
DISS. ETH NR. 24335

Redundancy in Linear Systems:
Combinatorics, Algorithms and

Analysis

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

May Krisztina Szedlák
M. Sc. In Mathematics, ETH Zurich

born December 10, 1989
citizen of Worb, BE

accepted on the recommendation of

Prof. Dr. Bernd Gärtner, examiner
Prof. Dr. Komei Fukuda, co-examiner
Dr. Kenneth Clarkson, co-examiner

Prof. Dr. Rico Zenklusen, co-examiner

2017

Contents

Contents iv

1 Overview 9

1.1 Motivation . 9

1.2 Problems and Goals . 15

1.3 Main Results . 16

I Generalizations of Clarkson’s Redundancy Removal
Algorithm 21

2 Preliminaries 23

2.1 Redundancy Removal in Linear Programming 23

2.2 Clarkson’s Redundancy Removal Algorithm 25

2.2.1 The Algorithm 25

2.2.2 Preprocessing of the Algorithm 27

3 Combinatorial Redundancy
Removal 29

3.1 Introduction . 29

3.2 Basics . 33

3.2.1 LP in Dictionary Form 33

3.2.2 Pivot Operations 36

ii CONTENTS

3.3 Combinatorial Redundancy 36

3.4 Certificates . 38

3.4.1 A Certificate for Redundancy in the Dictionary
Oracle . 39

3.4.2 A Certificate for Nonredundancy in the Dictio-
nary Oracle . 40

3.4.3 Finite Pivot Algorithms for Certificates 43

3.5 An Output Sensitive Redundancy Detection Algorithm . 44

3.5.1 General Redundancy Detection 45

3.5.2 Strong Redundancy Detection 49

3.6 Number of Dictionaries for all Certificates 51

3.7 Alternative Nonredundancy Certificate 54

3.7.1 Another Certificate 54

3.7.2 Comparison of Certificates 56

3.8 Discussion and Open Questions 57

4 Redundancy Detection in Linear Systems with two Vari-
ables per Inequality 59

4.1 Introduction . 59

4.2 Definitions and Preliminaries 61

4.3 A Strongly Polynomial Time Redundancy Detection Al-
gorithm for Linear Programs with two Variables per In-
equality . 62

4.4 Revision of the Hochbaum-Naor Method 65

4.4.1 The Ingredients 65

4.4.2 The Hochbaum-Naor Algorithm for the Feasible
Case . 74

4.4.3 Discussion of the Hochbaum Naor Algorithm . . 77

CONTENTS iii

4.4.4 Discussion of the Hochbaum-Naor Algorithm in
the Infeasible Case 78

4.5 Modification of Hochbaum-Naor Method 79

4.6 The Non-Full-Dimensional Case 81

4.7 Discussion and Open Questions 83

5 Complexity of Polytopes with two Variables per In-
equality 85

5.1 Introduction . 85

5.2 Definitions and Known Results 86

5.3 Lower Bound on Maximum Complexity of LI(2) 88

5.4 Upper Bound on Maximum Complexity of LI(2) 97

5.5 Discussion and Open Questions 102

II Sampling with Removal in Generalizations of Lin-
ear Programming 103

6 Sampling with Removal 105

6.1 Introduction . 105

6.2 Basics and Definitions 108

6.2.1 LP-type Problems 109

6.2.2 Violator Spaces 110

6.2.3 Consistent Spaces 115

6.2.4 Sampling with Removal 116

6.3 An Upper Bound for Consistent Spaces 117

6.4 An Upper Bound for Violator Spaces 125

6.4.1 Extreme Constraints after Removal 126

iv CONTENTS

6.4.2 Sampling Lemma after Removal 130

6.4.3 Violators after Removal 132

6.5 A Lower Bound for Consistent Spaces 133

6.6 Lower Bounds for Violator Spaces 136

6.7 Characterization of Violator Spaces with Combinatorial
Dimension 1 . 139

6.8 Discussion and Open Questions 143

CONTENTS 1

Abstract

The problem of detecting and removing redundant constraints is fun-
damental in optimization. Finding the redundancies helps in under-
standing the underlying problem and can greatly improve the running
time of subsequent computations. Intuitively, we are provided with a
problem described by a set of constraints, but only some of them are
needed to describe any of its solutions. The constraints that are not
needed for this description are redundant.

More specifically, we consider the setting of linear programs (LPs) in d
variables, given by a linear function that has to be maximized subject
to a system of n inequalities. The region satisfying all the inequalities
defines a convex polyhedron in Rd, the feasible region of the LP. An
inequality of this system is called redundant, if after removing it the LP
still has the same feasible region, otherwise it is called nonredundant.
The currently fastest method to detect all redundancies is the one by
Clarkson: it solves n linear programs, but each of them has at most
s inequalities, where s is the number of nonredundant inequalities.
Additionally the algorithm executes s ray shootings. This algorithm is
very e�cient in the case where the number of nonredundant inequalities
is small.

Firstly, we modify Clarkson’s algorithm in a way that it does not rely
on geometrical notions such as ray shooting. We show that knowing
only the signs of all the dictionaries, — which is combinatorial in-
formation — su�ces to detect all redundancies. A dictionary can be
thought of as a matrix, which gives an encoding of the relative positions
of the inequalities to each other. Although our algorithm is slower than
Clarkson’s redundancy removal algorithm, it is still output sensitive,
meaning that the running time depends on the number of nonredun-
dant inequalities. Moreover it uses the minimum information needed
to detect all redundancies; for an exact implementation, only signs
need to be evaluated correctly. Furthermore our algorithm is naturally
extendable to the setting of oriented matroids. In the case where all
the inequalities are in general position, our running time essentially
matches the time of the Clarkson method.

2 CONTENTS

Secondly we give a strongly polynomial time algorithm (polynomial
number of elementary operations in n and d) to detect all redundan-
cies in the special case where the LP has at most two variables per
inequality. Although in this case the structure is simpler than in a
general LP, the defined polyhedron can still have large complexity. In
general there is no known strongly polynomial time algorithm for solv-
ing linear programs, finding a point in the feasible region or redundancy
detection. However in the special case where the LP has at most two
variables per inequality, Hochbaum and Naor showed that there is a
strongly polynomial algorithm to find a feasible solution. Their result
makes use of some nice properties of systems with two variables per
inequality and uses them together with an e�cient implementation of
the Fourier-Motzkin method. Using the result of Hochbaum and Naor
we modify Clarkson’s method, such that it detects all redundancies
in strongly polynomial time. This algorithm, as the original Clarkson
method, relies on geometrical notions such as ray shooting.

Finally, we consider the following alternative definition of redundant
inequalities. We minimize the objective function with respect to a sub-
set R of the inequalities of the LP, and obtain a solution that satisfies
some of the inequalities (in particular R). An inequality that does not
satisfy this solution is called a violator of R. In this setting an inequal-
ity is redundant w.r.t. R if it is not a violator of R. From the Sampling
Lemma it is known that for a random sample of large enough sublinear
size, we only expect a sublinear number of violators, which means that
almost all inequalities are redundant w.r.t. R.

In this thesis we consider the following variant of sampling. After
choosing a random sample we remove k elements with respect to any
deterministic or random rule. Is it then still true that the number
of violated inequalities is small? We give two di↵erent upper bounds
which show that the maximum increase possible is a multiplicative
factor of O(ln r + k) or O(d2k). In particular, for most relevant values
of |R|, d and k this bound is still sublinear.

In fact, we show that those bounds hold for the much more general
combinatorial setting of consistent spaces and violator spaces. Con-
sistent spaces (a generalization of violator spaces), is a concept first

CONTENTS 3

introduced in this work. For a big range of values of k, our bound
improves the best previous bounds. Those have also only been known
for a subfamily of violator spaces and for a specific rule of removing
k elements. For both bounds we give matching lower bounds in their
respective settings.

4 CONTENTS

Zusammenfassung

Redundante Bedingungen zu finden und zu entfernen, ist eine grundle-
gende Fragestellung in der Optimierung. Für das Verständnis des zu-
grundeliegenden Problems und die Verbesserung der Laufzeit von nach-
folgenden Berechnungen kann es hilfreich sein, Redundanzen zu finden.
Wir betrachten Probleme, die sich durch eine Menge von Bedingungen
(constraints) beschreiben lassen, die nicht alle zur Beschreibung der
Lösung notwendig sind; solche überflüssigen Bedingungen werden re-
dundant genannt.

Im Folgenden liegt der besondere Fokus auf linearen Programmen (LPs)
mit d Variablen. Die linearen Programme sind durch eine zu max-
imierende lineare Funktion gegeben, welche ein System von n Un-
gleichungen erfüllen muss. Die Lösungsmenge, also der Bereich der
Punkte, die alle Ungleichungen erfüllen, definiert ein konvexes Polyeder
in Rd. Eine Ungleichung des linearen Systems wird redundant genannt,
wenn das LP nach ihrer Entfernung immer noch die gleiche Lösungs-
menge hat. Andernfalls ist die Ungleichung nichtredundant. Der Algo-
rithmus von Clarkson ist nach heutigem Forschungsstand die schnellste
Methode zur Bestimmung aller Redundanzen: Sie löst n lineare Pro-
gramme mit jeweils höchstens s Ungleichungen, wobei s die Anzahl
nichtredundanter Ungleichungen bezeichnet. Zusätzlich führt der Al-
gorithmus s Ray-Shooting-Operationen aus. Dieser Algorithmus ist
sehr e�zient, wenn die Anzahl der nichtredundanten Ungleichungen
klein ist.

Zuerst modifizieren wir Clarksons Algorithmus so, dass er nicht mehr
von geometrischen Prinzipien wie der Ray-Shooting-Operation abhängt.
Wir zeigen: Um alle Redundanzen zu entdecken, genügt die rein kom-
binatorische Information eines Dictionarys, das ist eine Matrix, welche
die relativen Positionen der Ungleichungen zueinander kodiert. Unser
Algorithmus ist zwar langsamer als der Algorithmus von Clarkson,
aber immer noch output-sensitiv, das bedeutet, die Laufzeit hängt von
der Anzahl nichtredundanter Ungleichungen ab. Ferner benutzt unser
Algorithmus nur die minimal notwendige Information um die Redun-
danzen zu entdecken: Für eine exakte Implementierung müssen nur

CONTENTS 5

die Vorzeichen richtig evaluiert werden. Zudem lässt sich unser Algo-
rithmus auf orientierte Matroide natürlich erweitern. Wenn alle Ungle-
ichungen in allgemeiner Lage sind, entspricht die Laufzeit im Grunde
der Laufzeit von Clarksons Algorithmus.

Als Zweites betrachten wir LPs, in denen jede Ungleichung höchstes
zwei Variablen hat. In diesem Fall haben wir einen Algorithmus um
alle Redundanzen zu entdecken, mit streng polynomieller Laufzeit (die
Anzahl Elementaroperationen ist polynomiell in n und d). Obwohl
in diesem Fall die Struktur einfacher ist als bei einem allgemeinen
LP, kann das zugrundeliegende Polyeder immer noch eine hohe Kom-
plexität aufweisen. Im Allgemeinen sind für folgende Probleme keine
Algorithmen mit streng polynomieller Laufzeit bekannt: Lösen eines
linearen Programms, Finden einer zulässigen Lösung und Entdecken
der Redundanzen. Jedoch haben Hochbaum und Naor im Fall von
zwei Variablen pro Ungleichung gezeigt, dass es einen Algorithmus
mit streng polynomieller Laufzeit gibt, welcher eine zulässige Lösung
findet. Ihr Resultat benutzt einige schöne Eigenschaften von Syste-
men mit zwei Variablen pro Ungleichung und verbindet diese mit einer
e�zienten Implementierung der Fourier-Motzkin-Methode. Wir be-
nutzen dieses Resultat von Hochbaum und Naor, um Clarkons Algo-
rithmus so zu modifizieren, dass er alle Redundanzen in stark poly-
nomieller Laufzeit endeckt. Wie der ursprüngliche Algorithmus von
Clarkson, basiert dieser Algorithmus auf geometrischen Prinzipien wie
Ray-Shooting.

Zum Schluss betrachten wir die folgende alternative Definition von re-
dundanten Ungleichungen: Wir maximieren die Zielfunktion bedingt
auf eine Teilmenge R der Ungleichungen. So erhalten wir eine Lösung
die einige Ungleichungen erfüllt (insbesondere R). Eine Ungleichung
welche die Lösung nicht erfüllt, wird als Violator von R bezeichnet. In
diesem Zusammenhang heisst eine Ungleichung redundant bezüglich
R, falls sie kein Violator von R ist. Wählen wir ein genügend grosses
zufälliges sublineares Sample, so wissen wir vom Sampling Lemma,
dass wir nur sublinear viele Violators erwarten. Das bedeutet, dass
fast alle Ungleichungen redundant bezüglich R sind.

In dieser Arbeit betrachten wir die folgende Variante von Sampling.

6 CONTENTS

Wir wählen ein zufälliges Sample und entfernen anschliessend k Ele-
mente bezüglich einer beliebigen deterministischen oder zufälligen Regel.
Tri↵t es zu, dass die Anzahl nicht erfüllter Ungleichungen immer noch
klein ist? Wir geben zwei verschiedene obere Schranken an und zeigen,
dass die Anzahl höchstens um einen multiplikativen Faktor von O(ln r+
k) oder O(d2k) zunimmt. Insbesondere ist diese Schranke für die meis-
ten relevanten Werte von |R|, d und k immer noch sublinear.

Genau genommen zeigen wir, dass diese Schranken in einem viel all-
gemeineren Rahmen gelten (Consistent Spaces und Violator Spaces).
Die Consistent Spaces (eine Verallgemeinerung von Violator Spaces)
werden erstmals in dieser Arbeit eingeführt. Für einen grossen Bereich
von Werten von k verbessern unsere Schranken die besten bisher bekan-
nten Schranken. Diese waren auch nur für eine Unterfamilie von Vio-
lator Spaces und einer speziellen Regel zur Entfernung der k Elemente
bekannt. Für beide Schranken geben wir passende untere Schranken
an.

CONTENTS 7

Acknowledgments

This thesis would not have been written without the support and help
of several people throughout the whole period of development. First
and foremost, I would like to express my gratitude to my supervisors
Prof. Komei Fukuda and Prof. Bernd Gärtner. With their guidance
and assistance throughout the years, they challenged and supported
me and therefore made this thesis possible.

My appreciation goes to Prof. Emo Welzl, who supervised my Master
and Bachelor theses and who welcomed me into his research team.

I would like to thank my coauthors Prof. Komei Fukuda, Prof. Bernd
Gärtner, and Dr. Johannes Lengler for their ideas, help and the suc-
cessful completion of the work. I also express my appreciation to my
Master thesis advisor Dr. Anna Gundert, thanks to her I found deep
interest in research and published my first paper.

I am thankful to the committee members Dr. Kenneth Clarkson, Prof.
Komei Fukuda, Prof. Bernd Gärtner and Prof. Rico Zenklusen. I would
also like to address my gratitude to the Swiss National Science Foun-
dation (SNF) for their financial support.

I am grateful to my parents and my brother for their constant sup-
port throughout this thesis and my whole life. Finally, I would like
to express my deepest gratefulness to Luis Barba for his unconditional
emotional, moral, and professional support in all aspects of my life.

8 CONTENTS

Chapter 1

Overview

1.1 Motivation

The detection and removal of redundant constraints is an important
tool in optimization. Intuitively, we are given a system of constraints
that describe some solutions. The constraints that are not needed to
define the solutions are redundant in the system. Models of realistic
data often contain redundancies. It that case identifying them helps in
understanding the given data. Moreover, removing the redundancies
can vastly improve the running time of subsequent operations.

This thesis studies di↵erent aspects of the problem of detecting redun-
dancies in linear programs. We consider linear systems (of inequalities)
of the form Ax b, where A 2 Rn⇥d, b 2 Rn. We call the rows of
Ax b the constraints of the linear system. A point x 2 Rd that sat-
isfies the constraints of the system is called a (feasible) solution. The
set of feasible solutions is called the feasible region and forms a convex
polyhedron, since it is defined as the intersection of halfspaces given by
the linear constraints. A bounded polyhedron is called a polytope. In
a linear system Ax b an inequality is called redundant, if after its
removal the system still has the same feasible region. If an inequality
is not redundant it is called nonredundant.

Before discussing the redundancy problem in more detail we give an
overview of linear programming. We consider linear programs (LPs)
of the form

maximize cTx
subject to Ax b,

(1.1)

10 CHAPTER 1. OVERVIEW

where A, b are as above and c 2 Rd. We call cTx the objective function
of the LP. Let us assume that the LP is feasible, i.e., there exists a
solution to the linear system. The intersection of d linearly independent
hyperplanes determined by the constraints of Ax b, is called a basic
solution. We always assume that a basic solution exists, in particular
d n. We can identify the basic feasible solutions with the vertices of
the polyhedron defined by the LP. A feasible solution x⇤ that satisfies
cTx⇤ � cTx for all feasible solutions x, is called an optimal solution.
An LP is unbounded, if for all z 2 R there exists a feasible solution xz,
such that cTxz � z.

Running time of linear programming solvers. Let LP (n, d) de-
note the time (number of elementary operations) needed to solve an
LP of form (1.1). Concretely, LP (n, d) is the time needed to find ei-
ther an optimal solution or a certificate for unboundedness. Although
practical algorithms to solve LPs exist, no strongly polynomial-time
algorithm is known. We call an algorithm strongly polynomial if the
number of elementary operations is polynomial in the number of inputs
(here n and d) but independent of the encoding size (i.e., the bit size)
of the input. However there are algorithms, whose running times are
polynomial in the encoding size, those are simply called polynomial
algorithms.

Many algorithms have been developed to solve LPs. We will review
some widely known ones among them and discuss their di↵erent ap-
proaches.

The main idea of the simplex algorithm is as follows: in the first stage
one finds a vertex x of the feasible region. In the second stage, if x is
not an optimal solution, the algorithm moves to a vertex x0 that has
better objective value i.e., cTx0 > cTx. This is done with a fixed pivot
rule. This step is repeated until the algorithm finds an optimal vertex
or a certificate for unboundedness.

The criss-cross algorithm [45, 47, 22] is similar to the simplex algo-
rithm. It however moves between basic solutions that are not nec-
essarily feasible and may decrease the objective value in some steps.

1.1. MOTIVATION 11

Although both algorithms run fast in practice, in general they can have
exponential running times [13, 33].

On the other hand the ellipsoid method runs in polynomial time in the
encoding length of the input, but is not practical [32]. The ellipsoid
method finds either a feasible solution of the given LP or a certifi-
cate for infeasibility. The main idea is to find a sequence of ellipsoids
E

0

, E
1

, . . . , Ek of decreasing volume, such that either the center of Ek

is a feasible solution of the LP or Ek is a certificate for infeasibility.
We will discuss below how an optimization problem can be transformed
into a feasibility problem.

Karmarkar [31] introduced the interior-point method, considered to be
the first practical polynomial time algorithm, which has been modified
in many ways since [49]. We start with a linear system with bounded
optimal solution and a fixed feasible point. The algorithm moves on
a unique path towards a face where the objective value is maximized.
Polynomially many steps su�ce to find such a face and hence an opti-
mal solution.

A completely di↵erent approach of sampling is used in the LP solver of
Clarkson [11], which is a randomized algorithm. Its expected running
time is exponential in d but linear in n, and is hence particularly useful
if d is small. It uses the fact that optimizing with respect to a random
sample of n↵, 0 < ↵ < 1 many inequalities of the LP, we only expect
O(n1�↵ ·d) many inequalities of the LP to be not satisfied by the solu-
tion [28]. Hence using a sublinear sample, we expect only a sublinear
number of unsatisfied constraints. As the simplex and criss-cross al-
gorithm, it finds an optimal solution considering the basic solutions of
the LP.

We can see that the above methods to solve LPs are fundamentally dif-
ferent. The beauty of the simplex, criss-cross and Clarkson’s algorithm
is, that they only consider the basic solutions of the linear system. This
can easily be implemented correctly with exact rational arithmetic, but
none of the running times is polynomial in general.

12 CHAPTER 1. OVERVIEW

Equivalence of optimization and feasibility. Let LP 0(n, d) de-
note the time to solve the associated feasibility problem, i.e., the time
needed to find a solution to

Ax b. (1.2)

As the optimal solution is also a feasible solution, LP 0(n, d) LP (n, d).
This means that the feasibility problem can be reduced to the optimiza-
tion problem.

We claim that the reduction in the other direction also holds and to
prove it, we use the powerful tool of the dual LP of (1.1), (see [40,
Chapter 7]) given by

minimize bT y
subject to AT y = c

y � 0.
(1.3)

If (1.1) is feasible and bounded, then its optimal value equals the op-
timal value of (1.3), i.e., the maximum of cTx equals the minimum of
bT y. If (1.1) is unbounded, then its dual is infeasible. It follows that
we can optimize (1.1) by finding a solution to the following system of
inequalities.

cTx = bT y
Ax b

AT y = c
y � 0.

(1.4)

If (1.4) has a solution (x⇤, y⇤), then x⇤ is an optimal solution of (1.1).
If (1.4) is infeasible, then (1.1) is unbounded. (This is because we
assumed that (1.1) is feasible, without the assumption (1.1) could be
infeasible as well.) We can hence solve the optimization problem (1.1)
in time LP 0(n+ d, n+ d), i.e., LP (n, d) LP 0(n+ d, n+ d). Therefore
finding a strongly polynomial-time algorithm to solve the feasibility
problem, would also imply a strongly polynomial-time algorithm for
the optimization problem.

1.1. MOTIVATION 13

Equivalence of LP and redundancy detection. We now show
how one can test redundancy of a constraint through linear program-
ming and vice versa. Suppose we are given a system of form (1.1) and
we want to know whether the k-th constraint, denoted Akx bk, is
redundant. We can answer this question by solving the linear program

maximize Akx
subject to Aix bi 8i 2 {1, . . . , n} \ {k}

Akx bk + 1.
(1.5)

We show that Akx bk is nonredundant, if and only if the optimal so-
lution of (1.5) is larger than bk. It follows that a single redundancy can
be detected in time LP (n, d). To prove the claim, first note that (1.5)
is feasible (since (1.1) is feasible) and the objective value is bounded
by bk + 1. Assume that Akx bk is redundant. In that case every
solution to

Aix bi 8i 2 {1, . . . , n} \ {k},

also satisfies Akx bk, in particular for the optimal solution x⇤ it
holds that Akx⇤ bk. For the other direction assume that Akx
bk is nonredundant, i.e., there exists a solution x0 that satisfies all
constraints except Akx0 bk. In particular Akx0 > bk and hence the
optimal solution x⇤ satisfies Akx⇤ > bk as well.

The other direction can be shown as follows. Let x
0

be a new variable.
Then it is not hard to show that (1.1) has no feasible solution if and
only if x

0

 0 is redundant in the linear system

Ax� bx
0

 0
x
0

 0.
(1.6)

Let x
0

 0 be redundant. This is equivalent to the statement that
there is no solution (x, x

0

) with x
0

> 0 such that Ax bx
0

. This again
is equivalent to the statement that there is no feasible solution of (1.1).
Hence deciding whether a constraint is redundant is at least as hard
as the feasibility problem of linear programming (for more detail see
[18]).

14 CHAPTER 1. OVERVIEW

Redundancy detection algorithm. In the last paragraph we saw
that we can find a single redundancy in time LP (n, d). It follows that
solving n+d LPs of form (1.5) su�ces to detect all redundancies. The
currently fastest known algorithm to find all redundancies is due to
Clarkson and has running time O((n+ d) · LP (s, d)) [10, 18], where s
is the number of nonredundant inequalities. The algorithm still solves
n linear programs, but each of them has at most s constraints. Hence
in the case where s⌧ n, this is a major improvement. We will discuss
this algorithm in Section 2.2.

Redundancy from a di↵erent viewpoint. In this section, for sim-
plicity let us assume that our LP has a bounded optimal solution. In
this part we also assume that c is generic, that is, the optimal solution
is unique. Clarkson’s redundancy removal algorithm is very useful to
preprocess a linear system, if for instance one wants to solve an LP
for many objective functions c. If one is not interested in this kind
of preprocessing, but only solves one linear program, we can observe
that most constraints are unnecessary in the sense that removing them
still results in the same optimal value. In fact there exists a set of d
constraints with index set I, such that

minimize cTx
subject to Aix bi 8i 2 I

(1.7)

has the same optimal value as (1.1). We call the constraints i /2 I
redundant w.r.t. direction c.

If one can find an optimal solution, then by basic linear algebra it is
not hard to find a set of d constraints whose boundaries intersect in
this optimal solution. Hence up to some additional polynomial factor,
finding the nonredundant constraints w.r.t. c, takes at least as long as
finding an optimal solution to (1.1). Let us go a step further and see
what happens if we sample a subset A0 ⇢ A, of say

p
n constraints

at random. Assume that cTx subject to the constraints in A0 has an
optimal solution. As before a constraint h 2 A \A0 is redundant w.r.t.
c in A0 if adding it does not change the optimal solution. We call the
constraints whose addition changes the optimal solution the violators.

1.2. PROBLEMS AND GOALS 15

This is a useful notion as using the so-called Sampling Lemma (see
Theorem 6.2.8), one can show that there are only O(

p
n · d) violators

in expectation w.r.t. the sample A0 [9, 28] . Using the Sampling Lemma,
Clarkson showed that a linear program can be solved in expected time
linear in n but exponential in d [11]. In general sampling is a powerful
tool in linear programming.

Since the above results consider only the combinatorial aspect of linear
programming, (we are only interested in the violators but not their
exact positions,) it is often easier to consider generalizations of LPs
such as LP-type problems [41], or even more general violator spaces
[26]. A violator space can be thought of as an LP without objective
function: each subset A0 ⇢ A, is associated with a set of violators
instead of the optimal value. This often simplifies the problem analysis,
since the objective function is replaced by the combinatorial notion of
violators. Brise and Gärtner showed that Clarkson’s algorithm to solve
an LP can be generalized (and simplified) for violator spaces [4].

1.2 Problems and Goals

In the first part of this thesis, we study Clarkson’s redundancy re-
moval algorithm (see Section 2.2) in more detail. The original version
[10, p.696] solves the problem where given a set of n points in Rd, one
can find the set of extreme points. We consider the equivalent dual
version of the problem, where given a system Ax b, we want to de-
tect all redundant constraints [18]. Here we use the notion of duality
between points and planes, as discussed in Section 2.2. Clarkson’s algo-
rithm depends strongly on geometrical notions such as ray shooting (or
scalar products in the original version), that need exact computations
in order to guarantee correctness. Moreover, small perturbations of
the system may lead to di↵erent behavior of the algorithm, even if the
underlying polyhedron stays combinatorially the same (the same faces
stay adjacent). Our goal is to modify this algorithm, such that it is
purely combinatorial. The combinatorial algorithm should only rely on
the relative positions between the basic solutions and the constraints

16 CHAPTER 1. OVERVIEW

and should only need to compute signs exactly. In particular, it should
run equally on two polyhedra that are combinatorially equivalent.

During Clarkson’s redundancy removal algorithm we need to solve LPs
with running time LP (s, d), for which in general no strongly polynomial
time algorithm is known. Thus we would also like to detect some special
cases where Clarkson’s algorithm runs in strongly polynomial time. We
study a family of LPs for which strongly polynomial time algorithms for
the feasibility problem exist. Using these tools, we modify Clarkson’s
algorithm for redundancy detection to run in strongly polynomial time
for any instance in this restricted family.

Finally, in the second part of this thesis we turn our attention to a
powerful technique used in algorithms to solve LPs, namely random
sampling. We investigate this notion in the setting of LPs and their
combinatorial generalizations. Moreover, we study the variation of
“quality” of a sample after some of its most restrictive elements are
removed. In the next section we describe in more details each of the
results mentioned above.

1.3 Main Results

This is an accumulative thesis, where the main results are based on the
following papers.

“Combinatorial Redundancy Detection” by K. Fukuda, B. Gärtner and
M. Szedlák [19] .

“Redundancies in Linear Systems with two Variables per Inequality”
by K. Fukuda and M. Szedlák [20].

“Sampling with Removal” by B. Gärtner, J. Lengler and M. Szedlák
[25].

Part I: Modifications of Clarkson’s Redundancy Removal Al-
gorithm. In this part we study two di↵erent modifications of Clark-
son’s redundancy removal algorithm. As mentioned above, the algo-

1.3. MAIN RESULTS 17

rithm relies on ray shooting, which is a purely geometrical notion.
Moreover, depending on the input, floating point errors or slow per-
formance can easily occur. The detailed description of this algorithm
is given in Section 2.2. On the other hand, simplex-type algorithms
rely only on the finitely many dictionaries of the LP. A dictionary can
be thought of as matrix with entries that encode the relative position
of each basic solution of the LP with respect to the linear constraints
that define the LP (refer to Chapter 3 for a formal definition). In fact,
knowing only the signs of these entries su�ces to run simplex-type
algorithms, hence we only need exact computations of signs.

In Chapter 3 we show that knowing all of the finitely many dictionaries
of the LP is su�cient for the purpose of redundancy detection. More
generally, we show that it is enough to know only the signs of the entries
of the dictionary, which makes the algorithm purely combinatorial.
Concretely, we show that for any inequality one can find a dictionary,
such that its sign pattern is either a redundancy or nonredundancy
certificate for this inequality (see Theorem 3.4.3 and Theorem 3.4.5).

Furthermore, we show that considering only the sign patterns of the
dictionary, there is an output-sensitive algorithm of running time

O(d · (n+ d) · sd�1 · LP (s, d) + d · sd · LP (n, d))

to detect all redundancies (see Theorem 3.5.2). Recall that s denotes
the number of nonredundant constraints. In the case where all con-
straints satisfy some non-degeneracy assumptions, the running time
can be reduced to

O(s · LP (n, d) + (n+ d) · LP (s, d)),

which is essentially the running time of the Clarkson method. Our
algorithm extends naturally to a more general setting of arrangements
of oriented topological hyperplane arrangements [3, Chapter 10].

Although Clarkson’s algorithm is output sensitive, its running time
depends on LP (s, d), for which there is no known strongly polynomial-
time algorithm. In Chapter 4 we give a strongly polynomial-time al-
gorithm for the special case where every constraint has at most two

18 CHAPTER 1. OVERVIEW

variables with nonzero coe�cients. We denote this family of linear
systems by LI(2). Due to its easy structure, this family has some nice
properties that are not known to be generalizable. In particular Asp-
vall and Shiloach [2] showed that given a variable xi and a value �, we
can test in time O(nd) whether there is a feasible solution with xi = �.

An elegant algorithm for solving the feasibility problem in LI(2) in
O(d2n log n) time was presented by Hochbaum and Naor [29]. Their
algorithm uses an e�cient version of the Fourier-Motzkin elimination
method and the aforementioned result by Aspvall and Shiloach. Al-
though the feasibility problem can be solved in strongly polynomial
time, it is not known whether there is a strongly polynomial-time algo-
rithm to optimize in LI(2). As the dual of a LP in LI(2) is in general
not in LI(2), we cannot turn an optimization problem into a feasibility
problem, using the technique mentioned above.

We present a strongly polynomial time algorithm that solves redun-
dancy detection in time O(nd2s log s) (see Theorem 5.3.5). It uses a
modification of Clarkson’s algorithm, together with a revised version of
Hochbaum and Naor’s technique. Finally we show that dimensionality
testing can be done with the same running time as solving feasibility.
In general we need to solve up to d LPs for the feasibility problem to
decide the dimensionality of a polyhedron (see Section 2.2.2).

In Chapter 5, we discuss the complexity of polytopes in LI(2). In
general it is known that given n constraints, the dual cyclic polytope
maximizes the number of vertices. Using polytopes that were first
introduced in [1], we show that polytopes in LI(2) can have high com-
plexity as well: they di↵er from the dual cyclic polytope by a factor
exponential in d but independent of n (see Theorem 5.3.5). Hence if
d is constant, there are polytopes in LI(2) that have asymptotically
the same complexity as the dual cyclic polytope. We also show, that if
d � 4, no polytope in LI(2) can exactly achieve the complexity of the
dual cyclic polytope (Theorem 5.4.2).

Part II: Sampling with Removal in Generalizations of Linear
Programming. Random sampling is an often used, important tool

1.3. MAIN RESULTS 19

in optimization. The hope is that the optimal solution subject to a
small subset of random constraints approximates the global optimal
solution well, i.e., in the setting of LPs there are only a few unsatisfied
constraints.

For instance, in the context of linear programming the Sampling Lemma
says that the optimal solution of a random sample of n↵, 0 < ↵ < 1
constraints only violates O(n1�↵ · d) constraints in expectation [11].
We call a constraint violated if it is not satisfied. From the Sampling
Lemma we can observe that even with a small random sample, we only
expect a small number of violators. In this thesis we want to study the
robustness of sampling. Consider the following variant of sampling.
After sampling a subset of the constraints at random, we remove a
fixed number of constraints from the sample following some arbitrary
rule. The question is how many constraints can be violated after such
a removal. Is the number still small?

This question is natural if we want to approximate the solution of the
original problem with the sampled constraints. For example, consider
the following geometric problem. Say we are given a set of points in Rd,
and we want to find a ball that contains most of the points and whose
radius is small. The Sampling Lemma allows us to find such a ball,
by finding the smallest ball that contains a set of randomly sampled
points. If we remove a fixed number of outliers from this sample, can
we still guarantee to have only a few points outside the smallest ball
that contains the remaining points?

The problem of sampling with removal was originally motivated by
chance-constrained optimization. In that setting we have a probability
distribution over a finite or infinite set of constraints. Using a finite
random sample, we can find a solution that satisfies a random con-
straint with high probability [5]. In this setting bounds for the tradeo↵
between the solution quality and violation probability are given [6].

We can summarize our results in the setting of linear programs as fol-
lows. Let us assume that our sample is drawn uniformly at random
from the family of all sets of constraints of size n↵. We prove upper
bounds for the expected number of constraints violated by a random

20 CHAPTER 1. OVERVIEW

sample after the removal of k elements by any arbitrary rule. More
specifically, we show that expected number of violated constraints after
this removal can be bounded by O(n1�↵·(d ln r+k)) and O(n1�↵·d2k+1)
(see Theorem 6.3.4 and Theorem 6.4.7). Using some nondegeneracy as-
sumptions, the second bound improves to O(n1�↵ ·dk+1) (see Corollary
6.4.8). Comparing against the bounds of the Sampling Lemma, our re-
sults imply that the number of violated constraints can increase at most
by a factor of either O(ln r) or O(d2k) after the removal. The second
result is stronger i↵ d2k = o(ln r), hence in particular for constant d
and k.

In fact all our results hold for violator spaces (Definition 6.2.4), a com-
binatorial generalization of linear programs. The first bound mentioned
even holds for a completely abstract setting that generalizes violator
spaces (and LP), where we assign to each subset R of the constraints
an arbitrary set V (R) of constraints disjoint from R; For both results
we provide matching lower bounds in their respective settings (Section
6.5 and Section 6.6).

Our bounds improve the previously best bounds which had only been
known for a subfamily of violator spaces and a specific rule for removal
[23].

Part I

Generalizations of
Clarkson’s Redundancy
Removal Algorithm

Chapter 2

Preliminaries

2.1 Redundancy Removal in Linear Program-
ming

We consider linear systems of inequalities of form Ax b, for A 2
Rn⇥d, b 2 Rn, d < n. A linear program in standard form is given by a
linear objective function to maximize (or minimize), subject to a linear
system of inequalities, i.e.,

maximize cTx
subject to Ax b

(2.1)

Let LP (n, d) denote the time needed to solve an LP with n inequalities
and d variables, with some linear objective function cTx. There are
many ways to solve a linear program, but there is no known strongly
polynomial algorithm. Although the simplex algorithm runs fast in
practice, in general it can have exponential running time [13, 33]. On
the other hand, the ellipsoid method runs in polynomial time on the
encoding of the input size, but is not practical [32]. A first practical
polynomial time algorithm, the interior-point method, was introduced
in [31].

The j-th constraint, denoted Ajx bj , is called redundant, if its re-
moval does not change the set of feasible solutions. We also say that
the index j is redundant if the corresponding constraint is redundant.
By removing Ajx bj from the system we get a new system denoted
A

[n]\{j}x b
[n]\{j}, where [n] = {1, · · · , n}. Solving the following lin-

24 CHAPTER 2. PRELIMINARIES

ear program (LP) we can decide redundancy of Ajx bj .

maximize Ajx
subject to A

[n]\{j}x b
[n]\{j}

Ajx bj + 1.
(2.2)

As shown in the overview, a constraint Ajx bj is redundant if and
only if the optimal solution has value at most bj .

Solving n linear programs of form (2.2), each with running time LP (n, d),
is enough for detecting all redundancies. The currently fastest method
is due to Clarkson with running time O(n · LP (s, d)) [10, p. 696],
where we initially assume an interior point is given. Without loss of
generality we can assume that such a point is given, since it can be
found by solving O(d) linear programs (we will discuss this in Section
2.2.2). Clarkson’s method solves n linear programs, but each of them
has at most s variables, where s is the number of nonredundant con-
straints. Hence, if s ⌧ n, this output-sensitive algorithm is a major
improvement. We will discuss this algorithm in detail in the following
section.

As already mentioned, Clarkson’s original redundancy detection algo-
rithm finds the convex hull of n points in Rd. We discuss how this is
equivalent to the redundancy detection problem. Assume we are given
a set P of n points in Rd. Without loss of generality assume that P
spans Rd and that the origin is in the interior of the convex hull. By
the unit sphere point-hyperplane duality we map every point p 2 P to
a hyperplane p⇤ as follows. The plane p⇤ is orthogonal to the line from
the origin to p and has distance 1/kpk from the origin. The plane, given
by equalities is now changed to halfspaces (inequalities), by orienting
the equalities such that each of them contains the origin. We obtain a
system of the form Ax b, and it can be shown that the points of the
convex hull of P correspond to the nonredundant constraint in Ax b.
One can also easily reverse this construction: given a system Ax b
with an interior point, we can use the above duality to construct a
convex hull problem.

2.2. CLARKSON’S REDUNDANCY REMOVAL ALGORITHM 25

2.2 Clarkson’s Redundancy Removal Algorithm

In this section, we present Clarkson’s redundancy removal algorithm,
which we will modify in the following two chapters. The following two
sections are based on [18].

As before assume we are given a linear system in standard form by

Ax b. (2.3)

We assume that the solution space of (2.3) is full-dimensional. We can
always assume this after appropriate preprocessing, as we will discuss
in Section 2.2.2.

A constraint Aix bi is called redundant w.r.t. S ✓ [n] if it is redun-
dant in the system induced by i and S, i.e.,

Aix bi
Ajx bj 8j 2 S \ {i}. (2.4)

We can test whether Aix bi is redundant w.r.t. S by solving the
following linear program denoted Red(S, i).

maximize Aix
Aix bi + 1
Ajx bj 8j 2 S \ {i}.

(2.5)

Observe that Aix bi is nonredundant w.r.t. S if and only if (2.5) has
optimal value larger than bi.

2.2.1 The Algorithm

Theorem 2.2.1. [10] Let z be an interior point solution of the system
(2.3) i.e., z satisfies Az < b, where ” < ” denotes the componentwise
strict inequality. Let z✏ = z + (✏, ✏2, . . . , ✏d)T for ✏ small enough, i.e.,
z✏ is a generic interior point solution. Then the following algorithm
returns the indices of the nonredundant constraints.

26 CHAPTER 2. PRELIMINARIES

Algorithm Clarkson (A,b,z);
begin

R := ;, S := ;;
while R [S 6= [n] do

pick any r 2 [n] \ (R [S) and check whether r is
redundant w.r.t. S using Red(S, r);
if r is redundant w.r.t. S then

R = R [{r};
else r is nonredundant w.r.t. S

Let x⇤ be the solution found to the LP Red(S, r);
S = S [{q}, where q = RayShoot(A, b, z✏, x⇤ � z✏);

endif;
endwhile;
output S;

end.

The function RayShoot(A, b, z, t) returns the index q of the hyperplane
{x : Aqx = bq}, which is hit first by the ray starting at z along the
direction of t.

Note that q, the index of the facet hit by RayShoot(A, b, z✏, x⇤ � z✏)
is unique, since z✏ is generic. Moreover, since the ray shooting from
inside the feasible region to the outside, q is nonredundant.

Proof. Let S⇤ be the indices of the nonredundant constraints and R⇤

the indices of the redundant constraints. We show by induction that
in every step R ✓ R⇤ and S ✓ S⇤. Moreover we show that in every
round one new element is added to R or S. This shows the running
time of the algorithm, as in each round we solve an LP with at most s
constraints (Red(S, r)), hence with running time at most LP (s, d). As
in each round we add one element to R or S we solve n linear programs
of this form. With every ray shooting we add a new constraint to S,
hence there are at most s ray shootings which take time O(s · n · d) in
total. The running time follows.

2.2. CLARKSON’S REDUNDANCY REMOVAL ALGORITHM 27

It remains to show the correctness of the algorithm. In the beginning
we trivially have R ✓ R⇤ and S ✓ S⇤. Now suppose in some round of
the algorithm it holds that R ✓ R⇤, S ✓ S⇤ and R [S 6= [n]. We pick
an index r 2 [n] \ (R [S). If r is redundant w.r.t. S ✓ S⇤, then it is
also redundant w.r.t. S⇤. Therefore we add a new constraint to R i.e.
R = R [{r}. If r is nonredundant w.r.t. S, we do not know whether
r is redundant or nonredundant w.r.t. S⇤. Let q be the index of the
facet-inducing hyperplane {x : Aqx = bq}, which is hit first by the ray
starting at z through x⇤. Since z is a generic solution of (2.3), q is
unique. Moreover because Arx⇤ > br, x⇤ is not a solution of the linear
system (2.3) and therefore q must be nonredundant. It also holds that
q /2 S, since Aix⇤ bi for all i 2 S, but Aqx⇤ > bq. Hence a new
nonredundant constraint is added to S.

2.2.2 Preprocessing of the Algorithm

In this section we discuss how to preprocess appropriately for Clark-
son’s algorithm, so that we can assume that the feasible region is full-
dimensional. We show how to find a relative interior point of the
feasible region. The relative interior point is defined as follows. For a
system Ax b let I ✓ [n] be the indices of the inequalities that are
forced to equality by any solution. That is, i is in I if for all feasible
solutions x0 of Ax b it holds that Aix0 = bi. A feasible solution x⇤ of
Ax b is a relative interior point if Ajx < bj for all j /2 I.

Given a relative interior point we find all inequalities that are forced
to equalities and one can assume full-dimensionality of the system.

Theorem 2.2.2. Suppose we are given a linear system with n inequal-
ities and d variables of form

Ax b. (2.6)

We can detect whether the LP is feasible in time LP (n, d). Suppose
that the feasible region of Ax b has dimension 0 < k d. Then we
can find a relative interior point in time

O((d� k + 1) · LP (n, d) + (d� k) · LP (d, n)).

28 CHAPTER 2. PRELIMINARIES

Proof. Consider the system

maximize ✏
subject to Ax+ 1 · ✏ b

✏ 1,
(2.7)

where 1 denotes the all-ones vector.

Let (x⇤, ✏⇤) be an optimal solution of (2.7). If ✏ > 0, then x⇤ is an inte-
rior solution point of (2.6) and therefore the dimension of the solution
space is d. If ✏⇤ < 0, then (2.6) is infeasible.

Therefore let us assume that ✏⇤ = 0. The dual of (2.7) is given by

minimize bT y + z
subject to AT y = 0

1T y + z = 1
y, z � 0.

(2.8)

Let (y⇤, z⇤) be an optimal solution of this dual system. By strong
duality the optimal solution has also value zero, i.e., bT y⇤ + z⇤ = 0.
Since additionally 1T y⇤ + z⇤ = 1, it follows that y⇤ can not be totally
zero. Let I = {i | y⇤i > 0}, the indices for which y⇤ is not zero. By
complementary slackness (see e.g. [40, Chapter 7.9]) we know that for
any feasible solution (x, ✏) with ✏ = 0 it must hold that AIx = bI , i.e.,
all inequalities in I are forced to equality. Using Gauss’ elimination
algorithm we can find the index set J ◆ I of all inequalities forced to
equality, given that AIx = bI . We now recurse our procedure on the
system

maximize ✏
subject to AJx = bJ

A
[n]\Jx+ 1 · ✏ b

[n]\J
✏ 1.

(2.9)

This system (and hence the dual) has nonnegative optimal value. If
it is positive, the solution x⇤ is a relative interior point. Otherwise
we repeat the procedure on the new system that has lower dimension.
Since the dimension of the linear system decreases by at least one, we
need at most (d � k + 1) repetitions of this step. The running time
follows.

Chapter 3

Combinatorial Redundancy
Removal

This chapter is based on [19] by K. Fukuda, B. Gärtner and M. Szedlák.

3.1 Introduction

In this chapter, we focus on redundancies in linear systems. We con-
sider systems of the form

xB = b�AxN
xB � 0
xN � 0

(3.1)

where B and N are disjoint finite sets of variable indices with |B| = n,
|N | = d, b 2 RB and A 2 RB⇥N are given input vector and matrix. We
assume that the system (3.1) has a feasible solution. Any consistent
system of linear equalities and inequalities can be reduced to this form.
In particular any system of the form Ax b, as given in the previous
chapters, can be reduced to this form by adding O(n) slack variables.

In this setting, a variable xr is called redundant in (3.1) if xB = b�AxN
and xi � 0 for i 2 B [N \ {r} implies xr � 0, i.e., if after removing
constraint xr � 0 from (3.1) the resulting system still has the same
feasible region. Testing redundancy of xr can be done by solving the

30 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

linear program (LP)

minimize xr
subject to xB = b�AxN

xi � 0 8i 2 B [N \ {r}
xr � �1.

(3.2)

Namely, a variable xr is redundant if and only if the LP has an optimal
solution and the optimal value is nonnegative.

With abuse of notation let LP (n, d) denote the time needed to solve
an LP of form (3.2). Throughout, we are working in the real RAM
model of computation, where practical algorithms, but no polynomial
bounds on LP (n, d) are known. However, our results translate to the
standard Turing machine model, where they would involve bounds of
the form LP (n, d, `), with ` being the bit size of the input. In this
case, LP (n, d, `) can be polynomially bounded. The notation LP (n, d)
abstracts from the concrete representation of the LP, and also from
the algorithm being used; as a consequence, we can also apply it in the
context of LPs given by the signs of their dictionaries. A dictionary can
be thought of as an enriched encoding of the vertices of the polyhedron
defined by the LP (see Section 3.2.1).

By solving n+ d linear programs, O((n+ d) ·LP (n, d)) time is enough
to detect all redundant variables in the real RAM model, but it is nat-
ural to ask whether there is a faster method. As already mentioned,
the currently fastest practical method is the one by Clarkson, with
running time O((n + d) · LP (s, d) + s · n · d) [10]. This case arises
quite naturally. For example, when one needs to compute a projection
of a polyhedron, one natural method is Fourier-Motzkin elimination.
The method is known to generate a large number of redundant con-
straints in each step (a quadratic increase in the worst case) and it is
essential to remove redundant constraints frequently for any practical
implementation. (The reader is referred to [40, pp. 155-156] for more
details).

Specialized (and output-sensitive) algorithms for the extreme points
problem exist [38, 14], but they are essentially following the ideas of

3.1. INTRODUCTION 31

Clarkson’s algorithm [10]. For fixed d, Chan uses elaborate data struc-
tures from computational geometry to obtain a slight improvement
over Clarkson’s method [7].

In this chapter, we study the combinatorial aspects of redundancy
detection in linear systems. The basic questions are: What kind of
information about the linear system do we need in order to detect all
redundant variables? With this restricted set of information, how fast
can we detect all of them? Our motivation is to explore and under-
stand the boundary between geometry and combinatorics with respect
to redundancy. For example, Clarkson’s original method [10, p. 696]
to find the vertices of the convex hull of a set of points uses scalar
products, an intrinsically geometric procedure. Similarly, the dual al-
gorithm that we presented in Chapter 2 uses ray shooting, another
geometric procedure. In a purely combinatorial setting, neither ray
shooting nor scalar products are well-defined notions, so it is natural
to ask whether we can do without them.

We will show that our results solely depend on the finite combinatorial
information given by the signed dictionaries, i.e., the size is bounded
by a function of d and n only. As already mentioned, a dictionary can
be thought of as an encoding of the associated arrangements of hyper-
planes, the corresponding signed dictionary only contains the signs of
the encoding (see Section 3.2). On the other hand Clarkson’s algorithm
depends on the exact values of the input data A and b.

Our approach is very similar to the combinatorial viewpoint of linear
programming pioneered by Matoušek, Sharir and Welzl [34] in form of
the concept of LP-type problems. The question they ask is: how quickly
can we optimize, given only combinatorial information? As we consider
redundancy detection and removal as important towards e�cient op-
timization, it is very natural to extend the combinatorial viewpoint to
also include the question of redundancy. The results that we obtain
are first steps and leave ample space for improvement. An immedi-
ate theoretical benefit is that we can handle redundancy detection in
structures that are more general than systems of linear inequalities;
most notably, our results naturally extend to the realm of oriented
matroids [3, Chapter 10] [21]. An oriented matroid can be thought

32 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

of as an arrangement of oriented topological halfspaces, (also called
pseudo halfspaces). It can be encoded in the same manner with their
associated dictionaries and the following methods extend naturally.

Statement of Results. First of all, we note that for the purpose
of redundancy testing, it is su�cient to know all the finitely many
dictionaries associated with the system of inequalities (3.2). Moreover,
we show that it is su�cient to know only the signed dictionaries, i.e.,
the signs of the dictionary entries. Their actual numerical values do
not matter.

In Theorem 3.4.3, we give a characterization of such a redundancy
certificate. More precisely, we show that, for every redundant variable
xr there exists at least one signed dictionary such that its sign pattern is
a redundancy certificate of xr. Similarly, as shown in Theorem 3.4.5, for
every nonredundant variable there exists a nonredundancy certificate.
An alternative nonredundancy certificate is given in Theorem 3.7.1.
Such a single certificate can be detected in time LP (n, d) (see Section
3.4.3). The number of dictionaries needed to detect all redundancies
depends on the LP and can vary between constant and linear in n+ d
(see Section 3.6).

In a second part, we present a Clarkson-type, output-sensitive algo-
rithm that detects all redundancies in running time O(d · (n + d) ·
sd�1LP (s, d) + d · sd · LP (n, d)) (Theorem 3.5.2). Under some general
position assumptions the running time can be improved to O((n+ d) ·
LP (s, d) + s · LP (n, d)), which is basically the running time of Clark-
son’s algorithm. In these bounds, LP (n, d) denotes the time to solve
an LP to which we have access only through signed dictionaries. As in
the real RAM model, no polynomial bounds are known, but algorithms
that are fast in practice exist.

In general our algorithm’s running time is worse than Clarkson’s, but
it only requires the combinatorial information of the system and not its
actual numerical values. If the feasible region is not full-dimensional
(i.e. not of dimension d), then a redundant constraint may become
nonredundant after the removal of some other redundant constraints.

3.2. BASICS 33

To avoid these dependencies of the redundant constraints we assume
full-dimensionality of the feasible region. Because of our purely com-
binatorial characterizations of redundancy and nonredundancy, our al-
gorithm works in the combinatorial setting of oriented matroids [3],
and can be applied to remove redundancies from oriented topological
hyperplane arrangements.

3.2 Basics

Before discussing redundancy removal and combinatorial aspects in
linear programs, we fix the basic notation on linear programming —
such as dictionaries and pivot operation — and review finite pivot
algorithms. (For further details and proofs see e.g. [8, Part 1], [16,
Chapter 4].)

3.2.1 LP in Dictionary Form

Throughout this section, if not stated otherwise, we always consider
linear programs (LPs) of the form

minimize cTxN
subject to xB = b�AxN

xE � 0,
(3.3)

where E := B [N , B and N are disjoint finite sets of variable indices
with |B| = n, |N | = d, b 2 RB and A 2 RB⇥N are given input vector
and matrix. An LP of this form is called LP in dictionary form and its
size is n⇥d. The set B is called a (initial) basis, N a (initial) nonbasis
and cTxN the objective function.

The feasible region of the LP is defined as the set of x 2 RE that
satisfy all constraints, i.e., the set {x 2 RE | xB = b � AxN , xE � 0}.
A feasible solution x⇤ is called optimal if for every feasible solution x,
cTx⇤ cTx. The LP is called unbounded if for every z 2 R, there exists
a feasible solution xz such that cTxz z. If there exists no feasible
solution, the LP is called infeasible.

34 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

The dictionary D(B) 2 RB[{f}⇥N[{g} of an LP (3.3) w.r.t. a basis B
is defined as

D := D(B) =

0 cT

b �A

�

,

where f is the index of the first row and g is the index of the first
column. For each i 2 B [{f} and j 2 N [{g}, we denote by dij
its (i, j) entry, by Di• the row indexed by i, and by D•j the column
indexed by j.

Hence by setting xf := cTxN , we can rewrite (3.3) as

minimize xf
subject to xB[{f} = DxN[{g}

xE � 0,
xg = 1.

(3.4)

Whenever we do not care about the objective function, we may set
c = 0, and with abuse of notation, set D = [b,�A].

The basic solution w.r.t. B is the unique solution x to xB[{f} =
DxN[{g} such that xg = 1, xN = 0 and hence xB[{f} = D•g.

The dual LP of LP (3.4) is defined as

minimize yg
subject to yN[{g} = �DT yB[{f}

yE � 0,
yf = 1.

(3.5)

It is useful to define the following four di↵erent types of dictionaries
(and bases) as shown in Figure 3.1 below, where ”+” denotes positivity,
”�” nonnegativity and similarly ”�” negativity and ” ” nonpositivity.

A dictionary D (or the associated basis B) is called feasible if dig � 0
for all i 2 B. A dictionary D (or the associated basis B) is called
optimal if dig � 0, dfj � 0 for all i 2 B, j 2 N . A dictionary D (or the
associated basis B) is called inconsistent if there exists r 2 B such that
drg < 0 and drj 0 for all j 2 N . A dictionary D (or the associated

3.2. BASICS 35

g
f

�
...
�

feasible

g
f

9r � · · ·

inconsistent

g
f � · · · �

�
...
�

optimal

g 9s
f �

�
...
�

dual inconsistent

Figure 3.1: Four types of dictionaries

basis B) is called dual inconsistent if there exists s 2 N such that
dfs < 0 and dis � 0 for all i 2 B.

The following proposition follows from standard calculations.

Proposition 3.2.1. For any LP in dictionary form the following state-
ments hold.

1. If the dictionary is feasible then the associated basic solution is
feasible.

2. If the dictionary is optimal, then the associated basic solution is
optimal.

3. If the dictionary is inconsistent, then the LP is infeasible.

4. If the dictionary is dual inconsistent, then the dual LP is infeasi-
ble. If in addition the LP is feasible, then the LP is unbounded.

36 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

3.2.2 Pivot Operations

We now show how to transform the dictionary of an LP into a mod-
ified dictionary using an elementary matrix operation, preserving the
equivalence of the associated linear system. This operation is called a
pivot operation.

Let p 2 B, q 2 N and dpq 6= 0. Then one can transform xB[{f} =
DxN[{g} to an equivalent system (i.e., with the same feasible region):

xB0[{f} = D0xN 0[{g}, (3.6)

where B0 = B \ {p} [{q} (N 0 = N \ {q} [{p}, respectively) is a new
(non)basis and

d0ij =

8

>

>

>

>

<

>

>

>

>

:

1

dpq
if i = q and j = p

� dpj
dpq

if i = q and j 6= p
diq
dpq

if i 6= q and j = p

dij � diq ·dpj
dpq

if i 6= q and j 6= p

(i 2 B0 [{f} and j 2 N 0 [{g}).

(3.7)

In the transformation one solves equality (3.6) with xp on the left side,
such that afterwards xq is on the left side. The right side of the equation
is then substituted for the xq’s in all other equalities.

We call a dictionary terminal if it is optimal, inconsistent or dual in-
consistent. There are several finite pivot algorithms such as the simplex
and the criss-cross method that transform any dictionary into one of
the terminal dictionaries [45, 47, 22],[13, Section 4]. This will be dis-
cussed further in Section 3.4.3.

3.3 Combinatorial Redundancy

Consider an LP in dictionary form as given in (3.3). Then xr � 0 is
redundant, if the removal of the constraint does not change the feasible

3.3. COMBINATORIAL REDUNDANCY 37

region, i.e., if

minimize cTxN
subject to xB = b�AxN

xi � 0, 8i 2 E \ {r},
(3.8)

has the same feasible region as (3.3). Then the variable xr and the
index r are called redundant.

If the constraint xr � 0 is not redundant it is called nonredundant, in
that case the variable xr and the index r are called nonredundant.

It is not hard to see that solving n+d LPs of the same size as (3.8) suf-
fices to find all redundancies. Hence running time O((n+d) ·LP (n, d))
su�ces to find all redundancies, where LP (n, d) is the time needed to
solve an LP of size n⇥d. Clarkson showed that it is possible to find all
redundancies in time O((n+d) ·LP (s, d)+s ·n ·d), where s is the num-
ber of nonredundant variables [10]. In the case where s⌧ n, this is a
major improvement. To be able to execute Clarkson’s algorithm, one
needs to assume full-dimensionality and an interior point of the feasible
region. In the LP setting this can be done by some preprocessing as
shown in Section 2.2.2.

In the following we focus on the combinatorial aspect of redundancy
removal. We give a combinatorial way, the dictionary oracle, to encode
LPs in dictionary form, where we are basically only given the signs of
the entries of the dictionaries. In Section 3.4 we will show how the
signs su�ce to find all redundant and nonredundant constraints of an
LP in dictionary form.

Consider an LP of form (3.3). For any given basis B, the dictionary
oracle returns a matrix

D� = D�(B) 2 {+,�, 0}B⇥N[{g},

with
d�ij = sign(dij), 8i 2 B, j 2 N [{g}.

Namely, for basis B, the oracle simply returns the matrix containing
the signs of D(B), without the entries of the objective row f .

38 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

3.4 Certificates

We show that the dictionary oracle is enough to detect all redundancies
and nonredundancies of the variables in E. More precisely for every
r 2 E, there exists a basis B such that D�(B) is either a redundancy
or nonredundancy certificate for xr. We give a full characterization of
the certificates in Theorems 3.4.3 and 3.4.5. An alternative characteri-
zation of the nonredundancy certificate is given in Theorem 3.7.1. The
number of dictionaries needed to have all certificates depends on the
LP. See Section 3.6 for examples where constantly many su�ce and
where linearly many are needed.

For convenience throughout we make the following assumptions, which
can be satisfied with simple preprocessing.

Assumption 3.4.1. The feasible region of (3.3) is full-dimensional
(and hence nonempty).

Assumption 3.4.2. There is no j 2 N such that dij = 0 for all i 2 B.

Regarding Assumption 3.4.1: In Section 3.4.3 we will see that both the
criss-cross and the simplex method can be used on the dictionary ora-
cle for certain objective functions. Testing whether the feasible region
is empty can hence be done by solving one linear program in the or-
acle setting. As mentioned in the introduction the full-dimensionality
assumption is made to avoid dependencies between the redundant con-
straints. This can be achieved by some preprocessing on the LP, in-
cluding solving a few (O(d)) LPs (see Section 2.2.2).

Regarding Assumption 3.4.2: It is easy to see that if there exists a
column j such that dij = 0 for all i 2 B, then xj is nonredundant. As
it can take any value independent of the others, in particular, there
are solutions with xj < 0, which implies that xj is nonredundant. The
redundancies and nonredundancies of all other variables are indepen-
dent of xj , hence we can mark xj as nonredundant and simply remove
the column.

3.4. CERTIFICATES 39

3.4.1 A Certificate for Redundancy in the Dictionary
Oracle

We say a basis B is r-redundant, if r 2 B and D�
r• � 0, i.e., if D�(B)

is of the form of Figure 3.2.

g

r � � · · · �

Figure 3.2: r-redundant

Note that an r-redundant basis is not necessarily feasible. Since the
r-th row of the dictionary represents xr = drg +

P

j2N drjxj , xr � 0 is
satisfied as long as xj � 0 for all j 2 N . Hence xr � 0 is redundant for
(3.3).

Theorem 3.4.3 (Redundancy Certificate). An inequality xr � 0 is
redundant for the system (3.3) if and only if there exists an r-redundant
basis.

Proof. We only have to show the “only if” part.

Suppose xr � 0 is redundant for the system (3.3). We will show that
there exists an r-redundant basis.

Consider the LP minimizing the variable xr subject to the system (3.3)
without the constraint xr � 0. Since xr � 0 is redundant for the system
(3.3), the LP is bounded. By Assumption 3.4.1 and the fact that every
finite pivot algorithm terminates in a terminal dictionary the LP has
an optimal dictionary.

If the initial basis contains r, then we can consider the row associated
with r as the objective row. Apply any finite pivot algorithm to the
LP. Otherwise, r is nonbasic. By Assumption 3.4.2, one can pivot on

40 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

the r-th column to make r a basic index. This reduces the case to the
first case.

Let’s consider an optimal basis and optimal dictionary for the LP where
xr is the objective function. Since it is optimal, all entries drj for
j 2 N are nonnegative. Furthermore, drg is nonnegative as otherwise
we would have found a solution that satisfies all constraints except
xr � 0, implying nonredundancy of xr.

From the proof of Theorem 3.4.3 the following modification of Theorem
3.4.3 is immediate.

Corollary 3.4.4. An inequality xr � 0 is redundant for the system
(3.3) if and only if there exists a feasible r-redundant basis.

g
�
...

r � � · · · �
...
�

Figure 3.3: feasible r-redundant

3.4.2 A Certificate for Nonredundancy in the Dictionary
Oracle

Similarly to the redundancy case, we introduce a certificate for nonre-
dundancy using the dictionary oracle. A basisB is called r-nonredundant
if B is feasible, r 2 N and dtg = 0 implies dtr 0 for all t 2 B i.e.
D�(B) is of the form of Figure 3.4.

Theorem 3.4.5 (Nonredundancy Certificate). An inequality xr �
0 is nonredundant for the system (3.3) if and only if there exists an
r-nonredundant basis.

3.4. CERTIFICATES 41

g r
+
...
+
0
...

...
0

Figure 3.4: r-nonredundant

Before proving the theorem, we observe the following.

1. Unlike in the redundancy certificate an r-nonredundant basis
needs to be feasible. To verify the correctness of a nonredun-
dancy certificate we need to check between n and 2n entries,
which is typically much larger than the d+ 1 entries we need for
the redundant case.

2. If the g-column of a feasible basis does not contain any zeros,
then all nonbasic variables are nonredundant. In general when
xr � 0 is nonredundant, not necessarily every feasible basis B
with r 2 N is r-nonredundant. Consider the system:

x
3

= x
1

+ x
2

x
1

, x
2

, x
3

� 0.

Then the basis {3} is not a certificate of nonredundancy of x
1

,
as d�

31

= + in the associated dictionary. On the other hand, the
basis {2} is 1-nonredundant:

g 1 2
3 0 + +

g 1 3
2 0 � +

Proof of Theorem 3.4.5. Let (LP) be an LP of form (3.3) and suppose
that xr � 0 is nonredundant. Then it follows that for ✏ small enough

42 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

xr � �✏ is nonredundant in

minimize xr
subject to xB = b�AxN

xi � 0, 8i 2 B [N \ {r}
xr � �✏.

(3.9)

Note that this LP can easily be transformed to an LP of form (3.3) by
the straightforward variable substitution x0r = xr + ✏. We denote this
LP obtained after perturbation and substitution by (LP ✏).

(LP ✏) attains its minimum at �✏ and hence there exists an optimal
dictionary where r is nonbasic. Let B be such a feasible optimal basis
of (LP ✏) with r 2 N . We show that if we choose ✏ small enough, B is
r-nonredundant in (LP).

Let B
1

, B
2

, . . . , Bm be the set of all bases (feasible and infeasible) of
(LP), that have r as a nonbasic variable. Choose ✏ > 0 such that

✏ < min

⇢

dtg
dtr

�

�

�

�

t 2 Bi : dtg, dtr < 0; i = 1, 2, . . . ,m

�

.

If the right hand side (RHS) is undefined, we choose any ✏ <1.

Geometrically this means that if for t 2 Bi xt � 0 is violated in the
basic solution w.r.t. Bi in (LP), then it is still violated in the corre-
sponding basic solution (LP ✏). Let D and D✏ be the dictionaries w.r.t.
B in (LP) and (LP ✏) respectively.

D and D✏ only di↵er in their entries of column g, where

d✏tg = dtg � ✏ · dtr, 8t 2 B. (3.10)

We need to show that B is r-nonredundant in (LP). To show that
B is a feasible basis we need that dtg � 0 for all t 2 B. If dtr � 0,
then this is clear. For the case where dtr < 0 assume that dtg < 0.
Then by choice of ✏, substituting into (3.10) gives d✏tg < 0, which is
a contradiction to the nonnegativity of d✏tg. If dtg = 0, by (3.10) it
follows that dtr 0. Therefore B is r-nonredundant.

3.4. CERTIFICATES 43

For the other direction let B be r-nonredundant and D and D✏ the
corresponding dictionaries in (LP) and (LP ✏), respectively. Choose
✏ > 0 such that

✏ min

⇢

dtg
dtr

�

�

�

�

t 2 B : dtg, dtr > 0

�

.

If the RHS is undefined, we choose any ✏ <1.

We claim that for such an ✏, B is still feasible for (LP ✏) and hence
xr � 0 is nonredundant. Again the two dictionaries only di↵er in
column g, where

d✏tg = dtg � ✏ · dtr, 8t 2 B.

In the case where dtg = 0, it follows that d✏tg � 0 by r-nonredundancy.
If dtg > 0, then

d✏tg = dtg � ✏ · dtr � dtg �min

⇢

dt0g
dt0r

�

�

�

�

t0 2 B : dt0g, dt0r > 0

�

· dtr � 0.

3.4.3 Finite Pivot Algorithms for Certificates

In this section we discuss how to design finite pivot algorithms for the
dictionary oracle model. Both the criss-cross method and the simplex
method can be used for the dictionary oracle to find redundancy and
nonredundancy certificates. A finite pivot algorithm chooses in every
step a pivot according to some given rule and terminates in an optimal,
inconsistent or dual inconsistent basis in a finite number of steps. Note
that both the criss-cross method and the simplex method may not be
polynomial in the worst case, but are known to be fast in practice
[33, 39]. Furthermore there exists no known polynomial algorithm
to solve an LP given by the dictionary oracle. Fukuda conjectured
that the randomized criss-cross method is an expected polynomial time
algorithm [17].

By the proof of Theorem 3.4.3, in order to find a redundancy certificate
in (3.3) it is enough to solve (3.3) with objective function xr. Similarly

44 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

by the proof of Theorem 3.4.5, for a nonredundancy certificate it is
enough to solve the ✏-perturbed version (3.9).

For the criss-cross method, the pivot rule is solely dependent on the
signs of the dictionary entries and not its actual values [16, Chapter
4], [22]. Standard calculations show that the signs in the ✏-perturbed
dictionary (for ✏ > 0 small enough) are completely determined by the
signs of the original dictionary. We recall that the dictionary oracle
does not output the objective row, but since we minimize in direction
of xr the signs of the objective row are completely determined. (If r is
basic then the objective row has the same entries as the r-th row and
if r is nonbasic then dfr = + and all other entries of the objective row
are zero.) Therefore the dictionary oracle is enough to decide on the
pivot steps of the criss-cross method.

For the simplex method with the smallest index rule, we are given a
feasible basis and the nonbasic variable of the pivot element is chosen
by its sign only [8, Part 1 Section 3]. The basic variable of the pivot
is chosen as the smallest index such that feasibility is preserved after
a pivot step. Using the dictionary oracle one can test the at most n
possibilities and choose the appropriate pivot.

3.5 An Output Sensitive Redundancy Detec-
tion Algorithm

Throughout this section, we denote by S0 the set of nonredundant
indices and by R0 the set of redundant indices. Denote by LP (n, d) the
time needed to solve an LP. By the discussion in Section 3.4.3, for any
xr, r 2 E, we can find a certificate in time LP (n, d). Theorem 3.5.2
presents a Clarkson type, output sensitive algorithm with running time
O(d · (n + d) · sd�1 · LP (s, d) + d · sd · LP (n, d)), that for a given LP
outputs the set S0, where s = |S0|. Typically s and d are much smaller
than n.

3.5. REDUNDANCY DETECTION ALGORITHM 45

3.5.1 General Redundancy Detection

For F ✓ B, F 6= ;, we say that r 2 E is redundant (nonredundant,
respectively) w.r.t. F [N , if it is redundant (nonredundant, respec-
tively) in the system induced by F [N , i.e. the system obtained by
removing all rows with indices in B \ F .

The following algorithm detects all redundancies of a linear system of
form (3.3).

Redundancy Detection Algorithm(D,g,f);
begin

R := ;, S := ;;
while R [S 6= E do

Pick any r /2 R [S and test if r is redundant w.r.t. S;
/*For the case where S + N see Remark 3.5.1*/
if r is redundant w.r.t. S then

R = R [{r};
else /* r is nonredundant w.r.t. S */

test if r is redundant w.r.t. E \R;
if r is nonredundant w.r.t. E \R then

S = S [{r};
else /* r is redundant w.r.t. E \R */

Find some sets SF ✓ S0, SF 6= ; and RF ✓ R0

such that SF * S;
R = R [RF , S = S [SF ;

endif;
endif;

endwhile;
S⇤ := S;
output S⇤;

end.

Since in every round at least one variable is added to S or R, the
algorithm terminates. The correctness of the output can easily be
verified: If in the outer loop r is added to R, r is redundant w.r.t. S

46 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

and hence redundant w.r.t. S⇤ ◆ S. If in the inner loop r is added
to S, r is nonredundant w.r.t. E \ R and hence nonredundant w.r.t.
S⇤ ✓ E \R. It follows that S⇤ = S0.

The main issue is how to find the sets SF and RF e�ciently in the last
step. This will be discussed in (the proof of) Lemma 3.5.3.

Remark 3.5.1. A technical problem is that we cannot test for redun-
dancy in the dictionary oracle when S does not contain a nonbasis.
Therefore as long as this is the case, we fix an arbitrary nonbasis N
and execute the redundancy detection algorithm on S[N instead of S.
Since this stronger checking of redundancy does not change correctness
or the order of the running time, we will omit this detail in the further
discussion.

Theorem 3.5.2. The redundancy detection algorithm outputs S0, the
set of nonredundant constraints in time

R(n, d, s) = O

d�1

X

i=0

((n+ d) · si · LP (s, d� i) + si+1 · LP (n, d� i))

!

and consequently in time

R(n, d, s) = O
⇣

d · (n+ d) · sd�1 · LP (s, d) + d · sd · LP (n, d)
⌘

.

The following Lemma implies Theorem 3.5.2.

Lemma 3.5.3. Let R(n, d, s) be the running time of the redundancy
detection algorithm in n basic variables, d nonbasic variables and s the
number of nonredundant variables. Then in the last step of the inner
loop some sets SF ✓ S0 and RF ✓ R0, with SF * S, can be found in
time O(R(n, d� 1, s) + LP (n, d)).

Proof of Theorem 3.5.2. Termination and correctness of the algorithm
are discussed above. The iteration of the outer loop of the algorithm
takes time O(LP (s, d)) and is executed at most n+d times. By Lemma
3.5.3, the running time of the inner loop is O(R(n, d�1, s)+LP (n, d))
and since in each round at least one variable is added to S, it is executed

3.5. REDUNDANCY DETECTION ALGORITHM 47

at most s times. Therefore the total running time is given recursively
by

R(n, d, s) = O ((n+ d) · LP (s, d) + s · (R(n, d� 1, s) + LP (n, d))) .

The claim follows by solving the recursion and noting that R(n, 0, s)
can be set to O(n).

It remains to prove Lemma 3.5.3, for which we first prove some basic
results below, using the dictionary oracle setting.

Lemma 3.5.4. Let D = D(B) be a feasible dictionary of (LP), an LP
of form (3.3) and assume F := {i 2 B | bi = 0} 6= ;. We consider
the subproblem of (LP) denoted (LPF) (with dictionary DF ,) that only
contains the rows of D indexed by F . Then r 2 F [N is nonredundant
in (LP) if and only if it is nonredundant in (LPF).

Proof. We only need to show the ”if” part. Let r 2 F [N be nonre-

dundant in (LPF) with certificate D
F
. Then there exists a sequence

of pivot steps from DF to D
F
. Using the same ones on D and ob-

taining dictionary D, this is a nonredundancy certificate for r, since
dig = dig > 0 for all i 2 B \ F by the definition of F .

For a dictionary D = [b,�A], we define D0 = [0, b,�A] as the dictio-
nary obtained by adding an all-zero column as the first column. This
dictionary now has an additional nonbasic variable and the all-zero
column is associated with the g-column.

Lemma 3.5.5. Let D = [b,�A] be the dictionary of an LP of form
(3.3). Then a variable r 2 E is nonredundant in the LP given by
D if and only if it is nonredundant in the LP with dictionary D0 =
[0, b,�A].

Proof. If D(B) is a redundancy certificate for r for some basis B, then
D0(B) is a redundancy certificate for r as well.

For the converse, let D = D(B) be a nonredundancy certificate for
r for some basis B. For simplicity assume that B = {1, 2, . . . , n}.

48 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

For now assume that bi > 0 for all i 2 B and let Di the dictionary
obtained from D0 by pivoting on bi, i = 1, 2, . . . , n. We will show that
at least one of the Di, i 2 {0, 1, . . . , n} is a nonredundancy certificate
for r. Since after any pivot the first column of Di stays zero, Di is a
nonredundancy certificate if and only if Di

•r 0, i.e., the r-th column
of Di is nonpositive. Let Ri = (ri

1

, ri
2

, . . . rin)
T := Di

•r for i � 1 and
R0 = (r

1

, r
2

, . . . , rn)T := D0

•r.

Claim: Assume that rii < 0 for any fixed i and there are at least
i � 1 additional nonpositive entries (w.l.o.g. we assume them to be
ri
1

, ri
2

, . . . , rii�1

). If Ri has a positive entry (which w.l.o.g. we assume

to be rii+1

), then ri+1

i+1

< 0 and ri+1

1

, ri+1

2

, . . . , ri+1

i are nonpositive.

If D0 is not a certificate for r, then w.l.o.g. r
1

> 0 and hence r1
1

=
� r

1

b
1

< 0. Therefore by induction the lemma follows from the claim.

It remains to prove the claim. Assume that ri
1

, ri
2

, . . . , rii�1

 0, rii < 0
and rii+1

> 0. Then we have ri > 0 and

rii+1

= ri+1

� ribi+1

bi
> 0, ribi+1

< ri+1

bi) ri+1

> 0, (3.11)

8j < i : rij = rj �
ribj
bi
 0, rjbi ribj . (3.12)

The following calculations show the claim.

ri+1

i+1

= �ri+1

bi+1

< 0, ri+1

> 0. Hence by (3.11) ri+1

i+1

< 0.

ri+1

i = ri �
ri+1

bi
bi+1

 0, ribi+1

 ri+1

bi. Again by (3.11) ri+1

i 0.

8j < i : ri+1

j = rj �
ri+1

bj
bi+1

 0, rjbi+1

 ri+1

bj .

By (3.11) and (3.12), rjbi+1

= (rjbi) · (ribi+1

) · 1

ribi
 ri+1

bj ,

hence ri+1

j 0.

Now suppose that bi = 0 for some i. Then by the nonredundancy
certificate ri 0, and it is easy to see that rji = ri 0 for all admis-
sible pivots on bj . Hence we can use the above construction on the

3.5. REDUNDANCY DETECTION ALGORITHM 49

nonzero entries of b, the rows corresponding to the zero entries satisfy
the nonredundancy certificate conditions trivially.

Proof of Lemma 3.5.3. Suppose that during the execution of the algo-
rithm, r is nonredundant w.r.t. the current set S, and redundant w.r.t.
E \ R, with feasible redundancy certificate D = [b,�A], which exists
by Corollary 3.4.4. If b > 0, then all nonbasic indices in N are nonre-
dundant by Theorem 3.4.5. Choose SF = N , RF = ;. It holds that
SF * S, since otherwise r would be redundant w.r.t. S. The running
time of the inner loop in this case is LP (n, d).

Now if there exists i 2 B such that bi = 0, define F = {i 2 B | bi = 0},
LPF and DF as in Lemma 3.5.4. We now recursively find all redun-
dant and nonredundant constraints in the LPF using Lemma 3.5.5
as follows. From LPF we construct another LP, denoted LP� with
one less nonbasic variable, by deleting DF

•g (the column of all zeros),
choosing any element t 2 N and setting t = g, i.e., setting xt = 1 in
the corresponding LP. Finding all redundancies and nonredundancies
in LP� takes time R(|F |, d� 1, s). By Lemma 3.5.5 redundancies and
nonredundancies are preserved for LPF .

Therefore finding them in LPF takes time R(|F |, d�1, s)+LP (n, d)
R(n, d� 1, s) + LP (n, d), where the LP (n, d) term is needed to check
separately whether t is redundant. Choose SF as the set of nonredun-
dant indices of LPF and RF as the set of redundant ones. By Lemma
3.5.4 SF ✓ S0 and RF ✓ R0. By the same lemma r is redundant
in LPF , therefore it follows that SF * S, as otherwise r would be
redundant w.r.t. S.

3.5.2 Strong Redundancy Detection

In this section we show how under certain assumptions the running
time of the redundancy algorithm can be improved. If we allow the
output to also contain some weakly redundant constraints (see defini-
tion below), it is basically the same as the running time of Clarkson’s
method.

50 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

A redundant variable r is called strongly redundant if for any basic
feasible solution x, xr > 0. In particular for any basic feasible solution,
r 2 B. If r is redundant but not strongly redundant r is called weakly
redundant.

As before let s be the number of nonredundant constraints and let Rv,
(with |Rv| = rv,) and Rw, (with |Rw| = rw,) be the set of strongly and
weakly redundant constraints respectively.

Theorem 3.5.6. Let S0 be the set of nonredundant constraints. It is
possible to find a set S⇤ ◆ S0, S⇤ \Rv = ; in time

O((n+ d) · LP (s+ rw, d) + (s+ rw) · LP (n, d)).

The following corollary follows immediately.

Corollary 3.5.7. If there are no weakly redundant constraints, the
set S0 of nonredundant constraints can be found in time O((n + d) ·
LP (s, d) + s · LP (n, d)).

The theorem is proven using the following two lemmas, which can be
verified with straightforward variable substitutions.

Lemma 3.5.8. [8, Part 1 Section 3] Let (LP) be of form (3.3), where
(LP) is not necessarily full-dimensional. W.l.o.g. B = {1, 2, . . . , n}.
For each i 2 {1, 2, . . . , n} replace the nonnegativity constraint xi � 0 by
xi � �✏i, for ✏ > 0 su�ciently small number. Denote the resulting LP
by (LP ✏). Let D� be the output of the dictionary oracle for an arbitrary
dictionary D of (LP). Then (LP ✏) is full-dimensional. Furthermore
in D�,✏, the corresponding output for the ✏-perturbed version, all signs
can be determined by D�, and the column D�,✏

•g has no zero entries.

Note that the perturbation method mentioned above can be imple-
mented symbolically without an explicit evaluation of ✏. This com-
binatorial technique is known as the lexicographic method [8, Part 1
Section 3 Page 34].

3.6. NUMBER OF DICTIONARIES FOR ALL CERTIFICATES 51

Lemma 3.5.9. [8, Part 1 Section 3] Let (LP) and (LP ✏) be as in
Lemma 3.5.8. Then any nonredundant constraint in (LP) is nonre-
dundant in (LP ✏) and any strongly redundant constraint in (LP) is
strongly redundant in (LP ✏).

Proof of Theorem 3.5.6. Replace the given LP by its ✏-perturbed ver-
sion as in Lemma 3.5.8 and run the redundancy removal algorithm,
which is possible by the same lemma. By Lemma 3.5.9, S⇤ ◆ S0 and
S⇤ \ Rv = ;. Since by Lemma 3.5.8, the entries of the g-column of
any dictionary D�,✏ are strictly positive the algorithm never runs the
recursive step and the running time follows.

Remark: The ✏-perturbation makes every feasible LP full-dimensional,
therefore the full-dimensionality assumption can be dropped for The-
orem 3.5.6.

3.6 Number of Dictionaries for all Certificates

In Section 3.4 we showed the existence of certificates in the dictionary
oracle for both redundant and nonredundant variables. The main ques-
tion discussed in this section is how many dictionaries are needed to
detect all redundancies. As we will show below, this number depends
on the given set of linear inequalities and lies between 1 and n+ d� s,
i.e., the number of redundant constraints. The number of dictionaries
needed to detect all nonredundancies is not very interesting as usually
s⌧ n. Moreover a single dictionary is a certificate for at most d nonre-
dundancies (the nonbasic variables), which implies that we always need
between s

d and s dictionaries in order to obtain all certificates.

It is not hard to find an example where a single basis B is r-redundant
for all redundant constraints r. For instance the following basis is
r-redundant for all r 2 B and r-nonredundant for all r 2 N .

xB = 1+ IxN

xi � 0, 8i 2 E,

52 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

where 1, I denote the all-one vector, identity matrix, respectively.

For the maximum number of dictionaries needed to detect all redun-
dancies, we give an example of a system of linear equalities where every
redundant constraint r has a unique r-redundant basis and all those
bases are pairwise distinct. Therefore n + d � s bases are needed to
detect all redundancies. We consider the d-dimensional hypercube and
its dual d-cross polytope, such that each vertex of the hypercube lies in
the barycenter of its corresponding dual face of the d-cross polytope.
We show that any constraint of the d-cross polytope is redundant for
the cube and has a unique certificate corresponding to its dual vertex.
(For an example in general position, one can move the constraints of
the d-cross polytope away from the hypercube by some ✏ > 0 small
enough, and still obtain the same results.)

Formally the d-dimensional hypercube is given by

xi 1, 8i 2 {1, . . . , d}
xi � 0, 8i 2 {1, . . . , d}. (3.13)

The d-cross polytope has 2d constraints given as follows: for x =
(x

1

, x
2

, . . . , xd)T and each p 2 {�1,+1}d we have the constraint

pTx kp,

where kp denotes the number of +1’s in p.

The system of linear inequalities in dictionary form is hence given by

xi+d = 1� xi, 8i 2 {1, . . . , d}
xp = kp � pTx, 8p 2 {�1,+1}d
xi � 0 8i 2 E.

(3.14)

It is easy to see that x
1

, . . . , x
2d are nonredundant.

Claim: For all p 2 {�1,+1}d, xp is redundant and has unique p-
redundant basis Bp = {i 2 {1, . . . , d} | pi = �1} [{i + d 2 {d +
1, . . . , 2d} | pi = 1}.

3.6. NUMBER OF DICTIONARIES FOR ALL CERTIFICATES 53

This implies that we need 2d = n � d = n + d � s bases to detect all
redundancies.

We first show that Bp is p -redundant. Observe that

xp = kp �
X

i:pi=�1

(�xi)�
X

i:pi=+1

xi

= kp �
X

i:pi=�1

(�xi)�
X

i:pi=+1

(1� xi+d)

=
X

i:pi=�1

xi +
X

i:pi=+1

xi+d.

and henceBp is p-redundant. We show uniqueness for p� = (�1, . . . ,�1)T ,
the rest follows by symmetry. We prove that xp� is nonredundant in
the system induced by E\{i}, for all i 2 {1, . . . , d}, which implies that
the unique p�-redundant basis is given by Bp� = {1, . . . , d}. Again by
symmetry it is enough to prove this for i = 1.

Let D be the dictionary corresponding to the linear system (3.14). Let
D0 be the dictionary obtained by a pivot step on (p�, 1), and B0 its
basis. Then for all i 2 B0 \ {1}

d0ig = dig �
di1dp�g

dp�1

= dig > 0,

since dp�g = kp� = 0. Hence by the nonredundancy certificate, it
follows that p� is nonredundant w.r.t. E \ {1} (and by symmetry also
w.r.t. E \ {i} for all i = {2, . . . , d}), which concludes our proof.

To obtain an example with maximum number of unique pairwise dis-
tinct redundancy certificates we use McMullen’s Upper Bound Theo-
rem [36] (see also Theorem 5.2.1). It states that a polyhedron given

by s constraints, can have at most ⇥(sb
d
2

c) vertices and the bound is
tight for the dual cyclic polytope. Similarly as in the hypercube case,
we can define a redundant constraint through each of its vertices and

get an example with n + d � s 2 ⇥(sb
d
2

c) redundant constraints that
have unique, pairwise distinct redundancy certificates.

54 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

3.7 Alternative Nonredundancy Certificate

In this section we introduce two families of dictionaries that are an
alternative nonredundancy certificate to the one described in Section
3.4.2. We show that from the latter r-nonredundancy certificate one
can always obtain a certificate of the new forms (Section 3.7.1) in a
single pivot step. The opposite does not hold in general.

3.7.1 Another Certificate

In this section we introduce an alternative certificate for nonredun-
dancy, which is given by two di↵erent kinds of dictionaries. A basis B
is called r-nonredundant type I if r 2 B, drg < 0 and dig � 0 for all
i 2 B \ {r} i.e. D�(B) is of the form of Figure 3.5.

g
r �

�
...
�

Figure 3.5: r-nonredundant type I

A basis B is called r-nonredundant type II if r 2 B, and there exists
t 2 N such that drt < 0 and dit � 0 for all i 2 B \ {r} i.e. D�(B) is of
the form of Figure 3.6.

Note that here in both types of certificates r is a basic variable, whereas
in the certificate of Theorem 3.4.5 r is nonbasic.

Theorem 3.7.1. An inequality xr � 0 is nonredundant for the sys-
tem (3.3) if and only if there exists an r-nonredundant type I or r-
nonredundant type II basis.

Proof. Suppose xr is nonredundant for the system (3.3). W.l.o.g. as-
sume that r 2 B (by Assumption 3.4.2 in Section 3.4). Consider the

3.7. ALTERNATIVE NONREDUNDANCY CERTIFICATE 55

g t
r �

�
...
�

Figure 3.6: r-nonredundant type II

linear program (LP 0) obtained by considering xr = br � Ar•x as the
objective row instead of a constraint. As mentioned in Section 3.2.2
(LP 0) can be transformed into one of the terminal dictionaries, i.e., into
an optimal, inconsistent or dual inconsistent dictionary. Since (LP 0) is
feasible, the inconsistent case is void.

Suppose (LP 0) can be transformed into an optimal dictionary D. If
drg � 0, then this implies redundancy of r, which is a contradiction.
Hence drg < 0 and by considering xr = br�Ar•x again as a constraint
instead of the objective row, this is a r-nonredundant type I dictionary.

If (LP 0) can be transformed into an unbounded dictionary, this imme-
diately gives us an r-nonredundant type II basis.

For the other direction suppose D is r-nonredundant type I. Then the
corresponding basic solution, where xg = 1, xN = 0 and xB = D•g,
satisfies all constraints but xr � 0. By definition r is nonredundant. If
D is r-nonredundant type II, then by the nonemptyness assumption
there exists a solution y = (yB, yN) to the linear system. By setting
ycB = b � AyN + c · D•t, for c large enough, again all constraints but
xr � 0 are satisfied.

We observe that the above certificates can be found with the algo-
rithms described in Section 3.4.3. However the redundancy detection
algorithm can not be applied in the given form to them. This can be
seen already in general case, as we use that any r-redundant basis is
t-nonredundant for t 2 N .

56 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

3.7.2 Comparison of Certificates

The natural question that arises, is how the above certificates relate to
the r-nonredundancy certificate of Section 3.4.2. This relation is given
in the following theorem.

Theorem 3.7.2. We can obtain a r-nonredundant type I or type II
dictionary in one pivot step from any r-nonredundant dictionary. The
opposite direction does not hold in general.

Proof. Let D be an r-nonredundant dictionary. Assume there exists
i 2 B such that dig > 0 and dir > 0. Choose t 2 B such that

dtg
dtr

= min

⇢

dkg
dkr

�

�

�

�

k 2 B : dkg, dkr > 0

�

.

The following calculation shows that the dictionary D0, obtained by a
pivot step on (t, r) is r-nonredundant type I.

First observe that d0rg = � 1

dtr
< 0, since dtr > 0. For i 2 B, i 6= t we

have: d0ig = dig � dirdtg
dtr

� 0. For dig > 0, this holds by choice of t and
for dig = 0 we know that dir < 0, since D is r-nonredundant.

If there exists no i 2 B such that dig > 0 and dir > 0, then dir 0 for
all i 2 B. Then for any dtr < 0, the dictionary obtained from D by a
pivot step on (t, r) is r-nonredundant type II.

On the other hand, consider the following 3-nonredundant type II
dictionary.

g 1 2
3 1 �1 0
4 1 0 �1
5 �3

2

1 1

As shown below none of the four possible pivots steps yield a 3-nonredundant
basis (the dictionaries for the other two pivots follow by symmetry).

3.8. DISCUSSION AND OPEN QUESTIONS 57

g 1 4
3 1 �1 0
2 1 0 �1
5 �1

2

1 �1
pivot (4, 2)

g 5 2
3 �1

2

�1 1
4 1 0 �1
1 3

2

1 �1
pivot (5, 1)

3.8 Discussion and Open Questions

In this chapter, we presented new combinatorial characterizations of
redundancy and nonredundancy in linear inequality systems. We also
presented a combinatorial algorithm for redundancy removal.

In contrast to the Clarkson algorithm our redundancy detection algo-
rithm does not need the whole LP data but only the combinatorial
information of the dictionaries. Although in general the running time
is worse, assuming that we have no weak redundancies, our redundancy
removal algorithm basically has the same running time as the Clark-
son algorithm. Still, a natural goal is to improve the runtime of our
algorithm in the general case and get it closer to that of Clarkson’s
method. We do have a first output-sensitive algorithm for combina-
torial redundancy detection, but the exponential dependence on the
dimension d is prohibitive already for moderate d.

Our algorithm works in a more general setting of oriented matroids [21,
45, 47]. This means one can remove redundancies from oriented pseudo
hyperplane arrangements e�ciently. Furthermore, the algorithm can
be run in parallel. Yet, analyzing the performance may not be easy
because checking redundancy of two distinct variables simultaneously
may lead to the discovery of the same (non)redundant constraint. This
is an interesting subject of future research.

58 CHAPTER 3. COMBINATORIAL REDUNDANCY REMOVAL

Chapter 4

Redundancy Detection in Linear
Systems with two Variables per
Inequality

This chapter is based on [20] by K. Fukuda and M. Szedlák.

4.1 Introduction

Throughout this chapter we consider linear systems of inequalities of
form Ax b, for A 2 Rn⇥d, b 2 Rn, d < n.

We already mentioned that in general no strongly polynomial time
algorithm (polynomial in d and n) to solve an LP is known. In this
chapter we focus on the special case where every constraint has at
most two variables with nonzero coe�cients; we denote this family by
LI(2). Our main result is that for a full-dimensional system Ax b in
LI(2), we can detect all redundancies in strongly polynomial time(see
Theorem 5.3.5), where we assume that a solution in the interior is given.
To our knowledge, this is a first strongly polynomial time algorithm
for redundancy detection in LI(2). In the following chapter we show
that the polytopes defined by systems in LI(2) can still have high
complexity.

For our algorithm we use an alternative version of Clarkson’s algo-
rithm, which solves feasibility problems instead of optimization prob-
lems. Moreover we make use of a modified version of Hochbaum and
Naor’s algorithm, which for a system in LI(2) finds a feasible point or a

60 CHAPTER 4. SPARSE REDUNDANCY DETECTION

certificate for infeasibility in time O(d2n log n) [29]. This yields running
time O(nd2s log s) for our redundancy detection algorithm. The result
of Hochbaum and Naor is improvement of Megiddo’s algorithm with
running time O(d3n log n) [37]. Although their techniques are similar
and both rely heavily on [2], the improved version is much simpler.

We will give a summary of the Hochbaum-Naor Algorithm in Section
4.4. In Section 4.5 we will give a stronger version of this algorithm
which decides full-dimensionality and in the full-dimensional case out-
puts an interior point. Using this variant of the algorithm together with
our modification of Clarkson’s algorithm we get an output sensitive,
strongly polynomial time redundancy detection algorithm. In Section
4.6 we show how the results extend to non-full-dimensional systems
(see Theorem 4.6.1).

In all cases the preprocessing can also be done in strongly polynomial
time. Moreover, we show that dimensionality testing of a polyhedron
P = {x | Ax b} can be done with the same running time as the
feasibility testing method of Hochbaum and Naor (see Corollary 4.6.4).
Note that for general LP’s one needs to solve up to d optimization
problems (see Section 2.2.2).

Although in LI(2) one can find a feasible solution fast, it is not known
how to find an optimal solution in strongly polynomial time. For gen-
eral LPs a standard technique for converting an optimization problem
into a feasibility problem is to use the dual linear program. However,
the dual of a system in LI(2) is generally not in LI(2). If the objective
function is in LI(2), one can apply binary search on the value of the
optimal solution. However, this would lead to an algorithm that is not
strongly polynomial because the number of iterations performed for
the binary search depends on the sizes of the input numbers.

Note that Clarkson’s algorithm relies on finding an optimal solution
of a linear program. Since for LI(2) we do not have a fast way to
optimize, this is the reason why we modify the algorithm such that it
only solves feasibility problems.

4.2. DEFINITIONS AND PRELIMINARIES 61

4.2 Definitions and Preliminaries

Again, we throughout consider linear systems of the form

Ax b,

where A 2 Rn⇥d, b 2 Rn.

The set of inequalities of Ax b is denoted by G. Recall that a point
x⇤ 2 Rd is a feasible solution or feasible point of Ax b (or G) if
Ax⇤ b. It is called an interior point solution of Ax b (or G) if
all inequalities are satisfied with strict inequality, i.e., Ax⇤ < b (where
”<” denotes the componentwise strict inequality). The system Ax b
(or G) is called feasible if a feasible solution exists, otherwise it is called
infeasible. If an interior point solution exists, the system is called full-
dimensional. The system Ax b is called k-dimensional if the feasible
region {x | Ax b} is k-dimensional.

For a subset S ✓ [n] := {1, . . . , n} we denote by ASx bS the sub-
system of Ax b containing only the inequalities indexed by S. In
particular the j-th constraint is denoted by Ajx bj .

For a feasible system Ax b and a variable xi let [xmin

i , xmax

i] be the
projection of the feasible region of Ax b to the xi-axis, we call this
the range of xi. This interval is exactly the set of values of xi for which
a solution of the entire system can be constructed. It is possible that
xmin

i = �1 or xmax

i =1.

In this chapter we are interested in sparse linear systems, in particu-
lar the family LI(2). A linear system is in LI(2), if every constraint
has at most two variables with nonzero coe�cients. That means all
inequalities have form ↵xi + �xj � for some ↵, �, � 2 R, ↵ 6= 0.

We define the neighbors of xi in G, denoted N(xi, G), as the set of
variables xj , j 2 [d] \ {i} for which there exists an inequality in G
containing xi and xj with nonzero coe�cients.

The system (Ax b)|xi=c (or G|xi=c) is obtained from Ax b (or G)
by substituting the variable xi with the constant c, it hence has one
variable less than the original system.

62 CHAPTER 4. SPARSE REDUNDANCY DETECTION

4.3 A Strongly Polynomial Time Redundancy
Detection Algorithm for Linear Programs
with two Variables per Inequality

In this section we will prove our main result, the running time of the
strongly polynomial algorithm to detect all redundancies in LI(2) (see
Theorem 5.3.5).

Ajx bj

Ajx � bj

Ajx bj

Ajx bj

Ajx � bj

Ajx � bj

nonredundant redundant

Figure 4.1: Redundancy Certificates

We make use of the following modified version of Hochbaum and Naor’s
result (Theorem 4.3.1). We will discuss their original result in Section
4.4 and the validity of the modification in Section 4.5. In Section 4.6
we will discuss how the results extend to non-full-dimensional systems.

Theorem 4.3.1. For a system Ax b in LI(2) one can decide in
time O(d2n log n) whether the system is full-dimensional, and in the
full-dimensional case output an interior point solution.

For S ✓ [n], r 2 [n], let us denote by G(S,�r) the system {AS\{r}x
bS\{r}, Arx � br}.

4.3. STRONGLY POLYNOMIAL TIME ALGORITHM 63

Theorem 4.3.2. Let Ax b a full-dimensional system in LI(2). Let
z be an interior point solution of Ax b and let z✏ := z + (✏, . . . , ✏d)T

for some ✏ small enough, i.e., z✏ is a generic interior point. Then the
following algorithm detects all redundancies in time O(nd2s log s).

Algorithm Modified Clarkson (A,b,z);
begin

R := ;, S := ;;
while R [S 6= [n] do

pick any r 2 [n] \ (R [S) and use Theorem 4.3.1 on
G(S,�r)
if G(S,�r) not full-dimensional then

R = R [{r};
else let x⇤ be an interior point solution of G(S,�r)

S = S [{q}, where q = RayShoot(A, b, z✏, x⇤ � z✏);
endif;

endwhile;
output S;

end.

The function RayShoot(A, b, z, t) returns the index q of the a hyperplane
{x : Aqx = bq}, which is hit first by the ray starting at z along the
direction of t.

Note that since z✏ is generic, RayShoot(A, b, z✏, x⇤ � z✏) is unique.
Moreover, since z✏ is a feasible solution and by construction x⇤ is not
a feasible solution, q must be nonredundant.

Note that Theorem 4.3.1 immediately implies that the interior point z
of Theorem 5.3.5 can be found in strongly polynomial timeO(nd2 log n).
It follows that finding all redundancies and the preprocessing can be
achieved in strongly polynomial time.

The modified Clarkson algorithm is similar to the original version pre-
sented in Chapter 1. The main di↵erence is the way we find the point

64 CHAPTER 4. SPARSE REDUNDANCY DETECTION

x⇤ through which we shoot the ray. The original version finds an ap-
propriate point outside the feasible region using optimization, here we
find such a point solving feasibility of an LP. We see in the proof, that
the analyses of the algorithms are basically the same.

Using Theorem 4.3.1 and the following observation (see also Figure
4.1) we can prove Theorem 5.3.5.

Observation 4.3.3. Let Ax b be a full-dimensional system in LI(2).
Then for j 2 [n] the following are equivalent.

1. Ajx bj is nonredundant in Ax b.

2. Ajx bj is facet-inducing, i.e., defines a facet for

P = {x | Ax b}.

3. The system G([n] \ {j},�j) is full-dimensional.

Proof of Theorem 5.3.5. We have to show that the modified Clarkson
Algorithm returns S⇤, the indices of the set of nonredundant con-
straints. We first discuss correctness of the algorithm by induction.
We claim that in every step S ✓ S⇤ and R ✓ [n] \ S⇤. This is trivially
true in the beginning. Assume that in some step of the algorithm we
have S ✓ S⇤, R ✓ [n] \ S⇤ and r 2 [n] \ (S [R). If G(S,�r) is not
full-dimensional, then G(S⇤,�r) is not full-dimensional and hence r is
redundant by Observation 4.3.3.

If G(S,�r) is full-dimensional and x⇤ is an interior point, then we do
ray shooting from z✏ to x⇤. Note that Arx⇤ > br, hence x⇤ is not
in the feasible region of Ax b. Then the first constraint hit (with
index q) is nonredundant. This constraint is unique, since z✏ is generic
and x⇤ is not a feasible solution. Denote the intersection point of the
hyperplane given by Aqx = bq with the ray by y⇤. It follows that q /2 S
since Aqy⇤ = bq and we know that ASy⇤ < bS . This proves correctness
of the algorithm.

It remains to discuss the running time. Since in every round we add
either a variable to S or R, the outer loop is executed n times. In every

4.4. REVISION OF THE HOCHBAUM-NAOR METHOD 65

round we run the algorithm of Theorem 4.3.1 on at most s inequalities.
This takes time O(nd2s log s) by Theorem 4.3.1. Moreover there are at
most s stages of ray shooting which takes O(nds) time in total. The
running time follows.

4.4 Revision of the Hochbaum-Naor Method

Since we modify Hochbaum and Naor’s Method in the next section, for
completeness we review the basic components and the key ideas of the
algorithm.

Theorem 4.4.1. [29] For a system Ax b in LI(2) one can decide
whether the problem is feasible in time O(d2n log n), and in the feasible
case output a solution.

In Section 4.4.1 we will give all relevant tools to prove the theorem.
We then discuss the feasible case in Sections 4.4.2 and 4.4.3, and finally
the infeasible case in Section 4.4.4

4.4.1 The Ingredients

The Hochbaum-Naor Theorem is a mix of an e�cient implementation
of the Fourier-Motzkin method and the result by Aspvall and Shiloach
described below [2]. In general the Fourier-Motzkin method may gen-
erate an exponential number of inequalities, however in the LI(2) case
one can implement it e�ciently.

The Fourier-Motzkin Method (for general LPs) (For more de-
tails please refer to [40, pp. 155 - 156]). Let G be a set of inequalities
on the variables x

1

, . . . , xd. The Fourier-Motzkin Method eliminates
the variables one by one to obtain a feasible solution or a certificate of
infeasibility. At step i, the LP only contains variables xi, . . . , xd. Let
us denote this system by Gi. To eliminate variable xi, all inequalities
that contain xi are written as xi h or xi � `, where h and ` are

66 CHAPTER 4. SPARSE REDUNDANCY DETECTION

some linear functions in xi+1

, . . . , xd. Let us denote the two families
of inequalities obtained by H and L, respectively. For each h 2 H
and each ` 2 L we add a new inequality ` h. This yields a set of in-
equalities Gi+1

, on the variables xi+1

, . . . , xd. The method is feasibility
preserving and given a solution to Gi+1

, one can construct a solution
of Gi in time O(|Gi|).

The Aspvall-Shiloach Method Hochbaum and Naor’s algorithm
strongly relies on the following result by Aspvall and Shiloach [2].

For G 2 LI(2) let g, h 2 G be of form g : ↵
1

x + �
1

y �
1

, h :
↵
2

y + �
2

z �
2

, for ↵
1

,↵
2

,�
1

6= 0, i.e., g and h share a variable. If
�
1

> 0 and ↵
2

< 0, one can update g with h to get a bound on x in
terms of z as follows:

Assume that ↵
1

> 0, it follows that x �
1

��
1

y
↵
1

and y � �
2

��
2

z
↵
2

, and
hence

x �
1

� �
1

y

↵
1

�
1

� �
1

�
2

��
2

z
↵
2

↵
1

.

In the case that ↵
1

< 0 we get a lower bound on x in terms of z. If
�
1

> 0 and ↵
2

< 0 one can similarly update x. If the signs of �
1

and
↵
2

are the same, then no update on x is possible.

For an ordered sequence (g
1

, g
2

, . . . gk) with of gi : ↵ixi + �iyi �i},
gi 2 G, i 2 [k] (k � 1) we can do a sequence of updates to the bound
on xi, i↵ for all i 2 [k � 1], yi = xi+1

and sign(�i) = �sign(↵i+1

) 6= 0.
If �k = 0 this is called a chain of length k. If �k 6= 0 and yk = x

1

, this
is called cycle of length k. A chain or a cycle is called simple, if every
inequality appears at most once. (This concept was first introduced in
[42]).

Let us illustrate this on the following example of a perturbed cube,
where d = 3 and n = 6 (see Figure 4.2).

1. x� 1

3

y � 1

12

2. x� 1

3

y 1

4.4. REVISION OF THE HOCHBAUM-NAOR METHOD 67

x

y

z

Figure 4.2: Perturbed cube, xmin = 6

72

, xmax = 204

143

3. y � 1

3

z � 0

4. y � 1

4

z 1

5. z � 1

8

x � 0

6. z � 1

12

x 1

For a variable xi we denote by xlowi (xhighi), the best lower (upper)
bound that can be obtained by considering all simple chains and cycles
of length at most d.

In our perturbed cube example using from chain (2, 4, 6) we get the
following upper bound for x.

x 1 +
1

3
y

 1 +
1

3

✓

1 +
1

4
z

◆

=
4

3
+

1

12
z

 4

3
+

1

12

✓

1 +
1

12
x

◆

=
17

12
+

1

144
x.

It hence follows that x 204

143

.

68 CHAPTER 4. SPARSE REDUNDANCY DETECTION

In the example all bounds for x that can be obtained by considering
all simple chains and cycles of length at most d are the following. The
numbers in the brackets denote the chains of inequalities we use to
obtain the bound.

(a) x 17

12

+ 1

144

x, (2,4,6),

(b) x 8 + 2

3

x, (5,6),

(c) x �6 + 72x, (5,3,1),

(d) x � �11

12

+ x, (1,2),

(e) x � 1

12

+ 1

72

x, (1,3,5),

(f) x � �12 + 3

2

x, (6,5),

(g) x � �204 + 144x, (6,4,2).

This translates to the system

(a’) x 204

143

, (2,4,6),

(b’) x 24, (5,6),

(c’) x � 6

71

, (5,3,1),

(d’) 0 � �11

12

, (1,2),

(e’) x � 6

71

, (1,3,5),

(f’) x 24, (6,5),

(g’) x 204

143

, (6,4,2).

Note that (d’) is a tautology and will be ignored in the calculations
from now on. In our example xmin = xlow = 6

71

and xmax = xhigh = 204

143

.
Recall that the interval [xmin

i , xmax

i] denotes the range of xi, xmin

i (xmax

i)
is the smallest (largest) value that xi can take such that the system
still has a feasible solution.

4.4. REVISION OF THE HOCHBAUM-NAOR METHOD 69

More generally, if a system Ax b is feasible, one can show that
[xlowi , xhighi] = [xmin

i , xmax

i] [2]. The idea of the proof is as follows.

The direction [xmin

i , xmax

i] ✓ [xlowi , xhighi] follows immediately from the
definitions. For the other direction let p be a point of P = {x | Ax b}
such that pi = xmin

i . Looking at the simple chains and simple cycles
of the halfspaces that contain p on their boundary, gives us the lower
bound xmin

i . The case for xhighi and xmax

i is equivalent.

On the other hand, if the system is infeasible then two things can
happen. If xhighi < xlowi , then the range of xi is empty and this is a
certificate for infeasibility. Such a certificate may not exist in general.
This is the case for example if the linear system consists of two inde-
pendent subsystems, one feasible and one infeasible. Also for the small
(infeasible) example y + z �1, y + z � 1, x + y 1, we have that
xlow = �1 and xhigh =1.

From now on we will only discuss the case where Ax b is feasible.
In Section 4.4.4 we will discuss how to get an infeasibility certificate
using the same algorithm.

We have seen that considering all chains and cycles of length at most
d, we can find the range of any variable. However, the problem is that
this number is exponential. Hence instead of computing [xmin

i , xmax

i]
exactly we use the following result from Aspvall and Shiloach.

Theorem 4.4.2. [2] Given a feasible system Ax b in LI(2), a vari-
able xi and a value � 2 R, one can decide in time O(nd) whether
� < xmin

i , � = xmin

i , � 2 (xmin

i , xmax

i), � = xmax

i or � > xmax

i .

In the feasible case this algorithm decides whether � lies in the open
range (xmin

i , xmax

i), on boundary of the range, or outside of the range
(and on which side).

The proof of Theorem 4.4.2 requires many technical details. In the
following we will summarize the method and provide an intuitive idea.
For detailed proofs refer to [2, 29].

Let us start by considering once more the perturbed cube example. We

70 CHAPTER 4. SPARSE REDUNDANCY DETECTION

start with the inequality (a)

x 17

12
+

1

144
x.

We rewrite this to

f(x) =
17

12
+

1

144
x.

We see that some value � 2 R satisfies (a), if and only if

� f(�).

Now for some feasible system Ax b and we apply this construction
to all inequalities obtained from the chains and loops. We obtain in-
equalities of form x f(x) and x � g(x). Let us denote by U the set
of functions f that we obtain from inequalities of form x f(x) and
by L the set of functions g that we obtain from inequalities of form
x � g(x). Let

xi(�) = min{f(�) | f 2 U},

and similarly
xi(�) = max{g(�) | g 2 L}.

It follows that the function xi(�) is convex, whereas xi(�) is concave
(see Figure 4.3). We can observe that � 2 [xmin

i , xmax

i] if and only if
xi(�) � xi(�).

For a fixed value �, the Aspvall-Shiloach Algorithm can find xi(�) and
xi(�) in time O(nd) and by the above discussion can hence decide
whether � 2 [xmin

i , xmax

i]. The algorithm can also find the slopes of
xi(�) and xi(�) and use this to decide all cases of Theorem 4.4.2. We
discuss this later.

For a variable xi we say that c is the trivial upper bound on xi, if
there there exists a constraint xi c in G and there is no constraints
xi c0 with c0 < c. Similarly the trivial lower bound can be defined.
If there are no constraints of form xi c, (xi � c), we say that the
trivial upper (lower) bound is1, (�1). Let xi be a fixed variable and
� 2 R. For all j 2 [n] let us denote by lo(xj) (up(xj)) the trivial lower
(upper) bound on xj given by G, which may also be infinite.

4.4. REVISION OF THE HOCHBAUM-NAOR METHOD 71

� = xi
xi(�)

xi(�)

xmin

i
xmax

i

�

xi

Figure 4.3: Output Aspvall-Shiloach

The following algorithm fixes xi = � for the first round and returns
upper and lower bounds on all xj accordingly. In d rounds, it updates
the lower and upper bounds, denoted by xj and xj , respectively, on all
variables, where initially we are given xj := lo(xj) and xj := up(xj).
In the end the algorithm returns the bounds on xi.

We observe that if � < lo(xi) or � > up(xi), then trivially � < xmin,
� > xmax. Therefore we assume that the input � is in [lo(xi), up(xi)].

Algorithm Aspvall-Shiloach (G, i, �);
begin

for j = 1, . . . , d do
xj := lo(xj), xj := up(xj);

endfor;
xi := �, xi := � ;
for m = 1, . . . , d do

for g 2 G, with g : axj + bxk c, a, b 6= 0 do
if a > 0, b > 0 then

xj c�bxk
a =: xgj , xk

c�axj

b =: xgk ;
elseif a > 0, b < 0 then

xj c�bxk
a =: xgj , xk �

c�axj

b =: xgk;
elseif a < 0, b > 0 then

72 CHAPTER 4. SPARSE REDUNDANCY DETECTION

xj � c�bxk
a =: xgj , xk

c�axj

b =: xgk ;
else /*a < 0, b < 0*/ then

xj � c�bxk
a =: xgj , xk �

c�axj

b =: xgk ;
end for;
for ` = 1, . . . , d, ` 6= i do

x` := maxg{x`, x
g
`}, x` := ming{x`, xg`};

endfor;
if m = 1 do

xi := maxg{xgi }, xi := ming{xgi };
else /*m > 1 */ then

xi := maxg{xi, x
g
i }, xi := ming{xi, xgi };

endfor;
output xi, xi;

end.

The algorithm runs in d rounds of O(n) steps each, which results in
the running time of O(nd).

Let us run the algorithm on the cube example. Let us set � = 1. We
know that 1 2 (xmin, xmax). By plugging in x = 1 into inequalities (a)
- (g) we see that

x(1) =
7

12
,

(by inequalilty (e)), and

x(1) =
205

144
,

(by inequality (a)).

The algorithm finds these values as follows. In the beginning x = x = 1,
y = z = �1 and y = z =1

In the first round we hence get the following bounds. If we consider
inequality 1. it follows that y 3x � 1

4

= 3 � 1

4

= 11

4

. If we consider
all inequalities 1. - 6. we obtain

1. y 11

4

4.4. REVISION OF THE HOCHBAUM-NAOR METHOD 73

2. y � 0

5. z � 1

8

6. z 13

12

.

Hence in the beginning of the second round we now have x = �1,
x =1, y = 0, y = 11

4

, z = 1

8

and z = 13

12

. For the second round we use
these new bounds to obtain.

1. x � 1

12

,

2. x 23

12

,

3. y � 1

24

, z 33

4

,

4. y 61

48

, z � �4,

5. x 26

3

,

6. x � �21

2

,

It follows that x = 1

12

, x = 23

12

, y = 1

24

, y = 61

48

, z = 1

8

and z = 13

12

.
Plugging in these values once more we see that indeed 1. implies x �
7

72

= x(1) and 2. implies x 205

144

= x(1).

As already mentioned in general � 2 [xmin

i , xmax

i], if and only if xi(�)
� xi(�). It follows that xmin

i = min{� | xi(�) � xi(�)} and
xmax

i = max{� | xi(�) � xi(�)}. To distinguish between all cases
of Theorem 4.4.2, we additionally need the (left and right) slopes of
xi(�) and xi(�). It is not hard to modify the Aspvall-Shiloach Al-
gorithm in such a way that it keeps track of the slopes as well. For
instance if xi(�) = � xi(�) and the slope of xi is smaller than one
at �, then � = xmin

i . In the case where the slope is greater than one
� = xmax

i . Using a careful case analysis one can show that the for given
�, the values of xi(�) and xi(�) and their (left and right) slopes at �
are enough to decide all cases of Theorem 4.4.2.

74 CHAPTER 4. SPARSE REDUNDANCY DETECTION

4.4.2 The Hochbaum-Naor Algorithm for the Feasible
Case

The rough idea of the Hochbaum-Naor algorithm is the following. At
step i we want to e�ciently find � in the current range [xmin

i , xmax

i] and
set xi = � to obtain a system with one less variable. Whenever this
is not possible, we eliminate xi e�ciently in a Fourier-Motzkin step.
After this first part we set all variables that were eliminated to values in
their current range in the normal Fourier-Motzkin backtracking step.

First Part The first part of the algorithm runs in d steps. In step i we
update two linear systems Gi+1 and H i+1 from Gi and H i respectively,
where initially G1 = H1 = G. The systems Gi (on d� i+ 1 variables)
and H i (on d variables) do basically encode the same solution system,
we will see later why a distinction is necessary. During the execution of
the algorithm, Gi is used to do Fourier-Motzkin elimination method,
H i is used to run the algorithm of Theorem 4.4.2. We denote by
FM(xi, G) the set of inequalities obtained by eliminating xi from G by
using one step of the Fourier-Motzkin elimination method.

For any two variables xj and xk in G, with j < k we represent the
set of inequalities containing xj and xk (with nonzero coe�cients) in
the (xj , xk) plane as two envelopes, the upper envelope and the lower
envelope. The feasible region of xj and xk is contained between the
envelopes (in the highlighted region of Figure 4.4) and each envelope
can be represented as a piecewise linear function with breakpoints. The
projection of the breakpoints onto the j-axis is denoted by Bj

k(G). If
the envelope is unbounded in the xj-direction we add points at infinity

to Bj
k(G). The range of xj is hence contained in the interval given by

the leftmost and rightmost point of Bj
k(G).

Below follows the pseudo code and the explanation of the algorithm.

Algorithm Hochbaum-Naor (G);
begin

G1 = H1 = G;

4.4. REVISION OF THE HOCHBAUM-NAOR METHOD 75

for i = 1, . . . , d� 1 do
Generate Bi = (bi

1

, . . . , bim), the sorted sequence of the
points in

S

xj2N(xi,Gi)
Bi

j(G
i);

Use Theorem 4.4.2 to do binary search on Bi;
if 9` 2 {1, . . . ,m} such that xmin

i (H i) bi` xmax

i (H i)
then

Gi+1 := Gi|xi=b` ;
H i+1 := H i [{xi b`} [{xi � b`};

elseif 9`(1 ` < m) s.t. bi` < xmin

i (H i)
and xmax

i (H i) < bi`+1

then
Gi := rel(Gi) [{xi � bi`} [{xi bi`+1

};
Gi+1 := FM(xi, Gi);
H i+1 := H i;

else then
output system infeasible;

endif;
endfor;

end.

Here rel(Gi) denotes the so called relevant inequalities in Gi which we
obtain by removing some redundant inequalities. The exact definition
follows in the description of the algorithm below.

In step i the algorithm has computed Gi and H i, where originally
G1 = H1 = G. For every pair (xi, xj), such that xj is a neighbor
of xi in Gi, i.e., xj 2 N(xi, Gi), it computes the projections of the
breakpoints Bi

j(G
i). The union of those points are sorted and denoted

by Bi. The idea is now to run a binary search on Bi using Theorem
4.4.2, in the hope of finding a point in the range of xi.

If the algorithm finds a breakpoint bi` 2 Bi such that xmin

i (H i)
bi` xmax

i (H i), then we set xi := bi` (see Figure 4.4). We set H i+1 =
H i [{xi bi`} [{xi � bi`} and Gi+1 := Gi|xi=bi`

.

If there is no such bi`, the algorithm finds bi`, bi`+1

such that bi` <
xmin

i (H i) and xmax

i (H i) < bi`+1

. In that case for any neighbor xj of

76 CHAPTER 4. SPARSE REDUNDANCY DETECTION

x

y

x

z

x

min

x

min

x

max

x

max

b`

Figure 4.4: First case Hochbaum-Naor, example with 3 variables

xi the number of inequalities containing both is reduced to at most
two (bold lines in Figure 4.5), the ones that define the upper and
lower envelope respectively on the interval [bi`, b

i
`+1

] (strip of Figure
4.5). This can be done since [xmin

i , xmax

i] ✓ [bi`, b
i
`+1

] and therefore
all other inequalities are redundant and can be removed. We denote
the set of inequalities obtained after the removal of the redundant
ones by rel(Gi). The normal Fourier-Motzkin elimination is applied
on rel(Gi) [{xi � bi`} [{xi bi`+1

} to obtain Gi+1. By the above
discussion rel(Gi)[{xi � bi`}[{xi bi`+1

} has the same solution space
as Gi. As the number of inequalities between xi and any neighbor xj

is reduced to at most two, the algorithm adds at most four inequalities
between any pair of neighbors of xi. This prevents the usual quadratic
blowup of the Fourier-Motzkin Method. The system H i+1 does not
need to be updated, i.e., H i+1 = H i.

Remark 4.4.3. We observe that in every step only a constant number
of constraints are added to H i, which guarantees the running time of
the binary search to be O(nd log n). The size of Gi can be of order
⇥(n + d2) (as we may add up to 4d constraints in each step), hence
running Theorem 4.4.2 on Gi would not guarantee the running time

4.4. REVISION OF THE HOCHBAUM-NAOR METHOD 77

x

y

x

z

x

min

x

max

x

min

x

max

b`+1

b`

Figure 4.5: Second case Hochbaum-Naor, example with 3 variables

in case where n = o(d2). It follows that we indeed need to distinguish
between the two systems Gi and H i.

Second Part The second part of the algorithm is now the normal
backtracking of the Fourier-Motzkin Method. Assume that the vari-
ables that were eliminated (in the elseif-step) are xi

1

, . . . , xik , where
k d and i

1

< i
2

< · · · < ik. In the end of part one we are left with
the system Gd on variable xd. By the properties of the Fourier-Motzkin
elimination Gd is feasible and the range of xd is the same as its range
in Hd. Now choose a feasible value of xd and continue inductively
by backtracking through Gik , . . . , Gi

1 . The geometric interpretation is
similar to the first part: for each variable we pick a value in its current
range.

4.4.3 Discussion of the Hochbaum Naor Algorithm

We briefly discuss the main points of the proof of Theorem 4.4.1 (for
more detail see [29]).

78 CHAPTER 4. SPARSE REDUNDANCY DETECTION

Proof sketch of Theorem 4.4.1 for the feasible case. Building and up-
dating all envelopes takes O(dn log n) time per step, hence O(d2n log n)
in total. Since for all i, the size of H i is O(n) and |Bi| n + 4d , in
each step the binary search runs Theorem 4.4.2 O(log n) times, where
each evaluation takes time O(dn). It follows that the first part of the
algorithm takes time O(d2n log n). For the second part consider the
step where we find a solution for a variable xj in the backtracking
step in Gi. Then xj shares at most two inequalities with each of its
neighbors, therefore the whole second part only takes time O(d2).

During the whole algorithm, the variable xi is set to some value � if
and only if � is in the current bounds [xmin

i , xmax

i]. Therefore in the
feasible case, it correctly outputs a feasible point of Ax b.

4.4.4 Discussion of the Hochbaum-Naor Algorithm in
the Infeasible Case

In the previous section we showed that if Ax b is feasible, then the
Hochbaum-Naor Method always correctly outputs a feasible point. We
now show that in the infeasible case, infeasibility is always detected,
which completes the proof of Theorem 4.4.1.

Proof sketch of Theorem 4.4.1 for the infeasible case. Assume that
Ax b is infeasible. We now run the first part of the algorithm as
in the feasible case. If during the execution at some point during bi-
nary search, we detect a contradiction in the form of xmax

i < xmin

i this
is a certificate for infeasibility and we are done. It is however possi-
ble that in every call of the algorithm of Theorem 4.4.2 we get some
(wrong) output � < xmin

i , � 2 [xmin

i , xmax

i], � > xmax

i . In that case
Gd is an infeasible system on the variable xd. This follows since the
Fourier-Motzkin elimination is feasibility preserving and setting some
variables to fixed values in an infeasible system, keeps the system in-
feasible. Detecting infeasibility in a system with one variable can be
trivially done in linear time in the number of constraints. It follows that
infeasibility is always detected, which concludes the proof of Theorem
4.4.1.

4.5. MODIFICATION OF HOCHBAUM-NAOR METHOD 79

4.5 Modification of Hochbaum-Naor Method

We now show how to modify the Hochbaum-Naor Method from Section
4.4, such that it decides full-dimensionality of the problem and in the
full-dimensional case outputs an interior point (see Theorem 4.3.1).
For this we need some preparatory lemmas.

Lemma 4.5.1. Let Ax b be feasible and let � 2 (xmin

1

, xmax

1

). Then
y := (�, y

2

, . . . , yd) is an interior point solution of Ax b if and only
if y0 := (y

2

, . . . , yd) is an interior point solution of A0x b0, where
A0x b0 is the system obtained by (Ax b)|x

1

=�.

Proof. Let y be an interior point solution of Ax b. Then by definition
Ay < b and obviously A0y0 < b0. On the other hand let y0 be an
interior point solution of A0x < b0, i.e., A0y0 < b0. Then y satisfies
any inequalities containing some xi 6= x

1

strictly. The only inequalities
that might be satisfied with equality are the ones containing only x

1

,
but this is a contradiction to � 2 (xmin

1

, xmax

1

).

Lemma 4.5.2. In the Fourier-Motzkin Method Gi+1

has an interior
point solution, if Gi has one. Moreover if an interior point solution of
G

1

= G exists, it can be obtained in the running time of the Fourier-
Motzkin algorithm.

Proof. The first part follows by Lemma 4.5.1. For the second part it is
enough to consider a slight variant of the Fourier-Motzkin elimination.
Instead of running the algorithm on a system Ax b, we run it on
Ax < b. In each step the inequalities obtained are of form l < h
instead of l h. By induction, using Lemma 4.5.1 one can see that
finding a solution using this variant, is equivalent to finding an interior
point of Ax b.

Proof of Theorem 4.3.1. Assume that Ax b is feasible. We run the
Hochbaum-Naor Algorithm almost in the same way as described in
Section 4.4. The only di↵erence is in the if-loop of the algorithm.
The original algorithm distinguishes between the cases � < xmin

i , � 2

80 CHAPTER 4. SPARSE REDUNDANCY DETECTION

[xmin

i , xmax

i] and � > xmax

i of Theorem 4.4.2. Our algorithm however
distinguishes between � xmin

i , � 2 (xmin

i , xmax

i) and � � xmax

i .

In the first case we only set xi = bi` if there exists a breakpoint bi` 2 B,
such that xmin

i (H i) < bi` < xmax

i (H i), that is, we only fix xi to some
value bi`, if b

i
` is in the open range (xmin

i (H i), xmax

i (H i)), (in the origi-
nal Theorem we were considering the closed range). The second case
accordingly changes to finding an interval [bi`, b

i
`+1

] (1 ` < k) such
that bi` xmin

i (H i) and xmax

i (H i) bi`+1

, (originally bi` < xmin

i (H i) and
xmax

i (H i) < bi`+1

). We see that in this case, the number of inequalities
on each variable adjacent to xi is still reduced to at most two.

As Theorem 4.4.2 distinguishes the cases � < xmin

i , � = xmin

i , � 2
(xmin

i , xmax

i), � = xmax

i � > xmax

i and certificate for infeasibility in time
O(nd), the running time remains the same.

It remains to show that the modified algorithm detects full-dimensionality
and in the full-dimensional case an interior point.

The discussion of the case where Ax b is infeasible is equivalent as in
the proof of Theorem 4.4.1. Hence assume that the system is feasible.

Let Ax b be full-dimensional. By Lemma 4.5.1, after the first part of
the algorithm Hd (and Gd) are associated with a system of inequalities
whose interior point solutions can be extended to an interior point
solution of Ax b. The interior point solution of Ax b can now
be found in the backtracking step using Lemma 4.5.2. Assume such
a point can not be found. Then by Lemma 4.5.2 there is no interior
point of Ax b, which is a contradiction to full-dimensionality.

Let Ax b be feasible but non-full-dimensional. Then at some point
of the backtracking the algorithm finds xmin

i = xmax

i for the current
bounds. Suppose this does not happen, then by Lemma 4.5.1 the
algorithm finds an interior point, which is a contradiction to non-full-
dimensionality.

4.6. THE NON-FULL-DIMENSIONAL CASE 81

4.6 The Non-Full-Dimensional Case

In the non full-dimensional case, redundancies are dependent on each
other, meaning that a redundant constraint can become nonredundant
after the removal of another redundant constraint. The problem is
therefore to find a maximal set of nonredundant constraints.

Clarkson’s Algorithm can be extended for redundancy removal in the
non-full-dimensional case as follows: In a preprocessing step one can
find the dimension k of the system Ax b, by solving at most d linear
programs as shown in Theorem 2.2.2. Of all the inequalities that are
forced to equality, we can find a set of (d�k) equalities that defines the
k-dimensional space that P = {x | Ax b} lies in. Let us denote the
remaining system of inequalities (the ones not forced to equality) by
A

2

x b
2

. One can now rotate the the system such that P lies in Rk.
Clarkson’s algorithm can now be applied in Rk, where the constraints
are the intersections of the rotated system of A

2

x b
2

intersected with
Rk. After the preprocessing the running time is hence O(n ·LP (s, k)).

In the case of LI(2) we observe that such a rotation may destroy the
structure of two variables per inequality. But we are still able to match
Clarkson’s running time, using substitution of variables.

Theorem 4.6.1. Let Ax b a k-dimensional system in LI(2), for
0 k d. Then given a relative interior point solution of Ax b, all
redundancies can be detected in time O(nk2s log s+ d2n).

The d2n term comes from Gaussian elimination, which is dominated by
the preprocessing time needed to find the relative interior point (see
Proposition 4.6.3). Note that the typically larger term nk2s log s is
dependent on the dimension k of the polyhedron and not d.

We need the following observation for the proof of Theorem 4.6.1.

Observation 4.6.2. Let Ax b in LI(2) and ↵xi + �xj �, � 6= 0,
an inequality of the system that is forced to equality, i.e., ↵x⇤i+�x⇤j = �,

for all solutions x⇤. Let Ax b be the system obtained by substituting
xj =

�
� �

↵
�xi. Then the following holds.

82 CHAPTER 4. SPARSE REDUNDANCY DETECTION

• Ax b is still in LI(2).

• A constraint is redundant in Ax b if and only if it is redundant
in the system Ax b.

Proof of Theorem 4.6.1. Given a relative interior point x⇤, one can find
A

1

x b
1

, the subsystem of Ax b that is forced to be equality, in
time O(nd). The remaining system is denoted by A

2

x b
2

. Finding
a minimal subsystem A⇤

1

x = b⇤
1

of A
1

x = b
1

with (d � k) linearly
independent equalities that defines the k-dimensional space containing
P = {x | Ax b}, takes O(d2n) time using the Gaussian elimination.
Using these equalities we can substitute d � k variables of A

2

x b
2

in the same fashion as explained in Observation 4.6.2. Hence we get a
k-dimensional representation of Ax b which is in LI(2).

We can now run the algorithm given by Theorem 5.3.5 on A0
2

x b0
2

,
the system obtained from A

2

x b
2

after substitution. These detected
nonredundant constraints together with A⇤

1

x = b⇤
1

give us a minimal
set of nonredundant inequalities.

The following proposition shows that finding a relative interior point
can also be done in strongly polynomial time.

Proposition 4.6.3. Given Ax b, one can find a relative interior
point of Ax b or a certificate for infeasibility in time O(d2n log n).

Proof. Using a similar argument as in Lemma 4.5.1, one can show the
following.

If xmin

1

 � xmax

1

, then y := (�, y
2

, . . . , yd) is a relative interior point
of Ax b if and only if y0 := (y

2

, . . . , yd) is a relative interior point of
(Ax b)|x

1

=�.

The algorithm for finding a relative interior point is very similar to the
modified Hochbaum-Naor Method. The first part runs equivalently. In
the second part of the backtracking if at some point xmin

i = xmax

i , we
set xi := xmin

i = xmax

i . Infeasibility is detected by the same argument
as in Theorem 4.4.1. Correctness follows from the above argument, the
running time is the same as in Theorem 4.3.1.

4.7. DISCUSSION AND OPEN QUESTIONS 83

Corollary 4.6.4. The dimension of Ax b or a certificate for infea-
sibility can be found in time O(d2n log n), i.e., the same running time
as finding a feasible point solution of a certificate for infeasibility.

Proof. Consider the algorithm of the proof of Proposition 4.6.3. Since
we know that infeasibility will be detected, assume that Ax b is
feasible. Let us denote the current polyhedron by P , where initially
P = {x | Ax b} the polyhedron defined by Ax b. Every time
xi is set to a value in the open range (xmin

i , xmax

i), the dimension of
the current polyhedron P decreases by 1, as we intersect it with a
hyperplane not containing P . If xmin

i = xmax

i and we set xi := xmin

i =
xmax

i , then the dimension of the current polyhedron stays the same,
as we intersect it with a hyperplane containing P . Since after setting
all to some value we end up with a point (polyhedron of dimension 0),
the dimension of Ax b is exactly the number of times we set xi to a
value in the open range (xmin

i , xmax

i).

4.7 Discussion and Open Questions

In the special case of linear programs with two variables per inequality,
we have seen that all redundancies can be detected in strongly polyno-
mial time O(nd2s log s) (Theorem 5.3.5). The first open question that
arises is whether this running time can be improved. Moreover our
algorithm uses geometric notions, such as ray shooting for Clarkson’s
algorithm, hence it would be interesting to see whether it is possible
to get a combinatorial strongly polynomial time algorithm. Using the
methods from Clarkson’s algorithm or our alternative version, it is
su�cient to find a strongly polynomial time algorithm that finds an
optimal solution or an interior point solution.

It would be interesting to know in what kind of other families solving
the feasibility problem is easier than optimizing. Furthermore, it would
be interesting to find more subfamilies of LPs where either of this
problems can be solved polynomially. Some results in this direction
already exist (e.g. [44]), but there is still ample room for new research.

84 CHAPTER 4. SPARSE REDUNDANCY DETECTION

Chapter 5

Complexity of Polytopes with two
Variables per Inequality

This chapter is based on joint work with K. Fukuda.

5.1 Introduction

As in the last chapter, we here consider linear systems with at most two
variables per constraint. In this chapter we analyze the complexity of
the polyhedron given by such systems. In particular, we want bounds
on the number of vertices such a polyhedron can have. Since we want to
analyze the maximum complexity, for simplicity in this chapter we only
consider bounded polyhedra, the so-called polytopes. This is possible
since every unbounded polyhedron with at least one vertex can be
converted into a polytope by adding one more constraint. This can
only increase the number of vertices and addition of one constraint
does not change our complexity results.

Again, we assume that we are given a polytope by a system of n in-
equalities in d variables, of form P = {x 2 Rd | Ax b}, where
A 2 Rn⇥d and b 2 Rn.

Recall, that by LI(2) we denote the family of linear systems Ax b,
that have at most two variables per inequality with nonzero coe�-
cient. As described in the previous chapter for this particular family,
Hochbaum and Naor’s algorithm finds a feasible point or a certificate
for infeasibility in time O(d2n log n) [29], i.e., it solves the feasibility
problem in strongly polynomial time.

86 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

Because of this di↵erence in running time, it is hence natural to ask,
whether polytopes LI(2) have an simpler structure than general poly-
topes. It was shown in [24], that polyhedra in LI(2) can have shadows
with high complexity.

It is known that in general the dual cyclic polytope maximizes the
number of vertices for a polytope given by n constraints (see Theorem
5.2.1). In this chapter we examine a polytope in LI(2), that has al-
most the same complexity as the dual cyclic polytope. This polytope
was given in [1] in the context of deformed products. The number of
vertices in this polytope is smaller by a factor that depends only on
the dimension d and not on n, (see Lemma 5.3.2). A similar result can
be shown not only for vertices but for all k-faces (see Theorem 5.3.3).
This shows that polytopes in LI(2) can have high complexity. If d is
constant, then asymptotically the same complexity as the dual cyclic
polytope.

We will also show in Theorem 5.4.2 that the dual cyclic polytope can
not be realized in LI(2) for d � 4. In particular in the dual cyclic
polytope any pair of the n facets are adjacent, however in LI(2), there
are at least ⇥(n2/

�

d
2

�

) pairs that are not adjacent.

5.2 Definitions and Known Results

Let P = {x 2 Rd | Ax b} be a convex polytope in Rd, where
A 2 Rn⇥d and b 2 Rn. Recall that the rows of Ax b are called the
constraints. The dimension of P , denoted dim(P), is defined as the
number of a�nely independent points in P minus one. A k-dimensional
subset F ✓ P is a k-face of P , if F has dimension k and if there exists a
hyperplane h : ax b, such that ax⇤ = b⇤ for all x⇤ 2 F and ax⇤ < b⇤

for all x⇤ 2 P \ F . The 0-dimensional faces are called the vertices of
P , the (d� 1)-dimensional faces are called facets. If F is a k-face, then
ax = b for at least d� k constraints of Ax b.

For 0 k d we denote by fk := fk(P) the number of k-dimensional

5.2. DEFINITIONS AND KNOWN RESULTS 87

faces of P . The f -vector of P is defined by

f(P) := (f
0

, f
1

, . . . , fd).

Theorem 5.2.1 (McMullen’s Upper Bound Theorem [36, 18]). The
maximum number of k-faces in a d-dimensional polytope with n con-
straints is attained by the dual cyclic polytope c⇤(n, d) and is given by

fk(c
⇤(n, d)) =

dd/2e�1

X

r=min{k,dd/2e}

✓

n� d� 1 + r

r

◆✓

r

k

◆

+
d
X

r=max{k,dd/2e}

✓

n� r � 1

d� r

◆✓

r

k

◆

.

In particular the number of vertices is given by

f
0

(c⇤(n, d)) =

✓

n� dd/2e
n� d

◆

+

✓

n� bd/2c � 1

n� d

◆

.

Remark 5.2.2. For dd/2e k d the formula can be simplified to

fk(c
⇤(n, d)) =

✓

n

d� k

◆

.

This means that any (d� k) constraints define a k-face.

For our calculation we will make use of the following well known for-
mulas. Stirling’s formula says that

n! = ⇥

✓p
n
nn

en

◆

,

as n goes to infinity. It follows that

✓

n

k

◆

= poly(k) · nn

kk(n� k)n�k
. (5.1)

88 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

Furthermore we need the well known inequality

1 + x ex, for all x 2 R. (5.2)

We conclude that

✓

n

k

◆

= poly(k) ·
⇣n

k

⌘k
·
✓

1 +
k

n� k

◆n�k

 poly(k) ·
⇣n

k

⌘k
· ek. (5.3)

5.3 Lower Bound on Maximum Complexity of
LI(2)

In the following we always assume that bd/2c is a divisor of n (if d is
even) or n� 1 (if d is odd). All results naturally extend to any d < n,
but we would like to avoid to have even more floors and ceilings in the
notation.

We want to construct a polytope in LI(2), that has high complexity,
i.e., with an f -vector of order close to the f -vector of the dual cyclic
polytope.

In a first part let us assume that d is even. We pair the set of variables
and define an n/(d/2) polygon on each of the pairs. Formally, for
1 i d/2, let

Ai

✓

x
2i�1

x
2i

◆

 bi,

be a polygon in the (x
2i�1

, x
2i)-plane, given by n/(d/2) constraints

with n/(d/2) vertices (see Figure 5.1). We denote P ⇤
i := P ⇤

i (n, d) =
{x 2 R2 | Ai(x2i�1

, x
2i)T bi} and by Gi the set of constraints of P ⇤

i .

Now P ⇤(n, d) is defined as the d-dimensional polytope that we obtain
from the union of Gi, 1 i d/2. Since the P ⇤

i ’s do not share any
variables,

P ⇤(n, d) = {x 2 Rd | (x
2i�1

, x
2i) 2 Pi, for all 1 i d/2}.

5.3. LOWER BOUND ON MAXIMUM COMPLEXITY 89

x
1

x
3

x
5

x
6

x
4

x
2

Figure 5.1: Example of P ⇤(12, 3)

For d odd, we pair the first d� 1 variables and use the construction as
above. Moreover we add the constraint xd � 0, i.e.,

P ⇤(n, d) = {x 2 Rd | (x
1

, . . . , xd�1

) 2 P ⇤(n� 1, d� 1) ^ xd � 0}.

Theorem 5.3.1. [1] For d even, the polytope P ⇤(n, d) in LI(2) has
the following number of vertices:

✓

n

d/2

◆d/2

.

For d odd it is
✓

n� 1

bd/2c

◆bd/2c
.

The proof of [1] is given in a much more general setting of deformed
products, we will here give the proof for our special case.

Proof. Let us assume first that d is even. For 1 i d/2 let Gi =

{g1i , . . . , g
n/(d/2)
i }, where the gji : a

j
i (x2i�1

, x
2i)T bji , ordered in such a

way that gji and g(j+1)

i , 1 j d/2, define a vertex of P ⇤
i . Throughout

the proof, j + 1 is always considered modulo n/(d/2). We will show
that if for every P ⇤

i we choose two consecutive constraints gji and gj+1

i ,
these d constraints define a vertex of P ⇤(n, d) and those are the only

90 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

sets of d constraints that define vertices (see also Figure 5.2). Let us
denote the set of vertices of P ⇤ by V (P ⇤). Formally we show that

V (P ⇤) = {x 2 Rd | 9(j
1

, . . . , jd/2) :

ajii (x2i�1

, x
2i)

T = bjii ^ aji+1

i (x
2i�1

, x
2i)

T = bji+1

i 8i}.

Let us first show that the set on the right hand side is a subset of

x
1

x
3

x
5

x
6

x
4

x
2

x⇤
x⇤

x⇤

Figure 5.2: d constraints that define vertex

V (P ⇤). We show that the g1i , g
2

i , 1 i d/2, define a vertex, the rest
follows from symmetry. Let us denote those d constraints by G0 and
x⇤ the intersection point of their boundaries. It follows that x⇤ 2 P ⇤

because (x⇤
2i�1

, x⇤
2i) 2 P ⇤

i for all i. We define the halfspace h by

h :

d/2
X

i=1

(a1i (x2i�1

, x
2i)

T + a2i (x2i�1

, x
2i)

T)
d/2
X

i=1

(b1i + b2i),

the halfspace obtained by the sum of all constraints inG0. Let us denote
this halfspace by h : a0x b0. Then by definition if follows that a0x⇤ =
b0. Now let y 2 P ⇤\x⇤. Since y 2 P ⇤ it follows that a1i (x2i�1

, x
2i)T b1i

and a2i (x2i�1

, x
2i)T b2i for all i. Moreover since y 6= x⇤ there exists

some k such that a1k(x2i�1

, x
2k)T < b1k or a2k(x2k�1

, x
2k)T < b2k. It

follows that a0x < b0, hence by definition of a 0-face, x⇤ is a vertex.

For the other direction we need to show that no other d constraints
define a vertex (see also Figure 5.3). If we choose more than two
constraints from some Gi, then the intersection of their boundaries is

5.3. LOWER BOUND ON MAXIMUM COMPLEXITY 91

empty. If we choose two constraints in Gi that are not adjacent, the
point it defines in P ⇤

i violates some constraints of Gi. Hence, we need
to choose two consecutive constraints.

x
2i�1

x
2i�1

x
2ix

2i

intersection not defined intersection not in P ⇤

Figure 5.3: d constraints that do not define vertex

The case where d is odd is similar. The vertices of P ⇤(n, d) are given
by the constraints defining the vertices of P ⇤(n�1, d�1) together with
xd � 0. P ⇤(n� 1, d� 1) is the d� 1 dimensional polytope defined by
the constraints G \ {xd � 0}.

The proof now follows by simple counting.

We will compare the number of vertices between P ⇤(n, d) and the dual
cyclic polytope. Since we do not compare the exact values, but only
the leading terms, we will not exactly compute the polynomial terms
in d, but denote them by poly(d).

Lemma 5.3.2. The dual cyclic polytope has a factor O(poly(d) ·ebd/2c)
more vertices than P ⇤(n, d), i.e.,

f
0

(c⇤(n, d)) poly(d) · ebd/2c · f
0

(P ⇤(n, d)).

We see that this factor is independent of n, hence if d is constant
then the number of vertices of P ⇤(n, d) is asymptotically equal to the
number of vertices of the dual cyclic polytope.

92 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

Proof. Considering only the leading term of f
0

(c⇤(n, d)) and using in-
equality (5.3) we get

f
0

(c⇤(n, d)) =

✓

n� dd/2e
n� d

◆

+

✓

n� bd/2c � 1

n� d

◆

 2 ·
✓

n� dd/2e
bd/2c

◆

 poly(d) · ebd/2c ·
✓

n� dd/2e
bd/2c

◆bd/2c

 poly(d) · ebd/2c ·
✓

n

bd/2c

◆bd/2c

Therefore

f
0

(c⇤(n, d)) poly(d) · ebd/2c · f
0

(P ⇤(n, d)).

In the following we do not only compare the number of vertices between
P ⇤(n, d) and c⇤(n, d), but also their f -vectors. We will see that if
k dd/2e � 1, then fk(P ⇤(n, d)) is by a factor at most ebd/2c larger
than fk(c⇤(n, d)). If k � dd/2e, then the factor is at most ed�k.

Theorem 5.3.3. For d even

fk(P
⇤(n, d)) =

d/2�bk/2c
X

r=max{0,d/2�k}

✓

d/2

r

◆✓

d/2� r

d� k � 2r

◆✓

n

d/2

◆d�k�r

.

For d odd and 0 < k < d

fk(P
⇤(n, d))

= fk�1

(P ⇤(n� 1, d� 1)) + fk(P
⇤(n� 1, d� 1))

=

bd/2c�b(k�1)/2c
X

r=max{0,bd/2c�(k�1)}

✓

bd/2c
r

◆✓

bd/2c � r

d� k � 2r

◆✓

n� 1

bd/2c

◆d�k�r

+

bd/2c�bk/2c
X

r=max{0,bd/2c�k}

✓

bd/2c
r

◆✓

bd/2c � r

(d� 1)� k � 2r

◆✓

n� 1

bd/2c

◆

(d�1)�k�r

.

5.3. LOWER BOUND ON MAXIMUM COMPLEXITY 93

The value of f
0

(P ⇤(n, d)) follows from Theorem 5.3.1 and obviously
fd(P ⇤(n, d)) = 1.

Proof. The proof is similar to the proof of Theorem 5.3.1 and we use
the same notation. Assume that d is even and 0 k d. The k-faces
of P ⇤(n, d) are induced by certain intersections of d � k constraints
of G with P ⇤(n, d). Let K be d � k constraints from G such that
the following holds. For every 1 i d/2, Gi contains at most two
constraints of K. If it contains two constraints h` and hm then they
are consecutive, i.e., they define a vertex in P ⇤

i (see also Figure 5.4).
We show that the intersection of the boundaries of the constraints K
with P ⇤(n, d) is a k-face. This is the same argument as in the proof
of Theorem 5.3.1. For 1 i d/2 let ki 2 {0, 1, 2}, the number of

x
1

x
3

x
5

x
6

x
4

x
2

Figure 5.4: Example of 3-face in P ⇤(12, 6)

constraints K contains from Gi. W.l.o.g. assume that if ki = 1 then
K \ Gi = {g1i } and if ki = 2 then K \ Gi = {g1i , g2i }. It is clear that
Pd/2

i=1

ki = d� k.

As in the proof of Theorem 5.3.1 we add up all constraints involved
and define the halfspace

h :

d/2
X

i=1

ki
X

`=1

a`i(x2i�1

, x
2i)

T
d/2
X

i=1

ki
X

`=1

b`i .

Denote h by h : a0x b0 and let F = h \ P ⇤. Since

P ⇤(n, d) = {x 2 Rd | (x
2i�1

, x
2i) 2 Pi, for all 1 i d/2},

94 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

it follows that

dim(F) = dim(h\P ⇤) =

d/2
X

i=1

dim(h\P ⇤
i) =

d/2
X

i=1

(2�ki) = d�
d/2
X

i=1

ki = k.

Moreover by definition of h for x 2 F \ P ⇤,

a0x = b0.

With the same argument as in the proof of Theorem 5.3.1 for x 2 P ⇤\F ,

a0x < b0.

It follows that F is a k-face of P ⇤.

Now let K 0 be d � k constraints of G that do not have the form as
described above. Then K does not define a k-face of P ⇤, by the same
argumentation as in the proof of Theorem 5.3.1.

It remains to count the number of faces that are induced by constraints
of form K.

Let us consider the sets in K, such that there are exactly r many Gi’s
that contain two constraints of K. There are

✓

d/2

r

◆✓

d/2� r

(d� k)� 2r

◆✓

n

d/2

◆

(d�k)�r

of those. Now if (d � k) d/2, then r can be in {0, . . . , b(d � k)/2c}
and if (d� k) > d/2, then r is in {d/2� k, . . . , b(d� k)/2c. The claim
for even d follows.

The case where d is odd is similar. We will not go into detail but only
give the main idea. With the same kind of argumentation as above
one can show that the k-dimensional faces are induced by (d � k)
constraints K of P ⇤ in one of the following ways. In the first case
K does not contain the constraint xd � 0. Then the constraints in K
must induce a k � 1 face in Rd�1, which then induces a k-face in Rd.
There are fk�1

(P ⇤(n�1, d�1)) constraints of this form. In the second
case K contains the constraint xd � 0. Then the remaining (d� k)� 1
constraints must induce a k face in Rd�1. There are fk(P ⇤(n�1, d�1))
constraints of this form.

5.3. LOWER BOUND ON MAXIMUM COMPLEXITY 95

Lemma 5.3.4. The following tables show the leading terms of P ⇤(n, d)
and c⇤(n, d), if d = o(n).

P ⇤(n, d) c⇤(n, d)

k d/2
�d/2

k

�

·
⇣

n
d/2

⌘d/2
�d/2

k

�

·
�n�d/2�1

d/2

�

k > d/2
� d/2
d�k

�

·
⇣

n
d/2

⌘d�k
�

n�k�1

d�k

�

d even

P ⇤(n, d) c⇤(n, d)

k bd/2c
⇣

�bd/2c
k

�

+
�bd/2c
k+1

�

⌘

·
⇣

n�1

bd/2c

⌘bd/2c
�dd/2e

k

�

·
�n�dd/2e�1

bd/2c
�

k � dd/2e
�bd/2c
d�k

�

·
⇣

n�1

bd/2c

⌘d�k
�

n�k�1

d�k

�

d odd

The proof of the lemma follows by checking the formulas of P ⇤(n, d)
and c⇤(n, d).

Theorem 5.3.5. For k < dd/2e

fk(c
⇤(n, d)) poly(d) · ebd/2c · fk(P ⇤(n, d)),

and for k � dd/2e

fk(c
⇤(n, d)) poly(d) · ed�k · fk(P ⇤(n, d)).

Proof. Let us consider the case k dd/2e � 1 first. We will prove the
statement for odd d, the case where d is even follows immediately by
replacing all bd/2c and dd/2e by d/2. First note that the leading term
of P ⇤(n, d) can be written as

✓✓

bd/2c
k

◆

+

✓

bd/2c
k + 1

◆◆

·
✓

n� 1

bd/2c

◆bd/2c

= poly(d) ·
✓

dd/2e
k

◆

·
✓

n� 1

bd/2c

◆bd/2c
.

96 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

For the term of c⇤(n, d) we have

✓

dd/2e
k

◆

·
✓

n� dd/2e � 1

bd/2c

◆

(5.3)

 poly(d) · ebd/2c ·
✓

dd/2e
k

◆

·
✓

n� dd/2e � 1

bd/2c

◆bd/2c

 poly(d) · ebd/2c ·
✓

dd/2e
k

◆

·
✓

n� 1

bd/2c

◆bd/2c
.

Therefore if k dd/2e � 1,

fk(c
⇤(n, d)) poly(d) · ebd/2c · fk(P ⇤(n, d)).

Now let us consider the case where k � dd/2e. We assume that d is
even, the odd case follows by replacing d/2 with bd/2c. For P ⇤(n, d)
the leading term can be written as

✓

d/2

d� k

◆

·
✓

n

d/2

◆d�k
(5.1)
= poly(d)

(d/2)d/2

(d� k)d�k · (k � d/2)k�d/2

✓

n

d/2

◆d�k

Similarly as in the last case for c⇤(n, d)

✓

n� k � 1

d� k

◆

 poly(d) · ed�k ·
✓

n

d� k

◆d�k

Hence
�

n�k�1

d�k

�

� d/2
d�k

�

·
⇣

n
d/2

⌘d�k
 poly(d) · ed�k ·

✓

k � d/2

d/2

◆k�d/2

| {z }

1

= poly(d) · ed�k.

It follows that if k � dd/2e and d even

fk(c
⇤(n, d)) poly(d) · ed�k · fk(P ⇤(n, d)).

5.4. UPPER BOUND ON MAXIMUM COMPLEXITY OF LI(2) 97

5.4 Upper Bound on Maximum Complexity of
LI(2)

In this section we show that no polytope in LI(2) can achieve the
complexity of the dual cyclic polytope. To our knowledge, this is the
first time such bounds are given. In Lemma 5.4.1 we show that for
all polytopes P in LI(2), d � 4 and dd/2e k d � 2 it holds that
fk(P) < fk(c⇤(n, d)). Using this result in Theorem 5.4.2, we show that
this holds for all k d� 2.

Lemma 5.4.1. Let P be any polytope in LI(2) given by n nonredun-
dant constraints, d � 4 and denote by n0 the number of constraints that
contain exactly two variables per inequality. As for each index i 2 [d]
there are at most two inequalities that contain only xi it follows that
n� 2d n0 n. Then for all dd/2e k d� 2 we have

fk(P) < fk(c
⇤(n, d)).

In particular

fd�2

(P)
✓

n

2

◆

�
�

n0

2

�

�

d
2

�

+ n0 <

✓

n

2

◆

= fd�2

(c⇤(n, d).)

Proof. Let us focus on the case of fd�2

(P). In the dual cyclic polytope
we know that any two facets are adjacent, i.e., their intersection defines
a (d� 2)-face. In LI(2) however, not every two facets can be adjacent.
Assume P is given by n constraints with index set E. For i < j 2 [d]
let Eij be the indices of the constraints that contain xi and xj and
denote |Eij | = nij . As in the proof of Theorem 5.3.3 we know that out
of the

�nij

2

�

pairs only nij pairs are adjacent. Summing over all i < j
it follows that at least

X

i<j

✓✓

nij

2

◆

� nij

◆

pairs of facets in P are not adjacent. Now using that
P

i<j nij = n0

and that the sum is minimized if all nij have the same size n0/
�

d
2

�

, we

98 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

get that

X

i<j

✓✓

nij

2

◆

� nij

◆

�
✓

d

2

◆

·
✓ n0

(d
2

)
2

◆

� n0

=
1
�

d
2

�

·
n0 ·

✓

n0 � 1

(d
2

)

◆

2
� n0

�
�

n0

2

�

�

d
2

�

� n0.

The claim for k = d�2 follows. For other values of k one can similarly
show that not all (d� k)-tuples of constraints define a k-face in P .

Theorem 5.4.2. Let P be any d-dimensional polytope in LI(2) given
by n nonredundant constraints, where d � 4. Then for all k d � 2
we have

fk(P) < fk(c
⇤(n, d)).

Although asymptotically the bounds that we prove are the same as
the bounds of the dual cyclic polytope, this shows that the dual cyclic
polytope is not realizable in LI(2).

Before proving this theorem we introduce a few notions used in the
proof of McMullen’s Upper Bound Theorem (for more details see [36,
18]). From now on we only consider simple d-dimensional polytopes
given by n nonredundant constraints. A polytope P is called simple,
if every vertex of P is satisfies exactly d inequalities with equality. We
observe that by small perturbations, for any d-dimensional P 0 in LI(2)
given by n inequalities there exists a simple polytope P in LI(2) with
fk(P 0) fk(P) for all k 2 [d]. Let us denote the family of simple
d-dimensional polytopes in LI(2) by SLI(2).

Let P be any polytope in SLI(2), given by n nonredundant constraints.
We consider a linear program with objective value cTx, subject to those
constraints. We assume that c is generic, i.e., no edge of P is parallel to
the hyperplane given by cTx = 0. We now orient every edge of P w.r.t.

5.4. UPPER BOUND ON MAXIMUM COMPLEXITY OF LI(2) 99

cTx, towards the vertex with higher objective value. Let us denote the

graph defined by those directed edges by
�!
G(P). Now for i = 0, . . . , d

we denote by hi(
�!
G(P)) the number of vertices with indegree i.

We now show that hi(
�!
G(P)) is independent of the objective value,

hence we can write hi(
�!
G(P)) = hi(P). Let k be fixed, we count the

pairs (F, v) of k faces F with unique sink v. By definition of
�!
G(P)

every face has a unique sink, hence there are exactly fk(P) many such
pairs.

On the other hand by properties of simple polytopes it holds that for
any k distinct edges to v, there exists a unique k-face containing the k
edges. Let v be fixed and let r be the indegree of v. Summing over all
indegrees r � k it follows that for all k = 0, . . . , d,

d
X

r=k

hr(
�!
G(P))

✓

r

k

◆

= fk(P). (5.4)

Solving this system of linear equalities one can show that for all i =
0, . . . , d,

hi(P) := hi(
�!
G(P)) =

d
X

k=i

(�1)k�i

✓

k

i

◆

fk(P). (5.5)

Hence hi(P) is independent of the objective value.

To prove Theorem 5.4.2 we use the following strengthened version
of McMullen’s theorem, which holds for any simple polytopes. This
strengthening was first given by Kalai in [30] with a small correction
made by Fukuda in [18, Chapter 7]. Note that Theorem 5.4.3 implies
McMullen’s theorem (5.2.1), since by (5.4) we know that each fk(P) is
a nonnegative linear combination of the hr(P)’s.

Theorem 5.4.3 (Strengthened Upper Bound Theorem [36, 18]). Let
P be a simple polytope given by n nonredundant constraints. Then for
all i = 0, . . . , d it holds that

hi(P) hi(c
⇤(n, d)).

100 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

Proof. Let P be a simple polytope given by n nonredundant con-
straints. We start by making two observations. First, for every i < d
and F a facet of P , it holds that

hi(F) hi+1

(P). (5.6)

This is true if we choose the generic objective function c such that the
objective value is higher in F than in the rest of the polytope. The
inequality follows since the h-vector is independent of the choice of c.

Secondly for all i < d it holds that

X

F

hi(F) = (i+ 1)hi+1

(P) + (d� i)hi(P). (5.7)

The left side of the equation sums over all facets of P . Notice that a
facet with indegree i has indegree i or i + 1 in P . Consider a vertex
with indegree i in P . Then there are (d � i) facets that contain this
vertex and have indegree i. For a vertex with indegree i+1 in P there
are exactly (i+ 1) facets containing it that have indegree i.

For the proof of the theorem we use induction on i with decreasing
values. The claim is trivial for i = d and i = 0. Since the h vector is
symmetric it is enough to show that for all i = dd/2e, . . . , d,

hi(P) hi(c
⇤(n, d)) =

✓

n� i� 1

d� i

◆

. (5.8)

The last equality follows by substituting the values of the f -vector of
c⇤(n, d) into (5.5).

Assume that the statement holds for i = k+1 d. Then for i = k, by
(5.6) and (5.7) we get that

(k + 1)hk+1

(P) + (d� k)hk(P) =
X

F

hk(P) nhk+1

(P).

5.4. UPPER BOUND ON MAXIMUM COMPLEXITY OF LI(2)101

Using the induction hypothesis it follows that

hk(P) n� k � 1

d� k
hk+1

(P)

 n� k � 1

d� k

✓

n� k � 2

d� k � 1

◆

=

✓

n� k � 1

d� k

◆

= hk(c
⇤(n, d)).

Proof of Theorem 5.4.2. Let P be any polytope in SLI(2). By Lemma
5.4.1 the theorem holds for dd/2e k d� 2 (since d � 4 it holds in
particular for k = d� 2). We claim that

hd�2

(P) < hd�2

(c⇤(n, d)).

The theorem then follows for all k < d � 2 from equation (5.4) and
Theorem 5.4.3. It hence remains to show the claim. By equation (5.5)

hd�2

(P) = fd�2

(P)� (d� 1)fd�1

(P) +

✓

d

d� 2

◆

fd(P).

We know that

fd�1

(P) = fd�1

(c⇤(n, d)) = n and fd(P) = fd(c
⇤(n, d)) = 1.

Furthermore by Lemma 5.4.1 we know

fd�2

(P) < fd�2

(c⇤(n, d)).

It follows that

hd�2

(P) = fd�2

(P)� (d� 1)fd�1

(P) +

✓

d

d� 2

◆

fd(P)

< fd�2

(c⇤(n, d))� (d� 1)fd�1

(c⇤(n, d)) +

✓

d

d� 2

◆

fd(c
⇤(n, d))

= hd�2

(c⇤(n, d)),

which shows the claim.

102 CHAPTER 5. COMPLEXITY OF SPARSE POLYTOPES

Remark 5.4.4. One can show that for d = 3, the bounds of McMullen’s
Upper Bound Theorem can be achieved in LI(2). Let P be a polytope
given by n�2 constraints in variables x

1

and x
2

, such that they define a
polygon with n�2 vertices in two dimensions. We furthermore add the
constraints x

3

� 0 and x
3

 1. We can easily observe that f
0

= 2n� 4
and f

1

= 3n � 6. Those are exactly the bounds achieved by the dual
cyclic polytope.

5.5 Discussion and Open Questions

We saw in this chapter that fk(P ⇤(n, d)) di↵ers from fk(c⇤(n, d)) by a
factor O(ebd/2c) if k < dd/2e and O(ed�k) otherwise. In particular, if d
is constant, then fk(P ⇤(n, d)) is of the same order as fk(c⇤(n, d)). The
high complexity of P ⇤(n, d) shows us that although LI(2) has a much
simpler structure than general linear programs, it is still a powerful
and complex tool. We also showed that the dual cyclic polytope is
not realizable in LI(2). However in the upper bound we showed, the
asymptotic complexity remains the same. It would be interesting to get
a deeper understanding of LI(2) and how it is di↵erent from general
linear programs.

In particular for this chapter, the main open question that remains is
how large the complexity of f(P) can be for a polytope P in LI(2). Is
it possible to have higher complexity than the complexity of P ⇤(n, d)?
If yes, what is the maximum complexity that can be achieved? Is it
asymptotically the same as the complexity of the a dual cyclic poly-
tope? This is an interesting direction for future research.

Part II

Sampling with Removal in
Generalizations of Linear

Programming

Chapter 6

Sampling with Removal

This chapter is based on [25] by B. Gärtner, J. Lengler and M. Szedlák.

6.1 Introduction

On a high level, random sampling can be described as an e�cient way
of learning something about a problem, by first solving a subproblem
of much smaller size. A classical example is the problem of finding the
smallest element in a sorted compact list [12, Problem 11-3]. Such a
list stores its elements in an array, but in arbitrary order. Additional
pointers are used to link each element to the next smaller one in the
list. Given a sorted compact list of size n, the smallest element can be
found in expected time time O(

p
n) as follows: sample a set of b

p
nc

array elements at random. Starting from their minimum, follow the
predecessor pointers to the global minimum. The key fact is that the
expected number of pointers to be followed is bounded by

p
n, and this

yields the expected runtime.

In the setting of linear programs one can show that sampling O(
p
n)

constraint at random and optimizing w.r.t. said constraints, we only
expect O(d

p
n) constraints to be not satisfied. Hence by solving a

problem of sublinear size, we get a solution of the LP that only violates
a sublinear number of constraints. Clarkson’s linear program solver (to
solve an LP exactly), which is linear in n but exponential in d, relies
on this result [11].

On an abstract level, the situation can be modeled as follows. Let H

106 CHAPTER 6. SAMPLING WITH REMOVAL

be a set of size n that we can think of as the set of constraints in an
optimization problem, for example the elements in a sorted compact
list. Let V : 2H ! 2H be a function that assigns to each subset R ✓ H
of constraints a set V (R) ✓ H \ R. We can think of V (R) as the
set of constraints violated by the optimal solution subject to only the
constraints in R. In this abstract setting, (H,V) is called a consistent
space (without minus infinity), a notion introduced here for the first
time (for a formal definition see Definition 6.2.3 below.) In the sorted
compact list example, V (R) is the set of elements that are smaller
than the minimum of R. In the setting of linear programs V (R) are
the constraints that change the optimal solution if added to R.

In this example, the above “key fact” is a concrete answer to the fol-
lowing general question: Suppose that we sample a set R ✓ H of size
r n uniformly at random. What can we say about the quantity vr,
the expected size of V (R)? What are conditions on V under which vr
is small?

The main workhorse in this context is the Sampling Lemma [9, 28]. It
states that vr = n�r

r+1

· xr+1

, where xr is the expected size of X(R) =
{h 2 R : h 2 V (R\{h})}. In other words, h 2 X(R) is a constraint that
is not automatically satisfied if the problem is solved without enforcing
it. In the sorted compact list example, every nonempty set R has one
such “extreme” constraint, namely its minimum. Consequently, we
have xr+1

= 1, and hence vr = (n � r)/(r + 1). With r = b
p
nc,

vr <
p
n follows. In the setting of linear programs, the optimal solution

is given by at most d constraints. These are the only ones that can be
extreme, hence the result for linear programs follows.

The Sampling Lemma has many other applications in computational
geometry when xr+1

can be bounded; in a number of relevant cases,
we do not only know the expected value vr but the complete proba-
bility distribution p` = Pr[|V (R)| = `], ` n, and tail estimates for
|V (R)| [28].

In this chapter, we address the following more general question in the
abstract setting: Suppose that we sample a set R ✓ H of size r n
uniformly at random, but then we remove a subset KR ✓ R of a fixed

6.1. INTRODUCTION 107

size k, according to an arbitrary rule. What can we still say about
the expected size of V (R \KR)? If KR is a random subset of R, the
expectation is vr�k, but if KR is chosen by another (deterministic) rule,
then R\KR is no longer a uniformly random subset, and the Sampling
Lemma does not apply.

Our work is originally motivated by chance-constrained optimization.
In this setting, we have a probability distribution over a (possibly in-
finite) set of constraints. The goal is to compute a su�ciently feasible
solution, one that satisfies a randomly chosen constraint with high
probability. Such a solution can be obtained by optimizing over a
finite sample of constraints drawn from the distribution [5]. Here, a-
posteriori removal of constraints is shown to yield a tradeo↵ between
solution quality and violation probability [6]. We are trying to under-
stand the combinatorial essence of this tradeo↵.

Intuitively, one would think that if k is constant, the change in the
expected number of violated constraints under the removal of k con-
straints is small. This intuition was proved to be correct if the pair
(H,V) is induced by a nondegenerate LP-type problem of fixed dimen-
sion � [23] (for the definition of dimension see Definition 6.2.5 below).
LP-type problems have been introduced and analyzed by Matoušek,
Sharir and Welzl as a combinatorial framework that encompasses lin-
ear programming and other geometric optimization problems [41, 34].
The quantitative result is that under removal of k elements, the ex-
pected number of violated constraints increases by a factor of �k at
most, which is constant if both � and k are constant. It was left open
whether this factor can be improved for interesting sample sizes (for
very specific and rather irrelevant values of �, r, k, it was shown to be
best possible).

In this chapter, we improve over the results in [23] in several respects.
In Section 6.3, Theorem 6.3.4 we show that the increase factor �k can
be replaced by ln r+k, which is a vast improvement for a large range of
values of k. Moreover, the new bound neither requires the machinery
of LP-type problems, nor nondegeneracy. It holds in the completely
abstract setting of consistent spaces considered above. In this setting,
we can also show that the bound is best possible for all sample sizes

108 CHAPTER 6. SAMPLING WITH REMOVAL

of the form r = n↵, 0 < ↵ < 1 (see Section 6.5). We also show that
this bound is best possible for violator spaces, in the case where k =
⌦(� ln r). In general, the gap to the lower bound is ln r.

Hence, if anything can be gained over the new bound, additional prop-
erties of the violator function V have to be used. Indeed, for nonde-
generate LP-type problems and small values of k, the increase factor
in [23] is better than our new bound, and most notably, it does not
depend on the problem size n. We show in Section 6.4, Theorem 6.4.7
that the same factor can be derived under the much weaker conditions
of a violator space, and with a much simpler proof, based on a “re-
moval version” of the Sampling Lemma. Furthermore the proof of [23]
is given for a specific rule to remove k, whereas our proof works for any
rule.

Intuitively, violator spaces are LP-type problems without objective
function, and they were introduced to show that many combinatorial
properties of LP-type problems and algorithms for LP-type problems
do not require the objective function at all [26, 4].

In Section 6.7, we give a complete characterization of violator spaces
of dimension 1. For general � and small (in particular constant) k,
the quest for the best bound on the increase factor remains open. In
particular, it is not clear whether the exponential growth in k actually
happens.

6.2 Basics and Definitions

Throughout we will work with three combinatorial concepts, the LP-
type problem, the violator space and the consistent space. The LP-type
problem was first introduced by Sharir and Welzl [41], the generalized
concept of violator spaces by Gärtner, Matoušek, Rüst, and Škovroň
[26], based on the doctoral thesis of Škovroň [46]. We here introduce
an even more general concept of consistent spaces.

6.2. BASICS AND DEFINITIONS 109

6.2.1 LP-type Problems

Definition 6.2.1. An LP-type problem is a triple P = (H,⌦,!) that
satisfies the following. H is a finite set (the constraints), ⌦ a totally
ordered set with a smallest element �1 and ! : 2H ! ⌦ a function
that assigns an objective function value to G ✓ H. For all F ✓ G ✓ H
and h 2 H, the following hold.

1. !(F) !(G).

2. If !(F) = !(G) > �1, then !(G[{h}) > !(G)) !(F [{h}) >
!(F).

Observe that using the second property, called locality, by simple in-
duction one can show that if !(F[{h}) = !(F) > �1 for all h 2 G\F ,
then !(F) = !(G).

The classic example of an LP-type problem is the problem of computing
the smallest enclosing ball of a finite set of points P in Rd. Let us
denote this problem by SEB. We can write this as an LP-type problem
by setting H = P and ⌦ = R [{�1}. For G ✓ H, !(G) is defined as
the radius of the smallest enclosing ball of G, with the convention that
the smallest enclosing ball of the empty set has radius �1. Since the
smallest enclosing ball of a nonempty set of points exists and is unique
[48], ! is well defined.

The first property is clear by definition. To see locality, observe that
for F ✓ G, !(F) = !(G) means that both F and G have the same
smallest enclosing ball. If !(G [{h}) > !(G), then h is outside this
ball, so !(F [{h}) > !(F).

Another example for an LP-type problem is, as the name already sug-
gests, linear programs. Let us consider a feasible linear program of
form

minimize cTx
subject to Ax b,

where A 2 Rn⇥d, b 2 Rn and c 2 Rd. We assume that c is a generic
direction, in particular if there exists an optimal solution w.r.t. some

110 CHAPTER 6. SAMPLING WITH REMOVAL

subsystem of Ax b, then this solution is unique. We set H to be
the set of constraints of this LP, i.e., the rows of Ax b, and ⌦ =
R [{�1}. For G ✓ H let AGx bG, be the constraints that are
indexed by G. Then !(G) is defined as the optimal objective value of
the LP w.r.t. AGx bG. A constraint h 2 H is a violator of G, if the
minimum objective value w.r.t. AG[{h}x bG[{h} is larger than w.r.t.
AGx bG. It is again clear that the first property holds. For locality,
assume that for F ✓ G, !(F) = !(G) = c > �1. Then this value c
is defined by a unique set of d constraints B ✓ F ✓ G, i.e., !(B) =
!(F) = !(G). Now if !(G [{h}) > !(G), then !(B [{h}) > !(B)
and hence !(F [{h}) � !(B [{h}) > !(B) = !(F).

Definition 6.2.2. A constraint h 2 H \ G is violated by G if !(G [
{h}) > !(G). We denote the set of violated constraints by V (G).

For SEB, the violated constraints of G are exactly the points lying
outside the smallest enclosing ball of G. For linear programming, the
violators are the constraints, whose addition changes the value of the
optimal solution.

6.2.2 Violator Spaces

Intuitively a violator space is an LP-type problem without an objective
function. The rationale behind this concept is that many things one
can prove about LP-type problems do not require the concept of order.

Definition 6.2.3. A violator space without minus infinity is a pair
(H,V), |H| = n finite and V a function 2H ! 2H such that the
following is satisfied for all F ✓ G ✓ H.

1. G \ V (G) = ; (consistency).

2. If G \ V (F) = ;, then V (G) = V (F) (locality).

Observe that the locality condition implies that if E ✓ F ✓ G and
V (E) = V (G), then V (E) = V (F) = V (G).

6.2. BASICS AND DEFINITIONS 111

We note that this is a generalization of the SEB problem as (H,⌦,!)
can naturally be converted into a violator space through V (G) = {x 2
H \G | !(G [{x}) 6= !(G)}, for G ✓ H. However this does not hold
for all LP-type problems, as locality does not necessarily hold for sets
G with !(G) = �1 [46]. In particular it does not always hold in linear
programing.

The following definition of violator space with minus infinity is a gener-
alization of all LP-type problems [46]. The two notions are not equiv-
alent, not every violator space can be converted into an LP-type prob-
lem. Any unique sink orientation (USO) [43] of a cube or the grid
[27] corresponds to a violator space, but not to an LP-type problem in
general [26].

Definition 6.2.4. A violator space with minus infinity, or short a
violator space, is a triple (H,V,U), |H| = n finite, V a function 2H !
2H , U ✓ 2H , such that the following is satisfied.

1. For every G ✓ H, G \ V (G) = ; (consistency).

2. For every F ✓ G ✓ H with F /2 U and G \ V (F) = ;, we have
V (G) = V (F) (locality).

3. For every F ✓ G ✓ H with G 2 U , we have F 2 U (monotoni-
city).

4. For every G 2 U , we have V (G) = {h 2 H | G [{h} /2 U}
(matching of V and U).

We call a set G ✓ H unbounded if G 2 U , and otherwise bounded.

It is not hard to see that linear programming satisfies these conditions.

Definition 6.2.5. Let (H,V,U) be a violator space.

1. B ✓ H, B 6= ; is called a basis in (H,V,U), if B /2 U and for
all F (B, F /2 U , it holds that B \ V (F) 6= ; (or equivalently,
V (F) 6= V (B)).

The empty set is always a basis.

112 CHAPTER 6. SAMPLING WITH REMOVAL

2. For G ✓ H, G /2 U a basis of G is an inclusion-minimal subset
B ✓ G, B /2 U , such that V (B) = V (G). For G 2 U the empty
set is the unique basis of G. (In particular, a basis of G is a basis
in (H,V,U), and every basis in (H,V,U) is a basis of itself.)

3. The (combinatorial) dimension of (H,V,U), � := �(H,V,U), is
defined as the size of the largest basis in (H,V,U).

Again, let us illustrate this on the SEB problem. A basis of G is a
minimal subset of points with the same smallest enclosing ball as G.
In particular all points of the basis are on the ball’s boundary. In d-
dimensional space, the combinatorial dimension of any SEB-instance
is at most d + 1 [15]. However, a basis can be smaller than the com-
binatorial dimension, and a point set can have more than one basis:
in R2 the set of four corners of a square has two bases, the two pairs
of diagonally opposite points. For a linear program, let G ✓ H, with
G /2 U . Then the optimal objective value is bounded and hence defined
by a set of at most d (number of variables) constraints. The dimension
of a linear program hence coincides with the usual definition of the
dimension of an LP.

Remark 6.2.6. In the following we will always assume for violator
spaces, that the empty set is unbounded. Consider the case of a violator
space (H,V), where the empty set is bounded, hence by monotonicity
U = ;. We set V 0(;) = H and V 0(R) = V (R) for all other R ✓ H.
Then (H,V 0, {;}) is a violator space. If in (H,V), the empty set is
a basis for some R ✓ H, i.e., V (R) = V (;), then by locality it fol-
lows that V (R) = V (x) for any x 2 R. Hence x is a basis of R in
(H,V 0, {;}). The dimension hence does not change, unless it was 0
(which is not an interesting case, since V (R) = ; for all R ✓ H). The
violator space (H,V 0, {;}) is therefore almost the same as (H,V), they
only di↵er in the violators of the empty set and the bases of the sets
that had the empty set as their basis.

Note that for the examples of the LP-type problems, such as SEB and
linear programming it holds that ; 2 U .

Definition 6.2.7. Let (H,V,U) be a violator space, G ✓ H. The set

6.2. BASICS AND DEFINITIONS 113

of extreme constraints X(G) ✓ G is defined by

r 2 X(G), r 2 V (G \ {r}).

In the SEB case, h is extreme in G, if its removal allows for a smaller en-
closing ball. Therefore h is necessarily on the boundary of the smallest
enclosing ball, but this is not su�cient. For the case R2, if G consists
of the four corners of a square, then G has no extreme point.

It is not hard to see that X(G) is the intersection of all bases of G,
hence |X(G)| � (see also Lemma 6.4.1). To bound the expected
number of violators, the following result from [28] can be used.

Lemma 6.2.8. [Sampling Lemma] Let (H,V,U) be a violator space
with combinatorial dimension �. Let R ✓ H a set of size r, chosen
uniformly at random, vr = E[|V (R)|] and xr = E[|X(R)|]. Then

vr =
n� r

r + 1
· xr+1

 n� r

r + 1
· �.

We will show a generalized proof of this lemma in the proof of Lemma
6.4.6.

In the SEB case in Rd, the combinatorial dimension is d + 1, hence
vr n�r

r+1

·(d+1). If d = 2, then the smallest enclosing ball of a random
sample of size

p
n has in expectation at most 3

p
n points outside.

Figure 6.2.2 shows an instance of SEB, on the 2 ⇥ 3 regular grid, in
particular n = 6. We fix r = 3 and therefore look at the violators of
sets of size three and extreme points of sets of size four, which are all
depicted (up to symmetry). It is not hard to see that there are only
eight sets of size three with no violators (corresponding to the first two
in the figure) and all others have two. This implies v

3

= 1.2. Looking
at the extreme points (Figure 6.2), the sets {1, 3, 4, 6}, {1, 2, 4, 5} and
{2, 3, 5, 6} have no extreme elements and all other sets of size four have
exactly two extreme elements. Therefore v

3

= 6�3

3+1

x
4

= 3

4

· 1.6 = 1.2.
For six points in general position every set of four points has either two
or three extreme points hence v

3

2 [3
4

· 2, 3
4

· 3] = [1.5, 2.25].

114 CHAPTER 6. SAMPLING WITH REMOVAL

V ({1, 3, 4}) = ;

V ({1, 2, 4}) = {3, 6}

V ({1, 2, 3}) = {4, 6}

V ({1, 3, 5}) = {4, 6} V ({1, 2, 5}) = {3, 6}

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

V ({1, 2, 6}) = ;

1 2 3

4 5 6

Figure 6.1: 2⇥ 3-grid violators

Definition 6.2.9. A violator space (H,V,U) is called nondegenerate
if every set G ✓ H has only one basis.

Note that the violator spaces resulting from SEB instances may be
degenerate, since in R2, four points on a square have two bases. But
for example, every d-smallest number violator space (Definition 6.5.2
below) is nondegenerate.

In geometric settings such as SEB, one can usually get rid of degen-
eracies by perturbations. It is shown in [35] that this does not work in
abstract settings. This is shown by constructing LP-type problems of
arbitrarily large dimension � such that one has to increase the dimen-
sion to at least 2� in oder to “remove degeneracies” (a notion that can
suitably be defined in the abstract setting).

6.2. BASICS AND DEFINITIONS 115

X({1, 3, 4, 6}) = ;

X({1, 2, 4, 5}) = ;

X({1, 2, 3, 6}) = {1, 6}

X({1, 2, 5, 6}) = {1, 6} X({1, 2, 4, 6}) = {1, 6}

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

X({1, 2, 3, 5}) = {1, 3}

1 2 3

4 5 6

Figure 6.2: 2⇥ 3-grid extreme points

6.2.3 Consistent Spaces

We now move on to the even more general concept of consistent spaces.

Definition 6.2.10. A consistent space (with minus infinity) is a triple
(H,V,U), |H| = n finite and V a function 2H ! 2H such that the
following is satisfied for all G ✓ H.

1. G \ V (G) = ; (consistency).

2. For every F ✓ G ✓ H with G 2 U , we have F 2 U (monotoni-
city).

3. For every G 2 U , we have V (G) = {h 2 H | G [{h} /2 U}
(matching of V and U).

Hence a consistent space is a violator space without the locality con-
dition. If U = ;, we call it a consistent space without minus infinity.

116 CHAPTER 6. SAMPLING WITH REMOVAL

In that case consistency is the only property that needs to hold. The
basis, combinatorial dimension and extreme constraints of a consistent
space can be defined equivalently as in the violator space.

Remark 6.2.11. 1. In consistent spaces we can not always assume
that the empty set is unbounded, as we do in the violator spaces.
Let (H,V) be a consistent space with U = ; of dimension �
defined as follows. For the empty set we define V (;) = ;. For
all other sets B of size at most � we define V (B) = H \ B. For
all other R ✓ H we define V (R) = ;. Now if we set V 0(;) = H
as before, the dimension of the consistent space increases: sets of
size larger than �, do not have a basis of size at most �.

2. In consistent spaces, the first equality vr = n�r
r+1

· xr+1

of the
Sampling Lemma 6.2.8 still holds. However, in general it does
not hold that |X(R)| � for all R ✓ H. We give an example of a
consistent space of dimension 1, with U = ;, such that for some
R ✓ H each element is extreme. Let R = {1, 2, . . . , 2m} ✓ [n] be
of even size. For i 2 [m] let V ({i}) = {i+m} and V ({i+m}) =
{i}. For every x 2 R define V (R\{x}) = {x} and for all other sets
define the violators as the empty set. Then this is a consistent
space. By definition it also follows that every element in R is
extreme. For x 2 R it holds that V (R \ {x}) = {x} = V ({x+m
mod 2m}) and since x + m mod 2m 2 R it follows that the
combinatorial dimension is 1.

6.2.4 Sampling with Removal

As already introduced in [23] for LP-type problems, we are interested
in sampling with removal. We define the concept here for the most
general case of consistent spaces. All results will then also hold for
violator spaces and LP-type problems. Suppose we sample uniformly
at random R ✓ H of size r. By some fixed rule Pk, we remove k < r
elements of R and obtain a set RPk

of size r � k. We are interested
in E[|V (RPk

)|], for which we will give di↵erent bounds in the next two
chapters.

6.3. AN UPPER BOUND FOR CONSISTENT SPACES 117

Before proceeding to the bounds, we discuss some possible rules for
the removal of the k elements. If k elements are removed uniformly at
random from R, then E[|V (RPk

)|] = vr�k. Another way to remove k
elements is to maximize the number of violators after the removal. In
the case of LP-type problems it is intuitive to remove in such a way
that the objective function is minimized [23]. For this last rule [23]
establishes a bound of E[|V (RPk

)|] = O(n�r
r+1

· �k+1) for fixed k, if the
LP-type problem is nondegenerate.

6.3 An Upper Bound for Consistent Spaces

The main result of this section is Theorem 6.3.4, where we show an
upper bound on E[|V (RPk

)|] for consistent spaces. In Lemma 6.5.1
and Lemma 6.5.3 we show asymptotically matching lower bounds for
most relevant values of r.

We start with the following technical lemma, to obtain bounds on the
bounded sets of the consistent space.

Lemma 6.3.1. Let (H,V,U), with |H| = n, a consistent space of
dimension � and Pk some fixed rule to remove k points. Let R be
chosen uniformly at random from all sets of size r n; let c = 33 and
x = c ·max

�

n
r � ln r,

n
r k

. We also assume �, k r/6 and x n � �.
Then

1.

Pr[|V (RPk
)| � x ^R /2 U]

k
X

i=0

�
X

↵=0

�

n
↵

�

�

n
r

�

✓

x

i

◆✓

n� x� ↵

r � ↵� i

◆

.

2. For all 0 ↵ � and 0 i k,

�

n
↵

�

�

n
r

�

✓

x

i

◆✓

n� x� ↵

r � ↵� i

◆

 r�3.

118 CHAPTER 6. SAMPLING WITH REMOVAL

Proof of Lemma 6.3.1. For R ✓ H, R /2 U , define

B(RPk
) := {B ✓ H | B basis of RPk

} 6= ;,

the set of all bases of RPk
. Let R ✓ H uniformly at random of size r.

Then

Pr[|V (RPk
)| � x ^R /2 U]

= Pr[9B 2 B(RPk
) : |V (B)| � x ^R /2 U]

 Pr[9B ✓ H : |V (B)| � x ^ V (B) = V (RPk
)

^ |B| � ^B ✓ R ^R /2 U]
 Pr[9B ✓ H : |V (B)| � x ^ |V (B) \R| k

^ |B| � ^B ✓ R ^R /2 U].

The last inequality follows since V (RPk
) = V (B) implies RPk

\V (B) =
; (consistency), and because RPk

is obtained from R by removing k
elements, we have |R \ V (B)| k. Now by just dropping the last
condition R /2 U we obtain

Pr[|V (RPk
)| � x ^R /2 U]

 Pr[9B ✓ H : |V (B)| � x ^ |V (B) \R| k ^ |B| � ^B ✓ R].

Using union bound we obtain

Pr[|V (RPk
)| � x ^R /2 U]

k
X

i=0

�
X

↵=0

Pr[9B ✓ H : |V (B)| � x ^ |V (B) \R| = i

^ |B| = ↵ ^B ✓ R]

k
X

i=0

�
X

↵=0

X

B2(H↵)
|V (B)|�x

Pr[|V (B) \R| = i ^B ✓ R]

=
k
X

i=0

�
X

↵=0

X

B2(H↵)
n�↵�|V (B)|�x

1
�

n
r

�

✓

|V (B)|
i

◆✓

n� |V (B)|� ↵

r � ↵� i

◆

| {z }

(⇤)

.

6.3. AN UPPER BOUND FOR CONSISTENT SPACES 119

We now claim that (⇤) is maximized if |V (B)| = x which concludes
the proof of part 1. This is clear if x = n � ↵. If x < n � ↵, we
prove the claim by first observing (elementary calculations) that for
0 y < n� ↵,

✓

y

i

◆✓

n� y � ↵

r � ↵� i

◆

�
✓

y + 1

i

◆✓

n� (y + 1)� ↵

r � ↵� i

◆

if and only if

y � i(n� ↵)� r + i+ ↵

r � ↵
.

The claim follows if we can show that y := x satisfies the latter in-
equality. Indeed, using ↵, i r/6, we have

i(n� ↵)� r + i+ ↵

r � ↵
<

in

r � ↵
 6

5

in

r

< c
kn

r
 c ·max

nn

r
� ln r,

n

r
k
o

= x.

For part 2, we argue as follows.
�

n
↵

�

�

n
r

�

✓

x

i

◆✓

n� x� ↵

r � ↵� i

◆

=

✓

x

i

◆

· n!

↵!
|{z}

�1

(n� ↵)!
· r!(n� r)!

n!
· (n� x� ↵)!

(r � ↵� i)!(n� x� r + i)!

✓

x

i

◆

· r · · · (r � ↵� i+ 1)

(n� ↵) · · · (n� ↵� i+ 1)
| {z }

r↵(r
n)

i

· (n� r)!

(n� ↵� i)!
· (n� x� ↵)!

(n� x� r + i)!

✓

x

i

◆

· r↵
⇣ r

n

⌘i (n� x� ↵) · · · (n� x� r + i+ 1)

(n� ↵� i) · · · (n� r + 1)
| {z }

(n�x
n�i)

r�↵�i

.

The upper bounds on the terms in the second and third line of this
chain of inequalities employ the fact that a�t

b�t
a
b if 0 t < a b,

using r n and i k < ck x.

120 CHAPTER 6. SAMPLING WITH REMOVAL

We further have that
✓

n� x

n� i

◆r�↵�i

=

✓

1� x� i

n� i

◆r�↵�i

 exp

✓

�(x� i)(r � ↵� i)

n� i

◆

< exp
⇣

�xr

2n

⌘

,

using ↵, i r/6 and i k x/c n/c with c = 33.

Hence, we have now shown that
�

n
↵

�

�

n
r

�

✓

x

i

◆✓

n� x� ↵

r � ↵� i

◆

✓

x

i

◆

· r↵
⇣ r

n

⌘i
exp

⇣

�xr

2n

⌘

.

For i = 0, this is bounded by

r� exp

✓

�c� ln r

2

◆

= r��c�/2 r�3,

as desired. For i > 0, we now use the estimate
�

x
i

�

 (xe/i)i. In the
first case we assume that k � ln r, hence x = cnr � ln r. It follows that

�

n
↵

�

�

n
r

�

✓

x

i

◆✓

n� x� ↵

r � ↵� i

◆

⇣xe

i

⌘i
· r↵

⇣ r

n

⌘i
exp

⇣

�xr

2n

⌘

=

✓

cnr � ln re

i

◆i

· r↵
⇣ r

n

⌘i
exp(� c

2
� ln r)

✓

c� ln re

i

◆i

· r↵ exp(� c

2
� ln r)

= exp(

� ln r ln c
z}|{

i ln c +i ln � + i ln ln r +

� ln r
z}|{

i �i ln i+
� ln r
z }| {

↵ ln r� c

2
� ln r)

 exp(i ln � + i ln ln r � i ln i�
⇣ c

2
� 2� ln c

⌘

� ln r).

6.3. AN UPPER BOUND FOR CONSISTENT SPACES 121

To show the claim it remains to show that

i ln � + i ln ln r � i ln i�
⇣ c

2
� 2� ln c

⌘

� ln r �3 ln r.

Since i k � ln r we can write i = �� ln r for some � 2 (0, 1]. Then

i ln � + i ln ln r � i ln i�
⇣ c

2
� 2� ln c

⌘

� ln r

= �� ln r ln � + �� ln r ln ln r � �� ln r(ln� + ln � + ln ln r)

�
⇣ c

2
� 2� ln c

⌘

� ln r

= �� ln�� ln r �
⇣ c

2
� 2� ln c

⌘

� ln r.

It remains to bound � ln� from below. By taking the derivative we
observe that � ln� attains its minimum when � = 1

e and hence � ln� �
�1

e . It therefore follows that

i ln � + i ln ln r � i ln i�
⇣ c

2
� 2� ln c

⌘

� ln r

 �
✓

c

2
� 2� ln c� 1

e

◆

� ln r �3 ln r for c � 33.

In the second case k � � ln r, hence x = c · n
r · k. Again, for i � 1 it

follows that
�

n
↵

�

�

n
r

�

✓

x

i

◆✓

n� x� ↵

r � ↵� i

◆

⇣xe

i

⌘i
· r↵

⇣ r

n

⌘i
exp(� x

2n
r)

=
⇣

c
n

r
k
e

i

⌘i
r↵

⇣ r

n

⌘i
exp(� c

2
k)

= exp(

k ln c
z}|{

i ln c +i ln k +

k
z}|{

i �i ln i+
� ln rk
z }| {

↵ ln r � c

2
k)

 exp(i(ln k � ln i)� (
c

2
� 2� ln c)k).

Now as before it su�ces to show that

i(ln k � ln i)�
⇣ c

2
� 2� ln c

⌘

k �3 ln r.

122 CHAPTER 6. SAMPLING WITH REMOVAL

Since i k we can write i = �k for some � 2 (0, 1]. Then

i(ln k � ln i)�
⇣ c

2
� 2� ln c

⌘

k

= �k(ln k � ln k � ln�)�
⇣ c

2
� 2� ln c

⌘

k

 �
✓

c

2
� 2� ln c� 1

e

◆

k
|{z}

�� ln r

 �3 ln r for c � 33,

where we again used that � ln� � �1

e .

The following lemma shows, that for unbounded sets removal after sam-
pling only decreases the number of violators. Therefore for unbounded
sets, k = 0 is the worst case.

Lemma 6.3.2. Let (H,V,U) be a consistent space and F ✓ G ✓ H,
G 2 U . Then V (F) ✓ V (G).

Proof. Since G 2 U , by monotonicity it follows that F 2 U . Now
assume that h 2 H \ V (G). Then by the matching of V and U it
follows that G [{h} 2 U and therefore by monotonicity F [{h} 2 U .
Now using the matching again we get that h 2 H\V (F). It follows that
if h /2 G, then h 2 V (F) implies h 2 V (G). If h 2 G, then F [{h} ✓ G
and hence by monotonicity F [{h} 2 U . By the matching it follows
that h /2 V (F). The claim of the lemma follows.

As mentioned in the beginning of the chapter, in consistent spaces the
Sampling Lemma is not very helpful as the number of extreme con-
straints can not be bounded by the dimension. However only consider-
ing the unbounded sets, there is the following version of the Sampling
Lemma.

Lemma 6.3.3. [Sampling Lemma for Unbounded Sets in Consistent
Spaces] Let (H,V,U) be a consistent space. Let R be uniformly at
random (u.a.r.) from all sets of size r. Then

E[|V (R)| | R 2 U] · Pr[R 2 U] n� r

r + 1
· �.

6.3. AN UPPER BOUND FOR CONSISTENT SPACES 123

Note that for violator spaces this follows directly by the Sampling
Lemma (Theorem 6.2.8) since by total probability

E[|V (R)| | R 2 U] · Pr[R 2 U] + E[|V (R)| | R /2 U] · Pr[R /2 U]

= E[|V (R)|] = n� r

r + 1
· xr+1

 n� r

r + 1
· �.

Proof. Assume that there exists R 2 U , otherwise this is clear. Let
G ✓ H. We say that h 2 G is unbounded extreme, if h 2 V (G \ {h})
and G \ {h} 2 U . Hence h is extreme and G \ {h} is unbounded. We
denote the set of unbounded extreme constraints of G by Y (G) and by
yr the expected size of Y (R).

We first claim that |Y (G)| �. If G 2 U , then by monotonicity and
the matching of V and U , Y (G) = ;. Hence assume that G /2 U . Then
there exists a basis B ✓ G of G, such that |B| � and B /2 U . For
any h 2 G \ B, B ✓ G \ {h} and therefore by monotonicity it follows
that G \ {h} /2 U . By definition of unbounded extreme constraints it
follows that h /2 Y (G). Hence the claim follows.

Similar as in the proof of the Sampling Lemma we now consider a
bipartite graph. On the left side we have all unbounded sets of size r,
i.e.,

A := {R ✓ H | |R| = r ^R 2 U}.

On the right side we have all sets of size r + 1. We connect two sets
R and R [{h} if h 2 V (R) or equivalently of h 2 Y (R [{h}). The
expected degree on the left side can be written as

E[|V (R)| | R 2 U] = 1

|A| ·
X

R2U
|R|=r

|V (R)|.

On the right side similarly the expected degree can written as

E[yr+1

] =
1

�

n
r+1

� ·
X

S✓H
|S|=r+1

|Y (S)|.

124 CHAPTER 6. SAMPLING WITH REMOVAL

Since
P

R2U
|R|=r

|V (R)| =
P

S✓H
|S|=r+1

|Y (S)| it follows that

E[|V (R)| | R 2 U] · Pr[R 2 U] = 1

|A| ·
X

R2U
|R|=r

|V (R)| · |A|�

n
r

�

=
1
�

n
r

� ·
X

S✓H
|S|=r+1

|Y (S)|
| {z }

�

�

n
r+1

�

�

n
r

� · � =
n� r

r + 1
· �.

Theorem 6.3.4. Let (H,V,U), with |H| = n, a consistent space of
dimension � and Pk some fixed rule to remove k points. Let R ✓ H
u.a.r. of all sets of size r, for some r n. Then

E[|V (RPk
)|] c ·max

nn

r
� ln r,

n

r
k
o

+
n

r
· (� + 1),

where c is some suitable constant from Lemma 6.3.1 (e.g. c = 33).

Observe that compared to Lemma 6.2.8, for most relevant r (e.g. r =
n� , � 2 (0, 1)) and k = o(� ln r), there is an additional ln r term.

Proof of Theorem 6.3.4. We may assume � r
6

, k r
c , and r+x n,

since otherwise the bound is trivial and there is nothing to prove.

By total expectation we get

E[|V (RPk
)|] = E[|V (RPk

)| | R /2 U] · Pr[R /2 U]
+ E[|V (RPk

)| | R 2 U] · Pr[R 2 U].

Let us first consider the second term. By Lemma 6.3.2, for all un-
bounded R, |V (RPk

)| |V (R)|. Therefore

E[|V (RPk
)| | R 2 U] E[|V (R)| | R 2 U].

6.4. AN UPPER BOUND FOR VIOLATOR SPACES 125

By Lemma 6.3.3 it follows that

E[|V (RPk
)| | R 2 U] · Pr[R 2 U] n� r

r + 1
· � n

r
· �.

Now consider the first term. Let x = c·max
�

n
r � ln r,

n
r k

. By definition
of expectation

E[|V (RPk
)| | R /2 U] · Pr[R /2 U]

 (Pr[|V (RPk
)| < x | R /2 U] · (x� 1)

+ Pr[|V (RPk
)| � x | R /2 U] · n) · Pr[R /2 U]

 x� 1 + Pr[|V (RPk
)| � x | R /2 U] · Pr[R /2 U] · n.

We will now show that Pr[|V (RPk
)| � x | R /2 U] · Pr[R /2 U] r�1

which concludes the proof. By definition of conditional probability and
Lemma 6.3.1,

Pr[|V (RPk
)| � x | R /2 U] · Pr[R /2 U] = Pr[|V (RPk

)| � x ^R /2 U]

k
X

i=0

�
X

↵=0

�

n
↵

�

�

n
r

�

✓

x

i

◆✓

n� x� ↵

r � ↵� i

◆

k
X

i=0

�
X

↵=0

r�3 r�1.

6.4 An Upper Bound for Violator Spaces

In this section we give an upper bound on E[|V (RPk
)|] for violator

spaces, Theorem 6.4.7. This is an improvement of the bound given in
[23], which stated the same bound for nondegenerate LP-type prob-
lems and the specific rule Pk to minimize the objective function after
removal. Matching lower bounds for special nondegenerate cases are
known [23]. We will give a lower bounds for the degenerate case in
Section 6.6, which shows that other methods need to be applied to get
a better upper bound. The bound in Theorem 6.4.7 is stronger than
the bound in Theorem 6.3.4 if � and k are very small, e.g., if �2k < ln r;
for large � and k, Theorem 6.3.4 is stronger.

126 CHAPTER 6. SAMPLING WITH REMOVAL

6.4.1 Extreme Constraints after Removal

Let (H,V,U) be a violator space of combinatorial dimension �. In
particular, every set has at most � extreme constraints. For a given
natural number k, we want to understand the following quantity:

�k(H,V,U) := max
R✓H

|{X(R \K) : K ✓ R, |K| = k}| .

x

y

z

w

X(R) = {x, y, z} X(R \ {y}) = {x, z, w}X(R \ {x}) = {y, z}

X(R \ {z}) = {x, y, w} X(R \ {w}) = X(R)

Figure 6.3: Example for �
1

(H,V,U)
In other words, how many sets of extreme constraints can we get by
removing k elements from some set R?

Figure 6.3 shows an instance of SEB with R = {x, y, z, w}, where by
removing one point from R we can get four di↵erent sets of extreme
constraints ({x, y, z}, {y, z}, {x, z, w} and {x, y, w}). Therefore we con-
clude that �

1

(H,V,U) � 4. We will see below that for nondegenerate
violator spaces �

1

(H,V,U) � + 1, so this bound is actually tight.

Let’s bound the easy cases of �k(H,V,U) first. We obviously have
�

0

(H,V,U) = 1 for any violator space (H,V,U). We note that in the

6.4. AN UPPER BOUND FOR VIOLATOR SPACES 127

nondegenerate case it holds that X(R) = B(R), where B(R) denotes
the unique basis of R. Moreover for (H,V,U) nondegenerate we have

�
1

(H,V,U) � + 1.

Indeed, if we remove a non-extreme element x from R, (by Lemma
6.4.1 below) we end up with the same set X(R \ {x}) = X(R) = B(R)
of extreme elements, so only in at most � cases, we will get a di↵erent
set. Note that in general this bound does not hold. Consider SEB
and assume we have four points in general position on a circle and
one point in the middle. It is not hard to see that for each point its
removal generates a di↵erent set of extreme points. Hence �

1

(H,V) �
5 > � + 1 = 4. We will treat the general case in Lemma 6.4.4.

We start with a basic lemma about violator spaces.

Lemma 6.4.1. Let (H,V,U) be a violator space with ; 2 U . For
R ✓ H denote by B(R) := {B ✓ R | B basis of R}, the set of all bases
of R. Then the following holds.

1. X(R) =
T

B2B(R)

B.

2. Let x 2 R \X(R). Then B(R \ {x}) = {B 2 B(R) | x /2 B}.

Proof. 1. If R 2 U , then by definition the empty set is the unique
basis. Moreover by monotonicity and the matching of V and U
it follows that X(R) = ;.

Hence assume that R /2 U . Let x 2 R \
T

B2B(R)

B. Then there

exists B0 2 B(R) such that x /2 B0. By locality it follows that
V (B0) = V (R \ {x}) = V (R). In particular x /2 V (R \ {x}) and
hence by definition x /2 X(R).

For the other direction assume that x 2 R \X(R). Then by the
matching of V and U it follows that R \ {x} /2 U . It follows by
locality that V (R) = V (R \ {x}) = V (B⇤), where B⇤ is some
basis of R \ {x}. Note that B⇤ is also a basis of R and since
x /2 B⇤ it follows that x /2

T

B2B(R)

B.

128 CHAPTER 6. SAMPLING WITH REMOVAL

2. For R 2 U this is clear as B(R \ {x}) = B(R) = {;}.

Hence assume R /2 U and let x 2 R such that x /2 B for some
B 2 B(R). As B ✓ R \ {x}, and B is bounded it follows by
monotonicity that R \ {x} is bounded. Since x /2 V (R \ {x}), by
locality it follows that B 2 B(R \ {x}). For the other direction
let B 2 B(R \ {x}). Assume that B /2 B(R). Then V (B) =
V (R \ {x}) 6= V (R), hence by locality x 2 V (R \ {x}). Therefore
by definition of extreme points and the first part x 2 X(R) =
T

B2B(R)

B, which is a contradiction to the choice of x.

For R ✓ H define �(R) = |
T

B2B(R)

B|, the size of the intersection of
all of its bases. Let b

0

(R) = minB2B(R)

|B|, the minimum size of a basis
in R. In particular in the nondegenerate case we have �(R) = b

0

(R).

Lemma 6.4.2. Let R ✓ H and B(R) the bases of R. Then there exists
a set B(R) ✓ B(R), such that

\

B2B(R)

B =
\

B2B(R)

B,

and

|
[

B2B(R)

B| (� � �(R)) · (b
0

(R)� �(R)) + b
0

(R) �2 + �.

Proof. Fix B
0

2 B(R) of minimum size, i.e., |B
0

| = b
0

(R) . Let us
label the points in B

0

such that B
0

= (
T

B2B(R)

B)[{1, 2, . . . , b
0

(R)�
�(R)} = (

T

B2B(R)

B)[[b
0

(R)��(R)]. Then for any i 2 [b
0

(R)��(R)]
there exists Bi 2 B such that i /2 Bi. Define

B(R) = {B
0

, B
1

, . . . , Bb
0

(R)��(R)

}.

It follows by construction that
T

B2B(R)

B =
T

B2B(R)

B. Moreover

B(R) contains at most b
0

(R)��(R)+1 elements, where eachBi 2 B(R),

6.4. AN UPPER BOUND FOR VIOLATOR SPACES 129

i 6= 0 contains at most � � �(R) elements that are not in B
0

. It hence
follows that

|
[

B2B(R)

B| (� � �(R)) · (b
0

(R)� �(R)) + b
0

(R) �2 + �,

where the last step holds since b
0

(R) �. We see that this (not
necessarily unique) set B(R) satisfies all the conditions.

Lemma 6.4.3. Let K ✓ R such that K \
⇣

S

B2B(R)

B
⌘

= ;. Then

X(R \K) = X(R).

Proof. Using the second part of Lemma 6.4.1 repeatedly, by our choice
of K we get

B(R \K) = {B 2 B(R) | K \B = ;}.

It therefore follows that B(R) ✓ B(R \K) ✓ B(R). We get that
\

B2B(R)

B ✓
\

B2B(R\K)

B ✓
\

B2B(R)

B =
\

B2B(R)

B,

where the last step follows from the definition of B(R). Using the first
part of Lemma 6.4.1 we get X(R \K) = X(R).

Lemma 6.4.4. Let (H,V,U) be a violator space with ; 2 U . Then

�k(H,V,U)
k
X

i=0

(�2 + �)i = O(�2k + k).

Note that �k(H,V,U) is independent of the number of bases of R.

Proof of Lemma 6.4.4. Let us fix R and a set K ✓ R, |K| = k to be
removed. We claim that we can order the elements of K as e

1

, . . . , ek
such that for some ` 2 {0, . . . , k},

ei 2 B(R \ {e
1

, . . . , ei�1

}), i `,

X(R \K) = X(R \ {e
1

, . . . , e`}).

130 CHAPTER 6. SAMPLING WITH REMOVAL

Indeed, we can do this greedily: as long as we can remove an element
of

S

B2B(S)B of the current set S, we do so. At some point none of
the elements that remain to be removed from the current set S are in
S

B2B(S)B. By Lemma 6.4.3 at this point the removal of any subset
of them does not change the extreme elements anymore.

If follows that all sets X(R \K) can be obtained from R by repeatedly
removing an element of

S

B2B(S)B from the current set S, up to k

times. In the first round we have at most |
S

B2B(R)

B| �2+� choices,

and for each of them, we have at most �2 + � in the second round, and
so on. The bound follows.

For the nondegenerate case the corollary below, (a strengthening of the
result of [23]) follows.

Corollary 6.4.5. For (H,V,U) nondegenerate ; 2 U

�k(H,V,U)
k
X

i=0

�i = O(�k + k).

Proof. Since in the nondegenerate case �(R) = b
0

(R) by Lemma 6.4.2
it follows that |

S

B2B(S)B| � for all R. This can also be seen directly

as B(R) has contains only one set, which is of size at most �. We then
apply the same argument as in Lemma 6.4.4.

6.4.2 Sampling Lemma after Removal

Let (H,V,U) be a violator space. For R ✓ H and a natural number k,
we define the following two quantities.

Vk(R) = {x 2 H \R : x 2 V (R \K) for some K ✓ R, |K| = k},
Xk(R) = {x 2 R : x 2 X(R \K) for some K ✓ R, |K| = k}.

Clearly, V (R) = V
0

(R) and X(R) = X
0

(R).

Furthermore, we let vr,k denote the expected size of Vk(R) over a ran-
domly chosen set of size r. Similarly, xr,k is the expected size of Xk(R).

6.4. AN UPPER BOUND FOR VIOLATOR SPACES 131

Lemma 6.4.6. [Sampling Lemma after Removal]

vr,k =
n� r

r + 1
xr+1,k.

Proof. This goes like for the “normal” Sampling Lemma 6.2.8 [28]. We
define a bipartite graph on the vertex set

�

H
r

�

[
�

H
r+1

�

, where we connect
R and R [{x} with an edge if and only if x 2 Vk(R). Let x 2 H \ R.
We have the following equivalences:

x 2 Vk(R) , x 2 V (R \K) for some K ✓ R, |K| = k

, x 2 X((R \K) [{x})
for some K ✓ R, |K| = k

, x 2 X((R [{x}) \K)

for some K ✓ R, |K| = k, x /2 K

, x 2 X((R [{x}) \K)

for some K ✓ R [{x}, |K| = k, x 62 K

, x 2 X((R [{x}) \K)

for some K ✓ R [{x}, |K| = k

, x 2 Xk(R [{x}),

where in the fifth step we used that x 2 X((R [{x}) \ K) can only
occur if x 2 (R [{x}) \K.

So we can also define the graph as having an edge between R and
R [{x} if and only if x 2 Xk(R [{x}). Since the sum of the degrees
of the vertices in

�

H
r

�

is the same as the sum of degrees of the vertices

in
�

H
r+1

�

, we get

✓

n

r

◆

vr,k =
X

a2(Hr)

deg(a) =
X

b2(H
r+1

)

deg(b) =

✓

n

r + 1

◆

xr,k,

which is the claimed result.

Note that as in the “normal” Sampling Lemma, the result holds as well
for consistent spaces.

132 CHAPTER 6. SAMPLING WITH REMOVAL

6.4.3 Violators after Removal

Suppose we sample R at random, and then remove an arbitrary set
of k elements KR according to some fixed rule Pk, and obtain the set
RPk

= R \KR. The expected number of violators of RPk
is bounded

by vr,k + k. This follows since vr,k counts the expected number of
violators in H \ R that we can possibly get by removing any set of k
elements and the removed points KR can also be in V (RPk

). Therefore
E[|V (RPk

)|] vr,k + k.

Theorem 6.4.7. Let (H,V,U) be a violator space of dimension �,
; 2 U , and let R be sampled u.a.r. from all subsets of H of size r. Let
Pk be a fixed rule to remove k elements from the random sample. Then

E[|V (RPk
)|] vr,k + k

k
X

i=0

(�2 + �)i
!

· � · n� r

r + 1
+ k

=
n� r

r + 1
·O(�2k+1 + k) + k.

Proof of Theorem 6.4.7. By Lemma 6.4.6, we need to bound xr,k. To
this end, we show that for all R,

|Xk(R)|

k
X

i=0

(�2 + �)i
!

· �.

This holds, since by Lemma 6.4.4, at most
Pk

i=0

(�2 + �)i many sets
of extreme elements can be obtained by removing k elements from R,
and each of these sets has at most � elements.

Corollary 6.4.8. For (H,V,U) a nondegenerate violator space it holds
that

E[|V (RPk
)|] = n� r

r + 1
·O(�k+1 + k) + k.

Proof. The statement follows by the same argument as in the proof of
6.4.7 using the result of Corollary 6.4.5.

6.5. A LOWER BOUND FOR CONSISTENT SPACES 133

6.5 A Lower Bound for Consistent Spaces

In this section we show the matching lower bound of Theorem 6.3.4 for
consistent spaces for most relevant sizes of r, � and k.

Lemma 6.5.1. Let r = n↵, let ↵ 2 (0, 1), 0 < ✏ < ↵, � < ↵ � ✏
be constants, and 1 � n�. Let k, Pk as in Theorem 6.3.4. Let
x = ✏nr � lnn = o(n). Then there exists a consistent space without
minus infinity (H,V) of dimension �, such that

E[|V (RPk
)|] = (1 + o(1))✏

n

r
� lnn = (1 + o(1))x.

Note that here lnn = ↵ ln r.

Proof. Define (H,V) consistently (with U = ;) as follows. The violator
set of the empty set is defined as the empty set, V (;) = ;. For all
B ✓ H with 0 < |B| �, its violators are chosen u.a.r. of size ✏nr � lnn
from H \B.

For R ✓ H of size r we define the violators as follows. If there exists
B ✓ R, 0 < |B| �, such that V (B) \ R = ;, then V (R) = V (B). If
there exists more than one such B, choose the lexicographically small-
est. If no such B exists then set V (R) = V (;) = ;. Therefore for all R
we have a basis of size at most �. Denote the basis for R by BR.

First we show that it su�ces to treat the “worst case” k = 0. For
k > 0 we can reduce the problem to the case k = 0 by the following
construction, where for all R of size r it holds that |V (RPk

)| � |V (R)|:
For R with V (R) 6= ;, fix Pk such that none of the k removed elements
are in BR, i.e., BR ✓ RPk

. Since R \ V (B) = ; it follows that RPk
\

V (B) = ; and we can choose V (RPk
) = V (R). If there exists multiple

sets of size r with nonempty violator set that are mapped to the same
RPk

, choose V (RPk
) arbitrary from the set of their violator spaces. For

all other sets of size r � k, choose their violators as the empty set. It
follows that for all R of size r, |V (RPk

)| � |V (R)|. For all other S ✓ H
define V (S) = ;.

134 CHAPTER 6. SAMPLING WITH REMOVAL

Hence we may assume that k = 0.

E[|V (R)|] = Pr[|V (R)| = ✏
n

r
� lnn] · ✏n

r
� lnn

= (1� Pr[|V (R)| = 0]) · ✏n
r
� lnn.

We now show that Pr[|V (R)| = 0] = o(1), which concludes the proof.
Because we chose the violators of the bases independently

Pr[|V (R)| = 0] = Pr[8B ✓ R, 0 < |B| � | V (B) \R 6= ;]

=
Y

B✓R
0<|B|�

Pr[V (B) \R 6= ;]

=
Y

B✓R
0<|B|�

(1� Pr[V (B) \R = ;]).

Now we bound Pr[V (B) \ R = ;] from below. For B of size � with
0 < � � and x = ✏xr � lnn, we get

Pr[V (B) \R = ;] =
�

n�x��
r��

�

�

n��
r��

�

=
(n� x� �) · · · (n� x� r + 1)

(n� �) · · · (n� r + 1)

= e

⇣
(1+o(1)) x

n
+⇥(

x2

n2

)

⌘
r
= n�(1+o(1))✏�.

Using that
P�

i=1

�

r
i

�

� (r��)�

��
and � = o(r) we get

Pr[|V (R)| = 0]
Y

B✓R
0<|B|�

(1� n�(1+o(1))✏�) (1� n�(1+o(1))✏�)
(r��)�

��

 exp

✓

�(1 + o(1))n�(1+o(1))✏� · (1 + o(1))�r�

��

◆

.

Plugging in r = n↵, we observe that is su�cient to show that

n(↵�✏+o(1))�(1 + o(1))� · 1

��
= !(1)

6.5. LOWER BOUNDS FOR CONSISTENT SPACES 135

. By using � n� we get

n(↵�✏+o(1))� · (1 + o(1))�

��
�
⇣

n(↵�✏��+o(1)) · (1 + o(1))
⌘�

= !(1),

since � < ↵� ✏.

We show that using one of the simplest violator spaces, namely the
d-smallest number problem, we obtain the bound of E[|V (RPk

)|] =
⇥(nr · (� + k)).

Definition 6.5.2. We define the d-smallest number problem as follows.
Let H = [n] = {1, 2, . . . , n}. For R ✓ H, R 6= ; define mind(R) as the
d-smallest number in R. Let V (R) = {r 2 H \ R | r < mind(R)},
i.e. all elements smaller than the d-smallest. For the empty set define
V (;) = H.

We observe that (H,V, {;}) is a violator space, with combinatorial
dimension d. The basis of R consists of the d smallest elements of R.

Lemma 6.5.3. Let H = [n] and �+ k r. For the �-smallest number
problem there exists a rule Pk such that E[|V (RPk

)|] = n�r
r+1

· (�+k)+k,
and therefore for r = o(n), E[|V (RPk

)|] = ⇥(nr · (� + k)).

Proof of Lemma 6.5.3. Let R ✓ H. To maximize the number of viola-
tors after the removal of k elements, we remove the k-smallest elements
of R. We denote the removed set by Rk. Then

V (RPk
) = {r 2 H \R | r < min

�+k
(R)} [Rk.

We observe that {r 2 H \ R | r < min�+k(R)} is exactly the set of
violators of R, for the � + k smallest problem, whose expected size we
know by the Sampling Lemma 6.2.8. Hence

E[|V (RPk
)|] = n� r

r + 1
(� + k) + k.

136 CHAPTER 6. SAMPLING WITH REMOVAL

Lemma 6.5.1 and Lemma 6.5.3 show that for consistent spaces the
bound of Theorem 6.3.4 is tight up to a constant factor for most rel-
evant values of r, � and k, (i.e., if r, � and k satisfy the conditions
of Lemma 6.5.1 or Lemma 6.5.3). Furthermore by Lemma 6.5.3 if
k � � ln r, then the upper bound of Theorem 6.3.4 is tight for violator
spaces.

6.6 Lower Bounds for Violator Spaces

By [23, Section 7.2], there exists an LP-type problem and a rule Pk,
such that |Xk(R)| = ⇥(�k+1), for |R| = n � 1. However, the behavior
of the bound is unknown for general r. In Lemma 6.6.2 we show that
the bounds of Lemma 6.4.4 are tight up to a factor depending on k. We
furthermore show in Lemma 6.6.3, that the bound of Corollary 6.4.5
for nondegenerate violator spaces is also tight up to a factor depending
on k. It is not clear whether the bounds of Theorem 6.4.7 are tight for
violator spaces, but this section shows that using our methods better
bounds on the expectation xr,k can not be obtained.

The following lemma shows how given a set H and subsets of size at
most �, we can construct a violator space of dimension at most � such
that said subsets are exactly the bases of H.

Lemma 6.6.1. Let H be a set of size n. Let B
1

, . . . , Bm ✓ H, with
maxi2[m]

|Bi| = � and there is no pair i 6= j such that Bi ✓ Bj. Then

there exists a function V : 2H 7! 2H and U ✓ 2H , such that

• (H,V,U) is a violator space,

• B(H) = {B
1

, . . . , Bm},

• dim(H,V,U) = �.

Proof. We first define U to be the sets that do not contain any of the
Bi, i.e.,

U = {R ✓ H | Bi * R, 8i 2 [m]}.

6.6. LOWER BOUNDS FOR VIOLATOR SPACES 137

For a set R 2 U we define the set of violators as

V (R) = {x 2 H | 9i 2 [m] such that Bi ✓ R [{x}}.

For all sets R /2 U we define V (R) = ;. We first observe that this is
a violator space. By construction, consistency is satisfied. Locality is
also trivially satisfied, since all R /2 U have the same set of violators.
Monotonicity and the matching of V and U also hold by construction.

We now show the remaining two properties. By construction indeed
V (H) = V (Bi) = ; for all i 2 [m]. Since the only other sets S with
V (S) = V (H) contain some Bi, it follows that

B(H) = {B
1

, . . . , Bm}.

By the second part of Lemma 6.4.1, we know that for all sets R /2 U ,
B(R) ✓ B(H), hence it follows that the dimension is �.

Lemma 6.6.2. There exists a violator space (H,V,U) where

�k(H,V,U) �
✓ �

2

2k

◆

= ⌦

✓

�2k

(4k)2k+1/2

◆

.

Proof. Note that the last equality follows from Stirling’s formula.

Let H be of size ⇥(�
2

8

) where the points of H are labeled by {1, . . . , �
2

}
and {ij | i, j 2

⇥

�
2

⇤

, i < j}. Suppose H has �
2

bases where Bi, i 2
⇥

�
2

⇤

is given by

Bi =

✓

�

2

�

\ {i}
◆

[{ji | j < i} [{ij | j > i},

i.e., all points in
⇥

�
2

⇤

except i, plus all pairs containing i. This can be
extended to a violator space by Lemma 6.6.1. We observe that

|Bi| =
�

2
� 1 +

�

2
� 1 < �.

Let us first consider the case where k = 1. By the second part of
Lemma 6.4.1, for i 2

⇥

�
2

⇤

X(H \ {i}) = Bi.

138 CHAPTER 6. SAMPLING WITH REMOVAL

For i < j,

X(H \ {ij}) =
\

k 6=i,j

Bk = {i, j}.

Since removal of each element in H induces a di↵erent extreme set it
follows that �

1

(R) = �2

4

and hence

�
1

(H,V,U) � �2

4
.

The case k > 1 works similarly. Let A ✓ [�
2

] of size 2k. We will show
that A = X(H \K) for some K ✓ H, |K| = k, which implies the claim.
W.l.o.g. assume that A = {1, 2, . . . , 2k}. Let K = {12, 34, . . . , 2(k �
1)2k}. Using Lemma 6.4.1 repeatedly we get that

X(H \K) =
\

i2[�
2

]\[2k]

Bi = A.

Lemma 6.6.3. There exists a nondegenerate violator space (H,V, {;}),
where

�k(H,V, {;}) �
✓

�

k

◆

= ⌦

✓

�k

kk+1/2

◆

.

This shows that the bound of Corollary 18 is tight up to a factor
depending on k.

Proof. Again we explicitly construct a violator space that satisfies the
claim. Let (H,V, {;}) as follows. Let H = B [[n � �], where B is a
set of size �. We define the violators as follows.

• Let V (;) = H.

• For R ✓ H with R\B = C 6= ;, let V (R) = B \C. In particular
V (B) = V (H) = ;.

• For R ✓ H with R \ B = ; (i.e. R ✓ [n � �]), let V (R) = {x 2
[n� �] | x < mini2R i} [B.

6.6. COMBINATORIAL DIMENSION 1 139

We claim that this is a nondegenerate violator space of dimension �.
Note that this implies the lemma: Consider some k < � and let B0 ✓ B
of size k. Then V (H \ B0) = V (B \ B0). Since the violator space is
nondegenerate it follows that B \B0 is the unique basis of H \B0 and
therefore by Lemma 6.4.1 X(H \B0) = B \B0. Hence for every subset
of B of size k we get a di↵erent set of extreme points which proves the
lemma.

It remains to prove the claim. Note that consistency, monotonicity and
matching of V and U are clear. It remains to show locality, nondegen-
eracy and that the dimension is �.

For locality assume first that G ✓ H with G \ B = C 6= ;. Now
for F ✓ G, V (F) \ G = ; holds if and only if C ✓ F . In that case
V (F) = V (G) = B \ C, hence locality holds. For the second case
assume that G ✓ H with G \ B = ;. Then for F ✓ G, V (F) \G = ;
holds if and only if mini2G i 2 F . In this case again V (F) = V (G) =
{x 2 [n� �] | x < mini2G i} [B. This shows locality.

It remains to show that every set has a unique basis of size at most
�. Let G ✓ H with G \ B = C 6= ;. We observe that for F ✓ G,
V (F) = V (G) holds if and only if C ✓ F , hence it follows that C is the
unique basis of G. For the other case let G ✓ H with G\B = ;. Since
for F ✓ G, V (F) = V (G) holds if and only if mini2G i 2 F , it follows
that mini2G i is the unique basis of F . It follows that (H,V, {;}) is a
nondegenerate violator space of dimension �.

6.7 Characterization of Violator Spaces with
Combinatorial Dimension 1

In general it is open whether (or when) the upper bound of Theorem
6.4.7 and Theorem 6.3.4 (for k < � ln r) is tight. However for � = 1
Theorem 6.4.7 and Lemma 6.5.3 show tightness of this upper bound.

Corollary 6.7.1. For � = 1, E[|V (RPk
)|] = O(nr k), and this bound is

tight.

140 CHAPTER 6. SAMPLING WITH REMOVAL

In the following we give a complete characterization of violator spaces
with combinatorial dimension 1. We prove that there exists only one
class of violator spaces of dimension 1, namely the class of the smallest
number with repetitions violator space.

Definition 6.7.2. We define the class of smallest number with repeti-
tions violator space as follows. Let |H| = n and H a multiset of [n],
i.e., every element of H is in [n] and there might be repetitions. For
R ✓ H, R 6= ;, let V (R) = {x 2 H | x < mini2R i}. Finally we require
that either V (;) = H or V (;) = V (maxi2H i).

Observe that this a a violator space of dimension 1 and similarly as in
the proof of Lemma 6.5.3, we can show that E[|V (RPk

)|] = O(nr k). The
following two lemmas show how the violator spaces with dimension 1
have a somewhat simple structure.

Lemma 6.7.3. Let (H,V,U) be a violator space of dimension 1 with
; 2 U . Then there exist H

1

, H
2

, such that H = H
1

[H
2

, H
1

\H
2

= ;
and U = 2H2. Moreover for all R 2 U , V (R) = H

1

.

Proof. Define H
2

:= {x 2 H | {x} 2 U}, the set of all unbounded
singletons. Now let R ✓ H, such that h 2 R \H

1

6= ;. Since h /2 U ,
by monotonicity it follows that R /2 U . This shows that U ✓ 2H2 . Now
let R ✓ H

2

and assume for contradiction that R is bounded. Since
the dimension is 1, it follows that V (R) = V (i) for some bounded
i 2 R. This is a contradiction, since all elements of R are unbounded.
Therefore U = 2H2 . The second part of the lemma follows directly
from the matching of V and U .

Lemma 6.7.4. Let (H,V,U) be a violator space of dimension 1 with
; 2 U , where H is a multiset of [n]. If for all i 2 H, V (i) = {x 2 H |
x < i}, then for all R ✓ H, R 6= ; we have V (R) = {x 2 H | x <
mini2R i}. Moreover V (;) = H or V (;) = V (maxi2H i). This shows
that the violators of sets of size 1 uniquely define the violators of larger
sets.

Proof. Let H
1

, H
2

as in Lemma 6.7.3. By Lemma 6.7.3, for all j 2 H
2

we know that V (j) = H
1

= {x 2 H | x < j}. Therefore j = maxi2H i.

6.7. COMBINATORIAL DIMENSION 1 141

We first discuss the role of the empty set. Assume that V (;) 6= H.
Since ; 2 U it follows that V (;) = H

1

6= H. Hence V (;) = V (j) for
any j 2 H

2

6= ;. By the above observation we know that j = maxi2H i.

Assume that R ✓ H is bounded, |R| � 2 with y := mini2R i. Because
the dimension of the violator space is 1 we have V (R) = V (x) for some
x 2 R. Now for all x > y, we have y 2 V (x), hence V (R) = V (y).

Let R ✓ H be unbounded. By Lemma 6.7.3, V (R) = H
1

= V (i) for
any i 2 R. In particular V (R) = V (mini2R i).

Theorem 6.7.5. Every violator space (H,V,U) of dimension 1 with
|H| = n, ; 2 U , is isomorphic to an instance of smallest number with
repetitions, i.e., those are the only violator spaces of dimension 1 that
exist.

Note that the smallest number with repetition violator space can al-
ways be defined as a violator space without minus infinity. Hence if the
dimension is 1, every violator space is homeomorphic to one without
minus infinity.

Proof. Let (H,V,U) be a violator space with |H| = n and let H
1

, H
2

as in Lemma 6.7.3.

The following holds for all i 6= j 2 H
1

.

1. If V (i) 6= V (j) then i 2 V (j) or j 2 V (i).

2. V (i) ✓ V (j) or V (j) ✓ V (i).

3. V (i) \H
2

= ;.

For the first part assume that i /2 V (j) and j /2 V (i). Then by locality
V (i, j) = V (i) = V (j).

For the second part assume that there exists k 6= l such that k 2 V (i)\
V (j) and l 2 V (j)\V (i). We consider V (i, j, k, l). Since � = 1 we have
that V (i, j, k, l) = V (m) for some m 2 {i, j, k, l}. By consistency we
know V (i, j, k, l) 6= V (i) since k 2 V (i). Similarly V (i, j, k, l) 6= V (j).

142 CHAPTER 6. SAMPLING WITH REMOVAL

Therefore w.l.o.g. assume that V (i, j, k, l) = V (k). Then j /2 V (k) and
k /2 V (j) and hence by the first part V (j) = V (k) = V (i, j, k, l), which
is a contradiction.

For the third part assume for contradiction that there exists k 2 H
2

such that k 2 V (i). Since {i} is bounded, by monotonicity {i, k} is
bounded. Hence {i, k} must have a bounded basis of size 1, therefore
k 2 V (i, k) = V (i), which is a contradiction.

We now construct a mapping f : H ! [n], such that j 2 V (i) if and
only if f(j) < f(i). By Lemma 6.7.4 this concludes the proof.

We construct a sequence of pairwise disjoint nonempty sets

V
1

, V
2

, . . . Vm ✓ H
1

,m n, V
1

[· · · [Vm = H
1

such that the following holds for all i 2 [m]: For all x 2 Vi we have
V (x) = V

1

[· · ·[Vi�1

. Moreover we set Vm+1

= H
2

. By Lemma 6.7.3
we know that for all x 2 Vm+1

we have V (x) = H
1

= V
1

[· · ·[Vm . By
setting f�1(i) = Vi for all i 2 [m+1], this is one instance of minimum
number with repetitions violator space.

Suppose that for some i � 1 we have constructed V
1

, . . . , Vi�1

and
H

1

\ (V
1

, . . . , Vi�1

) 6= ;. Let Vi be the subset of H1

\ (V
1

, . . . , Vi�1

) with
inclusion-minimal violator sets, i.e., x 2 H

1

\ (V
1

, . . . , Vi�1

) is in Vi if
and only if there exists no y 2 H\(V

1

, . . . , Vi�1

) such that V (y) (V (x).
Then obviously Vi is nonempty. We need to show that for such x,
V (x) = V

1

[· · ·[Vi�1

. By condition 3 we know that V (x) ✓ H
1

, hence
we only need to consider H

1

. Let y 2 V (x) ✓ H
1

. Since y /2 V (y)
condition 2 implies that V (y) (V (x), hence y 2 V

1

[· · · [Vi�1

.
Now let y 2 H

1

\ V (x). If x /2 V (y) then by condition 1. it follows
that V (x) = V (y) and hence by definition of Vi, y 2 Vi. Otherwise
x 2 V (y) and therefore by condition 2. V (x) (V (y). It follows that
y /2 V

1

[· · · [Vi�1

.

6.8. DISCUSSION AND OPEN QUESTIONS 143

6.8 Discussion and Open Questions

In this chapter we have given two upper bounds for the expected num-
ber of violators after removal. The first bound that holds for consistent
spaces (Theorem 6.3.4) gives us a bound of O(nr · (� ln r+ k)), whereas
the second bound for violator spaces is O(nr · �2k+1) (Theorem 6.4.7).
For both cases we argue that with our methods, no better bounds
can be obtained. The main open question is therefore whether and
when those bounds are tight. In the setting of violator spaces the best
known lower bound is ⇥(nr · (� + k)), hence it is possible that neither
the multiplicative ln r, nor the �2k increase happens.

144 CHAPTER 6. SAMPLING WITH REMOVAL

Bibliography

[1] N. Amenta and G. Ziegler. Deformed products and maximal shad-
ows of polytopes. In B. Chazelle, J. Goodman, and R. Pollack,
editors, Advances in Discrete and Computational Geometry, vol-
ume 223 of Contemporary Mathematics, pages 57–90. American
Mathematical Society, 1999.

[2] B. Aspvall and Y. Shiloach. A polynomial time algorithm for solv-
ing systems of linear inequalities with two variables per inequality.
Siam Journal on Computing, 9:827–845, 1980.

[3] A. Björner, M. L. Vergnas, B. Sturmfels, N. White, and G. Ziegler.
Oriented Matroids. Cambridge University Press, 1993.

[4] Y. Brise and B. Gärtner. Clarkson’s algorithm for violator spaces.
Computational Geometry, 44(2):70 – 81, 2011. Special issue of
selected papers from the 21st Annual Canadian Conference on
Computational Geometry.

[5] M. C. Campi and S. Garatti. The exact feasibility of randomized
solutions of uncertain convex programs. SIAM J. Optim., 19:1211–
1230, 2008.

[6] M. C. Campi and S. Garatti. A sampling-and-discarding approach
to chance-constrained optimization: feasibility and optimality. J.
Optim. Theory Appl., 148:257–280, 2011.

[7] T. Chan. Output-sensitive results on convex hulls, extreme
points, and related problems. Discrete & Computational Geome-
try, 16(4):369–387, 1996.

[8] V. Chvatal. Linear Programming. W.H. Freeman and company,
1980.

146 BIBLIOGRAPHY

[9] K. Clarkson and P. Shor. Applications of random sampling in
computational geometry, ii. Discrete Comput. Geom., 4:387–421,
1989.

[10] K. L. Clarkson. More output-sensitive geometric algorithms. In
Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci., pages 695–
702, 1994.

[11] K. L. Clarkson. Las Vegas algorithms for linear and integer pro-
gramming when the dimension is small. Journal of the Association
for Computing Machinery, 42:488–499, 1995.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, MA., 1990.

[13] G. B. Dantzig. Linear Programming and Extensions. Princeton
University Press, Princeton, NJ, 1963.

[14] J. H. Dulá, R. V. Helgason, and N. Venugopal. An algorithm for
identifying the frame of a pointed finite conical hull. INFORMS
J. Comput., 10(3):323–330, 1998.

[15] K. Fischer and B. Gärtner. The smallest enclosing ball of balls:
Combinatorial structure and algorithms. International Journal
of Computational Geometry and Applications (IJCGA), 14(4–
5):341–387, 2004.

[16] K. Fukuda. Lecture: Introduction to optimization.
https://www.inf.ethz.ch/personal/fukudak/lect/opt2011/, 2011.

[17] K. Fukuda. Walking on the arrangement, not on the fea-
sible region, 2011. http://helper.ipam.ucla.edu/publications/
sm2011/sm2011 9630.pdf.

[18] K. Fukuda. Lecture: Polyhedral computation. http://www-
oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2016/,
2016.

[19] K. Fukuda, B. Gärtner, and M. Szedlák. Combinatorial redun-
dancy detection. Annals of Operations Research, pages 1–19, 2016.

BIBLIOGRAPHY 147

[20] K. Fukuda and M. Szedlák. Redundancies in linear systems with
two variables per inequality. CoRR, abs/1610.02820, 2016.

[21] K. Fukuda and T. Terlaky. Linear complementarity and oriented
matroids. Journal of the Operations Research Society of Japan,
35:45–61, 1992.

[22] K. Fukuda and T. Terlaky. Criss-cross methods: A fresh view on
pivot algorithms. Mathematical Programming, 79:369–395, 1997.

[23] B. Gärtner. Sampling with removal in LP-type problems. Journal
of Computational Geometry, 6(2):93–112, 2015.

[24] B. Gärtner, C. Helbing, Y. Ota, and T. Takahashi. Large shadows
for sparse inequalities. arXiv:1308.2495, 2013.

[25] B. Gärtner, J. Lengler, and M. Szedlák. Random Sampling
with Removal. In S. Fekete and A. Lubiw, editors, 32nd Inter-
national Symposium on Computational Geometry (SoCG 2016),
volume 51 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 40:1–40:16, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[26] B. Gärtner, J. Matoušek, L. Rüst, and P. Škovroň. Violator spaces:
Structure and algorithms. Discrete Appl. Math., 156(11):2124–
2141, June 2008.

[27] B. Gärtner, W. D. Morris, Jr., and L. Rüst. Unique sink orienta-
tions of grids. In Proc. 11th Conference on Integer Programming
and Combinatorial Optimization (IPCO), volume 3509 of Lecture
Notes in Computer Science, pages 210–224. Springer-Verlag, 2005.

[28] B. Gärtner and E. Welzl. A simple sampling lemma: Analysis and
applications in geometric optimization. Discrete & Computational
Geometry, 25(4):569–590, 2001.

[29] D. S. Hochbaum and J. Naor. Simple and fast algorithm for lin-
ear and integer programs with two variables per inequality. Siam
Journal on Computing, 23:1179–1192, 1994.

148 BIBLIOGRAPHY

[30] G. Kalai. Linear programming, the simplex algorithm and simple
polytopes. Math. Prog. (Ser. B), 79:217–234, 1997.

[31] N. Karmarkar. A new polynomial time algorithm for linear pro-
gramming. Combinatorica, 4(4):373–395, 1984.

[32] L. Khachiyan. A polynomial algorithm in linear programming.
Doklady Akademiia Nauk SSSR, 244:1093–1096, 1979. (Translated
in Sovjet Mathematics Doklady 20, 191-194, 1979).

[33] V. Klee and G. J. Minty. How good is the simplex algorithm? In
O. Shisha, editor, Inequalities III, pages 159–175. Academic Press,
1972.

[34] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound
for linear programming. Algorithmica, 16:498–516, 1996.

[35] J. Matoušek. Removing degeneracy in LP-type problems revisited.
Discrete & Computational Geometry, 42(4):517–526, 2009.

[36] P. McMullen. The maximum numbers of faces of a convex poly-
tope. Mathematika, 17:179–184, 1970.

[37] N. Megiddo. Towards a genuinely polynomial algorithm for linear
programming. Siam Journal on Computing, 12:347–353, 1983.

[38] T. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumerating
extreme points in higher dimensions. In E. Mayer and C. Puech,
editors, STACS 95: 12th Annual Symposium on Theoretical As-
pects of Computer Science, Lecture Notes in Computer Science
900, pages 562–570. Springer-Verlag, 1995.

[39] C. Roos. An exponential example for Terlaky’s pivoting rule
for the criss-cross simplex method. Mathematical Programming,
46:79–84, 1990.

[40] A. Schrijver. Theory of linear and integer programming. John
Wiley, New York, 1986.

BIBLIOGRAPHY 149

[41] M. Sharir and E. Welzl. A combinatorial bound for linear pro-
gramming and related problems. In Proceedings of the 9th Annual
Symposium on Theoretical Aspects of Computer Science, STACS
’92, pages 569–579, London, UK, UK, 1992. Springer-Verlag.

[42] R. Shostak. Deciding linear inequalities by computing loop
residues. Journal of the Association for Computing Machinery,
28:769–679, 1981.

[43] T. Szabó and E. Welzl. Unique sink orientations of cubes. In
Proc. 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 547–555, 2000.

[44] E. Tardos. A strongly polynomial algorithm to solve combinatorial
linear programs. Operations Research, 34, 1986.

[45] T. Terlaky. A finite criss-cross method for the oriented matroids.
Journal of Combinatorial Theory Series B, 42:319–327, 1987.

[46] P. Škovroň. Abstract Models of Optimization Problems. PhD the-
sis, Charles University in Prague, 2007.

[47] Z. Wang. A finite conformal-elimination free algorithm over ori-
ented matroid programming. Chinese Annals of Math., 8B:120–
125, 1987.

[48] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In Results
and New Trends in Computer Science, pages 359–370. Springer-
Verlag, 1991.

[49] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997.

