) report mapping rates of 66.9%, while Chotewutmontri & Barkan (2016) 
report mapping rates of >90% using Bowtie2 using not specified parameters. Their main 
experimental difference seems to be the high amount of RNase added to each sample (3’500 U 
RNase I, while we tested maximally 400 U RNase I). However, it seems unlikely that this can cause 
the differences in mapping efficiency. In any case, in future studies it might be advisable to assess 
successful RNase degradation not just by denaturing PAGE analysis, but by sequencing a range of 
samples with different RNase concentrations to assure a good mapping rate.  
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Figure 5.2: Ribo-Seq quality control plots.  
A: Reads per sample. Total number of reads are indicated in grey and number of reads 
mapped with Bowtie2 are indicated in blue. B: Per sample mapping rate of Bowtie2. C: 
Representative sequencing quality score. The sequenced part of the RPFs libraries have 
an average length of <80 nt, therefore the quality score drops at higher sequence 
lengths. D: Representative read length distribution after trimming of the adapters.  

5.3.2 Ribosome-protected fragment length 
Similarly to the findings of  Chotewutmontri et al (2016), we see differences in the distribution of the 
read lengths of the RPFs regarding their subcellular localization. Nuclear-encoded genes are 
translated in the cytosol by eukaryotic ribosomes, while the chloroplast- and mitochondrion-
encoded genes are translated by smaller prokaryotic-like ribosomes.  

In our dataset, RPFs from nuclear-encoded mRNAs have a read length mode of 31 nt (Figure 5.3A), 
while the chloroplast- (Figure 5.3B) and mitochondrion-encoded (Figure 5.3C) mRNAs have a shorter 
read length mode of 24 and 28 nt, respectively. When only genes with a continous RPF read length 
distribution are taken into account, both mitochondrial and plastidic RPFs peak at 27 nt. 
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A substantial amount of RPFs show a non-optimal read length of < 30 nt for nuclear-encoded mRNA 
and < 25 nt for mitochondrion- and chloroplast-encoded mRNAs. This might be indicative of 
problems in the preparation of the sequencing libraries, which could explain the low mapping rate. 

    

    

    
Figure 5.3: RFP length distribution of the ribosome protected fragments (RFPs) 
that map to nuclear (A), plastid (B) or mitochondrial (C) genes.   
For each distribution, the sum of all genes is presented where the modus RFP length is 
indicated by a vertical line. Additionally, three exemplary genes are shown, two of which 
showed a continuous read length distribution and one that showed a more erratic 
pattern. 

 

5.3.3 rRNA depletion and repetitive elements 
Another important quality check for Ribo-Seq samples is to determine the number of reads that map 
to rRNA genes. Each RNase-digested ribosome-mRNA complex contains several kb of rRNA but only 
∼30 bases of mRNA. tRNAs are also frequent contaminants as they are highly abundant in the cell 
and are short enough (∼71 nt) to reach into the size selection window of the denaturing PAGE. 

Ribo-Seq cannot rely on oligo-dT enrichment approaches as mRNA-Seq does because the RPFs by 
definition do not contain poly-A tails. rRNAs are therefore depleted from the samples by e.g. 
subtractive hybridization, which has a lower efficiency than oligo-dT enrichment. rRNAs thus remain 
a steady contamination in many Ribo-Seq experiments (Ingolia et al, 2013).  
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In our samples, on average 36.17 ±19.7% of all reads map to rRNA and tRNA genes (Figure 5.4), which 
lies in the expected range for a Ribo-Seq experiment. In Chotewutmontri et al, (2016) 53 - 81% rRNA 
and tRNA reads are reported and in Juntawong et al, (2013a) 52.13 ±7.56 %. An alternative sequence-
independent rRNA depletion approach using duplex-specific nucleases after PCR amplification of 
the library resulted in a lower rRNA depletion rate (50-80% rRNA reads, Chung et al, 2015) 

In our samples, we observed that the efficiency of the subtraction hybridization was highest for 
samples processed early on and decreased over time. Furthermore, we achieved improved rRNA 
depletion when we repeated the magnetic separation of the rRNA-bound beads.  Based on these 
observations, we conclude that repeated freeze-thaw cycles of the hybridization solution should be 
avoided and that the facultative additional separation of the rRNA-bound beads should always be 
performed.  

 
Figure 5.4: rRNA depletion efficiency per sample.   
RNA samples were processed in batches using Ribo-Zero. The batch number is 
indicated. In batch 2, the magnetic separation of the rRNA-bound beads was performed 
only once, as recommended by the Ribo-Zero protocol. In the other batches, the 
separation was repeated for a second time.   

After exclusion of all rRNAs and tRNA reads, we identified 8 ORFs with atypically high read count 
(>1000 counts per million mapped reads) that correlated poorly over the biological replicates. These 
reads map to genes with repetitive sequences such as a non-LTR retrotransposon family gene (LINE, 
AT2G23880, 2.7% of all reads) or to completely unannotated ORFs (AT2G01021, AT3G55850, 
AT1G70185, AT3G52700, AT3G55850, AT1G70185, ATMG00030).  Ingolia et al, (2013) observed similar 
highly abundant, non-reproducible reads and presume that these originate from contaminating 
sequences including ncRNAs. The reads aligned to these 8 ORFs were excluded from further analysis. 
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5.3.4 Reproducibility 
After exclusion of all contaminating reads, the number of reads per samples ranged from 300’000 to 
4.5 million (Figure 5.5A). Despite the differences in library size, mapping rate, rRNA depletion, or 
amount of contaminating reads, we obtain good correlations between the gene-wise counts per 
million mapped reads (cpm) of the replicate samples (mean rho = 0.9332 ±0.027, Figure 5.5B-E). 

 
lowest number of mapped read per sample 

 

highest number of mapped read per sample 

 

 
Figure 5.5. Reproducibility analysis.   
A: Number of mapped reads per sample after removal of all contaminating reads. B-E: 
Correlation plots of the two samples with the lowest (B, D) and highest number of reads 
(C, E) each compared to the mean of their two biological replicate samples. Each point 
represents a gene and they are plotted by their counts per million mapped reads (cpm). 
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5.3.5 Periodicity of mapped RPFs 
Ribo-Seq data sets are informative for various analyses, such as discovery and annotation of open 
reading frames, translation initiation sites and uORFs, or identification of sequence-specific 
ribosomal stalling (Ingolia, 2016). Figure 5.6A-B indicates the capacity of the presented data set for 
such analyses.  Aligning all reads with respect to the translation start of the corresponding ORF lets 
a 3 nt periodicity pattern emerge over the translated gene body (Figure 5.6A). This pattern results 
from the movement of the ribosome in intervals of the triplet code. The 3 nt pattern is particularly 
enriched in 30 - 32 nt long reads. Reads with a different length show a more stochastic pattern (Figure 
5.6B). 

While the 3 nt periodicity is primarily a quality control measure, we use the Ribo-Seq data here 
primarily as a measure of translational activity. The Ribo-Seq counts represent the ribosome 
occupancy over all mRNA copies of a gene, which we take as a proxy for the translation rate of that 
gene.  

 

 
Figure 5.6: Periodicity plots of sample L41_T8  
A: Alignment of all reads to the translation initiation sites of their respective ORF. Reads 
that align to the +0 frame are colored in blue, the +1 frame in red, and +2 frame in green. 
Only the RPF reads with a length of 30 nt are plotted. B: Similarly to A, the read counts 
per base aligned to the translation start site are plotted. The lines are colored with 
respect to the read length of the RPFs. The green (30 nt), turquois (31 nt), and blue (32 
nt) read lengths show the highest number of reads and show the 3 nt pattern most 
consistently.  
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5.4 Dimensionality reduction plots 

We used principal coordinate analysis (PCoA, Figure 5.7A) and multi-dimension scaling (MDS, Figure 
5.7B) to non-parametrically assess the variance within the obtained data set. Similarly to the RNA-
Seq dataset, we see a clearer pattern in the MDS plot, which represents the variance of the 500 most 
differentially expressed genes. 

Both plots show a clustering of the samples according to treatment and time points. Either factor 
leads to a discrimination of the samples. In the MDS plot, the effect of the flg22 treatment is more 
pronounced. The outlier in the MDS, L83_T4, aligns well with its biological replicates in the PCoA, 
indicating a primarily statistical reason for the strong difference. Comparable to the RNA-Seq 
dataset we see the strongest flg22-induced differences at 2 h and 4 h post treatment. The distance 
between treatment and control at 0.5 h post treatment is clearly visible yet less pronounced than in 
the RNA-Seq dataset and the treated and untreated samples align again 8 h after treatment. 

The type of lysine labeling is again a consistent effector on the samples’ variances, as it separates 
the samples within their sampling time and treatment cluster.  In the MDS, the Lys8-labelled samples 
are shifted in most cases to the bottom right of their respective replicate cluster (Figure 5.7C), 
indicating a small but consistent difference in translation of the differentially labeled cultures.  

Overall, the plots assure that both time and treatment affect the sample composition in a 
biologically coherent way.  
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Figure 5.7: Dimensionality 
reduction plot of the Ribo-
Seq data set.  
A: Dimensions 1 and 2 of the 
principal coordinate 
analysis. B: Multi-dimension 
scaling (MDS) plot 
calculated with the R 
package limma (Smith, 
2005). In both plots, the 
averages of the replicate 
clusters (same time and 
treatment) are connected by 
a blue arrow for the flg22-
treated cultures and by a red 
arrow for the control 
cultures. C: MDS where the 
samples are colored by the 
lysine-labeling background 
of the cultures. Time and 
replicate clusters are 
indicated by gray shadings.  
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5.5 Flg22-induced differential translation 

We used edgeR to test for significant changes in the translational rates between flg22-treated and 
untreated cultures (Figure 5.8A) after exclusion of genes with low coverage. Compared to the RNA-
Seq dataset we used a more conservative minimal expression threshold of at least 5 cpm in more 
than 8 samples to account for the higher variability caused by the lower read count per sample 
(common biological coefficient of variation (BCV) of 0.196, Figure 5.8B). After this final filter, the Ribo-
Seq data set contained a measure for translational activities for 13’730 ORFs in 26 samples, which is 
5’000 genes less than the RNA-Seq data set, but lies within the expected range of published Ribo-
Seq studies (11’000 genes in Toyama et al, (2013), 12’487 genes in Juntawong et al, (2013a), 15’000 
genes in Liu et al, (2013)). 

We used the same statistical design and significance cutoff as for the RNA-Seq data (chapter 4, FDR-
adjusted p-value < 0.01 & |log2(fold change)| > 2). The lysine background was again included as a 
blocking factor: 

 ~  +   +  + 22  

We compare the effect of flg22 treatment over all four time points in one analysis (Figure 5.8C) or 
separately for each time point (Figure 5.8D-G). Overall, the differentially translated mRNAs display 
the same pattern as the differentially transcribed genes. The highest number of differentially 
translated mRNAs is detected 0.5 h after treatment and every successive time point contains fewer 
differentially translated genes. The number of genes with increased translation was 3 to 10 times 
higher than the number of genes with reduced translation. 

The number of differentially translated genes in the Ribo-Seq dataset is lower than the number of 
differentially transcribed genes in the RNA-Seq dataset. This is presumably a consequence of the 
lower coverage and a higher variation between replicates of the Ribo-Seq dataset (illustrated by the 
elevated biological coefficient of variation (BCV), Figure 5.8B), caused by the more complex 
biochemical preparation. This means that differences in the absolute number of significantly 
regulated genes is not indicative for translational regulation.  
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  182 down            601 up  

 
  30  down         355 up 

 
  94 down        297 up 

 
  44  down            255 up 

 
  23 down         87 up 

Figure 5.8: Statistical test for differential translation with edgeR.  
A: Schema of the statistical test. B: Plot of the biological coefficient of variation (BCV) 
from edgeR, displaying common, trended and tagwise dispersions. C: Volcano plot of 
the statistical test for differences in translational activity after flg22 treatment over all 
time points. The number of genes with significantly different translation is indicated 
below the plots. In total 13’730 genes were assessed. D-G: Same analysis as in D, but 
limited to the sample from each individual time point.    
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The GO term enrichment analysis gave a similar picture as for the RNA-Seq dataset. The set of 
translationally upregulated genes shows the full scale of plant defense responses (Table 5.1,  Figure 
5.9). The translationally downregulated genes were only enriched for one GO term (transmembrane 
receptor protein tyrosine kinase signaling pathway, 6 genes, adj. p-value 5.88E-03), which does not 
overlap with the GO categories enriched in the downregulated genes of the RNA-Seq dataset (there, 
the term water homeostasis is significantly enriched). 

Table 5.1: GO term enrichment for the 601 genes with a translational increase after 
flg22 stimulation during any of the four measured time points.   
The enrichment was performed with PANTHER (Mi et al, 2016). The set of translationally 
upregulated genes were compared against all 13’730 statistically assessed genes and a 
Bonferroni-adjusted p-value cutoff of < 0.05 was used. Only the lowest nodes of the GO 
hierarchy are listed, parent nodes are left out.  

GO BIOLOGICAL PROCESS # IN 
REFERENCE 

# IN 
UPREGULATED 

# EXPECTED IN 
UPREGULATED 

FOLD 
ENRICHMENT 

ADJ. P-
VALUE 

chorismate biosynthetic process 8 6 0.35 17.23 3.26E-03 
defense response by callose deposition in 
cell wall 

14 8 0.61 13.13 4.79E-04 

tryptophan metabolic process 15 8 0.65 12.25 8.01E-04 
indole-containing compound biosynthetic 
process 

24 12 1.04 11.49 2.23E-06 

response to chitin 73 35 3.18 11.02 1.27E-21 
aromatic amino acid family biosynthetic 
process 

32 15 1.39 10.77 4.68E-08 

drug transmembrane transport 18 7 0.78 8.93 3.21E-02 
hydrogen peroxide catabolic process 26 10 1.13 8.84 5.82E-04 
toxin catabolic process 24 9 1.04 8.62 2.77E-03 
phenylpropanoid biosynthetic process 37 12 1.61 7.45 2.41E-04 
response to karrikin 65 19 2.83 6.72 3.15E-07 
glutathione metabolic process 38 11 1.65 6.65 2.38E-03 
glucosinolate metabolic process 39 11 1.7 6.48 3.05E-03 
flavonoid biosynthetic process 46 12 2 5.99 2.31E-03 
response to wounding 121 27 5.27 5.13 2.15E-08 
sulfur compound biosynthetic process 56 12 2.44 4.92 1.66E-02 
defense response to fungus 131 28 5.7 4.91 2.39E-08 
response to toxic substance 60 12 2.61 4.59 3.25E-02 
cellular amino acid biosynthetic process 121 23 5.27 4.37 1.40E-05 
defense response to bacterium 206 33 8.97 3.68 6.01E-07 
response to jasmonic acid 102 16 4.44 3.6 2.81E-02 
response to oxidative stress 244 34 10.62 3.2 1.04E-05 
innate immune response 181 24 7.88 3.05 4.22E-03       
peptide biosynthetic process 443 4 19.28 0.21 4.46E-02 
protein localization 403 3 17.54 < 0.2 3.89E-02 
DNA metabolic process 308 1 13.41 < 0.2 3.44E-02 
RNA processing 335 1 14.58 < 0.2 1.12E-02 
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Hierarchical clustering of the flg22-treatment over control fold-changes of the Ribo-Seq counts gave 
the expected results for the upregulated genes, as cluster 1up consisted of early responsive genes 
involved in for instance hydrogen peroxide processes. Cluster 2up genes were enriched for more 
long-term responses and genes in this cluster encode ion transporters and metabolic enzymes for 
tryptophan and chorismate biosynthesis.  

Clustering the translationally downregulated genes did not result in significant GO over-
representations. Cluster 1down showing strongest downregulation 2 h post-stimulus was enriched 
for transmembrane receptor protein tyrosine kinase signaling pathway genes. 

                            

 

 

  

Figure 5.10: Hierarchical clustering of all genes with significantly upregulated (A) 
or downregulated (B) translation after flg22-stimulation. The significantly enriched 
GO categories for each cluster are shown next to the cluster. 

A 
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Similarly, as in the hierarchical clustering, the flg22-induced response leading to a translational 
increase is more consistent over the four time points than the translational downregulation. Of the 
601 significantly upregulated genes, 259 were determined as upregulated in more than one time 
point (43.1%, Figure 5.11A), while only 9 out of the 182 downregulated genes (4.9 %, Figure 5.11B) 
were found to be downregulated in more than one time point. 

Translationally upregulated genes 

 

Translationally downregulated genes 

 

Figure 5.11: Overlap of the genes assessed as upregulated (A) or downregulated (B) 
at the indicated time points.  

 

5.6 Differential translational efficiencies 

Naturally, the transcriptional and translational responses to a stimulus are highly interconnected. 
The number of ribosome protected fragments (RPFs) depends strongly on the initial number of 
mRNAs that are present at a given time point. Consequently, RNA-Seq and Ribo-Seq datasets by 
default correlate strongly with each other, yet the differences between the two data sets are of 
particular interest, as they point towards translational regulation of gene expression. In the 
following, we will analyze the relationship between the two sequencing data sets in detail to identify 
such translational regulation.  

I analyzed here the 13’568 genes detected in both datasets, which comprises 99% of all 
translationally assessed genes and 72% of all transcriptionally assessed genes. 

5.6.1 Gene-specific translational efficiencies 
As mentioned earlier, the RNA-Seq and Ribo-Seq datasets correlate strongly. Already the count per 
million (cpm) values averaged over all samples correlate highly across both data sets (rho = 0.838, 
Figure 5.12A).  This distribution is highly similar to the distribution observed in yeast  (Figure 1.A in 
Albert et al. (2014). 

The ratio of Ribo-Seq counts to RNA-Seq counts describes the number of ribosomes per transcript, 
which means the average translational efficiency (TE) for that transcript. In our data set, 95% of the 
gene-specific translational efficiencies fall within a range of ¼ to 2, differing by a factor of 8 (Figure 
5.12B). Genes that deviate strongly from this range (|TE | > 2) were not significantly enriched for any 
GO category. 

A B 
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It is assumed that ORF length has a strong effect on the number of bound ribosomes per mRNA 
(Ingolia et al, 2013). The longer a mRNA, the more ribosomes are able to bind to it and the longer it 
takes for each ribosome to translate the ORF fully. A longer ORF is therefore expected to produce 
more RFPs given the same translational activity. To our surprise, adding ORF length as a linear factor 
in the correlation analysis increased the correlation only by a small margin (R2 increases by 0.005, p-
value = 1.96e-06). Testing the effect of the gene length directly on the log-transformed TEs did not 
show a significant correlation using either the spliced mature mRNA length (cDNA length, R2 = 0.0001, 
p-value = 0.2428, Figure 5.12C) or the ORF length (coding sequence (CDS), R2 = 0.00025, p-value = 
0.092, Figure 5.12D).  

The length of the coding sequence, therefore, cannot explain the nature of this strong gene-specific 
effect on TE. For the future, it would be interesting to test other mRNA sequence-specific effects such 
as the tRNA availability and codon-usage efficiency. In a similar analysis, Lei et al, (2015) detected 
effects on TE by CDS length, GC content and normalized minimal free energy of the mRNA secondary 
structure. Juntawong et al, (2014a) propose that gene-specific differences in TE can be explained by 
translation initiation processes such as start codon recognition and ribosome subunit joining rates.  

  

  
 Figure 5.12: Gene-wise translational efficiencies.  
A: mean count per million mapped reads (cpm) of the transcriptional RNA-Seq dataset 
plotted against the cpm of the Ribo-Seq dataset. A linear correlation is indicated in blue 
(R2 = 0.6986). B: Distribution of the log-transformed, gene-wise translational efficiencies. 
These efficiencies are not exactly normal distributed (p-value < 2.2e-16, Shapiro-Wilk 
normality test), but can be roughly described by the fitted normal distribution in red 

A B 

C D 
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(mean -0.2603, SD = 0.9727). C: Plotting the gene-wise translational efficiency against 
the length of the cDNA. In blue, the linear regression is plotted. D: Same as C, but plotted 
against the length of the open reading frame (ORF).  

5.6.2 Correlation of transcriptional and translational flg22-induced fold-changes 
The translational and transcriptional data sets correlate strongly when assessing the flg22-induced 
fold-changes (Figure 5.13A). Following the classification from Albert et al. (2014, Figure 5.13B), genes 
whose FC ratios follow the identity line imply unchanged translational efficiencies. Deviations from 
the identity line indicate either reinforced translation (steeper line) or translational buffering 
(shallower line). 

 The correlation coefficient is highest at the earliest time point and decreases with the progression 
of the experiment time (Spearman rho 0.5 h = 0.746, 2 h = 0.674, 4 h = 0.607, 8h = 0.337), as fewer and 
fewer genes are differentially transcribed and translated. The non-regulated genes make up a larger 
proportion of the analyzed genes at the later time points, resulting in a mostly stochastic distribution 
of log2-transformed FC values close to 0. Still, the correlation at any time point is highly significant, 
resulting in the smallest p-value that the Spearman's rank correlation test computes in R (p-value < 
2.2e-16). These values are comparable to the data on drought-stress treated maize seedlings (Lei et 
al, 2015), where positive correlations between the fold changes at transcriptional and translational 
level were reported (R2 = 0.69). 

The data also highlight that the upregulation reaches higher fold-changes than the downregulation 
response on both transcriptional and translational level (Figure 5.13A). 

Additionally, I observed a slight decrease in translational efficiency for the transcriptionally highly 
responsive genes (Figure 5.13B), indicative for translational buffering of the transcriptional 
response. Transcriptionally highly upregulated genes (on the right side of the plot) show a 
translational efficiency decrease of up to 2-1 = 50 %, exemplified in Figure 5.13C and D. The 
translational buffering observed here is less pronounced than in hypoxia–treated Arabidopsis 
seedlings (Figure 5.13C, Juntawong et al. (2013a)). 
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AT1G56240 

 

AT4G11480 

 

Figure 5.13: Genome-wide translational efficiency responses.   
A: Comparisons of the log2-transformed fold-changes in the RNA-Seq and Ribo-Seq data 
sets at the four time points. The density of the points is indicated by blue contour lines, 
to give an estimate for the over-plotted area. Linear regression lines are plotted in red 
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(R2 T1 = 0.7385, T2 = 0.7524, T4 = 0.6288, T8 = 0.3481. B: Classification of translational 
efficiency (TE) regulation (Albert et al, 2014). FP = footprints = Ribo-Seq counts. B: 
Correlation of the transcriptional response to the response in translational efficiency. 
Genes that are strongly transcriptionally upregulated (right side of the plot) have a 
decreased translational efficiency in flg22-treated cultures. The correlation indicated by 
the red line representing a linear regression is highly significant (p-value < 1E-16) at a 
low correlation efficiency (R2 = 0.00839). The distribution of the points is indicated by 
the blue contour lines. D: For comparison, the translational response of hypoxia-treated 
Arabidopsis seedlings (Juntawong et al, 2013). E and F: Transcriptional and 
translational data of two exemplary genes that show a translational buffering effect. 

 

5.6.3 Overlap of flg22-induced differentially transcribed or translated genes 
Comparing the genes with significantly different transcription or translation we observed a large 
overlap (Figure 5.14A). Again, the overlap is higher for the upregulated genes (69 %, Figure 5.14B) 
than for the downregulated genes (54 %, Figure 5.14C) due to the larger flg22-induced FC of the 
upregulated genes.  

Over the time course, the overlap slightly decreases from 27% of all regulated genes to 13% 8 h post 
treatment (Figure 5.14D). It again seems that the datasets align better when the biological signal is 
the “strongest”. The proportion of shared significantly different transcripts are slightly lower than 
what was reported for drought-stressed maize seedlings, where 26% of the upregulated and 39% of 
the downregulated genes were assessed as differentially regulated in both the transcriptional and 
translational data set (Lei et al, 2015).  

We inspected every gene that was significantly different in in one but not the other dataset and could 
not detect any clear example of a transcript that diverges in the translational response from the 
transcriptional response. Figure 5.14E-F exemplifies such cases, where the significance assesments 
do vary between the transcriptional and translational dataset, yet the overall trend is consistent in 
both datasets. In my assessment the main reason for the decreased number of significantly changing 
transcripts in the Ribo-Seq dataset is primarily caused by the increased technical variation of that 
dataset and not by a biological reason.  
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overall 

 

upregulated 

 

downregulated 

 

  

  

Figure 5.14: Comparison of significantly differentially transcribed or translated 
genes upon flg22-stimulation.  
A: Overlap of all genes assessed as significantly differentially transcribed (RNA-Seq) or 
translated (Ribo-Seq) at any time point.  The genes in plot A were divided into 
upregulated (B) or downregulated (C) genes. D: Ratios of the number of shared or 
uniquely significantly regulated genes at the individual time points. E-F: Two example 
genes that were assessed as significantly upregulated 0.5 h after flg22 treatment in the 
Ribo-Seq dataset but not in the RNA-Seq dataset. 
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5.6.4 Gene expression regulation through Flg22-induced changes in translational efficiency 
 

5.6.4.1 Interactional model 
To test more rigorously for differences in translational efficiency we used the same statistical 
approach as was used for yeast samples by Albert et al. (2014). We created the null hypothesis that 
the number of reads in cpm depends on lysine-labeling, treatment, time point and the type of 
sequencing library (Ribo-Seq or RNA-Seq). We then tested with an ANOVA if the alternative 
hypothesis H1 with an interaction term between the library-type and the flg22-treatment describes 
the cpm in a better way. 

0:          ~  +  +   +   +  22  

1:          ~  +  +   +   +  22 +  ∶ 22  

In other words, this test asks for each gene whether the ratio of RNA-Seq to Ribo-Seq cpm is 
significantly different for the flg22-treated samples at any time point regardless of a potential lysine-
labeling effect. 

I adjusted the resulting p-values for multiple testing by FDR and obtained 29 genes with an adjusted 
p-value < 0.05 (Figure 5.15A). These genes were not significantly enriched for any GO category (BH 
adjusted p-value < 0.05). Lowering the FDR-adjusted p-value threshold to < 0.1 or taking the 100 most 
significantly regulated genes did also not result in a GO term enrichment. However, this was not 
necessarily expected as a translational regulation response does not have to be described by GO 
categories. 

Visual inspection of the highly significant cases of translational regulation resulted only in few 
convincing cases where the Ribo-Seq data showed different trajectories than the RNA-Seq data. To 
our surprise, all of the strongly differing cases were from antisense transcripts, which are presumed 
not to be translated. When checking the Ribo-Seq counts from their overlapping sense transcripts, 
it became obvious that they showed the same trajectories. The mapping of the RPFs was done in a 
non-stranded fashion so that the Ribo-Seq reads were counted both for the sense and antisense 
strand transcripts (“multimapping”).  

While these results are unsatisfying for identifying translational regulation, it shows that these cases 
can be used as a positive control for the statistical test. I can identify genes where the RNA-Seq and 
Ribo-Seq trajectories differ significantly, yet we don’t seem to have clear cases in our data set. 

When inspecting the significantly translationally regulated cases, we had the impression that they 
were enriched for transcriptionally downregulated genes. Yet that could not be verified statistically, 
as I do not see a significant difference in the p-value distribution for the transcriptionally 
downregulated or upregulated genes (p-value 0.4366, Wilcoxon rank sum test). 
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Figure 5.15: Results of the interactional model.  
A: Pseudo-volcano plot of the results with the interactional model. The size of the 
interactional term is plotted on the x-axis. Genes annotated as antisense are highlighted 
in red. B-C: Transcriptional and translational profile of a sense-antisense gene pair. The 
antisense gene (B) is assessed as significantly differentially translated, yet the Ribo-Seq 
reads actually originate from the sense transcript (C), which does not indicate any 
differential translation.  

 

5.6.4.2 ANOTA 
We also tested additional statistical approaches to identify cases of translational regulation. Larsson 
et al. (2010) published an approach called analysis of translational activity (ANOTA) based on an 
analysis of partial variance, which produces estimates of translational activity that are independent 
of cytosolic mRNA levels. This approach should be superior to calculating the ratio of RNA-Seq 
counts over Ribo-Seq counts as this can lead to spurious correlations. Inspection of the genes 
assessed as differentially translated by ANOTA resulted only in the previously observed antisense 
genes and non-convincing results. 
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5.6.4.3 Fold-change model 
We also used an ANOVA to compare the flg22-induced fold-changes from both data sets. The test 
should identify genes where the sequencing library type had a significant effect on the flg22-induced 
fold-change. 

0:        ℎ  ~  

1:        ℎ  ~ +   

Using this approach, we could not even identify the antisense genes. Most genes identified as 
significantly regulated were spuriously transcribed or translated and were considered to be false 
positives. 

5.6.4.4 Xtail 
Generally, there are two parameter pairs to compare when identifying stimulation-induced 
translational efficiency changes. A: RNA-Seq vs Ribo-Seq and B: treatment vs control. As statistical 
tests rely on probability distributions, the order of both calculations can affect the outcome of the 
test. The third employed statistical approach, Xtail (Xiao et al, 2016), therefore uses both orders 
separately (A followed by B  (Figure 5.16A) and B followed by A  (Figure 5.16B)) to compute for each 
gene a probability distribution. It then takes the more conservative of the two p-values. It also 
assumes that the distribution of the Ribo-Seq and RNA-Seq counts follow a negative binomial 
distribution, similarly to edgeR.  

Xtail compares maximally one factor - treatment against control. We, therefore, omitted the lysine-
labeling factor as it has only a small effect on the sequencing data sets and performed the Xtail 
assessment on the samples of each time point separately. In a volcano plot displaying the minimal 
p-value at any time point and the corresponding fold change, we again identified the antisense 
genes (Figure 5.16C). The next most significantly regulated gene is RAP (AT2G31890), which overlaps 
with the flg22-responsive SRRLK (AT2G31880). The translational data of RAP mirror the SRRLK data, 
indicating again a technical artifact of the mapping. 

Xtail assessed 82 genes as significantly differently translated at a p-value cutoff of 1E-4 and 252 genes 
at a p-value cutoff of 1E-3. Both gene lists were not significantly enriched for any GO term (FDR-
adjusted p-value threshold of 0.05). 
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Figure 5.16: Xtail test.  
A, B: Explanatory plots for the two ways of assessing translational regulation.  Either, 
the treatment to control fold-changes are computed first (A), or the Ribo-Seq to RNA-
Seq fold-changes (B). C: Volcano plot from the Xtail test, printing the lowest p-value at 
any time point and its corresponding log2-transformed fold-change. Antisense 
transcripts are highlighted in red. 

 

5.6.5 Differentially translated genes according to Xtail  
In the next step, we verified the genes, which were significantly regulated on the translational level 
according to Xtail. The genes that only showed spurious translational changes when all time points 
were considered were excluded as well as those that overlapped with another gene’s ORF. In the 
end, eleven putative translationally regulated genes remained. None of these genes contain a uORFs 
according to the analysis by Hu et al, (2016).  

In the following section, we will discuss the eleven genes with differential translational efficiencies, 
addressing them with the single-letter-codes as depicted in Figure 5.17. 

Five genes (A, B, C, D, E) depict a pattern of enhanced translation after the transcriptional burst has 
passed and the number of transcripts has decreased again. The translational efficiency subpanels 
show a decreased efficiency at the early time points that then gets strongly compensated at the later 

A B 

C 
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time points. The five genes do seem to share a common characteristic. The gene of A encodes for a 
phenylalanine lyase (AT3G53260), B an unknown protein associated with Geminivirus infection 
defense (Ascencio-Ibáñez et al, 2008), C the membrane-bound ATP-binding cassette transporter G36 
(AT1G59870) that acts as a Cd2+ pump and is activated upon infection with Pseudomonas (Xin et al, 
2013), D a largely undescribed leucine-rich repeat transmembrane protein kinase (AT1G56140), that 
is also responsive to Geminivirus infection (Ascencio-Ibáñez et al, 2008), and E an undescribed 
plasma-membrane-bound long coiled-coil protein with unknown molecular function (AT2G32240). 

F and G display a decreased translational efficiency upon flg22 treatment. In F, the translation of the 
kelch repeat superfamily protein with unknown function (AT4G39570) does not respond to the initial 
transcriptional burst. The trajectories for G show the constantly reduced translation efficiency of the 
tubulin alpha-2 chain (AT1G50010) when treated with flg22. The translational regulation becomes 
particularly clear in the translational efficiency subpanel. In contrast, transcription, translation, and 
TE of the tubulin alpha-1 chain (AT1G64740) remains unaffected by flg22 treatment. 

The genes shown in H and I encode the two EIN3-binding F-box proteins 1 (EBF1, AT2G25490) and 2 
(EBF2, AT5G25350) that are described to be regulated post-transcriptionally in the ethylene 
signaling pathway (Merchante et al, 2015).  In both genes, the flg22-induced transcriptional response 
does not result in a corresponding translational response at 2 h post treatment.  

In J, the gene encoding the lectin protein kinase (AT1G61370) shows a strong translational response 
at T1 without a transcriptional response. K shows a strong transcriptional downregulation response 
of the oxidation-related zinc finger 1 (AT2G19810), which is dampened on the translational level. 
Interestingly, both genes have been identified as two of the four strongest differentially expressed 
bacterial defense response regulators when comparing the wild-type response with the constitutive 
defense without defect in growth and development 1 (cdd1) mutant to bacterial infection (Swain et 
al, 2015). The genetic mutation of cdd1 is currently undetermined. The translationally upregulated 
AT1G61370 and dampened AT2G19810 identified here were identified by Swain at al, (2015) as 
negative and positive regulators of bacterial defense response, respectively.  
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AT3G53260, Xtail p-value 1E-08, logFC 1.12 

 

AT5G23510, Xtail p-value 3E-07, logFC -1.17 

 
AT1G59870, Xtail p-value 1E-06, logFC -1.02 

 

AT1G56140, Xtail p-value 3E-09, logFC -1.14 

 
AT2G32240, Xtail p-value 2E-07, logFC 1.01 

 
 

AT4G39570, Xtail p-value 1E-06, logFC -1.78 

 

AT1G50010, Xtail p-value 3E-3, logFC -0.77 

 
AT2G25490, Xtail p-value 1E-03, logFC -1.39 

 

AT5G25350, Xtail p-value 3E-02, logFC -0.91 

 
AT1G61370, Xtail p-value 1E-09, logFC 2.21 

 

AT2G19810, Xtail p-value 1E-02, logFC 1.07 

 
Figure 5.17: Verified genes with differential translational efficiencies upon flg22 
treatment at any time point as determined by Xtail.   
A-K: For each of the eleven genes, the RNA-Seq (a, left subpanel), Ribo-Seq (b, middle 
subpanel) and translational efficiency (c, right subpanel) data are displayed. 
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6.1 Development of plant SILAC  

Motivated by the plant SILAC study by Schütz and colleagues (2011), I set out to adopt their labeling 
strategy in our laboratory by 1) using a medium with low nitrogen content, 2) supplementing the 
culture with a high daily dosage of 350 μM lysine and 3) cultivating the cells in the dark. However, I 
encountered serious challenges when establishing this approach. Our in-house cell line (Arabidopsis 
thaliana A, abbreviated as AtA) showed decreased growth or even full growth arrest under the 
published conditions, especially when passaging the culture to fresh medium at day 6 of the labeling 
regimen. To improve the culture’s viability, we modified various culturing conditions.  

I noticed that inoculation density is a crucial factor for high viability when starting the culture. 
Especially in the first days of the cultures, the supplemented lysine does not get taken up fully by the 
low-density cultures (Mustafa et al, 2011), leading presumably to a too high accumulation of lysine. 
In my experiments, it turned out to be crucial to inoculate fresh cultures at >30 mg fresh weight / mL 
medium. 

Also, the culturing vessel is an important factor, as it affects the dispersal of the cells in the medium. 
Cells accumulating at the bottom of the vessel are not aerated properly and grow only marginally. 
Therefore, cell dispersion has to be assured by optimizing the rotation speed of the orbital shaker, 
the diameter of the culture’s growth vessel and the maximal volume of medium filled into the vessel. 
For our culture, I found that Erlenmeyer flasks with their steep walls provide efficient dispersal and 
aeration when they are filled less than 30% of the maximal volume and the flasks are shaken at 
120 rpm. In my hands, Erlenmeyers of different sizes performed equally well, which allows for easy 
scaling of the culture volume, as long as the medium does not exceed 30% of the Erlenmeyer’s total 
volume.  

6.1.1 Lysine supplementation and culture growth in plant SILAC 
After initial problems using our in-house AtA cell line, we obtained the cell line used in Schütz et al. 
(2011), named AtB, from the co-first author Dr. Niklas Hausmann (Laboratory of Prof. Rüdiger 
Hampp, University of Tübingen). Comparing this cell culture to our in-house AtA line, we observed 
substantial physiological differences. AtB cultures grow to higher culture densities (>400 mg fresh 
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weight / mL medium after 7 days of growth in complete Murashige & Skoog medium, compared to 
<190 mg fresh weight / mL medium for the AtA line, Figure 6.1A).  AtB forms fewer macroscopically 
observed cell aggregates (Figure 6.1B) and the paler color of the culture suggests a reduced 
chloroplast count. AtB also does not turn fully green when grown in the light, although it is described 
to be derived from leaf tissue. 

  
Fig. 6.1: Phenotypic comparison of the in-house Arabidopsis suspension cell 
culture AtA and the AtB culture used in the study of Schütz et al. (2011).    
Under the same culturing conditions (complete Murashige & Skoog medium, 7 days of 
growth), AtB grows to nearly twice the density as AtA (A) and forms fewer cell aggregates 
during cultivation (B). 

 

Employing the published labeling scheme on the AtB culture did lower the propensity of growth 
arrest during the labeling regimen, however, it did not prevent it completely. Infrequent culture 
collapses during the labeling procedure were also experienced by the authors of the Schütz et al. 
(2011) study (Dr. Niklas Hausmann, personal communications). They did not employ the labeling for 
more than 12 days. 

As discussed in chapter 2.3.8, lysine inhibits also aspartate kinase (AK, Heremans & Jacobs, 1997), 
whose product 4-phospho-L-aspartate is required for the biosynthesis of lysine, threonine, 
methionine, and isoleucine. We speculate that these feedback regulations lead to imbalances of the 
amino acid pools, which could impact culture viability. However, when adding the amino acids 
produced by AK (5 mg/L of each methionine, isoleucine, and threonine) to lysine-supplemented cell 
cultures, we could not detect any benefits on growth or viability.  

Lowering the daily dosage of lysine, however, did increase the culture’s viability, yet led to low 
labeling efficiencies that are unsuitable for in-depth SILAC studies. After 12 days of labeling, we 
obtained 64% labeling efficiency when supplementing with 175 µM lysine and 72% labeling 
efficiency when supplementing with 262 µM lysine. Extending the labeling period to 19 days did not 
further increase the labeling efficiency (73% labeling after 19 days of daily supplementation with 262 
µM lysine).  

We conclude that the amount of supplemented lysine is a crucial factor for a plant SILAC experiment. 
A high rate of supplementation has detrimental effects on the culture’s viability, yet it is also needed 
to obtain high labeling rates by downregulation of the endogenous lysine biosynthesis through 
inhibition of DHDPS and unfortunately also AK, and by outcompeting endogenous lysine during 
protein biosynthesis. Consequently, in design of the experiment, the lysine supplementation has to 
be finely adjusted to the growth rate of the employed cell culture. 

A B 
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6.1.2 Chloride in plant SILAC 
While optimizing the culturing conditions, I also looked into the effect of chloride ions on cell culture 
growth, as we repeatedly detected lower viability in AtA cultures supplemented with heavy lysine 
compared to cultures supplemented with Lys0 (Figure 6.1A). This detrimental effect was equally 
strong for Lys4- and Lys8-labelled cultures. Lys4 and Lys8 are provided as crystals with 2 mole Cl- per 
mole lysine, while Lys0 is provided in crystals with 1 mole Cl- per mole Lys0. I therefore analyzed 
whether increased Cl- concentrations can impact culture viability.  

I determined that salt stress of less than 20 mM NaCl showed no significant effect on the growth of 
Arabidopsis suspension cultures and that the K50 was at 50 mM NaCl (Figure 6.1B). Adding 350 µM 
lysine daily for 6 days increases the Cl- concentration in the medium from 6 mM (baseline MS 
medium) to 11 mM when supplementing with Lys4 and Lys8, compared to 8.5 mM for Lys0. These Cl- 
concentrations are therefore too low to explain the differences in culture viability, which thus remain 
elusive. 

 

 
Figure 6.1. Effect of chloride ions on the cultivation of AtA.  
A: Lys4- and Lys8-supplemented AtA cultures show severe growth deficiencies when 
they are supplemented for 12 days with daily doses of 350 μM lysine. The decolored, 
whiter cultures indicate partially dead, non-proliferating cells. 
B: NaCl inhibits the growth of 8 day old AtA cultures. The cultures were inoculated with 
20 mg fresh weight cells per mL medium. 
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6.1.3 Nitrogen starvation in plant SILAC 
Even with all settings as close as possible to the original study (cell line, phytohormone composition, 
culturing vessels, etc.), the cultures frequently did not survive 12 days of labeling - also in the hands 
of an independent experimenter (Doris Russenberger, ETH Zurich). Often, they stopped growing 
after the passage on day 6. Therefore, I tested a crucial setting of the plant SILAC method, the extent 
of nitrogen starvation. We grew AtB in Murashige-Skoog media with different amounts of supplied 
KNO3 and NH4NO3, ranging from 20 mM (Schütz et al, 2011) to 56 mM nitrogen atoms as in the full 
Murashige-Skoog medium (Table 6.1). The cultures were grown for more than 12 days and were 
passaged on day 6. The extent of nitrogen starvation affected the culture density, labeling efficiency 
and viability of AtB cultures (Figure 6.2). 

Table 6.1: Tested nitrogen starvation conditions  

Total N-Atoms 20 mM 29.5mM 39 mM 56 mM 
KNO3 0 mM 4.5 mM 9 mM 18 mM 
NH4NO3 10 mM 12.5 mM 15 mM 19 mM 
Nitrogen content relative to full  
Murashige & Skroog medium 

35% 53% 70% 100% 

used by Schütz  
et al. (2011) 

  full Murashige &  
Skoog medium 

 

The culture density increased with the amount of supplied nitrogen. When more than 29.5 mM 
nitrogen were supplied, the culture did reach a stationary phase of > 400 mg fresh weight / mL 
medium on day 13 of the cultivation (Figure 6.2A). Reducing the nitrogen supply to 20 mM lowers the 
culture density substantially. In this experiment, we saw no significant effect of the lysine 
supplementation on the culture density. The nitrogen supply therefore seems to have a stronger 
effect on culture growth than the lysine supplementation. 

On day 12 of the labeling, we determined the labeling efficiency. It is negatively correlated with the 
culture density: The more nitrogen is available, the lower the labeling of the cultures (Figure 6.2B). 
Increasing the nitrogen supply from 20 mM to 56 mM lowered the labeling by 10 percent points from 
86.4% to 76.4%. On average, the labeling reduces by 0.25 percentage points per 1 mM additional 
nitrogen.  

The viability of the cultures was determined by the reduction of TTC (2,3,5-triphenyl tetrazolium 
chloride) to formazan as a measure of the activity of mitochondrial oxidoreductase (Towill & Mazur, 
1975; Castro-Concha et al, 2006). The reduction activity depends on the amount of viable cells and 
their metabolic activity.   
At day 9 of the labeling, all cultures – treated with lysine or not - showed a strong reductase activity 
(Figure 6.2C). Cultures with a low nitrogen supply showed a trend for reduced reductase activity. 
This could result either from the lowered culture density and growth rate or from a reduction of the 
culture’s viability. This effect was more pronounced on day 13 of the labeling. Cultures with 20 mM 
nitrogen supply showed reductase activities close to the detection limit, indicating full growth arrest 
and collapse of the cultures. Cultures with more nitrogen supply showed linearly more reductase 
activity.  
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Supplementing the cultures with lysine also had an effect on the viability of the cultures. Cultures 
without any lysine supplementation showed the highest reductase activity, suggesting a negative 
effect of lysine supplementation on culture viability. Supplementation with Lys0 or Lys4 showed a 
similar reduction of reductase activity.  

Cultures treated with full Murashige-Skoog medium (56 mM nitrogen) were not influenced by the 
addition of lysine, but showed a generally low reductase activity. This could indicate that the 
cultures reached the stationary phase of the growth curve, where the metabolic activity is reduced. 
Yet, the 56 mM nitrogen cultures still had a higher reductase activity than the 20 mM nitrogen 
cultures that had collapsed.  

This interpretation was corroborated by the macroscopic physiology of the cultures (Figure 6.2D). 
Cultures with a low nitrogen supply are whiter in color. Healthy AtB cultures grow denser and show 
a yellow-brown color, similar to the cultures with elevated nitrogen supply.  

 

  

 
Figure 6.2: Effect of nitrogen starvation on culture density (A), labeling efficiency (B), 
reductase activity (C), and physiology (D) of 9 to 13 day old AtB cultures.   
The cultures were grown for up to 13 days in medium with different amounts of KNO3 and 
NH4NO3 (Table 6.1) while being supplemented daily with 350 μM Lys0, Lys4 or no lysine. The 
cultures were inoculated at 30 mg fresh weight / mL medium and were passaged at day 6. The 
cultures depicted in D are the control cultures not supplemented with lysine. 

A 

D 
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We conclude from this experiment that reducing the nitrogen supply to 20 mM affects the cell 
cultures negatively and ultimately leads to full growth arrest. Increasing the nitrogen supply 
increases the viability of the culture substantially, leading to higher culture densities and viability 
while reducing the labeling efficiencies only gradually.  

For all subsequent experiments, we optimized the labeling efficiency and culture viability by 
increasing the nitrogen supply to 14 mM NH4NO3 and 7.5 mM KNO3, which sums up to 35.5 mM 
nitrogen atoms or 63% of the full Murashige-Skoog medium. These particular settings are 
optimized for the cell line AtB and might not be directly transferable to other cell lines. 

 

6.1.4  Alternative SILAC approaches 
In parallel to the labeling strategy of Schütz and coworkers (2011), we explored the following 
alternative SILAC labeling approaches: 

6.1.4.1 SILAC in seedlings 
Lewandowska et al. (2013) reported a SILAC labeling strategy for light-grown Arabidopsis seedlings 
reaching >95% labeling. They grew seedlings from about 15 mg of seeds for 19 days in unmodified 
liquid Gamborg B5 growth medium containing 25 mM KNO3, without any reported viability decrease. 
The medium was supplemented with 1 mM of labeled lysine and arginine and was exchanged every 
2 days with fresh, supplemented medium. 

When we reproduced this study, the germinating seedlings grew with highly variable rates and 
impaired viability. Because lysine supplementation also inhibits AK, 2 mM lysine are enough to 
inhibit the growth of Arabidopsis seedlings (Heremans & Jacobs, 1997). Although in this protocol the 
growth medium is exchanged every two days, the supplemented lysine will still be taken up by the 
seedlings and could build up intracellularly to concentrations that affect the amino acid 
homeostasis.  

At day 19 after germination, I quantified the labeling efficiencies of the seedlings. It ranged from 32% 
to 72%, presumably depending on the stratification efficiency and overall growth rate. The higher 
the growth rate, the stronger the dilution of the supplemented amino acids within the seedlings, 
decreasing the overall labeling efficiency.  

I checked the labeling efficiency of the original MS data submitted to PRIDE by Lewandowska et al. 
(2013, www.ebi.ac.uk/pride/archive/projects/PXD002069) and found that the median global 
labeling efficiency was only 30.8% (Figure 6.3). In the original publication, they determined the 
labeling efficiency by analyzing single spectra of representative peptides. 

I concluded that this approach was not suitable for our intended study. 
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Figure 6.3: Reanalysis of the labeling efficiency from Lewandowska et al. (2013). 
The median labeling efficiency is indicated by a vertical line. 

 

6.1.4.2 DapL knockout 
We tested strategies to increase the labeling efficiency by inhibiting the endogenous amino acid 
synthesis by genetic knock-down. Similarly to the SILAC strategy employed for the algae 
Chlamydomonas reinhardtii, whose strain CC-424 is arginine-autotroph as it has a dysfunctional 
argininosuccinate lyase  (Naumann et al, 2005), I  aimed to knock-out the LL-diaminopimelate 
aminotransferase (DapL or Aberrant Growth And Death2, AT4G33680), as it is essential for lysine 
biosynthesis in plants (Hudson et al, 2006; Dobson et al, 2011) (Figure 2.4). Homozygous DapL knock-
outs are embryo-lethal (Song et al, 2004; Dobson et al, 2011) and no knock-out lines are available. 
We therefore aimed to knock-down DapL in suspension cell cultures, while supplementing the 
culture simultaneously with lysine. We successfully transformed AtA suspension cell cultures with 
both DapL-targeted amiRNA constructs (Schwab et al, 2006) and pHellsgate hairpin-RNAi constructs. 
The clones contained the inserted constructs as determined by PCR on genomic DNA, however, I 
could not identify any transcriptional downregulation of DapL by qRT-PCR.  

Over the course of the transformation, the cells have to be singularized to create a monoclonal line 
afterwards. This selection takes place over a period of 7 days on solidified medium. During the whole 
transformation protocol including the singularization, lysine is supplied to support any transformed, 
lysine-deficient DapL knockout cells. Yet the amount of lysine to add to the medium is difficult to 
estimate – especially on solidified medium. Ideally the lysine concentration has to be high enough 
to allow growth of successfully transformed DapL knockouts, but low enough to not affect amino 
acid homeostasis and create the negative effects discussed in chapter 6.1.1.  
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6.1.4.3 Chemical inhibition of DapL  
Besides genetic manipulation, we tested whether DapL can be inhibited chemically. The group of 
Prof. John C. Vederas (University of Alberta, Canada) designed DapL inhibitors from in vitro assays 
(Fan et al, 2010; Fan & Vederas, 2012) and generously provided us with the DapL inhibitor compound 
1a (Figure 6.4A). When I tested it in our Arabidopsis suspension cell culture AtA, I identified a dose-
dependent inhibition of culture growth with an IC50 at <20 µM (Figure 6.4B), which is comparable to 
the reported in vitro IC50 of 5 µM. Daily addition of 350 µM lysine partially reverts this growth 
impairment when the inhibitor was used in a range of 15 to 25 µM, while 50 µM of the inhibitor 
stopped any culture growth, presumably due to side reactions of the free hydrazide moiety of the 
inhibitor (Figure 6.4A). 

Despite these robust effects on the culture’s growth, we did not see a significant change in the 
labeling efficiencies of AtA cultures when treated with 15 µM compound 1a (Figure 6.4C). From this 
we concluded that compound 1a can induce detrimental side-effects and does not improve labeling 
efficiency under the tested conditions. 

 

 

 

Figure 6.4: Chemical Inhibition of DapL by compound 1a.  
A: Chemical structure of the DapL inhibitor compound 1a  (Fan & Vederas, 2012). The 
free hydrazide moiety is colored in blue. B: Effect of compound 1a on the growth of 7 day 
old AtA cell cultures. The blue labeled cultures were supplemented each day with 350 
μM lysine. When administering compound 1a, it was dissolved in DMSO. The effect of 
the maximally added volume of DMSO was tested in a separate solvent control. 
C: Labeling efficiency of proteins of 7-day old AtA cultures supplemented daily with 
350 µM Lys4 or Lys8. In blue are the labeling efficiencies of cultures, which were treated 
with 15 µM compound 1a at inoculation.  
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6.2  Experimental design 

In conclusion, the optimized plant SILAC labeling approach based on (Schütz et al, 2011) in 
Arabidopsis suspension cell culture AtB was deemed most successful and was employed for the 
protein quantification part of this study.  

To reiterate, two AtB suspension cell cultures were grown over 12 days with daily supplementation 
of 350 μM medium-heavy Lys4 or heavy Lys8, respectively. At day 6 the cultures were passaged to 
fresh medium so that they maintained continuous growth till day 12.  During the two 6 day passages, 
the cultures grew from 30 to 450 mg/mL, doubling roughly 4 times. At day 12, the Lys4- and the Lys8- 
labeled cultures were split into three replicate cultures each (Figure 6.5A). After a brief 
acclimatization of 2 h, three of the six cultures were treated with 100 nM flg22, while the other three 
cultures were mock treated with water. To control for labeling specific effects, we split the treatment 
group randomly between Lys4- and Lys8-labelled cultures: two Lys8 and one Lys4 culture were 
treated with flg22, and one Lys8 and two Lys4 cultures were mock treated (Figure 6.5B).  

In order to compare the protein abundance data to the other datasets, we extracted the protein 
samples at the same time points: before the treatment, and 0.5 h, 2 h, 4 h, and 8 h post treatment. In 
the following part, I will discuss the results from the protein abundance data set, which aims to 
identify the effects of the bacterial defense elicitor flg22 on the protein levels of the Arabidopsis 
suspensions cell culture AtB.  

 
 

Figure 6.5: Overview of the experimental design for the protein abundance. 
A: Schema of the overall experimental design. This part of the thesis will discuss the 
results from the protein abundance dataset, which is not grayed out. B: Schema for the 
sample naming convention. The first two letters indicate the labeling background of the 
culture. Samples from Lys4-labelled cultures will be colored slightly darker than Lys8-
labelled cultures. Flg22-treated cultures will be colored in blue, while untreated, control 
samples will be colored in red. The third letter of the sample code indicates the replicate 
number. We strive to follow the naming conventions and color scheme throughout this 
thesis. 

 

6.3 Labelling efficiency and viability 

After 12 days of labelling, the culture’s proteins had a median labelling efficiency of RIA = 85.0% (LE 
= 85.9%) for the Lys4 culture and RIA = 85.3% (LE = 86.5%) for the Lys8 culture (Figure 6.6A). The 
labeling had an average standard deviation of 9.1% and 9.8%, respectively, and a median absolute 
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deviation of 2.87% and 2.83%, respectively. At the end of the time course 8 hours later, the labeling 
efficiency was practically unchanged at RIA = 85.8% for the Lys4 cultures and RIA = 85.30% for the 
Lys8 cultures. The Lys0 incorporation remained stable over the course of the experiment (Figure 
6.6B). Consequently, all protein abundances were quantified between the heavy Lys8 and the 
medium-heavy Lys4 label state, excluding Lys0-labelled proteins as it was done by Schütz et al. 
(2011).  

After the time course, the viabilities of the cultures were tested by TTC assay (Figure 6.6C).  
Treatment or labeling did not affect the viability of the cultures. 

 

 

 
 Figure 6.6: Labelling efficiencies and viabilities during the protein abundance 
experiment. 
A: Labeling efficiencies of the cultures before treatment and at the last time point. There 
was no change in labeling over the course of the experiment. B: The ratio of the 
unlabeled Lys0 proteins remained stable during the experiment. C: The viability of the 
cultures after the experiment was determined by TTC assay. There are no significant 
changes between the cultures used in the experiment and the control culture labeled 
with Lys0. The culture without Lysine supplementation showed a stronger 
dehydrogenase activity. The negative control (“noGrowth”) was obtained from a non-
proliferating 4-week old culture. 
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6.4 Coverage  

In total, 7397 proteins were identified in all samples combined, of which 4110 proteins were 
quantified. On average, 2611 proteins were quantified in a single sample.  

The overlap of quantified proteins over all samples is  rather low, as it is typical for a large-scale MS 
experiments (Bruderer et al, 2015). Only 1134 or 27.6% of all quantified proteins were quantified in 
all 30 samples. While 2585 or 62.8% of all quantified proteins were quantified in more than 50% of 
all samples. 

 

  
Figure 6.7: Coverage QC plots.  
A: Amount or proteins quantified in each sample. B: Histogram of the number of 
quantified proteins per number of not-assigned (NA) values over all 30 samples. C: 
Cumulative plot of the number of proteins with a set number of NAs per protein. 
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6.5 Quality control  

We checked the quality of the MS analysis with the tool PTXQC (Bielow et al, 2016). It analyzes a 
multitude of different quality control (QC) parameters from the MaxQuant output files and combines 
them to 20 QC metrics.  Figure 6.8A shows the overview of these metrics on all 150 LC-MS runs (30 
samples x 5 fractions). 
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Figure 6.8: Quality control of the protein abundance samples by PTXQC.  
A: Overview of all samples across all 20 quality metrics of PTXQC. B: Metric [6] TopN high, 
showing the number of MS2 scans per duty cycle. C: Metric [18] TopN ID over N, showing 
the MS2 identification rate relative to the number of MS2 scan events per duty cycle. D: 
metric [17] MS2 ID rate of all 150 samples. E: Comparison of HCD collision energy on MS2 
spectra identification rate. The samples colored in red were fragmented with the higher 
35% HCD energy, while the blue samples were fragmented at 30% HCD energy.    
EVD = MaxQuant Evidence file, ID = identification, MBR = Match between runs, Cal = mass 
calibration, MC = missed cleavage.  
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The overview heat map shows that most samples perform uniformly and generally well. The QC 
metric [6], TopN high, describes the number of MS2 scans that are triggered by the machine, before 
it initiates a new MS1 scan. All samples underperform here, showing that on average only ~10 MS2 
scans are initiated before a new MS1 scan starts (Figure 6.8B), while the Orbitrap Fusion mass 
spectrometer was set up to initiate up to 20 MS2 before finishing the duty cycle. Consequently, the 
underperforming TopN also shows a non-optimal value for the metric [7], TopN over retention time. 
This also comes into play for metric [18], which rewards a uniform identification rate independent 
of the TopN cycle. This means, that a peptide from a Top20 cycle should be as well identified as one 
of a Top5 cycle. However, there is a clear decrease in the identification rate with every additionally 
fragmented precursor per duty cycle (Figure 6.8C). There, optimization of the LC conditions could 
help to assure reliable loading of the MS with enough precursor ions. Metric [12], ion injection time, 
though flagged as failed, is only affected at the end of the LC gradient. The average ion injection time 
of ~40 ms is acceptable. 

6.5.1 MS2 identification rate 
The most revealing metric is number 17, the MS2 ID rate (Figure 6.8D). In only a few samples more 
than 20% of the MS2 scans could get identified as a peptide. An excellent MS run would identify more 
than 35% of all MS2 spectra. As a reference, samples deposited in PRIDE have on average an MS2 ID 
rate of 25% (Griss et al, 2016).   

This low identification rate is also explained by the TopN plots. The difference between Figure 6.8B 
and Figure 6.8C shows that a majority of MS2 scans are obtained from higher TopN cycles, yet the 
identification rate drops substantially for every additional MS2 scan per duty cycle. Clearly, the 
LC-MS method has to be optimized to accommodate for these differences. Either, one could set the 
maximal TopN to a lower value of ~7, so that the MS is forced to start more frequently an MS1 scan. 
This would assure that the time difference between MS1 and MS2 scans is smaller and the machine 
can isolate MS2 precursors more effectively. The more time passes between an MS1 and the 
consecutive MS2 scans, the more likely it is that a non-optimal time of the peptide elution peak is 
chosen for fragmentation, and for instance, the peptide did already elute from the LC column. 

Another idea to consider is to increase the ion inflow by optimizing the spray conditions or by 
increasing the concentration of peptides loaded onto the column. However, the overall peptide 
intensity is deemed sufficiently high for the majority of samples (metric [2]). 

We tested the effect of an increased HCD fragmentation energy on the MS2 identification rate. During 
the processing of the MS2 scans, we identified a large proportion of spectra with non-optimal 
fragmentation, where the non-fragmented precursor ion remained the most prominent peak of the 
fragment spectrum. We consequently tested if increasing the HCD collision energy from 30% to 35% 
would increase the spectra identification rate. However, as shown in Figure 6.8E, an increased 
collision energy lowered the average MS2 spectra identification rate. 

We have tested alternatively if the MS2 identification rate could be improved by adding more peptide 
modifications to the database, against which the spectra are compared to. We analyzed some 
exemplary MS runs with the search engine ProteinPilot and the “error tolerant search” from the 
Mascot search engine.  Both analyses allow for all peptide modifications reported in UNIMOD 
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(www.unimod.org) and report if any modification was frequently identified in the queried LC-MS run. 
Both searches returned the Lys4 and Lys8 labeling and the already added peptide modification 
(fixed carbamidomethylated cysteines, and variable acetylation of the protein N-terminus and 
oxidation of methionines). The next most frequently found modification was a deamination of 
asparagine or glutamine. Adding this modification to the MaxQuant search, however, lowered the 
overall identification rate by 3.2% on average. Adding the modification to the search space lets us 
identify the truly deaminated peptides, but requires a stricter FDR threshold that excludes more 
unmodified true peptides than adds true-positive modified peptides. Consequently, we did not 
include these additional modifications in the MaxQuant analysis.  

  

Figure 6.9: Testing for additional peptide-modifications with ProteinPilot (A) and 
the Mascot error-tolerant search (B).   
Both algorithms match spectra to peptides with deaminated N or Q in addition to the 
already included peptide modifications (carbamidomethylated cysteines, acetylation 
of the protein N-terminus and oxidation of methionines). 

6.5.2 Arginine-terminating peptides 
Another important factor to consider are the identified but not quantified peptides. 97.5% of these 
peptides contain an arginine, but no lysine (Figure 6.10). Only 1.3% of the non-quantified peptides 
contain a lysine. In total, 45% of all detected peptides could not be quantified, as they did not 
contain a differentially labeled lysine. To remedy this, one would either have to include arginine in 
the labeling strategy, which would require another round of cell culture optimization, or to exchange 
the Arg- and Lys-specific trypsin with a protease that only cleaves after lysine residues. The 
endoproteinase Lys-C from Lysobacter enzymogenes cleaves only at the carboxyl side of lysine 
residues, even when that lysine is followed by a proline (Jekel et al, 1983). Its digestion efficiency can 
be lower than that of trypsin (Gershon, 2014), but it can be improved under alternating high-pressure 
conditions (Cheng et al, 2016). 

Lys-C cleaves less frequently than trypsin, which results in longer but fewer peptides. All arginine-
terminating peptides, which make up 45% of all true tryptic peptides in Arabidopsis, would not be 
generated. This lowered complexity of the produced peptide mixtures could improve the MS 
analysis and increase the overall identification rate – given an adaptation of the MS2 fragmentation 
settings to longer peptides with higher charge states. Especially electron-transfer dissociation (ETD) 
is discussed to be beneficial for sequencing such peptides  (Giansanti et al, 2016). Schütz et al. (2011) 
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used trypsin for analyzing their lysine-labelled Arabidopsis cell culture, while Christiano et al. (2014) 
used Lys-C to analyze their lysine-labelled yeast culture. 

 
 

Figure 6.10: 94.3% of all non-quantified peptides terminate on arginine (R). 

 

Another strategy to improve the coverage of an MS study is to reduce the protein database size to 
the actively transcribed or even only the translated part of the genome. This transcriptome or 
translatome can be collated from all open reading frames (ORFs) identified in the RNA-Seq or Ribo-
Seq experiment. With this, the database to compare the spectra against becomes smaller, and the 
chance to match with a good score to a decoy peptide gets reduced, thus lowering the chance of a 
false identification at a given FDR threshold. This follows the same logic as the lowered identification 
rate when the database was enlarged by another peptide modification. In metaproteomics studies, 
such approaches are fundamental for reliable peptide identification (Muth et al, 2016).  

In summary, the overall quality of the samples is good (as shown in the summarizing column of 
Figure 6.8A). However, the quality control assessment has raised issues in sample processing and 
MS settings that can be optimized in future studies.  

6.5.3 Data normalization 
The plant SILAC approach allows to run two samples mixed together (medium-heavy Lys4 and heavy 
Lys8 channel) and to draw direct comparisons between these two samples. But we wanted to 
compare all samples with each other so that we can make statements about changes over time as 
well as changes between flg22-treated and control cultures. Therefore, we decided for a common 
reference design, which is commonplace in microarray experiments (Smith, 2005) or the spike-in 
SILAC design (Geiger et al, 2011), where each unlabeled sample is mixed with the same labeled 
reference tissue culture (Figure 6.11A).  

In our case, the samples were labeled both as Lys4 and Lys8, so that we needed to create two 
reference samples: one to contrast each label state. We took equal amounts of cells from all Lys4- or 
Lys8-labelled cultures at the onset of the experiment (T0) and the conclusion of it (T8), and combined 
them to a Lys4- and Lys8-reference sample, respectively. These samples contain both flg22-treated 
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and non-treated material. The proteins extracted from these reference samples were mixed 1:1 with 
the protein samples of the complementary label state and were analyzed by MS (Figure 6.11B).  This 
two-reference spike-in SILAC design allows to compare all samples along a time-series when only 
relative quantifications can be performed.  

  

Figure 6.11: A: general spike-in SILAC approach (Geiger et al, 2011), B: our 
implemented two-reference spike-in SILAC design. 

 

The design includes a label-swap that helps to exclude labeling-induced artifacts. The downside of 
this approach is that the two references are not perfectly identical as they are derived from cultures, 
which were cultivated separately for more than 12 days. Also, the reference mixes contain an 
unequal amount of treated or untreated cultures due to the label-swap design. ReferenceLys4 
contains one treated and two untreated cultures (L41control, L42 flg22, L43control), while ReferenceLys4 
contains two treated and one untreated culture (L81 flg22, L82 control, L83 flg22). We measured four 
technical replicates of 1:1 mixtures of the Lys4- and Lys8-reference, which allows us to normalize for 
changes between the references. 

In the following paragraphs, we describe the data processing and normalization of the MS data, 
which we applied to identify protein level changes induced by flg22 treatment. In Figure 6.12, the 
process is illustrated for the data set as a whole and by the specific example of cinnamate-4-
hydrolase (C4H, AT2G30490). The values in Figure 6.12 are log2-transformed for visualization 
purposes only, all calculations are performed on the untransformed ratios. 

 As the Lys0-labelling stayed constant during the experiment, we excluded it from the search space 

of the conducted MaxQuant analysis. In this case,  ratios describe   ratios. 

1. Centralization (Figure 6.12B&H) 

I extracted the non-normalized protein-level =   ratios from the MaxQuant output file 

proteinGroups.txt. We performed a median centralization (values =
( )

) so that 

experimentally introduced deviations from the 1:1 mixing are balanced out (Cox & Mann, 2008). We 
did not use the directly reported MaxQuant-normalized ratios as both the median and the mean of 
these ratios differs slightly from 1.0. It is unclear how exactly that commonly used normalization is 
being computed. 
The distributions of the  ratios before the centralization are depicted in (Figure 6.12A&G). 
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2. Inversion (Figure 6.12C&I) 
The experimental design contains a label-swap.   ratios of Lys8 samples contain the reference 

value in the denominator, while for Lys4 samples it is in the numerator. We inverted all  ratios of 

Lys4-labelled samples, so that the reference value was always in the denominator:  
  
 or 

  
 . 

 
3. Reference Normalization (Figure 6.12D&J) 
The ratios refer to two different references in the denominator. We multiplied the ratios of Lys4-

samples with the MaxQuant-centralized  

 
 ratio, so that all ratios refer to the same 

Lys4  value: 
Lys4

Lys8   
∗  

Lys8
Lys4   

=
Lys4

Lys4   
 

This is a protein-specific normalization.  If the protein levels of Lys4Reference and Lys8Reference did not 

differ, the 
  
 ratios remained unchanged.  

 
4. Labeling Minimization (Figure 6.12E&K) 
Despite the reference normalization, there remained an offset between Lys4-lableled and Lys8-
labelled samples. The size of this offset varies for each protein but is constant over all time points. 
We could not associate the offset to any other cause than biological differences between the 

reference samples. We measured the  

 
 mix in four technical replicates with independent 

protein mixing, trypsination, fractionation and LC-MS analysis, and there seems to be a systematic 
difference between the Lys4-labelled and Lys8-labelled references that is not technical in nature. 
We decided to add a normalization that minimizes these differences between Lys4- and Lys8- 
samples. For that, we divided all ratios from Lys4 samples with a Lys4-labeling constant, and all Lys8 
samples with Lys8-labeling constant.  

 ∈ 4, 8 

,

4 ,
  =  

4 ,
÷  ,  

The labeling constants are calculated for each time point by taking the median 
  
  ratio over 

all treated and untreated samples, taking into effect the unequal amount of treated and untreated 
samples. We then averaged that protein-specific constant over all time points.  

, =   ,

4 ,
, ,

4 ,
 

We then averaged that protein-specific constant over all time points.  

, =
∑ , ,

4
  

The logic of this normalization becomes clear with a specific example. In Figure 6.12K, an offset 
between the darker colored Lys4-labelled and the lighter colored Lys8-labelled samples is evident. 
With the labeling minimization normalization (Figure 6.12K), the differences between these lines 
are reduced and the samples align closer according to the flg22-treatment groups. 

Interestingly, the constant shows an unprecedented systematic bias regarding the employed label. 
Over all proteins, the median Lys4-labeling constant is 0.950, while it is 1.001 for Lys8. We speculate 
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that this difference is caused by the MS quantitation, maybe due to an overlap of the Lys0 isotope 
envelopes with the Lys4-labelled peaks.  

    

  

          

   

  

            

Figure 6.12: Protein-level ratios during the normalization procedure.   
The ratios are log2-transformed for visualization purposes but remained 
untransformed for the calculations. On the top (A-F) are the density plots of all samples 
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throughout the normalization depicted to visualize the spread of the data. The legend 
for these plots are depicted in panel F. In the lower half (G-L), the normalization 
procedure is described with the example of cinnamate-4-hydrolase (C4H, AT2G30490). 
The legend for these plots is in panel L. The C4H-specific  

  
 ratio is depicted 

as a green horizontal line throughout the normalization. Note the remaining labeling-
specific offset after the reference normalization (J), which is balanced out by the 
labeling minimization (K).  

 

The variance of the ratios varies heavily over the course of the data normalization (Figure 6.13). The 
standard deviation is however strongly affected by outliers (Figure 6.13A), as the distance to the 
mean is inserted into the standard deviation by the power of 2. Therefore, I propose to monitor the 
normalization procedure with the median absolute deviation (MAD, Figure 6.13B). It shows that the 
wide-spreading raw ratios are effectively reduced to a constant variation by the MaxQuant 
centralization. Every step after the inversion reduced the variation and especially the labeling 
minimization reduced it strongly. 

  
Figure 6.13: Variance during the normalization procedure, measured as the 
standard deviation (SD, A) or the median absolute deviation (MAD, B).  

 

After concluding the data processing, I see the highest correlation between sample replicates 
(Figure 6.14). Samples with the same treatment show a high correlation. Interestingly, treated and 
untreated samples of the early time points (T1 = 0.5 h after treatment and T2 = 2 h after treatment) 
correlate highly as well. These trends are upheld regardless of the labeling background of the 
samples. 

A B 
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Figure 6.14:  Correlation analysis after normalization.   
The highest correlation of the data set can be observed for the technical 
replicates of the  

 
 mix (named Pools in this plot). 

6.6 Dimension reduction plots 

To get an unbiased understanding of the obtained data matrix, it is useful to describe it in a 2-
dimensional plot by some dimension reduction technique.  We employed both principle component 
analyses (PCA, Figure 6.15A) and multi-dimension scaling plots (MDS, Figure 6.15B) for this task. In 
both plots, the sample replicates cluster together according to both time point and treatment – 
regardless of the Lys8 or Lys4 labeling state of the sample.  

The PCA scales according to the variation within the dataset. Principle coordinate 1 (Dim1, 12.89% 
of the variation) describes the progression of time, while principle coordinate 2 (Dim2, 7.93% of the 
variation) describes the variation induced by the treatment. The progression of time thus induced 
more variation in the data set than the treatment itself. Yet it has to be taken into consideration that 
the two first principle components only sum up to 20.82% of the variation of the data set.  

Furthermore, both plots show that the strongest variation between the flg22 and control samples 
occurs at the end of the time course. The more time passes, the more disparate the flg22 and control 
samples get – as it is to be expected for protein data. The variation in the data set describes a 
biologically meaningful trajectory. 

This clustering according to treatment and time only becomes apparent when all normalization 
steps described above are performed. Any step earlier in the data normalization procedure creates 
dimension reduction plots, where the samples are not separated according to biologically 
meaningful parameters and separate primarily by the sample’s Lys4 and Lys8 labeling state. 
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Figure 6.15: Dimension Reduction Plots of the log2-transformed normalized 
protein abundance data set.  
A: Principle Component Analysis (PCA). B: Multi-Dimension Scaling Plot (MDS). The 
averages of all flg22-treated (blue) and untreated samples (red) over the time course are 
indicated with arrows.  

 

6.7 Statistical analysis for flg22 effect 

After the data processing and normalization, I tested which proteins change their abundance 
following the flg22 treatment.  I employed the linear modeling framework of the R package limma 
(Smith, 2005). Limma was designed for microarray experiments but has also been applied on relative 
quantification proteomics data sets (Schwämmle et al, 2013). The benefit of limma in comparison to 
a classical gene-specific ANOVA is that it uses global information of all proteins to estimate the 
variance. Limma can be applied to log-transformed ratios or expression values.  

We designed the statistical test so that we identified differential expression at any time points (T0.5, 
T2, T4, T8) between all replicates treated with flg22 or the control solution - regardless of the Lys4 or 
Lys8 labeling background (Figure 6.16A). The labeling background was included as a blocking factor. 

log ( ) ~   +   +   
 With this statistical test, we identified 142 upregulated proteins and 84 downregulated proteins (p-
value < 0.05, no fold change threshold), while for 2’235 proteins no significant change could be 
determined. In total, 2’451 proteins could be assessed by the limma test. 

B A 
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downregulated no significant differences upregulated 

84 2’235 142 

Differentially expressed at non-adjusted p-value <0.05, no FC cutoff 
 

Figure 6.16: Results of the limma test for flg22 on protein level changes  
A) Schema of the limma test design. Each block represents one sample. The differently 
treated samples at the same time point were compared, with the lysine labeling as a 
blocking factor. B) Amount of proteins regulated according to the given cutoff 
thresholds. C) Volcano plot comparing the statistical strength (p-value) and the effect 
size (maximal fold change at any time point, maxFC). 

The upregulated proteins are enriched for various biological processes associated with bacterial 
defense reactions (Table 6.2 and Figure 1.20, PantherGO (Mi et al, 2013), Bonferroni adjusted p-Value 
< 0.05). The downregulated proteins are not enriched for any GO biological process term at 
Bonferroni multiple testing adjusted p-value threshold of 0.05. Using a non-adjusted p-value leads 
to an incoherent set of GO terms (data not shown). Similarly, the downregulated proteins change 
more irregularly at individual time points, while the upregulated proteins show a more consistent 
pattern over all four time points (Figure 6.18). 

Table 6.2: Enrichment of biological process GO terms of all upregulated proteins. 
Only the lowest daughter nodes are listed. Parent nodes are excluded for the sake of 
brevity, refer to Figure 6.17 for a full graphical presentation. The p-value is adjusted for 
multiple testing by the Bonferroni method. The list of all 2451 limma-tested proteins 
was used as reference. # = number of proteins.  

GO biological process complete # in 
reference  

# in 
upregulated 

# expected in 
upregulated 

Fold 
Enrichment 

Adjusted p-
Value 

tryptophan biosynthetic process 14 5 0.28 18.17 1.39E-02 

toxin catabolic process 19 6 0.37 16.06 3.52E-03 

glutathione metabolic process 30 7 0.59 11.87 3.67E-03 

response to karrikin 43 7 0.85 8.28 3.69E-02 

cellular amino acid biosynthetic 
process 

112 12 2.2 5.45 3.69E-03 

response to bacterium 159 13 3.13 4.16 2.49E-02 
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Figure 6.18: Heat map of the flg22-induced fold changes (FC) for the 126 
significantly upregulated proteins (A) and the 91 downregulated proteins (B). 

 

We compared the flg22-induced fold changes of the limma test with the edgeR test results from the 
RNA-Seq (Figure 6.19A) and Ribo-Seq data sets (Figure 6.19B).  We identified a small but highly 
significant correlation to both data sets (rho = 0.2444 and 0.2033, respectively, both p-values < 2.2e-
16). The fold-changes from the RNA-Seq dataset correlate better to the protein data, presumably 
due to the smaller variance within that dataset. The correlational analyses show the same trend of 
a higher correlation for genes with increased protein abundances. When limiting the analysis to the 
proteins that change significantly according to the limma test, the Spearman correlation increased 
to 0.634 for the upregulated and 0.515 for the downregulated proteins. 
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Figure 6.19: Correlation analysis of the protein and the transcriptional (A) and 
translational (B) data set.  
A locally weighted scatterplot smoothing (LOESS) trend line is indicated. maxFC = 
highest fold-change between flg22-treated and untreated samples at any of the four 
tested time points. 

 

To assure the correct application of the limma framework, we employed an ANOVA test with the 
same formula onto the same data set (log ( ) ~   +   +  ). The ANOVA 
p-value for the flg22-treatment is generally lower than the p-value from limma, but it correlates 
highly (p-value < 2.2e-16, Pearson's product-moment correlation, Figure 6.20A). It identified 120 
downregulated and 159 upregulated proteins at an unadjusted p-value cutoff of 5% (Figure 6.20B). 
The upregulated proteins are enriched for similar GO categories (Table 6.) as for the limma test and 
the downregulated genes are also not significantly enriched for any GO category. The overlap of the 
regulated proteins between the ANOVA and limma test is higher for the upregulated proteins (Figure 
6.20C) than for the downregulated proteins (Figure 6.20D). A complete list of the proteins with 
changed abundances according to both tests can be found in the appendix chapter 10.1. 
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upregulated 

 

downregulated 

 
Figure 6.20: Comparison of ANOVA and limma test.  
A: Both tests compute highly correlating p-values for the effect of flg22. A LOESS 
regression line is indicated in blue.  B: volcano plot of the regulated genes identified by 
ANOVA. C-D: Venn diagram of the up- (C) and downregulated genes as assessed by the 
two tests. 

 

Table 6.3: GO category enrichment for upregulated proteins with a p-value < 0.05 
according to the ANOVA test. The enrichment was performed with Panther (Mi et al, 
2016) and the list of all ANOVA assessed genes was used as the reference list. 

GO BIOLOGICAL PROCESS 
COMPLETE 

PROTEIN IN 
REFERENCE  

PROTEIN IN 
UPREGULATED 

# EXPECTED IN 
UPREGULATED 

FOLD 
ENRICHMENT 

ADJ. P-
VALUE 

tryptophan biosynthetic 
process 14 6 0.3 19.73 1.10E-03 

auxin biosynthetic process 14 5 0.3 16.44 2.24E-02 
secondary metabolic 
process 106 13 2.3 5.65 9.77E-04 
sulfur compound 
metabolic process 145 16 3.15 5.08 1.98E-04 

response to cadmium ion 191 21 4.15 5.06 2.04E-06 

response to bacterium 159 14 3.45 4.05 1.61E-02 
carboxylic acid 
biosynthetic process 221 17 4.8 3.54 1.05E-02 
cellular amino acid 
metabolic process 211 16 4.58 3.49 2.36E-02 

response to stress 963 41 20.92 1.96 2.03E-02 
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PROTEIN DEGRADATION 
 

7.1 Experimental approach 

High-throughput turnover studies require MS-based proteomics with a metabolic pulse(-chase) 
labeling design. As mentioned previously the two most established approaches are 15N and SILAC 
labeling. Here we chose to use the plant SILAC labeling approach primarily due to the superior mass 
spectrometric and bioinformatic quantitation framework. 

We used the same cell cultures as in the RNA-Seq, Ribo-Seq, and protein abundance data. To 
reiterate briefly, we grew two Arabidopsis suspension cell cultures over 12 days in low-nitrogen 
medium and supplemented them every 24 h with 350 μM heavy lysine (either Lys4 or Lys8) with a 
passage to fresh medium at day 6 to keep the cultures in steady growth. During this pulse-phase of 
the experiment, the culture’s proteomes got labeled with the heavy lysine to a rate of ~85% (chapter 
6).  

After a labeling phase of 12 days, one part of the cultures was taken for the RNA-Seq, Ribo-Seq, and 
protein abundance analyses. The second part was used for the protein turnover experiment, where 
the cultures were washed twice with non-supplemented medium and were split into three 
subcultures each. The 15 mL cultures were inoculated with densities of 100 mg fresh weight / mL 
medium. The cultures were then supplemented with 350 μM of the reciprocal isotopically labelled 
lysine: formerly Lys4-labelled cultures were supplemented with Lys8 and formerly Lys8-labelled 
cultures were supplemented with Lys4. After an acclimation period of 2 h, three of these cultures 
were treated with 100 nM flg22, while the remaining three cultures were mock treated. The 
treatment and control groups were split among the Lys4- and Lys8-labelled cultures so that a 
potential effect of the labeling could be distinguished from the effect of treatment with flg22. 

During the chase period, samples were taken before the flg22 treatment and 2, 4, 8, 16, 32, 48, and 
72 h post-treatment. The supplementation with daily doses of 350 μM lysine was maintained during 
the chase phase. Proteins were extracted from the samples and analyzed mass spectrometrically to 
quantify the progression of the label-switch. The high number of sampling time points should allow 
us to accurately describe the labeling trajectories of both quickly and slowly degrading proteins. 
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7.2 Growth and viability of the cultures 

During the 72 h of the chase period, I monitored the growth of the cultures by taking aliquots and 
determining the fresh weight of the cell pellet after centrifugation. While all cultures grew steadily 
during the experiment, the flg22 treatment had a substantial effect on the growth rates (Figure 7.1A).  

To describe the effect of flg22 on the growth rates in a quantitative manner, I fitted an exponential 
growth curve to the culture densities using the following formula (Figure 7.1C): 

 =  ∗  ( ∗ ) 

The fitted growth rate constants kdil indicate a decrease of the growth rate upon flg22 treatment by 
37 % on average (Figure 7.1B, average flg22-treated kdil = 0.0107, average untreated kdil = 0.0171). 
The labelling background also had an effect on the growth rates, as Lys8-labelled cultures grew on 
average 15.9% slower than the Lys4-labelled cultures (average Lys4-labelled kdil = 0.0151, average 
Lys8-labelled kdil = 0.0127). As a point of reference, the untreated 15N-labeled Arabidopsis 
suspension cell culture employed by Li et al, (2012) grew at a kdil of 0.007, significantly slower than 
the growth rates determined for the cell culture employed in this study.  

Irrespective of the differences in growth rates, all cultures remained viable during the experiment 
(Figure 7.1D).  Neither the flg22 treatment nor the lysine labeling led to a significant difference in 
dehydrogenase activity (lysine p-value = 0.35, flg22 p-value = 0.33, t-test). I did not detect any 
macroscopic, physiological differences between the cultures. 
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Figure 7.1: Growth rate and viability during the turnover experiment.  
A: Measured culture densities of the flg22-treated (blue) and untreated (red) cultures. 
The standard deviations of the culture density measurements are indicated by colored 
ribbons. B: Exponential growth curves (lines) fitted to the measured culture densities 
(dots). C: Growth rate constants kdil from the fitted exponential curves. D: Cell culture 
viability 48 h after the treatment as determined by the reduction of TTC to formazan. 
The coloring scheme at the bottom right is representative for all plots.  
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7.3 Mass spectrometric coverage and quality control 

In the MS analyses of the protein turnover samples, I identified in total 73’098 peptides that map to 
8’669 proteins at a false discovery rate of 1% at both the peptide and protein level. As these samples 
were processed identically to the protein abundance samples, the same issues are valid regarding 
non-quantifiable arginine-terminating peptides and a limited overlap of quantified proteins in all 
samples as discussed in chapter 6.5. On average, 2128 proteins were quantified in each sample 
(Figure 7.2A), 1966 proteins were quantified in more than 50% of all samples and 481 proteins were 
quantified in all 44 samples (Figure 7.2B,C). 

 

         

Figure 7.2: Mass spectrometric coverage.  
A: Number of proteins quantified in each sample. The names of the samples describe 
the labeling background with the first two letters, the replicate number with the third 
letter and the sampling time in hours after the underscore. B: Number of missing 
quantitations per protein (NA = not acquired). C: Cumulative curve of plot B. Note that 
the number of quantified proteins is lower than the number of identified proteins due 
to non-labelled arginine-terminating peptides.  

I verified the quality of the mass spectrometric analysis with PTXQC (proteomics quality control, 
Bielow et al, 2016), which analyzes quality control (QC) parameters from the MaxQuant output. 
PTXQC identified 6 LC-MS runs where every quality metrics failed (Figure 7.5A). Manual inspection of 
the total ion current verified that these samples were of low quality, presumably due to problems 
with the electrospray ionization. MaxQuant relies on stable LC performance in all samples to match 

A 
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MS1 features between runs. I therefore excluded the problematic samples to assure the quality of 
our dataset and reanalyzed the cleaned data set with MaxQuant and PTXQC (Figure 7.5B). 

Now, the MS measurements are of constant good quality, as indicated by the average overall quality 
column of the heat map (Figure 7.5B). The MS2 identification rate over the LC retention time (RT) 
was assessed as underperforming for all samples, but this means only that the number of MS2 
identifications was not uniformly spread over the LC elution time. That is to be expected when the 
peptide mixtures are fractionated by HILIC before the LC-MS analysis. As exemplified in Figure 7.5C, 
each fraction produces a unique, non-constant peptide elution profile, which cannot be optimized 
easily and is per se not problematic for identification or quantification – it just shows that the MS 
sample processing pipeline could be optimized here. More interesting is metric 14, indicating an 
overall low MS2 identification rate over all samples (Figure 7.5D). This metric behaves similarly to 
the protein abundance data set, where the effect of low MS2 ID rates for high TopN cycles (Figure 
7.5E, F) is discussed in more detail (chapter 6.5). Additionally, the ID rate decreases steadily with the 
number of analyzed samples, which might have been caused by a contaminated orifice or a 
deteriorating LC column. The mass spectrometer’s mass calibration seems to be unproblematic 
according to metric 11 and 12.  
In summary, the mass spectrometric measurements were of good quality, but improvements in the 
MS setup could increase the analysis depth in the future. 
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Figure 7.5: Quality control plots of the mass spectrometric analyses from PTXQC.  
A: Overview of all PTXQC metrics over all samples and B: after exclusion of the six 
problematic samples. C: Exemplary non-uniform ID rate over retention time (RT) of the 
1st and 5th HILIC fraction. During the LC, the peptides did not elute uniformly. D: MS2 
identification rate over all samples. E: Exemplary TopN plot, which is a histogram of 
duty cycles with n-number of MS2 scans per duty cycle. F: Exemplary MS2 ID rate per 
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TopN. The MS2 scan identification rate decreases, the more MS2 scans per duty cycle 
are performed. EVD = Evidence file from MaxQuant, ID = identification, MBR = Match 
between runs feature of MaxQuant, Cal = mass calibration, MC = missed cleavages.  

 

7.4 RIA calculations 

I used MaxQuant to obtain the ratios of the MS-quantified Lys0-, Lys4- and Lys8-subproteomes. 
MaxQuant reports protein-level quantitations in the file “protein_groups.txt” as the median of the 
non-normalized MS1 intensity ratios of all peptides mapping uniquely to that protein. It computes 
within each individual sample the ratios of all three label states (Heavy = H, Medium-heavy = M and 

Light = L):  =  , =   and =   . Lys0 represents the unlabeled protein subpopulation 

containing the naturally occurring light lysine isotope. Lys4 and Lys8 represent the protein 
subpopulations containing the artificially heavy- and mid-heavy-labelled lysines. 

Starting from these ratios, I calculated the relative isotope abundances (RIA) for each label state.  
RIAs are defined as the ratio of one label state against the sum of all other states. In our triple-
labeling case, it is defined as 

 =   

I calculated the RIA of each label state from the non-normalized protein-level ratios using the 
following formulae: 
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Taking into account the label-swap design, I calculated the RIAs for the old and the newly-added 
label from the lysine-specific RIAs: 

=
   8  
   4   

=
   8  
   4  

 

Equally, I will speak in following paragraphs of oldLys- and newLys-labelled proteins to take the 
label-swap design into account. 
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7.5 Median label switch 

From the calculated gene-wise RIA values we determined the average progression of the label-swap. 
Figure 7.3A shows the RIA trajectories of the three label states, indicating a constant exchange of the 
old to the new label while RIALys0 stays rather low. At the end of the experiment, the majority of the 
old label has been exchanged.  

When examining the trajectories for each individual culture, pronounced differences become 
apparent.  Figure 7.3B-D depict the culture-specific median RIA trajectories for RIAoldLys, RIAnewLys, and 
RIALys0. In all three figures those trajectories of the direct replicate pairs, which underwent the 
identical combination of treatment and labeling, align best (cultures L41 and L43 and cultures L81 
and L83, respectively). Both treatment and labeling have an effect on RIA trajectories, but the 
differences between flg22-treated (blue) and untreated (red) trajectories are larger than between 
Lys8-labelled (lighter colors) and Lys4-labelled (darker colors) cultures. Lys8-labelled cultures 
exchange their label substantially quicker than their Lys4-labelled counterparts. 

Importantly, the RIALys0 trajectories, which are indicative for the labeling efficiencies, do not stay 
constant over the course of the experiment. For the Lys4-labelled untreated cultures, the unlabeled 
proteins reached up to 25 % of the total. These cultures also showed the highest growth rates during 
the experiment (Figure 7.1A). We suppose that these differences in the labeling efficiencies are 
caused by differences in the growth rates. A higher growth rate leads to increased protein 
biosynthesis, which leads to a higher demand for all amino acids. This lowers the intracellular lysine 
concentration, which releases the negative-feedback down-regulation of aspartate kinase 
(Heremans & Jacobs, 1997) and LL-diaminopimelate aminotransferase DapL (Ghislain et al, 1990) . 
Consequently, the cells increase their endogenous biosynthesis of unlabeled lysine. Newly 
synthesized proteins will, therefore, incorporate either newLys or increasingly also Lys0. 

This connection between growth rate and lysine labeling efficiency can be well observed when 
comparing Lys8-labelled cultures with Lys4-labelled ones. Lys8-cultures grew on average 15.9 % 
slower than Lys4-cultures, leading to a lower RIALys0 (-37.4 %) and a proportionally higher RIAnewLys 
(+25.1 %) at 72 h post-treatment irrespective of the flg22 treatment. 

However, assessments of RIAoldLys as a proxy for protein degradation are not affected by a non-
constant labeling rate, as the denominator in the RIAoldLys formula contains both the Lys0- and 
newLys-labelled proteins (chapter 7.4). Newly synthesized proteins, regardless of their labeling 
state, are summed up with the initial Lys0-labelled proteins to a constant factor. Consequently, the 
differences between Lys4 and Lys8 cultures are less striking for RIAoldLys than for RIAnewLys. Importantly, 
RIAoldLys is more strongly affected by the flg22 treatment, than by the differences between Lys4- and 
Lys8-labeling. 
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Figure 7.3: RIA trajectories during the protein turnover experiment.  
A: Trajectories of the median RIAoldLys, RIAnewLys, and RIALys0 averaged over all six cultures.  
B-D: Culture-specific median RIAoldLys (B), RIAnewLys (C), and RIALys0 (D) trajectories. As a 
measure of variance, the MAD (median absolute deviation) is indicated as ribbons. The 
color scheme for all culture-specific trajectories is indicated in B. 

 

7.6 Assessing protein degradation 

Protein degradation is often described with exponential decay functions (chapter 2.4): 

 =  ∗   ∗  

We refactored the formula such that the curve always starts at 1 at time point zero: 

 =  (  ∗ ) 

And we use RIAoldLys as the metric for protein abundance. RIAoldLys relative to time point zero was 
termed relative RIAoldLys. 

 =  =  (  ∗ ) 

A 

C D 

B 
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Fitting the relative RIAoldLys trajectories to this exponential decay model revealed systemic 
discrepancies (exemplified by the median relative RIAoldLys, Figure 7.4A-B), as especially the early time 
points show a clear difference between the measured data and the fitted curve. 

An alternative description of protein decay curves was proposed by Martin-Perez & Villen (2015). 
They describe that in yeast 10-13% of the protein degradation curves can be described more 
accurately with a logistic decay model. Such a model assumes a sigmoidal or “s”-shaped curve with 
a non-steady decay rate. At the beginning, the decay rate is slow and increases until it reaches the 
maximal decay rate at the inflection point and decreases steadily thereafter. This trajectory was 
formalized by Martin-Perez & Villen (2015) with the following logistic decay function: 

=   −   
−  

1 + (  ∗ (  - )) 

Timehalf-life signifies the inflection point of the sigmoidal curve or, in other words, the y-axis or time-
offset. A value larger than 0 leads to the above-mentioned slow decay or lag phase at the beginning 
of the degradation curve. 

I adapted this logistic decay model for our data, using the relative RIAoldLys value as the protein 

degradation metric ( = =  relative RIA ) and determined that the 

labelled proteins are completely degraded at the infinite time point ( = 0). This 
simplifies the logistic decay formula to: 

RIA =  1 −   
1

1 + (  ∗ (  - )) 

I also allow Timehalf-life to be smaller than zero, which is biologically not meaningful, but allows to shift 
the inflection point of the curve to the left of time point zero. In such a case, the logistic curve 
becomes more similar to an exponential decay curve with an initially quick and constantly slowing 
decay rate. Consequently, this version of a logistic decay model is rather a combination of an 
exponential and logistic decay model.  

When fitting my logistic decay model to the median relative RIAoldLys (Figure 7.4C), I see a more 
accurate fit between the model and the data compared to the classical exponential decay model 
(Figure 7.4B). 



7. PROTEIN DEGRADATION

120   

 

 

 

 

 

Figure 7.4: Modeling the culture-specific median protein turnover trajectories 
(relative RIAoldLys, A) by exponential (B) or logistic decay (C).   
The half-life times calculated from the fitted degradations are indicated by dashed 
vertical lines.  
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7.7 Comparing exponential and logistic decay models 

I compared the quality of the fitted curves from both models by calculating the weighted residual 
sum-of-squares of the fits. Nearly all fitted exponential decay models have larger weighted residual 
sum-of-squares than the corresponding fits with the logistic decay model (Figure 7.6A, B), indicating 
that the logistic decay models generally align better to the relative RIAoldLys values than the 
exponential decay models. However, it is important to note that the logistic model is more complex 
as it is based on two parameters, kdeg and Timehalf-life, while the exponential model is based only on 
one, kdeg. I therefore compared each logistic and exponential decay model pair with an ANOVA to 
determine if the logistic decay fit was significantly better despite the fewer available degrees of 
freedom. According to the ANOVA comparison, 29.7 % of all logistic decay models describe the 
trajectories more accurately than the exponential decay model (p-value < 0.05). This ratio varies with 
the flg22-treatment. The slower-growing flg22-treated samples showed more trajectories that can 
be fitted better with a logistic model than the non-treated cultures (Figure 7.6C).  

I verified the assessment of the ANOVA with comparisons of the Akaike's information criterion (AIC) 
of both models (Figure 7.6 D). The AIC gives the log-likelihood of the fit and 58% of all fittings had a 
lower AIC with the logistic decay model. The AIC comparison also indicated that trajectories of flg22-
treated cultures were better described by the logistic decay function (Figure 7.6E). 

It is important to note that goodness-of-fit comparisons of non-linear models are difficult to perform 
robustly. To our knowledge, there is no general-purpose comparison available such as the R2 
statistic for linear models. Still, the presented comparisons of the two models are useful to identify 
trends about the two models. The logistic decay model depicts the RIAoldLys trajectory in our opinion 
at least as accurately as the exponential decay model and in a number of cases significantly better 
(Figure 7.6A-D). Several of the protein decay trajectories simply cannot be described faithfully with 
an exponential decay model. In a conventional approach, these proteins would have been excluded 
based on a low quality-of-fit statistic to the exponential decay model as applied in Schwanhäusser 
et al. (2011).  

Regardless of the differences in the fitting quality, I observed for the majority of proteins only small 
differences in the calculated half-lives using either model (indicated by vertical dashed lines in the 
graphs of Figure 7.4B-C and Figure 7.6H-K). Figure 7.6F depicts these differences systematically and 
shows only for long-lived proteins stronger deviations between the models. Their half-life times 
seem to be overestimated by the exponential decay model, as it cannot take initial lag phases into 
consideration (e.g. Figure 7.6J). These long-lived proteins also show an enrichment for higher AIC 
differences, indicating significantly better fits for the logistic decay models (Figure 7.6G).  

Proteins for which degradation trajectories were significantly better modeled by a logistic decay 
model were enriched for several GO categories of the response class and two large metabolic 
categories (Table 7.1). There is no enrichment for ribosomal processes as it was reported in yeast 
(Martin-Perez & Villén, 2015).  

In the following text I will focus on the logistic decay model, as I consider it superior in describing 
the true degradation processes.  
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Figure 7.5: Comparison of the exponential and logistic decay models fitted to the 
protein- and culture-specific relative RIAoldLys trajectories.  
A: Comparison of the weighted residual sum-of-squares of both models. The majority of 
points are located above the red identity line, indicating a lower deviation for most 
logistic decay models. The density of the points is indicated by blue topographic-like 
contours. B: Histogram of the differences between the weighted residual sum-of-
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squares of both models. For the majority of models, the difference is positive, indicating 
a larger weighted residual sum-of-squares for the exponential decay model. C: P-values 
of the ANOVA comparison of both models along the six cultures. D: Comparison of the 
ANOVA p-values and differences in AICs comparing the two models. E: Culture-specific 
AIC differences between the two models. A more negative value is indicative for a better 
fit by the logistic decay model. F: Half-life times calculated by the exponential or logistic 
decay models. The density of the points is indicated as blue topographic-like contours.  

  

  

Figure 7.6: Logistic (top) and exponential (bottom) decay fits to the relative RIAoldLys 
trajectories of exemplary genes (A-D). The half-lives of the proteins calculated based 
on the fitted models are indicated as dashed vertical lines in the plots. The average p-
values from the ANOVA comparisons of the two models are listed under the plots. 

A B 

C D 
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Table 7.1: GO term enrichment for the 282 proteins with decay trajectories that 
were fit significantly better by logistic decay models (ANOVA p-value < 0.05 in ≤ 3 
cultures).  
The enrichment was performed with Panther (Mi et al, 2016) with a  Bonferroni-adjusted 
p-value cutoff of < 0.05. The reference list consisted of all 2’155 modeled proteins. Here 
only the lowest nodes of a hierarchy are listed, parent nodes are left out. # = number of 
proteins. 

GO BIOLOGICAL PROCESS # IN REFERENCE # IN QUERY # EXPECTED 
IN QUERY 

FOLD 
ENRICHMENT 

ADJ.             
P-VALUE 

response to oxidative stress 70 43 20.39 2.11 3.68E-03 
response to acid chemical 97 52 28.25 1.84 1.62E-02 
response to cadmium ion 145 77 42.23 1.82 2.33E-04 
response to oxygen-containing 
compound 

129 68 37.57 1.81 1.53E-03 

single-organism catabolic process 106 55 30.87 1.78 2.27E-02 
oxidation-reduction process 237 109 69.03 1.58 8.27E-04 
carboxylic acid metabolic process 227 98 66.12 1.48 3.78E-02 

RNA processing 60 2 17.48 < 0.2 2.37E-03 

 

7.8 Protein complex associations 

McShane et al. (2016) reported that proteins that are better described by a non-exponential decay 
model are twice as likely associated with protein complexes. I tested whether the proteins identified 
here with decay trajectories that are better described by a logistic decay model, are similarly more 
likely associated with a protein complex. When using the protein complex associations from the 
SUBA database (http://suba3.plantenergy.uwa.edu.au,(Tanz et al, 2013)), we detected a small but 
significant change in the ANOVA p-value distribution for the proteins that are associated with a 
protein complex (p-value = 0.003074, Wilcoxon rank sum test, Figure 7.7A). This means that proteins 
with a protein complex annotation are more likely better described by a logistic decay model.  

Additionally, I tested the protein complex associations from the plant interactome consortium 
(http://interactome.dfci.harvard.edu/, (Braun P, Carvunis AR, Charloteaux B, Dreze M, Ecker JR, Hill 
DE, Roth FP, Vidal M, Galli M, Balumuri P, Bautista V, Chesnut JD, Kim RC, de los Reyes C, Gilles P, Kim 
CJ, Matrubutham U, Mirchandani J, Olivares E, Patnaik S, Quan R, Ramaswamy G, Shinn P, Sw, 
2011)). Also with these associations I found that the proteins associated with a protein complex are 
significantly more likely better described by a logistic decay model than an exponential decay model 
(p-value < 2.2e-16, Wilcoxon rank sum test, Figure 7.7B).  

These differences are much smaller than the two-fold enrichment reported by McShane et al. (2016). 
However, the quality of the protein complex associations in Arabidopsis are presumably not as high 
as those in  the manually curated, mammalian database (CORUM, Ruepp et al, 2010), which might 
explain the differences. It remains that the proteins that are better described by a logistic decay 
function are more likely associated with a protein complex. As mentioned above, the decay 
trajectories of especially long-lived proteins are generally modeled better by logistic decay models. 
The finding that proteins with decay trajectories that are better described with a logistic decay 
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function are enriched for complex formation might therefore reflect the fact that complex formation 
leads to protein stabilization (Goldberg, 2003; McShane et al, 2016).  

                     
Figure 7.7: Effect of protein complex associations on the distribution of the ANOVA 
p-values comparing the exponential and logistic decay models.   
The information on protein complex associations was either taken from SUBA (A, Tanz 
et al, (2013) or from the plant interactome database (B, Dreze et al, (2011)). 

 
 

 
 

 
This  i  

  

A B 



7. PROTEIN DEGRADATION

126   

 

7.9 Bona fide protein half-lives 

Under the assumption that the cell cultures are in steady-state with constant protein abundance 
and protein synthesis, we can calculate the protein turnover from the fitted relative RIAoldLys 

trajectories. The turnover of proteins can be expressed in half-lives, which is the time until 50% of a 
protein population is being renewed. The term was originally defined for exponential decay models, 
but can also be calculated for non-exponential decay models such as the logistic decay model by 
calculating the time until the fitted curve reaches 50% of the RIAoldLys value at the beginning of the 
experiment.  

I determined the half-lives of 2802 proteins, 1509 of which were characterized in all six cultures 
(Figure 7.8A). The culture-specific density distributions of these half-lives are depicted in Figure 7.8B. 
Again, cultures with the same treatment and labeling background correlate better, as was observed 
before for the median RIA trajectories (Figure 7.3) and the growth curves (Figure 7.1). As discussed 
previously, this is most probably due to the differences in growth rates caused by the treatment and 
the initial labeling. 

Consequently, I normalize the half-lives by the growth rate, following the approach published by 
Martin-Perez & Villen, (2015), who compared the half-lives of prototroph- and auxotroph-grown 
yeast cultures. Accordingly, the half-lives were divided by the culture’s doubling time, which is the 
time until an exponentially growing culture doubles in density, giving the dimension-less normalized 
half-life:  

 ℎ - =
-

 
 

A normalized half-live smaller than 1 means that the protein has a higher turnover rate than the 
culture’s growth rate. Following the interpretation of Eden et al, (2011), this means that the protein’s 
half-life is dominated by targeted degradation processes. A relative half-life larger than 1 means in 
contrast that the protein’s half-life is dominated by general dilution processes caused by the growth 
of the cells. Normalized half-lives are dimensionless values. 

The doubling time of a culture is calculated similarly to the half-life by solving the exponential 
growth formula for time at = 2 ∗  : 

2 ∗   =  ∗  ( ∗  )     =
(2)

 

The calculated doubling times range from 36.2 h for the L41 culture to 77.9 h for the L81 culture.  

The distributions of the growth-normalized relative half-lives are depicted in Figure 7.8C. The 
untreated cultures show a higher correlation (average rho = 0.806) than the flg22-treated cultures 
(average rho = 0.664). By limiting the analysis to the untreated cultures where the proteome is 
unaffected from stimuli or developmental reorganization, I can make statements on the half-lives of 
proteins in Arabidopsis cell cultures. The calculated median half-life in our data set was 30.4 h ± 2.9 
and the relative median half-life is 0.76 ± 0.12. This growth-normalized value is substantially smaller 
than 1, indicating that the majority of Arabidopsis cell culture proteins have half-lives smaller than 
the culture’s growth rate and are subject to targeted protein degradation processes. 
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The relative half-lives are in the same order of magnitude as the relative half-lives reported for 
auxotrophic and prototrophic yeast cultures (Martin-Perez & Villen, 2015, Figure 7.8D),  while the 
absolute non-growth normalized half-lives are un-comparable (yeast median half-life = 2.12 h at 
2.04 h culture doubling time, Arabidopsis median half-life determined here = 30.4 h). Martin-Perez 
and Villen (2015) report a median relative half-life of 1.026 using a dynamic SILAC approach. Using a 
microscopy based bleach-chase approach, Eden et al, (2011) report a median relative half-life of 
0.659 for yeast cells, which is closer to our determined median relative half-life of 0.762. 

  

  
Figure 7.8: Protein half-lives.  
A: Number of calculated protein half-lives in this study. B: Density plots of the half-lives 
calculated from the logistic decay fitting. C: log2-transformed protein half-lives 
normalized by the cell culture’s doubling time used for the bona fide protein turnover 
rate calculation. D: Comparison of the relative half-lives of subplot C with the relative 
half-lives reported for auxotrophic and prototrophic yeast cultures (Martin-Perez & 
Villén, 2015). 

7.9.1 Comparison to literature data 
It is difficult to draw direct comparisons between protein turnover studies as they differ largely in 
both biochemical and mathematical methodology. There are also only few turnover studies 
published in the plant sciences field. I focused the comparisons on studies where both the protein-
specific half-lives and growth rates were reported. 
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The laboratory of Harvey Millar (University of Western Australia) reported several studies on plant 
protein turnover by fitting 15N pulse-labeling trajectories to exponential decay models. In Nelson et 
al, (2013), they determined the half-lives for 258 mitochondrial proteins from an Arabidopsis cell 
culture and in Nelson et al, (2014a) they reported the half-lives for 521 proteins in maturing barley 
leaves, 231 of which have homologs in our study.  

Comparing the half-lives without normalizing for the growth rate creates large differences for 
individual proteins of more than a factor of 10. Yet the growth rate normalization brought the half-
lives into the same order of magnitude (Figure 7.9A, B). While there was no correlation to the barley 
proteins (rho = -0.04876, Figure 7.9B), it was substantially higher for the mitochondrial proteins from 
the Arabidopsis cell culture (rho = 0.2463, Figure 7.9A). 

In the most recent protein turnover study in Arabidopsis reported by Fan et al, (2016), they 
determined the turnover for 250 protein in Arabidopsis seedlings by fitting the 15N pulse-labelled 
trajectories to an exponential decay model. They did not publish the growth rate of the seedlings so 
that we could only compare the non-normalized half-lives (Figure 7.9C, rho = 0.373). Interestingly, 
the half-lives of both studies do not show a clear offset, hinting towards a similar growth rate of the 
seedlings and our quickly growing cell line.  

In conclusion, the relative half-lives we obtained are in a comparable range to those in other 
published studies, where different biochemical and mathematical frameworks were adopted or 
even different species. A systematic normalization that includes the growth rate is needed to draw 
reliable comparisons between studies. Without this, the results from the protein degradation field 
will remain largely incomparable.  
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Figure 7.9 Comparison of the determined protein half-lives to those in published 
data sets. A: Comparison to half-lives of mitochondrial proteins from an Arabidopsis 
cell culture (Nelson et al, 2013). B: Comparison to half-lives of proteins from barley 
leaves (Nelson et al, 2014a). C:  Comparison to non-normalized half-lives of Arabidopsis 
seedlings. 

 

7.9.2 Labelling of plastid-localized proteins 
During the comparison to the literature data it became apparent that a subgroup of proteins depicts 
a peculiar labeling pattern. Proteins encoded in the plastid genome contained a particularly high 
amounts of unlabeled lysine, in other words, they have a low labeling efficiency (Figure 7.10A). When 
analyzing individual plastid encoded proteins, a particularly stochastic labeling efficiency becomes 
apparent (Figure 7.10B-D). In a more systematic analysis, I observed that the plastid-encoded 
proteins are labeled on average to 85% with endogenous Lys0 (Figure 7.10E). Proteins that are 
encoded in the nuclear and mitochondrial genomes have in contrast a constant median Lys0 
labeling rate of ~15%.  

Chloroplasts are the place of lysine biosynthesis (Galili, 1995). It is therefore to be expected that the 
concentration of endogenous unlabeled lysine is higher in the chloroplasts compared to the cytosol. 
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This fact was used by Allen et al, (2012) to study compartment-specific metabolism by determining 
the labeling rate of the small, nuclear-encoded and large plastid-encoded subunits of RUBISCO 
when adding 13C-labelled carbon sources to Brassica napus embryos. They determined surprisingly 
small differences between the different RUBISCO subunits and interpreted this as an indication for 
a quick exchange rate of amino acids between the two compartments.  

 

    

  
Figure 7.10: Compartment-specific protein labeling efficiencies  
A: Chromosome-specific median Lys0 labeling rate over the course of the turnover 
experiment. B-D: Lys0 labeling rate of exemplary chloroplast-encoded proteins. E: Lys0 
labeling rate of all proteins detected in the turnover experiment in any sample. As a 
measure for the certainty of the quantification, the number of samples where the 
protein was not quantified is listed on the y-axis (nNA = number of “not assessed” 
values. nNA of zero indicates that the protein was identified in all samples.). The more 
often the protein is quantified, the more certain is the quantification. Plastid-encoded 
proteins are highlighted in red. The chromosome-specific medians are indicated as 
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vertical lines. The blue shaded box comprises all proteins listed in Table 7.2 that are 
identified in more than 20 samples with a labeling efficiency of less than 40%.  

Curiously, the gene-specific labeling-efficiency plot also revealed a subset of nuclear-encoded 
proteins with a high Lys0 labeling rate (Figure 7.10E). Proteins, which were quantified in only few 
samples (high nNA = at the top of the plot in Figure 7.10E) have a wide spread of labeling efficiencies, 
indicating quantification errors. When limiting the analysis to proteins that are quantified in more 
than 20 samples, still 11 nuclear-encoded proteins remained that show extremely low labeling 
efficiencies of less than 40% (Table 7.2). Each of these proteins plays a central role in chloroplast 
metabolism, including photosynthesis and Calvin cycle.  

When expanding the analysis to all quantified proteins with a low labeling rate of less than 40 % 
regardless how many times these proteins were quantified, I could determine a strong enrichment 
for chloroplast-related GO categories (Table 7.3). A list of these 101 low-labelled proteins can be 
found in the appendix 10.3. 

Table 7.2: High-confidence proteins with a low labeling efficiency that are not 
plastid-encoded. 

AGI GENE DESCRIPTION 

AT1G31330   PHOTOSYSTEM I SUBUNIT F, PSAF 
AT1G42970   GAPB, GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE B SUBUNIT 
AT1G61520   LHCA3, PHOTOSYSTEM I LIGHT HARVESTING COMPLEX GENE 3 
AT1G67090   RBCS1A, RIBULOSE BISPHOSPHATE CARBOXYLASE SMALL CHAIN 1A 
AT2G39730   RCA, RUBISCO ACTIVASE 
AT3G08940   LHCB4.2, LIGHT HARVESTING COMPLEX PHOTOSYSTEM II 
AT3G27850   RIBOSOMAL PROTEIN L12-C, RPL12-C 
AT4G10340   LHCB5, LIGHT HARVESTING COMPLEX OF PHOTOSYSTEM II 5 
AT5G01530   LHCB4.1, LIGHT HARVESTING COMPLEX PHOTOSYSTEM II 
AT5G26000    ATTGG1, BETA GLUCOSIDASE 38, TGG1, THIOGLUCOSIDE GLUCOHYDROLASE 1 
AT5G38420   RBCS2B, RUBISCO SMALL SUBUNIT 2B 
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Table 7.3: Cellular component GO category enrichment for the 101 proteins with a 
low labeling efficiency. The enrichment was performed with PANTHER (Mi et al, 2016). 
The reference list contains all quantified proteins. 

GO CELLULAR 
COMPONENT  

# IN 
REFERENCE 

# IN 
QUERY 

EXPECTED IN 
QUERY 

FOLD 
ENRICHMENT 

ADJUSTED P-
VALUE 

chloroplast 
photosystem II 

4 4 0.18 21.88 1.19E-02 

photosystem I 15 12 0.69 17.5 2.76E-09 
light-harvesting 
complex 

10 7 0.46 15.31 1.54E-04 

plastoglobule 32 19 1.46 12.99 4.30E-13 
chloroplast thylakoid 
lumen 

20 11 0.91 12.03 9.87E-07 

stromule 20 11 0.91 12.03 9.87E-07 
apoplast 161 36 7.36 4.89 1.45E-12 
extracellular region 374 52 17.1 3.04 1.16E-10 
chloroplast 
membrane 

59 11 2.7 4.08 3.10E-02 

 

I could verify this labeling pattern in the protein abundance SILAC dataset (chapter 6). However, the 
effect was less pronounced there, presumably as the experiment has a more constant average 
labeling efficiency (Figure 7.11A). In the pilot studies that I have performed to set up the plant SILAC 
protocol, I also observed an equally low labeling efficiency for chloroplast-encoded and some 
nuclear-encoded proteins (Figure 7.11B). These nuclear-encoded genes overlap (20 % overlap) with 
the proteins that showed a low labeling rate in the protein turnover study (Figure 7.11C).  

We tested whether this labeling pattern was caused by peptide sequence mismatches or peptide 
ambiguities. The isobaric amino acids isoleucine and leucine for instance cannot be distinguished in 
MS, which can lead to potentially erroneous matching of peptides to proteins. We, therefore, limited 
the analysis to peptides, which map uniquely to a protein even when one amino acid mismatch is 
allowed (Figure 7.11D). This analysis showed the same labeling pattern, including the low labeling 
rate for some peptides that map to nuclear-encoded proteins. 
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Figure 7.11: Verification of the chloroplast-specific low labeling rate.  
A: Labeling efficiencies for each protein detected in the protein abundance data set. 
nNA = number of samples in which the protein was not identified. Red dots indicate 
plastid-encoded proteins and the median labeling rate for each chromosome is 
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indicated by vertical lines. B: Protein-specific labeling efficiencies plotted against the 
number of unique peptides with which the proteins were identified in the pilot 
experiments. Vertical lines indicate the chromosome-specific median labelling 
efficiencies. C: Venn plot of nuclear-encoded genes with at low labeling efficiency as 
determined in the pilot studies of B or the protein turnover data set. D: Labeling 
efficiency plot of the peptides quantified in the protein turnover data set. Peptides that 
map uniquely to one protein even when one amino acid mismatch is allowed are 
colored in red. The analysis is limited to peptides that do not map to plastid-encoded 
proteins. 

 
A naïve and biologically arguable interpretation of this phenomenon would be that some transcripts 
of nuclear-encoded genes are somehow translated in the chloroplasts. We therefore analyzed the 
lengths of the RPFs that map to the transcripts for the nuclear-encoded proteins with a low labeling 
efficiency. Yet their observed footprint length of ~31 nt is typical for eukaryotic translation of 
cytoplasmic 80S ribosomes. RPFs mapping to transcripts of plastid-encoded proteins depict a 
footprint length of only 26 nt, which is typical for transcripts translated by prokaryotic ribosomes.  

One RFP length pattern of the low label-efficiency proteins deviates from this analysis: The RFPs of 
the ATP synthase AT2G07698 have an average footprint length of 26 nt. When comparing the coding 
sequence of AT2G07698 to the Arabidopsis genome, we identified a next-to-perfect copy of the gene 
in the mitochondrial genome (ATMG01200, 98% DNA identity). It is therefore more likely that the 
prokaryotic pattern of the ribosomal footprints derives from the mitochondrial copy than from the 
nuclear-encoded version.  

   
Figure 7.12. A: Length distribution of the ribosome-protected fragments that map 
to AT2G07698. For comparison, the footprint length distributions for nuclear- (B) and 
mitochondrial-encoded (C) genes with the respective footprint length modus indicated 
by vertical lines. 

Zhelyazkova et al, (2012)  published an RNA-Seq data set from isolated barley chloroplasts. We 
remapped these plastid reads to the whole barley genome to find out whether some of them might 
map to nuclear-encoded genes in barley. Yet only the nuclear-encoded cytochrome C oxidase gene 
MLOC_370 was mapped by a high number of reads, which has a perfect copy on the mitochondrial 
genome. It is therefore more likely that these reads originate from the mitochondrial copy, which 
could be co-isolated in the chloroplast enrichment.  

B A C 
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In conclusion, the RFP lengths and chloroplast RNA-Seq analyses give no indication that the low-
labeling proteins would be translated in the chloroplast. The reason for the peculiar difference in 
labeling thus remains unclear. What remains to be stated is that due to the labeling effect, we cannot 
assess the protein turnover of chloroplast-encoded genes and some chloroplast-associated 
proteins. Unfortunately, this also entails proteins that would be important to be included in  protein 
turnover studies such as the RUBISCO subunits, the D1 and D2 proteins of photosystem II, or THIC 
and THI1, which were described to have a particularly high turnover rates (Chatterjee et al, 2011; Li 
et al, 2012a; Fitzpatrick & Thore, 2014). 

On a side note, when analyzing the plastid-encoded genes I detected one outlier that showed a 
regular labeling pattern (acetyl-CoA carboxylase carboxyltransferase, ACCD, ATCG00500, Figure 
7.13A). The reason for this difference in labeling is equally unclear, as this gene shows a prokaryotic 
RPF length distribution (Figure 7.13B) indicating plastid translation. Comparing the nucleotide and 
amino acid sequence of ATCG00500 by BLAST did not reveal any highly similar copy of the gene 
(Figure 7.13C-D). ATCG00500 is detected reliably in all samples with 3 to 8 unique peptides. 

  
Nucleotide BLAST 

 
 

Amino Acid BLAST 

 
 

Figure 7.13: ATCG00500, a plastid-encoded gene with a cytosolic Lys0 labeling 
pattern.  
A: Labeling efficiency of ATCG00500. B: RFP length distribution with the modus 
indicated by a red line. C: Nucleotide BLAST search of ATCG00500 against the 
Arabidopsis genome. D: Amino acid BLAST search against Arabidopsis proteome. 
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7.9.3 Example proteins 
Nucleoporins and histones are reported to have very long protein half-lives (Toyama & Hetzer, 2013; 
Martin et al, 2012). However, in our dataset, I don’t see a significantly different turnover for these 
protein classes (nucleoporins p-value = 0.687, histones p-value = 0.789, Wilcoxon rank sum test). The 
only protein annotated in TAIR to the nuclear pore complex that shows a distinctly high half-life is 
Sucrose synthase 1 (ATSUS1, AT5G20830, relative half-life = 1.522), whose role is clearly not limited 
to the nuclear pore. 

  

Nucleoporin 155 

 

Nucleoporin 133 

 

Sucrose synthase 1

 

Figure 7.14: Protein half-lives of nucleoporins (A) and histones (B). C-E: Protein 
turnover plots of example proteins associated with the nuclear pore.  

Several cases show a high turnover rate where the protein and/or transcript is reported to follow a 
circadian rhythm:  

Li et al, (2012) determined that glycine-rich RNA-binding family proteins (GRP) depict a particularly 
high turnover rate. In our data set we can identify three GRPs. GRP2 (AT4G13850, relative half-life = 
0.51440, Figure 7.15A) and GRP7 (AT2G21660, relative half-life = 0.4909, Figure 7.15B) have 
relatively short half-lives, while GRP8 (AT4G39260, relative half-life = 0.8250, Figure 7.15C) shows a 
regular turnover. GRP7 is the most studied GRP as it is associated with the regulation of circadian 
oscillations (Staiger et al, 2003) and flowering time (Li et al, 2012a).  

D-myo-inositol-3-phosphatase synthase 1 (ATIPS1, AT4G39800, Figure 7.15D) that shows diurnal 
protein level fluctuations (Sira Echevarría-Zomeño, ETH Zurich, personal communication) also has 
a short relative half-life of 0.5431. 

Nitrate reductases are key enzymes in nitrogen homeostasis. These proteins catalyze also a side 
reaction with nitrite to form toxic nitric oxide (NO), whose scavenging is limited in the dark by the 
availablilty of reduced ferredoxin (Rockel et al, 2002). The abundance of these proteins is therefore 
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down-regulated throughout the day so that the proteins are not active during the dark (Piques et al, 
2009). In our data set, Nitrate Reductase 1 (AT1G77760, Figure 7.15E) and Nitrate Reductase 2 
(AT1G37130, Figure 7.15F) show a high relative turnover of 0.4516, and 0.5516, respectively.   

Retinoblastoma-related 1 (RBR1, AT3G12280, Figure 7.15G), a key regulator of the cell cycle (Gutzat 
et al, 2012), also shows a shortened relative half-life of 0.4961. 

GRP2, AT4G13850

 

GRP7, AT2G21660 

 

GRP8, AT4G39260

 
ATIPS, AT4G39800 

 

Nitrate Reductase 1, AT1G77760 

 

Nitrate Reductase 2, AT1G37130 

 
RBR, AT3G12280 

 

 

 
Figure 7.15: Protein turnover plots of proteins associated with circadian 
regulation (A-D), nitrate metabolism (E&F) and cell cycle regulation (G). As a 
reference, the median turnover is plotted in the bottom right (H). 
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7.10 Effect of flg22-treatment on protein turnover  

In the next step, I aimed to determine gene-specific effects on protein turnover upon flg22 
treatment. In chapter 6, I have observed that flg22 induces substantial changes in the proteome 
composition of the treated cultures. An increase in protein abundance leads to an increase of 
newLys–labeled protein in the turnover dataset. RIA values are determined in relation to the other 
two labeled states so that an increase in RIAnewLys leads to a proportional decrease of RIAoldLys, which 
I used to determine the protein half-lives. Consequently, changes in protein abundance should be 
reflected in the here determined protein half-lives. 

 This relationship can be exemplified for Cinnamate-4-hydroxylase (C4H, AT2G30490). This protein 
is among the proteins that increase the most in response to flg22 treatment (Figure 7.16A). It also 
shows a drastic reduction in RIAoldLys when treated with flg22. Consequently, when assessing 
statistically the effect of flg22 on our protein turnover data, genes with increased protein abundance 
such as C4H should be flagged as significantly changing.  

I compared the doubling-time-normalized relative half-lives of all proteins with an ANOVA on the 
flg22-treatment that includes the labeling background as a blocking factor. I found 149 proteins with 
a differential relative half-life at a p-value cutoff of 0.05. The positive control C4H was determined to 
be significantly different at a p-value of 0.0054. As a negative control, I used the median relative half-
lives, assuming that the majority of proteins remain unaffected by the flg22-treatment. The ANOVA 
computes a non-significant p-value of 0.8903 for this control. 

  

 
Figure 7.16: Testing for flg22-effect on the relative protein half-lives with an 
ANOVA.  
A: Protein abundances of C4H (AT2G30490), which is used as a positive control for flg22-

C 
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induced changes in the turnover rate. B: Protein degradation curves of C4H 
(AT2G30490). C: Volcano plot of the ANOVA test for the effect of flg22-treatement on the 
relative protein half-lives. 

I conclude that the ANOVA can assess the effect of flg22-treatement correctly, however, by taking 
the computed half-lives instead of the RIAoldLys values statistical power is lost, leading to reduced 
sensitivity. 

I therefore designed a statistical test within the limma framework (Smith, 2005) for the effect of 
flg22-treatment based on the RIAoldLys values. First, I tested the effect of flg22 treatment on RIAoldLys 
over all sampling time points. The lysine labeling background was included as a blocking factor. 

 ~   +    +  22  
 

This test would assess unrealistically that nearly all proteins are affected by flg22 (Figure 7.17A). The 
negative control median RIAoldLys values were also determined to be highly significantly regulated by 
flg22 (p-value = 0.00021). 

In a second test, I normalized for the different growth rates of the cultures by dividing the absolute 
sampling time by the culture-specific doubling time. This results in the number of culture doublings 
at the time of sampling, which could also be called the average number of cell divisions at that time 
point. 

 
  

=   
 

 ~   +    +  22  
 

This transformation is visualized in the plots of Figure 7.17, where the median RIAoldLys is plotted 
either against the sampling time (A) or against the culture doublings (B). By including the culture-
specific growth rates, the differences between the treated and untreated median RIAoldLys trajectories 
get smaller, which results in a non-significant assessment of the flg22-treatment (p-value = 0.12401). 
The positive control C4H is determined to be affected by flg22 with a highly significant p-value of 
1.86E-13 (Figure 7.17E). The proteins with higher turnover are enriched for GO categories associated 
with bacterial defense reactions (Table 7.4).  

Manual inspection of the two proteins determined to have a slowed degradation upon flg22 
treatment showed that these proteins were only determined in few samples and have scattered 
RIAoldLys trajectories. This is reflected in relatively high p-values (2.7E-4 for AT1G09310 and 2.3E-4 for 
AT2G24270) compared to the proteins with increased turnover that reach p-values of up to 1E-16 
(Figure 7.17D). 

I conclude that normalizing for the different growth rates is essential for testing the effect of flg22 on 
protein turnover. But as mentioned before, changes in protein abundance also have an effect on the 
protein turnover assessments. In the next step, protein turnover changes that are caused by protein 
abundance changes have to be differentiated from the ones caused by changes in protein 
degradation rates.  
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237 up     372 non-changing    907 down 

 
228 up    3173 non-changing    2 down 

 
p-value = 0.00021 

 
p-value = 0.12401 

 
p-value = 1.86E-13 

Figure 7.17: Statistical tests on the effect of flg22-treatment on protein turnover. 
A: Volcano plot of the first limma test based on the actual sampling times. The number 
of proteins that are significantly affected by flg22-treatment at an FDR-adjusted p-value 
threshold of 0.05 are given underneath the plots. B: Volcano plot of the second limma 
test based on the number of culture doublings. C: Median relative RIAoldLys plotted 
against the sampling time. The p-value for the effect of flg22-treatment is given 
underneath the plot. D: Median relative RIAoldLys plotted against the number of culture 
doublings. E: Relative RIAoldLys values of C4H plotted against the number of culture 
doublings. 
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Table 7.4: GO category enrichment for the 228 proteins with increased turnover 
upon flg22-treatment.  
The enrichment was performed with Panther (Mi et al, 2016) using the Bonferroni 
correction for multiple testing and an adjusted p-value cutoff of 0.05. Here only the 
daughter nodes of a hierarchy are listed. The 3403 proteins for which the limma test was 
performed were used as reference list. 

GO BIOLOGICAL PROCESS  PROTEINS IN 
REFERENCE 

PROTEINS IN 
QUERY 

EXPECTED 
IN QUERY 

FOLD 
ENRICHMENT 

ADJUSTED 
P-VALUE 

flavonoid glucuronidation 9 6 0.39 15.3 2.89E-03 

polysaccharide localization 8 5 0.35 14.34 2.65E-02 

tryptophan biosynthetic process 9 5 0.39 12.75 4.60E-02 

jasmonic acid biosynthetic process 12 6 0.52 11.47 1.46E-02 

flavonoid biosynthetic process 14 6 0.61 9.83 3.42E-02 

secondary metabolite biosynthetic 
process 

23 8 1 7.98 7.85E-03 

glutathione metabolic process 26 8 1.13 7.06 1.88E-02 

response to wounding 35 10 1.53 6.56 3.30E-03 

sulfur compound biosynthetic process 37 9 1.61 5.58 3.55E-02 

defense response to fungus 37 9 1.61 5.58 3.55E-02 

cellular amino acid biosynthetic 
process 

84 15 3.66 4.1 4.11E-03 

defense response to bacterium 80 13 3.49 3.73 4.75E-02 

response to bacterium 95 16 4.14 3.86 4.06E-03 

response to cadmium ion 171 22 7.45 2.95 4.85E-03 

cellular protein metabolic process 457 4 19.92 < 0.2 6.05E-03 

nucleobase-containing compound 
metabolic process 

414 1 18.04 < 0.2 8.29E-05 
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7.11 Effect of flg22-treatment on protein degradation 

As discussed in chapter 7.10, changes in protein abundances affect the turnover estimations. An 
increase in protein synthesis leads to a reduction of the proportional RIAoldLys value, regardless of the 
actual degradation rate of the protein. Consequently, there is a high overlap of genes that were 
assessed as differentially changing at the protein level and in protein turnover (Figure 7.18A). Yet, 
when limiting the analysis to the 153 proteins that change in their turnover yet remain unchanged 
in protein abundance, I can study the flg22-induced effect on protein degradation.  

I analyzed these genes manually to verify that the two statistical tests describe a reliable effect over 
multiple timepoints and not just a spurious change. Of the 153 assessed proteins, I determined 120 
proteins to show a clear increase in protein degradation. Upon flg22-stimulation, these proteins 
show a faster turnover, constant protein levels and for the most cases an increase in RNA-Seq and 
Ribo-Seq counts. Only 8 cases showed non-significant changes in the transcription and translation 
data. 33 cases depict a brief, burst-like response where the degradation rate changes quickly after 
the stimulus and seemingly returns afterwards to a degradation rate comparable to that in 
untreated control samples. The whole list of proteins is found in the appendix (chapter 10.2) and 
representative proteins are shown in Figure 7.18B-G. 

The list of proteins with increased degradation rates contains a diverse list of enzymes. According to 
SUBA3, these proteins can be found in all subcellular compartments and 13 proteins are secreted 
(Figure 7.18B). The proteins are enriched for several GO terms associated with bacterial defense 
mechanisms (Table 7.5, Figure 7.19), indicating that regulation of protein degradation is a 
biologically important part of the flg22-response.  

Table 7.5: GO category enrichment of the 120 proteins with increased degradation 
upon flg22-stimulation. The enrichment was performed with PANTHER (Mi et al, 2016) 
and all proteins detected in the turnover study were used as the reference list. Parent 
nodes of the GO term hierarchies were excluded. 

GO BIOLOGICAL 
PROCESS  

PROTEINS IN 
REFERENCE 

PROTEINS 
IN QUERY 

EXPECTED 
IN QUERY 

FOLD ENRICHMENT ADJ. P-
VALUE 

flavonoid 
glucuronidation 

15 5 0.34 14.8 3.57E-02 

jasmonic acid 
biosynthetic process 

19 6 0.43 14.02 7.42E-03 

regulation of biological 
quality 

258 18 5.81 3.1 3.17E-02 

oxidation-reduction 
process 

541 35 12.18 2.87 1.50E-05 

response to chemical 784 38 17.66 2.15 4.94E-03 
response to stress 921 41 20.74 1.98 1.49E-02 
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Figure 7.18: Examples of genes with increased protein degradation upon flg22-
stimulation.   
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A: Venn diagram of the proteins that change significantly in protein abundance or 
protein turnover upon flg22-treatment. B: Subcellular localization according to SUBA3 
consensus. C-H: Examples of genes with increased protein degradation upon flg22-
stimulation. The RNA-Seq, Ribo-Seq, protein abundance and protein turnover 
assessments are presented for each protein together with the p-values and fold change 
assessments for a flg22-induced effect in each individual dataset. The manual 
classifications of the degradation regulation size are given above each plot. The number 
of + indicate the size of the degradation regulation. I: As a reference, the protein 
turnover of the median RIAoldLys values. The color scale at the top right is representative 
for all plots.  

 

 

 

 
Figure 7.19: Visualization of the GO enrichment of the proteins with increased 
degradation upon flg22-stimulation by Virtualplant (Katari et al, 2010).  
The nodes are colored according to the enrichment p-value (orange = highly 
significant p-value, green = less significant p-value). 
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DISCUSSION 
 

 

8.1 Gene expression regulation  

The aim of this study was to assess in a systems biology approach the relative contributions of 
transcription, translation and protein degradation on the global regulation of protein abundances 
under the influence of an external stimulus. We quantified four genome-wide gene expression 
datasets (transcription, translation, protein abundance and protein turnover) in cultured 
Arabidopsis suspension cells with or without elicitation of defense response through treatment with 
flg22. Flg22 is a short peptide derived from the amino acid sequence of the bacterial flagellum and 
it was chosen as the stimulant because it induces a strong PAMP-triggered immune response on 
multiple physiological levels (Felix et al, 1999).  

In summary, I found for genes whose expression increases by flg22 stimulation that 1) the strongest 
changes after flg22 stimulation are detected at the transcriptional level, 2) transcriptional changes 
are passed on to the translational level without major regulation and 3) in cases where protein levels 
do not follow the transcriptional and translational upregulation, protein degradation rates increase, 
counteracting the increased protein synthesis.  

I did not detect clear examples where these gene expression levels did anti-correlate, which would 
require more complex gene expression regulation mechanisms. Visual inspection of the cases where 
the observed changes were not significant in all data sets revealed the same trend in the different 
datasets, indicating that the non-significance was merely an issue of the employed significance 
thresholds. Many of such non-corresponding cases could also be explained by spurious correlations 
in one dataset at one time point caused by measurement noise. This highlights the importance of 
including multiple biological replicates and adopting a time-resolved experimental design. With that 
wealth of data, spurious cases that would otherwise be deemed significant, could be assessed 
accurately. 

When flg22-treatment induces transcriptional downregulation of a gene, the interpretation gets less 
clear. Downregulation does not seem to have such a strong effect at transcriptional and 
translational level, as the fold-changes for downregulated genes are much smaller than for 
upregulated genes. We could also not identify genes with strongly and quickly reduced protein 
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abundances, which would be indicative for substantially increased protein degradation. It seems 
that the primary downregulation response is triggered by a transient decrease in transcription, 
which slowly affects the protein abundances depending on the individual protein turnover rates. 
That means that proteins with a slow turnover need a long time to respond to a transcriptional 
downregulation. A slow protein turnover buffers against quick and brief stimuli. This mechanism 
could primarily be detected for constitutively expressed proteins with high abundances, while 
transcription factors and stress response genes are expected to show a more burst-like protein 
abundance behavior and a more strongly regulated protein degradation. Unfortunately, the nature 
of the MS-based protein quantitation makes the assessment of these low abundant proteins 
difficult. Assessing the protein degradation regulation of these low abundant proteins would be very 
interesting. This could be analyzed for instance by using a click-chemistry-based enrichment of 
newly synthesized proteins using AHA-methionine supplementation briefly after the stimulus 
(Eichelbaum et al, 2012). 

The relative contributions of transcription, translation and protein degradation on gene expression 
regulation also depend on the type and timing of the stimulus. It will, therefore, be interesting for 
future studies to assess whether the assessments made here can be transferred to other stimuli 
including hormonal treatment or exposure to biotic or abiotic stressors. 

These assessments so far are based on my personal interpretation of the data. A systemic 
mathematical assessment of the impact of transcription, translation and protein degradation on the 
protein levels is currently being conducted. 

8.2 Comparison to other reported studies 

Only few studies have systematically quantified the gene expression cascade on the four levels 
discussed here. The following studies are noteworthy to discuss in this context:  

1. Schwanhäusser et al, (2011) determined the absolute abundances and turnover rates of mRNAs 
and proteins in mouse fibroblasts without further stimulation. They conclude that variation in 
transcription can explain up to 40% of the protein level variation and that protein levels are 
equally strongly affected by translational regulation, while regulation of protein degradation has 
only a minor effect.  

2. In response to Schwanhäusser et al, (2011), Li et al, (2014) criticized the employed MS-based 
absolute quantifications  to estimate the impact of translational regulation. When comparing the 
MS-based estimation of the translation rate with more immediately determined Ribo-Seq data, 
only 12% of the protein level variation can be explained by translational regulation. Li et al, 
(2014) thus conclude that the effect of transcription was underestimated in the study of 
Schwanhäusser et al, (2011) and can rather explain ~ 81 % of the protein level variation. 

3. Maier et al, (2011) studied transcription, protein abundance, and protein turnover of the 
genome-reduced (690 ORFs) bacterium Mycoplasma pneumoniae. They determined absolute 
levels of mRNAs and proteins and found that the dynamics of mRNAs and of their corresponding 
proteins are largely decoupled and that abundance ratios of mRNAs and proteins are affected by 
regulation of translation rather than protein degradation. Yet, how well a genome-reduced 
bacterium can be compared to higher eukaryotes is debatable. 
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4. Battle et al, (2014) obtained and correlated expression quantitative trait loci (eQTL) across 
transcription, translation and protein abundance datasets in 62 mammalian cell lines. They saw a 
strong association of the eQTL to transcriptional expression and by an equal extent to 
translation. The eQTLs exhibit attenuated effects on protein abundance, indicating a buffering 
mechanism. They did not assess protein degradation, which is the main remaining regulatory 
mechanism, which could explain the reduced effect size of the protein abundances on the eQTLs.  

5. Jovanovic et al, (2015) analyzed primary mouse dendritic cells treated with lipopolysaccharides 
(LPS). They determined protein synthesis and degradation with a multiplexed SILAC assay and 
determined the transcriptional response by RNA-Seq. It is very similar to our experimental 
design, as it also compares the response of a biological system to a stimulus, coincidentally also a 
bacterial stimulus that elicits a defence response. They identified 63 proteins with increased 
abundance and 4 with decreased abundance – a similar number compared to our dataset. They 
obtained each data set in two replicates and determined that transcriptional regulation 
contributes by far the most to protein level regulation (66 %), followed by translational 
regulation (26 %). Protein degradation regulation was determined to have only a marginal effect 
on protein level variation (8 %). Yet their translation rates are also determined from MS data and 
could therefore equally overestimate the effect of translational regulation analogously to the 
discussion  by Li et al, (2014) of the data in Schwanhäusser et al, (2011). In support of this 
assumption, Jovanovic et al, (2015) report that their MS-based translation rate estimations 
correlate only marginally well with the translation rates obtained from Ribo-Seq data (Pearson 
correlation = 0.5).  

Compared to these landmark studies, our study explicitly quantifies all four levels of gene 
expression. Yet our data set has issues that arise from using a stimulus that affects the growth rate 
and from using a plant-based system, which complicates the SILAC labeling efficiency and the Ribo-
Seq protocols. Still, with the presented normalizations the data allow us to draw biologically 
meaningful conclusions.  

My finding that gene expression is largely determined by transcription corroborates the assessment 
of Li et al, (2014) and in part of Jovanovic et al, (2015). In contrast to the latter, I determined the effect 
of translational regulation to be of lower significance. As mentioned, they did not determine the 
translational response explicitly but inferred it from MS-determined protein turnover data. As these 
are more variable compared to sequencing-based quantifications such as Ribo-Seq, it can be that 
the regulatory effect of translational regulation is overestimated. In our data set, we cannot detect 
clear regulatory effects on the level of translation but rather on the level of protein degradation. 

In conclusion, based on the data presented here, I found that the primary causal agent for protein 
level regulation is transcriptional change. On the second level, protein degradation seems to be a 
crucial regulatory mechanism, especially for proteins with constant abundance levels despite of 
increasing transcript levels. Translational regulation has only a minor effect on gene expression 
regulation and is limited to few individual cases. Most importantly, though, this assessment has to 
be backed up by mathematical analyses that are currently being performed in collaboration with 
the group of Prof. Jörg Stelling (ETH Zürich).  
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8.3 Experimental design 

In the following, I will discuss in more detail the benefits and challenges of the experimental design 
and the presented data sets. With this, I aim to extend the interpretation of the datasets, especially 
with regard to their limitations, and to support future research in building upon the employed 
experimental approaches.  

One challenge with the employed experimental design is the different time scale. The nature of the 
biological response demands a shorter timeframe for transcription and translation data sets than 
for the protein abundance data set. The protein turnover analysis requires an even longer timeframe 
to produce a large enough label change. Analyzing the response to a stimulus at different levels in 
one experiment will inevitably lead to compromises.  

One of the compromises is that the protein turnover assessments span a longer timeframe, which is 
partially not covered by the protein abundance data set. Consequently, it cannot be excluded that 
significant protein level changes occur at a later time point, which would affect the protein turnover 
assessment. Future studies should expand the timeline for the protein abundance analysis. 

8.4 Replicates 

It was instrumental to have three replicates in all four data sets so that we could assess the technical 
variation and biological that supported me in identifying biological signal from technical noise.  

Following the same line of thought, the Lys4- and Lys8-labeling background did complicate the 
analysis, especially for the protein abundance data set. Yet, it also introduced biological variation 
that helped to identify true biological responses to the flg22-treatment. I arrived at the conclusion 
that label swaps are powerful to hedge against spurious correlations (Kierszniowska et al, 2009). The 
substantial variation in Lys4- and Lys8-labeling trajectories in the protein datasets came as a 
surprise to us, and in hindsight, a higher number of replicates would have been advisable.   

Equally, to have a time-resolved data set enabled me to inspect noisy genes that were passing the 
statistical tests due to spurious correlations. Manual assessment is not a statistically robust 
approach, but invaluable to exclude spurious correlations that are problematic in any high-
throughput quantification (Larsson et al, 2010). 

8.5 RNA-Seq 

In the following paragraphs, I want to address important points for each individual data set.  

Only a few things have to be said about the RNA-Seq data set. It is a robust, reliable, sensitive and 
accurate methodology, thanks to a high degree of standardization in the workflow. It indicates 
where the other genome-wide technologies still have to improve. I would like to highlight the 
importance of rigorous standardized QC measures that verified each step along the data acquisition. 
In MS analysis, for instance, such measures are still the exception.  

The data set contains highly valuable information for modeling approaches to tease apart the 
kinetics of the signaling cascade. One could identify upstream and downstream targets of the 
signaling cascade due to the time-sensitive nature of the analysis. A systematic kinetic model of the 
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data set could improve our understanding of the flg22-transcriptional response network similar to 
the analysis of the Toll-like receptor response of immune dendritic cells (Chevrier et al, 2011). 

8.6 Ribo-Seq 

Although Ribo-Seq is also based on a sequencing methodology, the data are substantially more 
complex to obtain due to the many experimental processing steps and the short read lengths. The 
Ribo-Seq protocol had first to be adjusted for plant samples. The biochemical approaches for plant 
Ribo-Seq samples differ substantially in their ribosome-mRNA enrichment and RNase digestion 
procedures.  

My strategy of pelleting the mRNA-ribosome complexes by ultracentrifugation represents a more 
economical approach to obtain RPFs than to start with large amounts of plant material and adding 
high concentrations of RNases. Yet we cannot assess whether this leads to any differences in the 
quality of the enrichment or the RNase digestion. Using a smaller rotor for the ultracentrifugation is 
a minor improvement to reduce the required amount of biological material and time. In conclusion, 
I hope that my adaptations will help in creating more reliable plant Ribo-Seq data sets in the future.  

The analysis of the RPF lengths revealed a non-negligible number of incomplete short RPFs. These 
could be the reason for the low mapping rate and indicate issues in the library generation. Yet, where 
exactly to improve the protocol can currently not be determined.  

Regardless of this issue, the data set contains enough reads for each sample to describe the 
translational regulation response induced by flg22. Using several statistical tools, we could not 
detect cases where the translational efficiency was strongly altered upon flg22 treatment. It was 
unexpected to see so few changes on the translational level, as flg22-stimulation seems to affect 
nearly all physiological parameters. Maybe a different stimulus could cause a more pronounced 
translational response. Hypoxia was described to lead to a global decline in the initiation of 
translation, yet also there the number of ribosomes per transcript stayed stable across the tested 
conditions (Juntawong et al, 2014).  

In contrast, Liu et al. (2013) describe a clear impact of translational control on thousands of genes 
after exposure of etiolated seedlings to light. As photomorphogenesis is a process that requires 
reshaping the whole cell including the organelles, translational regulation might be much more 
pronounced. Clearly, more data on different stimuli will be required to assess the relative 
contribution of translational control on gene expression.  

8.7 Protein abundance 

8.7.1 Spike-in SILAC 
MS-based proteomics remains a powerful, yet equally challenging technology to wield. We present 
here a comprehensive data set of thousands of quantified proteins over many time points, where 
each sample can be compared directly to any other sample.  Yet especially the moderate overlap of 
quantifiable peptides in all the samples raises an important issue. Without reproducible detection 
of peptides in a complex sample mixture, the quantification will always be more stochastic and 
therefore variable. Future studies could there therefore focus on the maturing data-independent 
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acquisition (DIA) method SWATH-MS (Gillet et al, 2012), which holds the promise of a more robust 
identification of peptides over multiple samples (Bruderer et al, 2015) and a more robust 
quantification independently of the employed algorithm (Navarro et al, 2016).  

SWATH-MS does also not depend on labeling, which would overcome the issue that arose from using 
two spike-in reference samples. The employed approach to normalize the spike-in samples is not a 
standard technique but results in the only way to reliably quantify these samples. McShane et al, 
(2016) developed a similarly complex approach to normalize between triple pulsed SILAC samples, 
where one label state was used as a common reference. Battle et al,( 2014) detected 4’000 proteins 
over all samples in a spike-in SILAC approach when increasing the FDR to an atypically high value of 
10 %. It seems to remain a non-trivial issue to compare large amounts of samples by SILAC MS, thus 
giving motivation to invest in setting up reliable DIA SWATH-MS spectral libraries and assays. A direct 
mixing of treated and untreated samples from the same time point might have been a more robust 
approach to quantifying protein abundance changes upon flg22 treatment, yet with such an 
approach we would not have been able to compare abundance changes between the different time 
points, which would have impacted successive kinetic modeling approaches.  

The adopted spike-in SILAC approach resulted in a protein abundance data set of good quality, yet 
improvements regarding peptide identification rate could be done in future studies, for instance by 
more frequent tuning and exchange of the orifice or LC column. Robust use of online (Bittremieux et 
al, 2016) and offline QC tools such as PTXQC (Bielow et al, 2016) should help with improving the 
reliability of MS studies. Furthermore, when using only lysine as the labeling agent, like in the 
employed plant SILAC approach, the usage of Lys-C as the sole protease should be tested, as it holds 
great potential of increasing the amount of quantifiable information per MS run because no 
unlabeled arginine-terminating peptides will be created. This will reduce peptide complexity, which 
could further improve the identification rate and increase the chance of identifying a particular 
peptide in all samples.  

8.7.2 Plant SILAC 
Our results show that SILAC studies in plants are possible yet remain challenging. Balancing labeling 
efficiency and vitality of cultured cells under nitrogen and lysine stress is a nontrivial task, and 
probably needs to be established for each culture separately. Our study reveals the importance of 
keeping the nitrogen supply high enough to not overly stress the cell cultures. Murashige-Skoog 
medium might be overly saturated in nitrogen, yet reducing it to the amount employed by Schütz et 
al, (2011) holds the risk of performing the experiment in a substantially stressed culture. 

It would be interesting to explore in more detail whether the identified culture viability issues could 
be resolved by supplementation with methionine, as it was indicated by Green & Phillips (1974). I 
could not find a coherent explanation for the detrimental effects of lysine supplementation other 
than the inhibition of aspartate kinase, which potentially leads to a depletion of methionine, 
threonine, and isoleucine. When I added the three amino acids to lysine-supplemented cultures, I 
could not detect a clear improvement of the cultures’ condition. However, increasing the amount of 
supplemented methionine to non-physiological levels might show an effect in the more sensitive 
formazan-based viability assay.  



                                                                                                                                                                                                                           8. DISCUSSION 

  153 
 

Improving the labeling rate by genetic engineering still represents an interesting approach. The 
arginine-deficient Chlamydomonas strain CC-424 clearly shows the benefit of such a culture for 
SILAC studies (Naumann et al, 2005). The generation of an inducible lysine deficient cell culture 
definitely holds great promise to further facilitate plant SILAC studies. Possible genetic targets are 
all genes unique to the lysine biosynthesis pathway, including the here tested DapL. 

Without such a lysine-deficient line, the plant SILAC approach used here can only be recommended, 
when the timeline of the experiment is so short that the seemingly inevitable fluctuating levels of 
unlabeled protein do not affect the quantitation substantially. Also, the differences between the 
Lys4- and Lys8-labelled cultures show that this approach should only be applied with a label-swap 
included in the experimental design (Kierszniowska et al, 2009). 

8.8 Protein turnover 

The protein turnover data set presented here is, to our knowledge, the most comprehensive plant 
turnover data set. Global degradation processes, especially in plants, are seldomly studied, 
presumably due to the challenges regarding plant SILAC (Gruhler et al, 2005b; Schütz et al, 2011) and 
dynamic 15N labeling (Nelson et al, 2014b, 2014a). Our data set highlights the importance of studying 
both baseline protein degradation and in response to stimuli. Interestingly, I detected a higher 
number of proteins with changed protein turnover after flg22 stimulation than with changed protein 
abundances. Clearly, plant cells respond to stimuli with a complex protein degradation machinery, 
which would deserve more attention of the research community.  

With the current approach, I could only identify cases of increased or decreased protein degradation 
if the protein levels remain stable. A more sophisticated analysis using mathematical modeling 
could take protein level changes into consideration and analyze, if the protein turnover only reflects 
the protein level change or whether it is further regulated by changes in protein degradation. This is 
clearly an important task to follow up in the future. 

8.8.1 Transcriptional and translational upregulation can be counteracted by increased 
protein degradation  

Interesting biological questions emerge when focusing on the subgroup of proteins that respond to 
a transcriptional increase by raising protein degradation rates, resulting in constant protein levels. 
To our knowledge, these cases show for the first time a coherent reconciliation of the gene 
expression regulation model. In most studies not all four levels of the gene expression model were 
quantified and therefore had to explain discrepancies by referring to the non-measured level (e.g. 
Battle et al, 2014). The phenomenon of constant protein levels despite transcription level changes is 
described frequently both at genome-scale and individual gene level (e.g. Dutilleul et al, 2003; Yang 
et al, 2004; Baerenfaller et al, 2012), yet it is not well resolved which post-transcriptional processes 
ultimately cause this discrepancy. Our data indicate that – at least for the flg22-induced PTI response 
- regulation by protein degradation plays an important role and the finding that the effect size of the 
transcriptional increase is coherent with the effect size of the protein degradation validates this 
assessment. Equally so for the observed burst-like changes in the turnover trajectories, which could 
indicate a stimulus-induced increase in degradation rate and a subsequent return to a non-
stimulated degradation rate after some time. 
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Seeing the high prevalence of targeted protein degradation processes upon stimulation brings up 
the question why cells invest in increased protein synthesis and degradation when the protein 
abundance finally remains constant. I could think of the following possible explanations:  

1. Protein complex homeostasis.  
It has been proposed that proteins become stabilized when they are integrated into protein 
complexes and that protein complex subunits produced in excess are rapidly degraded 
(Goldberg, 2003; McShane et al, 2016). This could also be the case for the proteins discussed 
here. Increased synthesis of protein complex subunits could lead to increased degradation if 
the synthesis of the protein complex partners does not increase equally. This would explain 
how this phenomenon comes to be, but not what the benefit for the cell might be. 

2. Protein rejuvenation. 
An increase in protein synthesis and a concurrent increase in protein degradation results in a 
higher turnover of the protein, reducing the average molecular age of that particular protein. 
Such a rejuvenation could have two benefits for the cell. First, assuming that the metabolic 
activity of a protein decreases with age e.g. by accumulating oxidation damage or 
stochastically occurring non-reversible misfolding, a rejuvenation could increase the average 
metabolic activity for that protein. This might be particularly important as flg22-treatment 
leads to an oxidative burst (Wojtaszek, 1997), which also damages proteins. Secondly, the 
rejuvenation of a protein would reset the accumulated post-translational modifications 
(PTMs). Newly synthesized proteins could be modified differently, resulting in a different 
proteoform (Smith & Kelleher, 2013), which could modulate the average enzymatic activity of 
that protein. For signaling proteins such as receptor kinases, such a PTM reset could also result 
in a return to the non-induced steady-state. 

3. Changed protein pool composition by alternative splicing. 
In comparison to prokaryotes or lower eukaryotes, higher eukaryotes do not necessarily 
contain a higher number of genes, yet the number of different proteoforms resulting from 
differential splicing and PTMs is substantially higher (Barbosa-Morais et al, 2012). The protein 
abundance analysis described here does not resolve splicing isoforms, however, it could be 
that the protein pools actually do change in composition due to differential splicing. Resolving 
such events on the protein level by MS is challenging, mainly due to the fact that peptides that 
are unique for only one splice variant and readily identifiable with MS are very rare. Yet the 
RNA-Seq and Ribo-Seq data would hold the information on differentially spliced isoforms and 
their systematic analysis could reveal interesting findings, especially for the here discussed 
gene set. 

4. Two signal stimulation. 
It might be that the signaling system for some genes did evolve to be more robust and require 
stronger stimulation to actually change in its protein abundance, potentially requiring a 
secondary stimulus. Our experimental setting is limited to PTI (PAMP-triggered immunity) 
signaling, the first part of plant defence mechanism (Li et al, 2016). The second part of the 
defence mechanism is initiated by a bacteria-secreted, intracellularly-detected effector 
molecule, called ETI (effector-triggered immunity). It could be that the here described proteins 
are part of that secondary ETI response and are initiated by PTI signalling in anticipation of that 
ETI signal. Upon that second stimulus, the targeted protein degradation could quickly be 
stopped so that the more slow reacting protein synthesis machinery is in place to quickly raise 
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the protein abundance. This would describe a form of plant defence priming (Martinez-Medina 
et al, 2016)  

5. Secretion of newly produced protein. 
A plausible explanation for increased turnover rates at constant protein levels is that a fraction 
of these proteins is secreted from the cell. Secretion would keep the intracellular protein 
abundance constant despite of increased protein synthesis. The turnover signal RIAoldLys cannot 
differentiate between protein degradation and secretion, as in both cases, the intracellular 
labeling composition of such a protein would change. 
Yet according to SUBA3 analysis (Tanz et al, 2013), only 13 of the 121 proteins are predicted 
to be secreted. One of these proteins is Cyclase1 (AT4G34180), an important regulator of the 
programmed cell death response upon pathogen infection. It can be found in increased 
concentrations in the growth medium of Arabidopsis suspension cell cultures when stimulated 
by salicylic acid (Smith et al, 2015).  
 

The comparably high prevalence of proteins with increased degradation that balances increased 
transcription points to an important phenomenon that should be investigated in further detail. 

8.8.2 Growth rates affect turnover trajectories 
Clearly, the growth rate is a crucial factor to consider when determining protein degradation 
processes. Several studies publish turnover rates without assessing the growth rates of the 
biological system (Lyon et al, 2014; Fan et al, 2016), which makes the comparisons between studies 
difficult even within the same organisms. 

The interconnection of growth rate and protein turnover labeling was shown in my view most clearly 
by a pulsed-SILAC study in salt-stressed Chlamydomonas cultures (Mastrobuoni et al, 2012). The salt 
stress affects the growth rate (Figure 8.1A) and the label incorporation rate (Figure 8.1B). Yet, the 
label incorporation becomes comparable between the different treatments when compared to the 
cell numbers instead of the sampling time (Figure 8.1C), thus by taking the differences in growth rate 
into consideration. 

 
Figure 8.1: Pulse-SILAC labeled Chlamydomonas cultures affected by 0 mM, 100 
mM or 150 mM of NaCl (Figure 1, Mastrobuoni et al, 2012).  
Culture density (A) and label incorporation (B) over time. By plotting the label against 
culture density in cell numbers, the labeling becomes comparable across the 
treatments (C). 

A B C 
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Price et al, (2010) identified different turnover rates for the same proteins within three mammalian 
tissues - liver, brain, and blood. I think that these findings might be explained by differences in the 
general growth rate of these tissues, as growth rate and turnover rate are negatively correlated. The 
quicker the cells of a tissue divide, the shorter the determined half-lives. Normalizing to the tissue-
specific growth rates could increase the value of these findings.  

Turck et al, (2016) detected two pools of proteins with different turnover rates for the same protein 
of the DPYSL family when analyzing brain tissue of 15N pulse-labelled mice. This could indicate either 
a differentially regulated turnover within the same cell or, in my view more likely, a celltype-specific 
turnover rate within the brain (e.g. different growth rates of neurons and glia cells).  

From the first large-scale degradation study (Pratt et al, 2002) until today (Nelson et al, 2014a), the 
growth rate has been taken into consideration by subtracting the dilution rate from the label-loss 
rate to obtain the degradation rate (kdeg = kloss – kdil, Pratt et al, (2002)). This approach has major 
drawbacks. First, it can only be applied when the protein degradation curves are interpreted strictly 
as an exponential decay process. Second, it results in negative protein decay values for up to 5% of 
all proteins (Price et al, 2010; Nelson et al, 2014a), making them uninterpretable. 

The alternative approach is to divide the label-loss rate by the growth rate (relative kdeg = kloss / kdil; 
Eden et al, 2011) or by dividing the half-life by the doubling time (relative half-life = half-life / 
doubling time; Martin-Perez & Villen, 2015). These values are more biologically relevant and make 
the interpretation across species and studies more meaningful. It also does not exclude proteins 
with a relative decay rate of > 1, which would be a negative value in the subtraction approach. 
Instead, it incorporates them in the biological interpretation as dominated by dilution processes 
(Eden et al, 2011). Focused research on these cases will help to increase our fundamental 
understanding of untargeted protein degradation and general protein homeostasis. 

In a review on plant protein turnover, Nelson et al. (2014b) warn explicitly against comparing half-
lives determined in whole plants and in undifferentiated tissue cultures, and call for more baseline 
studies. In my view, the comparisons are possible as long as the growth rates are included more 
systematically. Most turnover experiments compare cultures with unaffected growth rates, making 
comparisons between treatment and control straightforward. Yet, our more difficult to interpret 
data on a treatment that affects the growth rate of the culture might help to understand more 
fundamentally how degradation rates are governed across organisms and cell lines. 
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8.8.3 Non-exponential decay is a widespread phenomenon 
Many protein decay trajectories showed a peculiar pattern with a slowly decaying, initial lag phase 
that was followed by a phase with increased decay. I could show that many of these trajectories can 
be described more accurately by a non-exponential decay model such as the logistic decay model.  
When I became aware of this particular degradation pattern, I also detected it in several other 
studies in different organisms (Figure 8.2A-F). This decay pattern therefore seems to be a wide-
spread biological phenomenon for which the scientific community does not have a full explanation.  

I observed that the duration of the lag phase differs substantially between proteins. Therefore, I 
presume that the effect is protein-specific and cannot be explained by effects on the general amino 
acid pool, e.g. an incomplete exchange of the labeling amino acids or a high recycling rate of labeled 
amino acids. Therefore, adding a fixed offset in the decay model of all proteins (Li et al, 2012a) does 
not describe the phenomenon correctly and a more complex mathematical model of the decay 
process is needed. 

It should also be asked if this initial slowed decay rate is merely a technical issue. Potentially, MS-
based analyses could have problems to differentiate in a mass spectrum the initial small peaks at 
the beginning of a protein turnover experiment from background noise. Hughes & Krijgsveld, (2012) 
therefore recommend to use a 1:1 mix of the labeled amino acids in the pulse phase of a turnover 
experiment and to chase with just one of the two labeled amino acids. Despite of this concern, this 
initial lag phase pattern can be observed even when the protein turnover is quantified by SRM 
(Figure 8.2E, Holman et al, (2016)). Curiously, in the published figure, only one peptide shows this 
diverging pattern. It would be interesting to find out if that peptide originates from a differently 
spliced protein isoform or whether that peptide might be ambiguously mapping to another protein. 
In any case, a systematic analysis of this dataset for protein isoforms would be interesting.  

In conclusion, the observed non-exponential decay pattern seems to be a wide-spread phenomenon 
that is worth to be analyzed systematically. 
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Figure 8.2: Exemplary figures from various publications that indicate a lag phase 
at the beginning of the protein degradation.   
A: 15N pulse-labeled mice, medians of all proteins of each tissue (Price et al, 2010). B: 
SILAC labeled HeLa cells (Figure 2, Hoopmann et al, 2011). C:  15N-labelled barley leaves 
(Nelson et al, 2014a). Each line represents one quantified protein. An exponential decay 
pattern would result in a straight line in this semi-log plot. D: pulse SILAC labeling of 
C. elegans (Visscher et al, 2016). Each line represents one protein E: lysine SILAC labeling 
of mice, where turnover was quantified by SRM (Figure 4B, Holman et al, 2016). Each  
symbol represents a different peptide mapping to 2-oxoglutarate dehydrogenase 
(Q60597). F:  pulse SILAC of Salmonella typhimurium (Figure 1, Wang et al, 2016). 
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8.8.4 Recycling of labeled peptides 
When labeled proteins are degraded, their labeled amino acids can get recycled intact and 
incorporated into newly synthesized proteins. A high recycling rate would influence the absolute 
turnover kinetics, yet it is to be expected that the recycling rate would affect the total amino acid 
pool and as such all proteins equally. Also, it would affect all cultures equally, because the overall 
protein recycling rate would not be affected substantially by the treatment. In my view, the recycling 
rate does therefore not need to be taken into account for comparative analyses.  

Yet, to model the turnover rate in a consistent mathematical framework together with the other 
three genome-wide datasets would require an estimation of the amino acid recycling rate to 
describe the turnover kinetics correctly.  Cambridge et al, (2011) and Jovanovic et al, (2015) have 
determined the recycling rate from the labeling rates of misscleaved peptides with two labeled 
amino acids. Peptides with two differently labeled lysines can only occur, when 1) the amino acid 
pool is not fully exchanged yet or 2) amino acids are recycled from previously labeled proteins. This 
is a convincing approach, yet the number of such identified misscleaved peptides is typically very 
low. Furthermore, it is unclear how these misscleaved peptides with mixed labels were quantified, 
as to my knowledge, MaxQuant only reports quantitative values for uniformly labeled peptides.  

In conclusion, while the recycling rate is not critical for comparative analyses, it is an important 
factor to consider for the absolute kinetics of protein turnover and consequently also affects the 
here presented half-life calculations. However, we expect especially for the comparison between 
different datasets that the recycling rate is a minor factor compared to differences in the employed 
kinetic model and the consideration of the growth rate.  

8.8.5 Non-exponential decay models describe protein degradation trajectories more 
accurately 

I used logistic decay models to describe the measured turnover trajectories, as they fit our data 
substantially better, yet there are no biological reasons for this particular mathematical model. The 
Timehalf-life parameter has no biological or physical representation in the protein’s characteristic, such 
as e.g. its age. We chose this model primarily to indicate that the exponential decay model is too 
simple to explain the detected degradation trajectories.  

To our knowledge, three studies have so far modeled these non-exponential decay patterns 
explicitly:  

1. Similar to our interpretation, (Martin-Perez & Villén, 2015) modelled the non-exponential 
decaying proteins with a logistic decay model without further biological interpretation.  

2. Rahman et al, (2016) presented a Gaussian process model to describe protein turnover data. 
The model describes protein turnover trajectories more accurately than an exponential 
decay model (Figure 8.3). Yet their model is not interpreted biologically and primarily 
highlights the need for a more complex description of protein turnover trajectories. 
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Figure 8.3: Modeling of the 15N pulse-labelled mouse protein Q8BMS1 (Figure 3, 
Rahman et al, 2016).   
The experimental data (points) are fitted by exponential decay (blue line) and a 
Gaussian process model (green line). RIF = relative isotope frequency, an alternative 
term for the more frequently used term relative isotope abundance (RIA). 

3. A very recent study by McShane et al, (2016) employed a more complex two-step 
exponential decay model to describe protein degradation trajectories, where the proteins 
have different decay rates according to their molecular age. The model was originally 
developed for non-exponential decay patterns of mRNA (Deneke et al, 2013), where the 
degradation rate depends on the age of the molecule (Figure 8.4A, B). The model is based on 
a Markov chain (Figure 8.4C), where each state of the chain degrades exponentially at an 
individual rate μ, and the progression from one state to the next is described by a linear rate 
λ. In other words, the molecules pass through the chain with increasing age. The mRNA 
decay model is based on a five-state Markov chain (Deneke et al, 2013), while the protein 
decay data model consists of two states (McShane et al, 2016). This means that protein 
decay is described by two different exponential decay rates and a transition rate. McShane et 
al, (2016) find that more than 10 % of all proteins are better described by such a non-
exponential decay (NED) model. For all NED proteins was the later decay rate lower than the 
first one, indicating a decrease in protein decay with increasing age of the protein (Figure 
8.4D). Proteins that increase in degradation rate with age could not be detected. For the 
degradation of mRNAs, both decay rates that increase and decrease by age were found 
(Figure 8.4D).  
This model interprets the non-exponential decay pattern in a biologically meaningful way by 
including the age of a molecule in the description.  

With a small exploration, we could find degradation trajectories in our data set that depict such NED 
patterns, e.g. for disulfide isomerase-like protein 1 (AT1G21750, Figure 8.4F). The abundance of this 
protein does not change.  The decay rate in the untreated sample potentially slows down with the 
age of the molecule, while in the flg22-treated sample the degradation rate seems to increases with 
age. Clearly, this phenomenon has to be analyzed systematically in future studies.  
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Figure 3A (Deneke et al, 2013) 

 

Figure 4 (Deneke et al, 2013) 

 

Figure 7 (Deneke et al, 2013) 

 

Figure 1D (McShane et al, 2016) 

 

Figure 5 (Deneke et al, 2013) 

 

AT1G21750 this study 

 
Figure 8.4: Modeling non-exponential decay patterns by considering the age of the 
molecules.  
A: Degradation rates of two mRNAs. The data (points) were modeled by a multistep 
exponential decay process (drawn through lines) (Deneke et al, 2013). A classical one-
step exponential decay pattern is indicated by a dashed line. B: Distribution of the 
degradation rate by age of the mRNAs from A (Deneke et al, 2013). C: Markov chain 
model of the degradation (Deneke et al, 2013). A molecule progresses from each state 
ℕ at the rate λ and at each state, it decays exponentially with a rate μ. D: Decay rates of 
pulse-chase labeled proteins in a murine cell line (McShane et al, 2016). Flna and Ctsl1 
show classical exponential decay patterns, while Bsg depicts a non-exponential decay 
pattern where the degradation of the protein decreases with time. E: mRNA decay rates 
modeled by a multistep exponential decay (Deneke et al, 2013). mRNAs whose 
degradation increases with age are indicated in blue, and mRNAs that decrease their 
degradation with age are indicated in red. F: Decay pattern of disulfide isomerase-like 
protein 1. Note that the degradation data are plotted in a semi-logarithmic fashion, 
which helps to distinguish the decay pattern from true exponential decay that would 
show a linear trajectory. 
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8.9 Future research directions 

Even though the results described here provide a comprehensive view on gene expression 
regulation in response to a stimulus, more questions are being raised than answered. According to 
my view, the following avenues should be focused on: 

1. Quantitative model of gene expression.  
The ultimate goal of acquiring the four datasets was to incorporate them into a quantitative 
kinetic model of gene expression. Similarly to Jovanovic et al (2015), this could give exact 
values on the contributions of transcription, translation and protein degradation on protein 
level regulation. Equally, such an analysis could expand the interpretation of the protein 
turnover analysis to the proteins with changing protein abundances, which had to be excluded 
in our current analysis. A kinetic model could evaluate whether the degradation of proteins 
that increase in abundance are also modulated, which would make them also relevant for the 
rejuvenation hypothesis discussed in chapter 8.8.1. We have established a collaboration with 
the Computational Systems Biology group of Prof. Jörg Stelling (ETH Zürich) to develop such a 
model. 

2. Model degradation by an age-dependent multi-step exponential decay process. 
Following up on the discussion in chapter 8.8.3 it is of high interest, if our dataset can be 
modeled better with an age-dependent model as indicated by McShane et al, (2016) than with 
the logistic decay model. If the age-dependent degradation model holds true for our data, a 
fascinating question is raised: how can a cell discriminate proteins by their molecular age to 
degrade them accordingly?  

3. Functional description of rejuvenated protein pools. 
The discussion in chapter 8.8.1 outlines several hypotheses for the functionality of a 
rejuvenated protein pool. All of these should be considered and tested experimentally. Most 
intriguing to me is the question if the metabolic activity of a rejuvenated protein pool does 
change. One would need to set up enzymatic assays for these proteins and test the activity 
before and after rejuvenation. Equally, the proteins’ status regarding post-translational 
modifications before and after rejuvenation could be determined mass spectrometrically. Yet, 
before starting these analyses, Occam’s razor recommends to start the test with the simplest 
explanation, which is the explanation by protein secretion (number 5 in chapter 8.8.1). 
Therefore, the list of rejuvenating proteins should be analyzed for localization and ER-targeting 
signals. 

4. Subcellular localization of the nuclear-encoded, unlabelled proteins.  
The lack of lysine labeling of certain chloroplast-related proteins remains unexplained. They 
are highly enriched for chloroplast-localized proteins. The RPF length distribution verifies that 
these proteins are translated by 80S ribosomes, yet the low labeling rates indicate some form 
of compartmentalization. Microscopy localization studies with fluorescence tags require that 
the protein of interest is fully translated, folded and not bound by chaperones. In contrast, a 
LOPIT (Localization of Organelle Proteins by Isotope Tagging, (Dunkley et al, 2004)) study could 
reveal the subcellular localization of these proteins when they are not fully matured. In that 
approach, the subcellular compartments are fractionated by ultracentrifugation in a sucrose 
gradient and the proteins in the different compartment fractions are labeled by chemical post-
preparation labels. The labeled peptides are then combined and analyzed mass 
spectrometrically. The latest development of the protocol (hyperLOPIT) can resolve up to 10 
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different subcellular compartments and was used to describe intracellular trafficking 
(Christoforou et al, 2016). Newly translated proteins will be low in abundance compared to 
the pre-existing proteins, so it is advised to enrich the newly synthesized proteins by AHA-
methionine click-chemistry enrichment (Eichelbaum et al, 2012).  

5. Disentangle the E3 ligase network.  
I see a tightly regulated degradation for at least 123 proteins (8.8.1). Currently, it is unknown, 
which E3 ligases are responsible for mediating this targeted degradation. The proteins 
identified here would be interesting and promising candidates for identifying the responsible 
E3 ligases that target them for proteasomal degradation, as these might play important roles 
in plant defense mechanisms. 

6. Interplay between autophagy and proteasomal degradation. 
Equally, the proteins with longer half-lives than doubling times are interesting candidates to 
study the interplay of proteasomal degradation and degradation by autophagy. It is unknown 
to us, whether proteins can be degraded by the proteasome in an untargeted fashion by a non-
discriminating E3 ligase or whether these proteins are rather degraded by autophagy.  
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10.1 Proteins that change in protein abundances under flg22 treatment 

MaxFC describes the highest fold change at any time point between flg22-treated and untreated 
samples. The p-values are derived from the limma or ANOVA test from chapter 6.7 and are adjusted 
by FDR. If no p-value is given, then it is was determined to be not significant (> 0.05).  

10.1.1 Downregulated Proteins 
AGI maxFC ANOVA adj. 

p-value 
Limma adj. 
p-value 

Description 

AT4G34230 -1.692 2.58E-06 3.41E-13 cinnamyl alcohol dehydrogenase 5 
AT1G51630 -0.458 9.94E-03 3.29E-03 O-fucosyltransferase family protein 
AT5G61740 -0.541 1.07E-01 2.15E-02 ABC2 homolog 14 
AT2G06850 -0.225 2.11E-01 3.86E-02 xyloglucan endotransglucosylase/hydrolase 4 
AT3G27400 -0.905 5.28E-02 6.67E-02 Pectin lyase-like superfamily protein 

AT3G51670 -0.390 2.17E-01 8.61E-02 
SEC14 cytosolic factor family protein / phosphoglyceride transfer 
family protein 

AT2G38530 -0.695 - 9.65E-02 lipid transfer protein 2 
AT2G16430 -0.288 2.76E-02 9.65E-02 purple acid phosphatase 10 
AT4G31120 -0.763 - 1.01E-01 SHK1 binding protein 1 
AT3G15660 -0.320 4.34E-01 1.01E-01 glutaredoxin 4 
AT5G03540 -0.396 - 1.06E-01 exocyst subunit exo70 family protein A1 
AT5G22740 -0.597 1.54E-01 1.20E-01 cellulose synthase-like A02 

AT3G28580 -0.251 - 1.70E-01 P-loop containing nucleoside triphosphate hydrolases 
superfamily protein 

AT2G43160 -0.292 - 1.87E-01 ENTH/VHS family protein 
AT1G65150 -0.973 - 2.00E-01 TRAF-like family protein 
AT1G09430 -0.169 - 2.36E-01 ATP-citrate lyase A-3 
AT3G07540 -0.540 3.78E-01 2.37E-01 Actin-binding FH2 (formin homology 2) family protein 

AT4G18030 -0.464 - 2.38E-01 
S-adenosyl-L-methionine-dependent methyltransferases 
superfamily protein 

AT4G39320 -0.312 9.82E-02 2.72E-01 microtubule-associated protein-related 

AT1G62790 -0.184 - 2.74E-01 
Bifunctional inhibitor/lipid-transfer protein/seed storage 2S 
albumin superfamily protein 

AT5G28050 -0.443 - 2.98E-01 Cytidine/deoxycytidylate deaminase family protein 
AT4G25370 -0.466 - 3.00E-01 Double Clp-N motif protein 
AT5G51550 -0.415 - 3.00E-01 EXORDIUM like 3 
AT5G27670 -0.204 - 3.00E-01 histone H2A 7 
AT5G27850 -0.397 - 3.18E-01 Ribosomal protein L18e/L15 superfamily protein 
AT1G59610 -0.379 - 3.18E-01 dynamin-like 3 
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AT4G13200 -0.229 3.82E-01 3.18E-01 unkown protein 
AT4G34870 -0.221 - 3.18E-01 rotamase cyclophilin 5 

AT3G25150 -0.182 1.45E-01 3.18E-01 Nuclear transport factor 2 (NTF2) family protein with RNA binding 
(RRM-RBD-RNP motifs) domain 

AT5G65760 -0.676 4.26E-01 3.20E-01 Serine carboxypeptidase S28 family protein 
AT2G34970 -0.163 4.26E-01 3.20E-01 Trimeric LpxA-like enzyme 
AT3G13330 -0.243 - 3.78E-01 proteasome activating protein 200 
AT2G16600 -0.245 3.35E-01 3.86E-01 rotamase CYP 3 
AT1G26110 -0.170 - 3.86E-01 decapping 5 
AT1G53840 -0.521 - 4.03E-01 pectin methylesterase 1 
AT2G19570 -0.389 - 4.03E-01 cytidine deaminase 1 
AT5G42790 -0.329 2.73E-01 4.03E-01 proteasome alpha subunit F1 
AT1G51760 -0.282 - 4.03E-01 peptidase M20/M25/M40 family protein 
AT3G49910 -0.219 3.89E-01 4.03E-01 Translation protein SH3-like family protein 
AT1G67560 -0.196 - 4.03E-01 PLAT/LH2 domain-containing lipoxygenase family protein 
AT1G22530 -0.135 1.99E-01 4.03E-01 PATELLIN 2 
AT1G13440 -0.631 - 4.14E-01 glyceraldehyde-3-phosphate dehydrogenase C2 
AT2G16570 -0.539 3.14E-01 4.14E-01 GLN phosphoribosyl pyrophosphate amidotransferase 1 
AT4G12720 -0.465 - 4.14E-01 MutT/nudix family protein 
AT3G49430 -0.339 - 4.14E-01 SER/ARG-rich protein 34A 

AT5G17980 -0.244 4.04E-01 4.14E-01 C2 calcium/lipid-binding plant phosphoribosyltransferase family 
protein 

AT2G25270 -0.204 1.73E-01 4.14E-01 unkown protein 
AT3G63130 -0.191 - 4.14E-01 RAN GTPase activating protein 1 
AT3G16110 -0.177 2.48E-01 4.14E-01 PDI-like 1-6 
AT3G08580 -0.153 - 4.14E-01 ADP/ATP carrier 1 
AT5G20950 -0.198 - 4.16E-01 Glycosyl hydrolase family protein 
AT3G15180 -0.191 - 4.16E-01 ARM repeat superfamily protein 
AT5G13050 -0.183 - 4.16E-01 5-formyltetrahydrofolate cycloligase 
AT5G11710 -0.302 - 4.26E-01 ENTH/VHS family protein 
AT1G80270 -0.187 3.35E-01 4.26E-01 PENTATRICOPEPTIDE REPEAT 596 
AT1G72150 -0.135 3.94E-01 4.40E-01 PATELLIN 1 
AT4G14300 -0.510 - 4.53E-01 RNA-binding (RRM/RBD/RNP motifs) family protein 
AT3G15590 -0.283 - 4.53E-01 Tetratricopeptide repeat (TPR)-like superfamily protein 
AT5G61510 -0.167 1.94E-01 4.53E-01 GroES-like zinc-binding alcohol dehydrogenase family protein 
AT5G14250 -0.385 - 4.59E-01 Proteasome component (PCI) domain protein 
AT1G55150 -0.214 2.58E-01 4.59E-01 DEA(D/H)-box RNA helicase family protein 
AT3G08030 -0.559 - 4.61E-01 Protein of unknown function, DUF642 
AT1G27500 -0.636 - 4.67E-01 Tetratricopeptide repeat (TPR)-like superfamily protein 
AT3G56090 -0.260 - 4.71E-01 ferritin 3 
AT1G12920 -0.241 4.26E-01 4.71E-01 eukaryotic release factor 1-2 
AT4G39260 -0.159 - 4.71E-01 cold, circadian rhythm, and RNA binding 1 
AT5G16070 -0.157 1.92E-01 4.71E-01 TCP-1/cpn60 chaperonin family protein 
AT5G65700 -0.420 5.12E-01 4.87E-01 Leucine-rich receptor-like protein kinase family protein 
AT5G16970 -0.136 - 5.07E-01 alkenal reductase 
AT1G15120 -0.284 3.78E-01 5.08E-01 Ubiquinol-cytochrome C reductase hinge protein 
AT3G07410 -0.153 - 5.08E-01 RAB GTPase homolog A5B 
AT3G28715 -0.338 - 5.10E-01 ATPase, V0/A0 complex, subunit C/D 
AT1G28290 -0.175 - 5.10E-01 arabinogalactan protein 31 
AT2G03800 -0.401 4.20E-01 5.12E-01 D-aminoacyl-tRNA deacylases 
AT1G71840 -0.306 - 5.12E-01 transducin family protein / WD-40 repeat family protein 

AT2G37690 -0.135 - 5.12E-01 
phosphoribosylaminoimidazole carboxylase, putative / AIR 
carboxylase, putative 

AT3G61260 -0.133 - 5.12E-01 Remorin family protein 
AT2G31660 -0.689 3.28E-01 5.17E-01 ARM repeat superfamily protein 
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AT4G26900 -0.165 - 5.19E-01 HIS HF 
AT4G31460 -0.323 4.53E-01 5.25E-01 Ribosomal L28 family 
AT2G36070 -0.237 2.36E-01 5.25E-01 translocase inner membrane subunit 44-2 
AT5G47760 -0.181 - 5.25E-01 2-phosphoglycolate phosphatase 2 
AT3G01640 -0.147 - 5.36E-01 glucuronokinase G 
AT1G67360 -0.413 4.74E-01 5.39E-01 Rubber elongation factor protein (REF) 
AT3G44300 -0.318 - 5.39E-01 nitrilase 2 
AT1G44790 -0.556 3.66E-01 - ChaC-like family protein 
AT1G64490 -0.526 3.94E-01 - DEK, chromatin associated protein 
AT1G22200 -0.479 3.22E-01 - Endoplasmic reticulum vesicle transporter protein 
AT3G07170 -0.432 3.76E-01 - Sterile alpha motif (SAM) domain-containing protein 
AT4G09150 -0.381 5.26E-01 - T-complex protein 11 
AT5G56760 -0.342 5.10E-01 - serine acetyltransferase 1 
AT5G43980 -0.320 4.19E-01 - plasmodesmata-located protein 1 
AT5G11240 -0.316 2.84E-01 - transducin family protein / WD-40 repeat family protein 
AT2G27880 -0.309 3.79E-01 - Argonaute family protein 
AT3G49870 -0.299 4.63E-01 - ADP-ribosylation factor-like A1C 
AT2G37130 -0.297 4.53E-01 - Peroxidase superfamily protein 
AT2G22450 -0.281 4.26E-01 - riboflavin biosynthesis protein, putative 
AT5G52520 -0.277 4.83E-01 - Class II aaRS and biotin synthetases superfamily protein 

AT1G51570 -0.263 1.79E-01 - 
Calcium-dependent lipid-binding (CaLB domain) plant 
phosphoribosyltransferase family protein 

AT1G36280 -0.258 4.52E-01 - L-Aspartase-like family protein 
AT4G34700 -0.228 3.82E-01 - LYR family of Fe/S cluster biogenesis protein 
AT2G01600 -0.228 3.78E-01 - ENTH/ANTH/VHS superfamily protein 
AT2G24940 -0.224 2.65E-01 - membrane-associated progesterone binding protein 2 
AT3G10410 -0.217 4.63E-01 - SERINE CARBOXYPEPTIDASE-LIKE 49 
AT5G15400 -0.216 4.63E-01 - U-box domain-containing protein 
AT1G16870 -0.213 2.80E-01 - mitochondrial 28S ribosomal protein S29-related 

AT2G18110 -0.206 3.46E-01 - 
Translation elongation factor EF1B/ribosomal protein S6 family 
protein 

AT4G05420 -0.205 3.57E-01 - damaged DNA binding protein 1A 
AT4G15640 -0.186 1.99E-01 - unkown protein 
AT5G64270 -0.182 2.86E-01 - splicing factor, putative 
AT2G25080 -0.181 2.29E-01 - glutathione peroxidase 1 
AT5G42020 -0.179 4.94E-01 - Heat shock protein 70 (Hsp 70) family protein 
AT1G73430 -0.178 4.52E-01 - sec34-like family protein 
AT5G11340 -0.177 5.12E-01 - Acyl-CoA N-acyltransferases (NAT) superfamily protein 
AT1G12410 -0.170 3.22E-01 - CLP protease proteolytic subunit 2 
AT1G50940 -0.165 4.63E-01 - electron transfer flavoprotein alpha 
AT4G25630 -0.161 3.82E-01 - fibrillarin 2 
AT2G04280 -0.156 4.20E-01 - unkown protein 
AT4G09720 -0.156 3.78E-01 - RAB GTPase homolog G3A 
AT3G10850 -0.153 3.94E-01 - Metallo-hydrolase/oxidoreductase superfamily protein 
AT1G11680 -0.152 3.87E-01 - CYTOCHROME P450 51G1 
AT5G43280 -0.143 5.04E-01 - delta(3,5),delta(2,4)-dienoyl-CoA isomerase 1 
AT3G01740 -0.139 4.26E-01 - Mitochondrial ribosomal protein L37 
AT4G34740 -0.133 3.46E-01 - GLN phosphoribosyl pyrophosphate amidotransferase 2 
AT4G35470 -0.132 1.63E-01 - plant intracellular ras group-related LRR 4 
AT1G70710 -0.128 4.74E-01 - glycosyl hydrolase 9B1 
AT2G40290 -0.121 5.22E-01 - Eukaryotic translation initiation factor 2 subunit 1 
AT1G08680 -0.121 4.34E-01 - ARF GAP-like zinc finger-containing protein ZIGA4 

AT5G52310 -0.118 2.05E-01 - 
low-temperature-responsive protein 78 (LTI78) / desiccation-
responsive protein 29A (RD29A) 

AT2G45240 -0.117 4.34E-01 - methionine aminopeptidase 1A 
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AT5G47030 -0.117 3.66E-01 - ATPase, F1 complex, delta/epsilon subunit 
AT3G26080 -0.117 4.74E-01 - plastid-lipid associated protein PAP / fibrillin family protein 
AT4G13850 -0.115 3.66E-01 - glycine-rich RNA-binding protein 2 
AT3G60980 -0.112 5.26E-01 - Tetratricopeptide repeat (TPR)-like superfamily protein 

AT1G62390 -0.110 3.98E-01 - 
Octicosapeptide/Phox/Bem1p (PB1) domain-containing protein / 
tetratricopeptide repeat (TPR)-containing protein 

AT1G25490 -0.109 4.53E-01 - ARM repeat superfamily protein 
AT3G60960 -0.106 2.80E-01 - Tetratricopeptide repeat (TPR)-like superfamily protein 
AT5G52470 -0.105 5.01E-01 - fibrillarin 1 
AT4G20360 -0.100 5.26E-01 - RAB GTPase homolog E1B 

AT1G04810 -0.097 5.12E-01 - 
26S proteasome regulatory complex, non-ATPase subcomplex, 
Rpn2/Psmd1 subunit 

AT4G02580 -0.097 4.94E-01 - NADH-ubiquinone oxidoreductase 24 kDa subunit, putative 
AT4G36680 -0.095 3.82E-01 - Tetratricopeptide repeat (TPR)-like superfamily protein 
AT1G20440 -0.095 4.98E-01 - cold-regulated 47 
AT3G12260 -0.094 4.83E-01 - LYR family of Fe/S cluster biogenesis protein 
AT5G48480 -0.091 4.53E-01 - Lactoylglutathione lyase / glyoxalase I family protein 
AT4G29840 -0.091 3.87E-01 - Pyridoxal-5'-phosphate-dependent enzyme family protein 
AT3G12780 -0.090 2.86E-01 - phosphoglycerate kinase 1 

AT1G42960 -0.084 3.22E-01 - 
;expressed protein localized to the inner membrane of the 
chloroplast. 

AT5G16990 -0.078 2.73E-01 - Zinc-binding dehydrogenase family protein 
AT1G09760 -0.076 1.78E-01 - U2 small nuclear ribonucleoprotein A 
ATCG00500 -0.075 4.34E-01 - acetyl-CoA carboxylase carboxyl transferase subunit beta 
AT3G21110 -0.069 3.94E-01 - purin 7 

AT1G18070 -0.059 3.44E-01 - 
Translation elongation factor EF1A/initiation factor IF2gamma 
family protein 

AT2G21870 -0.056 4.63E-01 - copper ion binding 
AT3G18190 -0.054 4.35E-01 - TCP-1/cpn60 chaperonin family protein 
AT3G23990 -0.052 2.30E-01 - heat shock protein 60 

 

10.1.2 Upregulated Proteins 
AGI maxFC ANOVA adj. 

p-value 
Limma adj. 

p-value 
Description 

AT2G30490 0.971 7.97E-03 1.28E-09 cinnamate-4-hydroxylase 
AT4G39980 0.736 4.77E-03 1.28E-09 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 1 
AT4G31500 1.060 2.00E-03 1.50E-07 cytochrome P450, family 83, subfamily B, polypeptide 1 
AT1G22410 0.835 4.77E-03 6.35E-06 Class-II DAHP synthetase family protein 
AT1G02930 0.676 1.04E-02 6.35E-06 glutathione S-transferase 6 
AT2G38860 0.962 9.55E-03 1.07E-05 Class I glutamine amidotransferase-like superfamily protein 
AT4G08850 0.785 2.00E-03 1.76E-05 Leucine-rich repeat receptor-like protein kinase family protein 
AT2G39518 1.133 4.77E-03 3.44E-05 Uncharacterised protein family (UPF0497) 
AT1G02920 1.358 9.82E-02 1.12E-04 glutathione S-transferase 7 
AT1G52760 0.683 9.72E-03 1.50E-04 lysophospholipase 2 
AT2G30860 0.455 3.03E-01 2.77E-04 glutathione S-transferase PHI 9 
AT2G04400 0.260 2.58E-02 4.60E-04 Aldolase-type TIM barrel family protein 
AT2G15620 0.448 2.86E-01 4.65E-04 nitrite reductase 1 
AT3G02360 0.287 5.22E-03 4.65E-04 6-phosphogluconate dehydrogenase family protein 
AT3G03780 0.385 2.58E-02 5.79E-04 methionine synthase 2 
AT2G36880 0.522 9.94E-03 7.65E-04 methionine adenosyltransferase 3 
AT1G59870 0.396 7.97E-03 7.91E-04 ABC-2 and Plant PDR ABC-type transporter family protein 
AT4G30530 0.679 7.25E-02 1.46E-03 Class I glutamine amidotransferase-like superfamily protein 
AT5G11670 0.344 9.72E-03 3.29E-03 NADP-malic enzyme 2 
AT2G32240 0.217 5.70E-03 3.97E-03 unkown protein 
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AT4G20830 0.653 4.77E-03 6.80E-03 FAD-binding Berberine family protein 
AT4G30190 0.348 1.76E-01 1.78E-02 H(+)-ATPase 2 
AT1G80460 0.177 1.78E-01 1.78E-02 Actin-like ATPase superfamily protein 
AT2G20610 0.371 2.58E-02 2.23E-02 Tyrosine transaminase family protein 

AT1G78850 0.671 2.48E-01 2.77E-02 
D-mannose binding lectin protein with Apple-like 
carbohydrate-binding domain 

AT3G16470 0.382 7.62E-02 2.77E-02 Mannose-binding lectin superfamily protein 
AT4G39230 0.222 5.22E-03 2.94E-02 NmrA-like negative transcriptional regulator family protein 
AT3G54640 0.505 5.28E-02 3.26E-02 tryptophan synthase alpha chain 

AT1G48850 0.281 6.12E-02 3.26E-02 
chorismate synthase, putative / 5-enolpyruvylshikimate-3-
phosphate phospholyase, putative 

AT1G33590 0.521 1.61E-01 4.42E-02 Leucine-rich repeat (LRR) family protein 
AT3G14840 0.890 1.06E-01 5.31E-02 Leucine-rich repeat transmembrane protein kinase 
AT5G54810 0.600 6.12E-02 5.38E-02 tryptophan synthase beta-subunit 1 
AT3G27960 0.620 - 5.70E-02 Tetratricopeptide repeat (TPR)-like superfamily protein 
AT3G27310 0.865 - 5.72E-02 plant UBX domain-containing protein 1 
AT1G10370 0.823 3.53E-01 5.72E-02 Glutathione S-transferase family protein 
AT2G45290 0.165 7.62E-02 5.72E-02 Transketolase 
AT5G63620 0.891 3.78E-01 6.12E-02 GroES-like zinc-binding alcohol dehydrogenase family protein 
AT3G45960 0.217 9.72E-03 6.12E-02 expansin-like A3 
AT1G74010 0.346 2.05E-01 6.15E-02 Calcium-dependent phosphotriesterase superfamily protein 
AT3G23570 0.199 8.34E-02 7.54E-02 alpha/beta-Hydrolases superfamily protein 
AT5G07440 0.155 6.68E-02 8.81E-02 glutamate dehydrogenase 2 

AT1G06550 0.972 1.14E-01 9.07E-02 
ATP-dependent caseinolytic (Clp) protease/crotonase family 
protein 

AT4G08770 0.639 4.52E-01 9.07E-02 Peroxidase superfamily protein 
AT1G07750 0.187 - 9.07E-02 RmlC-like cupins superfamily protein 
AT2G30870 0.162 1.99E-01 9.07E-02 glutathione S-transferase PHI 10 
AT1G30510 0.258 - 9.36E-02 root FNR 2 
AT3G61820 0.462 2.09E-01 1.01E-01 Eukaryotic aspartyl protease family protein 
AT3G12700 0.309 2.92E-02 1.01E-01 Eukaryotic aspartyl protease family protein 
AT1G15950 1.262 1.78E-01 1.06E-01 cinnamoyl coa reductase 1 

AT1G70980 0.801 - 1.06E-01 
Class II aminoacyl-tRNA and biotin synthetases superfamily 
protein 

AT1G74100 0.366 9.82E-02 1.06E-01 sulfotransferase 16 
AT5G17530 0.275 2.58E-02 1.06E-01 phosphoglucosamine mutase family protein 
ATMG00090 0.329 - 1.09E-01 structural constituent of ribosome 

AT3G01290 0.229 7.49E-02 1.46E-01 SPFH/Band 7/PHB domain-containing membrane-associated 
protein family 

AT3G22890 0.229 1.04E-01 1.46E-01 ATP sulfurylase 1 
AT2G47960 0.204 - 1.46E-01 unkown protein 
AT4G27070 0.275 1.65E-02 1.55E-01 tryptophan synthase beta-subunit 2 
AT3G10220 0.510 - 1.66E-01 tubulin folding cofactor B 
AT4G27500 0.168 1.02E-02 1.84E-01 proton pump interactor 1 
AT2G35790 0.987 - 1.87E-01 unkown protein 
AT3G23710 0.312 - 1.87E-01 Tic22-like family protein 

AT5G17380 0.151 - 1.87E-01 
Thiamine pyrophosphate dependent pyruvate decarboxylase 
family protein 

AT5G47700 0.656 - 1.88E-01 60S acidic ribosomal protein family 
AT3G13150 0.342 - 1.88E-01 Tetratricopeptide repeat (TPR)-like superfamily protein 
AT3G52400 0.438 6.12E-02 1.91E-01 syntaxin of plants 122 
AT1G37130 0.469 5.28E-02 2.21E-01 nitrate reductase 2 
AT1G69410 0.375 - 2.21E-01 eukaryotic elongation factor 5A-3 
AT2G20940 0.235 - 2.36E-01 Protein of unknown function (DUF1279) 
AT5G01750 0.415 3.46E-01 2.37E-01 Protein of unknown function (DUF567) 
AT4G02520 0.460 - 2.62E-01 glutathione S-transferase PHI 2 
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AT5G07340 0.210 2.84E-01 2.96E-01 Calreticulin family protein 
AT3G51430 0.656 - 3.00E-01 Calcium-dependent phosphotriesterase superfamily protein 
AT1G25220 0.384 6.12E-02 3.00E-01 anthranilate synthase beta subunit 1 
AT4G39640 0.345 - 3.00E-01 gamma-glutamyl transpeptidase 1 
AT5G24300 0.279 - 3.00E-01 Glycogen/starch synthases, ADP-glucose type 

AT3G06350 0.226 1.63E-01 3.00E-01 
dehydroquinate dehydratase, putative / shikimate 
dehydrogenase, putative 

AT2G18040 0.195 - 3.00E-01 peptidylprolyl cis/trans isomerase, NIMA-interacting 1 
AT2G13272 0.589 - 3.18E-01 unkown protein 
AT5G45280 0.352 4.26E-01 3.18E-01 Pectinacetylesterase family protein 
AT3G59970 0.137 2.58E-02 3.18E-01 methylenetetrahydrofolate reductase 1 
AT1G25570 0.202 - 3.28E-01 unkown protein 
AT3G29635 0.234 - 3.38E-01 HXXXD-type acyl-transferase family protein 
AT3G46460 0.587 - 3.43E-01 ubiquitin-conjugating enzyme 13 
AT3G54400 0.370 2.05E-01 3.44E-01 Eukaryotic aspartyl protease family protein 
AT4G17260 0.960 - 3.86E-01 Lactate/malate dehydrogenase family protein 
AT3G50930 0.595 9.19E-02 3.86E-01 cytochrome BC1 synthesis 
AT2G44450 0.407 1.99E-01 3.86E-01 beta glucosidase 15 
AT1G74060 0.141 - 3.86E-01 Ribosomal protein L6 family protein 
AT5G06870 0.167 - 4.02E-01 polygalacturonase inhibiting protein 2 
AT1G22840 0.278 4.18E-01 4.02E-01 CYTOCHROME C-1 
AT1G08640 0.562 6.81E-02 4.03E-01 Chloroplast J-like domain 1 
AT1G70320 0.224 - 4.03E-01 ubiquitin-protein ligase 2 
AT4G35090 0.621 - 4.14E-01 catalase 2 
AT4G37640 0.300 2.51E-01 4.14E-01 calcium ATPase 2 
AT1G27130 0.276 2.80E-01 4.14E-01 glutathione S-transferase tau 13 
AT5G64350 0.234 - 4.14E-01 FK506-binding protein 12 

AT1G53900 0.228 - 4.14E-01 
Eukaryotic translation initiation factor 2B (eIF-2B) family 
protein 

AT1G14650 0.219 3.66E-01 4.14E-01 
SWAP (Suppressor-of-White-APricot)/surp domain-containing 
protein / ubiquitin family protein 

AT4G01850 0.170 8.34E-02 4.14E-01 S-adenosylmethionine synthetase 2 
AT5G65020 0.160 5.28E-02 4.14E-01 annexin 2 
AT4G26690 0.124 3.66E-02 4.14E-01 PLC-like phosphodiesterase family protein 
AT4G34200 0.111 - 4.14E-01 D-3-phosphoglycerate dehydrogenase 
AT4G30280 1.334 2.73E-01 4.16E-01 xyloglucan endotransglucosylase/hydrolase 18 
AT5G37740 0.588 - 4.18E-01 Calcium-dependent lipid-binding (CaLB domain) family protein 
AT4G17770 0.500 - 4.18E-01 trehalose phosphatase/synthase 5 
AT3G28940 0.151 9.57E-02 4.18E-01 AIG2-like (avirulence induced gene) family protein 
AT3G56070 0.161 - 4.40E-01 rotamase cyclophilin 2 
AT5G17770 0.240 - 4.40E-01 NADH:cytochrome B5 reductase 1 
AT3G05280 1.084 - 4.41E-01 Integral membrane Yip1 family protein 
AT2G05920 0.298 3.87E-01 4.53E-01 Subtilase family protein 
AT4G05400 0.220 - 4.53E-01 copper ion binding 
AT1G70410 0.158 2.86E-01 4.53E-01 beta carbonic anhydrase 4 
AT2G22250 0.130 2.80E-01 4.57E-01 aspartate aminotransferase 

AT5G48020 0.169 - 4.59E-01 
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 
superfamily protein 

AT1G74020 0.245 - 4.59E-01 strictosidine synthase 2 
AT5G58110 0.336 - 4.61E-01 chaperone binding 
AT1G53070 0.633 - 4.71E-01 Legume lectin family protein 
AT4G23710 0.411 4.99E-01 4.71E-01 vacuolar ATP synthase subunit G2 
AT2G22125 0.292 - 4.71E-01 CELLULOSE SYNTHASE-INTERACTIVE PROTEIN 1  
AT2G21250 0.238 2.53E-01 4.71E-01 NAD(P)-linked oxidoreductase superfamily protein 
AT3G59350 0.385 - 4.76E-01 Protein kinase superfamily protein 
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AT1G44130 0.446 - 4.78E-01 Eukaryotic aspartyl protease family protein 
AT2G46880 0.317 - 4.92E-01 purple acid phosphatase 14 
AT3G44100 0.229 - 4.94E-01 MD-2-related lipid recognition domain-containing protein 
AT1G79530 0.123 - 4.94E-01 glyceraldehyde-3-phosphate dehydrogenase of plastid 1 
AT5G56360 0.646 3.57E-01 5.00E-01 calmodulin-binding protein 
AT1G12470 0.411 - 5.00E-01 zinc ion binding 
AT3G09260 0.319 - 5.08E-01 Glycosyl hydrolase superfamily protein 
AT1G60710 0.136 - 5.09E-01 NAD(P)-linked oxidoreductase superfamily protein 
AT1G78830 0.372 - 5.10E-01 Curculin-like (mannose-binding) lectin family protein 
AT3G57530 0.483 - 5.12E-01 calcium-dependent protein kinase 32 
AT1G24100 0.412 4.62E-01 5.12E-01 UDP-glucosyl transferase 74B1 
AT5G18400 0.363 4.19E-01 5.12E-01 Cytokine-induced anti-apoptosis inhibitor 1, Fe-S biogenesis 
AT3G12145 0.317 5.22E-01 5.12E-01 Leucine-rich repeat (LRR) family protein 
AT1G08190 0.281 - 5.12E-01 vacuolar protein sorting 41 
AT5G35700 0.281 - 5.12E-01 fimbrin-like protein 2 
AT4G19210 0.244 - 5.12E-01 RNAse l inhibitor protein 2 
AT3G28930 0.217 - 5.12E-01 AIG2-like (avirulence induced gene) family protein 
AT4G12470 0.785 - 5.25E-01 azelaic acid induced 1 
AT1G02500 0.358 4.52E-01 5.25E-01 S-adenosylmethionine synthetase 1 
AT4G13930 0.134 2.73E-01 5.25E-01 serine hydroxymethyltransferase 4 
AT1G55490 0.325 - 5.36E-01 chaperonin 60 beta 

 

10.2 Proteins with quicker turnover and steady protein abundance 

The relative size of the increased turnover is described by the “Effect” category. The protein were 
characterized with the following prediction tools: Subcellular localization with SUBA3 (Tanz et al, 
2013), presence of a signal peptide with signalP4.1 (Petersen et al, 2011) and the number of 
transmembrane helices (TMH) with TMHMM (Sonnhammer et al, 1998). 

AGI Effect Comment SUBA 
consensus 

Signal 
peptide 

TMH Description 

AT1G03220 +++ 
 

extracellular yes 0 Eukaryotic aspartyl protease family protein 
AT1G35140 +++ 

 
extracellular yes 0 Phosphate-responsive 1 family protein 

AT1G45145 +++ 
 

cytosol no 0 thioredoxin H-type 5 
AT1G55450 +++ sparse 

protein data 
cytosol no 0 S-adenosyl-L-methionine-dependent 

methyltransferases superfamily protein 
AT2G24200 +++ 

 
cytosol no 0 Cytosol aminopeptidase family protein 

AT2G39310 +++ effect at 
later time 
point 

cytosol no 0 jacalin-related lectin 22 

AT3G09940 +++ 
 

cytosol no 0 monodehydroascorbate reductase 
AT3G16420 +++ 

 
cytosol no 0 PYK10-binding protein 1 

AT3G16460 +++ 
 

cytosol no 0 Mannose-binding lectin superfamily protein 
AT3G25780 +++ 

 
plastid no 0 allene oxide cyclase 3 

AT4G11850 +++ 
 

cytosol no 0 phospholipase D gamma 1 
AT4G16760 +++ 

 
peroxisome no 0 acyl-CoA oxidase 1 

AT4G18950 +++ 
 

cytosol, 
nucleus 

no 0 Integrin-linked protein kinase family 

AT4G30210 +++ 
 

endoplasmic 
reticulum 

no 1 P450 reductase 2 

AT4G34150 +++ 
 

cytosol no 0 Calcium-dependent lipid-binding (CaLB domain) 
family protein 

AT4G35630 +++ 
 

plastid no 0 phosphoserine aminotransferase 
AT4G35830 +++ 

 
cytosol, 
mitochondrion 

no 0 aconitase 1 



                                                                                                                                                                                                                             10. APPENDIX 

  185 
 

AT5G05730 +++ 
 

plastid no 0 anthranilate synthase alpha subunit 1 
AT5G11520 +++ RNA small 

change 
plastid no 0 aspartate aminotransferase 3 

AT5G44400 +++ 
 

extracellular yes 0 FAD-binding Berberine family protein 
AT1G05620 ++ burst cytosol no 0 uridine-ribohydrolase  2 
AT1G06840 ++ sparse 

protein data 
plasma 
membrane 

yes 2 Leucine-rich repeat protein kinase family protein 

AT1G07890 ++ burst cytosol no 0 ascorbate peroxidase 1 
AT1G17745 ++ RNA small 

change 
plastid no 0 D-3-phosphoglycerate dehydrogenase 

AT1G18210 ++ burst nucleus no 0 Calcium-binding EF-hand family protein 
AT1G19130 ++ burst cytosol no 0 unkown protein 
AT1G20510 ++ burst plastid no 2 OPC-8:0 CoA ligase1 
AT1G21750 ++ burst endoplasmic 

reticulum 
yes 0 PDI-like 1-1 

AT1G22360 ++ sparse 
protein data 

cytosol no 0 UDP-glucosyl transferase 85A2 

AT1G78380 ++ burst at late 
time point 

cytosol no 0 glutathione S-transferase TAU 19 

AT1G80300 ++ sparse 
protein data 

plastid no 9 nucleotide transporter 1 

AT1G80360 ++ 
 

mitochondrion no 0 Pyridoxal phosphate (PLP)-dependent transferases 
superfamily protein 

AT2G15490 ++ protein level 
rise 

plasma 
membrane 

no 0 UDP-glycosyltransferase 73B4 

AT2G17720 ++ sparse 
protein data 

mitochondrion no 1 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 
superfamily protein 

AT2G18690 ++ sparse 
protein data 

plasma 
membrane 

no 5 unkown protein 

AT2G21620 ++ burst cytosol no 0 Adenine nucleotide alpha hydrolases-like superfamily 
protein 

AT2G30140 ++ 
 

cytosol no 0 UDP-Glycosyltransferase superfamily protein 
AT2G38940 ++ 

 
plasma 
membrane 

no 11 phosphate transporter 1 

AT2G41380 ++ 
 

cytosol no 0 S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

AT2G45300 ++ 
 

plastid no 0 RNA 3'-terminal phosphate cyclase/enolpyruvate 
transferase, alpha/beta 

AT3G06650 ++ 
 

mitochondrion no 0 ATP-citrate lyase B-1 
AT3G08640 ++ 

 
plastid no 2 Protein of unknown function (DUF3411) 

AT3G11820 ++ 
 

plasma 
membrane 

no 1 syntaxin of plants 121 

AT3G14990 ++ RNA 
unchanged 

cytosol no 0 Class I glutamine amidotransferase-like superfamily 
protein 

AT3G16400 ++ sparse 
protein data 

cytosol no 0 nitrile specifier protein 1 

AT3G19930 ++ 
 

plasma 
membrane 

no 11 sugar transporter 4 

AT3G22850 ++ 
 

cytosol no 0 Aluminium induced protein with YGL and LRDR motifs 
AT3G28200 ++ RNA 

unchanged 
extracellular yes 0 Peroxidase superfamily protein 

AT3G28450 ++ 
 

plasma 
membrane 

yes 2 Leucine-rich repeat protein kinase family protein 

AT3G48000 ++ 
 

mitochondrion no 0 aldehyde dehydrogenase 2B4 
AT3G49120 ++ 

 
extracellular yes 0 peroxidase CB 

AT3G52850 ++ sparse 
protein data 

golgi yes 1 vacuolar sorting receptor homolog 1 

AT3G53180 ++ 
 

cytosol no 0 glutamate-ammonia ligases 
AT3G57330 ++ 

 
endoplasmic 
reticulum 

no 10 autoinhibited Ca2+-ATPase 11 
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AT3G58730 ++ RNA 
unchanged 

vacuole, golgi no 0 vacuolar ATP synthase subunit D (VATD) / V-ATPase D 
subunit / vacuolar proton pump D subunit (VATPD) 

AT3G59760 ++ 
 

plastid no 0 O-acetylserine (thiol) lyase isoform C 
AT3G61440 ++ 

 
mitochondrion no 0 cysteine synthase C1 

AT4G14880 ++ burst cytosol no 0 O-acetylserine (thiol) lyase (OAS-TL) isoform A1 
AT4G19880 ++ RNA small 

change  
plastid no 0 Glutathione S-transferase family protein 

AT4G23100 ++ burst plastid no 0 glutamate-cysteine ligase 
AT4G23850 ++ burst peroxisome no 0 AMP-dependent synthetase and ligase family protein 
AT4G25900 ++ changing 

protein 
levels  

extracellular yes 1 Galactose mutarotase-like superfamily protein 

AT4G29900 ++ 
 

plasma 
membrane 

no 8 autoinhibited Ca(2+)-ATPase 10 

AT4G34050 ++ changing 
protein 
levels  

cytosol no 0 S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

AT4G34131 ++ sparse 
protein data 

plasma 
membrane 

no 0 UDP-glucosyl transferase 73B3 

AT4G34180 ++ burst extracellular yes 0 Cyclase family protein 
AT4G37370 ++ burst endoplasmic 

reticulum 
no 1 cytochrome P450, family 81, subfamily D, polypeptide 

8 
AT4G38420 ++ burst extracellular yes 1 SKU5 similar 9 
AT5G01500 ++ burst plastid no 0 thylakoid ATP/ADP carrier 
AT5G03160 ++ burst endoplasmic 

reticulum 
no 1 homolog of mamallian P58IPK 

AT5G03630 ++ 
 

cytosol no 0 Pyridine nucleotide-disulphide oxidoreductase family 
protein 

AT5G04590 ++ burst plastid no 0 sulfite reductase 
AT5G04740 ++ burst plastid no 0 ACT domain-containing protein 
AT5G06320 ++ 

 
plasma 
membrane 

no 1 NDR1/HIN1-like 3 

AT5G06860 ++ changing 
protein 
levels  

extracellular yes 0 polygalacturonase inhibiting protein 1 

AT5G13200 ++ burst cytosol no 0 GRAM domain family protein 
AT5G13420 ++ burst plastid no 0 Aldolase-type TIM barrel family protein 
AT5G17330 ++ burst cytosol no 0 glutamate decarboxylase 
AT5G17990 ++ sparse 

protein data 
plastid no 0 tryptophan biosynthesis 1 

AT5G19440 ++ burst cytosol no 0 NAD(P)-binding Rossmann-fold superfamily protein 
AT5G21105 ++ 

 
extracellular yes 1 Plant L-ascorbate oxidase 

AT5G24760 ++ sparse 
protein data 

cytosol no 0 GroES-like zinc-binding dehydrogenase family protein 

AT5G26030 ++ burst plastid no 1 ferrochelatase 1 
AT5G27380 ++ burst cytosol, 

plastid 
no 0 glutathione synthetase 2 

AT5G39950 ++ burst cytosol no 0 thioredoxin 2 
AT5G40370 ++ burst cytosol no 1 Glutaredoxin family protein 
AT5G40760 ++ burst cytosol no 0 glucose-6-phosphate dehydrogenase 6 
AT5G44720 ++ burst cytosol no 0 Molybdenum cofactor sulfurase family protein 
AT5G45510 ++ sparse 

protein data 
cytosol no 0 Leucine-rich repeat (LRR) family protein 

AT5G48810 ++ burst endoplasmic 
reticulum 

no 1 cytochrome B5 isoform D 

AT5G48930 ++ sparse 
protein data 

cytosol no 0 hydroxycinnamoyl-CoA shikimate/quinate 
hydroxycinnamoyl transferase 

AT5G54500 ++ 
 

cytosol no 1 flavodoxin-like quinone reductase 1 
AT5G58590 ++ sparse 

protein data 
nucleus no 0 RAN binding protein 1 
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AT5G63570 ++ burst plastid no 0 glutamate-1-semialdehyde-2,1-aminomutase 
AT5G66120 ++ burst cytosol no 0 3-dehydroquinate synthase, putative 
AT1G06290 + RNA 

unchanged 
mitochondrion no 0 acyl-CoA oxidase 3 

AT1G07510 + sparse 
protein data 

mitochondrion no 0 FTSH protease 10 

AT1G11910 + RNA down-
regulated 

vacuole yes 1 aspartic proteinase A1 

AT1G15130 + 
 

nucleus no 0 Endosomal targeting BRO1-like domain-containing 
protein 

AT1G27980 + 
 

endoplasmic 
reticulum 

no 1 dihydrosphingosine phosphate lyase 

AT1G63010 + 
 

vacuole no 10 Major Facilitator Superfamily with SPX 
(SYG1/Pho81/XPR1) domain-containing protein 

AT1G65820 + 
 

extracellular no 3 microsomal glutathione s-transferase, putative 
AT1G65930 + 

 
cytosol no 0 cytosolic NADP+-dependent isocitrate dehydrogenase 

AT1G66240 + 
 

plasma 
membrane 

no 0 homolog of anti-oxidant 1 

AT2G44160 + 
 

cytosol no 0 methylenetetrahydrofolate reductase 2 
AT2G47000 + 

 
plasma 
membrane 

no 9 ATP binding cassette subfamily B4 

AT3G02780 + 
 

plastid no 0 isopentenyl pyrophosphate:dimethylallyl 
pyrophosphate isomerase 2 

AT3G07680 + 
 

extracellular yes 0 emp24/gp25L/p24 family/GOLD family protein 
AT3G12800 + 

 
peroxisome no 0 short-chain dehydrogenase-reductase B 

AT3G22950 + 
 

cytosol no 0 ADP-ribosylation factor C1 
AT3G24170 + 

 
peroxisome no 0 glutathione-disulfide reductase 

AT3G52470 + 
 

plasma 
membrane 

no 1 Late embryogenesis abundant (LEA) hydroxyproline-
rich glycoprotein family 

AT3G54030 + 
 

cytosol, 
mitochondrion 

no 0 Protein kinase protein with tetratricopeptide repeat 
domain 

AT4G05020 + 
 

mitochondrion no 0 NAD(P)H dehydrogenase B2 
AT4G05160 + 

 
peroxisome no 0 AMP-dependent synthetase and ligase family protein 

AT4G37870 + RNA down-
regulated 

cytosol no 0 phosphoenolpyruvate carboxykinase 1 

AT5G09650 + 
 

plastid no 0 pyrophosphorylase 6 
AT5G26742 + 

 
plastid no 0 DEAD box RNA helicase (RH3) 

AT5G50920 + 
 

plastid no 0 CLPC homologue 1 
AT5G66920 + 

 
extracellular yes 1 SKU5  similar 17 

 

10.3 Proteins with low labeling efficiency  

These proteins have on average a labeling efficiency of less than 40%, or in other words have a RIALys0  
> 60%. RIALys0 = Lys0 / (Lys0+Lys4+Lys8); nQuant = Number of samples where that protein was 
quantified. 

AGI Median 
RIALys0 

nQuant Description 

AT1G06680 89.92% 23 photosystem II subunit P-1 
AT1G07320 79.04% 21 ribosomal protein L4 
AT1G09310 84.37% 7 Protein of unknown function, DUF538 
AT1G09340 88.08% 23 chloroplast RNA binding 
AT1G12900 89.31% 10 glyceraldehyde 3-phosphate dehydrogenase A subunit 2 
AT1G15820 98.91% 21 light harvesting complex photosystem II subunit 6 
AT1G16080 61.07% 11 unknown protein 
AT1G20020 90.24% 14 ferredoxin-NADP(+)-oxidoreductase 2 
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AT1G23740 80.91% 7 Oxidoreductase, zinc-binding dehydrogenase family protein 
AT1G24020 91.79% 7 MLP-like protein 423 
AT1G31330 90.78% 26 photosystem I subunit F 
AT1G32060 86.56% 22 phosphoribulokinase 
AT1G32990 63.99% 15 plastid ribosomal protein l11 
AT1G42970 91.63% 25 glyceraldehyde-3-phosphate dehydrogenase B subunit 
AT1G44575 92.68% 22 Chlorophyll A-B binding family protein 
AT1G52030 83.25% 8 myrosinase-binding protein 2 
AT1G52400 85.18% 11 beta glucosidase 18 
AT1G54780 90.54% 6 thylakoid lumen 18.3 kDa protein 
AT1G55480 64.73% 5 protein containing PDZ domain, a K-box domain, and a TPR region 
AT1G61520 90.78% 26 photosystem I light harvesting complex gene 3 
AT1G67090 92.30% 35 ribulose bisphosphate carboxylase small chain 1A 
AT1G68010 87.55% 15 hydroxypyruvate reductase 
AT1G70830 85.20% 8 MLP-like protein 28 
AT1G74470 89.23% 9 Pyridine nucleotide-disulphide oxidoreductase family protein 
AT2G05100 90.62% 6 photosystem II light harvesting complex gene 2.1 
AT2G10940 91.19% 17 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily 

protein 
AT2G13360 95.62% 12 alanine:glyoxylate aminotransferase 
AT2G24270 86.96% 8 aldehyde dehydrogenase 11A3 
AT2G28900 92.92% 11 outer plastid envelope protein 16-1 
AT2G34420 88.24% 5 photosystem II light harvesting complex gene B1B2 
AT2G37660 80.61% 7 NAD(P)-binding Rossmann-fold superfamily protein 
AT2G39730 89.43% 30 rubisco activase 
AT2G43030 90.62% 7 Ribosomal protein L3 family protein 
AT3G01090 78.60% 17 SNF1 kinase homolog 10 
AT3G08940 80.44% 28 light harvesting complex photosystem II 
AT3G14067 66.52% 9 Subtilase family protein 
AT3G14210 86.50% 18 epithiospecifier modifier 1 
AT3G14415 87.60% 12 Aldolase-type TIM barrel family protein 
AT3G14420 91.60% 12 Aldolase-type TIM barrel family protein 
AT3G16140 92.31% 7 photosystem I subunit H-1 
AT3G16370 83.44% 5 GDSL-like Lipase/Acylhydrolase superfamily protein 
AT3G26060 83.78% 12 Thioredoxin superfamily protein 
AT3G26650 92.85% 21 glyceraldehyde 3-phosphate dehydrogenase A subunit 
AT3G27850 70.97% 29 ribosomal protein L12-C 
AT3G44890 78.21% 7 ribosomal protein L9 
AT3G45140 91.16% 22 lipoxygenase 2 
AT3G46780 90.62% 14 plastid transcriptionally active 16 
AT3G47470 89.98% 20 light-harvesting chlorophyll-protein complex I subunit A4 
AT3G54050 82.04% 10 high cyclic electron flow 1 
AT3G54890 94.70% 9 photosystem I light harvesting complex gene 1 
AT3G55800 90.94% 16 sedoheptulose-bisphosphatase 
AT3G56940 77.51% 9 dicarboxylate diiron protein, putative (Crd1) 
AT3G63140 86.83% 7 chloroplast stem-loop binding protein of  41 kDa 
AT3G63490 86.44% 13 Ribosomal protein L1p/L10e family 
AT4G01150 81.96% 13 unknown protein 
AT4G02770 92.18% 12 photosystem I subunit D-1 
AT4G03280 90.26% 14 photosynthetic electron transfer C 
AT4G04640 92.57% 20 ATPase, F1 complex, gamma subunit protein 
AT4G05180 73.15% 6 photosystem II subunit Q-2 
AT4G09010 86.69% 9 ascorbate peroxidase 4 
AT4G09650 88.49% 20 ATP synthase delta-subunit gene 
AT4G10340 91.78% 30 light harvesting complex of photosystem II 5 
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AT4G21280 93.73% 18 photosystem II subunit QA 
AT4G21650 87.18% 7 Subtilase family protein 
AT4G23600 89.72% 8 Tyrosine transaminase family protein 
AT4G23670 64.03% 6 Polyketide cyclase/dehydrase and lipid transport superfamily protein 
AT4G25080 88.06% 7 magnesium-protoporphyrin IX methyltransferase 
AT4G27440 83.64% 7 protochlorophyllide oxidoreductase B 
AT4G28750 93.49% 8 Photosystem I reaction centre subunit IV / PsaE protein 
AT4G29060 70.92% 22 elongation factor Ts family protein 
AT4G32260 89.59% 19 ATPase, F0 complex, subunit B/B', bacterial/chloroplast 
AT4G36580 83.69% 7 AAA-type ATPase family protein 
AT4G37930 86.96% 18 serine transhydroxymethyltransferase 1 
AT4G38970 91.35% 16 fructose-bisphosphate aldolase 2 
AT4G39330 89.11% 6 cinnamyl alcohol dehydrogenase 9 
AT5G01530 87.24% 26 light harvesting complex photosystem II 
AT5G04140 85.43% 16 glutamate synthase 1 
AT5G07030 93.10% 8 Eukaryotic aspartyl protease family protein 
AT5G09660 87.37% 7 peroxisomal NAD-malate dehydrogenase 2 
AT5G11290 88.69% 5 Plant protein of unknown function (DUF247) 
AT5G14740 90.48% 17 carbonic anhydrase 2 
AT5G20630 75.18% 6 germin 3 
AT5G23060 86.59% 10 calcium sensing receptor 
AT5G23120 88.43% 8 photosystem II stability/assembly factor, chloroplast (HCF136) 
AT5G24770 91.27% 5 vegetative storage protein 2 
AT5G24780 89.58% 19 vegetative storage protein 1 
AT5G25980 90.34% 18 glucoside glucohydrolase 2 
AT5G26000 91.97% 25 thioglucoside glucohydrolase 1 
AT5G35630 89.96% 22 glutamine synthetase 2 
AT5G36790 82.69% 10 Haloacid dehalogenase-like hydrolase (HAD) superfamily protein 
AT5G38420 93.04% 27 Ribulose bisphosphate carboxylase (small chain) family protein 
AT5G38430 91.34% 18 Ribulose bisphosphate carboxylase (small chain) family protein 
AT5G54600 84.04% 5 Translation protein SH3-like family protein 
AT5G54770 83.14% 12 thiazole biosynthetic enzyme, chloroplast (ARA6) (THI1) (THI4) 
AT5G55220 83.32% 7 trigger factor type chaperone family protein 
AT5G58330 85.49% 8 lactate/malate dehydrogenase family protein 
AT5G61410 85.01% 6 D-ribulose-5-phosphate-3-epimerase 
AT5G64040 92.09% 17 photosystem I reaction center subunit PSI-N, chloroplast, putative / PSI-N, putative 

(PSAN) 
AT5G65220 87.26% 8 Ribosomal L29 family protein  
AT5G66190 89.41% 18 ferredoxin-NADP(+)-oxidoreductase 1 
AT5G66570 87.83% 12 PS II oxygen-evolving complex 1 
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