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A B S T R A C T

Many applications in media processing, control, graphics, and other domains re-
quire efÞcient small-scale linear algebra computations. However, most existing
high performance libraries for linear algebra, such as ATLAS or Intel MKL are
more geared towards large-scale problems (matrix sizes in the hundreds and
larger), speciÞc interfaces (e.g., BLAS and LAPACK), and cannot specialize to
problem instances. In other domains, program generators have proven effective
to automatically produce specialized code for important building blocks. An ex-
ample is the Spiral generator for linear transforms and its extension to support
other functionalities, such as matrix-matrix multiplication and Viterbi decoding.
Learning from both libraries and generators, in this dissertation we aim for the
automatic generation of fast code for small scale, linear algebra computations.

We introduce a program synthesis framework for small-scale, linear algebra
computations of Þxed size. These include computations on matrices, vectors,
and scalars using basic operators as well as higher-level computations such
as the Cholesky decomposition, solvers for the continuous-time Lyapunov and
Sylvester equations, and the inversion of triangular matrices. The input to our
framework is a linear algebra program composed of several Þxed size basic and
higher-level computations; the output is a corresponding C function optionally
including intrinsics to efÞciently use SIMD vector extensions.

In our framework, support for for small-scale, basic linear algebra computa-
tions is provided by the LG en compiler. LG en generates code using two levels
of mathematical domain-speciÞc languages (DSLs). The DSLs are used to per-
form tiling, loop fusion, and vectorization at a high level of abstraction, before
the Þnal code is generated. In particular, LGenÕs vectorization approach can eas-
ily extend to different vector ISAs. In addition, search is used to select among
alternative generated implementations.

LGen also supports computations whose matrices have structure, such as
symmetric or triangular, that reduces the cost of the computation. For exam-
ple, dense linear systems of equations are solved by Þrst reducing to triangular
form and problems in optimization may yield matrices with different kinds of
structures. The BLAS interface provides a small set of structured matrix com-
putations, chosen to serve a certain set of higher-level functions supported by
LAPACK. However, if a given computation contains a structure that is not sup-
ported by standard interfaces then its computation using a more general ver-
sion of it (e.g., multiplying two general matrices instead of two structured ones)
would lose the beneÞts of the structure. We address this problem by combining
the LGen compiler with techniques from polyhedral compilation to mathemati-
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cally capture matrix structures. In this dissertation, we consider triangular and
symmetric matrices and discuss the approach extensibility to a much larger set
including blocked structures.

Finally, support for higher-level linear algebra computations is included build-
ing on LG en and the FLAME-based algorithm synthesis tool C l1ck . When a
higher-level computation is encountered in an input linear algebra program, a
set of basic computations is synthetized starting from one of its algorithmic def-
initions. If desired, the frameworkÕs autotuner explores alternative algorithmic
variants to select the one that yields the best performance.

We evaluate the performance of the code generated with our framework for
several linear algebra computations, including library compliant and noncom-
pliant basic and higher-level computations and the computation of a Kalman
Þlter. Experimental results show that our framework produces code that per-
forms in many cases considerably better than well-established, commercial and
non-commercial libraries, prior software generators, and compilers.

iv



S O M M A R I O

Le prestazioni di molte applicazioni in ambiti quali lÕelaborazione dei segnali, i
sistemi di controllo e la computer graÞca dipendono dallÕesecuzione efÞciente di
calcoli di algebra lineare con matrici di piccole dimensioni. Tuttavia la maggior
parte delle librerie ad alte prestazioni per lÕalgebra lineare, come per esempio
ATLAS e Intel MKL, sono progettate per problemi su larga scala, dove le matrici
hanno almeno centinaia di righe e colonne. Esse presentano inoltre speciÞche
interfacce software, tipicamente BLAS e LAPACK, e sono difÞcilmente specializ-
zate per particolari istanze di un problema. In alternativa alle librerie, i genera-
tori di programmi sono rivelati mezzi efÞcaci per la produzione di importanti
componenti software. Tra questi possiamo menzionare Spiral per le trasformate
lineari e alcune sue estensioni per il supporto di moltiplicazioni tra matrici e la
decodiÞca di Viterbi. Partendo dallÕesperienza delle librerie e dei generatori, la
presente dissertazione descrive alcuni progressi nella generazione automatica di
codice per lÕalgebra lineare su piccola scala.

Presentiamo un framework per la sintesi di codice per calcoli algebra linea-
re su piccola scala con matrici di dimensioni Þsse. Le espressioni supportate
includono sia operazioni di base su matrici, vettori e scalari, sia operazioni di
pi• alto livello, come la decomposizione di Cholesky, la soluzione delle equazio-
ni tempo continue di Sylvester e Lyapunov e lÕinversione di matrici triangolari.
Il framework proposto riceve in input un programma composto da uno o pi•
espressioni matriciali di dimensioni Þsse. I calcoli espressi possono essere sia di
base che di alto livello. LÕoutput del framework consiste in una funzione C per il
calcolo del programma dato in input. Opzionalmente, la funzione in output pu˜
fare uso di istruzioni SIMD per un miglior utilizzo delle unitˆ vettoriali presenti
in molti microprocessori moderni.

Il framework proposto introduce il supporto per calcoli di algebra lineare di
base attraverso il compilatore LGen. QuestÕultimo dispone di un processo di
generazione del codice basato sullÕuso di due linguaggi matematici. Questi lin-
guaggi sono utilizzati per lÕapplicazione, ad un pi• alto livello di astrazione, di
trasformazioni quali la ripartizione e la fusione di cicli e la vettorializzazione del
codice. In particolare, lÕapproccio di vettorializzazione adottato da LGen pu˜ es-
sere esteso con facilitˆ a diversi set dÕistruzioni SIMD. Inoltre, dal momento che
uno stesso programma matriciale pu˜ essere implementato in molti modi, LG en
esplora automaticamente varie alternative alla ricerca della versione migliore.

LGen include anche il supporto per matrici strutturate, quali ad esempio ma-
trici simmetriche e triangolari, comportando una riduzione del costo del calcolo.
Per esempio, la soluzione di un sistema lineare con una matrice dei coefÞcienti
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densa • normalmente ottenuta riducendo il problema ad una serie di sistemi
triangolari, mentre problemi di ottimizzazione possono produrre matrici con
svariate strutture. LÕinterfaccia BLAS dispone di un certo numero di calcoli con
matrici strutturate per offrire supporto a funzioni di pi• alto livello contenu-
te in LAPACK. Tuttavia, se un calcolo prevede lÕuso di matrici strutturate non
supportate dallÕinterfaccia, lÕunica soluzione • quella di utilizzare una funziona-
litˆ pi• generica, con la conseguente perdita dei vantaggi recati dalla presenza
delle strutture. Nella presente dissertazione, questo problema • affrontato esten-
dendo LGen con un supporto per strutture matriciali grazie allÕuso di tecniche
tipiche del modello di compilazione poliedrale. Nel testo sono prese in conside-
razione matrici triangolari e simmetriche, descrivendo come lÕapproccio possa
essere esteso ad un pi• vasto insieme di strutture comprendenti anche strutture
a blocchi.

InÞne, il framework proposto offre supporto per calcoli di algebra lineare di
alto livello attraverso una soluzione che combina lÕarchitettura di LG en con quel-
la di C l1ck , un tool per la sintesi automatica di algoritmi per lÕalgebra lineare
basato su FLAME. Quando un programma in input contiene un calcolo di al-
to livello, questo viene scomposto in una serie di calcoli di base partendo da
una delle sue possibili deÞnizioni algoritmiche. Se richiesto, il framework esplo-
ra in modo automatico diverse varianti algoritmiche per selezionare quella con
migliori prestazioni.

Valutiamo le prestazioni del codice generato con il framework proposto su
una serie di calcoli di algebra lineare che include funzionalitˆ sia di base che
di alto livello, conformi e non alle interfacce BLAS e LAPACK, e il calcolo del
Þltro di Kalman. I risultati sperimentali ottenuti mostrano che le prestazioni
del codice generato con il framework in esame sono in molti casi migliori di
quelle ottenute con importanti librerie commerciali e non, generatori software
preesistenti e compilatori.

vi



A C K N O W L E D G M E N T S

I would like to use this page to thank all those people that directly and indirectly
supported me throughout my doctoral studies.

My gratitude goes Þrst of all to my advisor Markus PŸschel. He trusted and
encouraged me in a very delicate moment of my life. With him I would also
like to thank many past and present colleagues at the Department of Computer
Science at ETH Zurich, in particular Victoria Caparr—s Cabezas, Luca Della Tof-
fola, Georg Ofenbeck, Fran•ois Serre, Nikos Kyrtatas, Gagandeep Singh, Alen
Stojanov, and Marcela Zuluaga: Brilliant colleagues and invaluable friends!

Many thanks to Paolo Bientinesi and Diego Fabregat-Traver for the fruitful
collaboration behind the system presented in Chapter 5. Thanks to Albert Cohen
and Franz Franchetti for serving on my examination committee.

Thanks to Petros Koumoutsakos and many of the past members of the CSE-
lab, in particular Panagiotis Angelikopoulos, Basil Bayati, Mattia Gazzola, Ser-
ban Georgescu, Babak Hejazialhosseini, Florian Milde, Diego Rossinelli, Gerardo
Tauriello, and Wim van Rees. They were my Þrst colleagues at ETH Zurich and
I have learnt a lot from them.

Special thanks to Daniele Foresti who brought me to Switzerland. We always
manage to end up in the same country :) Thanks to all fellow Oerlikoners: Si-
mone Bottan, Stefano Fusco, Luciana Marziotte, Matthias Lei§, and Sebastian
Wex. Life in Zurich would not have been the same without such an owesome
ßat!

I will never forget the JUCLAA group at the Claretian mission in Zurich, in
particular Anthony Obikonu Igbokwe, Pilar Alonso, Ana Altair, Natalia Arenas,
Ada Camey, Simon Foppa, Carolina Sonnekalb, Carlos Ugarte, and Alejandro
Terova.

Thanks to all the friends I could share my time with, both in Zurich and
back in my hometown. Here I would like to mention in particular Franziska
Baumgartner, Elena Castellote, Michela DÕAmelio, Alessandra Di Lio, Serena
Pierabella, Filippo Rossi, and Valerio Zerbi.

Un particolare ringraziamento alla mia famiglia: i miei nonni, i miei genitori
Ñ Giuseppina Rota e Armando Spampinato Ñ e mia sorella Beatrice. Grazie per
il vostro amoroso sostegno!

Thank you Laura for your love. We can truly say that our story grew stronger
than the Alps! And this, I hope, is only the beginning.

Weeell...next!

vii





C O N T E N T S

abstract iii

acknowledgments vii

1 introduction 1
1.1 Goal of This Dissertation 4
1.2 Contributions of this Dissertation 6
1.3 Related Work 9

1.3.1 High-performance Linear Algebra Libraries 9
1.3.2 Domain-speciÞc Languages and Generators 10
1.3.3 Optimizing Compilers 12

1.4 Organization of this Dissertation 13

2 linear algebra computations 15
2.1 Basic Linear Algebra Computations 15

2.1.1 Notation and Basic Operators 16
2.1.2 BLACs and BLAS 17
2.1.3 Partitioning Matrices 19
2.1.4 Structured Matrices 20

2.2 Higher-level Linear Algebra Computations 22
2.2.1 The FLAME Notation 23
2.2.2 Triangular Systems 24
2.2.3 The Inverse of a Triangular Matrix 26
2.2.4 The Continuous-time, Triangular Sylvester and Lyapunov

Equations 26
2.2.5 The Cholesky Decomposition 29

2.3 Computing Small Matrix-matrix Multiplications 29

3 a basic linear algebra compiler 33
3.1 Overview of the LGen Compiler 33

3.1.1 LL: Low-level Linear Algebra Language 35
3.2 Scalar Code Generation 35

3.2.1 Input in LL 36
3.2.2 Step 1: Tiling in LL 38
3.2.3 Step 2: From LL to ! -LL 39
3.2.4 Step 3: Loop Transformations 42
3.2.5 Step 4: From ! -LL to C-IR 44
3.2.6 Step 5: Code-level optimizations 45

ix



x Contents

3.2.7 Step 6: Performance Test and Autotuning 45
3.2.8 Summary of LG enÕs Choices During Code Generation 45

3.3 Vector Code Generation 45
3.3.1 " -BLACs: Computational Building Blocks 46
3.3.2 Load and Store Building Blocks 49

3.4 Relationship to Prior Spiral -like Attempts at Linear Algebra 54

4 a basic linear algebra compiler for structured matri -
ces 57
4.1 The Polyhedral Model 59

4.1.1 Polyhedral Compilation Process 60
4.1.2 Polyhedral Sets and Maps 61

4.2 Code Generation with Structured Matrices 62
4.2.1 Internal Representation of Structures in LG en 62
4.2.2 Scalar Code Generation 63

4.3 Vectorization Approach 70
4.3.1 Internal Representation of Tiled Structures 71
4.3.2 Vector Code Generation 72

4.4 Extensibility to New Structures 73

5 program synthesis for l inear algebra 77
5.1 Automatic Algorithm Discovery 78

5.1.1 FLAME: Mechanical Derivation of Algorithms 78
5.1.2 Cl1ck : FLAME Automated 81

5.2 Linear Algebra Program Synthesis Overview 83
5.3 Linear Algebra Program Synthesis Applied 88

5.3.1 Vectorized Code Generation for the Cholesky Decomposi-
tion 88

5.3.2 Vectorized Code Generation for the Kalman Filter 96

6 experimental results 99
6.1 Basic Linear Algebra Computations 99

6.1.1 Targeting High-end Systems 100
6.1.2 Targeting Embedded Systems 105

6.2 Basic Linear Algebra Computations with structured Matrices 110
6.3 Higher-level Linear Algebra Computations 112

7 conclusions 119
7.1 Current Limitations 120
7.2 Future Directions 121

a matrix -matrix multiplication in ol 123
a.1 OL: The Operator Language 123
a.2 Code Generation 125



Contents xi

b flame derivation steps 131





1
I N T R O D U C T I O N

A signiÞcant part of processor time worldwide is spent on executing mathemat-
ical code in domains such as machine learning, control, communication, signal
processing, graphics, or computer vision.

The mathematics used in these domains may differ widely, but the actual
computations in the end often fall into the domain of linear algebra, meaning
computations on matrices and vectors. The problem sizes and computers used
range from the very large (e.g., simulations on a supercomputer or learning in
the cloud) to the very small (e.g., a control system on an embedded processor).
Both scenarios have in common the need for fast execution, for example, to save
energy, to enable real-time, or to maximize output quality.

Current high-performance libraries and program generators for linear alge-
bra have been mostly designed for large scale applications targeting computa-
tional science. They provide excellent performance for large problem sizes, but
for smaller ones shortcomings exist: First, libraries are usually not highly opti-
mized for small size computations even though they are needed in many appli-
cations; second, Þxed input size computations that occur in many applications
are usually not supported by specialized functions in libraries; third, many com-
putations cannot always be directly mapped to the interface of existing library
functions, thus causing overhead.

library support for small vs large scale computations . For large-
scale, dense linear algebra, commercial and non-commercial high-performance
software exists, usually built around the Basic Linear Algebra Subprograms
(BLAS) [26] and the Linear Algebra Package (LAPACK) [ 2] interfaces. For ex-
ample, the Intel Math Kernel Library (MKL) [ 59] is a high-performance library
that provides BLAS and LAPACK functions.

As an example, we consider the LAPACK function POTRF that computes the
Cholesky decomposition of a symmetric positive-deÞnite matrix. The Cholesky
decomposition appears in several applications, including linear least squares,
nonlinear optimizations, Monte Carlo simulations, and control systems. Fig-
ure 1.1(b) shows the percentage of peak performance attained by the POTRF
function from Intel MKL for large matrices on a modern Intel processor with
three levels of caches. By large we mean those matrices that Þt into the last level
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Figure 1.1: Percentage of peak performance (single thread) achieved computing a
Cholesky decomposition (function POTRF from LAPACK) with small (a) vs
large (b) matrix sizes on a modern Intel processor. The smallest large matrix
(n ! n with n = 320) Þts in L3 cache, while the largest small matrix ( n = 124)
Þts completely in the L 2 cache of a single core. In (a) the performance of In-
tel MKL is compared with that achieved by straightforward, non-optimized
code compiled with Intel icc (with vectorization enabled) and code generated
with the framework introduced in this dissertation.

cache of the processor or exceed it. The performance of POTRF in this range is
between 50% and 78% of the machineÕs peak.

For smaller scale computations, however, the libraryÕs performance degrades
rapidly. Figure 1.1(a) shows the percentage of peak performance attained by
Intel MKL for the same computation using smaller matrices, where the largest
matrix still Þts into the second level of cache of a single processor core. In this
scenario, the performance of the library drops down to 25% of the machineÕs
peak for the largest size, which is less than half the performance obtained with
the smallest test in Figure 1.1(b).

l imitations of optimizing compilers . In alternative to the libraries,
one may choose to rely on optimizing compilers, but they can rarely match the
performance obtained by high-performance libraries. Their limitations in per-
forming domain-speciÞc optimizations are well known [ 14, 77, 117, 121] with
reasons that can vary from their inability to apply transformations at an algo-
rithmic level to the fact that certain transformations are hard to prove legal in
general. In our example, Figure 1.1(a) also shows the percentage of performance
achieved by straightforward code with hardcoded sizes for the Cholesky decom-
position compiled with Intel icc. The performance is in this case at most 12% of
the machineÕs peak, i.e., one fourth of the performance attained by the smallest
test in Figure 1.1(b).
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Table 1.1: Single iteration of a Kalman Þlter at time-step k. Matrices are denoted with
upper case letters and vectors with lower case ones. The Þlter involves two
phases: a predict phase and an update phase. In the predict phase, a new
estimate xk of the systemÕs state (e.g., position and velocity of a car) is com-
puted along with an error covariance matrix Pk that measures its accuracy.
In the update phase, the prediction is combined with the current observation
information zk to reÞne the state estimate.

xk|k! 1 = Fxk! 1|k! 1 + Bu (1.1)
Predict:

!

Pk|k! 1 = FPk! 1|k! 1FT + Q (1.2)

xk|k = xk|k! 1 + Pk|k! 1HT

! (HPk|k! 1HT + R)! 1(zk ! Hxk|k! 1) (1.3)

Pk|k = Pk|k! 1 ! Pk|k! 1HTUpdate:

"
######$

######% ! (HPk|k! 1HT + R)! 1HPk|k! 1 . (1.4)

l imitations of standard interfaces . For a particular application, the
needed linear algebra computations may not directly map to the standard in-
terfaces provided by BLAS or LAPACK. For instance, consider the computation
of a Kalman Þlter [ 97], which is widely used in the control of dynamic systems
such as vehicles and robots. Table1.1 shows a single iteration of a basic Kalman
Þlter (i.e., limited to a linear model of a system).

The Þlter iteratively performs computations on matrices (upper case) and vec-
tors (lower case): at every time step k, it estimates a vector xk of n state parame-
ters of the system (e.g., position and velocity of a car) and maintains a covariance
matrix Pk of the estimatation error that is used to update the estimate with ob-
servations zk in (1.3). The notation s | t in the subscript indicates an estimate
(e.g., xs|t ) at time s given observations of the system up to time t . The size of
the involved matrices depends on the dimension of the estimated state n which
typically is a small (Þxed) value.

Decomposing small size computations into a set of standard BLAS or LA-
PACK functions may lead to suboptimal computations. For instance, the matri-
ces Pk|k! 1 and Q in (1.2) are both symmetric, which could result in a reduced
operation count in computing ( 1.2) compared to using a generic algorithm (i.e.,
using 3n3 ßoating point operations as opposed to 4n3 as explained in Figure 1.2).
However, using BLAS functions requires a split of the computation ( 1.2) into two
subtasks that fail to recognize the symmetry of the resulting matrix.

computing on embedded systems . The performance gap between small-
and large-scale computations is also noticeable in embedded systems. Embed-
ded processors are used in automotive electronics, network devices, smartphones
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Figure 1.2: Computation of S = FPFT using a BLAS (top-right box) and a non-BLAS
(bottom-right box) approach. For symmetric P (and thus S). Using BLAS, S
can be computed with a symmetric matrix-matrix multiplication (symm, 2n3

ßops) followed by a general matrix-matrix multiplication (gemm, 2n3 ßops).
With this approach, however, the symmetry of S is not known by gemm,
adding an extra n3 ßops to the total cost1.

and tablets, and many other ubiquitous systems with a reduced power budget.
However, their energy efÞciency comes at a price: a reduced set of resources.
Examples include in-order execution units, smaller numbers of instruction-issue
ports, and less efÞcient access to unaligned memory locations. Because of these,
additional optimizations are needed to obtain highest performance, and hand-
tuning for these processors is even more common than on their high-end coun-
terparts.

In summary, neither existing high-performance libraries, nor general purpose
optimizing compilers provide a sufÞcient solution to the problem of providing
high performance for smaller scale linear algebra computations. However, we
believe that an effective answer should combine their complementary strengths
for this domain: The detailed domain-speciÞc optimizations of libraries and the
generality of compilers.

1.1 goal of this dissertation

In an ideal world, a programmer would express a linear algebra computation as
presented in a book from the application domain, and a compiler, or program

1 In the speciÞc case of Intel MKL, the (non-standard) gemmt function can be used in lieu of
gemm to update only the lower or the upper half of the output matrix.



1.1 goal of this dissertation 5

generator, would produce code that is precisely specialized to this computation
and highly optimized for the target processor. In this dissertation, we want to
make progress towards this goal.

Our goal is to develop a domain-speciÞc framework for the synthesis of fast
code for linear algebra computations of small, Þxed size using as an input
only their mathematical description and knowledge of the instruction set
architecture (ISA) of the target processor.

By ÒsmallÓ, we mean that the working set (including all input and output
matrices and vectors) of the computation Þts into the local caches of a single mi-
croprocessor core. The thesis behind our goal is that a domain-speciÞc generator
is an effective solution to the problem of synthesizing fast code for small-scale,
linear algebra computations for three major reasons:

(i) Flexibility: A mathematical language enables the natural and concise de-
scription of a large class of linear algebra computations.

(ii) Performance: By being domain-speciÞc, the generator can apply all needed
optimizations, including those of mathematical nature, that are crucial to
achieving high-performance on modern microprocessors.

(iii) Portability: With a proper design, a generator can offer both performance
and code portability across different hardware architectures.

We achieve our goal through a sequence of intermediate steps of increasing
scope. To deÞne them, we consider as prototypical example the Kalman Þlter in
Table 1.1. It shows four categories of linear algebra computations illustrated in
Figure 1.3:

¥ Basic linear algebra computations (BLACs):Computations on matrices, vec-
tors, and scalars using basic operators: multiplication, addition, and trans-
position. For example, (1.1) in Table 1.1.

¥ BLACs with structured matrices (sBLACs):For example, in (1.2) the matrices
P" and Q are symmetric. Mathematically, sBLACs include the computa-
tions supported by the BLAS interface with the only exception of triangu-
lar solvers which we include in our next category.

¥ Higher-level computations:LAPACK-level computations, such as the Cholesky
decomposition and solvers for linear systems required to efÞciently com-
pute the expressions involving inverses in ( 1.3) and (1.4). Higher-level com-
putations are normally implemented in terms of sBLACs.

¥ Linear algebra computations:The outer scope, containing computations, such
as the Kalman Þlter in Table 1.1, composed of several subcomputations
from the previous three categories.
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Figure 1.3: Four classes of linear algebra computations used in this dissertation: Ba-
sic linear algebra computations (BLACs, e.g., x = Fx + By), BLACs with
structured matrices (sBLACs, e.g., P = FPFT where P is symmetric), higher-
level computations (normally implemented in terms of sBLACs, e.g., the
Cholesky decomposition UTU = P where matrix U is upper triangular and
P is symmetric, positive deÞnite), and linear algebra computations, such as
the Kalman Þlter in Table 1.1, deÞned using computations from the previous
three categories.
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Figure 1.4: Synthesis framework for small-scale, linear algebra computations of Þxed
size.

The four categories above enable the execution of a large class of linear al-
gebra computations. In the next section we explain in more details the speciÞc
contributions made to enable their support.

1.2 contributions of this dissertation

The main contribution of this dissertation is a framework for the synthesis of
efÞcient code for small-scale, linear algebra computations of Þxed size using in-
formation from the ISA of the target microarchitecture. The framework is illus-
trated in Figure 1.4. The input to our framework is a linear algebra computation,
such as the Kalman Þlter in Table 1.1, expressed as a linear algebra program,
i.e., using a sequence of BLACs, sBLACs, and higher-level functionalities. The
output is a C function that computes it, optionally vectorized using SIMD intrin-
sics. The knowledge of the ISA comes in terms of parameters, e.g., the length
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of the ßoating point vector register, and ISA-speciÞc building blocks required to
generate the Þnal output code.

Implementing our framework required to build support for BLACs, sBLACs,
and higher-level functionalities, which resulted in the Þve main contributions
presented next.

supporting blac s.

1. We present a novel approach to generating efÞcient code for small-scale,
basic linear algebra computations of Þxed size, and its implemention
in the LGen compiler [ 70, 102].

A high-level illustration of our approach is provided in Figure 1.5. The in-
put to LG en is a Þxed-size, basic linear algebra expression; the output is a
corresponding C function optionally including intrinsics to efÞciently use
SIMD vector extensions. LGen generates code using two levels of mathe-
matical DSLs. The DSLs are used to perform tiling, loop fusion, and vector-
ization at a high level of abstraction, before the Þnal code is generated. In
addition, search is used to select among alternative generated implemen-
tations. Our approach closely follows the one of the S piral [90, 91] code
generator for transforms.

2. We introduce two new mathematical DSLs for describing basic linear
algebra computations [102].

The low-level linear algebra language (LL) and its ! -LL extension, to in-
clude summations in the language, are MATLAB-like DSLs that build on
ideas from the Operator Language (OL) [ 33], a previous attempt at linear
algebra used in the Spiral generator [90, 91], and the Hierarchically Tiled
Arrays (HTAs) [ 51]. LL and ! -LL allow the concise and purely mathemati-
cal representations of both computations and data accesses in a BLAC.

3. We present a vectorization methodology that is easily portable to new
vector architectures [70, 102].

The vectorization methodology introduced in LG en is based on the de-
scription of an input BLAC in terms of a small number of efÞciently vec-
torized building blocks for computation and data access. Porting LG en to
a different architecture only requires their reimplementation based on a
new target ISA.

supporting sblac s.
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Figure 1.5: Structure of the LGen compiler: It takes in input a Þxed-size, basic linear
algebra computation; the output is a corresponding C function optionally
including intrinsics for efÞcient SIMD vectorization.

4. We propose an extensible methodology for the generation of optimized
code for small scale BLACs with structured matrices [ 103].

We extend the LGen approach with techniques from polyhedral compila-
tion [ 9, 111] to mathematically capture matrix structures. The methodol-
ogy is extensible to include a large set of possible matrix structures. In
this dissertation, we use lower triangular, upper triangular, and symmetric
matrices as prototypical examples.

supporting higher -level computations .

5. We propose an automatic synthesis approach that encompasses both
algorithmic discovery and code generation, which enables code gener-
ation for small-scale, higher-level computations.

We combine the LGen approach with an extension of the FLAME-based
algorithm synthesis tool C l1ck [13, 29, 30]. This new combined method-
ology enables the exploration of different algorithmic descriptions of an
input higher-level computation. Every algorithmic variant can be formu-
lated as an LL program (i.e., a program only composed of sBLACs) and
compiled into optimized C code, optionally vectorized with intrinsics.
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evaluation . We compare the performance of code generated using our ap-
proach against several commercial and non-commercial libraries, software gen-
erators, and optimizing compilers. In particular, for every category of linear al-
gebra computations illustrated in Figure 1.3, we generate code for three different
groups of tests:

¥ Library-compliant:Computations that can be computed with a single BLAS
(in the case of BLACs and sBLACs) or LAPACK (in the case of higher-level
computations) function call.

¥ Almost library-compliant:sBLACs or higher-level computations supported
by BLAS or LAPACK but that are not specialized to some of the structures
appearing in the input.

¥ Non library-compliant:sBLACs or higher-level computations that must be
implemented using multiple BLAS or LAPACK functions.

We generate code targeting four different vector ISAs: Intel Supplemental
Streaming SIMD Extensions 3 (SSSE3), Intel Streaming SIMD Extensions 4 (SSE4),
Intel Advanced Vector Extensions (AVX), and the ARM NEON extension. In par-
ticular, we generate code for BLACs targeting SSSE3, SSE4, and NEON, while we
target AVX when generating code for sBLACs and higher-level computations.

1.3 related work

The optimization of linear algebra and related functions has been an active re-
search topic for decades. In the following we review prior related work orga-
nized along three dimensions: High-performance linear algebra libraries, gener-
ators and DSLs, and optimizing compilers.

1.3.1 High-performance Linear Algebra Libraries

Several highly optimized, handwritten BLAS and LAPACK libraries [ 26, 27, 74]
for large-scale problems exist including OpenBLAS [ 92, 119] (which is based on
GotoBLAS [41, 43]), libFLAME [ 108], a library derived using the FLAME ap-
proach [13, 49], and vendor libraries, such as the Intel MKL [ 59] and the IBM
Engineering and ScientiÞc Subroutine Library (ESSL) [56]. ReLAPACK [ 87] ex-
ploits recursion to implement high-performance LAPACK computations. The
BLAS-like Library Instantiation Software (BLIS) [ 109] is a framework for instan-
tiating a set of functions larger than BLAS from a set of microkernels.

The performance of the libraries above can be suboptimal for smaller problem
sizes compared to what is achievable (e.g., [100] and this dissertation) and the
interface they provide may not match a desired computation. For this reason,
the Intel Integrated Performance Primitives (IPP) [ 57] includes a section called
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Intel IPP MX devoted to small scale linear algebra operations with a non-BLAS
interface. The latest Intel MKL has introduced fast general matrix multiplication
(GEMM) kernels on small matrices in double precision as well as a speciÞc
functionality for batches of matrices with same parameters, such as size and
leading dimensions (GEMM_BATCH). On the same direction, recent proposals
are trying to extend the BLAS interface to include batched routines. IPP, MKL,
and ReLAPACK will be among our benchmarks.

1.3.2 Domain-speciÞc Languages and Generators

The libraries mentioned above are implemented and optimized by hand. Various
approaches have worked on automation.

l inear algebra generators . Among the earliest efforts are the Portable
High Performance ANSI C (PHiPAC) [ 14] and the Automatically Tuned Linear
Algebra Software (ATLAS) [ 117] generators, which iteratively tune implementa-
tion parameters, such as block size and loops order, using the runtime as feed-
back (autotuning). Alternative tuning methodologies include machine learning
techniques [122]. A model-based approach to completely avoid a tuning phase
is available in the context of both ATLAS [ 121] and BLIS [76].

These approaches are typically geared towards BLAS and large sizes. The re-
cent LIBXSMM library [ 1, 54] provides an assembly-level code generator speciÞ-
cally for small dense and sparse matrix-matrix multiplication and convolutions
on Intel platforms. Its scope is however limited to the latter two functionalities.

algorithmic synthesis . The Formal Linear Algebra Methods Environ-
ment (FLAME) [ 49] provides a methodology for automatically deriving algo-
rithms for higher level linear algebra functions [ 13] given as mathematical equa-
tions. The supported functions are mostly those covered by the LAPACK library
and the generated algorithms rely on the availability of a BLAS library. The
methodology is completely automated by the C l1ck compiler [ 29, 30], and an
extended version of it is considered as a fronted for higher-level computations
in Chapter 5.

dsl -based approaches . The CLAK compiler [ 31] Þnds efÞcient mappings
of matrix equations onto building blocks from high-performance libraries such
as BLAS and LAPACK. DxTer [ 78] transforms blocked algorithms such as those
generated by Cl1ck and applies transformations and reÞnements to output high-
performance distributed-memory implementations. Both CLAK and DxTer do
not generate BLAS or BLAC functions, with or without structures.

LINVIEW [ 83] is a framework for incremental maintenance of analytical queries
expressed in terms of linear algebra programs. The goal of the system is to prop-
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agate within a (large) computation only the changes caused by (small) variations
in the input matrices.

The Build to Order BLAS (BTO) [ 11, 101] is a domain-speciÞc compiler for
matrix computations. BTO is not bound to the BLAS interface and optimizes for
loop fusion, data partitioning, and parallelism using autotuning. BTO focuses on
memory bound computations (BLAS 1-2 operations) and relies on a compiler for
vectorization.

The Vehicle for Optimized Basic Linear Algebra (VOBLA) [ 10] is a linear alge-
bra DSL with the goal of generating high-performance OpenCL code for BLAS
functionalities targeting GPUs. The DSL describes linear algebra computations
using basic operators and array access patterns. Access patterns are used to
separate matrix structures from storage formats. VOBLA applies optimizations
at a lower level of abstraction than the mathematical one, making its approach
rather different from ours. VOBLA is Þrst translated into PENCIL [ 5] code, a
C99-based intermediate representation, and only at this point the Polyhedral
Parallel Code Generator (PPCG) [112] is used to optimize the computation and
generate parallel GPU code.

template -based approaches . A different generative approach is adopted
by Eigen [48], uBLAS [116], and the Matrix Template Library (MTL) [ 45] among
others. They use C++ expression templates to optimize the code at compile time.
Optimizations include loop fusion, unrolling, and SIMD vectorization [ 44]. How-
ever, an approach based on C++ metaprogramming lacks autotuning capabilities
and requires a non-negligible effort in extensibility. Another approach based
on metaprogramming is taken by the Hierarchically Tiled Arrays (HTAs) [ 51],
which offer data types with the ability to dynamically partition matrices and
vectors, automatically handling situations of overlapping areas. HTAs priority,
however, is to improve programmability reducing the amount of code required
to handle tiling and data distribution in parallel programs, leaving any optimiza-
tion to the programmer (or program generator).

generators in other domains . Other program generators were devel-
oped for signal processing. Genfft [ 37] generates the small size FFTs (codelets)
needed in FFTW [38]. Spiral [90, 91] is a high-performance library generator for
linear transforms, such as the discrete Fourier transform [ 113] and the Walsh-
Hadamard transform [ 61]. Further studies [ 21] have shown that the Spiral
approach can be extended beyond the domain of transforms to support other
applications including general matrix-matrix multiplication [ 33, 110], Viterbi
decoding [22], and synthetic aperture radar [ 81]. Spiral uses domain-speciÞc
languages (DSLs) for optimizations such as loop merging [ 36] and vectoriza-
tion [ 35]. A more detailed analysis of the extension of Spiral to support matrix-
matrix multiplication is provided in Section 3.4. Our work aims to build a func-
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tionality similar to genfft in [ 37] for linear algebra using an approach similar to
Spiral .

Other examples of DSL-based approaches are query [99] and stencil [ 52, 55,
93] compilers. The former provides a new methodology based on a stack of DSLs
with progressive lowering of abstractions, while the latter aim at simplifying
reasoning on complex reductions and data-dependent access patterns typical of
stencil programs.

dsl frameworks for performance . Finally, frameworks for the devel-
opement of DSLs for performance include PetaBricks [3], which allows for al-
gorithmic autotuning, and systems based on multi-staging techniques, such as
frameworks based on Lightweight Modular Staging (LMS) [ 86, 96, 105] and
Terra [25].

1.3.3 Optimizing Compilers

A third approach to improve the performance of linear algebra code is the use
of optimizing compilers.

polyhedral tools . Optimizing compilers based on the polyhedral model [ 32]
reschedule computation and data accesses to enhance locality and expose par-
allelization and vectorization opportunities. They can perform loop transforma-
tions for imperfectly nested loops such as parallelization, fusion, and reorder-
ing [ 15, 16, 89], multi-level tiling [ 53, 66], and vectorization [ 47, 67].

In this work we use polyhedral tools, i.e., isl [ 111] and CLooG [9], to manipu-
late structures in sBLACs at a higher level of abstraction.

autovectorization . Multiplatform vectorization techniques such as those
in [ 84, 85] use abstract SIMD representations making optimizations such as align-
ment detection portable across different architectures.

Other recent vectorization techniques include approaches for loops exhibiting
little loop-level parallelism [ 6, 8, 123]. All these apply code transformations to
make code portions with partial SIMD parallelism, such as computations on
complex data layouts, amenable to vectorization.

Whole-function vectorization methodologies are available for data-parallel
languages such as OpenCL [65] and Intel ispc [ 88] as well as for C programs [ 94].

superoptimization . Superoptimizers target small portions of code with
the aim of Þnding a shorter and faster sequence of instructions with the same
output. The original approach in [ 79] takes a small, loop-free codelet as an input
and performs exhaustive search in the space of valid instruction sequences. Sev-
eral research directions have explored alternative methodologies including the
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exclusive use of equality-preserving transformations [ 63], formulating the prob-
lem as a stochastic search [98], and considering domain-speciÞc transformations
at higher level of abstraction than assembly instructions [ 80].

The scope of these and other optimizing compilers and techniques is more
general than LGenÕs. However, such generality often misses out on optimization
opportunities [ 77]. In our context, we can take advantage of the speciÞc domain
to synthesize vectorized C code of higher performance.

1.4 organization of this dissertation

This dissertation is organized around the four categories of computations men-
tioned in Section 1.1. In Chapter 2 we review the required mathematical concepts
and notation to describe the three categories shown in Figure 1.3, i.e., BLACs,
sBLACs, and higher-level computations. The framework required to generate
code for the latter categories is then introduced. In particular, Chapter 3 presents
LGen for BLACs, including its DSLs and vectorization methodology. Chapter 4
explains the extension required to support structures. Chapter 5 describes our
methodology to synthetize code for higher-level computations, thus enabling
support for complex linear algebra computations such as the Kalman Þlter pre-
viously discussed. In Chapter 6 we show experimental results. Finally, we con-
clude in Chapter 7 discussing current limitations of our approach and future
directions.





2
L I N E A R A L G E B R A C O M P U TAT I O N S

In this chapter we introduce notation and background for linear algebra compu-
tations that will be the focus of our work.

In Section 2.1 we present basic linear algebra computations, i.e., computations
over matrices, vectors, and scalars expressed using only basic operators, such
as addition and multiplication. In addition, we introduce notation for matrix
tiling, an operation that creates matrices of matrices. Tiling is essential in high-
performance linear algebra algorithms.

Matrices can have structure, such as being symmetric or triangular. These
structures inßuence the way algorithms are constructed. For instance, the algo-
rithm for a lower triangular matrix-vector multiplication may require less oper-
ations than the one involving a full matrix.

In Section 2.2 we introduce linear algebra computations that operate at a
higher-level, such as solvers of linear systems and matrix decompositions. For
these computations there are usually several algorithmic variants deÞned in
terms of basic linear algebra computations over tiled input and output matri-
ces.

In this dissertation we are interested in small scale computations. For this
reason, we conclude this chapter discussing in Section 2.3 as an example the
structure of an efÞcient, small matrix-matrix multiplication. The techniques used
there are fundamental to enable fast code for a large class of linear algebra
computations.

2.1 basic linear algebra computations

In this dissertation we refer to basic linear algebra computations (BLACs 1) as
computations over real matrices, vectors and scalars using four fundamental
operators: scalar multiplication, matrix multiplication and addition, and trans-
position. In the remainder of this section we introduce the notation for matrices
and operators and provide simple algorithms for some important computations.

1 Not to be confused with the NetlibÕs Basic Linear Algebra Communication Subprograms
(BLACS).

15
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2.1.1 Notation and Basic Operators

We represent full matrices with upper case letters (e.g., A, B, ...), vectors with
lower case letters (e.g.,a, b, ...), and scalars with Greek lower case letters (e.g.,
#, $, ...). An m ! n real matrix A # Rm! n and a real (column) vector x # Rm of
length m can be described by listing their scalar entries

A = ( # i,j ) =

!

"
"
"
#

#0,0 #0,1 á á á #0,n! 1
#1,0 #1,1 á á á #1,n! 1

...
... ... ...

#m! 1,0 #m! 1,1 á á á#m! 1,n! 1

$

%
%
%
&

, x =

!

"
"
"
#

%0
%1
...

%m! 1

$

%
%
%
&

,

where i, j indicates a position at row i and column j . When convenient, we may
use the MATLAB-like notation A(i, j ) = # i,j .

basic operators . We consider four basic operators on matrices.
Transposition:

()T : Rm! n $ Rn! m,

C = ( &i,j ) = ( A)T = AT, where &i,j = # j,i .

Addition:

+ : Rm! n ! Rm! n $ Rm! n ,

C = A + B, where &i,j = # i,j + $ i,j .

Scalar-matrix multiplication:

á: R ! Rm! n $ Rm! n ,

C = # áB = #B, where &i,j = #$ i,j .

Matrix-matrix multiplication:

á: Rm! k ! Rk! n $ Rm! n , (2.1)

C = A áB = AB, where &i,j =
k! 1&

' = 0

# i,' $ ',j .

The above operations extend to vectors by choosing the column dimension
n = 1. For example, matrix-vector multiplication is a special case of ( 2.1):

y = Ax, y # Rm, x # Rk, A # Rm! k,
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Table 2.1: Examples of BLAS computations on real matrices and vectors. f (M ) is either
M or M T.

BLAS Label Computation Description

1
AXPY y = #x + y Scalar-vector multiplication

DOT ( = xTy Dot product

2
GEMV y = #f (A)x + $y Matrix-vector multiplication

GER A = A + #xy T Rank-1 or outer product update

3 GEMM C = #f (A)f (B) + $C Matrix-matrix multiplication

and we use transposition to refer to row vectors:

xT # R1! n % xT =
'
%0 %1 á á á%n! 1

(
.

Any valid combination of the four basic operators produces a BLAC, e.g.,
# = xTAy and D = #(A + B)TC + $xy T. The output is on the left-hand side and
can also appear as an input on the right-hand side. In addition to the four basic
operators on matrices and vectors, we also allow for auxiliary scalar operations,
such as divisions or square roots.

2.1.2 BLACs and BLAS

Starting from 1979 a subset of BLACs was identiÞed as building block for the
development of high-performance linear algebra libraries. The Basic Linear Al-
gebra Subprograms (BLAS) speciÞcation [26, 27, 74] was designed to provide a
standard FORTRAN (and later also C) interface for libraries that would provide
their computation. The BLAS is divided into three categories of computations,
called levels, that are associated to the asymptotic runtime cost of the BLACs
they contain. This cost is usually quantiÞed in terms of ßoating point operations
(ßops). Next we list some of the most relevant computations supported by the
BLAS and provide an algorithmic formulation of prototypical examples from
each level.

blas 1 . The BLAS level 1 [74] provides BLACs that require O(n) ßops on O(n)
data. Some computations at this level are shown in Table 2.1 and straightforward
algorithms are provided in Algorithms 2.1Ð2.2.

blas 2 . The BLAS level 2 [27] provides BLACs that compute O(n2) ßops on
O(n2) data. Table 2.1 shows prototypical computations from this level. Their
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Algorithm 2.1 (AXPY) y = #x + y, # # R, x, y # Rn . Cost = 2n ßops.

for i = 0 : n ! 1 do
y(i ) := #x (i ) + y(i )

end for

Algorithm 2.2 (DOT) ( = xTy, ( # R, x, y # Rn . Cost = 2n ßops.
( = 0
for i = 0 : n ! 1 do

( := ( + x(i )y(i )
end for

corresponding straightforward algorithms are shown in Algorithms 2.3 and 2.4,
respectively.

Algorithm 2.3 (GEMV) y = Ax + y, x # Rn , y # Rm, A # Rm! n .
Cost = 2mn ßops.

for i = 0 : m ! 1 do
for j = 0 : n ! 1 do

y(i ) := A(i, j )x(j ) + y(i )
end for

end for

Algorithm 2.4 (GER) A = A + xyT, x # Rn , y # Rm, A # Rm! n .
Cost = 2mn ßops.

for i = 0 : m ! 1 do
for j = 0 : n ! 1 do

A(i, j ) := A(i, j ) + x(i )y(j )
end for

end for

blas 3 . Finally, the BLACs supported by the level 3 BLAS [26] compute O(n3)
ßops on O(n2) data. Table 2.1 shows the most important computation at this
level: The general matrix-matrix multiplication update (GEMM). Algorithm 2.5
shows a possible way to compute it.

It is known that a fast implementation of GEMM enables high-performance
level 3 BLAS [39, 42, 50, 64], and with it any other computation that can be
expressed using it, such as the higher-level computations discussed in the next
section. The reason is that, on modern microarchitectures with deep memory
hierarchies, GEMM beneÞts from its high operational intensity, i.e., the ratio of
ßops (i.e., O(n3)), to the amount of data transferred between main memory and
the processor, (i.e.,) (n2) bytes). This means that, if computation is performed
efÞciently, GEMM can achieve a performance close to the processorÕs peak.
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Algorithm 2.5 (GEMM) C = AB + C, A # Rm! k, B # Rk! n , C # Rm! n .
Cost = 2mnk ßops.

for i = 0 : m ! 1 do
for j = 0 : n ! 1 do

for l = 0 : k ! 1 do
C(i, j ) := A(i, l )B(l, j ) + C(i, j )

end for
end for

end for

2.1.3 Partitioning Matrices

We can partition a matrix into smaller matrices, effectively writing it as a matrix
of matrices. For instance, consider the following 2 ! 3 matrix:

A =
)

#0,0 #0,1 #0,2
#1,0 #1,1 #1,2

*
. (2.2)

Using partitioning, we can describe A in various ways. For example:

A =
)

#0,0 #0,1 #0,2

#1,0 #1,1 #1,2

*
=

)
aT

0
aT

1

*
, (2.3)

A =
)

#0,0 #0,1 #0,2
#1,0 #1,1 #1,2

*
=

'
a0 a1 a2

(
, (2.4)

A =
)

#0,0 #0,1 #0,2
#1,0 #1,1 #1,2

*
=

+
A0,0 a0,1

,
. (2.5)

We may refer to the submatrices in a partition using the parenthesis operator
extended with a MATLAB-like colon notation. For example, in ( 2.3), A(0, :) = aT

0,
in (2.4) A(:, 0) = a0, and in (2.5) A(0 : 2, 0 : 2) = A0,0. In the remainder of this dis-
sertation we will distinguish between partitioning and tiling. With partitioning
we will refer in general to the creation of matrix of matrices. However, whenever
this operation is performed creating submatrices of homogeneous size (except
for possible leftover rows and columns) we will refer to it as tiling and call the
resulting submatrices tiles. For instance, in the following two examples, only the
second partitioning is a tiling:

B =
)

$0,0 $0,1 $0,2 $0,3 $0,4 $0,5
$1,0 $1,1 $1,2 $1,3 $1,4 $1,5

*
,

B =
)

$0,0 $0,1 $0,2 $0,3 $0,4 $0,5
$1,0 $1,1 $1,2 $1,3 $1,4 $1,5

*
. (2.6)
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We refer to a tiling operation using the notation [B]p,q , meaning that we create
tiles of size p ! q starting from element B(0, 0). For example, we describe (2.6)
more compactly as B = [ B]2,2 = ( Bi,j ), where Bi,j # R2! 2.

2.1.4 Structured Matrices

We also consider BLACs whose matrices have a structure. For example the fol-
lowing matrix U # Rn! n is upper triangular:

U = ( * i,j ) =

!

"
"
"
#

* 0,0 * 0,1 á á á * 0,n! 1
0 * 1,1 á á á * 1,n! 1
...

... ... ...
0 0 á á á* n! 1,n! 1

$

%
%
%
&

. (2.7)

In general we write an upper triangular matrix as U and denote its structure
with Un or simply U, depending whether we need or not to specify the dimen-
sion:

U # Un % U # Rn! n and (2.7) holds.

When structures occur in a BLAC they should be exploited to reduce its cost. For
example, if we assume that both matrices A and B in Algorithm 2.5 are upper
triangular we could reformulate it to require roughly one-sixth the number of
ßops, as shown in Algorithm 2.6.

Algorithm 2.6 Multiplication of two upper triangular matrices:
C = U0U1 + C, U0, U1 # Un , C # Rn! n . Cost & n3

3 ßops.

for i = 0 : n do
for j = i : n do

for l = i : j do
C(i, j ) := U0(i, l )U1(l, j ) + C(i, j )

end for
end for

end for
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A =
!

! 0,0 ! 0,1 ! 0,2

! 1,0 ! 1,1 ! 1,2

"
! 0,0 ! 0,1 ! 0,2 ! 1,2! 1,1! 1,0

! 0,0 ! 0,1 ! 0,2 ! 1,2! 1,1! 1,0

Row-major order, ld(A) = 3 

Row-major order, ld(A) = 4 

Figure 2.1: Two possible full storage schemes with different leading dimensions for a
2 ! 3 matrix A stored in row-major order.

Other structures we consider in this dissertation include lower triangular and
symmetric matrices:

L # L n % L # Rn! n , L = ( +i,j ) =

!

"
"
"
#

+0,0 0 á á á 0
+1,0 +1,1 á á á 0

...
... ... ...

+n! 1,0 +n! 1,1 á á á+n! 1,n! 1

$

%
%
%
&

,

S # Sn % S # Rn! n , S = ( , i,j ) =

!

"
"
"
#

, 0,0 , 0,1 á á á , 0,n! 1
, 0,1 , 1,1 á á á , 1,n! 1

...
... ... ...

, 0,n! 1 , 1,n! 1 á á á, n! 1,n! 1

$

%
%
%
&

.

We refer to BLACs with structured matrices as sBLACs. The BLAS interface
supports certain sBLACs at level 2 and 3 as shown in Table 2.2. The Þrst two
characters in a BLAS label refer to the structure a computation is specialized
for (e.g., GE for general in Table 2.1, TR for triangular, and SY for symmetric in
Table 2.2).

storage schemes . Associated with matrices are different storage schemes
that determine how they are stored in main memory. The full storage scheme
is the most common one, where every element in a matrix has a corresponding
location in a memory array. For example, the 2 ! 3 matrix in ( 2.2) requires an
array of length at least six. Elements can be stored in row-major (i.e., traversing
the matrix row by row: #0,0, #0,1, #0,2, #1,0, ...) or column-major (i.e., column
by column traversal: #0,0, #1,0, #0,1, #1,1, ...) order. The distance between the
beginning of two subsequent rows (or columns in column-major order) within a
matrix M is referred to as its leading dimension, in short ld (M ). It may coincide
with the length of its rows (or columns) but may also be larger than that, e.g.,
when accessing a matrix within a matrix. Figure 2.1 shows two examples of
full storage schemes with different leading dimensions for ( 2.2). For instance,
assuming that (2.2) is fully stored in row-major order, ld (A) = ld (A(0 : 2, 0 :
2)) = 3.
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The leading dimension is needed to compute the location of a matrix element
A(i, j ) within its array storage using the formula pos (A(i, j )) = ld (A) ái + j in
case of row-major order or pos(A(i, j )) = ld (A) áj + i in case of column-major
order. For example, considering matrix ( 2.2) pos(A(1, 0)) = ld (A) á1+ 0 = 3. All
BLAS functions support leading dimensions for their matrices. For example, the
following is the complete C++ BLAS interface for computing GEMM in double
precision:

void cblas _dgemm (CBLAS_ORDER order,

CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB,

int m, int n, int k,

double alpha, double * A, int lda,

double * B, int ldb,

double beta, double * C, int ldc);

where order is RowMajor or ColMajor , transA and transB deÞne if matrices A and
B are to be transposed or not, and lda , ldb , and ldc are the leading dimensions
of the matrices A, B, and C, respectively.

For structured matrices often also the full storage scheme is used, with the
common convention that half of the elements are not accessed (e.g., the zero
elements of a triangular matrix or the elements in the lower (or upper) half
of a symmetric matrix). Since this implies waste, they could be stored more
compactly using a packed storage scheme where no memory is associated to
elements that should not be accessed thus saving half of the space. The BLAS
allows the use of alternative storages when possible. For example, the functions
SPMV and TPMV from BLAS 2 compute exactly the same sBLACs as SYMV
and TRMV in Table 2.2, but with the assumption that the matrices S and T are
packed.

2.2 higher -level l inear algebra computations

With higher-level linear algebra computations we mean algorithms expressed in
terms of BLACs or sBLACs. A prominent collection of such computations is the
Linear Algebra Package (LAPACK) [ 2]. LAPACK computations are built on top
of BLAS functions and can be grouped into four major categories: solvers for
linear systems of equations, matrix decompositions, eigenvalue problems, and
linear least squares. In this text we consider computations from only two of them:
Solvers for linear systems and matrix decompositions. In the remainder of this
section we introduce algorithmic notation (Section 2.2.1) and discuss in more
details Þve computations: A solver for triangular systems (Section 2.2.2), the in-
verse of a triangular matrix (Section 2.2.3), solvers for the triangular, continuous-
time Sylvester and Lyapunov equations (Section 2.2.4), and the Cholesky decom-
position (Section 2.2.5).
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Table 2.2: Examples of BLAS computations with structures. f (M ) is either M or M T,
T # L ' U, and S # S.

BLAS Label Computation Description

2

SYMV y = #Sx + $y
Matrix-vector multiplication

TRMV x = f (T)x

SYR A = A + #xx T Rank-1 update

3

SYMM
C = #SB + $C

Symmetric-general multiplication
C = #BS + $C

TRMM
B = #f (T)B

Triangular-general multiplication
B = #Bf (T)

SYRK S = #AA T + $S Rank-k update

2.2.1 The FLAME Notation

In the previous section, we described straightforward sBLAC algorithms using
a notation where accesses where represented as functions on loop indices. In
this section, as algorithms for higher-level functions grow in complexity, we
adopt the notation deÞned by the Formal Linear Algebra Methods Environment
(FLAME) [ 49], a methodology that enables a systematic derivation of correct
algorithms for a certain class of linear algebra computations. FLAME will be
thoroughly discussed in Chapter 5. Here, we are only interested in its notation.

The FLAME notation provides a loop-based representation of a computation
on partitioned matrices and vectors using an algorithmic worksheet as the one
shown in Algorithm 2.7. This algorithm computes a matrix-matrix multiplica-
tion using an outer product update as a building block. For comparison, Algo-
rithm 2.7 is analogous to the index-based Algorithm 2.8. The FLAME notation
is free of loop indices and traverses the input and output matrices based on
an initial partitioning decision. Matrices can be partitioned either horizontally,
vertically, or both. For instance, in Algorithm 2.7, line (a), the matrices A and
B are partitioned horizontally and vertically respectively, while the output ma-
trix C is always updated entirely. The resulting partitions are labelled as (L)eft
and(R)ight if partitioned horizontally, and (T)op and (B)ottom if partitioned ver-
tically. Inside the loop, the partitions are updated at every iteration. They are
Þrst reÞned in (c) to isolate the vectors required to compute the update in (d)
(also called the update statement). Note that the notation differentiates assign-
ment (:=) from equality ( = ). After the computation of the the update statement,
the thick lines in the repartitions are moved forward in (e) making new portions
of the matrices available for the next iteration. The algorithm terminates as soon
as the matrices are completely traversed (condition in (b)).
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Algorithm 2.7 Matrix multiplication: outer product version.
C = AB + C, A # Rm! k, B # Rk! n , C # Rm! n .
The algorithm is given in FLAME notation. Cost = 2mkn ßops.

(a) Partition A $
'

AL AR
(

, B $

-
BT

BB

.

where AL is m ! 0 and BT is 0 ! n
(b) while size(AL ) < size(A) do
(c) Repartition

'
AL AR

(
$

'
A0 a1 A2

(
,

-
BT

BB

.

$

!

"
"
#

B0

bT
1

B2

$

%
%
&

where a1 is m ! 1, and bT
1 is 1 ! n

(d) C := C + a1bT
1

(e) Continue with

'
AL AR

(
(

'
A0 a1 A2

(
,

-
BT

BB

.

(

!

"
#

B0

bT
1

B2

$

%
&

endwhile

Algorithm 2.8 Matrix multiplication: Outer product version analogous to Algo-
rithm 2.7. C = AB + C, A # Rm! k, B # Rk! n , C # Rm! n .

for i = 0 : k ! 1 do
C := C + A(:, i )B(i, :)

end for

In the remainder of this section, we will use the above notation to describe Þve
higher-level computations, i.e., triangular systems of equations, the continuous-
time triangular Sylvester and Lyapunov equations, the triangular inverse, and
the Cholesky decomposition, assuming the availabilty of sBLACs as building
blocks.

2.2.2 Triangular Systems

Solving a triangular system of equations comes in two variants:

TX = B, T # L n ' Un , X, B # Rn! m, (2.8)

XT = B, T # L n ' Un , X, B # Rm! n , (2.9)
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where X is unknown output matrix. If the triangular matrices in ( 2.8)Ð(2.9) are in-
vertible, the two solutions could be computed as X = T! 1B and X = BT! 1, respec-
tively. In general with linear matrix equations, the inverse is seldom explicitly
computed. In the case of triangular systems the use of forward and backward
substitution for respectively lower and upper triangular matrices are a better
choice both in terms of efÞciency and accuracy. An example of forward substi-
tution is shown in Algorithm 2.9. At every iteration the algorithm updates BB

Algorithm 2.9 Solving a lower triangular system (Forward substitution algo-
rithm).
LX = B, L # L n , X, B # Rn! m. X overwrites B.
Cost & n2m ßops.

Partition L $

-
LTL 0

LBL LBR

.

, B $

-
BT

BB

.

where LTL is 0 ! 0 and BT is 0 ! m
while size(BT ) < size(B) do

Repartition

-
LTL 0

LBL LBR

.

$

!

"
"
#

L0,0 0 0

l T
1,0 +1,1 0

L2,0 l 2,1 L2,2

$

%
%
& ,

-
BT

BB

.

$

!

"
"
#

B0

bT
1

B2

$

%
%
&

where +1,1 is 1 ! 1 and bT
1 is 1 ! m

(i) bT
1 := ( 1/+ 1,1 )bT

1
(ii) B2 := B2 ! l 2,1 bT

1

Continue with

-
LTL 0

LBL LBR

.

(

!

"
"
"
#

L0,0 0 0

l T
1,0 +1,1 0

L2,0 l 2,1 L2,2

$

%
%
%
&

,

!

"
#

BT

BB

$

%
& (

!

"
"
"
#

B0

bT
1

B2

$

%
%
%
&

endwhile

scaling its top row bT
1 (line (i)) followed by a rank- 1 update of B2 (line (ii)). The

BLAS provides two functions for the solution of triangular systems of equations:
TRSM for problems with multiple vectors on the right-hand side (i.e., m > 1
in (2.8) and (2.9)), and TRSV for problems with a single vector on the right-hand
side (i.e.,m = 1 in (2.8) and (2.9)). In both cases the input matrix B is overwritten
with the result X.

Solvers for triangular systems are part of the BLAS because they are used to
implement linear solvers for unstructured matrices. However, we do not con-
sider them sBLACs as they require an inverse operator, which is not a basic
operator.



26 linear algebra computations

2.2.3 The Inverse of a Triangular Matrix

Sometimes it is necessary to explicitly compute the inverse of a matrix. For
instance, in the context of least square estimation, matrix inversion is used to
compute the covariance matrix of the estimators of linear regression parame-
ters [106]. LAPACK provides functions for inverting general, symmetric and
triangular matrices. We will focus on triangular matrices and Algorithm 2.10
gives a possible algorithm to invert lower triangular ones. It requires comput-
ing a reciprocal (line (i)), two scalar products (lines (ii) and (iv)), and a rank- 1
update (line (iii)).

Algorithm 2.10 Inverting a lower triangular matrix.
L = L! 1, L # L n .
Cost & n3/3 ßops.

Partition L $

-
LTL 0

LBL LBR

.

where LTL is 0 ! 0
while size(LTL ) < size(L) do

Repartition

-
LTL 0

LBL LBR

.

$

!

"
"
#

L0,0 0 0

l T
1,0 +1,1 0

L2,0 l 2,1 L2,2

$

%
%
&

where +1,1 is 1 ! 1

(i) +1,1 := 1/+ 1,1
(ii) l 2,1 := ! +1,1 l 2,1
(iii) L2,0 := L2,0 + l 2,1 l T

1,0
(iv) l T

1,0 := +1,1 l T
1,0

Continue with

-
LTL 0

LBL LBR

.

(

!

"
"
"
#

L0,0 0 0

l T
1,0 +1,1 0

L2,0 l 2,1 L2,2

$

%
%
%
&

endwhile

2.2.4 The Continuous-time, Triangular Sylvester and Lyapunov Equations

Two other linear solvers that we consider solve the continuous-time, triangular
Sylvester and Lyapunov equations, which are important routines in control the-
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ory applications [ 12, 20]. The triangular Sylvester equation can be formulated as

T0X + XT1 = C, T0 # L m ' Um, T1 # L n ' Un , X, C # Rm! n , (2.10)

where X is the unknown output matrix. The Bartels-Stewart algorithm [ 7, 40] for
computing the solution X is shown in Algorithm 2.11 for the case where T0 # L ,
T1 # U, and X overwrites C. LAPACK provides a function TRSYL that solves the
Sylvester equation for real quasitriangular matrices.

Algorithm 2.11 Solving the triangular Sylvester equation (Bartels-Stewart Algo-
rithm).
LX + XU = C, L # L m, U # Un, and X, C # Rm! n . X overwrites C.
Cost & (m + n)mn ßops.

Partition C $
'

CL CR
(

, U $

-
UTL UTR

0 UBR

.

where CL is m ! 0 and UTL is 0 ! 0
while size(CL ) < size(C) do

Repartition
'

CL CR
(

$
'

C0 c1 C2
(
,

-
UTL UTR

0 UBR

.

$

!

"
"
#

U0,0 u0,1 U0,2

0 * 1,1 uT
1,2

0 0 U2,2

$

%
%
&

where c1 is m ! 1 and * 1,1 is 1 ! 1

c1 := c1 ! C0u0,1
c1 := ( L + * 1,1 Im )! 1c1 (solve with, e.g., Algorithm 2.9)

Continue with
'

CL CR
(

(
'

C0 c1 C2
(
,

-
UTL UTR

0 UBR

.

(

!

"
"
"
#

U0,0 u0,1 U0,2

0 * 1,1 uT
1,2

0 0 U2,2

$

%
%
%
&

endwhile

The triangular Lyapunov equation is a specialized version of the Sylvester
equation (2.10), where a single triangular matrix appears in the equation and
the right-hand side is symmetric:

TX+ XTT = S, T # L n ' Un , X, S # Sn .
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The triangular Lyapunov equation could also be solved using Algorithm 2.11;
however, more specialized algorithms such as the one in Algorithm 2.12 can
reduce the number of ßops by a half.

Algorithm 2.12 Solving the triangular Lyapunov equation.
LX + XLT = S, L # L n and X, S # Sn . X overwrites S.
Cost & n3 ßops.

Partition L $

-
LTL 0

LBL LBR

.

, S $

-
STL STR

SBL SBR

.

where LTL is 0 ! 0 and STL is 0 ! 0
while size(LTL ) < size(L) do

Repartition

-
LTL 0

LBL LBR

.

$

!

"
"
#

L0,0 0 0

l T
1,0 +1,1 0

L2,0 l 2,1 L2,2

$

%
%
& ,

-
STL STR

SBL SBR

.

$

!

"
"
#

S0,0 s0,1 S0,2

sT
1,0 , 1,1 sT

1,2

S2,0 s2,1 L2,2

$

%
%
&

where +1,1 and , 1,1 are 1 ! 1

sT
1,0 := sT

1,0 ! l T
1,0 S0,0

sT
1,0 := sT

1,0 (L0,0 + +1,1 Im )! 1 (m = col(L0,0 ))
, 1,1 := , 1,1 ! sT

1,0 (l T
1,0 )T ! l T

1,0 (sT
1,0 )T

, 1,1 := , 1,1 / (2+1,1 )

Continue with

-
LTL 0

LBL LBR

.

(

!

"
"
"
#

L0,0 0 0

l T
1,0 +1,1 0

L2,0 l 2,1 L2,2

$

%
%
%
&
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SBL SBR

.

(

!

"
"
"
#

S0,0 s0,1 S0,2

sT
1,0 , 1,1 sT

1,2

S2,0 s2,1 L2,2

$

%
%
%
&

endwhile

LAPACK does not provide functions for solving the Lyapunov equation. How-
ever, other solutions such as RECSY [62], a library for solving triangular Sylvester-
type equations, provide a specialized alternative. RECSY provides two different
functions, i.e., RECSYCT and RECLYCT, that target speciÞcally the triangular
Sylvester and Lyapunov equations, respectively.
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2.2.5 The Cholesky Decomposition

Matrix decomposition is another important category of higher-level functions
we consider. The goal of matrix decomposition is to factorize a matrix into a
product of two or more matrices.

For example, when solving Ax = b for x, with A general and invertible, usu-
ally Þrst the LU decomposition of A is computed, which factors it into two trian-
gular matrices. In this way, x can be obtained by solving two triangular systems
as discussed in Section2.2.2 instead of computing the less efÞcient A! 1b.

If the matrix A is symmetric, positive-deÞnite (SPD), its Cholesky decomposi-
tion is computed instead. The Cholesky decomposition is used to factor an SPD
matrix into the product of a triangular matrix by its transpose. This could be
expressed by either of the two following computations where the real matrix P
is SPD:

UTU = P, U # Un, (2.11)

LLT = P, L # L n ,

where U and L are the outputs of the decompositions. The LAPACKÕs POTRF
function computes the Cholesky decompositions, overwriting half of the input
SPD matrix with the output triangular matrix. Algorithm 2.13 shows one possi-
ble approach to compute (2.11).

2.3 computing small matrix -matrix multiplications

In Section 2.1, we mentioned that a fast matrix-matrix multiplication enables fast
level 3 sBLACs and higher-level computations. In this last section, we describe
in greater detail the optimization of

C = AB + C, (2.12)

with A # Rm! k, and B # Rk! n , targeting a single core microprocessor. The size
of the computation is small, meaning that all matrices Þt into the microproces-
sorÕs L1 cache.

Consider (2.12) and Algorithm 2.5 that computes it. To take advantage of
temporal and spatial locality, an efÞcient implementation of GEMM needs to
be deÞned in terms of tiled matrices that Þt into high levels of the memory
hierarchy [ 82]. Based on our assumption all matrices Þt in L 1. As a consequence
we want to apply tiling to take advantage of registers.
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Algorithm 2.13 The Cholesky decomposition.
UTU = P, U # Un, and P is SPD.
U overwrites the upper half of P. Cost & n3/3 ßops.

Partition P $

-
PTL PTR

PBL PBR

.

where PTL is 0 ! 0
while size(PTL ) < size(P) do

Repartition

-
PTL PTR

PBL PBR

.

$

!

"
"
#

P0,0 p0,1 P0,2

pT
1,0 - 1,1 pT

1,2

P2,0 p2,1 P2,2

$

%
%
&

where - 1,1 is 1 ! 1

- 1,1 := - 1,1 ! pT
0,1 p0,1

- 1,1 :=
)

- 1,1
pT

1,2 := pT
1,2 ! pT

0,1 P0,2
pT

1,2 := ( 1/- 1,1 )pT
1,2

Continue with

-
PTL PTR

PBL PBR

.

(

!

"
"
"
#

P0,0 p0,1 P0,2

pT
1,0 - 1,1 pT

1,2

P2,0 p2,1 P2,2

$

%
%
%
&

endwhile

ti l ing for registers . Algorithm 2.14 applies loop tiling [ 118] to com-
pute (2.12) using a smaller matrix multiplication on tiles of matrices A, B, and
C.

Algorithm 2.14 C = AB + C (tiled version 0).
A # Rm! k, B # Rk! n , and C # Rm! n .
Parameters mr , n r , and kc are tile sizes and divide m, n, and k respec-
tively; index intervals are denoted with pq = ( p : p + q) with p, q #
{(i, m r ), (j, n r ), (l, k c)}.
Cost = 2mnk ßops.

for i = 0 : mr : m do
for j = 0 : nr : n do

for l = 0 : kc : k do
C(i mr , j n r ) := A(i mr , l kc )B(l kc , j n r ) + C(i mr , j n r )

end for
end for

end for
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An efÞcient choice is to maintain in register an mr ! n r micro-tile of C with
the minimum necessary to compute it. Their values and that of kc are related to
the structure of the innermost multiplication in Algorithm 2.14.

taking advantage of ilp . The mr ! n r elements of the micro-tile of C can
all be updated independently. This suggests the use of a rank-1 update for the
micro-tile yielding the structure in Algorithm 2.15.

Algorithm 2.15 C = AB + C (tiled version 1).
A # Rm! k, B # Rk! n , and C # Rm! n .
The innermost computation multiplication is computed as a sequence of micro-
rank-1 updates.
Cost = 2mnk ßops.

for i = 0 : mr : m do
for j = 0 : nr : n do

for l = 0 : kc : k do
for p = 0 : kc do

C(i mr , j n r ) := A(i mr , l + p)B(l + p, j nr ) + C(i mr , j n r )
end for

end for
end for

end for

The new innermost multiplication is exactly the micro-kernel identiÞed by the
BLIS approach [109] or analogously the micro-MMM in [ 121]. This choice also
gives us a range of values for the tiling parameters.

Following [ 121], a good choice is to maintain in register a micro-tile C(i mr , j n r ),
a column A(i mr , l + p), a row B(l + p, j nr ), and the t temporary elements re-
quired to hide the latency of multiplication before its result can be added to C:

mrnr + mr + nr + t ! n reg, (2.13)

where nreg is the number of available ßoating point registers. The choice of kc

is not related to the register Þle. As the loop around the micro-multiplication
could be unrolled to reduce loop overhead, the L 1-I cache is the only bound on
the choice of kc.

The remaining step is the efÞcient implementation of the micro-multiplication
in Algorithm 2.15.

taking advantage of simd parallelism . EfÞciently implementing the
micro-multiplication in Algorithm 2.15 on a " -way vector microarchitecture re-
lies on ISA-speciÞc solutions, making this task a performance-portability prob-
lem. Typically this micro-computation is implemented separately by an expert
developer for each target ISA and packed into libraries [ 109] and autotuners [ 117].
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Examples of vector ISAs from the Intel x 86 family of architectures are the
Streaming SIMD Extensions (SSE) and the Advanced Vector Extensions (AVX),
while from the ARM family the NEON advanced SIMD extension.

The available instructions are normally deÞned in the assembly language of
the architecture. For instance, the following assembly instruction computes a
pointwise multiplication between two vector registers ymm0and ymm1in AVX sav-
ing the result in ymm2:

vmulpd ymm 2, ymm0, ymm1

There ymm0, ymm1, and ymm2are 256-bit wide registers each holding four doubles.
In alternative to the assembly, vector instructions can also be accessed directly
in higher-level languages like C or C++ by means of intrinsics. For instance, the
multiplication above could be expressed using intrinsics as follows

__m256d v0, v1, v2;

...

v2 = _mm_mul _pd(v0, v1);

where __m256d is a data type that maps the vector of doubles v0Ðv2 to 256-bit
registers.

Intrinsics can be mapped to one assembly instruction (like in the multiplica-
tion example above) or more. More information on intrinsics for both Intel and
ARM architectures are available in [ 4, 58].

In the next chapters we introduce a domain-speciÞc framework for linear al-
gebra computations that translates BLACs, sBLACs, and higher-level computa-
tions into optimized C code, optionally vectorized with intrinsics. The approach
behind our code generator includes techniques similar to the ones shown above
for matrix multiplication.
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In this chapter, we present LG en, a compiler for small basic linear algebra com-
putations (BLACs) on operands with Þxed size. BLACs were introduced in Sec-
tion 2.1.1 and involve general matrices, vectors and scalars. An extension of
LGen to handle structured matrices is described later in Chapter 4. As stated in
the introduction our focus are small computations, meaning that the total size
of all matrices and vectors in a given BLAC Þt into the last level of cache local
to a single core (typically L 1 or L2 cache).

The design of LGen follows closely the one of the Spiral code generator for
the different domain of linear transforms. S piral was discussed in Section 1.3
together with other prior work extending the S piral framework beyond the
domain of linear transforms.

We start with explaining the general structure of LG en in Section 3.1. In Sec-
tion 3.2, we discuss in greater detail the steps taken by LGen to generate the
scalar code, using matrix-matrix multiplication as running example. How this
same approach can be used to produce efÞcient vectorized code is shown in Sec-
tion 3.3. In Section 3.4, we conclude this chapter comparing LG enÕs approach
with that of a prior S piral -based attempt at generating matrix-matrix multipli-
cation.

3.1 overview of the lgen compiler

In this section we present the structure of LG en illustrated in Figure 3.1. It
presents a Spiral -like design characterized by:

¥ Multiple DSLs: A domain-speciÞc representation makes it easier to deÞne
and apply automatically transformation rules that yield code-level opti-
mizations. Spiral shows that this approach is particularly beneÞcial when
two mathematical DSLs are used to manipulate the input transform both
at an algorithmic and implementation level before translating the compu-
tation into a C-like representation.

¥ Iterative code generation:Different algorithmic formulations and implemen-
tation choices typically yield different performance results. Both S piral

33
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Figure 3.1: Architecture of LG en.

and LGen compile and evaluate the performance of all generated C func-
tions, searching for the best generated code.

The input to LG en is a BLAC as speciÞed in Section2.1.1 in what we call
low-level linear algebra language (LL). In Figure 3.1, Step 1, a tiling strategy is
chosen. This is done by annotating the BLAC with a tile size (e.g., 3 ! 2), which
is then propagated to derive the tile sizes of all in- and outputs. Hierarchical
tiling is possible. Next in Step 2, the resulting LL expression is converted to
another language called ! -LL that is still based on linear algebra but makes ac-
cess patterns and loops explicit. At this level, loop merging and possible loop
exchanges are performed (Step3). Next, a C-intermediate representation (C-IR)
is generated (Step4) to perform loop unrolling, scalar replacement, and conver-
sion into static single assignment (SSA) form (Step 5). Finally, the C function is
generated; its performance is used in an autotuning feedback loop (Step 6).

If vectorized code (with intrinsics) is desired, the vector length " of the ISA
is an input together with the BLAC and impacts the tiling decision in Step 1.
The generated code uses a small set of pre-implemented building blocks, called
" -BLACs, in a process further explained in Section 3.3.

Next we introduce the notation of LG enÕs frontend language and discuss in
more details a compilation example.
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3.1.1 LL: Low-level Linear Algebra Language

The Low-level Linear Algebra Language (LL) is a mathematical DSL with a MAT-
LAB-like syntax. An LL statement can be used to express a BLAC (as deÞned in
Section 2.1.1) on general matrices. Example of BLACs captured by LL include
BLAS computations (e.g., the rank-1 update A = A + #xy T) and others (e.g.,
# = xTAy ).

the ti l ing operator . LL also includes a tiling operator in addition to
the four basic operators (i.e., transposition, addition, scalar- and matrix-matrix
multiplication). It captures the concept of multilevel tiling following ideas from
the hierarchically tiled array (HTA) type [ 51]. Tiling is denoted using the same
notation as introduced for matrices in Section 2.1.3, namely as

[op]r,c , (3.1)

where op is any LL statement, expression, or quantity (i.e., matrix, vector, and
scalar) and r and c are positive integers. A simple example is tiling a plain
or level-0 matrix of size m ! n as [A]r,c . This creates a level-1 tiled matrix of
dimension * m

r + ! * n
c + where every element is an r ! c matrix. The resulting

matrix is homogeneous if r |m and c|n or heterogeneous if tiles at the borders
have a different size.

Tiling an operation in LL (including an assignment) means tiling the implicit
output matrix that it computes. For example, the statement C = AB + C where
C # Rm! n has an implicit output M in all similar to C, and the level-1 tiling

[C = AB + C]r,c (3.2)

can be thought as applied to M .
The grammar of an LL statement is described by the grammar in Table 3.1.

Since there is a straightforward mapping between statements and BLACs 1 we
will often stick to the mathematical notation in our discussion unless needed
otherwise.

We now describe step by step the program generation process (Figure 3.1) for
scalar (non-vectorized) C code.

3.2 scalar code generation

For the following explanations, we use a GEMM computation of the form

C = AB + C (3.3)

1 With the only exception of =, which is not the mathematical equivalence but the assignment
operator.
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Table 3.1: Grammar of an LL statement in Backus-Naur form. The subscript of a non-
terminal is a non-negative level of tiling (i.e., ' " 1 for , tiled-stmt-' and
, tiled-expr-' , while ' " 0 elsewhere). A statement or expression at level zero is
plain, i.e., not tiled. The positive integers r and c are respectively the number
of rows and columns of a tile at level ' .

, ll-stmt-' ::= , tiled-stmt-' | ,quantity-' = , ll-expr-'

, ll-expr-' ::= , tiled-expr-' | ( , ll-expr-' ) | ,basic-op-'

, tiled-stmt-' ::= [ , ll-stmt-' ! 1 ] r,c

, tiled-expr-' ::= [ , ll-expr-' ! 1 ] r,c

,basic-op-' ::= , ll-expr-' + , ll-expr-'
| , ll-expr-' * , ll-expr-'

| , ll-expr-'
T

,quantity-' ::= ,matrix-' | ,vector-' | ,scalar-'

A : Matrix(5, 9);
B : Matrix(9, 5);
C : Matrix(5, 5);

C = A* B + C;

Figure 3.2: Example of LL program for the BLAC in ( 3.3).

as running example. We will consider different sizes depending on the details
to be illustrated.

3.2.1 Input in LL

The input to LG en is an LL program and a set of compilation options. An LL
program is composed of a set of quantity declarations followed by a level- 0
LL statement for which we want to generate fast code. The grammar of an LL
program is shown in Table 3.2, and Figure 3.2 shows the LL program for ( 3.3) for
some choice of Þxed sizes. The set of compilation options contains information
such as ßoating point precision (i.e., ßoat or double), vectorization option (i.e.,
enabled or not), and parameters from the model of the hardware platform (e.g.,
number of registers, ISA, vector register length, etc.).

internal representation . First, the input is parsed into an expression
tree as shown in Figure 3.3. We implemented a type system that determines the
implicit output matrix associated with every operator in the tree (empty square
nodes) and makes sure that the expression is well-formed (e.g., that dimensions
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Table 3.2: Grammar of an LL program in Extended Backus-Naur form. The rule for an
LL statement , ll-stmt-0 is given in Table 3.1. The values r and c are positive
integers.

, ll-prog- ::= ,decl- , ll-stmt-0;

,decl- ::= ,decl- { ,decl- }
| ,name-list- : ( ,mat-decl- | ,vec-decl- | ,sca-decl- )

,mat-decl- ::= Matrix(r, c);

,vec-decl- ::= Vector(r);

,sca-decl- ::= Scalar;

= 

Physical layout:  
Array of double 

Physical layout:  
Array of double 

Physical layout:  
Array of double 

Math layout:  

Math layout:  
Math layout:  

Math layout:  

C

C

A B

! R3! 4

! R3! 4

! R3! 2 ! R2! 4

+ 

á

Figure 3.3: LGenÕs internal representation of BLAC (3.3) where A # R3! 2 and B # R2! 4.
Square nodes are input and output matrices, while empty square nodes are
implicit matrices derived for every operator in the tree. Gray boxes are math-
ematical and physical layouts. A mathematical layout is deÞned for every
matrix appearing in the tree while physical layouts are initially available
only for inputs and outputs.

match). Explicit matrices in the tree are associated to two descriptors that we
call mathematical and physical layouts. The mathematical layout of a matrix de-
scribes its mathematical properties, while its physical layout how the matrix is
represented in memory. The physical layout is initially void for all implicit ma-
trices at this point of the compilation. Physical layouts of implicit matrices will
appear later at Step 4, after the last mathematical transformations are applied.
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Table 3.3: Rewrite rules to propagate tiling decisions; ,eL-, ,eR-, and ,e- are LL expres-
sions. The call cols(,e-) returns the number of columns of ,e-Õs implicit ma-
trix.

[,eL- = ,eR-]r,c $ [,eL-]r,c = [,eR-]r,c
[,eL- + ,eR-]r,c $ [,eL-]r,c + [,eR-]r,c

[,scalar- á ,e-]r,c $ [,scalar-]1,1 á[,e-]r,c
[,eL- á ,eR-]r,c $ [,eL-]r,k á[,eR-]k,c , 1 ! k ! cols(,eL-)

/
,e-T

0

r,c
$ [,e-]Tc,r

3.2.2 Step1: Tiling in LL

Tiling is a crucial locality optimization in linear algebra for all levels of the mem-
ory hierarchy as discussed in Section 2.3. Thus, the Þrst step in LGen (Figure 3.1)
is to Þx a tiling strategy (the search will then be able to explore different ones),
which has to be done in a way that works for all BLACs.

For example, the Þrst tiling decision on ( 3.3) may be (3.2) with r = 2 and
c = 2 yielding [C = AB + C]2,2. In the next step, this top-level tiling decision
is propagated down the expression tree to derive the associated tiling decisions
for the in- and output matrices. In our example, assume that A, B # R4! 4. This
is done using rewriting with the rules shown in Table 3.3:

[C = AB + C]2,2$ [C]2,2 = [ AB + C]2,2

$ [C]2,2 = [ AB]2,2 + [ C]2,2

$ [C]2,2 = [ A]2,k[B]k,2 + [ C]2,2, (3.4)

Note that matrix-matrix multiplication introduces a degree of freedom 1 ! k !
4.

Any positive integers r, c, and k are allowed, as even expressions with poor
divisibility can then be tiled; accordingly, LG en has to handle the left-over
code efÞciently, a challenge that is most interesting for vectorized code (see
Section 3.3). For example, Figure 3.4 depicts the structures resulting from two
possible choices ofk in (3.4). The level-1 tiled matrix [A]2,k is 2 ! 2 in both cases,
but is homogeneous for k = 2 and heterogeneous for k = 3.

Multilevel tiling is done by applying the tiling rules in Table 3.3 to previ-
ously tiled equations. The only constraint is that the created new tiles are not
composed of subtiles of different sizes. For example, further tiling of [A]2,3 in
Figure 3.4 with (r, c) # {(1, 2), (2, 2)} would not be allowed. Multilevel tiling is
used for vectorization in Section 3.3.
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k = 2 k = 3

Figure 3.4: Visualization of [A]2,k[B]k,2 in (3.4) for k = 2 (left, homogeneous tiling) and
k = 3 (right, heterogeneous tiling).

Since we consider small problem sizes, we tile scalar code for locality in the
registers (and for vectorization as explained later). In this case, following ideas
discussed in Section 2.3, we require rc ! n reg (the number of ßoating point
registers) and bind k depending on the size of the L 1 I-cache.

3.2.3 Step2: From LL to! -LL

After the tiling has been Þxed, LG en translates the resulting LL statement into
a language called ! -LL, a generalization of Spiral Õs! -SPL [36]. It is still purely
mathematical and represents a natural intermediate step when translating a
BLAC into loop code. This makes access patterns and loops explicit as matrices
and matrix sums, respectively, enabling optimizations like loop merging and
loop exchange at a high level of abstraction.

! -l l gathers and scatters . ! -LL includes gather and scatter operators
to extract or insert submatrices from or to larger matrices with the purpose of
formally capturing data accesses as matrices. Assuming A is 3 ! 3, then the top
left 2 ! 2 submatrix can be extracted using gather matrices as

A(0 : 1, 0 : 1) = GLAGR, GL =
'

1 0 0
0 1 0

(
, GR =

+
1 0
0 1
0 0

,
.

Similarly, deÞning the scatter matrices SL = GR and SR = GL, we can insert a
2 ! 2 matrix B into a 3 ! 3 matrix A as

A = SLBSR.

In general, gather and scatter matrices are parametrized using afÞne functions
on indices. More formally, we deÞne the ! -LL gather operator as

g = [ i, j ]m,n
k,' : Rm! n $ Rk! ' ,

A .$ Ag = GL(hk$ m
i,1 )AGR(h' $ n

j,1 )
= A(i : i + k ! 1, j : j + ' ! 1).
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+ +

+

+= 

É 

Figure 3.5: Tiled matrix-vector multiplication [y]2,1 = [A]2,2 [x]2,1 with A # R4! 4 and
x # R4. White regions, created using scatters, contain zeros.

Note that we write the function on the right (as common for indexing) because
gathers operate from the right. Indeed, if g / = [ i /, j /]k,'

u,v and gg/ = [ i, j ]m,n
k,' [i /, j /]k,'

u,v =
[i + i /, j + j /]m,n

u,v , then (Ag)g/ = A(gg/).
The scatter operator is the dual of the gather:

s = k,'
m,n [i, j ] : Rk! ' $ Rm! n ,

A .$ sA = SL(hk$ m
i,1 )ASR(h' $ n

j,1 ),

where B = sA is deÞned through B(i : i + k ! 1, j : j + ' ! 1) = A and B is zero
elsewhere. In this cases/(sA) = ( s/s)A for the natural deÞnition of s/s. We will
often omit the domain and range parameters to simplify representation.

complete algorithm specification in ! -l l . Using gathers and scat-
ters, tiled computations can be expressed as summations. Consider, for example,
the tiled matrix multiplication (excluding the update) in ( 3.4) with k = 2. The
computation on the tiles is visualized in Figure 3.5.
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In ! -LL, this is expressed as

C = 2,2
4,4[0, 0]

+
A[0, 0]4,4

2,2

,
2,2
4,4[0, 0]

+
B[0, 0]4,4

2,2

,

+ 2,2
4,4[0, 0]

+
A[0, 0]4,4

2,2

,
2,2
4,4[0, 2]

+
B[0, 2]4,4

2,2

,

+ 2,2
4,4[2, 0]

+
A[2, 0]4,4

2,2

,
2,2
4,4[0, 0]

+
B[0, 0]4,4

2,2

,

+ 2,2
4,4[2, 0]

+
A[2, 0]4,4

2,2

,
2,2
4,4[0, 2]

+
B[0, 2]4,4

2,2

,

á á á

+ 2,2
4,4[2, 2]

+
A[2, 2]4,4

2,2

,
2,2
4,4[2, 2]

+
B[2, 2]4,4

2,2

,

= [ 0, 0] (A[0, 0]B[0, 0]) + á á á+ [ 2, 2] (A[2, 2]B[2, 2])

=
&

i#{0,2}

[i, 0] (A[i, 0]B[0, 0]) + á á á+ [ i, 2] (A[i, 2]B[2, 2])

=
&

i#{0,2}

&

j#{0,2}

[i, j ] (A[i, 0]B[0, j]) + [ i, j ] (A[i, 2]B[2, j])

=
&

i#{0,2}

&

j#{0,2}

&

p#{0,2}

[i, j ] (A[i, p ]B[p, j ]) .

In these equations we applied the simpliÞcation properties shown in Table 3.4.
If we want to express the computation down to the scalar level, we need to apply
the same reasoning to the computation between submatrices:

C =
&

i,j,p #{0,2}

[i, j ](

&

i ! ,j ! ,p !#{0,1}

[i /, j /]

!

#
2! 2' () *

A[i, p ][i /, p /]
) *' (

scalar

2! 2' () *
B[p, j ][p /, j /]
) *' (

scalar

$

&

)

=
&

i,j,p

&

i ! ,j ! ,p !

[i, j ][i /, j /]
'
A[i, p ][i /, p /]B[p, j ][p /, j /]

(
. (3.5)

The latter corresponds to a tiled implementation with six loops.
In summary, ! -LL makes the index functions explicit as symbolic objects that

can be manipulated through rewriting. Possible loops are made explicit as math-
ematical summations. Since the language is mathematical, rewrite rules are sim-
ply mathematical identities.

rewrit ing ll to ! -l l . ! -LL statements are plain, meaning that they cannot
contain the tiling operator ( 3.1). The translation from LL to ! -LL is done by
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Table 3.4: SimpliÞcation properties for the LL gather and scatter operators. ( 3.11) holds
if i # (b0 : s0 : m) and j # (b1 : s1 : n). A, B, and Ai,j are LL expressions and
Ai,j depends on indices i, j .

A[i, j ]m,n
m !,n ! [i /, j /]m

!,n !

k,' = A[i + i /, j + j /]m,n
k,' (3.6)

m !,n !

m,n [i, j ]k,'
m !,n ! [i /, j /]A = k,'

m,n [i + i /, j + j /]A (3.7)
k,'
m,n [i, j ] (A[i, j ]m,n

k,' ) =
+

k,'
m,n [i, j ]A

,
[i, j ]m,n

k,' = A (3.8)

m !,k !

m,k [i, p ]Ak !,n !

k,n [p, j ]B = m !,n !

m,n [i, j ](AB) (3.9)

A[i, p ]m,k
m !,k ! B[p, j ]k,n

k ! ,n ! = ( AB)[i, j ]m,n
m !,n ! (3.10)

!

#
&

i !#(b0 :s0 :m)

&

j !#(b1 :s1 :n)

k,'
m,n [i /, j /]A i ! ,j !

$

& [i, j ]m,n
k,' = Ai,j (3.11)

Table 3.5: Rules to recursively translate LL into ! -LL. ,e-, ,eL-, and ,eR- are LL (possibly
tiled) expressions.

[,eL-]r,c + [,eR-]r,c $
&

i,j

r,c
! ,! [i, j ] (,eL-[i, j ]! ,!

r,c + ,eR-[i, j ]! ,!
r,c ) (3.12)

[,eL-]r,k á[,eR-]k,c $
&

i,j,p

r,c
! ,! [i, j ] (,eL-[i, p ]! ,!

r,k á ,eL-[p, j ]! ,!
k,c) (3.13)

[,scalar-]1,1 á[,e-]r,c $
&

i,j

r,c
! ,! [i, j ] (,scalar- á ,e-[i, j ]! ,!

r,c ) (3.14)

[,e-]Tr,c $
&

i,j

c,r
! ,! [j, i ] (,e-[i, j ]! ,!

r,c )T (3.15)

rewriting the expression tree with tiling information until a plain statement is
constructed. The rewrite rules are shown in Table 3.5.

3.2.4 Step3: Loop Transformations

At this step a ! -LL statement can be transformed by manipulating summations,
gathers, and scatters. In the Þnal code this would correspond, e.g., to loop fu-
sions or loop exchange.

simplif ications and loop fusion . A ! -LL expression obtained from a
straightforward translation such as ( 3.5), will not represent an efÞcient program
since every gather and scatter requires separated read and write code blocks.
Using mathematical identities such as those in Table 3.4, LGen reduces the num-
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ber of these objects. For example, also in! -LL gathers and scatters can be fused
by composing the index functions (a strided access of a strided access yields a
strided access):

(3.5)

(3.6)
(3.7)
00$

&

i,j,p

&

i ! ,j ! ,p !

[i + i /, j + j /]
'
A[i + i /, p + p /]B[p + p /, j + j /]

(
.

Gathers and scatters can cancel each other if subsequent reads and writes are
not to overlapping locations enabling the fusion of subexpressions into the same
index space. Consider the application of the process illustrated so far to the
full BLAC ( 3.3) assuming we want to generate a na•ve triple loop. This can be
obtained by tiling the BLAC with unitary tile sizes and applying the rewrite
rules in Table 3.5, yielding

C =
&

0! i,j<4

1,1
4,4[i, j ] (

!

#
&

0! l,t,p<4

1,1
4,4[l, t ]

+
A[l, p ]4,4

1,1B[p, t ]4,4
1,1

,
$

& [i, j ]4,4
1,1 (3.16)

+ C[i, j ]4,4
1,1

) .

Now we can distribute the gather [i, j ]4,4
1,1 in (3.16) over the innermost summation

using rule ( 3.11) to obtain

C =
&

0! i,j<4

[i, j ]

!

#
&

0! p<4

A[i, p ]B[p, j ] + C[i, j ]

$

& .

loop ordering . The order of loops in the generated loop nests is in prin-
ciple a further degree of freedom in the code generation process. Instead of
enlarging the search space we determine nest-wise local orderings, using what
we call a priority matrix ( . ). Every time a summation is created using rules from
Table 3.5, its indices are associated with new rows of . . Columns of . are related
to factors that can inßuence performance. In our study we consider three factors:
instruction-level parallelism ( ilp), temporal locality ( tl ), and spatial locality ( sl).

Every entry . (i, f ) estimates the (positive) impact on factor f of increasing
index i before other indices of the summation. For example, . (i, tl ) > . (j, tl )
means that increasing index i before j has better temporal locality. In general,
this value can depend on the operation and on the tiling level. For example,
following the discussion in [ 121] about loop ordering for matrix multiplication



44 a basic linear algebra compiler

we use the following criteria for rule ( 3.13) in Table 3.5 assuming we are at an
outer level of tiling:

¥ Temporal locality:varying p has larger impact as we keep operating on same
output elements, . (p, tl ) = 1, . (t, tl ) = 0, t # i, j .

¥ Spatial locality:Row-major indices have larger impact, . (i, sl) = 0, . (p, sl) =
1, and . (j, sl) = 2.

¥ Ilp: moving along the dimensions of the output matrix has larger impact,
. (t, ilp) = 1, t # i, j , . (p, ilp) = 0.

Using the above criteria we obtain the following matrix . :

. tl sl ilp

i 0 0 1

j 0 2 1

p 1 1 0

We determine the order of the indices in two steps: (a) we sort the columns by the
priority given to the performance factors; (b) we sort the rows of . in ascending
lexicographical order. In our example, assuming priority (tl , sl, ilp), with tl being
highest, we would determine the order (i, j, p ); giving higher priority to spatial
locality, i.e., assuming priority (sl, tl , ilp), yields (i, p, j ).

3.2.5 Step4: From! -LL to C-IR

Next, ! -LL expressions are converted into a C-intermediate representation (C-
IR). Translation into C-IR Þrst requires binding the physical layouts of implicit
matrices appearing in a ! -LL expression tree (i.e., those associated to gathers,
scatters, summations, and basic operators) to temporary arrays. This process is
similar to the one illustrated in Figure 3.3 for explicit input and output matrices.
A domain-speciÞc representation of the matrices at the C-IR level, by combining
their physical and mathematical layouts, is particularly useful for accesses data
with vector instructions as discussed later in Section 3.3. At the moment we only
support contiguous, full storage schemes but the approach should be modular
enough to accommodate for a variety of storage schemes.

After matrix binding, memory references are used in combination with code
templates associated with the ! -LL operators to produce C-IR code. The access
patterns are deduced from the index mapping functions of the gathers and scat-
ters and incorporated in the reference objects. For example, the code template
for scalar addition can be described through the pseudocode in Figure 3.6. The
codelet makes the following assumptions: (a) left and right are scalar expres-
sions; (b) the reference objects (e.g.,inL ) have access to both mathematical and
physical layouts of the (implicit or explicit) quantities associated to left and
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genAdd(B, expr, left, right):
# code for expr = left + right
inL = getReference(left)
inR = getReference(right)
out = getReference(expr)

B.append( Mov( Add( inL[0,0], inR[0,0] ), out[0,0] ) )

Figure 3.6: Code generation template for scalar addition; the object B is a C-IR basic
block of function to be generated.

right . They contain all the information necessary to locate the position of the
scalars within possibly larger matrices.

3.2.6 Step5: Code-level optimizations

LGen takes advantage of the C-IR formulation of the computation for applying a
set of standard compiler optimizations, such as loop unrolling of the innermost
loops, scalar replacement, and conversion into SSA form. Finally, the C-IR code
is unparsed into C.

3.2.7 Step6: Performance Test and Autotuning

After the C function is generated, it is executed and its performance is mea-
sured and used for autotuning. The number of functions that can be generated
depends on the degrees of freedom introduced by tiling in Step 1. If more than
one function can be generated, LGen explores them either by exhaustive or by
random search.

3.2.8 Summary ofLGenÕs Choices During Code Generation

Before concluding this section, we summarize in Table 3.6 the four major choices
currently made by LG en during its code generation process. The table points out
in which of the six steps explained above these choices appear and brießy recap
how they are made.

3.3 vector code generation

In the previous section we described the generation of scalar code for Þxed-
size BLACs using LGen. However, to obtain high performance, vectorization for
SIMD ISAs is crucial. In this section, we explain how LG en generates C code
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Table 3.6: The four main choices made by LGen during code generation. The second
column shows in which of the six steps in Section 3.2 they appear while the
third column brießy summarizes how they are made.

Choice When made How made

Tiling Step 1 & 6 Tile sizes are considered degrees of freedom. The
space of possible values is modelled as in (2.13) and
explored with exhaustive or random search.

Loop fusion Step 3 A single choice is made applying the simpliÞcation
properties in Table 3.4 whenever possible.

Loop ordering Step 3 Single choice made using the priority matrix de-
scribed in Step 3.

Loop unrolling Step 5 Single choice: All innermost loops are fully unrolled.

including intrinsics to explicitly use vector instructions. The vector length (e.g.,
4 for SSE ßoat) is denoted with " .

An important feature of our vectorization approach is extensibility. This means
that porting to a new vector architecture is a straightforward, non-creative effort.
Our solution does this conceptually similar to how it was done in S piral [35].
SpeciÞcally, we identify a few basic vectorized building blocks, called " -BLACs,
that need to be available to our system: porting to a new instruction set then
simply requires their implementation.

The generation process extends the one for scalar code introduced in Sec-
tion 3.2 in the following way: (i) LG en receives the input BLAC together with
the vector length " of the ISA as part of the compilation options; (ii) before tiling
for registers, we apply a Þrst level of tiling ( " -tiling) to match to the " -BLACs;
(iii) " -BLACs are associated with a set of pre-implemented codelets that are gen-
erated at C-IR level; (iv) data processed by the " -BLACs are loaded and stored
using a pack-compute-unpack approach. Thanks to this approach also left-over
code (for parts smaller than " ! " ) is vectorized by embedding into " -BLACs.

We now describe the " -BLACs, tiling, their use to generate code, and how
data is accessed using load and store building blocks.

3.3.1 " -BLACs: Computational Building Blocks

A " -BLAC is a BLAC with the following characteristics: (a) only one operator is
used; (b) it can be efÞciently implemented on a vector ISA. For this we consider
the four basic operators in LL (multiplication, addition, scalar multiplication,
transposition) applied to all possible valid combinations of matrices and vectors
of size 1 ! " , " ! 1, or " ! " , yielding the 18 " -BLACs in Table 3.7.
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Table 3.7: The 18 required " -BLACs for vectorization in LG en.

Operator Required " -BLACs

Addition

(3 " -BLACs)
+

+

+

Scalar

Multiplication

(7 " -BLACs)

Matrix

Multiplication

(5 " -BLACs)

Transposition

(3 " -BLACs)

T
T

T

blac _nu2_xpy(B, refx, refy, out):
B.append( Mov( mmLoaduPd( refx[0,0] ), vx ) )
B.append( Mov( mmLoaduPd( refy[0,0] ), vy ) )
B.append( mmStoreuPd( mmAddPd(vx, vy ), out[0,0] ) )

Figure 3.7: " -BLAC C-IR codelet for x + y and " = 2; x and y are either " ! 1 or 1 ! " .

Figure 3.7 shows a C-IR codelet for the implementation of the " -BLAC x + y
using double precision SSE intrinsics. In this example, x and y can be either row
or column vectors. This shows that multiple " -BLACs, even if mathematically
different, can be implemented using a single codelet. Porting LG en to a new
vector ISA only requires the implementation of the codelets associated with the
18 " -BLACs in Table 3.7 (and associated packing routines explained later in
Section 3.3.2) using the intrinsics available for the new target ISA.

In Figure 3.7 we show an implemention that uses unaligned load instructions.
An approach to enable the use of aligned accesses, for architectures where this
matters, is described later in Section 3.3.2. At the moment, the only considered
data layout assumes that vectors and matrix rows are contiguous in memory.
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ti l ing for " -blacs . Once " is provided to LG en, the latter performs a
Þrst level of tiling with (r, c) # {(1, " ), (", 1 ), (", " )}. For example, consider (3.3)
where A is 3 ! 4 and B is 4 ! 1 (being a vector we denote it b in this example).
Assuming " = 2, we tile with (r, c) = ( ", " ) to get

[c]",1 = [ A]"," [b]",1 + [ c]",1 ,

or visually

+=!
1

!

.

For simplicity, we separately consider the ! -LL statements [z]",1 = [ A]"," [b]",1
and [c]",1 = [ z]",1 + [ c]",1 . Following the procedure described in Section 3.3, we
obtain

z =
&

p#{0,2}

"
3[0]

+
A[0, p]3,4

"," b[p]4"
,

(3.17)

+
&

t#{0,2}

1
3[2]

+
A[2, t]3,4

1," b[t ]4"
,

(3.18)

c = "
3[0]

+
z[0]3" + c[0]3"

,
(3.19)

+ 1
3[2]

+
z[2]31 + c[2]31

,
. (3.20)

The equations (3.17)Ð(3.18) describe the same computation but performed us-
ing tiles of different size. The same holds for ( 3.19)Ð(3.20). In particular, ( 3.17)Ð
(3.19) map directly to " -BLAC codelets, while ( 3.20) needs additional work to be
mapped. We describe both situations next.

code generation with " -blacs . The codelets for the " -BLACs and the
load and store building blocks are pre-implemented and are retrieved for a given
ISA using the parameter " and the required ßoating point precision. Hence the
code generation template for scalar code in Figure 3.6 is extended as shown in
Figure 3.8.

left -over code handling . Expressions such asz[2]31 + c[2]31 (adding two
vectors of length one) in (3.20) do not conform to any " -BLAC with " = 2. The
basic idea to vectorize these is to embed them into a (larger) " -BLAC of appro-
priate type. For example a very small matrix-vector multiplication is embedded
as shown here:

= =!

!

!
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1 genAdd(B, expr, left, right, opts):
2 # code for expr = left + right
3 inL = getReference(left)
4 inR = getReference(right)
5 out = getReference(expr)
6

7 isa, nu, prec = opts[Ôisa Õ], opts [Ô nuÕ], opts[Ôprecision Õ]
8 vecSize = sizeof ( left )
9 loader = getLoader ( isa , nu, prec )

10 storer = getStorer ( isa , nu, prec )
11 nublac = getNuBLAC( isa , Add, vecSize , nu, prec )
12

13 loader ( B, [ inL , inR ]
14 nublac ( B, inL , inR , out )
15 storer ( B, out )

Figure 3.8: Code generation template for addition; the object B refers to a basic block of
the code.

In LGen, this is done by the load and store routines, called Loaders and Storers,
that perform the embedding of the operands. These are also pre-implemented
using intrinsics and selected upon code generation (Figure 3.8, lines 13 and
15). In the remaining part of this section we describe in greater detail how this
process works and address an issue that can occur when combining codelets.

3.3.2 Load and Store Building Blocks

LGen generates C-IR code by combining codelets from the target ISAÕs Loaders,
Storers, and " -BLACs. All of these codelets are implemented following a load-
compute-store approach, meaning that they Þrst load data from memory into
registers, then they process the data, and Þnally they store the results back to
memory. As a result, the generated C-IR code consists of chains of codelets,
where data ßow from one codelet to the next one. As an example, consider
the partial computation zT = aTB from ( 3.3) where the matrix B has now size
11! 3 and we consider a single row of A of length 11. Assume also that B is
16-byte aligned and stored in row-major order, that our target ISA is SSSE 3, and
that we decide to vectorize choosing " = 4. In Figure 3.9 we illustrate the ßow
of computations required to take into account the leftover (the 1 ! 3 matrix T)
produced by " -tiling.

The 1 ! 3 leftover tile of aT and the 3 ! 3 leftover tile of B are loaded to the
temporary quantities T0 and T1 (of sizes 1 ! " and " ! " ). A similar approach is
followed with the outputs using Storers. We focus on two consequences of this
approach.
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. . .
...

Loader Loader

Mul ! -BLAC

Storer Loader

Add ! -BLAC

Loader Storer

aT

B

t T
0 T1

t T
2

t T
3

t T
4

t T
5 t T

6

zT

Figure 3.9: C-IR codelets chain handling leftovers for zT = aTB. B is 11! 3, " = 4. White
elements in temporaries t T

0, ..., t T
6 are zeros.

First, embedding elements comes at the cost of extra computations. However,
the padding elements of an output quantity (e.g., t T

6 in Figure 3.9) are not stored
back. This allows the compiler to remove operations associated to them perform-
ing dead code elimination.

Second, the code associated to the store-load chaint T
2 $ t T

3 $ t T
4 should be

removed, holding the result from the multiplication in register for the second
computation (Add " -BLAC). However, as shown in Figure 3.10, on architectures
lacking mask-load and -store instructions, the special size of the output vector
(1 ! 3) requires additional data rearrangement overhead (e.g., vector shufßes).

Data between two consecutive codelets are stored in a local array. However, in
the example shown in Figure 3.9 the use of the temporary matrices T0, ..., T6 is
superßuous since the result of each codelet could be passed directly to the next
codelet through registers. Store-load elimination (SLE) is a compiler technique
that can be used to eliminate redundant memory accesses. As we explain in the
following, the challenge is in removing unnecessary shufßes.

problems using sle with intrinsics . Standard SLE works in the fol-
lowing way: Whenever a pair of load and store intrinsics with matching access
patterns is found, it is replaced with an assignment between vector variables.
By access pattern we refer to the mapping between memory locations and posi-
tions within a vector variable. Loads that do not follow any store with the same
access pattern are left unchanged. The same holds for stores that are not fol-
lowed by loads with the same access pattern. For example, Figure 3.11 depicts
the store-load chain from Figure 3.10 with access patterns depicted with arrows.
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/ * Begin nuBLAC mul * /
// ... nuBLAC multiplication
__m128 mul_res = ...;
_mm_storeu _ps(t2, mul _res);
/ * End nuBLAC mul * /

/ * Begin Storer 1x4 -> 1x3 * /
__m128 v0 = _mm_loadu _ps(t2);
_mm_storel _pi(( __m64* )(t3), v0);
_mm_store _ss(t3 + 2,

_mm_shuffle _ps(v0, v0, _MM_SHUFFLE(3, 3, 3, 2))
);
/ * End Storer 1x4 -> 1x3 * /

/ * Begin Loader 1x3 -> 1x4 * /
_mm_storeu _ps(t4,

_mm_shuffle _ps(
_mm_loadl _pi( _mm_setzero _ps(), ( __m64* )(t3)),
_mm_load _ss(t3 + 2),
_MM_SHUFFLE(1, 0, 1, 0)

)
);
/ * End Loader 1x3 -> 1x4 * /

Figure 3.10: SSSE3 code snippet for the store-load chain t T
2 $ t T

3 $ t T
4 in Figure 3.9).
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Figure 3.11: Example of SLE with load and store instrinsics. Both v0 and v4 contain a
leftover of length three.
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Finding store-load pairs to eliminate is thus equivalent to Þnding stores and
loads whose outgoing and ingoing arrows can be ÒwiredÓ together. Since storing
the three values a, b, c to memory is implemented in the same way as loading
them, we can safely wire up outgoing and ingoing connections. In other words,
applying SLE to this piece of code replaces the wired store-load pairs with as-
signments between variables v2 and v0, and between v3 and v1 (bottom-right
code snippet). However, shufßes are left untouched by the analysis.

better sle with generic c -ir vector load and store instructions .
To facilitate the application of SLE and avoid unnecessary shufße instructions
like the ones shown before, we use in our C-IR load and store instructions that
do not correspond to speciÞc intrinsics, but are generic enough to represent all
possible vector accesses to memory. These instructions are used during SLE and
are translated to speciÞc intrinsics only during unparsing C-IR into C code.

General purpose compilers, such as LLVM [ 73], provide generic vector instruc-
tions at the IR level. Our approach however, is closer in spirit to the work in [ 95]
and [35], where generic vector instructions are deÞned at a higher level of ab-
straction than usual vector data types and are geared towards working with
matrices. This enables the efÞcient handling of our domain of interest.

The full syntax of a generic load is GenLoad(addr, poslist, orientation) and the
one of a generic store is GenStore(addr, v, poslist, orientation) . The parameter
addr is a memory address, v is a vector variable, and poslist is a list that maps
memory locations to positions within the vector v. More speciÞcally, the i th
element of poslist maps the i th element starting from addr to a list of positions
within a vector. For example, GenLoad(addr, [ [0],[1],[2],[3] ], hor) loads four
consecutive elements starting from addr to the four positions of the returned
vector, while GenLoad(addr, [ [0,1,2,3] ], hor) loads one element at addr to all
four positions of the returned vector. The parameter orientation can take the
value hor or vert and determines whether the access refers to a row or a column
of a mathematical matrix. A generic load/store with orientation set to vert is
interpreted as a strided memory access, and the stride is obtained from the
mathematical layout of the accessed matrix.

Using these generic load/store instructions, for example, the code segment of
Figure 3.11 is transformed into the one shown in Figure 3.12. Applying SLE on
the latter will leave us with a single assignment, without any shufße instructions.
An example implementation of the generic load and store in Figure 3.12 on
NEON is shown in Figure 3.13. Note that the "non-dual" mapping of generic
loads and stores to code does not affect SLE.

optimal alignment detection . In Section 3.3.1, we mentioned that data
accesses are performed by default using unaligned instructions. Several proces-
sors with vector architectures offer both aligned and (slower) unaligned loads
and stores. Although for some architectures their performance difference is neg-
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Figure 3.12: Example of SLE with generic load and store C-IR instructions analogous to
the one in Figure 3.11.
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Figure 3.13: Unpacking-packing of a leftover of length three using a non-dual NEON
implementation of the generic store and load.

ligible for others this is not the case. For example, on embedded processors such
as Intel Atom and ARM Cortex-A 8 and -A9 aligned instructions are at least
twice as fast. Furthermore, on Intel Atom, unaligned instructions require two
out of two issue ports for execution, making it impossible to issue an unaligned
load simultaneously with an unaligned store. In contrast the aligned ones re-
quire only one port [ 60].

For these reasons we incorporated into LGen an alignment detection algo-
rithm based on abstract interpretation [ 18] at the C-IR level. The idea behind
the algorithm is as follows: First the C-IR code is analyzed by applying abstract
interpretation using the abstract domain of congruences [ 46]. This analysis is
similar to the congruence detection technique described in [ 72] and determines
for each memory access, whether all the addresses used in this access during
program execution are guaranteed to be divisible by the ISA-speciÞc alignment
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length. In the afÞrmative case, an aligned load or store intrinsic is generated
when unparsing to C code. Otherwise an unaligned instruction is generated.

Note that if the alignment of the input and output arrays is not known at
compile time, LG en can generate various code versions, one for each of the
possible alignments, including the control to select the proper one at runtime.

In our context, all addresses are afÞne combinations of induction variables.
Based on this restriction, one can prove that our alignment analysis is pre-
cise [69], i.e., each aligned memory access is detected and there are no false
negatives.

3.4 relationship to prior spiral -l ike attempts at l inear alge -
bra

We conclude this chapter comparing our approach to the one taken by the Op-
erator Language (OL) [21, 33], a previous Spiral -like DSL and framework used
to generate GEMM among other functionalities. OL is an extension of the Sig-
nal Processing Language (SPL) [120] originally used in S piral to describe linear
transforms.

OL inherits features from SPL that are typical of the domain of transforms.
In particular, OL is designed to represent and manipulate operators on vectors
using a point-free notation, meaning that the input and output quantities of
a computation are not explicitly represented. For example, the multiplication
matrix-matrix multiplication C = AB, with A # Rm,k , B # Rk,n , and C # Rm,n ,
is represented only in terms of its bilinear operator:

MMM m,k,n : Rmk ! Rkn $ Rmn ; (vec(A), vec(B)) .$ vec(AB),

where the function vec produces a vector of size mn from a matrix of size m ! n
linearized in row-major order. In contrast to LL, OLÕs notation yields a more
complex and less conventional representation of linear algebra expressions (an
example of generation of straightforward code for MMM m,k,n is provided in
Appendix A). For this same reason, developing and debugging OL formulations
may represent a complex task for a developer used to the notation adopted by
linear algebra sources such as [24, 40, 107].

Further, representing input and output features such as the structure of a
matrix, might result less natural with a point-free notation. Structures in LL are
associated to matrices using an approach discussed in detail in the next chapter.

Finally, tiling with factors that do not divide the input dimensions is captured
by OL for matrix-matrix multiplication, but leftover computations are not easily
expressible [21]. This could reßect in equally complex formulations of leftover
computations in a BLAC.
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ol as a mathematical intermediate representation . Despite dis-
advantages in representing linear algebra computations such as those listed
above, we think that the use of OL in the context of a multi-domain code gen-
erator should be investigated further. In particular, its ability to capture compu-
tations from different mathematical domains could make OL an intermediate
mathematical language for expressing cross-domain optimizations.
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A B A S I C L I N E A R A L G E B R A C O M P I L E R F O R S T R U C T U R E D
M AT R I C E S

The cost of computing a BLAC can be signiÞcantly reduced if the matrices have
structure. For example, multiplying two upper triangular matrices requires only
about one-sixth of the total amount of instructions necessary to multiply two
general matrices (see Section2.1.4). Further, the storage scheme of a structured
matrix must be taken into account to ensure correct access to the data. For ex-
ample, adding a symmetric matrix to a general one may require different ac-
cess patterns for the two matrices. In this chapter we extend LGen to support
sBLACs, i.e., the class of basic linear algebra computations with structured ma-
trices introduced in Section 2.1.4.

In the previous chapter we described how LG en could be used to generate
code for a BLAC using as a running example a GEMM of the form:

C = AB + C. (4.1)

Assume now the goal of generating code for a " -way vector ISA, with " = 2,
for the sBLAC

A = LU + S, A, L, U, S # R4! 4, (4.2)

which is analogous to ( 4.1) but includes a lower and an upper triangular matrix,
i.e., L and U, and a symmetric matrix S.

program generation with lgen . We brießy recall how the previously
described LGen (Figure 3.1) would generate code for ( 4.2) in six steps:

¥ Step1: Tiling in LL. The input BLAC, represented as an LL statement, is
tiled recursively with Þxed parameters (a degree of freedom; perfect divis-
ibility is not required) and propagates the tiling decision to the operands.
If code for a " -way vector ISA is desired, the lowest level block size has to
be " to decompose the computation into pieces, called " -BLACs, that can
be mapped well to vector code. In our example, we consider only one level
of tiling with " = 2:

[A = LU + S]","
" = 200$ [A]2,2 = [ L]2,2[U]2,2 + [ S]2,2. (4.3)

57
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¥ Step2: Conversion from LL to! -LL. A fully tiled LL statement is rewritten
into a second DSL called ! -LL. This representation is still mathematical
and makes loops and data accesses explicit. The latter are captured as
explicit gather and scatter operators on matrices to allow for reasoning and
fusion through rewriting. In our example, from ( 4.3) LGen would derive
the following ! -LL statement:

A =
&

i,j #{0,2}

2,2
4,4[i, j ] (

!

#
&

l,r,k #{0,2}

2,2
4,4[l, r ]

+
L[l, k ]4,4

2,2U[k, r ]4,4
2,2

,
$

& [i, j ]4,4
2,2 (4.4)

+ S[i, j ]4,4
2,2

) .

¥ Step3: Loop-level transformations.At this step a ! -LL statement can be trans-
formed by manipulating summations, gathers, and scatters. In the Þnal
code this would correspond, e.g., to loop fusions or loop exchange. For ex-
ample, starting from ( 4.4), LGen could fuse loops by distributing the Þrst
gather [i, j ]4,4

2,2 (second line) over the innermost summation to obtain

A =
&

i,j #{0,2}

[i, j ]

!

#
&

k#{0,2}

L[i, k ]U[k, j ] + S[i, j ]

$

& . (4.5)

¥ Step 4: Conversion from! -LL to C-IR. At this point the ! -LL representa-
tion in ( 4.5) has the following features: (a) the number of summations and
their order is deÞned, (b) (if vectorization is enabled) the entire formu-
lation is decomposed into " -BLACs, meaning that all operations are per-
formed on " -tiles of the input matrices. The translation between ! -LL and
C-IR (LGenÕs C-like IR) is performed by mapping summations to loops,
" -BLACs to codelets, and gathers and scatters to data accesses." -BLACs
are the 18 single-operation BLACs that operate on tiles of size " ! " , 1 ! " ,
and " ! 1 with the four BLAC operators introduced in Section 3.3.1. They
are preimplemented once for every vector ISA. The gathers and scatters
are associated to a collection of vectorized data access basic blocks, called
Loaders and Storers, that are used to perform low level optimizations in-
cluding handling leftovers.

¥ Step5: Code-level optimizations.Before unparsing to C code LGen may ap-
ply further optimizations such as loop unrolling, scalar replacement, con-
version into SSA form, and alignment detection.
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¥ Step6: Performance tests and autotuning.Finally, LG en unparses the C-IR
into C code vectorized with intrinsics and tests its performance. Autotun-
ing is used to Þnd the best result among available variants.

One may notice that certain computations in ( 4.5) are redundant, e.g., L[0, 2]U[2, j]
and L[2, 2]U[2, 0]. Also, a common standard for symmetric matrices stores only
one side of the matrix, e.g., the lower one. In this case, access toS[0, 2] should
be replaced with S[2, 0]T.

In the following sections we will show how to perform these analyses and
transformations with LG en. In particular, we will propose a methodology that
combines LGenÕs internal DSLs with ideas from polyhedral compilation.

In Section 4.1, we introduce notions from the polyhedral model needed to
represent matrix structures and reason about them. In the same section, we also
present two tools from the polyhedral toolchain used to extend LG en.

In Section 4.2, we explain how structured matrices are represented internally
by LGen and describe how code is generated from an sBLAC. Section 4.3 pro-
vides a more detailed overview of the vectorization approach.

In this chapter, we mainly focus on lower triangular, upper triangular, and
symmetric matrices as prototypical examples. However, the methodology is ex-
tensible to include a much larger set of matrix structures as we discuss in Sec-
tion 4.4.

4.1 the polyhedral model

The polyhedral model [ 32] is a mathematical representation for a class of loop-
based, parallel programs. By a loop-based program we mean one composed of
statements possibly surrounded by loop nests. Loops can be perfectly or imper-
fectly nested, depending on whether they contain statements only in the inner-
most loop or not. Finally, conditions on loop indices are expressed with afÞne
constraints in Presburger arithmetic (i.e., constraints built with only additions
on integer variables and constants).

To illustrate the model, we will consider the following implementation in C of
the GEMM computation in Algorithm 2.5, where we label the single statement
in the innermost loop as S0:

for (i=0; i<m; ++i)

for (j=0; j<n; ++j)

for (l=0; l<k; ++l)

S0: C[i * n+j] += A[i * k+l] * B[l * n+j];

The polyhedral model of a programÕs statement consists of:

¥ A set of integer points bounded by a polytope called the iteration domain
of the statement. The dimensions of the polytope are associated with the
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number of loops surrounding the statement and its boundaries with the
boundaries of the loops. For instance, statement S0 in the above program
is executed kmn times for different values of (i, j, ' ). The set of all values
of the indices for which the statement has to be executed (i.e., its iteration
domain) is therefore the following three-dimensional polytope or polyhe-
dron:

, S0 = {(i, j, ' ) # Z 3 | 0 ! i < m, 0 ! j < n, 0 ! ' < k },

where, for example, the tuple (0, 1, 2) # , S0 is associated with the execution
of C[1] += A[2] * B[2 * n+1] .

¥ A function that provides an execution order for every point in the poly-
tope called the scheduleof the statement. For example, the schedule for the
program above is represented by a function that maps every tuple in the
iteration domain of statement S0 to a tuple that represents a logical time
for its execution:

f (i, j, ' ) = ( i, j, ' ), (i, j, ' ) # , S0. (4.6)

In the context of linear algebra computation, we will call iteration spacethe
union of of the iteration domains of all the statements required to compute it.
For example, the iteration space of the implementation of the matrix-matrix mul-
tiplication shown above coincides with the iteration domain of its only statement
S0 (i.e., , S0).

Next, we explain how the polyhedral model is used in a polyhedral compila-
tion process.

4.1.1 Polyhedral Compilation Process

Polyhedral compilation tools such as Pluto [ 16] and LLVM/Polly [ 47], manip-
ulate polyhedral representations, such as the one just described, to apply code
transformations, such as loop parallelization and vectorization.

The process normally requires to (a) translate a program to its polyhedral
representation, (b) to apply transformations that produce new iteration domains
or schedules or both, and (c) to generate a new program which loops visit (or
scan) every point of every polytope following their schedules.

The Chunky Loop Generator (CL ooG) [9] is a polyhedral tool that handles
the latter code generation step. Given a set of statements with their respective
iteration domains and schedules, CLooG generates a loop-based program that
properly combines them. For example, assume that some transformation pro-
duces a new function f /(i, j, ' ) = ( i, ', j ) for tuples in , S0. Then, passing the
triplet <S0, , S0, f !> as an input to CL ooG produces the following C code:

for (i=0; i<m; ++i)
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for (l=0; l<k; ++l)

for (j=0; j<n; ++j)

C[i * n+j] += A[i * k+l] * B[l * n+j];

In this chapter we describe an approach based on an extension of CLooG
for manipulating sBLACs at a high level of abstraction. In particular, we will
use polyhedral sets to represent both regions in matrices and iteration spaces of
computations and polyhedral maps to represent access patterns of matrices and
schedules.

In the remainder of this section, we Þx the notation for polyhedral sets and
maps in accordance with the integer set library (isl) [ 111], which is used in LG en
to implement such concepts.

4.1.2 Polyhedral Sets and Maps

The two essential concepts used in our deÞnition of structures are polyhedral sets
and relations (called mapsin [ 111]) of n-tuples of integers bounded by m afÞne
constraints. A set of such n-tuples is deÞned as

, = ' i {t # Z n | 1c # Z e : Ai t + Ei c + zi " 0}, (4.7)

where Ai # Z m! n , Ei # Z m! e, zi # Z m, and " is componentwise. The existential
quantiÞer allows us to deÞne tuples at a stride. For example, the following sets

, 1 = {(i, j ) | 0 ! i < 4 ! 0 ! j < 4 },

, 2 = {(i, j ) | 1a, b : 0 ! i, j < 4 ! i = 2a ! j = 2b} (4.8)

can be used to represent all integer points in a square of size 4 ! 4 (, 1) or those
at a stride 2 (, 2). The Þrst set would be given by

A0 =
1 1

1
! 1

! 1

2
, E0 = 0, z0 = ( 0 0 3 3)T.

The second set requires the inclusion of i ! 2a " 0, i ! 2a ! 0, j ! 2b " 0, and
j ! 2b ! 0.

Maps in [ 111] are relations between sets and deÞned as:

/ = ' i {(t 0, t 1) # Z n0 ! Z n1 | 1c # Z e : Ai t 0 + Bi t 1 + Ei c + zi " 0}.

Polyhedral maps can be used to describe schedules such as (4.6) as follows:

/ f = {(( i, j, p ), (p, i, j )) }.
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A : Matrix(4, 4);
L : LowerTriangular(4);
U : UpperTriangular(4);
S : Symmetric(l, 4);

A = L* U+S;

Figure 4.1: LL implementation of the sBLAC ( 4.2).

4.2 code generation with structured matrices

In this section we discuss how structures are deÞned in LG en using polyhedral
sets and maps. The approach is designed to be extensible: adding a new struc-
ture to LG en requires the inclusion of two different interfaces, one towards the
user and one towards LGen itself.

From a user perspective, a structured matrix is just another type of matrix
within an LL input program. For example, Figure 4.1 shows a simple LL imple-
mentation of ( 4.2).

A structured matrix, however, also needs an internal interface to LG en to
enable its decomposition in ! -LL. We build this interface using the isl library
and the polyhedral formalism introduced in the previous section.

4.2.1 Internal Representation of Structures inLGen

We associate every matrix with a pair of dictionaries called SInfo and AInfo .
SInfo associates regions of a matrix to structures. Its entries have the form

M : , , where M is a matrix type and , a polyhedral set that represents an area
of the matrix that can be considered of type M .

Matrix types are denoted with the notation used for matrix structures in Sec-
tion 2.1.4, i.e., L , U, and S for, respectively, lower triangular, upper triangular,
and symmetric matrices. In addition, with a similar notation, we refer to a gen-
eral matrix type with Gand to a zero matrix type with Z.

For example, the matrix L in ( 4.2) has the following SInfo :

L.SInfo =
+

G: {(i, j ) | 0 ! i < 4 ! 0 ! j ! i }
Z : {(i, j ) | 0 ! i < 4 ! i < j < 4 }

,
.

This means that every scalar element in region L.SInfo [G] has general structure,
while every element in L.SInfo [Z] has a zero structure. Note that this method
allows the deÞnition of blocked structures (e.g., where the top left quadrant is
symmetric), which appear in several applications.
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Similarly, we deÞne the SInfo dictionaries of A, U, and S:

U.SInfo =
+

G: {(i, j ) | 0 ! i < 4 ! i ! j < 4 }
Z : {(i, j ) | 0 ! i < 4 ! 0 ! j < i }

,
,

A.SInfo = S.SInfo = {G: {(i, j ) | 0 ! i, j < 4 }}.

An AInfo associates regions of a matrix to information on how to access their
elements. Entries for AInfo have the general form

, : (g : Rm! n .$ Rr! c, p : Rr! c .$ Rr! c),

where , is a polyhedral set, g is a gather operator (see Section3.2.3), and p a
permutation operator that can be applied to a gathered block. In other terms, in
region , a block should be accessed using the composed operatorp(g(á)) . For
example, assuming the symmetric matrix S in (4.2) stores only its lower part, it
has the following AInfo :

+
{(i, j ) | 0 ! i < 4, 0 ! j ! i } : ([i, j ]4,4

1,1, id )
{(i, j ) | 0 ! i < 4, i < j < 4 } : ([j, i ]4,4

1,1, id )

,
,

where id is the identity permutation. Accessing element (0, 3) would yield id (S[3, 0]) =
S[3, 0]. For matrices A, L, and U the accesses are unmodiÞed:

A.AInfo =
-

{(i, j ) | 0 ! i, j < 4 } : ([i, j ]4,4
1,1, id )

.
,

L.AInfo =
-

{(i, j ) | 0 ! i < 4 ! 0 ! j ! i } : ([i, j ]4,4
1,1, id )

.
,

U.AInfo =
-

{(i, j ) | 0 ! i < 4 ! i ! j < 4 } : ([i, j ]4,4
1,1, id )

.
.

In the remainder of this section, we present our approach, and its implemen-
tation within LG en, to generating optimized code for sBLACs using the polyhe-
dral representation of matrix structures just presented.

4.2.2 Scalar Code Generation

As a running example we will use the sBLAC from ( 4.2):

A = LU + S, A, L, U, S # R4! 4,

which contains three differently structured matrices. First, we assume scalar
(non-vectorized) code as output.

The steps in the generation closely follow the ones of the original LG en
summarized at the beginning of this chapter, however with several important
changes as described here.
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Table 4.1: Examples of structure inference rules.

M ! M $ M , M # {G, L , U}, ! # {+ , á} (4.9)

#M $ M , M # {G, L , U, S} (4.10)

L T = U, UT = L , ST = S (4.11)

MM T is S, M is M # {G, L , U, S} (4.12)

M is L , U 2 [M ]r,r is L , U (4.13)

!"

#"

$"

%"
&"

LL sBLAC

   -LL sBLAC�� !

StmtGen

CLooG

Set of tuples
<domain, schedule, body>

�� "   - CLooG

Figure 4.2: Architecture of the ! -CLooG rewriting module. The module is an extension
of the original rewriting system of LG en presented in Section 3.2.3.

step 1: ti l ing and structure inference . Given the LL program in
Figure 4.1 as an input, Step 1 proceeds as discussed in Section3.2.2. In addition,
structure information is propagated to the implicit matrices in the expression
tree using type inference rules from well-known mathematical properties such
as those provided in Table 4.1. In our example, both LU and LU + S are of type
G.

step 2: from ll to ! -l l . The rewriting system mentioned in Section 3.2.3
is substituted with an intermediate new module called ! -CLooG based on the
CLooG generator presented in Section 4.1.1. ! -CLooG is schematically shown
in Figure 4.2. It consists of two main components: (i) the statement generator
StmtGen and (ii) an extended version of CL ooG with a backend to output ! -LL.
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The input to ! -CLooG is an sBLAC in LL from Step 1 and its output a trans-
lation of the input into an equivalent ! -LL formulation. For example, given the
sBLAC (4.2), the following ! -LL statement is a possible output:

A =
2&

i= 0

!

#
i&

j= 0

[i, j ](L[i, 0]U[0, j] + S[i, j ]) (4.14)

+
3&

j= i+ 1

[i, j ](L[i, 0]U[0, j] + S[j, i ])

$

& (4.15)

+
3&

j= 0

[3, j](L[3, 0]U[0, j] + S[3, j]) (4.16)

+
3&

k= 1

3&

i= k

3&

j= k

[i, j ](L[i, k ]U[k, j ]). (4.17)

Note that redundant multiplications (with zero) do not occur and that the sym-
metry of S has been taken into account (i.e., only the part below the diagonal is
accessed).

To achieve this, the input sBLAC is transformed using the information SInfo

and AInfo of the matrices. This information is used to produce a set of CL ooG
statements. Every such statement is a triplet <body, domain, schedule> where: (a)
domain is a polyhedral set , representing the iteration domain of the statement;
(b) schedule is a polyhedral map / that determines the traversal or scanning order
of the domain Õs tuples; (c)body is a ! -LL expression B. For example, the statement

s = , , = {(i, k, j ) | k = 0 ! 0 ! i < 4 ! 0 ! j ! i },

/ = (( i, k, j ), (k, i, j )) , (4.18)

B = [ i, j ](L[i, k ]U[k, j ] + S[i, j ])-

is used to generate (4.14) and (4.16) (which is ( 4.14) with i = 3, split off). In
particular, the domain speciÞes the range of the indices appearing in the body

and the schedule their order. Next we describe how StmtGen recursively creates
statements such as (4.18) by processing bottom-up the LL expression tree of the
input sBLAC. We Þrst explain the creation of domains and bodies. Then, once
the entire tree is processed, we present how schedules are determined from it.

step 2.1: generating domains and bodies for operations on leaves .
The Þrst operation performed by StmtGen is the creation of a unique index space
for the input sBLAC. For our running example, three indices are needed:

A{i,j } = L{i,k }U{k,j } + S{i,j }.
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Such an index space is then used to expand theSInfo and AInfo dictionaries of
the occurring matrices. In our case, the regions of the structured matrices are
expanded to prisms:

L.SInfo =
+

G: {(i, k, j ) | 0 ! i < 4 ! 0 ! k ! i }
Z : {(i, k, j ) | 0 ! i < 4 ! i < k < 4 }

,
(4.19)

U.SInfo =
+

G: {(i, k, j ) | 0 ! k < 4 ! k ! j < 4 }
Z : {(i, k, j ) | 0 ! k < 4 ! 0 ! j < k }

,
(4.20)

A.SInfo = S.SInfo = {G: {(i, k, j ) | 0 ! i, j < 4 }}. (4.21)

Similarly, the following AInfo s are computed:

L.AInfo =
/

{(i, k, j ) | 0 ! i < 4 ! 0 ! k ! i } : ([i, k ]4,4
1,1, id )

0
,

U.AInfo =
/

{(i, k, j ) | 0 ! k < 4 ! k ! j < 4 } : ([k, j ]4,4
1,1, id )

0
,

S.AInfo =
+

{(i, k, j ) | 0 ! i < 4, 0 ! j ! i } : ([i, j ]4,4
1,1, id )

{(i, k, j ) | 0 ! i < 4, i < j < 4 } : ([j, i ]4,4
1,1, id )

,
, (4.22)

A.AInfo =
-

{(i, k, j ) | 0 ! i, j < 4 } : ([i, j ]4,4
1,1, id )

.
.

Next, StmtGen builds a set of statements for every operator in the input sBLAC
bottom-up, starting from the inputs. In our case the Þrst operation is LU. To
build statements for LU we begin by determining its iteration space. In general,
the iteration space for matrix multiplication is a cuboid (Figure 4.3(a)). How-
ever given the presence of zero regions in (4.19) and (4.20), the redundant zero
computations can be excluded (Figure 4.3(b)) by computing the iteration space
as

iterSpaceLU = L.SInfo [G] 3 U.SInfo [G]

= {(i, k, j ) | 0 ! k < 4 ! k ! i, j < 4 }.

In general (e.g., for vectorization), our approach computes the iteration spaces
for all combinations of nonzero operands (e.g., GG, GL, etc.) using Algorithm 4.1.

Algorithm 4.1 Computing the iteration space for matrix-matrix multiplication.
Input: matrices I0 and I1.
Output: The iteration space ( iterSpace) of I 0I 1.

iterSpace( 4
for (M 0 : , 0) # I 0.SInfo : M 0 5= Z do

for (M 1 : , 1) # I 1.SInfo : M 1 5= Z do
// Iteration space based on all pairs of non-zero, input regions.
iterSpace= iterSpace' (, 0 3 , 1);

end for
end for
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Figure 4.3: Iteration space of LU with redundant zero computations (a) and without (b).

output init ialization . Matrix-matrix multiplication accumulates along
the k-axis of its iteration space. In general, the StmtGen module has to decide
whether it is necessary to initialize the output or not. Our input sBLAC is not an
update computation and therefore StmtGen cannot use the output as an accumu-
lator without initializing it Þrst. At this point, it could decide either to introduce
zeroing statements and then accumulate across the whole iterSpaceLU or to iden-
tify the set of points of iterSpaceLU that Þrst touch the output, splitting it from
all remaining points of iterSpaceLU.

We describe the latter option, which reduces to the problem of identifying the
region of points in the iteration space with minimum coordinates along the axes
of accumulation. In our example, the computation accumulates along the k-axis
and StmtGen needs to identify the following initialization set:

iterSpaceinit
LU = {(i, k, j ) | (i, k, j ) # iterSpaceLU,

! (i, k /, j ) # iterSpaceLU : k / ! k}

= {(i, 0, j ) | 0 ! i < 4 ! 0 ! j < 4 }.

Splitting the region above from the rest of the iteration space StmtGen also obtains
the accumulation points:

iterSpaceacc
LU = iterSpaceLU\ iterSpaceinit

LU

= {(i, k, j ) | 1 ! k < 4 ! k ! i, j < 4 }.

The two partial iteration spaces above are illustrated in Figure 4.4.
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i

j

k

iterSpaceacc
LU

iterSpaceinit
LU

Figure 4.4: Iteration space of LU split into output initialization (black dots) and output
accumulation (gray dots) space.

fixing domains and bodies . To derive the Þnal domains and bodys asso-
ciated with the two partial iteration spaces above, these need to be intersected
with the regions in the respective AInfo dictionaries, which explain how matrices
are accessed. Since in our examples only symmetric matrices have special access,
nothing changes:

dominit
LU = iterSpaceinit

LU ,

domacc
LU = iterSpaceacc

LU ,

and using the gathers from AInfo StmtGen constructs the associated bodies (which
in this case are the same):

B init
LU = B acc

LU = [ i, j ](L[i, k ]U[k, j ]).

Two statements are thus obtained:

s init
LU = , dominit

LU , 4, B init
LU -,

s acc
LU = , domacc

LU , 4, B acc
LU -.

The schedules are left empty as they will be computed last. The general version
of this approach for arbitrarily structured inputs is shown in Algorithm 4.2.

step 2.2: generating domains and bodies for operations recur -
sively . As mentioned, the generation of domains and bodies is done bottom-
up. In our example, the operation following LU is the addition LU + S. For the
computation of its CL ooG statements, StmtGen uses an approach similar to the
one used before. However, asLU is not an input matrix, its set of (already gener-
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Algorithm 4.2 Building CL ooG statements for matrix-matrix multiplication.
One statement is created for every combination of input and output regions
that intersect the iteration space. Schedules are generated separately.
Input: iterSpace init , iterSpaceacc, I 0, I 1, and T.
Output: CL ooG statements (stmts) for T = I0I 1.

stmts( 4
for (, 0 : (g0, p0)) # I 0.AInfo do

for (, 1 : (g1, p1)) # I 1.AInfo do
for (, T : (gT, pT)) # T.AInfo do

for , space # { iterSpaceinit , iterSpaceacc} do
dom ( , 0 3 , 1 3 , T 3 , space
if dom5= 4 then

Gather + permute inputs and multiply.
m ( p0(g0(I 0)) áp1(g1(I 1))
Permute + scatter output.
B ( g! 1

T (p! 1
T (m))

Save new statement.
stmts( stmts' {, dom, 4, B-}

end if
end for

end for
end for

end for

ated) CLooG statements is used as input this time. As before, StmtGen computes
Þrst the iteration space. Using (4.21) it gets the trivial result

iterSpace= {(i, k, j ) # , | (M : , ) # A.SInfo , M 5= Z}

= {(i, k, j ) # A.SInfo [G]}

= {(i, k, j ) | 0 ! i, j < 4 },

where A is the output of the operation.
Next, it derives the CL ooG statements, i.e, a possible splitting into domains

and the associated bodies using a general algorithm for matrix addition that
operates analogous to Algorithm 4.2. It does this by intersecting iterSpacewith
(a) the domain of s init

LU and (b) the regions from S.AInfo in (4.22). Since there are
two such regions (here denoted with , S,0 and , S,1) two domains are computed.
Both have initialization accesses only and accumulating accesses do not occur:

dom0 = iterSpace3 dominit
LU 3 , S,0

= {(i, 0, j ) | 0 ! i < 4, 0 ! j ! i },

dom1 = iterSpace3 dominit
LU 3 , S,1

= {(i, 0, j ) | 0 ! i < 4, i < j < 4 }.
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Using s init
LU and S.AInfo we compute the associated two bodies:

B0 = [ i, j ]
+

B init
LU' () *

[i, j ](L[i, k ]U[k, j ])[i, j ] + S[i, j ]
,

= [ i, j ]
+

L[i, k ]U[k, j ] + S[i, j ]
,

,

B1 = [ i, j ]
+

B init
LU' () *

[i, j ](L[i, k ]U[k, j ])[i, j ] + S[j, i ]
,

= [ i, j ]
+

L[i, k ]U[k, j ] + S[j, i ]
,

.

With the new domains and bodies, StmtGen can Þnally construct the statements
that lead to the Þnal output in ( 4.14)Ð(4.17):

s0 = ,dom 0, 4, B0-, s1 = ,dom 1, 4, B1-, s2 = s acc
LU .

Before feeding the statements to CLooG, StmtGen needs to complete them with
schedules.

We emphasize that the method sketched here on a simple example can cor-
rectly derive and exploit intermediate structures including blocks in multi-level
blocking of expressions as complex as, e.g.,A = ( L0 + L1)S1 + xxT.

step 2.3: building the schedules . After step 2.2 the root operator con-
tains all necessary statements for the given sBLAC albeit without schedules. To
add the schedules, StmtGen Þrst computes a global order over the index space of
the sBLAC. This can be done by assuming performance models such as those
of the original LG en presented in Section 3.2.4. For example, assuming they
provide the order (k, i, j ), StmtGen can deÞne the schedule/ = {(( i, k, j ), (k, i, j )) }.
Completing s0, s1, and s2 with / , CLooG produces the expression in (4.14)Ð(4.17)
as the input to the next step in LG en.

steps 3 to 6 : from ! -l l to output code . For scalar code generation
the remaining three steps are similar to the original LG en (Sections3.2.4Ð3.2.7).
From the ! -LL statement in ( 4.14)Ð(4.17), LGen generates the C code in Fig-
ure 4.5.

4.3 vectorization approach

Enabling vectorization, introduces at least one level of tiling for " -BLACs as
explained in Section 3.3.1. We now discuss how this affects the internal repre-
sentation of structures. We again use our example sBLAC (4.2) assuming we
want to vectorize for a microarchitecture with a 2-way vector ISA ( " = 2).
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for ( int i = 0; i <= 2; i++ ) {
for ( int j = 0; j <= i; j++ ) {

A[4 * i+j] = L[4 * i] * U[j] + S[4 * i+j];
}
for ( int j = i + 1; j <= 3; j++ ) {

A[4 * i+j] = L[4 * i] * U[j] + S[i+4 * j];
}

}

for ( int j = 0; j <= 3; j++ ) {
A[j+12] = L[12] * U[j] + S[j+12];

}

for ( int k = 1; k <= 3; k++ ) {
for ( int i = k; i <= 3; i++ ) {

for ( int j = k; j <= 3; j++ ) {
A[4 * i+j] += L[4 * i+k] * U[4 * k+j];

}
}

}

Figure 4.5: Output C code for sBLAC ( 4.2).

4.3.1 Internal Representation of Tiled Structures

When a structured matrix is " -tiled for vector instructions, it is viewed as a
matrix of " ! " blocks. Viewed like this, the matrix will still have structure. For
example, an L or U matrix has the same structure when " -tiled. In principle,
this could be derived automatically. We chose to incorporate this information
into our system by providing the associated deÞnitions of SInfo and AInfo for the
blocked matrix in each case and for a generic block size. This deÞnition can then
be instantiated for speciÞc cases. For example, for a" -tiled symmetric matrix
(instantiated for " = 2) one gets

[S] 2,2 .SInfo =
+

G: {(0, 2), (2, 0)}
S : {(0, 0), (2, 2)}

,
,

[S] 2,2.AInfo =
+

{(0, 0), (2, 0), (2, 2)} : ([i, j ]4,4
2,2, id )

{(0, 2)} : ([j, i ]4,4
2,2, (á)T)

,
.

This speciÞes, for example, that the tile at (0, 2) is accessed asS[2, 0]T. Next we
sketch how these new deÞnitions interact with the approach of ! -CLooG.
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4.3.2 Vector Code Generation

Vectorization introduces a coarser basic block deÞnition for the matrices. From
the ! -CLooG perspective, this only means the construction of sparser domains
of the statements, where polyhedral points are accessed at a stride as in (4.8).
The approach taken in Algorithm 4.2 (and similarly those taken by the other op-
erators) would then derive more structure combinations. For example, consider
the computation of [L]2,2[U]2,2. The iteration space would be constructed based
on the following combination of structures:

L U G LGLU

GU GGG L U LU
+=

This yields four initialization statements for the four different structure combi-
nations (i.e., LU , LG, GU, and GGin the Þrst output square) and a single accu-
mulation statement. Completing with addition, and using the schedule deÞned
in Section 4.2.2, step 2.3, it produces the following ! -LL output:

A = [ 0, 0](L[0, 0]U[0, 0] + S[0, 0])

+ [ 0, 2](L[0, 0]U[0, 2] + ( S[2, 0])T)

+ [ 2, 0](L[2, 0]U[0, 0] + S[2, 0])

+ [ 2, 2](L[2, 0]U[0, 2] + S[2, 2])

+ [ 2, 2](L[2, 2]U[2, 2]).

The above expression is completely decomposed into " -BLACs and thus in prin-
ciple mappable to vector code. However, it features different kinds of tiles (e.g.,
L[0, 0] is L , L[2, 0] is G, and S[0, 0] is S) that enforce different kinds of computa-
tions (e.g., L[0, 0]U[0, 0] is an LU multiplication while L[2, 0]U[0, 0] is GU). Simply
ignoring the structure by using generic " -BLACs is not possible since, by con-
vention, data accesses above the diagonal are not allowed forL , U, and S.

mapping structures to vector code . As explained in Section 3.3, the
translation between ! -LL and C-IR is based on three collections of codelets
called Loaders, Storers, and" -BLACs. The Þrst two handle data accesses while
the latter does the computation. When mapping structured " -BLACs to vector
code we use the generic computation but extend the Loaders and Storers to
prevent illegal accesses. For example, consider the load of the lower triangular
block L[0, 0]. The expected behavior of the Loader would be the following:

)
' 0,0 x
' 1,0 ' 1,1

*
Load000$

)
' 0,0 0
' 1,0 ' 1,1

*
. (4.23)
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Here, a 0 is inserted by the Loader in place of x and used in the computation.
Once matrices are loaded, the computations can be performed using the original
18 " -BLACs (a slight inefÞciency) introduced in Section 3.3.1.

4.4 extensibil i ty to new structures

We designed our approach to be extensible to new structures. Provided a struc-
ture can be described using isl (see Section4.1.2), including it into LG enÕs types
requires the addition of:

¥ A structure deÞnition: SInfo and AInfo dictionaries (Section 4.2.1).
¥ A set of Loaders and Storers: vectorized codelets for accessing" -sized matri-

ces with the new structure (Section 4.3.2).

As an example, we brießy discuss the addition of banded matrices with band-
with k illustrated below:

j = i + k

j = i ! k

As in the triangular case, the scalar deÞnition of their SInfo would contain two
regions, a general region for the band and one or two zero regions outside the
band. For example, asssuming the matrix above has sizem ! n, it would have
the following SInfo :

+
G: {(i, j ) | 0 ! i < m ! max(0, i ! k) ! j < min (n, i + k)}
Z : {(i, j ) | 0 ! i < m ! (0 < j < i ! k " i + k < = j < n )}

,
. (4.24)

Producing vector code for a " -way vector ISA would require special Loaders
and Storers at the sub- and super-diagonals. For example, consider " -tiling the
matrix above assuming it has dimensions 4" ! 4" . If " |k, then the new 4 ! 4
matrix of matrices would have tiles of the following types:

3

4
4
5

G G øL Z
G G G øL
øU G G G
Z øU G G

6

7
7
8 , (4.25)
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where the types øL and øU are strictly lower and upper triangular, respectively.
Otherwise, if " " k, tiling would create the following type subregions:

3

4
4
5

G K øL Z
J G K øL
øU J G K
Z øU J G

6

7
7
8 , (4.26)

where J and K are upper and lower Hessenberg types, respectively. If a banded
matrix is also symmetric then support can be added by combining the SInfo de-
scription sketched in ( 4.25) and (4.26) with an AInfo similar to the one described
for the general case in Section4.2.1.

Blocked structures as, for example,

1
G L
S U

2
,

can be added by recursively fusing the SInfo and AInfo dictionaries of the occur-
ring structures. This is possible since isl supports unions of regions as shown in
(4.7).

experience in extensibil i ty . As part of a three-month project at the De-
partment of Mathematics of ETH Zurich, a student tested the approach by ex-
tending LG en with two additional types: The tridiagonal type and the uniform
composition type.

The tridiagonal type is a special type of banded matrix that can described
with ( 4.24) for k = 1. Matrices of this type were then used to generate code for
solvers of tridiagonal systems with LG en. We will present an extension of LG en
for higher level computations, including solving systems of equations, in the
next chapter.

The uniform composition type was deÞned as a parametric type, where a ba-
sic structure is replicated several times both vertically and horizontally. Matrices
with such structure can occur in the context of multi-agent control systems [ 19].
An example is the following matrix obtained by composing 2 ! 3 upper triangu-
lar matrices:

The following is an example of the declaration in LL of the matrix above using
the new uniform composition type:

A : Uniform< UpperTriangular(4) >(2,3);
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where A is an 8 ! 12 matrix composed of 6 smaller, upper triangular matrices
of size 4 ! 4. In general, a uniform composition type replicates an existing LL
matrix type M in a new m ! n grid structure:

,M -m! n :=

3

4
5

M á á áM
... ... ...

M á á áM

6

7
8

) *' (
n

1
#2

#3
m , M # {L , U, S, . . .}.
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P R O G R A M S Y N T H E S I S F O R L I N E A R A L G E B R A

In this chapter we make one Þnal step towards the goal of this work presented
in Section 1.1: Generating efÞcient code starting from the speciÞcation of a linear
algebra computation. We begin by going back to our motivating example from
Chapter 1, the Kalman Þlter, that we show again in Table 5.1. The table shows a
single iteration of a basic Kalman Þlter.

In Section 1.1, discussing the Þlter in more details, we identiÞed two classes of
computations: Basic linear algebra computations (BLACs), possibly with struc-
tures (sBLACs, e.g., the Þrst two equations5.1 and 5.2), and higher-level compu-
tations (e.g., the Cholesky decomposition and solvers for linear systems needed
to efÞciently compute the expressions involving inverses in ( 5.3) and (5.4)).

In Chapters 3 and 4, we explained how to generate code for BLACs and
sBLACs with LG en. In this chapter we include support for higher-level com-
putations, presenting a system for program synthesis that, given a linear alge-
bra computation, such as the Kalman Þlter in Table 5.1, outputs efÞcient code,
optionally vectorized using intrinsics.

The design of our new generator combines and expands the approaches of two
systems: The LGen compiler, introduced in the two previous chapters, and the
Cl1ck [29, 30] generator. Cl1ck automatizes the FLAME methodology [ 13, 107]
and synthesizes blocked algorithms, expressed using BLAS functions, for cer-
tain higher-level linear algebra functions; LG en, as described so far, generates

Table 5.1: Single iteration of a Kalman Þlter.

xk|k! 1 = Fxk! 1|k! 1 + Bu (5.1)

Pk|k! 1 = FPk! 1|k! 1FT + Q (5.2)

xk|k = xk|k! 1 + Pk|k! 1HT (5.3)

! (HPk|k! 1HT + R)! 1(zk ! Hxk|k! 1)

Pk|k = Pk|k! 1 ! Pk|k! 1HT (5.4)

! (HPk|k! 1HT + R)! 1HPk|k! 1 .

77
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optimized code for a single, basic linear algebra computation on structured ma-
trices. The combination of these two approaches involves a number of extensions
presented in Section 5.2 and described in practice in Section 5.3.

First, however, we review FLAME and C l1ck in the next section.

5.1 automatic algorithm discovery

In Section 2.2, we introduced as background the FLAME notation. In particular,
we highlighted that it describes a linear algebra algorithm as composed of Þve
parts (parts (a)Ð(e) in Algorithm 2.7). In this section, we show as prior work and
background that those Þve parts can be derived mechanically using the FLAME
methodology. For more details on FLAME, we refer to [ 13, 107].

5.1.1 FLAME: Mechanical Derivation of Algorithms

The FLAME methodology starts from a speciÞcation of a computation, such as
the lower triangular system presented in Section 2.2.3:

LX = B, L # L n , X, B # Rn! m, (5.5)

and systematically derives a correct algorithm for it, such as the one shown
in Algorithm 5.1. The latter differs from Algorithm 2.9 in two ways: (i) The
output is stored separately and (ii) the algorithm is blocked, i.e., the thick lines
in Algorithm 5.1(e), move more than one element and row at a time (e.g., +1,1 is
now a matrix L1,1 of size b ! b).

The Þve parts of a FLAME algorithm (i.e., (a)Ð(e) in Algorithm 5.1) are derived
using the three steps that we brießy summarize next. A more detailed derivation
of the same algorithm is discussed in Appendix B.

step f1 : determining the partit ioned matrix expression . The Þrst
step partitions the operands in ( 5.5). For example, since L is lower triangular,
partitioning it into quadrants 1 maintains the properties on the two diagonal
partitions:

L $

-
LTL 0

LBL LBR

.

, LTL # L k, LBR # L n! k, 0 ! k ! n, (5.6)

1 The subscripts indicate (L)eft, (R)ight, (T)op, and (B)ottom partitions.
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Algorithm 5.1 Solving a lower triangular system (Forward substitution algo-
rithm, blocked variant 2).
LX = B, L # L n , X, B # Rn! m.
Initially, the temporary matrix T = B. Flops & mn 2.

(a) Partition L $

-
LTL 0

LBL LBR

.

, T $

-
TT

TB

.

, X $

-
XT

XB

.

where LTL is 0 ! 0 and XT is 0 ! m
(b) while size(XT ) < size(X) do
(c) Repartition

-
LTL 0

LBL LBR

.

$

!

"
"
#

L0,0 0 0

L1,0 L1,1 0

L2,0 L2,1 L2,2

$

%
%
& ,

-
TT

TB

.

$

!

"
"
#

T0

T1

T2

$

%
%
& ,

-
XT

XB

.

$

!

"
"
#

X0

X1

X2

$

%
%
&

where L1,1 is b ! b and X1 is b ! m

(d) X1 := T1L! 1
1,1

T2 := T2 ! L2,1 X1

(e) Continue with

-
LTL 0

LBL LBR

.

(

!

"
"
"
#

L0,0 0 0

L1,0 L1,1 0

L2,0 L2,1 L2,2

$

%
%
%
&

,

!

"
#

TT

TB

$

%
& (

!

"
"
"
#

T0

T1

T2

$

%
%
%
&

,

-
XT

XB

.

(

!

"
#

X0
X1

X2

$

%
&

endwhile

where the size of the partitions depend on k and varies during the execution of
the loop-based algorithm. This choice also imposes a consistent partitioning of
X and B, such as the following:

B $

-
BT

BB

.

, X $

-
XT

XB

.

, (5.7)

where rows (BT) = rows(XT) = cols(LTL).
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Table 5.2: Loop invariants of ( 5.5) obtained from the PME in ( 5.8). The matrix-like no-
tation on the right alternatively describe the loop invariants providing a link
between the predicates and their positions in the PME.

(LTLXT = BT) 6

-
LTLXT = BT

!

.

(5.12)

(LTLXT = BT) ! (TB = BB ! LBLXT) 6

-
LTLXT = BT

TB = BB ! LBLXT

.

(5.13)

Plugging ( 5.6) and (5.7) in (5.5) determines a partitioned matrix expression
(PME) of (5.5):

-
LTL 0

LBL LBR

. -
XT

XB

.

=

-
BT

BB

.

$

-
LTLXT = BT

LBRXB = BB ! LBLXT

.

, (5.8)

which recursively expresses the initial computation in terms of its partitioned
operands (computing both XT and XB requires to solve a smaller triangular sys-
tem).

The partial computations in a PME could show dependencies between each
other. For instance, the following order must be respected for a correct compu-
tation of ( 5.8):

1. LTLXT = BT (5.9)

2. TB = BB ! LBLXT (5.10)

3. LBRXB = TB (5.11)

where T = B is introduced as a temporary matrix, as the algorithm is not
allowed to overwrite the input in this example.

step f2 : determining loop invariants . From a PME, it is possible to
derive loop invariants, i.e., predicates that hold before and after the algorithmÕs
loop as well as before and after each of its iterations.

For example, analyzing the PME in ( 5.8), we can determine the two loop invari-
ants in Table 5.2. The presence of output partitions in a loop invariant indicate
that their computation has been already performed.

step f3 : building the algorithm . Deriving a loop invariant also pro-
duces an initial partitioning and loop guard. In our example, as shown in the
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Figure 5.1: Stages of the derivation of algorithms in C l1ck .

previous paragraph, Algorithm 5.1, parts (a) and (b), can be associated with both
inviariants in Table 5.2.

Algorithm 5.1, parts (c) and (e), are prescribed by the choice of the initializa-
tion and the loop guard. For instance, in Algorithm 5.1 parts (c) and (e), we
choseb > 1 many rows of XT. This imposes to progress by the same amount of
rows in BT and by a b ! b block in L, as we want to maintain the property of
having triangular partitions on the diagonal.

At this point choosing a loop invariant makes the difference, as different ones
yield different update statements. We choose the second one which yields Algo-
rithm 5.1 (for this reason labelled Òvariant 2Ó). SpeciÞcally, Algorithm 5.1, part
(d), is computed by comparing the state of the computation after repartition (i.e.,
Algorithm 5.1, part (c)) with the state of the computation after moving the thick
lines in Algorithm 5.1, part (e).

methodology scope . A necessary condition for the methodology to be
applicable is that the PME has to exist, with no cyclic dependencies among the
different statements. Examples of operations that can be handled include all
computations introduced in Chapter 2.

The whole procedure described with three steps above can be automatized as
demonstrated by the Cl1ck generator.

5.1.2 Cl1ck : FLAME Automated

Cl1ck [29, 30] is an algorithm generator that implements the FLAME methodol-
ogy previously explained in the three major stages illustrated in Figure 5.1.

Cl1ck takes as input the description of a target operation in the form of an
equation annotated with the properties of the operands. For instance, the input
for our running example in ( 5.5) is speciÞed in Figure 5.2. In our example, the
input computation is also tagged with the label TRSM for better supporting
pattern matching operations as described next.

generation of partit ioned matrix expressions . This stage imple-
ments Step F1 in Section 5.1.1. Supported by a linear algebra knowledge-base
and an engine for the inference of mathematical properties and structures, C l1ck
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X = TRSM(L, B) 6

"
#$

#%

equation : {LX = B, L # Rn! n , X, B # Rn! m};
properties : {Output (X) ! Input (L, B)

! LowerTriangular (L)};

Figure 5.2: Cl1ck input example. It consists of a single linear algebra operation with
inputs and output annotations.

1. XT = TRSM(LTL, BT)

2. TB = BB ! LBLXT

3. XB = TRSM(LBR, TB)

1 

2 

3 

Figure 5.3: Left: Decomposition of TRSMÕs PME (5.8) into its bulding blocks. Right:
Graph of dependencies. Here, the grey line highlights the source position of
the statements within the PME, similarly to the notation on the right-hand
side of (5.13).

generates possible PMEs from the input. In our example, one of three resulting
PMEs for the TRSM input in Figure 5.2 is (5.8).

PMEs are not always unique. In fact, there exist 2d ! 1, where d is the number
of problem dimensions (in the case of TRSM, d = |{m, n }| = 2), since each
dimension may either be partitioned or not (minus the case where no operand
is partitioned).

Then pattern matching and term rewriting is applied to identify resulting sub-
problems (e.g., (5.9)Ð(5.11)) taking into account available properties and struc-
tures (e.g.,LTL and LBR in(5.9) and (5.11) are also lower triangular). In particular,
pattern matching allows the identiÞcation of recursive calls to the same higher-
level function. For instance, the PME (5.8) is represented in Cl1ck as

-
XT = TRSM(LTL , BT )

XB = TRSM(LBR , BB ! LBL XT )

.

. (5.14)

loop invariants identif ication . Following Step F2 in Section 5.1.1,
from each PME a family of loop invariants is generated. First, C l1ck uses tree
tiling to decompose the PME into computations compatible with the BLAS in-
terface. Then loop invariants are selected that satisfy a graph of dependencies
among these computations.

For example, the dependencies between subproblems listed in (5.9)Ð(5.11) for
the PME in (5.8) are represented as the graph illustrated on the right of Figure 5.3
(note also in this case the use of the recursive calls to TRSM), where the loop
invariant in ( 5.13) is obtained from subgraph {1, 2}.



5.2 linear algebra program synthesis overview 83

algorithm construction . Finally, each loop invariant is translated into
an algorithm. At this Þnal stage, C l1ck implements Step F3 in Section 5.1.1 to
Þnd a loop guard, a traversal of the operands, and those loop statements that
ensure that the loop invariant is satisÞed before entering the loop, at the begin-
ning and end of each iteration, and at the end of the loop. This process relies on
structural pattern matching and term rewriting.

5.2 linear algebra program synthesis overview

We present a new code generator that builds on Cl1ck , discussed in Section5.1.2,
and LGen, as presented in Chapter 4. The goal of our new system is to generate
fast vectorized code for small to medium size linear algebra computations as
complex as the Kalman Þlter shown in Table 5.1. In this section we provide a
general description of our generator in terms of main changes and extensions
to previous work, while in the following section we discuss in more details the
generation process with a running example.

generator overview . Our generator integrates the algorithm discovery
features from Cl1ck , and the code generation capabilities of LGen into a sin-
gle framework, as shown in Figure 5.4.

In particular, Steps 1Ð3 in Figure 5.4 build on C l1ck ; these steps take as input
a linear algebra program and generate algorithms for each higher level function
it contains. We consider Steps1Ð3 the algorithmic level of the new generator.

Using the generated algorithms, the LL backend (Step 4) composes a basic
linear algebra program that solely contains loops, sBLACs, and auxiliary scalar
operations such as divisions and square roots. Finally, Steps 5Ð7 in Figure 5.4
are designed after LGen and transform the basic linear algebra program into
efÞcient, optionally SIMD-vectorized, C code. We consider Steps 5Ð7 the imple-
mentation level of the new generator.

A simple combination of C l1ck Õs and LGenÕs processing steps is not sufÞcient
to achieve our goal. To implement our generator, in collaboration with the au-
thors of Cl1ck , we introduced a number of signiÞcant changes and additions to
the original systems. More speciÞcally, The extensions to Cl1ck were developed
by D. Fabregat-Traver, the extensions to LGen by the author of this dissertation,
while the LL backend by both. Next we describe these extensions in greater
detail.

extensions to cl1ck . Steps 1Ð3 in Figure 5.4 are obtained by extending
the original C l1ck with the following changes:

¥ New mathematical DSLs.To go from a single functionality to a program, a
new group of mathematical DSLs was designed to represent and manip-
ulate as a language all concepts introduced in Section 5.1, such as input
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Figure 5.4: Structure of our linear algebra generator. The left and right columns show
processing steps at the algorithm (1Ð3) and implementation ( 5Ð7) level re-
spectively. The arrow labels between boxes indicate input and output DSLs.
All of DSLs are mathematical in nature, except for C-IR.

operations, PMEs, loop invariants, and algorithms. We call these languages
LA languages (from linear algebra) and the grammar in Table 5.3 describes
them at once. The LA language is used to describe input programs com-
posed of one or more equations with input and output annotations. LA is
obtained from rules ( 1)Ð(7) in Table 5.3 (excluding the choice of ,algorithm-
in rule ( 1)); an example of LA program, analogous to C l1ck Õs original in-
put in Figure 5.2, is shown in Figure 5.5. Language p-LA (partitioned LA;
rules (1)Ð(6) and (8)Ð(10) in Table 5.3) is an extension of LA and is used to
represent PMEs and loop invariants (e.g., (5.14) and (5.13) in Section 5.1).
Finally, lp-LA (loop-based p-LA; rules ( 1)Ð(6) and (9)Ð(15) in Table 5.3) is
an extension of p-LA that can describe algorithms such as the one in Al-
gorithm 5.1. A sequence of algorithms and sBLACs is an example of an
lp-LA program.

¥ A new ßexible ISA manager.As described in Section 5.1.2, the original C l1ck
relied on a Þxed ISA provided by the BLAS interface. To enable the inte-
gration with LG en, we redesigned Steps 1Ð3 in Figure 5.4 to allow for a
more ßexible interfacing to support LG enÕs wider set of sBLACs, as well
as scalar auxiliary operations (square roots, ...).
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program TRSM
Matrix L <n, n , Input, LowerTriangular>
Matrix B <m, n, Input>
Matrix X <m, n, Output>

LX == B
end

Figure 5.5: Example of LA program for a triangular linear system.

¥ Nested PME generation.To proceed with the discovery of algorithms, the
PME of a target operation such as TRSM in Figure 5.5 must consist of
only ISA-supported operations or recursive calls to smaller instances of the
same operation (e.g., (5.14)). If any other unknown higher level equation
is encountered in the formulation, a new PME generation task must be
initiated to complete the algorithmic deÞnition of the target operation. A
mechanism to dynamically learn new PMEs was incorporated into Step 1
in Figure 5.4 (feedback loop).

extensions to lgen . Steps5Ð7 in Figure 5.4 are obtained by extending the
original LG en with the following changes:

¥ Basic linear algebra programs in LL.The DSL LL was extended from describ-
ing single sBLACs to entire basic linear algebra programs. The grammar
is provided in Table 5.4. It includes loops, sBLACs, scalar auxiliary oper-
ations, and gather operators. Loops, sBLACs and auxiliary operations are
called LL statements. An example of LL program is provided in Figure 5.6.

¥ LL statement-level optimizations.Step 5 in Figure 5.4 is extended with addi-
tional rewriting rules for the replacement of LL statements that may ex-
hibit poor performance; for example, a group of scalar computations can
be rewritten as a vectorizable sBLAC.

¥ A domain-speciÞc load/store analysis.Differently from a subroutine-based ap-
proach, at the C-IR level we can take advantage of a global perspective over
the entire computation. This enables the replacement of explicit memory
loads and stores with efÞcient data rearrangement between vector vari-
ables. The approach is domain-speciÞc as all pointers are associated with
mathematical matrices.

the ll backend . The LL backend (Step 4 in Figure 5.4) is the component of
our new generator that links generated algorithms in lp-LA to their basic linear
algebra formulation in LL. It performs two tasks:
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Table 5.3: Superset grammar in EBNF for the LA, p-LA and lp-LA languages. The non-
terminal , type- is any of Matrix , Vector , and Scalar . id and dim are any variable
name. expression represents any well-deÞned combination of scalars, vectors
and matrices with operators +, - , * , (á)T (transposition) and (á)-1 (inverse).

(1), la-program- ::= Ôprogram id Õ
{ ,declaration- } { ,equation- | ,algorithm- }

ÔendÕ

(2),declaration- ::= , type- Ôid Õ { Ô, id Õ } Ô< dim, dim, Õ, iotype-
{ Ô, Õ,property- } [ Ô, Õ,ow- ] Ô>Õ

(3), iotype- ::= ÔInput Õ | ÔOutput Õ | | ÔInOut Õ

(4),property- ::= ÔLowerTriangular Õ | ÔUpperTriangular Õ
(5)| ÔSymmetric Õ | ÔPositiveDefinite Õ

(6),ow- ::= ÔOverwrites( id ) Õ

(7),equation- ::= Ôexpression == expression Õ

(8),blk-of-asgn- ::=

-
,assignment- . . .

...
...

.

(9),assignment- ::= Ôid = Õ ( Ôexpression Õ | , func-call- )

(10), func-call- ::= Ôid( id Õ { Ô, id Õ } Ô) Õ

(11),algorithm- ::= Ôalgorithm [ id ] id( id Õ { Ô, id Õ } Ô) Õ
{ ,declaration- }
{ ,partition- }
Ôwhile( size( id) < dim( id ) ) Õ

{ , repartition- }
{ ,assignment- }
{ ,continue- }

ÔendÕ
ÔendÕ

(12),partition- ::= ,blk-of-ids- Ô= partition( id ) Õ

(13), repart- ::= ,blk-of-ids- Ô= repartition( Õ,blk-of-ids- Ô) Õ

(14),continue- ::= ,blk-of-ids- Ô= continue( Õ,blk-of-ids- Ô) Õ

(15),blk-of-ids- ::=

-
Ôid Õ . . .

...
...

.
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Table 5.4: Grammar of the extended LL language which extends the one deÞned in
Table 3.2. idx-expr and idx-cond are respectively a numerical expression and
condition on indices (including the use of min/max and floor/ceil ). A non-
terminal , ll-expr- marked with a subscript s denote a scalar LL expression.

, ll-program- ::= { ,declaration- } { , ll-statement- }

,declaration- ::= Table 5.3, Rule (2)

, ll-statement- ::= , ll-for- | , ll-if - | , ll-assignment-

, ll-for- ::= ÔFor ( idx-expr ; idx-expr ; idx-expr ) { Õ
{ , ll-statement- }

Ô} Õ

, ll-if - ::= ÔIf ( idx-cond ) { Õ
{ , ll-statement- }

Ô} Õ

, ll-assignment- ::= ,quantity- Ô=Õ, ll-expr- Ô; Õ

, ll-expr- ::= Ô( Õ, ll-expr- Ô) Õ | ,basic-op-

,basic-op- ::= , ll-expr- Ô+Õ, ll-expr-
| , ll-expr- Ô* Õ, ll-expr-
| , ll-expr-ÔTÕ
| , ll-expr-s Ô/ Õ, ll-expr-s |

9
, ll-expr-s | á á á

,quantity- ::= ,gather- | ,matrix- | ,vector- | ,scalar-

,gather- ::= ( ,matrix- | ,vector- )Ô[idx-expr , idx-expr ]idx-expr ,idx-expr
idx-expr ,idx-expr Õ

For ( i = 0; i < 3 ; i = i + 1) {

M [i, i ] = !( M [0, i]4,4
i,1 )TM [0, i]4,4

i,1 + M [i, i ];
For ( j = i + 1; j < 4 ; j = j + 1) {

M [i, j ] = A[i, j ]/M [i, i ];
}

}

Figure 5.6: Simple example of an LL program (declarations are omitted). Domain and
range are omitted with scalar gathers (i.e., gathers with range 1 ! 1).

¥ lp-LA to LL translation.An lp-LA program from Step 3 contains a sequence
of algorithms (encoding, for example, Algorithm 5.1) and sBLACs. sBLACs
are directly added to the LL program, while algorithms must be translated
into LL loop nests. To this end, every non-sBLAC operation in the algo-
rithm is replaced by another algorithm to compute it. The process iterates
until the loop nest only contains sBLACS and scalar operations.
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1 program CHOL
2 Matrix A <n, n , Input, Symmetric, PositiveDefinite>
3 Matrix X <n, n , Output, UpperTriangular, Overwrites( A)>
4

5 XTX == A
6 end

Figure 5.7: LA program for the Cholesky decomposition.

¥ Handling temporary and zero-size matrices.Temporary matrices may degrade
performance due to memory allocation and increased memory trafÞc. Thus
we implemented traditional compiler analysis and optimization passes in
Step 4 to reduce them in the Þnal LL program. Furthermore, some of the
LL statements may contain zero-sized matrices at the beginning or at the
end of a loop. We introduce a loop peeling pass to reduce the number of
if-statements otherwise needed.

5.3 linear algebra program synthesis applied

In the Þrst part of this section, we describe the generation process of the Cholesky
decomposition, which we have described with an unblocked algorithm in Sec-
tion 2.2.5. Finally we address how the same process applies to the more complex
case of a single iteration of the Kalman Þlter shown in Table 5.1.

5.3.1 Vectorized Code Generation for the Cholesky Decomposition

Given a symmetric positive deÞnite matrix A # Rn! n , the Cholesky decomposi-
tion (CHOL) computes an upper triangular matrix X # Rn! n such that XTX = A.
In our running example, we generate double precision code for n = 4, with
vectorization enabled, for an Intel CPU with AVX intrinsics ( " = 4). The LA
input program for CHOL is shown in Figure 5.7. As indicated in the program
deÞnition, the code will overwrite the contents of matrix A with the solution X.

nested pme generation . Our generator starts by deriving the (unique)
PME for CHOL (Step 1 of Figure 5.4). The operands X and A are partitioned in
2 by 2 parts as -

XTL XTR

0 XBR

.

and

-
ATL ATR

ABL ABR

.

.

The original operands are replaced by the partitioned ones in the input equation
(Figure 5.7, line 4), obtaining the partitioned equations 2

2 The " in the bottom-left quadrant indicates that it is the transpose of the top-right one, and its
computation is thus not required.
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-
XT

TLXTL = ATL XT
TLXTR = ATR

" XT
TRXTR+ XT

BRXBR = ABR

.

.

As for C l1ck , during the partitioning of the operands, properties for their parts
are inferred; these properties enable the identiÞcation of subproblems via con-
strained structural pattern matching, and are also carried on to enable the gen-
eration of more efÞcient code.

After identifying the equation in the top-left quadrant as a recursive call to
CHOL and marking XTL as known3, the generator encounters in the top-right
quadrant the expression XT

TLXTR = ATR, which is neither an sBLAC nor a recur-
sive call to CHOL. Since it cannot identify the operation, a new instance of the
PME generator is run to Þnd a recursive deÞnition for the operation (feedback
loop in Step 1 of Figure 5.4). To this end, properties of the equation are collected
and the input

program TRSM

Matrix XTL <k, k, Input, UpperTriangular>

Matrix ATR <k, r , Input>

Matrix XTR <k, r , Output, Overwrites( ATR)>

XT
TLXTR == ATR

end

is created to initiate the generation of PMEs.
In this case, the operation is a TRSM-like operation4, similar to that introduced

in Section 5.1.2.
All PMEs of TRSM contain only calls to sBLACs and TRSM itself; the PME

generation thus concludes producing the PME expression in p-LA shown in
Figure 5.8.

The mechanism for nested generation of PMEs is critical not only to Þnd a
complete recursive deÞnition of the initial program (CHOL in this case) but also
because the PMEs for TRSM will be necessary for the generation of algorithms
(Step 3 in Figure 5.4).

loop invariant identif ication . Next, in Step 2 of Figure 5.4, the PME
is decomposed into its building blocks, i.e., sBLACs and function calls and a
graph of dependencies among them is built. For CHOLÕs PME, the building
blocks and graph of dependencies are shown in Figure 5.9.

3 Now the generator knows which operation computes XTL and it becomes (symbolically) an
input.

4 Note that we use TRSM as the name for the operation for readability reasons. The generator
does not need to know this; it assigns the operation a random name.
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program CHOL
Matrix XTL <k, k, Output, UpperTriangular, Overwrites( ATL)>
Matrix XTR <k, r , Output, Overwrites( ATR)>
Matrix XBR <r, r , Output, UpperTriangular, Overwrites( ABR)>
Matrix ATL <k, k, Input, Symmetric, PositiveDefinite>
Matrix ATR <k, r , Input>
Matrix ABR <r, r , Input, Symmetric, PositiveDefinite>

-
XTL = CHOL(ATL) XTR = TRSM(XT

TL, ATR)

" XBR = CHOL(ABR ! XT
TRXTR)

.

end

Figure 5.8: p-LA program for the PME of the Cholesky decomposition. The " in the
bottom-left quadrant indicates that it is the transpose of the top-right one,
and its computation is thus not required.

1. XTL = CHOL (ATL)

2. XTR = TRSM(XT
TL, ATR)

3. T1 = ABR ! XT
TRXTR

4. XBR = CHOL (T1)

1 

2 3 

4 

Figure 5.9: Left: Decomposition of CHOLÕs PME into its bulding blocks. Right: Graph
of dependencies.

Before moving forward with the selection of subgraphs as loop invariants, two
transformation passes for the sequence of building blocks are required. First,
the generator has to ensure that each statement abides to the interface of each
operation. In this case, CHOL overwrites its input; therefore, statement 4 in
Figure 5.9 is replaced by

4. XBR = T1

5. XBR = CHOL (XBR)

Second, following an analysis close to copy propagation and dead-code elim-
ination, the generator is able to remove temporary T1, a critical step for perfor-
mance. The resulting sequence is the same as in Figure5.9, with T1 replaced by
XBR.

Among the possible subgraphs, three of them lead to feasible loop invariants.
The p-LA loop invariant corresponding to subgraph {1, 2} in Figure 5.9 is shown
in Figure 5.10.

algorithm construction . In Step 3 of Figure 5.4 each of the loop in-
variants is transformed into an algorithm using rewriting of the loop invariant
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program CHOL
Matrix XTL <k, k, Output, UpperTriangular, Overwrites( ATL)>
Matrix XTR <k, r , Output, Overwrites( ATR)>
Matrix ATL <k, k, Input, Symmetric, PositiveDefinite>
Matrix ATR <k, r , Input>

-
XTL = CHOL(ATL) XTR = TRSM(XT

TL, ATR)

! !

.

end

Figure 5.10: p-LA program for one of the Cholesky decompositionÕs loop invariants as-
sociated with subgraph {1, 2} in Figure 5.9.

into considerably long expressions; details can be found in [ 28]. Here, we dis-
cuss one conceptually critical detail. The repartition and continue statements to
traverse the matrices, imply a rewriting of the loop invariant in terms of the
repartitioned submatrices. For instance, in the case of the p-LA loop invariant in
Figure 5.10, the top-right quadrant after the repartitioning results in

'
X0,1 X0,2

(
= TRSM

'
XT

0,0,
'

A0,1 A0,2
((

.

Only by learning the PMEs derived in the nested PME generation, the gener-
ator can ßatten the expression into

X0,1 = TRSM(XT
0,0, A0,1)

X0,2 = TRSM(XT
0,0, A0,2).

Once the full algorithm has been derived and the sequence of assignments in
the loop has been Þxed, the occurrences ofX can be safely replaced with the
overwritten counterparts of A5. The lp-LA algorithm corresponding to the p-LA
loop invariant in Figure 5.10 is shown in Figure 5.11.

l l backend : lp -la to ll translation . In Step 4 of Figure 5.4, our gen-
erator translates the lp-LA algorithm in Figure 5.11 into an LL program.

First, the algorithm is reÞned until it only contains sBLACS and scalar opera-
tions. Our example problem size is 4 ! 4, which matches the architecture vector
size " , therefore the block size b is set to one. Among the four loop statements
in Figure 5.11, lines 9 and 11 are sBLACs and can be directly translated into LL
notation. Lines 10 and 12 instead need to be further processed. For the recursive
call to CHOL, since A11 is a scalar, the backend queries the corresponding ISA
instruction associated to a scalar CHOL base case, which returnsA11 =

)
A11.

5 The dependencies due to the aliasing of A and X are carefully propagated and treated so that
this Þnal replacement does not lead to incorrect algorithms.
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1 program CHOL
2 algorithm [ A] = CHOL( A, b)

3

)
ATL ATR

ABL ABR

*
= partition( A, ATL, 0, 0)

4

5 while ( size ( ATL) < size ( A) )
6

7

!

"
#

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

$

%
& = repartition(

)
ATL ATR

ABL ABR

*
,

8 A1,1, b, b)
9

10 A1,1 = A1,1 ! AT
0,1A0,1

11 A1,1 = CHOL(A1,1)
12 A1,2 = A1,2 ! AT

0,1A0,2

13 A1,2 = TRSM(AT
1,1, A1,2)

14

)
ATL ATR

ABL ABR

*
= continue(

!

"
"
#

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

$

%
%
& )

15 end
16 end
17 end

Figure 5.11: lp-LA algorithm to compute CHOL. The unblocked algorithm to compute
the recursive call to TRSM can be obtained by setting block size b = 1.

Figure 5.11, line 12 corresponds to a TRSM of size 1 ! n (i.e., A12 is a row
vector). Therefore, the backend queries for an unblocked algorithm (feedback
in Step 4 of Figure 5.4) for TRSM. At this point, all statements are either scalar
operations or sBLACs, and the backend proceeds constructing the LL program.

Next, partitionings are replaced by gathers, and lp-LA while-loops are rewrit-
ten as LL loops. This requires the introduction of explicit indices. One index
is introduced per loop, and the matrix parts that are affected by the index are
labeled accordingly. The index stride is given by the block size b of the algo-
rithm, and the starting position and sizes of the gather operation are expressed
in terms of the index.

For instance, the repartition of matrix A in Figure 5.11 induces the presence
of an index i to traverse the matrix diagonally. Gathers are created for each
partition in the loop statements using a scheme similar to the following:
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1 For ( i = 0; i < 4 ; i = i + 1) {

2 A[i, i ] = !
'
A[0, i]4,4

i,1

( T
A[0, i]4,4

i,1 + A[i, i ];
3 A[i, i ] =

9
A[i, i ];

4 A[i, i + 1]4,4
1,4!( i + 1) =

5 !
'
A[0, i]4,4

i,1

( T
A[0, i + 1]4,4

i,4!( i + 1) + A[i, i + 1]4,4
1,4!( i + 1);

6 For ( j = i + 1; j < 4 ; j = j + 1) {
7 A[i, j ] = A[i, j ]/A [i, i ];
8 }
9 }

Figure 5.12: LL program for the input computation in Figure 5.7.

!

"
"
#

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

$

%
%
& $

!

"
"
#

A[0, i]n,n
i,b A[0, i + b]n,n

i,n !( i + b)

A[i, i ]n,n
b,b A[i, i + b]n,n

b,n !( i + b)

$

%
%
& ,

where in our case n = 4 and b = 1.
The lp-LA while loop in Figure 5.11, line 5 is replaced with the LL index-based

formulation

For ( i = 0; i < n ; i = i + b) { . . . } .

The Þnal LL program is reported in Figure 5.12, where domains and ranges
of gathers that yield scalars are omitted and square roots and divisions appear
from performing the Cholesky decomposition and the TRSM on scalar values.

Before proceeding further, the generator applies loop peeling as some of the
gathers could produce zero-size blocks. Finally, loops associated with algorithms
with unit block size are also unrolled to expose all statements required to com-
pute small instances of higher level functions to further optimizations (e.g., the
computation of a small TRSM in lines 6Ð8 of Figure 5.12). The Þnal program is
shown in Figure 5.13.

l l statement -level optimizations . The LL program shown in Figure 5.13
is composed of sBLACs that can be mapped to vectorized building blocks (i.e.,
the " -BLACs) but also several scalar computations that could result in a lower
vectorization efÞciency. We address this issue by introducing a set of rewriting
rules in Step 5 of Figure 5.4 aimed at increasing the amount of vectorizable
LL statements. This technique is similar in spirit to the one used to identify
superword-level parallelism (SPL) [ 71].

For instance consider the pair of rules R0 and R1 in Table 5.5. R0 expands
two TRSMs into a larger one while R1 transforms an element-wise division of a
vector by a scalar into a scalar division followed by a scalar multiplication. The
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1 A[0, 0] =
9

A[0, 0];
2 A[0, 1] = A[0, 1]/A [0, 0];
3 A[0, 2] = A[0, 2]/A [0, 0];
4 A[0, 3] = A[0, 3]/A [0, 0];
5 A[1, 1] = ! A[0, 1]A[0, 1] + A[1, 1];
6 A[1, 1] =

9
A[1, 1];

7 A[1, 2]4,4
1,2 = ! A[0, 1]A[0, 2]4,4

1,2 + A[1, 2]4,4
1,2;

8 A[1, 2] = A[1, 2]/A [1, 1];
9 A[1, 3] = A[1, 3]/A [1, 1];

10 A[2, 2] = !
'
A[0, 2]4,4

2,1

( T
A[0, 2]4,4

2,1 + A[2, 2];
11 A[2, 2] =

9
A[2, 2];

12 A[2, 3] = !
'
A[0, 2]4,4

2,1

( T
A[0, 3]4,4

2,1 + A[2, 3];
13 A[2, 3] = A[2, 3]/A [2, 2];

14 A[3, 3] = !
'
A[0, 3]4,4

3,1

( T
A[0, 3]4,4

3,1 + A[3, 3];
15 A[3, 3] =

9
A[3, 3];

Figure 5.13: LL program in Figure 5.12 after loop peeling and unrolling.

Table 5.5: Example of rewriting rules to expose more " -BLACs. Xi , Bi # Rm! ni ; U #
Rm! m; X, B # Rm! (n0+ n1); x, b # Rk; and +, 0 # R . Statement S0 appears in
the computation before S1 and no operation writes to X1, B1, or L in between.

R0 :
S0 : X0 = U! 1B0, S1 : X1 = U! 1B1

X = (X0 | X1) , B = (B0 | B1) , X = U! 1B
(5.15)

R1 :
op(x) = op(b)/+, op(á) = ( á) or (á)T

0 = 1/+, op(x) = 0 áop(b)
(5.16)

application of rules R0 and R1 to lines 2Ð4 and 8Ð9 in Figure 5.13 yields two
additional scalar multiplication " -BLACs as shown in Figure 5.14. Similar rules
can be introduced for all basic operators creating new opportunities to improve
code vectorization by identifying more " -BLACs in the code.

00 = 1/A [0, 0];
A[0, 1]4,4

1,3 = 00A[0, 1]4,4
1,3;

(a)

01 = 1/A [1, 1];
A[1, 2]4,4

1,2 = 01A[1, 2]4,4
1,2;

(b)

Figure 5.14: Application of rules in Table 5.5 to (a) lines 2Ð4 and (b) lines 8Ð9 in the
code in Figure 5.13, which determines additional " -BLACs (second line of
both (a) and (b)).
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/ * Begin Storer of sca . mul . in Fig . 19a * /

Genstore(A+1, smul19a, [0, 1, 2], hor);

...

/ * Begin Storer of sca . mul . in Fig . 19a * /

Genstore(A+6, smul19b, [0, 1], hor);

...

/ * Begin Loader for Fig . 16 l .10 * /
__m256d vA02_vert = Genload(A+2, [0, 1], vert);

Figure 5.15: C-IR code snippet for the load of A[0,2]
4,4
2,1 in line 10 of Figure 5.13.

ti l ing and loop -level optimization . Every LL statement is now either
an auxiliary scalar computation or an sBLAC. Steps 5 and 6 of Figure 5.4 proceed
following LG enÕs steps1Ð3 in Section 3.1, Figure 3.1: all sBLACs are tiled and
a ! -LL formulation is produced. In our example, this yields a ! -LL program
analogous to the LL input in Figure 5.13 as all operands are already smaller or
equal than a block " ! " .

code -level optimizations . The last step in Figure 5.4 converts a ! -LL
program into C-IR. At this point our generator performs optimization across
what originally were lp-LA operations (e.g., lines 6Ð9 in Figure 5.11). We focus
on an improved scalarization of vector accesses enabled by a domain-speciÞc
load/store analysis. The goal of the analysis is to reduce explicit memory loads
and stores in the Þnal vectorized C code. We explain the approach with an
example. Consider, the gather A[0, 2]4,4

2,1 in Figure 5.13, line 10. The elements
gathered from matrix A are deÞned by two previous computations, i.e., the two
scalar multiplications in Figure 5.14. Their C-IR store/load sequence is provided
in Figure 5.15, which would yield the AVX code in Figure 5.16(a). However, by
analyzing their overlap we can deduce that element 1 of the Þrst vector (smul19a )
goes into element 0 of the result one, while element 0 of the second vector
(smul19b ) into element 1. This results in the more efÞcient wiring and associated
AVX code shown in Figure 5.16(b).

algorithmic autotuning extension . Finally, the optimized C-IR code
is unparsed into C code and its performance is measured. At this point, if any
variants are available the generator resumes from either Step 5 in Figure 5.4,
if the variant depends on implementation choices (e.g., tiling), or Step 2, if it
is a new algorithmic variant. In our example, our generator would repeat the
process just discussed for the two remaining loop invariants identiÞed from the
PME in Figure 5.8. Finally the fastest code is provided as an output.
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0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 

Matrix A 

(Mem) 

a b c d e 

b 0 0 0 d 0 0 0

b d 0 0

!""#$%!"&'(')*+,!-. !"#$%&'()*+%&)',-$.(/0&
!""#$%!"&'(')*+,!-. !"#1%&'()*2%&)',-$.3/0&
&
45&6&!""#$%!"&'(/*&.!-. !"#2%&'()*$/0&
4$&6&!""#$%!"&'(/*&.!-. !"#1%&'()*$/0&
7"52879:; &6&8''2<18)=,>>-98?)!7 5%&7$%&5/0&

Resulting AVX code 

(a)

!
!
!
" #!$! !""#$%!&'()*!+* %&'()*+,-! ./01 -! *234!
" * !$! !""#$%!&'()*!+* %&'()*+5-! ./01 -!*2 34!
"6#27"/08!$! 7''29:7&;(<<)/7=&%" #-!" * -!*34 !

a b c d e 

0 b 0 0 d 0 0 0

b d 0 0

0 0 0 00 0

Resulting AVX code 

(b)

Figure 5.16: Resulting AVX code for the C-IR snippet in Figure 5.15without (a) and with
(b) load/store analysis. In (a) vA02_vert is obtained by explicitly storing to
and loading from memory while in (b) by shufßing vector variables.

5.3.2 Vectorized Code Generation for the Kalman Filter

We now brießy discuss the more complex case of generating code for a single
iteration of the Kalman Þlter (KF) shown in Table 5.1.

First, an LA program is created decomposing KF into computations that can
be processed by our generator (e.g., sBLACS, matrix decompositions, and linear
systems). In particular, (5.1)Ð(5.2) are sBLACs and can be directly described in
LA. The second pair of equations (5.3)Ð(5.4) must Þrst be decomposed into six
computations. Referring to ( 5.3) we need to compute:

(i) Two sBLACs: P0 = HPk|k! 1HT + R and v0 = zk ! Hxk|k! 1.

(ii) The Cholesky decomposition of UTU = P0.

(iii) The solution of the two triangular systems: UTv1 = v0 and Uv2 = v1.

(iv) The sBLAC xk|k = xk|k! 1 + Pk|k! 1HTv2.

Currently this decomposition is manually performed but could be automated
using approaches such as [31].

KF now takes the following form as LA program:

program KF

Vector u <m, Input> % Control vector

Vector x, y <n, InOut> % A priori ( y) and a posteriori ( x) state

estimate

Vector z <k, Input> % State observation
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Matrix F <n, n , Input> % State - transition model

Matrix B <n, m, Input> % Control - input model

Matrix H <k, n , Input> % Observation model

% A priori ( Y) and a posteriori ( P) estimate covariance

Matrix P, Y <n, n , InOut, Symmetric, PositiveDefinite>

% Covariance of the process noise

Matrix Q <n, n , Input, Symmetric, PositiveDefinite>

% Covariance of the observation noise

Matrix R <k, k, Input, Symmetric, PositiveDefinite>

% Temporaries

Vector t 0 <k, InOut>

Vector t 1, t 2 <k, InOut, Overwrites( t 0)>

Matrix M 0 <k, n , InOut>

Matrix M 1 <n, k, InOut>

Matrix M 2, M 3 <k, n , InOut, Overwrites( M 0)>

Matrix S <k, k, InOut, Symmetric, PositiveDefinite>

Matrix U <k, k, InOut, UpperTriangular, Overwrites( S)>

% Predict

y == Fx+ Bu
Y == FPFT + Q

% Update

M 0 == HY
S == M 0HT + R
UTU == S

v0 == z ! Hy
UTv1 == v0
Uv2 == v1

UTM 1 == M 0
UM 2 == M 1

M 3 == YHT

% From (5.3)
x == y + M 3v2
% From (5.4)
P == Y ! M 3M 2

end
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Second, the LA program is provided as input to our generator which executes
the steps previously discussed for the case of Cholesky decomposition. In partic-
ular, algorithms for the Cholesky decomposition and the solution of triangular
systems have to be synthesized and optimizations over a basic linear algebra
description of KF are performed in Steps 5Ð7 in Figure 5.4.

The Þnal output is a single vectorized C function that performs the desired
computation.



6
E X P E R I M E N TA L R E S U LT S

In this chapter we discuss experimental results for the three stages of our work
described in Chapters 3Ð5. In particular, we start with our approach for compil-
ing basic linear algebra computations with LG en presented in Chapter 3. Then,
we assess LGenÕs extension for the support of basic linear algebra computations
with structured matrices discussed in Chapter 4. Finally, we evaluate the code
generator introduced in Chapter 5 for both single higher-level linear algebra
computations and the Kalman Þlter program shown in Section 5.3.2.

6.1 basic linear algebra computations

In this section we show performance benchmarks of BLAC code generated by
LGen.

experimental categories . We divide our experiments into the four cate-
gories listed in Table 6.1 depending on the type of functionality generated.

In the Þrst three cases we use matrices with narrow rectangular shapes (pan-
els) or small squares (blocks). This choice is due to their importance [43, 109].
The sizes are eithern ! 4 or 4 ! n, chosen to Þt into L1 D-cache, or 4 ! 4. For
Micro BLACs, the matrices are n ! n with 2 ! n ! 10.

measuring process . All experiments involve single-precision code. For all
plots, the y-axis shows performance in ßops per cycle (f/c), and the x-axis shows
the value of the inputÕs varying dimensions as number of ßoat elements. The
ßop count is derived from the BLAC while cycles are explicitly measured.

All experiments are run under warm cache conditions, executed multiple
times for at least 108 cycles. The reported measurement is the average number of
cycles per execution. This process is repeated15 times to compute median and
quartile information. Each point in the plots is the median of 15 repetitions and
it is accompanied by whiskers that show the most extreme data points falling
into the range [1.5q1, 1.5q3], where q1 and q3 are the Þrst and third quartiles.

99
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Table 6.1: BLAC experimental categories. In the Þrst three cases we use matrices with
narrow rectangular shapes (panels) or small squares (blocks) with sizes either
n ! 4 or 4 ! n, chosen to Þt into L1 D-cache, or 4 ! 4. For Micro BLACs, the
matrices are n ! n with 2 ! n ! 10.

Category Label BLAC

Simple BLACs
smv y = Ax

smm C = AB

BLAS-like

saxpy y = #x + y

sgemv y = #Ax + $y

sgemm C = #AB + $C

Non-BLAS

sgesummvy = #Ax + $Bx

sblinf # = xTAy

sgemam C = #(A0 + A1)TB + $C

Micro BLACs

smv
Three BLACs from previous cases using
very small matrices and vectors.smm

sblinf

6.1.1 Targeting High-end Systems

We run our tests on an Intel Xeon X5680 (Westmere EP microarchitecture), 3.3
GHz, SSE 4.2, 32 kB L1 D-cache, under RHEL Server 6 with kernel v. 2.6.32.
IntelÕs SpeedStep and Turbo Boost technologies were disabled during the tests.
The theoretical peak performance of the platform is 8 f/c. However, our plots
are scaled to6 f/c for better readability.

competitors . We considered only single precision code and compared against
(a) Intel MKL v. 11, (b) Intel IPP v.7.1, (c) Eigen v.3.1.3, (d) BTO v1.3, and (e) hand-
written code. The latter is straightforward, loop-based, scalar C code and comes
in two versions: with hardcoded problem sizes (Þxed size) and with problem
sizes passed as parameters (general size).

hardware and software configuration . MKL and IPP are provided
as binary code. Code obtained from LGen, Eigen, BTO, as well as all the hand-
written kernels were compiled using icc v. 13.1 with ßags -O3 -xHost -fargument-
noalias -fno-alias -ip -ipo.

LGen uses a random search with a sample size of 10. BTOÕs kernels were
generated disabling multithreading, and enabling loop tiling. In Eigen we used
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Þxed-size Map interfaces to existing arrays, no-alias assignments, and enabled
SSE code generation.

In MKL, we implemented sgesummvwith two calls to cblas _sgemv, sblinf as a
combination of cblas _sgemv and cblas _sdot , and sgemamas a call to MKL_Somatadd 1

followed by cblas _sgemm.

case 1: simple blacs . Figure 6.1 shows performance results for the BLACs
smv and smm. For smv with vertical A (Figure 6.1(a)), LGen performs between
1.8! and 3! better than Eigen. With horizontal A (Figure 6.1(b)) and for larger
n LGen performs within 10% of IPP and Eigen. For smmwe consider four sce-
narios. In the panel-block case (Figure 6.1(c)) LGen performs about 2.5! faster
than MKL. In the block-panel computation (Figure 6.1(d)) the improvements re-
duce to 10% for larger sizes. For the panel-panel products the speed-up is again
a factor of about 3! over the competition in Figure 6.1(e) and about 2! for the
rank-4 update in Figure 6.1(f). Unfortunately, we could not compare against BTO
due to exceptions raised by the generated code. Downwards spikes, such as in
Figure 6.1(e), are related to suboptimal tiling decisions resulting either from the
random selection during search or from current multilevel tiling limitations (see
Section 3.2.2).

case 2: blas -like computations . The results are shown in Figure 6.2.
For saxpy(Figure 6.2(a)) MKL and the icc-compiled Þxed size code attain the
same performance which is about 15% higher than LG en. sgemv(Figures 6.2(b)Ð
(c)) and sgemm(Figures 6.2(d)Ð(g)) have a performance behavior very close to
the one previously observed for smvand smm.

case 3: non -blas computations . The results are shown in Figure 6.3.
EigenÕs ability to generate fused loops results in comparable performance be-
tween BLACs in Case 2 and 3 (e.g., smv-based expressions in Figures.6.3(d),
6.3(b), and 6.2(c)). On the other hand, we notice that slight changes in computa-
tional patterns (e.g., from smv in Figure 6.1(b) to sgesummvin Figure 6.3(b)) can
diminish the capability of icc to apply loop-level optimizations. The combination
of BTOÕs autotuning capabilities and iccÕs autovectorization achieves similar per-
formance to LGen (about 4 f/c) for the case of sgesummvwith horizontal panels
(Figure 6.3(b)). For sgemam(Figures 6.3(e)Ð(h)) all competing curves except MKL
perform below 1 f/c.

case 4: micro blacs . Finally, we report on small size code in Figure 6.4. In
this case LGen produces fully unrolled code with vectorized left-over computa-
tions. In case of smvand smm, LGen exhibits improvements between 1.25! and

1 MKL_Somatadd is a non-BLAS function provided by Intel MKL.
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(a) A is n ! 4. (b) A is 4 ! n.

(c) A is n ! 4, B is 4 ! 4. (d) A is 4 ! 4, B is 4 ! n.

(e) A is 4 ! n, B is n ! 4. (f) A is n ! 4, B is 4 ! n.

Figure 6.1: Simple BLACs. (a)Ð(b):y = Ax ; (c)Ð(f):C = AB.
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(a) x of length n. (b) A is n ! 4.

(c) A is 4 ! n. (d) A is n ! 4, B is 4 ! 4.

(e) A is 4 ! 4, B is 4 ! n. (f) A is 4 ! n, B is n ! 4.

(g) A is n ! 4, B is 4 ! n.

Figure 6.2: BLACs that closely match BLAS. (a): y = #x + y; (b)Ð(c):y = #Ax + $y ;
(d)Ð(g):C = #AB + $C.
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(a) A and B are n ! 4. (b) A and B are 4 ! n.

(c) A is n ! 4. (d) A is 4 ! n.

(e) A0, A1 are 4 ! n, B is 4 ! 4. (f) A0, A1 are 4 ! 4, B is 4 ! n.

(g) A0, A1 are n ! 4, B is n ! 4. (h) A0, A1 are 4 ! n, B is 4 ! n.

Figure 6.3: BLACs that need more than one BLAS call. (a)Ð(b):y = #Ax + $Bx; (c)Ð(d):
# = xTAy ; (e)Ð(h):C = #(A0 + A1)TB + $C.
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(a) y = Ax (b) C = AB

(c) # = xT Ay

Figure 6.4: Micro BLACs. All matrices are squared of size n ! n.

3.5! compared to icc Þxed size, which is the best competing code. For sblinf we
achieve a speedup as high as up to6! with respect to Eigen.

remarks . From the plots we can observe that certain shapes are favored by
the existing libraries and generators we compared with. For instance, looking
at Figure 6.3 we can quickly identify that the most competitive plots (b), (d),
(f), and (h) involve horizontal panels. In contrast, LG en produces across most
functions and sizes a performance in the 3Ð6 f/c range. Also worth noting is that
the compiler fails to optimize straightforward loop code, even when specialized
to the problem size.

6.1.2 Targeting Embedded Systems

In this section we present performance experiments conducted to evaluate the
code generated by LGen on four embedded processors: Intel Atom, ARM Cortex-
A8, ARM-Cortex-A 9, and ARM 1176. Table 6.2 summarizes relevant information
about the computing platforms.
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Table 6.2: Properties of the platforms used for the experiments. AI stands for arithmetic
instruction, LS for load/store, f/c are ßops/cycle.

CPU Intel Atom D 2550 Cortex-A8 Cortex-A9 ARM 1176

Vector ISA SSSE3 NEON NEON -

D-L1 [kB] 24 32 32 16

I-L1 [kB] 32 32 32 16

Peak [f/c] 6 4 4 1

Execution in-order in-order out-of-order in-order

Issues2 AI yes yes (FMA) yes (FMA) no

Issues LS+AI yes yes no no

Board Mini-PC BeagleBone Black Kayla DevKit Raspberry Pi

OS kernel Linux 3.8 Linux 3.8 Linux 3.1 Linux 3.6

The two Cortex-A processors present two critical microarchitectural differ-
ences: (a) Scalar ßoating point operations are more efÞcient on Cortex-A9 and
(b) Cortex-A8 can issue a NEON load/store instruction together with a NEON
arithmetic operation, while this is not possible on Cortex-A 9.

The peak performance values in this table were computed without consider-
ing the impact of loads and stores and assuming an ideal ratio of additions and
multiplications. In the following we describe our tests, competitors, and provide
details about the conÞguration of our hardware and software environment.

chosen blacs . In this experimental context we focus on only two com-
putations from Table 6.1: sblinf and sgemam. In particular, sblinf is a memory-
intensive computation while sgemama compute-intensive one, where by memory-
intensive we mean a ratio of operations to data movement of O(1). A larger set
of experiments is discussed in [69]. Unless stated otherwise, all matrices and
vectors are 16-byte aligned.

competitors . Our selected competitors are: (a) Intel MKL 11.1 (Intel Atom
only), (b) Intel IPP 8.0 (Intel Atom only), (c) Eigen 3.2 (all processors), (d) ATLAS
3.10.1 (all processors), and (e) compilers taking as input handwritten straightfor-
ward, scalar code as described before (all processors). In the last case, we consid-
ered again both code with Þxed problem sizes that are known at compile time
and code with unknown problem sizes that are passed as arguments.

hardware and software configuration . On Intel Atom, cycles are
measured using the rdtsc instruction. On the ARM Cortex-A 8 and ARM 1176we
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used the cycle counter of the performance monitor unit (PMU). On the ARM
Cortex-A9 we used the Linux perf infrastructure.

We disabled hyper-threading on Intel Atom and CPU throttling on the three
ARM processors. LGen was conÞgured to use a random search with sample size
of 10.

For both Intel MKL and ATLAS, we implemented sblinf as a combination
of cblas _sgemv and cblas _sdot . sgemamwas implemented in MKL with a call to
MKL_Somatadd followed by cblas _sgemm and in ATLAS with a call to cblas _saxpy

followed by cblas _sgemm. For Eigen we used Map interfaces over existing ar-
rays, no-alias assignments, and we enabled vector code generation by deÞning
EIGEN_VECTORIZE.

ATLAS was built natively using gcc 4.7 on all platforms. On the Intel Atom
we used the provided architectural defaults, while for the other three processors
we executed a full search to Þnd the best values for the ATLAS parameters.
For all four processors, gemm was retuned after the installation to improve the
performance of ATLAS for small matrix computations, as it is described in the
errata section of the ATLAS website2.

On the Intel Atom tests were compiled with icc 14(ßags -O3 -xHost -fargument-
noalias -fno-alias -no-ipo -no-ip -no-prec-div); on the ARM processors with
clang 3.4 (ßags -O3 -mcpu=<cpuname>) and gcc 4.7 (ßags -O3 -ffast-math -
fsingle-precision-constant -fstrict-aliasing -mcpu=<cpuname> -march=armv 7-a
-mtune=<cpuname> -mfpu=neon -mßoat-abi=hard).

labell ing conventions . For plots we use the following labelling conven-
tion: LGen for LG en without generic C-IR loads and stores (see Section 3.3.2),
LGen -GLSfor LG en using generic C-IR loads and stores, andLGen -GLS -ADfor
LGen using both generic C-IR loads and stores and alignment detection. Align-
ment detection only applies on Atom, since the ARM NEON intrinsics do not
provide aligned loads and stores. Also, the NEON " -BLACs were implemented
directly with generic loads and stores; thus a comparison to the previous LG en
is omitted.

intel atom . In Figure 6.5(a) we show the results for the computation of
sblinf. LGen -GLS -ADperforms better than all competitors, achieving speedups
of up to 2.8! with respect to MKL. The presence of several downward spikes is
due to the amount of unaligned instructions available in the code. The size of
the panel matrix A strongly inßuences performance, bringing it down to 1 f/c
whenever n mod 4 # {1, 3} (which yields only 25% aligned accesses).

In Figure 6.5(b) we show the performance results for sgemam. The performance
of LGen -GLSis around 30% higher than the one of LGen. Alignment detection
adds another 30% of improvement over the performance of LG en for matrix

2 http://math-atlas.sourceforge.net/errata.html
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(a) A is 4 ! n (b) A0, A1 are n ! n, B is n ! 7

Figure 6.5: (a) # = xTAy and (b) C = #(A0 + A1)TB + $C on the Intel Atom.

(a) A is 4 ! n (b) A0, A1, and B are n ! 30

Figure 6.6: (a) # = xTAy and (b) C = #(A0 + A1)TB + $C on the ARM Cortex-A 8.

sizes that favor this optimization (i.e. divisible by 4). Eigen, the best competitor,
performs better than LG en for larger matrices, but never better than LGen -GLS
and LGen -GLS -AD.

arm cortex -a8. In all experiments conducted on Cortex-A 8 (Figure 6.6) the
competitors achieve lower performance than LG en (in most cases less than0.2
f/c). The main reason is the mixing of scalar and vector instructions, which
on Cortex-A 8 leads to poor performance. This does not apply to LG en, as it
generates completely vectorized code, even when handling leftovers. The per-
formance of LGen is mostly in the range 1-1.3 f/c, being up to 9! faster than
the best competitor.

arm cortex -a9. Figure 6.7 shows the experimental results for Cortex-A 9.
For sblinf (Figure 6.7(a)) Eigen is the best competitor, achieving 10Ð40% lower
performance than LGen. For sgemam(Figure 6.7(b)) LGen is more than 2! faster
than the optimizing compilers and 25% faster than Eigen, with a performance
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(a) A is 4 ! n (b) A0, A1, and B are n ! 30

Figure 6.7: (a) # = xTAy and (b) C = #(A0 + A1)TB + $C on Cortex-A 9.

(a) A is 4 ! n (b) A0, A1, and B are 4 ! n.

Figure 6.8: (a) # = xTAy and (b) C = #(A0 + A1)TB + $C on the ARM 1176.

of between 0.8 and 1 f/c. For wider matrices ATLAS approaches LG enÕs perfor-
mance to within 10%.

arm1176. The ARM1176 processor does not present vector units and opti-
mizations such as tiling, loop unrolling, loop fusion, and loop exchange have a
signiÞcant impact on the quality of the generated code. In all the experiments
in Figure 6.8 LGen is up to 4! faster than ATLAS, which is in all cases the
best competitor. Drops in performance can be noticed for large values of n due
to reaching the L1 D-cache size (16 kB). Another general remark is that for all
tested BLACs, LGenÕs generated code compiled with gcc is more efÞcient than
the one compiled with clang. Finally, for large values of n the performance re-
sults of LGen are less stable because of the random search with a sample size
that is relatively small compared to the large space of tiling options.
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Table 6.3: sBLAC experimental categories. For S we specify whether lower (l) or upper
(u) part is used.

Category Label sBLAC Sizes

BLAS
dsyrk Su = AA T + Su A # Rn! 4

dtrsv x = L\ x L # Rn! n

BLAS-like
dlusmm A = LU + Sl L, U # Rn! n

dsylmm A = SuL + A Su, L # Rn! n

Non-BLAS compositeA = ( L0 + L1)Sl + xxT L0, Sl # Rn! n

6.2 basic linear algebra computations with structured matri -
ces

In this section we provide an experimental evaluation of our approach in the
context of sBLACs. We divide our experiments into the three categories, shown
in Table 6.3, according to the compatibility of the sBLACs with the BLAS. Specif-
ically we chose two sBLACs that match BLAS, two sBLACs that are available
in BLAS but without support for structures (BLAS-like), and an sBLAC that
can only be implemented using more than one BLAS or BLAS-like function
(Non-BLAS). Matrices are implemented using double precision arrays 32-bytes
aligned. All of them are fully stored in row-major order and in the case of trian-
gular and symmetric matrices only half of the matrices are used.

experimental setup . We executed our tests on an Intel Core i7-2600CPU
(Sandy Bridge microarchitecture) 3.3 GHz, AVX, 32 kB L1 D-cache, 256 kB L2
cache, under Ubuntu 14.04 with Linux kernel v 3.13. We disabled Intel Turbo
Boost to minimize measurement instabilities. We compare with: (a) the Intel
MKL library v 11.2, (b) na•ve code compiled with Intel icc v 15, and (c) code
generated by LGen without support for structures. Further, starting with v 11.2
it adds support for small-scale, double precision matrix multiplication (dgemm).
BLAS tests are implemented using the matching BLAS functions. BLAS-like tests
are implemented using dtrmm (in the case of dlusmm) and dsymm (in the case of
dsylmm). The compositetest is implemented using MKL_Somatadd , dsyr , and dsymm.
We do not rearrange matrices when testing MKL (e.g., zeroing a half triangular
matrix when used in place of a general one).

Na•ve code is scalar, unoptimized, handwritten, straightforward code with
hardcoded sizes of the matrices. The goal is to compare with compiler optimiza-
tions.
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All tests were compiled using icc with ßags -O 3 -xHost -fargument-noalias
-fno-alias -no-ipo -no-ip. The MKL tests use ßags obtained from the Intel MKL
Link Line Advisor 3.

measuring approach . All plots show performance in ßops per cycles ( f/c )
on the y-axis and the size parameter n in doubles on the x-axis. Assuming
balanced additions and multiplications, the peak performance of the CPU is 8
f/c . The parameter n is always increased up to the L2 cache boundaries. All
tests were run with warm cache. Every point on the graphs is the median of 30
repetitions and quartile informations are reported with whiskers. In most cases,
however, these are too small to be visible.

remarks on plots . We compute performance as the ratio of ßop count
taking structures into account ( f underneath each plot) to measured time to
solution. This way the plots can provide an estimate of the CPU utilization as
well as carrying information about time speedup (as f/c 1

f/c 2
= c2

c1
).

Every plot shows the L 1 boundary determined by working set size (size of all
inputs and outputs of an sBLAC). All plots have the same legend show on top
of each Þgure.

category blas . For dsyrk(Figures 6.9(a)Ð(b)) LGen is up to 2.5! faster than
MKL when data Þt in L 1 and around 1.6! when data Þt in L 2. Comparing
with icc-compiled code LG en is in general 1.6! faster. In all cases, icc performs
unrolling and vectorization of the innermost loop of length four. However, icc
does not modify the loop nest to increase reuse by blocking. In the case of dtrsv
(Figs. 6.9(c)Ð(d)) all competitors perform equally. For larger sizes casting the
computation in terms of matrix-vector multiplication becomes more crucial, an
optimization that also icc applies by unrolling and vectorizing the innermost of
the two loops in the handwritten code. In this case we could not generate code
using the old LG en approach as it lacks the structure support required by the
triangular solve.

category blas -like . The Þrst test in the BLAS-like category is dlusmm(Fig-
ures 6.10(a)Ð(b)). Here LGen is up to 3.5! faster than icc and up to 2! faster than
MKL for data in L 1 (1.4! for data in L 2). In this case exploiting the structure of
both L and U avoids about one third of redundant computations. icc on the other
hand fails to perform and take advantage of proper tiling for locality. In dsylmm
(Figures 6.10(c)Ð(d)) LGen is up to 7! faster than icc-compiled code and, for
sizes up to the L1 boundary, about 1.4! faster than MKL. Further investigations
revealed that code generated with LG en produces high pressure on the shufße
unit of the CPU. This could be due to an excessive amount of transpositions in

3 https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
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Figure 6.9: Category BLAS: (a)Ð(b)dsyrk(4n2 + 4n ßops) and (c)Ð(d)dtrsv (n2 + n ßops).
In (b) and (d) all sizes are multiple of the vector length ( " = 4). LGen without
structures is missing in (c) and (d) as the triangular solve operator is not
supported by such an approach.

the innermost loops and could be handled by introducing block permutations
in between (non-fused) gathers.

category non -blas . Figure 6.11shows results for composite. Although more
complicated, this sBLAC contains a multiplication term structurally similar to
the one in dsylmm, thus the similarity between the two performance proÞles.

6.3 higher -level l inear algebra computations

In this section we evaluate the generator presented in Chapter 5 for Þve different
computations: Four linear algebra building blocks (the Cholesky decomposition,
the solution of triangular, continuous-time Sylvester and Lyapunov equations,












































































