
DISS. ETH NO. 24392

Deep Neural Networks and Hardware Systems for
Event-driven Data

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES OF ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

DANIEL NEIL

M.Sc., University of Zürich and ETH Zürich 2013
B.S. Stanford University 2008

born on 15.01.1986

citizen of the United States of America

accepted on the recommendation of

PD Dr. Shih-Chii Liu
Prof. Tobi Delbruck

Prof. Daniel Lee
Prof. Kevan A.C. Martin

2017

Deep Neural Networks
and Hardware Systems for Event-driven Data
A DOCTORAL THESIS for ETH Zürich covering developments on event-based sensors, deep neural
networks, and machine learning for bio-inspired applications.

BY Daniel Neil

First printing, July 2017

5

This work can only exist because of the family of students at

the Institute of Neuroinformatics in Zürich, my inspiring flat-

mates Saee Paliwal and Hazael Montanaro, the brilliant Dane

Corneil, the perennial encouragement of my advisors Shih-Chii

Liu and Tobi Delbruck, the brilliant guidance of Michael Pfeif-

fer, all of my coauthors and colleagues who profoundly enriched

the experience, and the warm encouragement of my family and

all of my friends.

7

Contents

Acronyms 13

List of Figures 15

List of Tables 21

Abstract 23

Abstract (Deutsch) 25

1 An Introduction to Event-Based Sensors and Machine Learning 27

1.1 The Amazing Progress of Deep Learning . 27

1.2 Towards Artificial Agents that Exist in the World . 28

1.3 An Introduction to Event-Based Sensors . 28

1.3.1 Dynamic Vision Sensors . 29

1.3.2 Dynamic Audio Sensors . 31

1.4 Event-based Inputs and Networks: New Challenges and New Opportunities 31

2 Event-based Hardware Systems for Deep Networks 37

2.1 Why Hardware? . 37

2.2 Minitaur . 38

2.2.1 Prior Work . 39

8

2.2.2 Event-Driven Neural Model . 40

2.2.3 Simulation . 41

2.2.4 Spartan 6 FPGA Architecture . 41

2.2.5 Minitaur Design Principles . 43

2.2.6 Minitaur Implementation . 44

2.2.7 Results . 46

2.2.8 MNIST Handwritten Digits . 47

2.2.9 Newsgroups Dataset Classification Performance . 49

2.2.10 System Performance . 50

2.2.11 Initial Response and Additional Accuracy . 50

2.2.12 Noise Robustness and Indecision . 51

2.2.13 Summary of FPGA Implementation . 52

2.3 SpiNNaker: An Optimized Hardware Implementation . 53

2.4 Low-precision Approximations for Hardware Systems . 54

2.5 Lessons Learned from Hardware Spiking Systems . 57

3 Bringing in the State-of-the-Art from Deep Learning 59

3.1 Prior work: Deep Belief Networks and Spiking Networks . 59

3.2 Feed-forward Network Conversion . 61

3.2.1 Motivation for Feed-forward Network Conversion . 61

3.2.2 Motivation for Deep Spiking Networks . 61

3.3 Neural Network Architectures for Conversion . 63

3.3.1 ReLU-Based Feed-Forward Neural Networks . 63

3.3.2 Convolutional Neural Networks . 63

3.3.3 Dropout . 64

9

3.4 Spiking Neural Networks . 64

3.4.1 Background . 64

3.4.2 Spiking Network Conversion . 65

3.4.3 Weight Normalization . 66

3.5 Experimental Setup . 67

3.5.1 Dataset . 67

3.5.2 Architectures . 68

3.5.3 Spiking Input . 69

3.6 Results . 69

3.6.1 Conversion and Parameter Choices . 69

3.6.2 Accuracy . 70

3.6.3 Convergence Time . 72

3.7 Conclusion . 72

4 Unique Optimizations for Event-based Deep Networks 75

4.1 What new opportunities can be afforded? . 75

4.2 Methodology . 76

4.2.1 Network Architecture and Dataset . 76

4.2.2 SNN Conversion and Normalization . 76

4.2.3 Evaluation Criteria . 77

4.2.4 Methods for Reducing Firing Rates . 77

4.2.5 Methods for Rapid Classification . 78

4.3 Results . 80

4.4 Discussion . 83

4.5 What Questions Should Be Addressed Next? . 84

10

5 Developing a Model to Directly Learn from Event-based Data 87

5.1 Introduction . 87

5.2 Model Description . 88

5.3 Results . 91

5.3.1 Frequency Discrimination Task . 92

5.3.2 Adding Task . 94

5.3.3 N-MNIST Event-Based Visual Recognition . 95

5.3.4 Visual-Auditory Sensor Fusion for Lip Reading . 96

5.4 Conclusion . 99

5.5 Discussion . 99

6 Determining the Efficacy of a New Architecture 101

6.1 Introduction . 101

6.2 Models . 101

6.2.1 LSTM . 101

6.2.2 Phased LSTM . 102

6.2.3 Joint . 104

6.2.4 Random-Dropout LSTM: No periodicity . 105

6.2.5 Square-wave Phased LSTM: No edge gradients . 105

6.2.6 Cyclic LSTM: Fixed phase relationships . 106

6.2.7 Refractory LSTM: Forced longest memories . 106

6.3 Measures . 107

6.4 Experiments . 108

6.4.1 Frequency Analysis . 108

6.4.2 Speaker Identification . 110

11

6.4.3 Natural Language Processing . 111

6.5 PLSTM Parameter Importance . 112

6.5.1 Presence & Absence of Learning . 112

6.5.2 Parameter Ablation . 113

6.6 Conclusion & Discussion . 114

7 Extending the Principle of Event-based Sensors to Computation 117

7.1 Introduction . 117

7.2 Motivation . 117

7.3 Delta Network Formulation . 118

7.3.1 Theoretical Cost Calculation . 119

7.4 Delta Network GRU . 120

7.5 Delta Network Approximations . 121

7.6 Methods to Increase Accuracy & Speedup . 123

7.6.1 Training Directly on Delta Networks . 123

7.6.2 Rounding Network Activations . 123

7.6.3 Adding Gaussian Noise to Network Activations . 123

7.6.4 Considering Weight Sparsity . 124

7.6.5 Incurring Sparsity Cost on Changes in Activation . 124

7.7 Results . 125

7.7.1 TIDIGITS Dataset Trajectory Evolution . 125

7.7.2 TIDIGITS Dataset Speedup and Accuracy . 126

7.7.3 Wall Street Journal Dataset . 128

7.7.4 Comma.ai Driving DataSet . 128

7.8 Discussion and Conclusion . 130

12

7.9 Conclusion: Extending Event-based Principles to Computation 131

8 Conclusion, and Towards a Future of Event-based Machine Learning 133

8.1 Towards the Future . 136

Author’s Cited Works 141

Full Bibliography 143

Appendix: Source code and implementation details 153

13

Acronyms

ANN Analog Neural Network. 17, 59, 62, 64, 65, 75, 76, 77, 78, 79, 80, 81, 82

API Application programming interface. 53

ASIC Application-Specific Integrated Circuit. 39, 53, 133

BN Batch-normalized. 18, 93, 94, 96

BRAM Block Random Access Memory. 42, 46

CD Contrastive Divergence. 60

CNN Convolutional Neural Network. 17, 20, 27, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 70, 71, 72, 96, 124,
128, 129, 128, 129, 130

CPU Central Processing Unit. 37, 38, 39, 47, 49, 53, 57, 61

DAS Dynamic Audio Sensor. 31

DAVIS Dynamic and Active-pixel Vision Sensor. 15, 29

DBN Deep Belief Network. 16, 37, 38, 39, 40, 43, 45, 52, 53, 54, 56, 59, 60, 61, 62

DN Delta Network. 19, 20, 125, 126, 128

DSP Digital Signal Processor. 15, 42, 44, 45

DVS Dynamic Vision Sensor. 15, 29, 32, 43, 134

FPGA Field-programmable Gate Array. 37, 38, 39, 40, 42, 46, 53

FPS Frames Per Second. 128

GHz Gigahertz. 47

GPU Graphical Processing Unit. 38, 39, 61, 124, 153

GRU Gated Recurrent Unit. 20, 87, 99, 101, 114, 117, 120, 121, 122, 123, 125, 126, 127, 128, 129, 128, 129,
154

IF Integrate-and-Fire. 65, 66, 68, 69, 70, 76

IOE Integral of Error. 19, 107, 108

ISI inter-spike interval. 31

JIT Just-in-time. 135

14

LIF Leaky Integrate-and-Fire. 38, 40, 47, 52, 53, 59, 62

LSTM Long Short-Term Memory. 18, 19, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 117, 134, 135

MFCC Mel-Frequency Cepstral Coefficients. 19, 97, 96, 98, 118, 125

MHz Megahertz. 42, 46, 47

NLP Natural Language Processing. 111

PLL Phase-locked loops. 46

PLSTM Phased LSTM. 19, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 134, 136, 153

PSC Post-synaptic currents. 43, 47, 46, 47, 49, 50

RAM Random Access Memory. 15, 44

RBM Restricted Boltzmann Machine. 16, 39, 51, 60

RC Resistor-Capacitor. 40

ReLU Rectified Linear Unit. 62, 64, 65, 66, 67, 68, 76, 78, 96, 102

RNN Recurrent Neural Network. 19, 20, 27, 87, 88, 90, 93, 96, 97, 101, 103, 108, 117, 118, 117, 124, 127,
128, 129, 128, 129, 130, 131, 134, 154

ROM Read-only Memory. 15, 44, 45

SAE Stacked Auto-Encoder. 79, 81, 82, 83

SNN Spiking Neural Network. 17, 62, 63, 64, 65, 69, 71, 72, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85

TF-IDF Term frequency-inverse document frequency. 49

USB Universal Serial Bus. 15, 29, 41, 44, 47, 50

WER Word Error Rate. 128

15

List of Figures

1.1 Summary of the Dynamic Vision Sensor. At upper left, a simplified circuit diagram of the Dynamic and
Active-pixel Vision Sensor (DAVIS) pixel. Upper right, an example schematic of the operation of a Dy-
namic Vision Sensor (DVS) sensor. Center, picture of the DAVIS chip and 4-pixel layout; at right, the as-
sembled DAVIS Universal Serial Bus (USB) camera. Bottom left, a frame and event-based view of a spin-
ning dot; at right, a natural scene in which the chip’s principle designer catches a football. Note that the
frames lag behind the low-latency input events. Used with permission. 30

1.2 Summary of the CochleaLP, the low-power cochlea. Events are produced within the cochlea at a vary-
ing rate, and outputs are only processed during active periods. Used with permission. 32

1.3 Pseudo-simultaneity of input and computation. Three-layer fully-connected deep belief network receives
inputs (top), processes them through two intermediate visual abstraction layers (center) to produce an
output classification (bottom). Each black dot represents a spike from a neuron, each of which is indexed
by its address along the vertical axis. Five sequential handwritten digits (0-4) are presented to the net-
work, each for a duration of 1 second, with red vertical lines indicating input switching. Note that cor-
rect output events are emitted quickly after the onset of a new input stimulus and persist throughout
the presentation of the stimulus. 34

2.1 Simplified architecture of the Minitaur system. It contains 32 parallel cores and 128 MB of DDR2 for main
memory. Each core has 2048 KB of state cache, 8192 KB of weight cache, and 2 Digital Signal Processors
(DSPs) for performing fixed-point math (one multiplying the decay, one for summation of the input cur-
rent). The exponential decay lookup uses 2048 KB of Random Access Memory (RAM), preloaded from
design and used as a Read-only Memory (ROM). 44

2.2 Visualization of the weights between the first layer and second layer of the MNIST network trained us-
ing rate neurons. This figure shows a sample of 100 neurons in the second layer, in which the incom-
ing 784 weights are reshaped into a 28x28 pixel image; the weights shown are typical of MNIST-trained
networks. 48

2.3 Visualization of the network configuration used for the MNIST task. 48

16

2.4 Example real-time run of digit identification, with an output spike represented by a black dot. Each digit
was presented in order, from zero to nine, for a duration of one second during which 1000 spikes were
presented; the probability of an input spike for a given pixel is proportional to the pixel’s intensity. The
winning digit is chosen according to an exponentially decaying histogram (τ = 0.11s); the dark dot-
ted line indicates a transition to a selection of an incorrect winning digit, while the lighter dashed lines
indicate a transition to the correct choice for that digit. For the trial shown here, the average time to tran-
sition to a newly selected digit after a change in the input digit was 0.152 seconds. 48

2.5 Increasing accuracy with additional information, using the complete 10,000 digits in the MNIST test set.
For an event-based system the natural unit of time is number of input events, not seconds; each input
event refines the answer estimate in the same way a long exposure time or multiple frames accumulates
evidence in a time-stepped model. Moreover, latency is measured using input events because the sys-
tem cannot produce an answer without accumulated information added to the system. The top plot shows
a histogram of latency until the first output spike; most trials produce a result spike after 4 input spikes
(as seen in the zoomed-in inset), but some trials can take hundreds of inputs to produce their first out-
put spike. The bottom plot shows the effect of adding more events in the MNIST task; additional spikes
cause the accuracy to asymptotically approach a 92% value. 51

2.6 Visualization of 3 digits from the MNIST dataset with noise added. Shown here, from left to right, are
0% noise, 30% noise, 55% noise, and 80% noise for example handwritten digits 4, 9, and 3. Noise spikes
were drawn uniformly from the pixel space and used to replace informative spikes. 52

2.7 System performance is robust to noise. Even when the input is only 20% signal and 80% noise, the event-
driven system still correctly classifies the digits with more than a 70% success rate. This is largely due
to the robustness of Restricted Boltzmann Machines (RBMs) to uniform noise; since no particular dis-
tribution is favored by uniform noise, it does not strongly affect the result. The increased noise of the
data does create more indecision in the result; the number of output spikes drops dramatically with in-
creased noise and accounts for the falling accuracy. 52

2.8 Impact of different rounding methods during learning on learned weight representations. Comparison
of first-layer weights in networks trained with the dual-copy rounding method (left) and the post-learning
rounding method (right). The weights shown here are representative samples from 16 clusters of weight
vectors in the learned dual-copy rounding weight matrix. On the right, the weights from the post-learning
rounding weight matrix that are most similar to these chosen weights are displayed. The dual-copy round-
ing method is able to preserve much more fine structure, compared to simply rounding the network weights
after training, and is thus more suitable for training networks that will be executed with lower bit pre-
cision weights. 55

2.9 Effectiveness of the dual-copy rounding weight training paradigm. Training at full precision and later
rounding performs consistently worse than the dual-copy rounding method introduced in this paper.
Rounding the weights during training can prevent learning entirely at low-precision regimes. The re-
sults show averages of five independent runs with different random seeds. 56

2.10 Increase in classification accuracy of a spiking Deep Belief Network (DBN) with Q3.1 precision weights
due to the dual-copy rounding method for input rates of 100 Hz and 1500 Hz. Results over 4 trials. 56

17

3.1 Comparison of activations between ReLU-based fully-connected network and non-normalized spiking
network variants with different thresholds and input rates. The figure shows the accumulated spike count
over 200 ms of simulation time. Ideally, the images in the bottom two rows should resemble a scaled
version of the top row. Images shown here are scaled individually due to the unbounded upper range
of the ReLU. 70

3.2 Classification performance and number of spikes produced for different architectures as a function of
the input rate and the firing threshold. Upper panels show results for Convolutional Neural Networks
(CNNs), lower panels for DenseNet. The color of each circle represents the mean accuracy on the MNIST
test set (averaged over 5 trials), using an integration time of 0.5s (500 timesteps) for every input exam-
ple. The size of the circle corresponds to the average number of spikes generated by the whole network
per example presentation. The panels on the right show the same data for the normalized networks, whereby
the threshold was fixed at 1 for all experiments. Parameter sets that led to test errors greater than 1.15

(ConvNet) or 2.2 (DenseNet), respectively, are not displayed. 71

3.3 Classification error over time. Black curves show results for CNNs and blue curves show the results for
fully-connected networks. Solid lines denote the error of data-normalized networks, dashed lines de-
note the error of model-normalized networks. Dotted lines denote the error for the best parameter set
found from the 2D grid (figure 3.2). All networks except the model-normalized ones show very low er-
ror before 100 ms. Fully-connected data-normalized networks are close to their peak accuracy after only
6 ms (1.74% error). 72

3.4 Time to first output spike and performance based on the first output spike. All 10,000 MNIST test ex-
amples were presented to the spiking CNN for 0.5s. The upper graph shows the percentage of exam-
ples for which none of the output neurons has fired as a function of time. The lower graph shows the
error rate of the network, using only the first output spike to determine the class label. 73

4.1 Diagram of an example dropout learning schedule with 160 epochs. The first 80 epochs use zero dropout,
but the rate of dropout is gradually increased from 0% to 80% over the last 80 epochs. 79

4.2 Boxplot indicating amount of computation for Spiking Neural Networks (SNNs) using different opti-
mization approaches. This boxplot indicates minimum, first quartile, median (red line), third quartile,
and maximum, with outliers shown as red stars. The majority of the optimization methods lie to the left
of the black vertical line, indicating they require less computation than a frame-based Analog Neural
Network (ANN) to achieve the same 98% classification accuracy. The best result shown here achieves
the target accuracy in less than 42% of the computational operations required for an ANN. 80

4.3 Dependency of accuracy on the number of input spikes and total operations for trained SNNs using dif-
ferent optimization approaches. The top figure depicts the accuracy versus latency while the bottom shows
accuracy versus computation. Each line shows the accuracy curve for one of the 522 networks. Curves
for networks that achieve 98% accuracy within the compute constraint are plotted in different (but ar-
bitrary) colors, and the remaining networks are plotted in light gray. In both plots, a colored vertical tick
mark on the horizontal axis is drawn to indicate the point at which a network passes 98% accuracy. In
the bottom figure, the black vertical line indicates the amount of computation required for a frame-based
ANN. 81

18

4.4 Same as Fig. 4.3, but highlighting only the results for the 54 SNNs trained with a Dropout Learning Sched-
ule in color, with the remaining SNNs in light gray. One can see the remarkable similarity of learning
results for different parameter settings. 82

4.5 Examples of features learned in the first hidden layer with different optimization approaches. 10 fea-
tures were selected randomly, and are displayed with normalized gray levels. Note that, similar to pre-
vious studies, Gabor-like and stroke-like features of the MNIST digits appear for all approaches. 83

5.1 Model architecture of the standard Long Short-Term Memory (LSTM) model. 89

5.2 Model architecture, Phased LSTM model, with time gate kt controlled by timestamp t. In the Phased
LSTM formulation, the cell value ct and the hidden output ht can only be updated during an “open”
phase; otherwise, the previous values are maintained. 89

5.3 Diagram of Phased LSTM behaviour. The rhythmic oscillations to the time gates of 3 different neurons;
the period τ and the phase shift s is shown for the lowest neuron. The parameter ron is the ratio of the
open period to the total period τ. Bottom: Note that in a multilayer scenario, the timestamp is distributed
to all layers which are updated at the same time point. 90

5.4 Illustration of Phased LSTM operation. A simple linearly increasing function is used as an input. The
time gate kt of each neuron has a different τ, identical phase shift s, and an open ratio ron of 0.05. Note
that the input (top panel) flows through the time gate kt (middle panel) to be held as the new cell state
ct (bottom panel) only when kt is open. 90

5.5 Frequency discrimination task. The network is trained to discriminate waves of different frequency sets
(shown in blue and gray); every circle is an input point. (a) Standard condition: the data is regularly sam-
pled every 1 ms. (b) High resolution sampling condition: new input points are gathered every 0.1ms.
(c) Asynchronous sampling condition: new input points are presented at intervals of 0.02 ms to 10 ms.
(d) The accuracy of Phased LSTM under the three sampling conditions is maintained, but the accuracy
of the BN-LSTM and standard LSTM drops significantly in the sampling conditions (b) and (c). Error
bars indicate standard deviation over 5 runs. 92

5.6 Accuracy during training for the superimposed frequencies task. The Phased LSTM outperforms both
LSTM and Batch-normalized (BN)-LSTM while exhibiting lower variance. Shading shows maximum and
minimum over 5 runs, while dark lines indicate the mean. 94

5.7 Mean-squared error over training on the addition task, with an input length of 500. Note that longer pe-
riods accelerate learning convergence. 94

5.8 N-MNIST experiment. (a) Sketch of digit movement seen by the image sensor. (b) Frame-based repre-
sentation of an ‘8’ digit from the N-MNIST dataset obtained by integrating all input spikes for each pixel.
(c) Spatio-temporal representation of the digit, presented in three saccades as in (a). Note that this rep-
resentation shows the digit more clearly than the blurred frame-based one. 95

5.9 Inputs and openness of time gates for the lip reading experiment. Note that the 25fps video frame rate
is a multiple of the audio input frequency (100 Hz). Phased LSTM timing parameters are configured to
align to the sampling time of their inputs. 97

19

5.10 Example input of video (top) and audio (bottom). 98

5.11 Test loss using the video stream alone. Video frame rate is 40ms. Top: low resolution condition, Mel-
Frequency Cepstral Coefficientss (MFCCs) computed every 40ms with a network update every 40 ms;
Bottom: high resolution condition, MFCCs every 10 ms with a network update every 10 ms. 98

6.1 Error for the various models on the standard sampling condition of the first frequency task. The mean
is displayed as a dark line, with semi-transparent maximum and minimum shaded around the line. Note
the diversity of model behaviours over a fixed period of training epochs. 107

6.2 Frequency discrimination task Integral of Error (IOE). (a) Standard condition: the data is regularly sam-
pled every 1 ms. (b) High resolution sampling condition: new input points are gathered every 0.1ms.
(c) Asynchronous sampling condition: new input points are presented at intervals of 0.02 ms to 10 ms.
Boxplots indicate the mean in gray, minimum and maximum with whisker lines, and the box extends
to the lower and upper quartile of the results. IOE has been normalized such that the IOE of Phased LSTM
(PLSTM) on the standard task is 1. 109

6.3 Integral of Error on MOCHA-TIMIT speaker identification task. Errors (in parantheses) are normalized
such that PLSTM is 1. Note that most PLSTM variants perform approximately equally, with the notable
exception of RndDrp, while standard LSTM and batch-normalized LSTM have more difficulty. 111

6.4 Validation error (nats) on the enwiki8 100MB Wikipedia dump. Due to the long computation time (ap-
prox. 1 hour/epoch on a GTX 980Ti), only a single run of each model is shown as a qualitative compar-
ison. 112

6.5 Comparison between learning (solid lines) and not learning (dashed lines) the timing parameters of Phased
LSTM, under the three conditions of the frequency task. Minimum and maximum error for each epoch
is shown in the shaded area, with the mean shown in a thick solid lines. Note a significant advantage
to learning the timing parameters can be found for certain tasks. 113

6.6 Parameter ablation for frequency tasks. Each plot demonstrates the shuffling of a particular parameter,
after training. Across the horizontal axis, the percentage of parameters shuffled; across the vertical axis,
the resulting decrease in accuracy. Error bars are standard deviations calculated from 5 different mod-
els, each with ten random shuffled parameter subsets at each point. Note the larger drop in accuracy
for the period compared to the other two parameters; note also task-specific parameter sensitivity with
the ron more sensitive to parameter ablation in the high resolution and asynchronous sampling condi-
tions. 114

7.1 Stability in Recurrent Neural Network (RNN) activations over time. The top figure shows the continually-
changing MFCC features for a spoken digit from the TIDIGITS dataset; the bottom figure shows the cor-
responding neural network output activations in response to these features. Note the slow evolution of
the network states over timesteps. 118

7.2 Illustration of saved matrix-vector computation using delta networks with sparse delta vectors and weight
matrices. 119

20

7.3 Comparison of trajectories over time by increasing Θ from 0 to 0.85 in steps of 0.05. At left, an increase
of error angle between the final training state and the final thresholded state manifests as a decrease in
accuracy, with the Gaussian-trained net as squares and Delta Network (DN)-trained net as circles. At
right, the mean angle between the unapproximated state and the thresholded state over time. In red,
the angle over time of an untrained network that has the same weight statistics as a trained network;
in solid lines, a network that was trained as a delta network; in dashed lines, a network that was only
trained with Gaussian noise. Curves for Θ = 0.55 are highlighted in blue. Note that a DN-trained net-
work has lower angle error, especially at higher thresholds, and an untrained net always quickly con-
verges to an orthogonal state. 125

7.4 Test accuracy results from standard Gated Recurrent Units (GRUs) run as delta networks after training
(curves 1, 1a, and 1ab) and those trained as delta networks (curves 2, 2a, and 2ab) under different con-
straints on the TIDIGITS dataset. The delta networks are trained for Θ = 0.5, and the average of five
runs is shown. Note that the methods are combined, hence the naming scheme. Additionally, the ac-
curacy curve for 2 is hidden by the curve 2a, since both achieve the same accuracy and only differ in speedup
metric. 126

7.5 Accuracy-speedup tradeoff by adjusting Θ for TIDIGITS. By increasing Θ (indicated by sample point
size), larger speedups can be obtained at greater losses of accuracy. For networks trained as delta net-
works, the training threshold is the first (leftmost) point in the line point sequence. 127

7.6 Accuracy and speedup tradeoffs on the WSJ dataset. The solid lines show results from an existing deep
RNN run as a delta network. The dashed lines show results from a network trained as a delta network
with Θ = 0.2. The horizontal lines indicate the non-delta network accuracy level; similarly, the solid
and dashed horizontal lines indicate the accuracy of the normal network and the DN network prior to
rounding, respectively. 129

7.7 Reduction of RNN compute cost in the steering angle prediction task. Top figure shows the required
of ops per frame for the delta network GRU layer (trained with Θ = 0.1) in comparison with the con-
ventional GRU case. Bottom figure compares the prediction errors of CNN predictor and CNN+RNN
predictor. The RNN slightly improves the steering angle prediction. 129

7.8 Tradeoffs between prediction error and speedup of the GRU layer on the steering angle prediction. The
result was obtained from 1000 samples with 48 consecutive frames sampled from the validation set. Speedup
here does not include weight matrix sparsity. The network was trained with Θ = 0.1. A speedup of
approximately 100X can be obtained without increasing the prediction error, using Θ between 0.1 and
0.25. 130

21

List of Tables

1.1 Advantages and Challenges in Event-driven Machine Learning 32

2.1 Minitaur Parameters 42

2.2 System Performance 47

2.3 Newsgroup classification 50

3.1 Comparison of classification accuracy for different network architectures and conversion mechanisms. 70

4.1 Summary of Results: Comparison of the number of operations (measured in millions of adds) and la-
tency (measured as the number of input spikes) necessary to reach 98% accuracy for different optimiza-
tion approaches. Networks with unnormalized and normalized weights are compared. 83

5.1 Accuracy on N-MNIST. 97

23

Abstract

Event-based sensors, built with biological inspiration, differ greatly from traditional sensor types. A
standard vision sensor uses a pixel array to produce a frame containing the light intensity at every pixel
whenever the sensor is sampled; a standard audio sensor produces a waveform of sound amplitude
over time. Event-based sensors, on the other hand, are typically substantially sparser in their output,
producing output events that occur upon informative changes in the scene, usually with low latency and
accurate timing, and are data-driven rather than sampled.

The outputs produced by these novel sensor types differ radically from traditional sensors. Unfortu-
nately, these differences make it hard to apply standard data analysis techniques to event-based data,
despite the advanced state of computational techniques for image understanding and acoustic process-
ing. Machine learning especially has made great strides in recent years towards scene understanding,
and particularly in the area of deep learning.

The goal of this thesis is to study how to make use of these novel sensors to draw from the state-
of-the-art in machine learning while maintaining the advantages of event-based sensors. This the-
sis takes the view that frame-based, traditional data has limited the scope of discovery for new kinds
of machine learning algorithms. While machine learning algorithms have reached great success, their
achievements pale in comparison to biological reasoning, and perhaps this arises from the fundamental
assumptions about what is processed in addition to how. That is, by relaxing expectations on the kinds
of data that will be processed, perhaps even better algorithms can be discovered that not only work with
biologically-inspired event-based sensors but also outperform traditional machine learning algorithms.

This thesis is studied at multiple levels of abstraction. In Chapter 2, custom hardware platforms are
introduced that prototype an existing machine learning algorithm in hardware. That work aims to en-
sure that the advantages of both state-of-the-art machine learning and the novel sensor types are main-
tained at the most fundamental hardware level and to understand the limitations of the algorithms
better. Indeed, this revealed that the most significant bottleneck when combining both is the accuracy
loss compared to traditional machine learning algorithms, and motivates the work in Chapter 3 that
dramatically increases the accuracy of event-driven neural networks for fixed, unchanging scenes (e.g.,
image analysis, perhaps the most well-studied problem in deep learning currently). With that primary
limitation addressed, Chapter 4 explores advantages that are unavailable to traditional deep learning but
are available to event-driven deep networks.

Chapter 5 forms perhaps the key contribution of this thesis by introducing a novel algorithm, Phased
LSTM, that natively works with event-driven sensors observing dynamic and changing scenes. Indeed,
as hypothesized above, Phased LSTM offers significant advantages over traditional deep neural net-
works, both for event-driven inputs and for standard frame-based inputs. Chapter 6 investigates the
source of these advantages to identify if the model is sufficiently simple and advantageous. Finally, an
observation made in the development of Phased LSTM motivates examining a principle of event-based

24

sensing within computation as well, explored in Chapter 7, and demonstrates the significant computa-
tional speedups that can result when sensor principles are also applied to computation.

Overall, this thesis introduces hardware implementations and algorithms that use inspiration from
deep learning and the advantages of event-based sensors to add intelligence to platforms to achieve a
new generation of lower-power, faster-response, and more accurate systems.

25

Abstract (Deutsch)

German translation thanks to Adrian Huber

Von der Biologie inspirierte ereignisbasierte Sensoren unterscheiden sich in vielerlei Hinsicht von
traditionellen Sensoren. Ein typischer Bildsensor misst die einfallende Lichtintensität mithilfe einer Pix-
elmatrix an jedem Pixel und erzeugt ein Einzelbild, welches mit der Abtastgeschwindigkeit ausgegeben
wird; ein typischer Audiosensor wiederum zeichnet die Schallamplitude über die Zeit auf. Das von
ereignisbasierten Sensoren erzeugte Ausgangssignal ist hingegen im Allgemeinen deutlich kärger als
das konventioneller Sensoren, da nur im Falle grösserer Veränderungen des zu messenden Eingangssig-
nals ein Ausgangssignal mit geringer Latenz und präziser Zeitinformation ausgegeben wird. Ereignis-
basierte Sensoren erzeugen demnach ein Ausgangssignal, das primär vom Signal selbst abhängt, und
zwar in Hinblick auf das entstehende zeitliche Abtastmuster.

Die Ausgangssignale dieser neuartigen Sensoren unterscheiden sich daher im höchsten Masse von
traditionellen Sensoren. Diese Unterschiede erschweren die Anwendung üblicher Datenanalysemeth-
oden auf ereignisbasierte Daten, obschon die Bildverarbeitung und die akustische Signalverarbeitung
über fortgeschrittene Algorithmen verfügen. Insbesondere das maschinelle Lernen führte im Laufe der
letzten Jahre zu grossen Fortschritten im Bereich Szene-Verständnis; unter den vielen Methoden des
maschinellen Lernens trug vor allem Deep Learning zu diesen Fortschritten bei.

Das Ziel dieser Doktorarbeit besteht darin, neuartige Sensoren so einsatzfähig zu machen, dass
ihre spezifischen Vorteile erhalten bleiben, wobei der neueste Stand der Technik aus dem Bereich des
maschinellen Lernens berücksichtigt wird. Diese Doktorarbeit vertritt die Position, dass herkömmliche,
regulär abgetastete Daten die Entwicklung neuer Algorithmen im maschinellen Lernen einschränkten.
Obwohl das maschinelle Lernen grosse Erfolge verzeichnen kann, verblassen diese Errungenschaften
doch, sobald man sie mit menschlichem Denken vergleicht. Mitunter entsteht diese Diskrepanz auf
Grund fundamentaler Annahmen bezüglich der Frage, welche Daten zur weiteren Verarbeitung aus-
gewählt werden, und wie dieselben verarbeitet wird. Abgeschwächte Bedingungen in Hinblick auf zu
verarbeitende Daten ermöglichten vielleicht das Auffinden besserer Algorithmen, welche nicht nur mit
von der Biologie inspirierten ereignisbasierten Sensoren arbeiten könnten, sondern die auch herkömm-
liche Algorithmen des maschinellen Lernens übertreffen könnten.

Diese Doktorarbeit ist in mehrere Abstraktionsebenen aufgeteilt. In Kapitel 2 werden speziell erstellte
Hardwareplattformen eingeführt, welche es erlauben, bereits bestehende Algorithmen des maschinellen
Lernens als Prototypen in Hardware zu implementieren. Das Ziel dieser Arbeit liegt darin, die Vorteile
der neuartigen Sensoren sowie modernster Algorithmen des maschinellen Lernens auf Hardwareebene
zu erhalten, und weiterhin die Limitationen dieser Algorithmen besser zu verstehen. Der bedeutendste
Engpass, der aus der Kombination der neuen Sensoren und modernster Algorithmen resultiert, ist ein
zu beobachtender Genauigkeitsverlust, insofern das System mit üblichen Algorithmen des maschinellen
Lernens verglichen wird. Diese Beobachtung veranlasste die Arbeit, die in Kapitel 3 präsentiert wird,
und welche die Genauigkeit ereignisgetriebener neuronaler Netze, angewendet auf starre, sich nicht

26

ändernde Szenen wie im Falle der Bildanalyse, dem wahrscheinlich am eingehendsten untersuchten
Problem im Bereich des Deep Learning, deutlich erhöhte. Nach dieser Erörterung untersucht Kapitel 4

dann die spezifischen Vorteile ereignisgetriebener tiefer Netzwerke, die für herkömmliches Deep Learn-
ing nicht verfügbar sind.

Kapitel 5 ist wohl der Schlüsselbeitrag dieser Doktorarbeit. In diesem Kapitel wird ein neuer Al-
gorithmus, Phased LSTM, eingeführt, der auf Grund seiner intrinsischen Beschaffenheit auf natür-
liche Art und Weise mit ereignisbasierten Sensoren, welche dynamische und sich verändernde Szenen
beobachten, umgehen kann. Wie weiter oben als Vermutung ausgedrückt, verfügt der Phased LSTM
Algorithmus über erhebliche Vorteile verglichen mit üblichen Deep Learning Netzwerken, und zwar
sowohl für ereignisbasierte als auch für regulär abgetastete Eingangssignale. Kapitel 6 untersucht so-
dann den Ursprung dieser Vorteile, insbesondere um zu verstehen, ob das Modell genügend einfach
und vorteilhaft ist. Zum Schluss wird in Kapitel 7 noch eine Beobachtung aufgegriffen, die während
der Entwicklung des Phased LSTM Algorithmus gemacht wurde. Es wird untersucht, inwieweit das
Prinzip der ereignisbasierten Signalerfassung auch in Berechnungen anwendbar ist, wobei deutliche
rechentechnische Beschleunigungen erzielt werden, insofern die Prinzipien ereignisbasierter Sensoren
auf Rechenoperationen angewendet werden.

Diese Doktorarbeit führt damit Hardwareimplementierungen sowie Algorithmen ein, welche von
Deep Learning inspiriert sind und die die Vorteile ereignisbasierter Sensoren aufgreifen, um somit
intelligente Plattformen zu ermöglichen, die eine neue Generation von zuverlässigeren und schnel-
lansprechenden Systemen mit geringem Stromverbrauch gestatten.

deep neural networks and hardware for event-driven data 27

1 Yann LeCun, Yoshua Bengio, and
Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (2015), pp. 436–444

2 Jürgen Schmidhuber. “Deep learning
in neural networks: An overview”. In:
Neural Networks 61 (2015), pp. 85–117

3 Jia Deng, Wei Dong, R. Socher, Li-Jia
Li, Kai Li, and Li Fei-Fei. “ImageNet:
A large-scale hierarchical image
database”. In: IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR). 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848
4 Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. “Imagenet
classification with deep convolutional
neural networks”. In: Proc. of NIPS.
2012, pp. 1097–1105

5 Kaiming He, Xiangyu Zhang, Shao-
qing Ren, and Jian Sun. “Delving Deep
into Rectifiers: Surpassing Human-
Level Performance on ImageNet
Classification”. In: The IEEE Interna-
tional Conference on Computer Vision
(ICCV). 2015, pp. 1026–1034

6 Kaiming He, Xiangyu Zhang, Shao-
qing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.
2016, pp. 770–778

7 Alex Krizhevsky and Geoffrey Hin-
ton. “Learning multiple layers of
features from tiny images”. In: (2009)
8 Yann LeCun, Corinna Cortes, and
Christopher JC Burges. The MNIST
database of handwritten digits. 1998

9 Gao Huang, Yu Sun, Zhuang Liu,
Daniel Sedra, and Kilian Q Wein-
berger. “Deep networks with stochastic
depth”. In: European Conference on
Computer Vision. Springer. 2016,
pp. 646–661

1
An Introduction to Event-Based Sensors and Machine
Learning

1.1 The Amazing Progress of Deep Learning

Deep learning currently represents the state-of-the-art solution in
virtually all relevant tasks in machine learning across an incredibly
diverse variety of domains 1,2. The advantage these architectures
provide over shallow architectures is the ability to extract hierar-
chies of abstracted features from the underlying input data, giving
rise to hierarchical data transformations which have been optimized
for a specific task.

Convolutional Neural Networks (CNNs), one kind of deep neu-
ral networks, have provided significant leaps in accuracy on diffi-
cult computer vision benchmarks such as ImageNet 3,4, currently
reaching performance levels that rival humans 5,6 on image clas-
sification. Formerly “hard” computer vision datasets such as the
CIFAR-10 10-class image classification dataset 7 and the MNIST
handwritten digit dataset 8 are now considered to be solved tasks 9.

Yet the advances are not limited to computer vision. In recent
years, interest in Recurrent Neural Networks (RNNs), which equip
recurrent neural networks with memories, has greatly increased
through the application of ever-greater computing resources, im-
proved training algorithms, and larger training databases to enable
breakthroughs in temporal sequences. Advances using deep neural
networks first broke through in speech recognition 10 and natural
language processing 11, but have continued across other domains
including image generation 12, question answering 13, and even
novel computation types 14,15.

Even more useful, however, is the composition of these models
together or as elements in a hierarchy of computation. Image cap-
tioning networks 16,17 combine CNNs for visual processing with a
language model RNN that can describe the picture in words. New
reinforcement learning pipelines 18 also rely heavily on CNNs for
visual input processing in concert with standard techniques for re-
inforcement learning, which was demonstrated with great success
for the game Go 19. Even audio generation at the waveform level is

https://doi.org/10.1109/CVPR.2009.5206848

deep neural networks and hardware for event-driven data 28

10 Alex Graves, Abdel-Rahman Mo-
hamed, and Geoffrey Hinton. “Speech
recognition with deep recurrent neural
networks”. In: 2013 IEEE Interna-
tional Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2013,
pp. 6645–6649

11 Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. “Neural
machine translation by jointly learning
to align and translate”. In: arXiv
preprint arXiv:1409.0473 (2014)
12 Aaron van den Oord, Nal Kalchbren-
ner, and Koray Kavukcuoglu. “Pixel
recurrent neural networks”. In: arXiv
preprint arXiv:1601.06759 (2016)
13 Jason Weston, Sumit Chopra, and
Antoine Bordes. “Memory networks”.
In: arXiv preprint arXiv:1410.3916 (2014)
14 Alex Graves, Greg Wayne, Malcolm
Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwińska, Sergio
Gómez Colmenarejo, Edward Grefen-
stette, Tiago Ramalho, John Agapiou,
et al. “Hybrid computing using a neu-
ral network with dynamic external
memory”. In: Nature 538.7626 (2016),
pp. 471–476

15 Alex Graves, Greg Wayne, and Ivo
Danihelka. “Neural Turing Machines”.
In: arXiv preprint arXiv:1410.5401 (2014)
16 Kelvin Xu, Jimmy Ba, Ryan Kiros,
Kyunghyun Cho, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel,
and Yoshua Bengio. “Show, Attend
and Tell: Neural Image Caption
Generation with Visual Attention”.
In: International Conference on Machine
Learning. 2015

17 Justin Johnson, Andrej Karpathy,
and Li Fei-Fei. “Densecap: Fully
convolutional localization networks for
dense captioning”. In: Proceedings of
the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 4565–
4574

18 Volodymyr Mnih, Koray
Kavukcuoglu, David Silver, Andrei
A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski,
et al. “Human-level control through
deep reinforcement learning”. In:
Nature 518.7540 (2015), pp. 529–533

19 David Silver, Aja Huang, Chris J
Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot,
et al. “Mastering the game of Go with
deep neural networks and tree search”.
In: Nature 529.7587 (2016), pp. 484–489

now possible, using hierarchies of convolutional neural networks
that produce substantially more natural-sounding human speech 20.

1.2 Towards Artificial Agents that Exist in the World

However, these application areas have arisen from a tradition in
machine learning and computer science that is rather divorced from
the real world. The current standard implementation for machine
learning is to produce a dataset of tuples < x, y > in which every
data sample is composed of an input x and a target y, and a dataset
consists of aggregates of these tuples together. Datasets are typ-
ically cleaned and normalized, and in many cases, a pre-defined
training and test split of the data is produced to equalize results
from many groups.

This characterization ignores many aspects that epitomize the
real world. As these themes will reoccur throughout this thesis, it is
worth noting them here:

1. First, power constraints are an ever-present constraint on real-
world implementations: they cannot consume arbitrary amounts
of energy to perform their intended task.

2. Second, real-world timing and latency constraints are peren-
nial. The state of the natural environment unfolds in continuous
time, and in the rare case in which machine learning considers
the aspect of time, it is nearly always discrete and time-stepped.
Similarly, agents in natural environments cannot take arbitrar-
ily long to respond to input stimuli, as the world continues to
evolve during the presentation of input and the calculation of the
output.

3. Third, noise is an inescapable feature of the natural environment
which must be addressed.

These features are often considered to be confounds on the true in-
teresting problem of creating machines that learn, but it is far from
obvious that these aspects can be abstracted away without substan-
tially altering the types of learning methods that are uncovered.
This thesis will examine the discoveries that can be yielded when
these considerations are indeed taken into account, and opens a
door for substantial further research that bridges the domain of
deep learning with the many unanswered questions of agents that
aim to exist in the real world.

1.3 An Introduction to Event-Based Sensors

Novel machine learning methods must begin with a novel
method of acquiring data. Much of the constraints of machine

deep neural networks and hardware for event-driven data 29

20 Aäron van den Oord, Sander Diele-
man, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalch-
brenner, Andrew Senior, and Koray
Kavukcuoglu. “Wavenet: A genera-
tive model for raw audio”. In: CoRR
abs/1609.03499 (2016)
21 C. Posch, T. Serrano-Gotarredona,
B. Linares-Barranco, and T. Delbruck.
“Retinomorphic Event-Based Vision
Sensors: Bioinspired Cameras With
Spiking Output”. In: Proceedings of the
IEEE 102.10 (Oct. 2014), pp. 1470–1484.
issn: 0018-9219. doi: 10.1109/JPROC.
2014.2346153
22 Patrick Lichtsteiner, Christoph
Posch, and Tobi Delbruck. “A 128×
128 120 dB 15 µs latency asynchronous
temporal contrast vision sensor”. In:
IEEE Journal of Solid-State Circuits 43.2
(2008), pp. 566–576

23 T. Serrano-Gotarredona and B.
Linares-Barranco. “A 128 × 128 1.5%
Contrast Sensitivity 0.9% FPN 3 µs
Latency 4 mW Asynchronous Frame-
Free Dynamic Vision Sensor Using
Transimpedance Preamplifiers”. In:
IEEE Journal of Solid-State Circuits
48.3 (Mar. 2013), pp. 827–838. issn:
0018-9200. doi: 10.1109/JSSC.2012.
2230553
24 M. Yang, S. C. Liu, and T. Delbruck.
“A Dynamic Vision Sensor With 1%
Temporal Contrast Sensitivity and In-
Pixel Asynchronous Delta Modulator
for Event Encoding”. In: IEEE Journal
of Solid-State Circuits 50.9 (Sept. 2015),
pp. 2149–2160. issn: 0018-9200

25 R. Berner, C. Brandli, M. Yang, S. C.
Liu, and T. Delbruck. “A 240 × 180

10mW 12µs latency sparse-output
vision sensor for mobile applications”.
In: 2013 Symposium on VLSI Circuits.
June 2013, pp. C186–C187

26 C. Posch, D. Matolin, and R. Wohlge-
nannt. “A QVGA 143 dB Dynamic
Range Frame-Free PWM Image Sen-
sor With Lossless Pixel-Level Video
Compression and Time-Domain CDS”.
in: IEEE Journal of Solid-State Circuits
46.1 (Jan. 2011), pp. 259–275. issn:
0018-9200

27 Daniel Neil, Tobi Delbruck, and
Shih-Chii Liu. “Event-Driven Deep
Multi-Layered Network Architectures”.
In: IEEE, 2017

learning arise from the way that the natural environment is sam-
pled by conventional sensors. The data is complete, static, and
discretized in a distinctly computational way, dramatically different
than the world with which biological agents interact. Instead of the
standard data approach, this thesis concerns itself primarily with
event-driven sensors, which, unlike conventional time-sampled sen-
sors, act as the driver of output data. When a meaningful change
occurs in the environment, the sensing element autonomously
transmits an event that carries information about this change.

Importantly, this encoding has two fundamental advantages.
First, the transmission of data only occurs with informative changes,
decreasing redundancy. It also cascades to significantly reduce the
downstream power that would have been lost due to data trans-
mission, wasted computation cycles, and extraneous forced com-
putation on irrelevant features. Second, this permits faster latency
because the sensor does not need to wait until the next externally-
driven acquisition time to communicate this information; it is per-
mitted to send the data as soon as the change occurs. This allows
extremely low latencies in a variety of domains.

1.3.1 Dynamic Vision Sensors

A major success in event-based sensors is the Dynamic Vision Sen-
sor (DVS) 21, originally proposed in 22 and whose advantages were
extended in later variants such as the higher sensitivity DVS 23 and
DVS with spike encoding using an asynchronous delta sigma mod-
ulator 24. Furthermore, versions were produced that emit both an
event-driven output and standard frame-like intensity output, in
the Dynamic and Active-pixel Vision Sensor (DAVIS) 25 and the
ATIS 26 vision sensors, permitting standard frame-based vision al-
gorithms to be used alongside event-driven image algorithms using
a single sensor.

Fig. 1.1, taken with permission from 27, demonstrates many
aspects of the current state-of-the-art DAVIS. Note the simplified
DAVIS pixel uses the same photoreceptor for both dynamic vi-
sion sensing (event-based vision) and traditional image sensing
(frame-based vision). The event-based vision sensor compares the
voltage stored on a capacitor to an on- and off-threshold value and
produces an output spike when the log photocurrent changes the
charge on the capacitor by a threshold amount. This vision sensor
was built with an analogy to biological vision, with the photodiode-
capacitor circuit representing biological photoreceptors, the differ-
encer representing a function of bipolar cells, and the comparator
representing the ganglion cells of the retina.

As an example, the function of the dynamic vision sensor can be
seen in the upper right of Fig. 1.1. As the sensor operates on log-
arithmic intensity, it has much greater dynamic range than a stan-
dard image sensor. At top, the log intensity of the scene changes in
continuous time. When the log intensity increases by a threshold

https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.1109/JSSC.2012.2230553
https://doi.org/10.1109/JSSC.2012.2230553

deep neural networks and hardware for event-driven data 30

Figure 1.1: Summary of the Dy-
namic Vision Sensor. At upper left,
a simplified circuit diagram of the
DAVIS pixel. Upper right, an example
schematic of the operation of a DVS
sensor. Center, picture of the DAVIS
chip and 4-pixel layout; at right, the
assembled DAVIS Universal Serial Bus
(USB) camera. Bottom left, a frame
and event-based view of a spinning
dot; at right, a natural scene in which
the chip’s principle designer catches
a football. Note that the frames lag
behind the low-latency input events.
Used with permission.

(ON threshold) it produces an ON event (bottom plot) and is then
reset; when the log intensity decreases by a threshold (OFF thresh-
old) an OFF event is produced. Note that the data rate, therefore, is
dependent on the rate of change in the scene and not the duration
of the recording.

These sensors with both dynamic and active sensors allow easier
comparison between traditional (frame-based) inputs and event-
based inputs. Example inputs can be seen in the bottom row of
Fig. 1.1. At left, a dot attached to a fan produces a continuous helix
in space-time, smoothly describing the rapid motion of the dot. A
traditional image sensor would produce a frame-based snapshot
that is discontinuous and marred by a blurring of this rapid input.
The event-based input, however, maintains a smooth surface over
time and does not suffer from blurring. Moreover, if the dot stops
spinning, the frame-based sensor will continue to capture and
transmit a full frame of unchanging data, while an event-based
sensor will produce no further events until a change again occurs.

Finally, the lower right of Fig. 1.1 demonstrates the lower latency
of the input events. In this case, a frame is captured every 100ms
and read out; between these frames, events are generated which are
more current than the last frame captured. In this case, a thrown
football approaches the designer of the chip. The events quickly
communicate the current, accurate position of the football, but the
frames show an older, lagged, and now inaccurate position.

deep neural networks and hardware for event-driven data 31

28 S-C. Liu, A. van Schaik, B. Minch,
and T. Delbrück. “Asynchronous
Binaural Spatial Audition Sensor with
2× 64× 4 Channel Output”. In: IEEE
Trans. Biomed. Circuits Syst. 8.4 (2014),
pp. 453–464. doi: 10.1109/TBCAS.
2013.2281834
29 B. Wen and K. Boahen. “A silicon
cochlea With active coupling”. In:
IEEE Trans. Biomed. Circuits Syst. 3.6
(2009), pp. 444–455

30 V. Chan, S. C. Liu, and A. van
Schaik. “AER EAR: A Matched Silicon
Cochlea Pair With Address Event
Representation Interface”. In: IEEE
Transactions on Circuits and Systems
I: Regular Papers 54.1 (Jan. 2007),
pp. 48–59. issn: 1549-8328. doi:
10.1109/TCSI.2006.887979
31 M. Yang, C. H. Chien, T. Delbruck,
and S. C. Liu. “A 0.5 V 55 µW 64 x 2

Channel Binaural Silicon Cochlea for
Event-Driven Stereo-Audio Sensing”.
In: IEEE Journal of Solid-State Circuits
51.11 (Nov. 2016), pp. 2554–2569. issn:
0018-9200. doi: 10.1109/JSSC.2016.
2604285
32 M. Yang, C. H. Chien, T. Delbruck,
and S. C. Liu. “A 0.5 V 55 µW 64 x 2

Channel Binaural Silicon Cochlea for
Event-Driven Stereo-Audio Sensing”.
In: IEEE Journal of Solid-State Circuits
51.11 (Nov. 2016), pp. 2554–2569. issn:
0018-9200. doi: 10.1109/JSSC.2016.
2604285

1.3.2 Dynamic Audio Sensors

The other major class of sensor that this thesis will focus upon
is the Dynamic Audio Sensor, also know as the silicon cochlea,
which models aspects of the biophysics of the biological cochlea. In
particular, these hardware implementations focus on the tonotopy
that emerges from the spatial filtering of the basilar membrane in
the cochlea. The circuits focus on implementing bandpass filters
that have a range of characteristic frequencies that cover the input
frequencies of interest. Furthermore, current designs include a
model that mimics the event-driven output of the auditory nerve
fibers of the biological cochlea 28,29,30. The most recent design
contains a binaural 64-channel pitch decomposition, demonstrating
a low mismatch between filters, low power consumption on the
order of 64 µW, a programmable quality factor Q for the filters, and
most recently, an asynchronous delta modulation scheme for spike
encoding 31.

Similar to the above Dynamic Vision Sensor, the Dynamic Au-
dio Sensor (DAS) produces output events, but these events occur
on changes in the per-frequency band amplitude. Two principal
methods have been used to transform these analog waveforms into
events. In previous versions, an output event was emitted upon
zero-crossings of the analog bandlimited waveform, resulting in
events that are phase-locked to the signal, allowing the inter-spike
interval (ISI) to predict the frequency of the waveform accurately
as well as allowing for phase-locking. Current versions 32 use the
delta-modulation scheme that emits up- and down-spikes when the
amplitude changes by a threshold amount, similar to the on- and
off-spikes of a dynamic vision sensor to permit improved recon-
structions.

Fig. 1.2 demonstrates the outputs from this audio sensor in re-
sponse to a spoken digit input. At top, the raw audio amplitude; in
the middle, each red dot represents an event; at bottom, the corre-
sponding event rate. Gaps between spoken syllables have no event
rate, triggering no processing, allowing processing to be saved only
for the spoken sections. The broadly-tuned frequency bands pro-
duce spikes in response to the pitch of the spoken word, and the
dual up/down events allow accurate reconstruction of the original
audio waveform.

1.4 Event-based Inputs and Networks: New Challenges and New
Opportunities

However, these novel sensor types produce radically different out-
puts than traditional sensors. This thesis concerns itself primarily
with how to make use of the sensors in a way that takes from the
state-of-the-art in machine learning while maintaining the advan-
tages of event-based sensors. These event-based sensors produce a
new set of challenges, and with them, a new set of opportunities,

https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/10.1109/JSSC.2016.2604285
https://doi.org/10.1109/JSSC.2016.2604285
https://doi.org/10.1109/JSSC.2016.2604285
https://doi.org/10.1109/JSSC.2016.2604285

deep neural networks and hardware for event-driven data 32

Figure 1.2: Summary of the CochleaLP,
the low-power cochlea. Events are
produced within the cochlea at a
varying rate, and outputs are only
processed during active periods. Used
with permission.

Constraint Advantage Challenge

Externally-
driven data

Sparse, meaningful
input

Unpredictable in
space, time, and
density

Gradual
Presentation

Adjustable accuracy
tradeoffs

Requires stateful
representation

Pseudo-
simultaneous
Results

Low latency Requires multi-
ple time points to
produce quality
answer

Table 1.1: Advantages and Challenges
in Event-driven Machine Learning

which are summarized in Table 1.1.

The challenges emerge naturally from the function of the sen-
sors, and, while solved in traditional methods, remain persistent
challenges when using event-based sensors. First, the inputs are
far more unpredictable in event-based sensors. A traditional sensor
produces a large but coherent collection of data, then no additional
data until the next set of inputs arrive. When input data arrives in
a traditional computer, the platform is free to parallelize, reorder,
shard, or otherwise aggregate inputs in whatever way will result in
the greatest optimization. Indeed, the ability to parallelize across
multiple inputs and do similar computations on multiple pieces of
data is a primary source of optimization in modern hardware archi-
tectures. However, these optimizations cannot directly translate to
event-based sensors, in which the external environment determines
the statistics of the input data. The inputs are unpredictable in space,
unpredictable in time, and of unpredictable density, making it quite chal-
lenging to apply standard optimization methods to event-driven
inputs.

Moreover, an event-based sensor will gradually update the state
of a scene over time, as its environment changes in informative
ways. Therefore, even a perfect computation on the given data may

deep neural networks and hardware for event-driven data 33

33 H Sebastian Seung and Daniel D
Lee. “The manifold ways of percep-
tion”. In: science 290.5500 (2000),
pp. 2268–2269

yet be incomplete at a given point in time, because not enough
data has yet arrived, and that a sequence of multiple inputs may
be required to perform a task. In an example on the DVS, the
background is invisible until it changes, so a task to classify the
background is impossible to solve until either the motion passes
across the background or the background changes on the sensor.
There is a fundamentally gradual presentation of input, and with
it, an upper bound on the possible accuracy of the task. Gradual
inputs stand in contrast to a standard frame-based implementation
of a vision sensor, for example, which produces nothing at all un-
til it presents a complete pixel representation of the environment.
Standard computer vision tasks ignore the period before the pre-
sentation of input (in which the task is entirely unsolvable), then
immediately calculate the result of the task upon presentation of
the input (in which the task is assumed to be entirely solvable).
Event-based sensors reveal the period between these two states.

Similarly, this gradual presentation of input requires a stateful
representation. The system that computes the result of the task must
maintain a state over time to process the gradual aggregation of
inputs. This persistence places an additional burden on the engi-
neering for the computation, as standard frame-based inputs can
instantly compute the task for the scene, then discard all informa-
tion between the presentations. Event-based inputs, however, do
not have this luxury and must store the partial results of their com-
putation to aggregate meaning over multiple inputs. Indeed, the
construction of a static representation from an image in flux is a
deep question explored in neuroscience 33. Moreover, the gradual
presentation of input implies that the answer is likely not available
within a single time step, and may require multiple time points to
aggregate a quality answer.

However, the advantages that are offered are indeed novel and
powerful as well. In return for not having a complete representa-
tion of the input, the inputs received from an event-based sensor
are fundamentally sparse and driven only by changes in the envi-
ronment. Moreover, the sensors have been designed so that these
changes correspond to meaningful changes in the environment,
allowing a theoretically minimal amount of information to be com-
municated over the input link and triggering minimal processing
on the receiving system.

The natural implication of a gradual computational system is a
new axis of optimization, the latency-accuracy tradeoff. This tradeoff
contains the unique ability to produce lower-quality answers more
quickly, at lower latencies, and through the gradual accumulation
of evidence, refine these initial guesses to acquire greater accuracy
with greater input. Similarly, by extensions, a gradual system also
allows a computation-accuracy tradeoff, as a data-driven architecture
can provide ways to use the partial result so far to abort computa-
tion early if sufficient evidence has been gathered. In data-driven

deep neural networks and hardware for event-driven data 34

34 Clément Farabet et al. “Comparison
between frame-constrained fix-pixel-
value and frame-free spiking-dynamic-
pixel convNets for visual processing”.
In: Frontiers in Neuroscience 6 (2012)

architectures, data-driven networks save on computation if exposed
to fewer data points. Therefore, there can be a tradeoff between
computation and accuracy, with greater computation often con-
ferring greater accuracy if the system is permitted to run for more
data points or over a longer time.

Figure 1.3: Pseudo-simultaneity of
input and computation. Three-layer
fully-connected deep belief network
receives inputs (top), processes them
through two intermediate visual
abstraction layers (center) to produce
an output classification (bottom). Each
black dot represents a spike from a
neuron, each of which is indexed by
its address along the vertical axis. Five
sequential handwritten digits (0-4) are
presented to the network, each for a
duration of 1 second, with red vertical
lines indicating input switching. Note
that correct output events are emitted
quickly after the onset of a new input
stimulus and persist throughout the
presentation of the stimulus.

Finally, as a consequence of a gradual presentation of the in-
put and the requirement for a stateful representation, the system
exhibits what has been termed pseudo-simultaneity 34. That is, the
system may produce outputs while inputs are still being presented.
While standard machine learning techniques assume a sequential
computation paradigm in which an input is presented, an algo-
rithm is applied, and an output is produced, pseudo-simultaneous
systems possess the ability to produce outputs while the input
is still being computed. This effect can be seen in Fig. 1.3. In this
example, a fully-connected neural network receives a spike train
drawn from a handwritten input image, with events emitted over
the course of a full second before switching to a different digit at
the next second. Note that the network begins integrating and clas-
sifying very shortly after the onset of a new digit (output spikes
are made while input spikes continue to arrive and clarify the rep-
resentation), and can successfully classify correctly even as the
input changes. This property can indeed be useful for agents as
it is straightforward to imagine when the initial input, provid-
ing enough evidence for a lower-quality rapid output result, is
sufficient to react correctly to an environmental stimulus. Pseudo-
simultaneity allows dramatically lower latencies, even latencies
below what would be considered the minimum latency of a tradi-
tional system: the time required to capture a frame.

deep neural networks and hardware for event-driven data 35

To begin investigating the implications of these sensors on al-
gorithms, let’s begin at the bottom, at the hardware level, to greater
understand the ramifications for the tradeoffs of algorithms that
will be considered.

deep neural networks and hardware for event-driven data 37

1 Daniel Neil and S-C Liu. “Minitaur,
an event-driven FPGA-based spiking
network accelerator”. In: IEEE Trans
on Very Large Scale Integration (VLSI)
Systems 22.12 (2014), pp. 2621–2628

2 Evangelos Stromatias, Daniel Neil,
Francesco Galluppi, Michael Pfeiffer,
Shih-Chii Liu, and Steve Furber. “Scal-
able Energy-Efficient, Low-Latency
Implementations of Spiking Deep
Belief Networks on SpiNNaker”.
In: Proceedings of the 2015 IEEE In-
ternational Joint Conference on Neural
Networks (IJCNN). 2015, pp. 1–8. doi:
10.1109/IJCNN.2015.7280625
3 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)

2
Event-based Hardware Systems for Deep Networks

2.1 Why Hardware?

Text in this chapter relating to the Field-programmable Gate Array
(FPGA) neural accelerator Minitaur was adapted from 1, while
text relating to the SpiNNaker ASIC implementation was adapted
from 2, and the novel rounding algorithm’s text originally appeared
in 3.

To best understand the advantages and disadvantages of pro-
cessing a spiking input, it is perhaps best to begin with a homoge-
nous, all-spiking hardware system. First, designing a novel hard-
ware system aimed towards a spiking neural network implementa-
tion maximally exposes the complexity of the system, and reveals
the full scale of advantages and disadvantages of spiking imple-
mentations to the designer. With full control over designing the
hardware, maximum flexibility can be assured towards maintain-
ing the advantages of spiking systems while opening up the full
complexity of a hardware system to investigate areas for possible
optimization or opportunities for new kinds of algorithms.

Second, the larger focus of this thesis into new algorithms that
maintain the advantages event-driven sensors motivates a transition
to an event-driven system for efficiency. Event-driven networks in
hardware can have higher energy efficiency because a clock is not
used in the network simulation, and not every neuron must update
every time step. However, a standard software Central Processing
Unit (CPU) is indeed a standard time-stepped, clock-driven pro-
cessing unit. As the Dynamic Vision Sensor is event-driven, and the
Deep Belief Network (DBN) is event-driven, the underlying hard-
ware should also be event-driven to ensure efficiency, consistency,
and maximal adaptation to a spiking domain. Concretely, an event-
driven implementation would also allow minimizing the latency
from input to output.

Third, the range of efficient customizations that can be applied to
make spiking neural networks more attractive can be greater with
a custom hardware implementation. Spiking neural network plat-
forms often exploit optimizations not available to a general-purpose
computer; the behaviour of a spiking network is constrained and

https://doi.org/10.1109/IJCNN.2015.7280625

deep neural networks and hardware for event-driven data 38

4 Ben Varkey Benjamin, Peiran Gao,
Emmett McQuinn, Swadesh Choud-
hary, Anand R Chandrasekaran, J
Bussat, Rodrigo Alvarez-Icaza, John V
Arthur, PA Merolla, and Kwabena
Boahen. “Neurogrid: A mixed-analog-
digital multichip system for large-scale
neural simulations”. In: Proceedings of
the IEEE 102.5 (2014), pp. 699–716

5 Giacomo Indiveri, Federico Corradi,
and Ning Qiao. “Neuromorphic
architectures for spiking deep neural
networks”. In: 2015 IEEE International
Electron Devices Meeting (IEDM). 2015,
pp. 2–4

6 Paul A Merolla, John V Arthur,
Rodrigo Alvarez-Icaza, Andrew S
Cassidy, Jun Sawada, Filipp Akopyan,
Bryan L Jackson, Nabil Imam, Chen
Guo, Yutaka Nakamura, et al. “A
million spiking-neuron integrated
circuit with a scalable communication
network and interface”. In: Science
345.6197 (2014), pp. 668–673

7 Giacomo Indiveri, Federico Corradi,
and Ning Qiao. “Neuromorphic
architectures for spiking deep neural
networks”. In: 2015 IEEE International
Electron Devices Meeting (IEDM). 2015,
pp. 2–4

8 Paul A Merolla, John V Arthur,
Rodrigo Alvarez-Icaza, Andrew S
Cassidy, Jun Sawada, Filipp Akopyan,
Bryan L Jackson, Nabil Imam, Chen
Guo, Yutaka Nakamura, et al. “A
million spiking-neuron integrated
circuit with a scalable communication
network and interface”. In: Science
345.6197 (2014), pp. 668–673

9 R. Serrano-Gotarredona and oth-
ers. “CAVIAR: A 45k Neuron, 5M
Synapse, 12G Connects/s AER Hard-
ware Sensory–Processing– Learning–
Actuating System for High-Speed
Visual Object Recognition and Track-
ing”. In: IEEE Trans on Neural Networks
20.9 (2009), pp. 1417–1438

10 Ben Varkey Benjamin, Peiran Gao,
Emmett McQuinn, Swadesh Choud-
hary, Anand R Chandrasekaran, J
Bussat, Rodrigo Alvarez-Icaza, John V
Arthur, PA Merolla, and Kwabena
Boahen. “Neurogrid: A mixed-analog-
digital multichip system for large-scale
neural simulations”. In: Proceedings of
the IEEE 102.5 (2014), pp. 699–716

11 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)
12 Geoffrey E Hinton, Simon Osindero,
and Yee-Whye Teh. “A fast learn-
ing algorithm for deep belief nets”.
In: Neural computation 18.7 (2006),
pp. 1527–1554

stereotyped, allowing greater optimizations to be applied. These
optimizations span a variety of optimizations including specialized
routing fabrics 4,5,6, very low-power analog neuron implementa-
tions 7, and asynchronous communication links 8,9,10 among others.

Finally, designing hardware directly for a spiking neural net-
work implementation more clearly exposes fundamental bottle-
necks in the design, allowing a more clear understanding of both
which advantages are possible and which are the most significant
bottlenecks in performance. Deep networks have substantial com-
putational costs in execution (as well as during training), which has
motivated a variety of platforms to accelerate that inference pass.
Spiking neural networks can possibly be even cheaper, and further
understanding the tradeoffs of a spiking implementation in light of
deep neural networks could offer great advantages.

This chapter of the thesis concerns itself with the development
of hardware to explore these questions. In Sections 2.2.1-2.2.13, a
fully-custom FPGA implementation is introduced and discussed.
Section 2.3 discusses an implementation of a spiking Deep Belief
Network on SpiNNaker, a pre-existing hardware system optimized
for spiking neural network systems. As anticipated, in the process
of obeying the limitations of the hardware an important algorithmic
result emerged, which is discussed in Section 2.4.

2.2 Minitaur

A fully-event driven deep spiking system was made possible after
the introduction of a novel training paradigm 11 that allowed the
conversion of a DBN 12 to a spiking neural network. That work
further demonstrated a unified deep spiking neural network frame-
work13, driven by the event-based Dynamic Vision Sensor, and im-
plemented on pools on event-based Leaky Integrate-and-Fire (LIF)
neurons. The full methodology, using spike-based inputs, running
on spike-based neurons, and producing output classification events
in continuous time, was implemented on a standard software CPU
architecture.

However, current computing architectures are not ideally suited
for network architectures like neural networks. The inherent mas-
sive parallelism of neurons, in which each performs a similar com-
putation at the same time, implies a more parallel architecture than
what CPUs currently provide. Graphical Processing Units (GPUs)
can capitalize on the parallelism of the network but they are not
suited to event-driven computation. Current GPU programming
paradigms use a kernel-launch approach in which a large chunk
of computation is off-loaded onto the GPU with a batch of data in-
stead of continuously run. Additionally, the power consumption of
GPUs precludes most embodied robotics applications. Because of
the above reasons, none of these platforms are suited for network
architectures such as spiking DBNs, especially event-driven DBNs
which combine the dramatic advances achieved with DBNs 14 with

deep neural networks and hardware for event-driven data 39

13 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)
14 G.E. Hinton and R.R. Salakhutdinov.
“Reducing the dimensionality of data
with neural networks”. In: Science
313.5786 (2006), pp. 504–507

15 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)

16 A. Delorme and S.J. Thorpe.
“SpikeNET: an event-driven simu-
lation package for modelling large
networks of spiking neurons”. In:
Network: Computation in Neural Systems
14.4 (2003), pp. 613–627

17 I. Marian, R. Reilly, and D. Mackey.
“Efficient event-driven simulation
of spiking neural networks”. In:
Proceedings of 3rd WSES International
Conference on: Neural Networks and
Applications. 2002

18 C.J. Lobb, Z. Chao, R.M. Fujimoto,
and S.M. Potter. “Parallel event-driven
neural network simulations using the
Hodgkin-Huxley neuron model”. In:
Workshop on Principles of Advanced and
Distributed Simulation (PADS) 2005.
2005, pp. 16–25

19 Romain Brette, Michelle Rudolph,
Ted Carnevale, Michael Hines, David
Beeman, James M Bower, Markus
Diesmann, Abigail Morrison, Philip
H Goodman, Frederick C Harris Jr,
et al. “Simulation of networks of
spiking neurons: a review of tools and
strategies”. In: Journal of Computational
Neuroscience 23.3 (2007), pp. 349–398

20 J. Misra and I. Saha. “Artificial
neural networks in hardware: A
survey of two decades of progress”. In:
Neurocomputing 74.1 (2010), pp. 239–
255

21 L.P. Maguire, T.M. McGinnity, B.
Glackin, A. Ghani, A. Belatreche,
and J. Harkin. “Challenges for large-
scale implementations of spiking
neural networks on FPGAs”. In:
Neurocomputing 71.1 (2007), pp. 13–29

22 D.B. Thomas and W. Luk. “FPGA
accelerated simulation of biologically
plausible spiking neural networks”.
In: 17th IEEE Symposium on Field
Programmable Custom Computing
Machines (FCCM ’09). 2009, pp. 45–52

the performance of event-based processing 15.
FPGA architectures are an excellent first step towards construct-

ing new hardware. They are low cost devices, available off-the shelf
in a variety of configurations, and are reconfigurable to allow up-
dating and the reconfiguration of the source design as necessary.
They inherently support parallel processing and contain enough
local memory to cache the many weights present in a typical deep
network. They are low power compared to CPUs and GPUs, and
a successful design can be turned into a lower power, higher-
performance Application-Specific Integrated Circuit (ASIC) in the
future. Additionally, the design code can be shared electronically
to allow researchers to collaborate and to upgrade their physical
hardware without additional cost or physical adjustment.

The following sections covers the work of Minitaur, an event-
driven FPGA-based spiking neural network accelerator. This accel-
erator is used to study the ability of an FPGA platform to imple-
ment a real-time, event-driven deep spiking network. Section 2.2.1
introduces prior work on FPGAs and spike-based neural network
accelerators, followed by the theory of the event-based processing
in Section 2.2.1. Section 2.2.4 discusses the specific design of Mini-
taur. In Section 2.2.7, Minitaur’s performance characteristics as well
as real-world performance on the MNIST and newsgroup classifi-
cation tasks will be evaluated. Lastly, Section 2.2.13 reviews future
challenges and raises questions for further investigation.

2.2.1 Prior Work

Significant work has been invested into software algorithms
allowing the acceleration of artificial neural networks, and event-
driven methods have emerged as one way of speeding up the sim-
ulation time of these networks. An efficient event-driven software
implementation was described in 16, and the time complexity of
scaling these networks was investigated in 17. Event-driven opti-
mizations have been considered for advanced neuron model imple-
mentations as well, notably including the Hodgkin-Huxley model
in 18. A comprehensive review of the performance of both event-
driven and time-stepped software algorithms and implementations
of spiking neural networks can be found in 19.

Hardware systems which accelerate these spiking networks, in-
cluding FPGA-based designs, are reviewed in 20,21. These FPGA
systems are predominantly time-stepped hardware accelerators as
in 22,23,24, achieving high speeds but with performance propor-
tional to the size of the network. Event-driven, sparser-computation
hardware implementations 25,26,27 are rare, typically focusing on
using biologically descriptive neuron models such as the Izhikevich
model 28 and biological network topologies.

In recent years, machine learning approaches have examined
alternative network topologies such as those used in DBNs 29, a

deep neural networks and hardware for event-driven data 40

23 A. Cassidy, A.G. Andreou, and J.
Georgiou. “Design of a one million
neuron single FPGA neuromorphic
system for real-time multimodal scene
analysis”. In: 45th Annual Conference on
Information Sciences and Systems (CISS).
2011, pp. 1–6

24 B. Leung, Y. Pan, C. Schroeder,
S. O. Memik, G.n Memik, and M.
Hartmann. “Towards an ’early neural
circuit simulator’: A FPGA implemen-
tation of processing in the rat whisker
system”. In: International Conference
on Field Programmable Logic and Ap-
plications (FPL 2008). 2008, pp. 191–
196

25 K. Cheung, S.R. Schultz, and P.H.W.
Leong. “A parallel spiking neural
network simulator”. In: International
Conference on Field-Programmable
Technology (FPT 2009). 2009, pp. 247–
254

26 K. Cheung, S. R. Schultz, and W.
Luk. “A large-scale spiking neural net-
work accelerator for FPGA systems”.
In: International Conference Artificial
Neural Networks and Machine Learning
(ICANN 2012). Vol. 7552. Springer,
2012, pp. 113–120

27 R. Agis, E. Ros, J. Diaz, R. Carrillo,
and E. M. Ortigosa. “Hardware event-
driven simulation engine for spiking
neural networks”. In: International Jour-
nal of Electronics 94.5 (2007), pp. 469–
480

28 E.M. Izhikevich. “Simple Model of
Spiking Neurons”. In: IEEE Trans-
actions on Neural Networks 14 (2003),
pp. 1569–1572

29 G.E. Hinton and R.R. Salakhutdinov.
“Reducing the dimensionality of data
with neural networks”. In: Science
313.5786 (2006), pp. 504–507

30 Dan Claudiu Ciresan, Ueli Meier,
Luca Maria Gambardella, and Jürgen
Schmidhuber. “Deep, big, simple
neural nets for handwritten digit
recognition”. In: Neural Computation
22.12 (2010), pp. 3207–3220

31 A. Mohamed, G. E. Dahl, and G.
Hinton. “Acoustic modeling using
deep belief networks”. In: IEEE Trans-
actions on Audio, Speech, and Language
Processing 20.1 (2012), pp. 14–22

32 F. Seide, G. Li, and D. Yu. “Conver-
sational Speech Transcription Using
Context-Dependent Deep Neural Net-
works”. In: Interspeech. 2011, pp. 437–
440

33 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)

multi-layered probabilistic generative model. The individual layers
consist of undirected graphical models called Restricted Boltzmann
Machines (RBMs) with a bottom layer of “visible” sigmoidal units
and a top layer of “hidden” sigmoidal units, bidirectionally con-
nected with symmetric weights. When RBMsare stacked to form a
DBN, the hidden layer of the lower RBM becomes the visible layer
of the next higher RBM. DBNs have proved effective in a variety of
domains, with notable successes in areas such as machine vision 30

and machine audition 31,32. In 33, spiking DBNs are constructed by
replacing these sigmoidal units with spiking Leaky Integrate-and-
Fire (LIF) neurons.

Minitaur extends this prior work on event-driven systems, FPGA
implementations, and DBNs to accelerate spiking neural network
implementations. It is a low-power, compact, event-driven system
with a strong focus on spiking deep networks as an application
domain. The system supports the loading of arbitrary spiking neu-
ral networks at runtime of up to 65,536 neurons and millions of
synapses (Table 2.2). With its focus on optimized memory fetches
and simplified neuron models as in 34, as well as on low power
dissipation, it eschews the high-power, high-performance memory
elements used in 35,36. Its performance is validated on two common
machine learning tasks using a DBN composed of spiking neurons
as described in Section 2.2.7.

2.2.2 Event-Driven Neural Model

The neural model used on Minitaur is a common spiking model
containing three sub-models: a soma described by the LIF model,
an instantaneous synapse for input current, and a fixed-delay axon
for spike generation. The LIF model is both mathematically and
intuitively simple; the cell membrane is modeled as a capacitor
with a leak 37. This simple circuit forms an exponentially decaying
Resistor-Capacitor (RC) system with decay time constant τm. In a
time-stepped model, the cell membrane voltage Vmem on the n + 1th
step can be calculated as follows:

Vmem(n + 1) = Vmem(n) · e−∆t/τm (2.1)

where ∆t is the time step.
The synapse model has instantaneous dynamics and a step in-

crease of Wi,j is added to the membrane potential of neuron i when
it receives a spike from input neuron j. The model implements
three discontinuities to more accurately model biological systems: a
threshold (Vthr) where a neuron makes a spike once Vmem > Vthr, a
reset potential for the membrane after a spike (Vreset), and a refrac-
tory period (tre f) during which a neuron cannot make a new spike
after it spikes. The complete time-stepped model can be found in
Algorithm 1.

This algorithm can easily be transformed into an event-driven

deep neural networks and hardware for event-driven data 41

Algorithm 1: Time-Stepped Updating
of a LIF NetworkGiven: N input neurons connected to M neurons

Given: St ∈ RN×M, a binary matrix where the elements indicate
the presence or absence of a spike between a particular input
neuron j to neuron i at time t
Given: set of all weights W ∈ RN×M

t1..M
re ← 0 . Previous refractory end time

for t← 0 : ∆t : t f inal do . Loop through all time
for i← 1 to M do . Loop through all neurons

if t > ti
re then . Ensure not refractory

Vi
mem ← Vi

mem · e−∆t/τm . Decay membrane
Vi

mem ←Wi,1..N · St,i,1..N + Vi
mem . Input

end if
if Vi

mem > Vthr then
DoSpiking()
Vi

mem ← Vreset . Reset membrane potential
ti
re ← t + tre f . Set refractory end

end if
end for
t← t + ∆t

end for

34 T. Schoenauer, N. Mehrtash, Andreas
Jahnke, and H. Klar. “MASPINN:
novel concepts for a neuroaccelerator
for spiking neural networks”. In:
(1999), pp. 87–96. doi: 10.1117/12.
343072. url: +%20http://dx.doi.org/
10.1117/12.343072
35 A. Cassidy, A.G. Andreou, and J.
Georgiou. “Design of a one million
neuron single FPGA neuromorphic
system for real-time multimodal scene
analysis”. In: 45th Annual Conference on
Information Sciences and Systems (CISS).
2011, pp. 1–6

36 K. Cheung, S. R. Schultz, and W.
Luk. “A large-scale spiking neural net-
work accelerator for FPGA systems”.
In: International Conference Artificial
Neural Networks and Machine Learning
(ICANN 2012). Vol. 7552. Springer,
2012, pp. 113–120

37 N. Brunel and M. C. W. van Rossum.
“Lapicqueś 1907 paper: from frogs
to integrate-and-fire”. In: Biological
Cybernetics 97.5 (2007), pp. 337–339

equivalent. Since the input current is instantaneous and the mem-
brane potential decays away exponentially, it is only necessary to
check for firing after the membrane potential has been updated
when there is an input spike. The time of the previous update
is stored; when the next spike arrives, the neuron membrane is
decayed according to the time difference, then summed with the
instantaneous input current. This yields the neuron model used
in the Minitaur system. The neuron only updates on input spikes,
so the computation speed is now proportional to network activity,
not numbers of neurons. The complete event-driven execution is
described by Algorithm 2.

2.2.3 Simulation

A model of the hardware was created in Matlab to ensure the vi-
ability of the design and to quickly prototype the effects of pa-
rameter adjustment. This implementation was primarily used for
prototyping caching strategies since memory bandwidth, rather
than compute time, fundamentally limits the performance of the
hardware. For more details on these strategies, see Section 2.2.5.

2.2.4 Spartan 6 FPGA Architecture

Minitaur was designed using the low-cost Xilinx Spartan-6 plat-
form. The full implementation was done on a ZTEX USB 1.15

board, which contains 128 MB of DDR2 RAM, a microSD card slot
for storage, 128 KB flash memory for a bootloader, and an FX2 chip
for USB interfacing. The commercially available complete board

https://doi.org/10.1117/12.343072
https://doi.org/10.1117/12.343072
+%20http://dx.doi.org/10.1117/12.343072
+%20http://dx.doi.org/10.1117/12.343072

deep neural networks and hardware for event-driven data 42

Algorithm 2: Event-Driven Updating
of a LIF NetworkGiven: set of all sorted input spike times Qt

Given: set of corresponding destination neuron indices Qdest

Given: set of corresponding source neuron indices Qsrc

Given: set of all weights W ∈ RN×M

t1..M
re ← 0 . Reset refractory end time

t1..M
prev ← 0 . Reset previous input time

for k in length(Qt) do

t ← Qk
t . Obtain spike time

i ← Qk
dest . Obtain index of neuron to update

Vi
mem ← Vi

mem · e−(t−ti
prev)/τm . Decay membrane

if t > ti
re then

Vi
mem ← Vi

mem + Wi,Qk
src . Add impulse

end if
if Vi

mem > Vthr then
DoSpiking()
Vi

mem ← Vi
reset . Reset membrane potential

ti
re ← t + tre f . Set refractory end

end if
ti

prev ← t
end for

Parameter Size Format

Simulation Parameters

τm 16 bits Fixed-Point (5.11)

tre f 16 bits Fixed-Point (5.11)

Vthr 15 bits Fixed-Point (4.11)

Neuron State Parameters

Vmem 16 bits Signed Fixed-Point (5.11)

Timestamp 24 bits Integer

tre 16 bits Integer

Address 16 bits Integer

Refractory State 1 bit Boolean

Connection Weight 16 bits Signed Fixed-Point (5.11)

Table 2.1: Minitaur Parameters

(http://www.ztex.de) is low cost and ideal for off-the-shelf inter-
facing and computation. The Xilinx Spartan-6 LX150 contains 150k
logic cells, the largest of the Spartan-6 family.

In addition to the large number of logic cells, the Spartan-6 con-
tains 180 Digital Signal Processor (DSP) units for low-power paral-
lel math processing. These DSPs support two 18 bit operands for
fixed-point multiplication and addition. Importantly, the Spartan-
6 has a total of 549 KB of memory in 268 individually address-
able low-latency Block Random Access Memorys (BRAMs). These
BRAMs require one cycle for fetch and optionally one cycle to reg-
ister the output of the fetch, making them ideal for core-specific
caching.

The maximum supported clock speed of the Xilinx Spartan-6 is

http://www.ztex.de

deep neural networks and hardware for event-driven data 43

38 Patrick Lichtsteiner, Christoph
Posch, and Tobi Delbruck. “A 128×
128 120 dB 15 µs latency asynchronous
temporal contrast vision sensor”. In:
IEEE Journal of Solid-State Circuits 43.2
(2008), pp. 566–576

400 Megahertz (MHz), though as on all FPGA devices, this number
is heavily dependent on clock load and routing.

2.2.5 Minitaur Design Principles

The performance-limiting step in an event-based neural network
system occurs during spike generation. When a neuron spikes, it
performs two very memory intense operations: determining the re-
cipient neurons of the spike (between 102 and 104 destinations, typ-
ically), and determining the weights of each of these connections.
Accomplishing these two tasks quickly is of paramount importance
in optimizing the system’s performance.

To minimize the impact of connection lookups, rule-based con-
nections are stored. Although true biological networks are typically
recurrent and difficult to simplify, artificial neural networks tend to
follow specific connectivity patterns. DBNs, autoencoders, single-
layer restricted Boltzmann machines, and multilayer perceptrons
all have a very stereotyped structure. Namely, there is a layer of
neurons receiving projections from the previous layer and pro-
jecting connections to the following layer, typically in an all-to-all
fashion. A connection rule can be stored very efficiently by stating
connections in a ranged-rule format for example, “all neurons in
layer 1 project to all neurons in layer 2," requiring only to store the
source (SRC) start, SRC end, destination (DEST) start, and DEST
end addresses to map the connection for an entire layer.

Managing the multitude of outgoing Post-synaptic currentss
(PSCs) is also a challenge for a neural network accelerator system
as neurons typically have a very large number of output connec-
tions. When storing spikes in a spike queue, instead of storing the
addresses of neurons that are receiving spikes it is vastly more
efficient to store the addresses of neurons from which spikes are
coming. In this way, the spike queue stores the SRC addresses,
not the DEST addresses, and only performs the rule lookup to get
the DEST address when evaluating the post-synaptic update after
axonal delay.

Finally, cache locality is critical to optimizing neuron weight
and state lookups. In an event-driven system that interacts with
the real world, there are also likely to be significant patterns in the
input data that can be exploited by the system. In the DVS event-
driven retina system 38, for example, a pixel that sees an ON event
(on contrast change) is likely to have an OFF (off contrast change)
event soon after because of the movement of a spatially-extended
object. These inherent correlations offer a major advantage over
time-stepped systems, and there is no wasted computation as every
input spike represents a change in the world which necessitates an
update of the output. For spatially similar input events, the weight
and state values can be cached and fetched much more quickly.
Ensuring locality was done by ‘striping’ the neurons across the
computational cores. The last 5 bits of the neuron ID assigns each

deep neural networks and hardware for event-driven data 44

Clocked
Signal

Stabilizer

Output Ring
Buffer

Event
Queue

Connection
Manager and
Rule Lookup

Parallel
Distributor

Command and
Control

Input Ring
Buffer

State
Manager

Weight
Manager

Membrane
Decay
Lookup

Membrane
Decay
DSP

Input
Summation

DSP

Neuron
Update and

Spiking
Manager

x32

State
Cache

Weight
Cache

Exp. Decay
Mem

Rule Mem

DDR2
Memory
Interface

Minitaur Core

Figure 2.1: Simplified architecture of
the Minitaur system. It contains 32

parallel cores and 128 MB of DDR2

for main memory. Each core has 2048

KB of state cache, 8192 KB of weight
cache, and 2 DSPs for performing
fixed-point math (one multiplying
the decay, one for summation of the
input current). The exponential decay
lookup uses 2048 KB of Random
Access Memory (RAM), preloaded
from design and used as a Read-only
Memory (ROM).

neuron to a core, allowing a given core to store state and weights
for frequent and recently-active neurons without contention.

2.2.6 Minitaur Implementation

The simplified architecture diagram can be found in Fig. 2.1, and a
list of the parameters and their formats can be found in Table 2.1.
The system is designed to exploit commonalities in modern arti-
ficial neural networks to allow for greatly reduced computational
load. Though Minitaur is a digital, clock-based system, no process-
ing occurs except upon input events. This hybrid approach takes
advantage of the ease-of-use of digital tools as well as the dramatic
computation reduction of event-driven processing.

In this implementation, spikes (events) arrive over USB in pack-
ets, stamped with a 4-byte timestamp, a 1-byte layer indicator, and a
2-byte neuron address. After passing through a ring buffer to allow
for rapid bursts of spikes, the spikes are dispatched to the event
queue where they are sorted by timestamp and layer. Time sorting
is presumed only necessary with axonal delays and mixing spikes
from external sources (e.g., spike-based neuromorphic devices) with
on-Minitaur computation layers.

In order to support recurrent connections and axonal delays, a
time delay must exist between when a neuron spikes and when that
spike is delivered to its receiving neuron. The event queue main-
tains a sorted list of incoming spikes as a priority queue, which
allows for O(log(n)) operations of insertion and root node extrac-
tion. The event queue uses a 5-byte index key comprised of a 4-byte
timestamp and a 1-byte layer index to store the neuron address. In
this way, all spikes from the same layer at the same time (a common
occurrence with all-to-all connectivity and identical delays) will be
sorted together and separated from the spikes of another layer at
the same time. Seven 2048-byte block RAMs are used to store up to
2048 events simultaneously. A flag ensures spikes cannot be emit-
ted from a layer until all inputs to that layer at that time have been
evaluated.

Simultaneously, the parallel distributor block, which connects all
the cores together in Fig. 2.1, checks the event queue to extract the
first available spike for processing. Spikes are stored according to

deep neural networks and hardware for event-driven data 45

spike origin, not spike destination, so a connection lookup is nec-
essary to determine which neurons will have membrane potential
updates.

Each neuron is assigned an ID number and neurons in a given
layer are assigned consecutive IDs. In this way, a connection can
be very compactly represented: 4 bytes for the start and end of
each of the SRC and DEST addresses yields a 16-byte range rule.
To support multiple layer fanout, all possible rules are matched.
Note that extremely complex, non-layer-based networks can still
be represented in this form using point-to-point connectivity. The
number of comparisons is usually very small when describing a
typical DBN for Minitaur’s intended use; for example, five rules
are sufficient to describe the MNIST handwritten digit identifica-
tion network shown in Fig. 2.3 (one for each layer, and one to map
output to the computer). During a connection lookup, the source
address is iteratively compared to all connection rules in the rule
memory, and if a rule is found with a source range containing the
input spike address, the output range is passed as the range to
compute.

The bottom 5 bits of the address of the output range are used to
assign a particular neuron update to a particular core: for example,
a neuron with address ID 1025 will always be assigned to core 1.
This allows for cache locality and obviates any issues causing stale
caches from other cores updating a given neuron. The parallel
distributor assigns a batch of 32 neurons to be updated; waits until
they are completed; and increments to assign the next batch of 32.
This continues until the entire destination range of neurons has
been addressed.

The event-driven Algorithm 2 is executed by the core once a neu-
ron is assigned. State fetching is done simultaneously with weight
fetching to minimize latency, and as soon as the state is fetched
it is passed to the DSP for computation. The state is stored as an
8-byte chunk: 2 bytes for the refractory end time, 3 bytes for the
last-update timestamp, 2 bytes for state, and 1 byte for assorted
information including the cache tag, an initialization bit, and a re-
fractory bit. Because the DSP does not support exponentiation, a
ROM lookup table is generated with exponential decay factors. Ob-
taining the time delta and dividing by the membrane time constant
yields an integer lookup index in this memory, and the value at
the address j, of 1024 addresses, is e−j/128, approximated to 16 bits
of fixed-point accuracy (5 integer bits and 11 fractional bits). This
yields an accurate decay range from 1

128 τ to 8τ in steps of 1
128 τ. The

weight is stored as 2 bytes in the same fixed-point format. During
neuron updates, the membrane is decayed, followed by an impulse
according to the weight of the input neuron, and the potential is
compared to the threshold. If the threshold is exceeded, then a flag
is raised by the core. After arbitration and depending on system
parameters, that spike is either assembled and sent to the computer
or it is added to the spike queue with an axonal delay, where it will

deep neural networks and hardware for event-driven data 46

39 J. Misra and I. Saha. “Artificial
neural networks in hardware: A
survey of two decades of progress”. In:
Neurocomputing 74.1 (2010), pp. 239–
255

be sorted according to its time and layer.
Fast local memory is key to optimizing neural network compu-

tations by minimizing the impact of weight lookups. This cache
is implemented with a variant of the direct-mapped cache algo-
rithm: each neuron or weight lookup has only one location that it
can be mapped to, and at each location a reference counter tracks
the number of consecutive misses. The penalty for a DDR2 swap is
not as severe as a hard disk, so occasional contention for a specific
memory location is an acceptable tradeoff for very fast lookup.

For neuron state cache lookups, the 8-bit cache address is formed
using the middle part of the neuron’s address. The lower 5 bits are
common to all the neurons at a given core due to the computational
partitioning; the upper 3 bits are used as a tag. Combined together,
the core-specified 5 bits, the cache address’s 8 bits, and the tag’s
3 bits recovers the entire 16-bit neuron address. In the case of a
cache hit (i.e., a value was successfully retrieved from cache), a
reference bit is set to 1; in the case of a miss (i.e, the value is not
cached and must be fetched from main memory), the bit is cleared,
and if already cleared, the entry is swapped out. The neuron state
is stored in 8 bytes including the tag, allowing for 256 entries per
core using one 2KB BRAM.

For neuron weight lookups, a two-stage approach is used. Op-
timized for fanout, the local weight cache is separated into blocks
of 16 entries. Each block of 16 has a single SRC neuron address
and up to 15 DEST neuron addresses. On a cache lookup, the lower
7 bits of the SRC address are used to index the cache; if the SRC
matches, then the 4 lower bits of the DEST addresses are used to
calculate a jump offset from the initial SRC address. If the DEST
address matches, then the weight is retrieved from the cache. Here,
the reference bit for the SRC address is 2 bits since up to 15 DEST
entries could be swapped out at once; thus, four consecutive misses
are required to swap an address out. The DEST address uses only 1

reference bit, requiring two misses to swap out.

2.2.7 Results

The completed Minitaur design utilizes 22k logic slices, 23% of the
capacity of the Spartan-6 LX150 FPGA. The power consumption of
the FPGA is 1.5W, of which 400 mW supports electronics external
to the FPGA. Of the on-chip power budget, 10.0% supports logic
and signals, 16.2% supports the 200 (of 268) block memories heav-
ily used as cache to speed up the system, and 73.8% is due to the
Phase-locked loopss (PLLs), clock distributors, IOs, and leakage.
The system makes use of primarily 3 clocks: the DDR2 clock at 132

MHz, the USB I/O clock at 48 MHz, and the logic clock operating
at 75 MHz. Minitaur is an early-stage device, and many further op-
timizations can be made to significantly increase its performance.
A summary of the results can be found in Table 2.2. Following 39,
the connections per second, or more specifically the post-synaptic

deep neural networks and hardware for event-driven data 47

Benchmark Benchmark Results

Clock Rate 75 MHz

Power Consumption 1.1W (idle) - 1.5W (peak)

Average USB-to-USB Latency 236µs

Supported Number of Neurons 65536

Supported Number of Synapses 16.78 Million

Peak Performance 18.73 Million PSCs/sec

MNIST Accuracy 92.00%

MNIST Performance 4.88 Million PSCs/sec

20 Newsgroups Accuracy 71.07%

Newsgroups Performance 76 Thousand PSCs/sec

Core 2 Duo P7350 2.0GHz CPU

Power Consumption 20W (peak)

MNIST Performance 33.6 Million PSCs/secc

Newsgroups Performance 173 Thousand PSCs/sec

Table 2.2: System Performance

40 Yann LeCun, Corinna Cortes, and
Christopher JC Burges. The MNIST
database of handwritten digits. 1998

41 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)

currents per second (PSCs/sec), was chosen as the primary perfor-
mance metric.

The performance statistics were gathered on a Intel Core 2 Duo
P7350 clocked at 2.00 Gigahertz (GHz) running Ubuntu Linux
12.04. Minitaur was connected via USB using the Java libusb device
wrapper and received input spikes from benchmarking software
on the computer for performance benchmarking, the MNIST task,
and newsgroup classification task. Additionally, the CPU PSCs/sec
performance statistics were calculated using a high-performance
parallel Matlab implementation of LIF neuron networks, rather than
a block-wise model of Minitaur, to ensure a fair peak performance
comparison.

2.2.8 MNIST Handwritten Digits

The system was tested extensively with the well-studied MNIST
benchmark of handwritten digits 40. Where not otherwise specified,
performance results were obtained using the full test set of 10,000

handwritten digits after training on the full 60,000 digit training
set. To convert the static images into events, the 28x28 images were
vectorized into 784 neuron addresses and spikes were sent with
probability proportional to the intensity of the pixel.

The final feed-forward network was 784-500-500-10 units in size
(see Fig. 2.3). Since each layer is connected in the standard all-to-all
fashion, this yields 647,000 synapses in this task and 1785 neurons.
Using weights previously trained to achieve 94.2% accuracy on
the MNIST task with LIF neurons in software (41) and shown in
Fig. 2.2, Minitaur achieved 92% accuracy with 1000 spikes per im-
age; the effects of different input volume per image is discussed
later in this work (Fig. 2.5). The loss of accuracy is likely due to
the fewer bits for representation of the weights, as the computer

deep neural networks and hardware for event-driven data 48

Figure 2.2: Visualization of the weights
between the first layer and second
layer of the MNIST network trained
using rate neurons. This figure shows
a sample of 100 neurons in the second
layer, in which the incoming 784

weights are reshaped into a 28x28

pixel image; the weights shown are
typical of MNIST-trained networks.

Hidden Layer (500 nodes)

Output Layer (10 nodes)

Input Layer (784 Nodes)

Hidden Layer (500 nodes)

Figure 2.3: Visualization of the net-
work configuration used for the
MNIST task.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

D
ig
it

Time[s]

Figure 2.4: Example real-time run of
digit identification, with an output
spike represented by a black dot.
Each digit was presented in order,
from zero to nine, for a duration of
one second during which 1000 spikes
were presented; the probability of an
input spike for a given pixel is pro-
portional to the pixel’s intensity. The
winning digit is chosen according to
an exponentially decaying histogram
(τ = 0.11s); the dark dotted line in-
dicates a transition to a selection of
an incorrect winning digit, while the
lighter dashed lines indicate a transi-
tion to the correct choice for that digit.
For the trial shown here, the average
time to transition to a newly selected
digit after a change in the input digit
was 0.152 seconds.

performs the task with doubles (8 bytes) while Minitaur uses just 2

bytes for a neuron’s weight. To ameliorate this, future versions can
have a reduced-accuracy training paradigm to train weights that
balance each other more accurately using less-precise representa-
tions, rather than simply truncating the more accurate representa-
tions.

The output behaviour of an example real-time execution of the
Minitaur system on the MNIST classification task can be found in
Fig. 2.4.

deep neural networks and hardware for event-driven data 49

42 K. Lang. “Newsweeder: Learning
to filter netnews”. In: Proceedings of
the Twelfth International Conference on
Machine Learning. 1995, pp. 331–339

43 Geoffrey E Hinton, Nitish Srivastava,
Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. “Improving
neural networks by preventing co-
adaptation of feature detectors”. In:
arXiv preprint arXiv:1207.0580 (2012)

2.2.9 Newsgroups Dataset Classification Performance

Furthermore, to demonstrate the runtime configurability of Mini-
taur, a non-visual large dataset was selected in addition to the stan-
dard MNIST task. The twenty newsgroups dataset is a collection
of approximately 20,000 documents evenly partitioned across 20

newsgroup forums, collected in 1995
42 and commonly used in text

classification and clustering. As shown in Table 2.3, several of the
document types are very closely related, while others are more dis-
tant. The documents are presented in a bag-of-words model: Each
document is represented with a sparse vector of word counts.

Typically, the word counts of these documents are transformed
by applying the Term frequency-inverse document frequency (TF-
IDF) transform to control for commonly used words and to identify
the more salient usage of infrequent words. This preprocessing
step, however, requires both additional transformations and knowl-
edge of the complete dataset. Minitaur is designed to save compu-
tation time and the system should operate with as little preprocess-
ing and unnecessary computation as possible. Furthermore, word
counts must be transformed into events to be used in the system.

In the approach used here, an event corresponding to each word
is emitted whenever that word is encountered in text. Time no
longer has a concrete meaning in this domain so it was chosen to
assign random, small time steps to each additional word spike.
In this way, the network represents the semantic context of the
document which gradually either decays away or accumulates
according to the types of words that are presented.

The network used in this case is a simple two-layer network of
size 10,000-20, yielding a network of 10,020 neurons and 200,000

synapses. The number of neurons in the input layer is equal to the
number of words used (10,000 in this experiment), and the number
of neurons in the output layer equals the number of distinct classes
(20 distinct newsgroups). The network was trained using standard
backpropagation combined with dropout 43.

Without transforming the input using TF-IDF, word counts were
emitted as word spike counts, and using the standard 60%-train,
40%-test split on these documents, the Minitaur system achieved
71% classification accuracy using the 10,000 most frequently used
words in the dataset. The breakdown by category with the most
common words can be found in Table 2.3.

The PSCs/sec performance of both the CPU and the Minitaur
system decreased with the newsgroup classification task. A given
news item to be classified may only have 100 non-common words,
and the fanout for each of these words is only 20. This means that
Minitaur cannot fully use all 32 cores during computation of neu-
ron updates. In addition, the system has suboptimal caching from
the significant weight convergence (10,000 nodes to 20), which
limits the number of SRC neurons that can have cached weights.
The CPU-based approach suffers as well because the parallelism

deep neural networks and hardware for event-driven data 50

Newsgroup Top Positive Terms Perf

talk.religion.misc order, bull, brian 44.22%

talk.politics.misc kaldis, cramer, tax 46.45%

sci.electronics circuit, electronics, hc 56.74%

comp.sys.ibm.pc.hardware gateway, dx, bus 61.73%

comp.windows.x motif, server, widget 61.79%

rec.autos car, cars, dealer 64.30%

comp.os.ms-windows.misc windows, win, cica 65.47%

comp.sys.mac.hardware mac, apple, powerbook 66.58%

comp.graphics graphics, image, polygon 66.84%

soc.religion.christian rutgers, athos, christ 70.10%

talk.politics.guns gun, guns, weapons 70.33%

sci.med disease, doctor, msg 70.48%

alt.atheism keith, atheism, mathew 72.64%

talk.politics.mideast israel, israeli, turkish 74.47%

sci.space space, orbit, launch 76.02%

misc.forsale sale, offer, shipping 78.80%

rec.sport.baseball baseball, phillies, runs 82.62%

rec.motorcycles dod, bike, motorcycle 86.90%

rec.sport.hockey hockey, nhl, playoff 87.47%

sci.crypt encryption, clipper, key 87.59%

Table 2.3: Newsgroup classification

between trials is low; a given news item may only have 100 non-
common words while another might have 10,000, so the CPU is not
able to parallelize as many trials simultaneously as in the MNIST
task.

2.2.10 System Performance

The current design has a benchmarked USB-to-USB latency of 236

µs (averaged over 10,000 trials), which is primarily dominated by
the latency of the operating system issuing USB read and writes.
Minitaur was benchmarked at processing 585 kEvts/sec or one in-
put spike every 1.71 µs with all memory fetches drawing from local
cache. With each input spike causing 32 PSCs (fully utilizing the
parallel cores), Minitaur processed 18.73 million PSCs per second at
its peak speed.

2.2.11 Initial Response and Additional Accuracy

Minitaur can be used to abort a computation early when sufficient
accuracy is reached. When operating on a fixed input, event-based
computation is a process of refinement rather than a static com-
putation. Sequential input events add information to the system,
and the system accumulates evidence over time to arrive at a more
accurate answer.

This implies that an embodied robotic platform using Minitaur
could use Minitaur’s initial output after a very low response time
to achieve a low-quality guess, or pay a small time cost to allow
subsequent processing to increase the accuracy of that guess. In
the MNIST task, 59.2% of the first output spikes (not shown) in-

deep neural networks and hardware for event-driven data 51

0 100 200 300 400
0

500

1000

0 5 10 15 20
0

500

1000

0 200 400 600 800 1000
0

20

40

60

80

100

0 200 400 600 800 1000
0

20

40

60

80

100
Latency of output in terms of input spikes

A
cc

u
ra

cy
 [

%
 C

o
rr

ec
t]

Number of input spikes

Zoom

C
o

u
n

t
[t

ri
al

s]
Figure 2.5: Increasing accuracy with
additional information, using the
complete 10,000 digits in the MNIST
test set. For an event-based system the
natural unit of time is number of input
events, not seconds; each input event
refines the answer estimate in the same
way a long exposure time or multiple
frames accumulates evidence in a time-
stepped model. Moreover, latency is
measured using input events because
the system cannot produce an answer
without accumulated information
added to the system. The top plot
shows a histogram of latency until the
first output spike; most trials produce
a result spike after 4 input spikes (as
seen in the zoomed-in inset), but some
trials can take hundreds of inputs
to produce their first output spike.
The bottom plot shows the effect of
adding more events in the MNIST task;
additional spikes cause the accuracy to
asymptotically approach a 92% value.dicated a correct answer occurring after the delay represented in

the top half of Fig. 2.5. This would allow the system to make a
low-accuracy guess after a very short delay. The bottom of Fig. 2.5
shows the increased accuracy of the system as the number of input
events increases.

Both early-abort and longer-refinement use cases have obvious
applications in robotics, and the freedom to choose at runtime is a
major advantage of the Minitaur system.

2.2.12 Noise Robustness and Indecision

With the fallibility of sensors in general, and the likelihood of un-
expected events in real-world datasets, robustness to noise is a
significant part of designing a real-time event-driven system. To
test the robustness of the system to noise, the MNIST dataset was
employed with varying noise levels. As before, spikes are drawn
from the image with probability proportional to pixel intensity.
Then, a percentage of spikes are subsequently replaced with spikes
from random pixels, drawn uniformly from the pixel space, and
the accuracy of the system is calculated (Fig. 2.6). As can be seen
in Fig. 2.7, the system is very robust to noise due to the weights of
the Restricted Boltzmann Machine, which act to denoise the input
by keeping only significant features as events propagate through
the layers. Interestingly, the number of output spikes drops dramat-
ically with increased noise; when receiving 90% noise, the system
will average just over two output spikes for 1000 input spikes. The
decrease of spikes has practical advantages as well; a downstream
system using the output of Minitaur will be signaled with fewer
spikes since Minitaur is less confident of its result.

deep neural networks and hardware for event-driven data 52

Figure 2.6: Visualization of 3 digits
from the MNIST dataset with noise
added. Shown here, from left to
right, are 0% noise, 30% noise, 55%
noise, and 80% noise for example
handwritten digits 4, 9, and 3. Noise
spikes were drawn uniformly from
the pixel space and used to replace
informative spikes.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Id
en

ti
fi

ca
ti

o
n

 A
cc

u
ra

cy
 [

P
er

ce
n

t]

O
u

tp
u

t
S

p
ik

es
 p

er
 1

00
0

In
p

u
t

S
p

ik
es

Random Spikes [Percent]

Accuracy
Output Spikes

Figure 2.7: System performance is
robust to noise. Even when the input
is only 20% signal and 80% noise, the
event-driven system still correctly
classifies the digits with more than a
70% success rate. This is largely due
to the robustness of RBMs to uniform
noise; since no particular distribution
is favored by uniform noise, it does
not strongly affect the result. The
increased noise of the data does
create more indecision in the result;
the number of output spikes drops
dramatically with increased noise and
accounts for the falling accuracy.

44 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)

2.2.13 Summary of FPGA Implementation

The previous sections have introduced the Minitaur spiking net-
work accelerator. In addition to the system’s performance of 18.73

million post-synaptic currents per second, it consumes just 1.5W of
power, enabling it to be used in embedded robotics applications.
The system records 92% accuracy on the MNIST handwritten digit
classification and 71% accuracy on the 20 newsgroups classification
dataset. With proper weights, the system is remarkably robust to
noise. Additionally, knowledge about the output spikes can be used
to determine how difficult a task is, and to weigh the confidence of
the output accordingly.

A significant challenge of using this system right now, however,
is the dearth of effective training methods for LIF spike-based sys-
tems. Various approaches for learning the weights for spike-based
LIF networks, in particular DBNs, are being explored 44 especially
where such networks prevent traditional training regimens of real-

deep neural networks and hardware for event-driven data 53

45 S.B. Furber, F. Galluppi, S. Temple,
and L.A Plana. “The SpiNNaker
Project”. In: Proceedings of the IEEE
102.5 (May 2014), pp. 652–665. issn:
0018-9219. doi: 10.1109/JPROC.2014.
2304638

46 Daniel Neil and S-C Liu. “Minitaur,
an event-driven FPGA-based spiking
network accelerator”. In: IEEE Trans
on Very Large Scale Integration (VLSI)
Systems 22.12 (2014), pp. 2621–2628

47 E. Stromatias, F. Galluppi, C. Patter-
son, and S. Furber. “Power analysis of
large-scale, real-time neural networks
on SpiNNaker”. In: Proceedings of 2013
International Joint Conference on Neural
Networks (IJCNN). Aug. 2013, pp. 1–8.
doi: 10.1109/IJCNN.2013.6706927
48 Evangelos Stromatias, Daniel Neil,
Francesco Galluppi, Michael Pfeiffer,
Shih-Chii Liu, and Steve Furber. “Scal-
able Energy-Efficient, Low-Latency
Implementations of Spiking Deep
Belief Networks on SpiNNaker”.
In: Proceedings of the 2015 IEEE In-
ternational Joint Conference on Neural
Networks (IJCNN). 2015, pp. 1–8. doi:
10.1109/IJCNN.2015.7280625

valued sigmoidal activation functions and backpropagation. Fur-
ther work on event-based learning is needed to improve training
and runtime accuracy significantly.

2.3 SpiNNaker: An Optimized Hardware Implementation

After the fully-custom hardware investigation of Minitaur on
FPGA, the next task was to examine a slightly more constrained
design, closer to current computing infrastructures, and to study
what algorithmic optimizations could remain viable given a system
designed to optimize the computation of spiking neurons. One par-
ticularly attractive platform for this is the SpiNNaker project 45,
a platform for spiking neural network computations, and so a
collaboration was begun to produce an even more efficient im-
plementation of a Deep Belief Network. While full control of the
hardware architecture is available on FPGA, FPGAs are nonetheless
not a particularly efficient substrate for hardware. Far more efficient
would be a pure ASIC implementation, and the modified ARM
cores that the SpiNNaker project runs on had been built specifi-
cally to perform digital computation, asynchronously, and with
extremely high-performance data links to carry spike information
between neurons. By leveraging this platform, designed to enable
low-latency and low-power massively parallel large-scale simula-
tions of spiking neurons in real-time, the work aimed to build a
DBN that could be much more efficient than either a CPU or FPGA
implementation. Indeed, while the energy efficiency of a laptop
CPU was 1.68 MSops/W in real-time46, and the energy efficiency of
Minitaur on MNIST was measured to be between 12.48 and 18.73

MSops/W, a single SpiNNaker board with 48 SpiNN-5 component
chips, which are the building blocks for creating larger SpiNNaker
systems, provides up to 54.27 MSops/W in real-time 47.

The conversion process of the DBN for SpiNNaker also produced
a model of power consumption for the SpiNNaker boards 48:

Ptot = PI + PB + (PN · n) + (PS · s) (2.2)

where PI is the power dissipated by a SpiNNaker chip after the
booting process with no loaded applications, PB the baseline power
dissipated by the kernel and Application programming interface
(API), PN is the power required to simulate a LIF neuron with a
standard 1 ms timestep, n are the number of neurons, PS is the en-
ergy consumed per synaptic event, and s are the total number of
synaptic events. The parameter PN was experimentally measured
through a benchmark network varying the number of neurons, and
disabling and enabling the transmission of spike events allows mea-
surements of PS. This fit explicitly points out the effect of scaling
power load with “computational” load PS · s which represents the
firing rates of the neurons. Indeed, this model does well describe

https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/IJCNN.2013.6706927
https://doi.org/10.1109/IJCNN.2015.7280625

deep neural networks and hardware for event-driven data 54

49 Evangelos Stromatias, Daniel Neil,
Francesco Galluppi, Michael Pfeiffer,
Shih-Chii Liu, and Steve Furber. “Scal-
able Energy-Efficient, Low-Latency
Implementations of Spiking Deep
Belief Networks on SpiNNaker”.
In: Proceedings of the 2015 IEEE In-
ternational Joint Conference on Neural
Networks (IJCNN). 2015, pp. 1–8. doi:
10.1109/IJCNN.2015.7280625
50 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)

51 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)

52 Matthieu Courbariaux, Yoshua Ben-
gio, and Jean-Pierre David. “Low
precision arithmetic for deep learn-
ing”. In: arXiv preprint arXiv:1412.7024
(2014)
53 Matthieu Courbariaux, Yoshua Ben-
gio, and Jean-Pierre David. “Low
precision arithmetic for deep learn-
ing”. In: arXiv preprint arXiv:1412.7024
(2014)

the power consumption of SpiNNaker and demonstrates the scal-
ing behaviour 49 desired to grow towards very large and powerful
networks while remaining event-driven.

However, in order to be executed on hardware platforms with
fixed precision, approximations were necessary to adjust these
models from full-precision floating-point parameters to a lower-
precision. To ensure this did not introduce difficulties, following
work 50 investigated the effect of these reduced precision parameter
optimizations. This serendipitously led to an important method for
training deep neural networks, as well as uncovering a principle
which continues to be exploited today.

2.4 Low-precision Approximations for Hardware Systems

The following excerpt first appeared in 51.
To reduce the precision of the weights of a DBN, there is the

straightforward method of rounding the weights after training to
a given precision. However, beyond the method of rounding the
weights of a DBN after training has been completed, this work in-
troduces two additional approaches to create the lower-precision
weights, and optimize the performance for low-precision simu-
lations. Intuitively, the motivation for these novel methods arises
from the idea that networks that incorporate knowledge about
the eventual low-precision representation of the hardware during
training may be able to perform better under those low-precision
conditions than networks that have been optimized under the as-
sumption of higher precision.

The first proposed method, called iterative rounding, is similar
to the fixed-point method mentioned in 52, in which the result
of a computation is rounded whenever it is stored. The method
originally proposed in 53, however, refers to the case when the
forward pass of computing activities of neurons in all layers, and
the computation of gradients for learning, are performed with full
precision and only the weight is kept in reduced precision. For
iterative rounding, the full-precision weight update is calculated
from the contrastive divergence algorithm, and applied directly to
the low-precision weights. After the full-precision weight update
has been applied, the value is then rounded to the closest low-
precision representation of that weight and stored.

However, one challenge with this approach is that the gradi-
ent update may be too small to change the values of low-precision
weights. To address this potential difficulty, this paper introduces
a key, novel method called dual-copy rounding, which uses both a
temporary low-precision and a permanent high-precision repre-
sentation of weights. This method incorporates knowledge about
the eventual low-precision representation of the tested network as
well as supporting the small, but highly important accumulation of
error gradients over multiple iterations. For this method, two copies

https://doi.org/10.1109/IJCNN.2015.7280625

deep neural networks and hardware for event-driven data 55

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

Q3.1 Dual-copy rounding method Q3.1 Post-learning rounding, closest Euclidean Figure 2.8: Impact of different round-
ing methods during learning on
learned weight representations.
Comparison of first-layer weights
in networks trained with the dual-copy
rounding method (left) and the post-
learning rounding method (right). The
weights shown here are representative
samples from 16 clusters of weight
vectors in the learned dual-copy
rounding weight matrix. On the right,
the weights from the post-learning
rounding weight matrix that are most
similar to these chosen weights are
displayed. The dual-copy rounding
method is able to preserve much more
fine structure, compared to simply
rounding the network weights after
training, and is thus more suitable for
training networks that will be executed
with lower bit precision weights.

of the weight matrix W are maintained during training: a high-
precision weight matrix (WH) and a low-precision weight matrix
(WL), which is stored in Qm. f numerical format. Learning proceeds
as before, but the activities of the hidden layer and the visible layer
after sampling are obtained using the low-precision weights WL.
The contrastive divergence update for WH is thus parameterized as
∆w(WL), and after the update both weight matrices are processed
as

WH =

−2m where WH ≤ −2m

WH where − 2m < WH < 2m

2m where WH ≥ 2m

(2.3)

WL = round(2 f ·WH) · 2− f (2.4)

where 2m represents the largest possible value that can be stored
in the Qm. f format. Importantly, note that the low-precision weight
matrix WL is used to sample from the network, while the weight
update is applied to the higher-precision representation WH , and
WL is obtained via rounding. As in standard contrastive divergence,
the weight update is calculated from the difference of pairwise
correlations of the data-driven layers and the model-driven sam-
ple layers. Here, although the activations are calculated from the
low-precision weights, the updates are accumulated in the high-
precision weights. Then, the weights are checked to be within the
maximum bounds of the given resolution (Eq. 2.3) for the given
fixed-point precision. Finally, the weights are copied over into the
low-precision matrix (Eq. 2.4). The learning can then proceed for
another iteration, using the new updated low-precision weight ma-
trix WL. The additional cost of dual-copy rounding is to store a
second weight matrix in memory, which is typically not a limiting
factor for off-chip learning.

For qualitative differences, observe the weights shown in Figure
2.8. In order to show representative samples, the learned weights
in the first layer from the dual-copy rounding method were clus-
tered into 16 categories, and the post-learning rounding method
weights with the closest Euclidean distance to these cluster ex-
emplars were identified and plotted on the right. The dual-copy

deep neural networks and hardware for event-driven data 56

rounding method preserves significantly more fine-grained struc-
ture, which would be lost with other rounding methods.

0

20

40

60

80

100

Dual-copy rounding
Post-learning rounding
Iterative rounding

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 (

%
)

Testing conditions

Q3.12 Q3.6 Q3.4 Q3.3 Q3.2 Q3.1

Figure 2.9: Effectiveness of the dual-
copy rounding weight training
paradigm. Training at full preci-
sion and later rounding performs
consistently worse than the dual-copy
rounding method introduced in this
paper. Rounding the weights during
training can prevent learning entirely
at low-precision regimes. The results
show averages of five independent
runs with different random seeds.

0

20

40

60

80

100

0 10020 40 60 80

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 (

%
) 100 Hz

100 Hz (Dual-copy rounding)
1500 Hz
1500 Hz (Dual-copy rounding)

Noisy spikes (%)

Figure 2.10: Increase in classification
accuracy of a spiking DBN with Q3.1
precision weights due to the dual-copy
rounding method for input rates of 100

Hz and 1500 Hz. Results over 4 trials.

For a quantitative analysis of the differences in performance,
the classification accuracy in the MNIST task using different bit
precisions and different rounding methods was measured. For
performance reasons, the classification performance for this section
unlike the other sections in this paper occurred in rate-based (non-
spiking) conditions, but using the same training procedure for
spiking neurons.

As there was no performance loss in the Q3.12 representation
compared to full double-precision, this was taken as the full-
precision reference point. Figure 2.9 shows the effect of the three
investigated training methods on the classification accuracy, when
testing the weight matrix at different levels of bit precision. Round-
ing a high-precision weight matrix does work effectively, but can
fail for lower-precision weights. Unfortunately, the iterative round-
ing method of training works extremely poorly for low-precision
cases; the weight update size is simply less than the precision of the
weight, so learning halts entirely after the error gradient falls below
a certain threshold.

Impressively, however, Figure 2.9 shows the clear advantage of
the dual-copy training. Across all precision levels, incorporating in-
formation about the lower-precision weight matrix into the training
yields noticeable and consistent improvements. This improvement

deep neural networks and hardware for event-driven data 57

increases as precision decreases, so that at the Q3.1 representation
level, where there is only a single sign bit and three bits of repre-
sentation per weight, the network is able to achieve an impressive
91.35% accuracy in the highest-performing case. Under spiking con-
ditions, the performance of this network drops to 82%, Figure 2.10.
While this is substantially lower than the rate-based performance,
it is still twice the accuracy of the default post-learning rounding
method, and future work will determine improved ways to main-
tain the rate-based performance under spiking conditions.

2.5 Lessons Learned from Hardware Spiking Systems

So what was learned from this initial hardware investigation?
Power efficiency was the primary optimization target, though the
hardware still needed to be powerful enough to sufficiently run this
large, complex networks.

As pointed out explicitly by the power consumption equation
Eq. 2.2, power increases linearly with the number of neurons used
(as expected), and also with the number of input synaptic events.
Though that makes sense from a data-driven perspective, it is
markedly different than traditional machine learning which has
a relatively fixed cost for computation; data-driven computation
scaling implies that inputs that produce higher intermediate firing
rates will consume more power than inputs that produce lower
firing rates. This should be considered in later chapters in which
algorithms are designed.

In Minitaur, a major bottleneck on the system was the time it
took to cache states and weights. The design methodology of the
biological brain favors co-locating computation and memory, but
modern electronic design processes prevent memory and computa-
tion from being collocated. Adding more memory locally increases
the silicon area of the design, which increases the cost and hinders
adoption. It also requires moving data further, consuming more
power, and can slow down the clock speed of the device as it has to
cover more area. Instead, the design must find the optimal design
between the massively parallel, widely-connected, and low-power
neurons of biology, and the opportunities afforded in a roughly 2D
mesh of silicon. New state-of-the-art deep accelerators have since
taken up this mantle and are further explored in Sec. 8.

As well as the storage of weights and states, the unpredictable
access caused by the asynchronous and environmentally-triggered
data severely hindered the efficiency of these systems. While
caching is one method that was able to ameliorate these effects
(fast-spiking neurons are likely to spike again in the future), it
placed these designs at a greater disadvantage compared to tradi-
tional hardware accelerators that strongly order pipelines and data
reuse to minimize overhead.

Nonetheless, this direction of the investigation is a successful

deep neural networks and hardware for event-driven data 58

54 Paul A Merolla, John V Arthur,
Rodrigo Alvarez-Icaza, Andrew S
Cassidy, Jun Sawada, Filipp Akopyan,
Bryan L Jackson, Nabil Imam, Chen
Guo, Yutaka Nakamura, et al. “A
million spiking-neuron integrated
circuit with a scalable communication
network and interface”. In: Science
345.6197 (2014), pp. 668–673

55 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)
56 Evangelos Stromatias, Daniel Neil,
Francesco Galluppi, Michael Pfeiffer,
Shih-Chii Liu, and Steve Furber. “Scal-
able Energy-Efficient, Low-Latency
Implementations of Spiking Deep
Belief Networks on SpiNNaker”.
In: Proceedings of the 2015 IEEE In-
ternational Joint Conference on Neural
Networks (IJCNN). 2015, pp. 1–8. doi:
10.1109/IJCNN.2015.7280625
57 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)
58 Li Wan, Matthew Zeiler, Sixin
Zhang, Yann L Cun, and Rob Fergus.
“Regularization of neural networks
using dropconnect”. In: Proceedings
of the 30th International Conference on
Machine Learning (ICML-13). 2013,
pp. 1058–1066

59 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)
60 Daniel Neil and S-C Liu. “Minitaur,
an event-driven FPGA-based spiking
network accelerator”. In: IEEE Trans
on Very Large Scale Integration (VLSI)
Systems 22.12 (2014), pp. 2621–2628

one. The TrueNorth chip 54 succeeded greatly at creating an event-
driven asynchronous hardware platform, and while Minitaur of-
fered an order-of-magnitude greater efficiency than a laptop CPU’s
1.68 MSOps/W at 18.73 MSOps/W, and while the SpiNNaker im-
plementation pushed that to 54.27 MSOps/W, the TrueNorth chip
was able to achieve over 46GSops/W, increasing the efficiency by
three orders of magnitude, emphasizing the low-power capability
of a spiking system. The TrueNorth chip remains to date one of the
most efficient platforms for event-driven inputs, and yet can widely
support a variety of models. The work performed here 55,56 also
translates successfully to these larger and newer platforms.

Additionally, the process of converting an event-driven deep
neural network to hardware serendipitously uncovered a princi-
ple which will be exploited throughout this thesis: deep neural
networks are overly powerful, to their own detriment. By decreas-
ing the weight resolution dramatically in 57, not only did the net-
work achieve greater accuracy, but it was more robust to noise.
The power of deep neural networks should be constrained, both to
achieve greater efficiency and also to achieve greater accuracy.

However, the unfortunate truth is that these spiking network
implementations are achieving sufficient accuracy to be taken se-
riously by the greater machine learning community. MNIST was
rapidly becoming considered a solved problem with greater than
99.7% accuracy 58 achieved, while deep spiking networks had trou-
ble reaching greater than 96% accuracy 59, and even lower in hard-
ware implementations 60. While that 3% may not seem significant,
an asymptotic approach means that the 99% was an incredibly chal-
lenging and elusive target. No spiking network had yet achieved
scores close to that, which is problematic in the machine learning
community that relies heavily on benchmarks. Spiking neural net-
works need to increase their accuracy significantly.

https://doi.org/10.1109/IJCNN.2015.7280625

deep neural networks and hardware for event-driven data 59

1 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)

2 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)
3 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)

4 F. Jug, M. Cook, and A. Steger.
“Recurrent competitive networks can
learn locally excitatory topologies”.
In: Proceedings of 2012 International
Joint Conference on Neural Networks
(IJCNN). June 2012, pp. 1–8. doi:
10.1109/IJCNN.2012.6252786

3
Bringing in the State-of-the-Art from Deep Learning

To begin investigating methods to improve event-based Deep
Learning, it is important to recapitulate the prior work that has
been accomplished. As mentioned in previous sections, the initial
investigations into fully event-driven deep networks began with
investigations into spiking Deep Belief Networks 1. Section 3.1
introduces the key concepts and formulation behind that work.
Pushing beyond Deep Belief Networks, Sections 3.2.1-3.6.3 perform
a detailed analysis of the cause of performance loss in the conver-
sion from standard networks to spiking networks, and results in
the development of key algorithms for conversion from state-of-the-
art convolutional networks to spiking networks with near-lossless
conversion. Additionally, the algorithms permit an acceleration of
classification time, requiring only a few spikes to achieve high ac-
curacy. Finally, Section 3.7 concludes the chapter with the advances
gained and how they relate to the principles of this thesis.

3.1 Prior work: Deep Belief Networks and Spiking Networks

Text in this section originally appeared previously 2, and training
of DBNs targeting a spiking network implementation is described
in detail in 3. The key idea of using a spike-based network instead
of what is termed a Analog Neural Network (ANN), a conventional
neural network, is to use spike rates as an approximation of the
real-valued analog signal within an ANN. Within the probabilistic
DBN framework, the ratio of the firing rates of Leaky Integrate-and-
Fire neurons to their maximum firing rates represent the activation
probabilities used in the training algorithm. The more precisely
a continuous, analog rate-based approximation matches the true
firing rates of a neuron, the more precisely the spiking version will
match the analog value.

The so-called Siegert approximation 4 is used here, which ap-
proximates the output firing rate of a LIF neuron receiving both
inhibitory and excitatory inputs. Let ~ρi and ~ρe be the vectors of
inhibitory and excitatory input rates, and (~wi, ~we) be the corre-
sponding weights. In order to compute the expected output rate
of the LIF neuron, a number of auxiliary variables first needs to be

https://doi.org/10.1109/IJCNN.2012.6252786

deep neural networks and hardware for event-driven data 60

5 A. J. F. Siegert. “On the first passage
time probability problem”. In: Physical
Review 81.4 (1951), p. 617

6 F. Jug, M. Cook, and A. Steger.
“Recurrent competitive networks can
learn locally excitatory topologies”.
In: Proceedings of 2012 International
Joint Conference on Neural Networks
(IJCNN). June 2012, pp. 1–8. doi:
10.1109/IJCNN.2012.6252786

7 F. Jug, M. Cook, and A. Steger.
“Recurrent competitive networks can
learn locally excitatory topologies”.
In: Proceedings of 2012 International
Joint Conference on Neural Networks
(IJCNN). June 2012, pp. 1–8. doi:
10.1109/IJCNN.2012.6252786

computed. For completeness, the full equations are provided here,
but refer to previous work for the derivation and interpretation of
each variable 5,6:

µQ = τ ∑(~we~ρe + ~wi~ρi) σ2
Q =

τ

2 ∑(~w2
e ~ρe +

~w2
i ~ρi)

Υ = Vreset + µQ Γ = σQ

k =
√

τsyn/τ γ = |ζ(1/2)|

Here, τsyn denotes the synaptic time constant (for our purposes
considered to be zero), and ζ is the Riemann zeta function. Then
the average firing rate ρout of the neuron with reset potential Vreset,
threshold voltage Vthresh, and refractory period Tref can be com-
puted as 7

ρout =

(
Tref +

τ

Γ

√
π

2
· (3.1)

∫ Vthresh+kγΓ

Vreset+kγΓ
exp

[
(u− Υ)2

2Γ2

]
·
[

1 + erf
(

u− Υ
Γ
√

2

)]
du
)−1

.

While complex, this approximation of firing rates allows a direct
translation between the analog activation probabilities required for
Contrastive Divergence (CD) training and the resulting firing rates
of a spiking neuron with those weights. During training of the spik-
ing DBN, the Siegert approximation is used as the nonlinearity of
the neuron instead of a sigmoidal function. The predicted rate ρout

in (Eq. 3.1) can be converted into a probability by normalizing with
the maximum firing rate 1/Tref. This allows sampling the activation
probabilities, as is done in standard contrastive divergence learning
with with continuous-valued units. Specifically, the weight update
in contrastive divergence for spiking networks computes the data-
and model-driven activities of the visible and hidden layer using
the Siegert approximation, and then computes the weight update
as usual in RBM training. Let Vdata be the activity of the visible
units driven by the input data (or activity of the hidden layer be-
low). Then the data-driven activity of the hidden layer, given the
full weight matrix W connecting the visible and hidden layer, is

Hdata = ρout(Vdata, W) · Tref

The model-driven activity of the visible and hidden layers, obtained
via Gibbs sampling, is then given as

Vmodel = ρout(Hdata, WT) · Tref, Hmodel = ρout(Vmodel, WT) · Tref

and the weight update ∆w is

∆w = α · (HT
dataVdata − HT

modelVmodel), (3.2)

where α is the learning rate. Using this formulation for the activa-
tion function (the Siegert function) allows reusing state-of-the-art

https://doi.org/10.1109/IJCNN.2012.6252786
https://doi.org/10.1109/IJCNN.2012.6252786

deep neural networks and hardware for event-driven data 61

8 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)
9 Peter U Diehl, Daniel Neil, Jonathan
Binas, Matthew Cook, Shih-Chii
Liu, and Michael Pfeiffer. “Fast-
Classifying, High-Accuracy Spiking
Deep Networks Through Weight and
Threshold Balancing”. In: International
Joint Conference on Neural Networks
(IJCNN). 2015

10 This conversion work was done in
equal part in a collaboration between
the author and Peter U. Diehl.
11 Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner.
“Gradient-based learning applied
to document recognition”. In: Proceed-
ings of the IEEE 86.11 (1998), pp. 2278–
2324

12 Dan Claudiu Ciresan, Ueli Meier,
Luca Maria Gambardella, and Jürgen
Schmidhuber. “Deep, big, simple
neural nets for handwritten digit
recognition”. In: Neural Computation
22.12 (2010), pp. 3207–3220

13 Dan Claudiu Ciresan, Ueli Meier,
Luca Maria Gambardella, and Jürgen
Schmidhuber. “Deep, big, simple
neural nets for handwritten digit
recognition”. In: Neural Computation
22.12 (2010), pp. 3207–3220

14 Clement Farabet, Camille Couprie,
Laurent Najman, and Yann LeCun.
“Learning hierarchical features for
scene labeling”. In: IEEE Trans on
Pattern Analysis and Machine Intelligence
35.8 (2013), pp. 1915–1929

15 Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. “Imagenet
classification with deep convolutional
neural networks”. In: Proc. of NIPS.
2012, pp. 1097–1105

16 Pierre Sermanet, David Eigen,
Xiang Zhang, Michaël Mathieu, Rob
Fergus, and Yann LeCun. “OverFeat:
Integrated recognition, localization
and detection using convolutional
networks”. In: arXiv preprint 312.6229

(2013)
17 Kunihiko Fukushima. “Neocogni-
tron: A self-organizing neural network
model for a mechanism of pattern
recognition unaffected by shift in po-
sition”. In: Biological Cybernetics 36.4
(1980), pp. 193–202

18 Jürgen Schmidhuber. “Deep learning
in neural networks: An overview”. In:
Neural Networks 61 (2015), pp. 85–117

training tools and methodologies for training spiking networks in a
straightforward way. First, the parameters for the target application
are chosen (Vreset, Vthresh, Tref). Next, the corresponding Siegert ac-
tivation function is given as the activation function for the neurons
to transform input currents to spike rates; finally, after training, the
parameters and weights are kept unchanged and the units generate
Poisson spike trained with rates computed by the Siegert formula
(Eq. (3.1)). In 8 it was shown that this results in equivalent spiking
implementations of RBMs and DBNs, which perform similarly to
conventional networks with the same architecture.

3.2 Feed-forward Network Conversion

However, this was shown to closely, but not precisely, approximate
the event rates. Certain assumptions that are required to use the
Siegert model (for example, Gaussian-distributed weights) were
only approximately yet not strictly true in practice. Moreover,
purely feedforward models such convolutional neural networks
began to outperform generative and probability-based models
like Deep Belief Networks. New techniques needed to be devel-
oped to port these recent developments in machine learning over
to spiking networks. The following text was originally published
previously 9,10.

3.2.1 Motivation for Feed-forward Network Conversion

Feed-forward deep neural network architectures, such as con-
volutional neural networks (CNNs) 11 and fully-connected feed-
forward neural networks 12, are currently the most successful ar-
chitectures for natural image classification. They have achieved
record-breaking results for problems such as handwriting recogni-
tion 13, scene labeling 14, the CIFAR benchmark 15, the ImageNet
benchmark 16, and many others. Deep neural network architec-
tures, which are loosely inspired by hierarchies of cortical visual
information processing 17, have seen increasing success in recent
years due to the availability of more powerful computing hard-
ware, larger datasets, and improved training algorithms, which
has enabled the training of much deeper networks, while avoiding
problems of overfitting 18. Despite their successes, the substantial
computational cost of training and running deep networks has cre-
ated a need for specialized hardware acceleration and new compu-
tational paradigms to enable the use of deep networks for real-time
practical applications.

3.2.2 Motivation for Deep Spiking Networks

Algorithms for spiking deep neural networks have also become
an increasingly active field of research. This has been driven both
by the interest to build more biologically realistic neural network

deep neural networks and hardware for event-driven data 62

19 Paul A Merolla, John V Arthur,
Rodrigo Alvarez-Icaza, Andrew S
Cassidy, Jun Sawada, Filipp Akopyan,
Bryan L Jackson, Nabil Imam, Chen
Guo, Yutaka Nakamura, et al. “A
million spiking-neuron integrated
circuit with a scalable communication
network and interface”. In: Science
345.6197 (2014), pp. 668–673

20 Ben Varkey Benjamin, Peiran Gao,
Emmett McQuinn, Swadesh Choud-
hary, Anand R Chandrasekaran, J
Bussat, Rodrigo Alvarez-Icaza, John V
Arthur, PA Merolla, and Kwabena
Boahen. “Neurogrid: A mixed-analog-
digital multichip system for large-scale
neural simulations”. In: Proceedings of
the IEEE 102.5 (2014), pp. 699–716

21 S.B. Furber, F. Galluppi, S. Temple,
and L.A Plana. “The SpiNNaker
Project”. In: Proceedings of the IEEE
102.5 (May 2014), pp. 652–665. issn:
0018-9219. doi: 10.1109/JPROC.2014.
2304638
22 Daniel Neil and S-C Liu. “Minitaur,
an event-driven FPGA-based spiking
network accelerator”. In: IEEE Trans
on Very Large Scale Integration (VLSI)
Systems 22.12 (2014), pp. 2621–2628

23 G. Indiveri, E. Chicca, and R. Dou-
glas. “A VLSI figurable network of
integrate-and-fire neurons with spike-
based learning synapses”. In: (2004)
24 X. Jin, A. Rast, F. Galluppi, S. Davies,
and S.B. Furber. “Implementing
spike-timing-dependent plasticity on
SpiNNaker neuromorphic hardware”.
In: Neural Networks (IJCNN), The 2010
International Joint Conference on. IEEE.
2010, pp. 1–8

25 Peter U Diehl and Matthew Cook.
“Efficient implementation of STDP
rules on SpiNNaker neuromorphic
hardware”. In: 2014 International Joint
Conference on Neural Networks (IJCNN).
IEEE. 2014, pp. 4288–4295

26 Patrick Lichtsteiner, Christoph
Posch, and Tobi Delbruck. “A 128×
128 120 dB 15 µs latency asynchronous
temporal contrast vision sensor”. In:
IEEE Journal of Solid-State Circuits 43.2
(2008), pp. 566–576

27 Shih-Chii Liu and Tobi Delbruck.
“Neuromorphic sensory systems”. In:
Current Opinion in Neurobiology 20.3
(2010), pp. 288–295

28 R. Serrano-Gotarredona and oth-
ers. “CAVIAR: A 45k Neuron, 5M
Synapse, 12G Connects/s AER Hard-
ware Sensory–Processing– Learning–
Actuating System for High-Speed
Visual Object Recognition and Track-
ing”. In: IEEE Trans on Neural Networks
20.9 (2009), pp. 1417–1438

models, and by recent improvements and the availability of larger-
scale neuromorphic computing platforms, which are optimized for
emulating brain-like spike-based computation in dedicated analog
or digital hardware 19,20,21,22. Neuromorphic platforms can be or-
ders of magnitude more efficient in terms of power consumption
compared to conventional CPUs or GPUs for running spiking net-
works, and often permit distributed and asynchronous event-based
computation, thereby improving scalability and reducing laten-
cies. Furthermore, event-driven neuromorphic systems focus their
computational effort on currently active parts of the network, effec-
tively saving power on the rest of the network. They are therefore
attractive as platforms to run large-scale deep neural networks in
real-time and potentially support online learning 23,24,25. These
platforms are ideally driven by input from neuromorphic sensors
such as silicon retinas 26 or cochleas 27, which create sparse, frame-
free, and precisely timed streams of events, with substantially re-
duced latencies compared to frame-based approaches. Earlier work
on spiking deep networks has thus focused on fast classification in
event-based vision systems with CNNs and Deep-Belief Networks
(DBNs) 28,29,30.

As introduced above, training of spiking deep networks typically
does not use spike-based learning rules, but instead starts from a
conventional ANN, fully trained with backpropagation, followed
by a conversion of the rate-based model into a model consisting
of simple spiking neurons. Theory has shown that Spiking Neu-
ral Networks (SNNs) are at least as computationally powerful as
their analog counterparts 31, but practically it has proven difficult to
come up with equivalent solutions. One approach used for example
by 32 is to train spiking DBNs by using the Siegert mean-firing-rate
approximation of LIF neurons to approximate probabilities during
training.Another approach, used in 33, requires tuning of param-
eters such as leak and refractory period in the spiking network.In
both cases, the spiking network suffers from considerable losses in
classification accuracy, when compared to a non-spiking network of
similar architecture.

Recently, 34 proposed a method for spiking CNN conversion that
achieves significantly better performance than previous approaches,
by taking the characteristic differences of spiking and non-spiking
networks into account. The main challenges are the representation
of negative values and biases in spiking neurons, which are avoided
by using Rectified Linear Units (ReLUs) during training, and setting
all biases to zero. Furthermore, the typical max-pooling operations
of CNNs are replaced by spatial linear subsampling. Still, the re-
sulting spiking CNN after conversion suffers from a small loss of
performance.

https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JPROC.2014.2304638

deep neural networks and hardware for event-driven data 63

29 Clément Farabet et al. “Comparison
between frame-constrained fix-pixel-
value and frame-free spiking-dynamic-
pixel convNets for visual processing”.
In: Frontiers in Neuroscience 6 (2012)
30 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)
31 Wolfgang Maass and Henry
Markram. “On the computational
power of circuits of spiking neurons”.
In: Journal of Computer and System
Sciences 69.4 (2004), pp. 593–616

32 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)
33 Jose Pérez-Carrasco and others.
“Mapping from Frame-Driven to
Frame-Free Event-Driven Vision
Systems by Low-Rate Rate Coding and
Coincidence Processing–Application
to Feedforward ConvNets”. In: IEEE
Trans on Pattern Analysis and Machine
Intelligence 35.11 (2013), pp. 2706–2719

34 Yongqiang Cao, Yang Chen, and
Deepak Khosla. “Spiking Deep Convo-
lutional Neural Networks for Energy-
Efficient Object Recognition”. In:
International Journal of Computer Vision
(2014), pp. 1–13

35 Dan Claudiu Ciresan, Ueli Meier,
Luca Maria Gambardella, and Jürgen
Schmidhuber. “Deep, big, simple
neural nets for handwritten digit
recognition”. In: Neural Computation
22.12 (2010), pp. 3207–3220

36 Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: A
simple way to prevent neural networks
from overfitting”. In: The Journal of
Machine Learning Research 15.1 (2014),
pp. 1929–1958

37 Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: A
simple way to prevent neural networks
from overfitting”. In: The Journal of
Machine Learning Research 15.1 (2014),
pp. 1929–1958

38 Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner.
“Gradient-based learning applied
to document recognition”. In: Proceed-
ings of the IEEE 86.11 (1998), pp. 2278–
2324

3.3 Neural Network Architectures for Conversion

3.3.1 ReLU-Based Feed-Forward Neural Networks

In densely connected feed-forward Neural Networks (DenseNets),
all neurons in the preceding layer are fully connected to the subse-
quent layers, with no intra-layer connections. Recent competitive re-
sults (e.g. 35) have renewed the interest in this architecture. Initial-
izing the extremely high-dimensional weight vectors of DenseNets
in a good regime that preserves the error gradient, and regularizing
the network to prevent overfitting, allows very high performance on
standard test sets. The most recent improvements have come with
the introduction of the dropout training technique (see section 3.3.3)
in combination with ReLUs 36. ReLUs are a type of nonlinearity
which is applied to the weighted sum of inputs, and is described by

xi = max
(

0, ∑j wijxj

)
, (3.3)

where xi is the activation of unit i, wij is the weight connecting unit
j in the preceding layer to unit i in the current layer, and xj is the
activation of unit j in the preceding layer. By successively updating
all the activations of a current layer based on the activations of the
previous layer, the input is propagated through the network to
activate the output label neurons.

Training proceeds according to standard error backpropagation,
successively propagating an error gradient backwards through
the layers by computing local derivatives to update individual
weights and minimize the error. In these networks, the training
process adjusts the randomly-initialized weight matrix describing
the connections between the layers to minimize the overall error
through stochastic gradient descent. Further details can be found
in 37.

3.3.2 Convolutional Neural Networks

CNNs 38 are multi-layered feed-forward architectures in which
feature detectors take the form of simple convolution kernels.
Typically, a convolutional neural network is composed of alter-
nating layers of convolution and spatial subsampling, with non-
linearities between subsequent iterations. Here, a convolutional
layer generates a number of feature maps, which are obtained by
convolving patches of the preceding layer with a set of kernels
{Wk, k = 1 . . . n}. The resulting maps {xk, k = 1 . . . n} are given by

xk = f
(

∑l Wk ∗ xl + bk
)

, (3.4)

where f is the neuron’s nonlinear activation function, xl is the ac-
tivation of the units of the preceding layer’s activation map l, the
∗ symbol denotes a 2D valid-region convolution, and bk is a bias
term. As above, ReLUs are used, as described in equation 3.3 as
the activation function f . The kernels only respond to a small rect-
angular patch of inputs, specified by Wk, which are repeated and

deep neural networks and hardware for event-driven data 64

39 Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner.
“Gradient-based learning applied
to document recognition”. In: Proceed-
ings of the IEEE 86.11 (1998), pp. 2278–
2324

40 Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: A
simple way to prevent neural networks
from overfitting”. In: The Journal of
Machine Learning Research 15.1 (2014),
pp. 1929–1958

moved over the whole input map. Convolutional layers are often
followed by subsampling or pooling layers, whose units combine
the responses of multiple feature detectors into one. While many
choices exist for pooling layers, an averaging kernel is used here
to enhance the portability of this CNN to an SNN. The activation
of this averaging layer is identical to equation 3.4, except that the
kernel weights Wk

ij are fixed to 1/size(Wk), where size(Wk) is the
number of pixels in the kernel.

CNNs reduce the data dimensionality by alternating between
convolution and subsampling layers, while producing increas-
ingly abstract features to describe the input. Additionally, the lower
number of weights in the CNN compared to fully connected archic-
tectures reduces the problem of overfitting. The output of the CNN
is the concatenation of all feature maps in the final layer, which
forms the input to a simple fully-connected neural network trained
as a classifier. Just like DenseNets, training uses stochastic gradient
descent via backprop to adjust the weights in the network, using
weight sharing to learn Wk in the convolution layers, together with
the weights for the final output layer. Further details can be found
in 39.

3.3.3 Dropout

Overfitting is a well-known problem of large and deep neural net-
works. A successful method to avoid this problem is to employ
regularizers, such as the recently proposed dropout technique 40.
Dropout randomly disables input units during learning, and thus
avoids overspecialization and co-adaptation of hidden units. In this
work, dropout is used in the activation function as a mask that ran-
domly disables ReLU activations on a given trial, thereby effectively
increasing the overall robustness of the network. A ReLU activation
function with dropout is given by

xi =

max
(

0, ∑j wijxj

)
with probability dr

0 otherwise ,
(3.5)

where the variables are as in equation 3.3 with the addition of a
dropout rate dr. At every training iteration, a new random decision
is made for each unit. In practice, a dr value of 0.5 is often used to
turn off half of the connections randomly in each training step.

3.4 Spiking Neural Networks

3.4.1 Background

In a conventional ANN, a whole input vector is presented at one
time, and processed layer-by-layer, producing one output value.
In an SNN, however, inputs are typically presented as streams of
events, and neurons integrate evidence during the presentation, cre-
ating spikes to communicate information to subsequent layers, ul-

deep neural networks and hardware for event-driven data 65

41 Luis Camunas-Mesa, Carlos
Zamarreno-Ramos, Alejandro Linares-
Barranco, Antonio J Acosta-Jimenez,
Teresa Serrano-Gotarredona, and
Bernabé Linares-Barranco. “An event-
driven multi-kernel convolution pro-
cessor module for event-driven vision
sensors”. In: IEEE Journal of Solid-State
Circuits 47.2 (2012), pp. 504–517

42 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)
43 Paul Merolla, John Arthur, Filipp
Akopyan, Nabil Imam, Rajit Manohar,
and Dharmendra S Modha. “A digital
neurosynaptic core using embedded
crossbar memory with 45pJ per spike
in 45nm”. In: 2011 IEEE Custom
Integrated Circuits Conference (CICC).
2011, pp. 1–4

44 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers
in Neuroscience 7 (2013); Yongqiang
Cao, Yang Chen, and Deepak Khosla.
“Spiking Deep Convolutional Neural
Networks for Energy-Efficient Object
Recognition”. In: International Journal of
Computer Vision (2014), pp. 1–13

45 Yongqiang Cao, Yang Chen, and
Deepak Khosla. “Spiking Deep Convo-
lutional Neural Networks for Energy-
Efficient Object Recognition”. In:
International Journal of Computer Vision
(2014), pp. 1–13

46 Yongqiang Cao, Yang Chen, and
Deepak Khosla. “Spiking Deep Convo-
lutional Neural Networks for Energy-
Efficient Object Recognition”. In:
International Journal of Computer Vision
(2014), pp. 1–13

timately driving firing of output neurons which sum evidence over
time. There are significant advantages of this approach: pseudo-
simultaneity of input and output can be achieved 41, time-varying
inputs can be more efficiently processed 42, and more efficient com-
putation on specialized hardware can be accomplished 43.

The spiking neuron model used for this work is the simple
Integrate-and-Fire (IF) model. The evolution of the membrane volt-
age vmem is given by

dvmem(t)
dt

= ∑
i

∑
s∈Si

wi δ (t− s) , (3.6)

where wi is the weight of the ith incoming synapse, δ(·) is the delta
function, and Si = {t0

i , t1
i , . . .} contains the spike-times of the ith

presynaptic neuron. If the membrane voltage crosses the spiking
threshold vthr, a spike is generated and the membrane voltage is
reset to a reset potential vres. In our simulations, this continuous-
time description of the IF model is discretized into 1 ms timesteps.

3.4.2 Spiking Network Conversion

In previous work, a significant performance gap was reported be-
tween the state-of-the-art achieved by conventional ANNs and
spiking implementations 44. Here the framework is laid out to fa-
cilitate the conversion of deep ANNs to SNNs, and to reduce the
performance loss during this conversion. The conversion method
used here is an extension of the one suggested in 45, extended to
include our novel normalization methods and the analysis of firing
rates and thresholds.

Let us first begin with observations about the relationships of
ANNs using ReLUs and spiking networks. Firstly, the ReLU can
be considered a firing rate approximation of an IF neuron with no
refractory period 46, whereby the output of the ReLU is propor-
tional to the number of spikes produced by an IF neuron within a
given time window. ReLUs are also advantageous during training
as their piecewise constant derivative leads to weight updates of
a particularly simple form. Secondly, for classification tasks, only
the maximum activation of all units in the output layer is of im-
portance, allowing the overall rate to be scaled by a constant factor.
Finally, without a bias to provide an external reference value, the
relative scale of the neuron weights to each other and to the thresh-
old of the neuron are the only parameters that matter. This gives
rise to the following recipe for converting deep ANNs to SNNs:

1. Use ReLUs for all units of the network.

2. Fix the bias to zero throughout training, and train with back-
propagation.

3. Directly map the weights from the ReLU network to a network
of IF units.

deep neural networks and hardware for event-driven data 66

4. Use weight normalization (see section 3.4.3) to obtain near-
lossless accuracy and faster convergence.

These suggestions work for both the case of fully-connected net-
works and CNNs. Once the ReLUs in the artificial neural network
after training have been replaced by IF neurons, a loss of perfor-
mance for a fixed simulation duration can come from three factors:

1. The unit did not receive sufficient input to cross its threshold,
meaning its rate is lower than it should be;

2. The unit received so much input that the ReLU model predicts
more than one output spike per timestep. This can happen either
because there are too many input spikes in one timestep or if
some of the input weights are higher than the neuron threshold.

3. Due to the probabilistic nature of the spiking input, it can hap-
pen that a set of spikes over- or under-activate a specific feature
set due to non-uniformity of the spike trains.

Reducing the simulation timestep can help to reduce the num-
ber of input spikes per timestep, and increasing the simulation
duration will help to avoid insufficient activation. However, all
factors can be addressed by finding the right balance of spiking
thresholds, input weights and input firing rates. Specifically, high
spiking thresholds (or low input weights) decrease the error due
to the over-activation and non-ideal spike trains, while increasing
errors due to the under-activation factor and vice-versa. Note that
only the ratio of spiking threshold to input weights determines the
amount of integrated evidence until a spike is fired but not their
individual values. Instead of hand-tuning the parameters, a more
rigorous approach is here presented towards adjusting the net-
work weights (and thereby the ratio of spiking threshold to input
weights), i.e. to calculate rescaling factors for the weights which
reduce the errors due to the three causes described above.

3.4.3 Weight Normalization

A key contribution of this work is a novel weight normalization
procedure that puts the network into a regime where the above
problematic factors are avoided.

Two possible ways to normalize the network weights are pre-
sented here to ensure that activations are sufficiently small to pre-
vent the ReLU from overestimating output activations. The safest,
most conservative method is to consider all possible positive activa-
tions that could occur as input to a layer, and rescale all the weights
by that maximum possible positive input. If the maximum positive
input can only cause one spike, then the network will never need to
produce more than one spike at once from the same neuron. By do-
ing so, the resulting spiking networks become robust to arbitrarily
high input rates and completely eliminate losses due to too many

deep neural networks and hardware for event-driven data 67

Algorithm 3: Model-Based Normaliza-
tion

1 Rescale by theoretically maximum possible input
2 for layer in layers:
3 max_pos_input = 0
4 # Find maximum input for this layer
5 for neuron in layer.neurons:
6 input_sum = 0
7 for input_wt in neuron.input_wts:
8 input_sum += max(0, input_wt)
9 max_pos_input = max(max_pos_input, input_sum)

10 # Rescale all weights
11 for neuron in layer.neurons:
12 for input_wt in neuron.input_wts:
13 input_wt = input_wt / max_pos_input

inputs. Unfortunately, this means that evidence integration in order
to generate a spike might require much more time. If a high clas-
sification performance is required and longer sampling times are
acceptable, this is the preferred method of finding the right weight
scaling. This approach, outlined in algorithm 3, is referred to as
model-based normalization because it requires only knowledge of the
network weights.

Alternatively, the training set can be used to estimate typical ac-
tivations within the network, rather than assuming the worst-case
scenario of maximum positive activation. In our experiments, it
was observed that this scaling factor is much less conservative. It
preserves nearly all the accuracy but requires dramatically less ev-
idence integration time. For this approach, after training a ReLU
network, the training set is propagated through the neural net-
work and the ReLU activations are stored. Then, the weights are
normalized according to the maximum possible activation within
the training set, so that this case would emit only a single spike.
Additionally, this normalization requires taking into account the
maximum single input weight as well, since otherwise a single
spike could carry so much weight that the receiving neuron would
need to spike multiple times within one timestep. While this is
not a strong guarantee that performance can be maintained on the
test set, the training set should be representative of the test set and
results show this approach to be highly effective. This normaliza-
tion method is especially suitable if both short latencies and high
accuracy are required since a practically good tradeoff between
those conflicting goals is found. Pseudocode for this approach is
shown in algorithm 4 and is referred to as data-based normalization,
since the weights are scaled according to actual activations of the
network in response to data.

3.5 Experimental Setup

3.5.1 Dataset

Due to its ubiquity in machine learning, the MNIST dataset of
handwritten digits was chosen for this investigation. The train-
ing set consists of 60,000 individual handwritten digits collected
from postal codes, each labeled 0-9 for the individual 28x28 pixel

deep neural networks and hardware for event-driven data 68

Algorithm 4: Data-Based Normaliza-
tion

1 Rescale by example input
2 previous_factor = 1
3 for layer in layers:
4 max_wt = 0
5 max_act = 0
6 for neuron in layer.neurons:
7 for input_wt in neuron.input_wts:
8 max_wt = max(max_wt, input_wt)
9 max_act = max(max_act, neuron.output_act)

10 scale_factor = max(max_wt, max_act)
11 applied_factor = scale_factor / previous_factor
12 # Rescale all weights
13 for neuron in layer.neurons:
14 for input_wt in neuron.input_wts:
15 input_wt = input_wt / applied_factor
16 previous_factor = scale_factor

47 Ian J. Goodfellow, David Warde-
Farley, Mehdi Mirza, Aaron Courville,
and Yoshua Bengio. “Maxout Net-
works”. In: ICML. 2013

48 D. Garbin, O. Bichler, E. Vianello,
Q. Rafhay, C. Gamrat, L. Perniola,
G. Ghibaudo, and B. DeSalvo.
“Variability-tolerant Convolutional
Neural Network for Pattern Recogni-
tion Applications based on OxRAM
Synapses”. In: IEEE International Elec-
tron Devices Meeting (IEDM) (2014),
pp. 1–13

49 R. B. Palm. “Prediction as a can-
didate for learning deep hierarchical
models of data”. MA thesis. 2012

50 http://github.com/dannyneil/

spiking_relu_conversion

grayscale images. The test set consists of 10,000 digits. The highest
reported accuracy on this task using a single network and without
extending the data set is 99.55% and was achieved using maxout
networks 47; the highest reported accuracy of a spiking implemen-
tation prior to this work is 98.30% 48 which was achieved using
spiking CNNs.

3.5.2 Architectures

The code used to train and convert the networks in this paper is a
modification of the Matlab DeepLearnToolbox 49 and can be found
online.50 Two main architectures were used in this work. First, to
prove the efficacy of these networks for a straightforward typical
neural network, a four layer fully-connected neural network was
trained. Described in terms of the number of neurons in the net-
work, this 784-1200-1200-10 network has two hidden layers of size
1200 units, with all neurons fully connected between the layers.
Five networks were trained using a fixed learning rate of 1, momen-
tum of 0.5, a batchsize of 100, 50 epochs of training, 50% dropout,
and weights randomly initialized uniformly between -0.1 and 0.1.
After training, the best-performing fully-connected neural network
achieves a classification accuracy of 99.87% on the MNIST training
set and 98.68% on the MNIST test set.

The second architecture is a 28x28-12c5-2s-64c5-2s-10o CNN. The
input image is 28x28, followed by 12 convolutional kernels of size
5x5, followed by a 2x2 averaging subsampling window. This con-
volution process is repeated in a second stage with 64 maps of size
5x5, followed by a 2x2 averaging of the network. These final fea-
tures are vectorized and fully connected to a 10-node output layer,
where each of the 10 nodes represents one of the ten digit classes.
The training process used a fixed learning rate of 1, a batchsize of
50, no momentum, 50% dropout of the kernels, zero bias, and 50

epochs of training. No distortions beyong the original data set are
used. The resulting CNN achieves 99.19% training accuracy and
99.14% test accuracy.

The best-performing ReLU network from each of the training
methods described above was then selected and the weights were

http://github.com/dannyneil/spiking_relu_conversion
http://github.com/dannyneil/spiking_relu_conversion

deep neural networks and hardware for event-driven data 69

51 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)

transferred directly to a spiking IF network. A grid search of input
rates (25, 50, 100, 200, 400, 1000 Hz) and thresholds (0.25, 0.5, 1, 2,
4, 10, 20) was then performed to determine the spiking networks
with the best classification performance. This performance was
compared to that of the data- and model-normalized networks of
default threshold.

For the DenseNet, the model-based normalization scaled down
the weights in each layer significantly: each layer’s weights were
multiplied according to algorithm 3, downscaling the layer weights
by factors of 0.08 and 0.045. Model-based weight normalization
was not applied to the output layer for either DenseNets or CNNs.
Unlike the aggressive decrease of the weights due to model-based
normalization, the data-based normalization (algorithm 4) scaled
the weights by factors of 0.37, 1.25, and 0.8, only adjusting the net-
work slightly but making it more robust to high input rates. In the
CNN the scaling factors of the weights of the convolutional layers
were 0.1657 and 0.1238 for the model-based normalization. Using
the data-based normalization, the scaling factors 0.1657, 1.0021 and
1.19 were applied to the convolutional layers and the output layer,
respectively. Note that the output layer weights are increased due to
too little activation for the training set.

3.5.3 Spiking Input

The intensity values of the MNIST images were normalized to
values between 0 and 1. Based on those intensity values, Poisson
distributed spike trains were generated for each image pixel with
firing rates proportional to the pixel’s intensity value. For further
details, see 51.

3.6 Results

The overall effectiveness of converting custom ReLU networks to
SNNs is summarized in Table 3.1. The first network in each section
is the original trained ReLU network; its performance is the target
performance of the spiking networks. Next, is the best-performing
spiking IF network after a grid search of parameters, followed by
the data-normalized network with the default threshold; and the
model-normalized network. Note that the data-normalized net-
work shows nearly the same performance as the original ReLU
network without choosing hyperparameters or sweeping parame-
ters for ideal performance. To obtain these results, the spike-based
networks were simulated for 0.5 s for each input image. However,
in practice, comparable performance can be achieved already after
tens of milliseconds of simulated time, as discussed in section 3.6.3.

3.6.1 Conversion and Parameter Choices

The activations presented in Fig. 3.1 describe example responses
from the different layers for different parameters of the DenseNet.

deep neural networks and hardware for event-driven data 70

Network Type Input Rate Thr. Accuracy

CNNs

ReLU Rate-Based – – 99.14%

IF Network 1000 Hz 20.0 99.12%

Data-Norm. Net 400 Hz 1.0 99.10%

Model-Norm. Net 1000 Hz 1.0 99.11%

FC Networks

ReLU Rate-Based – – 98.68%

IF Network 200 Hz 4.0 98.48%

Data-Norm. Net 1000 Hz 1.0 98.64%

Model-Norm. Net 1000 Hz 1.0 98.61%

Table 3.1: Comparison of classification
accuracy for different network archi-
tectures and conversion mechanisms.

Non-Spiking
Reference

Input Layer First Hidden
Layer

Second Hidden
Layer

Output Layer

Threshold: 0.25,
Input 25 Hz

Threshold: 4,
Input 1000 Hz

Figure 3.1: Comparison of activations
between ReLU-based fully-connected
network and non-normalized spiking
network variants with different thresh-
olds and input rates. The figure shows
the accumulated spike count over 200

ms of simulation time. Ideally, the
images in the bottom two rows should
resemble a scaled version of the top
row. Images shown here are scaled
individually due to the unbounded
upper range of the ReLU.

The top row shows responses from the layers of the ReLU-based
network in response to the input. Note that each image in this plot
is individually scaled, but the relative activations of the neurons
within the map should ideally match across all rows. While the
overall activation structure is well preserved, small differences
occur mostly when neurons fire at lower rates.

3.6.2 Accuracy

Figure 3.2 shows the classification error and the number of spikes
in the network (without input spikes) of the spiking CNN (upper
plots) and the spiking fully-connected Network (lower plots) for
a range of input firing rates and firing thresholds of the IF neu-
rons. All performances are averaged over five simulations and all
spike numbers are averaged over two simulations, using the same
network but different input Poisson spike trains for each run. The
highest performance of the spiking CNN was 99.12% for a first
layer IF threshold of 20 and an input rate of 1000 Hz (upper left
plot). The best performance of the spiking fully-connected network
was 98.48% which was achieved using a threshold of 4 and a 200

Hz input rate, see lower left 2D plot. Generally, there is a trade-off
between increasing the threshold to integrate more spikes before
propagating the detection of a feature, and decreasing the threshold
to reduce the sampling time necessary to produce a sufficient num-

deep neural networks and hardware for event-driven data 71

103 104 105 106

#Spikes:

102

103

In
pu

tr
at

e
C
o
n
v
N
et

D
at
a-

b
as
ed

0.9

1

1.1

M
o
d
el
-

b
as
ed

0.25 1 4 10 20

102

103

Firing threshold

F
C
N

1 1
1.4

1.6

1.8

2

2.2

Er
ro

r
(%

)

Figure 3.2: Classification performance
and number of spikes produced for
different architectures as a function of
the input rate and the firing threshold.
Upper panels show results for CNNs,
lower panels for DenseNet. The color
of each circle represents the mean
accuracy on the MNIST test set (aver-
aged over 5 trials), using an integration
time of 0.5s (500 timesteps) for every
input example. The size of the circle
corresponds to the average number of
spikes generated by the whole network
per example presentation. The panels
on the right show the same data for
the normalized networks, whereby
the threshold was fixed at 1 for all
experiments. Parameter sets that led to
test errors greater than 1.15 (ConvNet)
or 2.2 (DenseNet), respectively, are not
displayed.

ber of spikes to minimize the error due to the discretization of the
transmitted messages. For low thresholds, higher performances are
achieved using intermediate input rates, whereas for high thresh-
olds, high input rates give better results. The number of spikes
generated within the network (including spikes generated at the
output layer) increases for higher input spiking rates and decreases
for higher spiking thresholds. Surprisingly, the number of spikes
generated within the fully-connected network and the CNN are
comparable, although the fully-connected network uses about 60%
more synapses than the CNN.

The results for the data-normalized and the model-normalized
forms of both the spiking fully-connected network and the spik-
ing CNN are shown on the four rightmost panels of Fig. 3.2. For
both network types, the data-normalized networks show very high
accuracies over a broad range of input firing rates. In contrast,
model-normalized networks show a good performance only for
high input rates for the spiking CNN. The reason for this can be
seen in Fig. 3.3, which shows the classification error as a function
of evidence integration time for the data-normalized networks, the
model-normalized networks and the spiking networks with the
best parameter set of the 2D plot. Due to the increased thresholds
in each layer of the model-normalized network, the sampling time
has to be increased to converge to a solution. On the other hand,
both data-normalized networks converge faster than the best cor-
responding networks found in the grid search. This shows that
data-based weight normalization is an effective method to obtain
fast and accurate spiking deep networks.

deep neural networks and hardware for event-driven data 72

0 100 200 300 400 500

Time (ms)

0.1

1

10

100
E
rr
or
(%
)

Data norm., 400 Hz

Model norm., 1000 Hz

Thres. 20, 1000 Hz

Data norm., 1000 Hz

Model norm., 1000 Hz

Thres. 4, 200 Hz

Spiking ConvNet Spiking FCN

Figure 3.3: Classification error over
time. Black curves show results for
CNNs and blue curves show the
results for fully-connected networks.
Solid lines denote the error of data-
normalized networks, dashed lines
denote the error of model-normalized
networks. Dotted lines denote the
error for the best parameter set found
from the 2D grid (figure 3.2). All
networks except the model-normalized
ones show very low error before 100

ms. Fully-connected data-normalized
networks are close to their peak
accuracy after only 6 ms (1.74% error).

52 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)
53 Jose Pérez-Carrasco and others.
“Mapping from Frame-Driven to
Frame-Free Event-Driven Vision
Systems by Low-Rate Rate Coding and
Coincidence Processing–Application
to Feedforward ConvNets”. In: IEEE
Trans on Pattern Analysis and Machine
Intelligence 35.11 (2013), pp. 2706–2719

54 Yongqiang Cao, Yang Chen, and
Deepak Khosla. “Spiking Deep Convo-
lutional Neural Networks for Energy-
Efficient Object Recognition”. In:
International Journal of Computer Vision
(2014), pp. 1–13

3.6.3 Convergence Time

One of the reasons to use SNNs is their configurability. If high
accuracy is desired, high spiking thresholds help to improve the ac-
curacy; if short latencies are important, low firing thresholds ensure
responses after only a few input spikes. The upper plot in Fig. 3.4
shows the number of unclassified examples over time, i.e. the time
until the first output spike is produced, and the lower plot shows
the classification error of the CNN using only the first output spike.
A first layer threshold of 0.25 leads to very short output latencies
(on the order of a few milliseconds) whereas a first layer threshold
of 20 leads to greater latencies but more than 98% precision after
the first spike. Note, however, that the limited precision in the case
of a threshold of 0.25 is not ultimately problematic as extended
execution time will yield more spikes with correct outputs.

3.7 Conclusion

This chapter presents a methodology for converting traditional
neural networks to SNNs while maintaining high accuracy, and,
with the introduced method of normalization, reduced evidence
integration time to obtain the same accuracy. While previous in-
vestigations have examined the conversion of traditional neural
networks to SNNs 52,53,54, here the focus lies on improving the con-
verted network by adjusting the parameters of the spiking neurons.
In particular, this chapter investigated typical sources of perfor-
mance loss in SNNs and presented recipes for how to best address
them.

deep neural networks and hardware for event-driven data 73

0 100 200 300 400 500
Time (ms)

0.01

0.1

1

10

100

Thresh. 0.25, 400 Hz

Thresh. 20, 400 Hz

Data norm., 400 Hz

Model norm., 400 Hz

0 100 200 300 400 500
Time (ms)

1

10

100

Thresh. 0.25, 400 Hz

Thresh. 20, 400 Hz

Data norm., 400 Hz

Model norm., 400 Hz

U
n

cl
as

si
fi

ed
 e

x
am

p
le

s
(%

)
E

rr
o

r
u

si
n

g
 m

ax
. o

n
e

o
u

tp
u

t
sp

ik
e

(%
)

Figure 3.4: Time to first output spike
and performance based on the first
output spike. All 10,000 MNIST test
examples were presented to the spik-
ing CNN for 0.5s. The upper graph
shows the percentage of examples for
which none of the output neurons
has fired as a function of time. The
lower graph shows the error rate of the
network, using only the first output
spike to determine the class label.

55 Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. “Imagenet
classification with deep convolutional
neural networks”. In: Proc. of NIPS.
2012, pp. 1097–1105

Although the proposed model-based weight normalization led to
a considerable slowdown, both the CNN and the DenseNet were
still able to achieve high performance. The data-based normalization
on the other hand improved latencies while assuring almost no
loss due to conversion. This speedup is partly due to neurons in
the deeper hidden layers being less activated. Therefore the data-
based normalization actually increases the weights of those layers,
leading to reduced latencies compared to just normalizing the first
layer. This property of the data-based normalization will become
especially important for converting state-of-the-art networks for
challenging real-world tasks, where it is common to use more than
ten hidden layers 55.

This chapter presents a significant step forward for spiking neu-
ral networks, finally closing the accuracy gap between state-of-
the-art machine learning convolutional neural networks and spik-
ing networks. Importantly, it maintains the key advantages of the
event-driven sensors outlined in Chapter 1:

• Sparseness: the model successfully operates on sparse data, only

deep neural networks and hardware for event-driven data 74

processing nonzero inputs.

• Latency-accuracy and computation-accuracy tradeoffs: the con-
version process maintains the ability to integrate for a longer
timer period, incurring more computational cost and a greater
consumption of time, in order to achieve better results, or to
provide a lower-accuracy answer more quickly.

• Pseudo-simultaneity and low latency: the final spiking model
exhibits pseudo-simultaneity, emitting output spikes during the
continued presentation of the input in an ongoing, continuous
manner.

With a novel, high-quality method to convert state-of-the-art ma-
chine learning networks into spiking networks, it is now possible
to study optimizations that are unique to spiking networks and
unavailable to traditional machine learning.

deep neural networks and hardware for event-driven data 75

1 Daniel Neil, Michael Pfeiffer, and
Shih-Chii Liu. “Learning to be Effi-
cient: Algorithms for Training Low-
Latency, Low-Compute Deep Spiking
Neural Networks”. In: ACM Sympo-
sium on Applied Computing. Vol. 31.
2016

4
Unique Optimizations for Event-based Deep Networks

4.1 What new opportunities can be afforded?

The development of algorithms in Chapter 3 enabled spiking net-
works to achieve nearly state-of-the-art of machine learning accu-
racy on datasets while maintaining the advantages of event-driven
inputs. Now, these spiking networks can be explored for the kinds
of advantages that exist only in spiking neural networks, the advan-
tages of event-driven network outlined in Chapter 1. Importantly,
computation and latency are significantly more fixed in a stan-
dard deep neural network architecture than in an event-driven
one. Computation is determined by the architecture of the network
alone in a standard deep neural network, not as a variable cost that
depends on input data, a confidence threshold, and the amount of
time the network has run as it is in spiking networks. Latency is
even more difficult to decrease in a standard deep neural network;
the network produces no result at all until it successfully produces
a complete result, while event-driven implementations softly in-
tegrate between no result and and asymptotically-reached final
result. Event-driven deep networks have unique advantages. Per-
haps learning algorithms can explore these unique advantages for
novel optimizations?

The text appearing in Sections 4.1-4.4 is derived from previous
text 1. Section 4.2 covers the background and the novel algorithms
that explore these advantages.. Section 4.3 covers the performance
of these algorithms on a standard task, and Section 4.4 concludes
this work and discusses the significance of these findings. Sec-
tion 4.5 examines the advances so far and motivates the question
the concern the remainder of this thesis.

While frame-based ANNs maintain a constant amount of com-
puting steps to calculate an output, no matter what the input, it is
a unique property of SNNs to provide several ways to control the
amount of computation during classification. For example, the fir-
ing rate of input neurons can be varied, and weights and thresholds
within the SNN can be adapted to produce higher or lower spike
rates. However, as was shown in the previous chapter, the classifi-
cation accuracy depends on these parameters, and high rates and

deep neural networks and hardware for event-driven data 76

2 Geoffrey E Hinton, Nitish Srivastava,
Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. “Improving
neural networks by preventing co-
adaptation of feature detectors”. In:
arXiv preprint arXiv:1207.0580 (2012)

3 Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner.
“Gradient-based learning applied
to document recognition”. In: Proceed-
ings of the IEEE 86.11 (1998), pp. 2278–
2324

4 Peter U Diehl, Daniel Neil, Jonathan
Binas, Matthew Cook, Shih-Chii
Liu, and Michael Pfeiffer. “Fast-
Classifying, High-Accuracy Spiking
Deep Networks Through Weight and
Threshold Balancing”. In: International
Joint Conference on Neural Networks
(IJCNN). 2015

long integration times might be required to match the performance
of a traditional ANN with a SNN.

Traditional machine learning focuses more or less exclusively on
the question of improving the accuracy of a classifier, because run
times of a fixed architecture can be assumed to be constant. How-
ever, there are many applications where fast and efficient inference
is equally important, which motivates an approach to train SNNs
in such a way that good classification accuracy, defined by a fixed
performance level, is reached as fast and with as little computation
as possible. Here, a variety of different approaches are evaluated
that take execution latency and computational cost into account dur-
ing training, allowing the network to best balance accuracy against
computational effort. Networks can be encouraged to compute
more efficiently either by punishing high firing rates and redundant
representations, or by training feature detectors that react early af-
ter having seen only a small number of spikes from their respective
inputs. Here all tested approaches yield Deep SNNs that perform
at the desired level of accuracy of 98% on the MNIST benchmark,
while dramatically reducing the latency and the number of com-
pute steps compared to an ANN of identical size. This suggests
that Deep SNNs are ideally suited to solve difficult classification
tasks in real-time and at limited power budgets.

4.2 Methodology

4.2.1 Network Architecture and Dataset

For all experiments in this work, the network architecture was a
784-1200-1200-10 fully-connected feed-forward neural network,
which was suggested in 2. Networks were initially trained as ANNs
composed of ReLUs, using a learning rate α of 0.01, momentum
of 0.1, and weights initialized uniformly between [−0.1, 0.1]; this
is referred to as “default” training in the remainder of this work.
Unless otherwise specified, dropout was set to 0.5. A total of 522

networks were trained on the MNIST benchmark for handwritten
digit classification 3, using a training set of 60,000 and a test set of
10,000 28x28 gray-level images.

4.2.2 SNN Conversion and Normalization

The goal of this work is to achieve efficient classification with
SNNs, while maintaining parity of accuracy with traditional ANNs.
Following the approach introduced in 4 and in the prior chapter, a
standard (here, also referred to as rate-based) ANN is trained first
as described above, and then converted into a SNN, where spike
rates approximate activations within the ANN. This is done by
using the weights of the ReLU network directly as the connection
weights of an equivalent SNN composed of (non-leaky) IF neurons.
In all experiments, the neurons are trained without bias, in order to
save computation. The approaches for increasing the efficiency of

deep neural networks and hardware for event-driven data 77

5 Peter U Diehl, Daniel Neil, Jonathan
Binas, Matthew Cook, Shih-Chii
Liu, and Michael Pfeiffer. “Fast-
Classifying, High-Accuracy Spiking
Deep Networks Through Weight and
Threshold Balancing”. In: International
Joint Conference on Neural Networks
(IJCNN). 2015

6 Peter U Diehl, Daniel Neil, Jonathan
Binas, Matthew Cook, Shih-Chii
Liu, and Michael Pfeiffer. “Fast-
Classifying, High-Accuracy Spiking
Deep Networks Through Weight and
Threshold Balancing”. In: International
Joint Conference on Neural Networks
(IJCNN). 2015

7 Peter U Diehl, Daniel Neil, Jonathan
Binas, Matthew Cook, Shih-Chii
Liu, and Michael Pfeiffer. “Fast-
Classifying, High-Accuracy Spiking
Deep Networks Through Weight and
Threshold Balancing”. In: International
Joint Conference on Neural Networks
(IJCNN). 2015

8 Peter U Diehl, Daniel Neil, Jonathan
Binas, Matthew Cook, Shih-Chii
Liu, and Michael Pfeiffer. “Fast-
Classifying, High-Accuracy Spiking
Deep Networks Through Weight and
Threshold Balancing”. In: International
Joint Conference on Neural Networks
(IJCNN). 2015

the network described below are either applied directly during the
training, or, in some cases when the efficiency algorithm showed
a tendency to decrease the accuracy in the process of decreasing
computation, the network was fine-tuned after normal training.

Weight normalization for SNNs, previously introduced for con-
volutional and fully connected networks in 5, produces spiking
networks that achieve equal classification performance to their rate-
based equivalents. Here, these spiking networks are investigated
for reducing the amount of computation. The normalization pro-
cess starts from a previously trained ANN, which is converted into
an SNN as described above. Finally, the weights of each layer are
rescaled by a constant factor, determined by the data-normalization
method described previously 6. This constant factor is estimated
from the training set so that a maximally-activated neuron will
spike exactly once per timestep. Before this constant factor is ap-
plied, the original networks could sometimes have neurons mo-
mentarily activated beyond their spiking threshold with sufficiently
high weights. This leads to inaccuracies, as each neuron is only
able to communicate a single spike per timestep, regardless of how
much the activation exceeds the threshold; this results in the loss
of the extra activation due to the discretization of a single spike.
Alternatively, in other networks one might find that the maximum
activation in response to standard input is far less than the spik-
ing threshold, and the neuron thus requires an unnecessarily high
number of spikes to begin producing events that can be picked
up by downstream neurons. A more detailed description of this
data-based normalization can be found in 7.

For all networks and optimization techniques presented here,
data-normalization was separately examined to study its contribu-
tion towards increasing computational efficiency.

4.2.3 Evaluation Criteria

An SNN classifier was considered successful when the classification
accuracy on the test set reached 98%, a level which can nowadays
be reached by most deep ANNs, within the number of operations
required by a frame-based ANN. Since performance typically im-
proves as evidence accumulates, the minimum number of input
spikes per digit (which are converted into spike trains as in 8) such
that the overall accuracy on the test set reaches 98% are computed.
This corresponds to input latency. Furthermore, the amount of
computation can be computed as the total number of operations
per digit to reach this performance level. In spiking networks an
“operation” is defined as the addition of a synaptic weight to its
neuron’s membrane potential.

4.2.4 Methods for Reducing Firing Rates

The first class of algorithms to train efficient networks are those
that aim to decrease the number of spikes within a network. Re-

deep neural networks and hardware for event-driven data 78

9 Christopher Poultney, Sumit Chopra,
Yann L Cun, et al. “Efficient learning
of sparse representations with an
energy-based model”. In: Advances in
neural information processing systems.
2006, pp. 1137–1144

10 R. B. Palm. “Prediction as a can-
didate for learning deep hierarchical
models of data”. MA thesis. 2012

ducing the number of spikes needed for the network decreases
computation because each spike triggers further computation in
the downstream neurons, in particular in fully-connected networks.
Networks that generate fewer spikes will therefore have large sav-
ings in the overall computation.

Sparse Coding Sparse coding aims to represent the data using
a small subset of the available basis functions at a given time.
Thus, lower-compute spiking networks can make use of sparsity
to achieve an encoding of inputs with fewer active neurons and
therefore lower overall firing rates. Sparsity can be enforced by
adding a regularization term Lsparse to the overall cost function,
which penalizes deviations from a target firing rate starg in order
to encourage learning of a sparse weight matrix 9. The implemen-
tation here derives from 10, in which the penalty term is computed
from the vector y of neuron activations, and the deviations from
starg are calculated per component with cost factor scost:

Lsparse = scost · ‖y− starg · 1‖ (4.1)

Three networks for each combination of sparsity constraints were
trained, using sparsity costs scost ∈ {0.1, 0.01, 0.001, 0.0001} and
target rates starg ∈ {0.2, 0.05, 0.01}. The networks were initially
trained without sparsity for 20 epochs, after which training enforc-
ing sparsity was continued for e2 secondary training epochs, where
e2 ∈ {5, 50, 50}.

L2 Cost on Activation Another method of decreasing the number of
spikes is to add a cost function that directly takes into account the
predicted number of spikes. When using the conversion technique,
the activation of a ReLU neuron in the ANN directly represents
the expected firing rate of the neuron in the SNN. A cost function
which penalizes high activations therefore decreases the expected
number of spikes in the network. In this work, a modified L2-norm
of the following form is used:

Lact(y) = cact ·∑
i

I(yi > cmin) · y2
i (4.2)

Three networks at each combination of activation penalty cact ∈
{0.1, 0.01, 0.001, 0.0001} and cmin ∈ {0.5, 1.0, 1.5, 2.0} were trained
for epochs e ∈ {5, 20, 50} after 2 epochs of pre-training to initialize
weights to an approximately correct regime.

4.2.5 Methods for Rapid Classification

The second category of algorithms are those that produce accurate
classifications more quickly. Since the Integrate-and-Fire neurons of
the SNN approximate the continuous activation of a ReLU neuron
by their firing rate, the goal of the following approaches is to make
neurons, especially in higher layers, reach their steady-state firing

deep neural networks and hardware for event-driven data 79

11 Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: A
simple way to prevent neural networks
from overfitting”. In: The Journal of
Machine Learning Research 15.1 (2014),
pp. 1929–1958

rates more quickly. A shorter runtime implies fewer spikes, and
thus less computation.

Dropout Dropout 11 has been used very successfully as a regular-
ization technique for large ANNs. In brief, the dropout algorithm
sets each neuron’s activation to zero with probability p during the
forward computation. At very high dropout rates, the network is
forced to pattern-complete from a minimal amount of input. For
example, if p = 0.9, each subsequent layer is forced to classify cor-
rectly with only 10% of normal inputs. This concept is transferred
to SNNs, where at any given point in time many neurons will not
be active. Dropout in SNNs thus means that the network is en-
couraged to classify after very few input spikes. Five networks are
trained for dropout probabilities p ∈ {0.0, 0.4, 0.5, 0.6, 0.7, 0.8}.

Dropout Learning Schedule Because extremely high dropout could
make training more difficult and cause a loss of accuracy, here an
alternative strategy is proposed: after training the network nor-
mally for 50 epochs, training is continued over e2 epochs while the
dropout rate p is gradually increased to p f inal . The training sched-
ule of an example input (digit “2”) can be seen in Fig. 4.1, where
the entire digit is presented throughout the first phase, then parts
of the image are dropped with a gradually increasing rate in the
second phase. While Fig. 4.1 shows the dropout of the input, all
layers of the network similarly have the same dropout level. Three
networks for each combination of p f inal ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
and additional training epochs e2 ∈ {20, 50, 80} were trained.

Since this technique can be performed on an already-trained
network, it can be effectively used in combination with existing
networks.

Figure 4.1: Diagram of an example
dropout learning schedule with 160

epochs. The first 80 epochs use zero
dropout, but the rate of dropout is
gradually increased from 0% to 80%
over the last 80 epochs.

Stacked Auto-Encoder with Zero Masking Similar in motivation to
the variants of dropout introduced above, a Stacked Auto-Encoder
(SAE) trained with high zero-masking, i.e. replacing input pixels
with zero, will learn effective ways to restore a signal even given
very little input. Since SAEs are trained with a cost function that
measures how well each layer can restore its own input, a high

deep neural networks and hardware for event-driven data 80

zero-masking rate of e.g. p = 0.9 requires the network to learn
to reconstruct the input signal from only 10% of the input signal.
While the standard approach for ANNs is to use an SAE to extract
the signal from corrupt or noisy inputs, in the domain of SNNs
this amounts to generating predictions of the external representa-
tion. From the first input spike, the SAE attempts to “undo” the
zero-masking caused by the inputs that have not yet arrived. For
each additional input spike, the challenge gets easier as the effective
zero-masking of time is gradually undone and a more complete
signal is provided. SAEs that have been trained with high zero-
masking may restore the signal with very little information, which
allows them to begin producing outputs very quickly. Training
networks as SAEs is followed by a discriminative training with
classification labels for e epochs. Three networks for every combina-
tion of zero-masking rate p ∈ {0.1, 0.3, 0.5, 0.8, 0.85, 0.95, 0.99} and
training epochs e ∈ {20, 50, 80} were trained.

4.3 Results

Total Computation for >98% Accuracy (Lower is Better) × 10 6
0.5 1 1.5 2 2.5 3 3.5 4 4.5

S AE (norm.)

S AE

S ched. (norm.)

S ched.

Dropout (norm.)

Dropout

Act. Cost (norm.)

Act. Cost

S parse (norm.)

S parse

Default (norm.)

Default

Frame-based Cutoff

Figure 4.2: Boxplot indicating amount
of computation for SNNs using dif-
ferent optimization approaches. This
boxplot indicates minimum, first quar-
tile, median (red line), third quartile,
and maximum, with outliers shown as
red stars. The majority of the optimiza-
tion methods lie to the left of the black
vertical line, indicating they require
less computation than a frame-based
ANN to achieve the same 98% classifi-
cation accuracy. The best result shown
here achieves the target accuracy in
less than 42% of the computational
operations required for an ANN.

As described in Sec. 4.2.3, the different approaches are evalu-
ated by quantifying the number of input spikes and the amount of
computation necessary to reach 98% accuracy on MNIST. Fig. 4.2
summarizes the computational cost of running a network trained
according to these approaches. Ideally, networks should be located
to the left, which would imply that 98% classification accuracy can
be achieved with only a few operations within the network. The
black line in Fig. 4.2 shows the number of operations necessary
to arrive at an answer for the frame-based ANN, and nearly all
of the examined SNNs require fewer operations. Furthermore, in
comparison to the baseline results (labeled “Default,”), nearly all
optimization algorithms offer a substantial improvement. Networks
that do not achieve 98% accuracy are not shown; certain parame-
ter configurations such as extremely high dropout or unbalanced

deep neural networks and hardware for event-driven data 81

cost on the activation prevented these networks from achieving the
target accuracy.

It can also be observed that weight normalization decreases com-
putation for most networks. In Fig. 4.2, normalized networks from
the same optimization algorithm had a tendency to shift the results
to the left, implying a decrease of the total amount of computation
in the networks. In general, the normalized networks were both
faster (lower latency) and more efficient (fewer operations) than
their unnormalized counterparts (see Table 4.1), with the exception
of the SAEs. These networks had weights so large that normaliza-
tion had a tendency to decrease the weights, thus requiring further
latency to achieve the same activation.

Figure 4.3: Dependency of accuracy on
the number of input spikes and total
operations for trained SNNs using
different optimization approaches.
The top figure depicts the accuracy
versus latency while the bottom shows
accuracy versus computation. Each
line shows the accuracy curve for
one of the 522 networks. Curves for
networks that achieve 98% accuracy
within the compute constraint are
plotted in different (but arbitrary)
colors, and the remaining networks
are plotted in light gray. In both plots,
a colored vertical tick mark on the
horizontal axis is drawn to indicate
the point at which a network passes
98% accuracy. In the bottom figure,
the black vertical line indicates the
amount of computation required for a
frame-based ANN.

Figure 4.3 shows the accuracy of all 522 tested networks over
time, i.e. either as a function of the number of input spikes (top),
or the number of total operations (bottom). Since evidence is ac-
cumulating over time, these curves are typically monotonically
increasing. The thin light gray curves indicate networks that did
not achieve 98% accuracy within the compute constraint, which
is indicated as a black vertical line. For those networks that did
achieve 98% accuracy, a colored vertical line on the horizontal axis
indicates the point at which the network crossed 98%, and the cor-
responding accuracy curve is plotted in color. One can see that the
most efficient networks achieved classification with 0.997 MOps,
compared to the fixed computation costs of the frame-based ANN
requiring 2.39 MOps. This amounts to a reduction of operations by
more than 58%.

Out of all the different networks, the network with the shortest
latency to reach 98% accuracy is the SAE, which reaches the de-
sired performance after only 445 input spikes. As mentioned above,
the unnormalized SAE networks outperformed the normalized
SAE networks. This is because the weights were so large that they
were decreased by the normalization process, rather than increased,
requiring more spikes to achieve the same level of accuracy. The
fastest networks, which are the leftmost curves in Fig. 4.3, corre-

deep neural networks and hardware for event-driven data 82

spond to the networks trained with extremely high dropout rates
of p = 0.70 and p = 0.80. However, they were not able to achieve
greater than 98% accuracy and so are shown in grey. In fact, even
rate-based ANNs before conversion were not able to achieve ac-
curacies above 98.10% with such high dropout rates, so they were
excluded from further analysis.

Figure 4.4: Same as Fig. 4.3, but
highlighting only the results for the
54 SNNs trained with a Dropout
Learning Schedule in color, with the
remaining SNNs in light gray. One
can see the remarkable similarity of
learning results for different parameter
settings.

In order to compare the influence of different parameter set-
tings for one approach, a set of performance curves can be shown
for a given algorithm, in this case the dropout learning schedule
(Sec. 4.2.5) in Fig. 4.4. Highlighted in bright colors are the curves
corresponding to all curves for all networks that use this approach
and achieved greater than 98% accuracy in fewer computes than a
frame-based ANN. These are 46 of the 54 parameter combinations
tested, and the networks have been weight-normalized. Their per-
formance is tightly aligned, despite the large variations in the tested
parameters, indicating robustness to the parameters of the dropout
learning schedule. Moreover, these networks achieved the overall
lowest compute cost of 0.997 MOps, while simultaneously having
among the lowest latency, producing accurate classification after
only 602 input spikes.

A summary of the performance results for the different opti-
mization methods, together with suggested parameter ranges for
each method can be found in Table 4.1. It shows that in general all
methods outperform the default case of an unprocessed SNN by
a wide margin. The best methods reduce computation by 70% of
Ops, and the latency by almost 75%. Among the methods tested,
an advantage for networks trained with dropout learning schedule
can be found in the normalized case, and SAE in the unnormalized
case. With the exception of SAE, in general weight-normalization is
advantageous for all methods.

In order to analyze qualitative differences in the features learned
by different learning approaches, each row in Fig. 4.5 shows ten
randomly-selected features (i.e. weight vectors) learned by the first
hidden layer connecting to the input layer. As expected, the first

deep neural networks and hardware for event-driven data 83

Unnormalized Normalized
Method Parameters Ops Latency Ops Latency
Default — 3.43 1768 2.80 1781

Sparse Coding scost = 0.0001 to achieve starg = 0.01 2.00 1031 1.22 631

Activation Cost Cost of cact = 0.01 above cmin = 2.0 1.92 952 1.17 602

Dropout Dropout of 50% 1.98 1028 1.27 641

Dropout Learning Sched. p f inal = 0.90 after e2 = 50 epochs 1.79 931 1.04 602
SAE p = 0.80 for e = 50 epochs 1.17 445 1.25 788

Table 4.1: Summary of Results: Com-
parison of the number of operations
(measured in millions of adds) and
latency (measured as the number of
input spikes) necessary to reach 98%
accuracy for different optimization
approaches. Networks with unnor-
malized and normalized weights are
compared.

Default

Sparse Coding

Activ. Cost

Dropout

Learn Sched.

SAE

Figure 4.5: Examples of features
learned in the first hidden layer with
different optimization approaches. 10

features were selected randomly, and
are displayed with normalized gray
levels. Note that, similar to previous
studies, Gabor-like and stroke-like
features of the MNIST digits appear
for all approaches.

12 Daniel D Lee and H Sebastian
Seung. “Learning the parts of objects
by non-negative matrix factorization”.
In: Nature 401.6755 (1999), pp. 788–791

layer learns Gabor-like and stroke-like filters in all cases similar
to those that emerge in all state-of-the-art methods 12, thus show-
ing no major differences between the weights learned by different
approaches.

4.4 Discussion

The purpose of this work is to demonstrate the power and effi-
ciency of spiking neural networks. These networks were able to
achieve equivalent classification performance as their rate-based
equivalents, and often did so in far fewer operations and with a
shorter latency. Due to the efficiency of a spike-based implemen-
tation, the input can be correctly classified before a frame-based
approach could even read in all the necessary pixels to compute.

Here, different methods were examined for incorporating ef-
ficiency into the training process of neural networks, thereby al-
lowing networks to learn to be efficient. Overall, nearly all methods
and parameter sets yielded much improved results in terms of
efficiency, while maintaining classification accuracy. Even more
encouraging, several different training methods converge to approx-
imately the same fundamental minima of computation as well as
latency (around 1.5 MOps, in Fig. 4.2), which is a phenomena that
warrants further study.

The fastest accurate classification was achieved using unnormal-
ized SAEs, which reached 98% accuracy after only 420 spikes. A
network without any optimization required on average 1753 spikes,

deep neural networks and hardware for event-driven data 84

which results in a latency more than four times as long. The most
efficient network in terms of operations, a normalized network
trained with a dropout learning schedule, needs only 1.04 MOps
compared to the standard default training of 3.43 MOps, amounting
to almost 70% reduction.

While no algorithm clearly wins, and further research can
demonstrate how these results extend to other tasks, the newly
introduced dropout learning schedule algorithm is perhaps the
best to use in practice. It is compatible with existing learned ar-
chitectures, straightforward to implement, and yields extremely
low-compute and low-latency networks. Moreover, when used with
existing networks, the overall accuracy can be monitored during
the learning schedule and training can be terminated early or late,
depending on how much accuracy loss is acceptable.

Importantly, the presented SNNs communicate all necessary
values with a single binary event, and thus do not rely on a costly
multiplier implementation in hardware. Thus, if hardware costs are
considered, optimized SNNs might be even more advantageous,
since they can be implemented using simple adders, and are thus
very amenable to a simple, and low-power optimized hardware
implementation.

4.5 What Questions Should Be Addressed Next?

At this moment, it is useful summarize the prior accomplishments
of this thesis. Several hardware implementations of event-driven
deep neural networks have been designed, yielding efficient event-
driven network implementations (Chapter 2). Novel methods of
transferring state-of-the-art deep learning results to event-driven
networks have been developed, which allow maintaining high ac-
curacy even when run on extremely efficient platforms (Chapter 3).
Finally, in this chapter, new optimizations have been developed
which exploit the unique abilities of an event-driven network, al-
lowing both latency and computation itself to be optimized by
stochastic gradient descent.

However, the benchmark problems investigated here - image
recognition tasks using MNIST, for example - are artificial tasks
ported from machine learning in order to provide a common base
of comparison, and the methods introduced to address these chal-
lenges with spiking neural networks have significant drawbacks.
Namely, in order to achieve the highest accuracy levels, all the
neurons in the deep neural network have infinite memory and no
decay. This allows the input spikes, which are assumed to be drawn
from a stationary underlying distribution, to be accumulated with-
out loss of information to decay.

In turn, this requires the input firing rates to be drawn from a
stationary distribution. While images can be easily modeled as a

deep neural networks and hardware for event-driven data 85

stationary distribution, with pixel intensity proportional to a firing
rate, most real-world phenomena are not stationary over time. The
conversion methods simply do not support non-stationary input
distributions. The fundamental tenet of the conversion, explored in
Chapter 3, is that the accumulated number of spikes from a neuron
forms a scaled firing rate, and that this firing rate in turn represents
the analog value of a standard deep neural network neuron. The
networks lack an understanding of time as they lack time constants,
computing only on the time-average of the summed input, making
it impossible for a neuron to determine the difference between
different firing patterns that have the same average firing rate.

This is actually quite a large problem, as the event-based sensors
are inherently dynamic. They do not produce a rate-based approxi-
mation of a scene, either visual or acoustic, but rather a measure of
its changes. The SNNs introduced so far lack a way of learning to
understand the meaning of these changes, as the inputs evolve over
time.

So which problems should be addressed next? Clearly, while
MNIST and CIFAR are excellent problems on which to prototype
learning algorithms, they are considered relatively simple by the
machine learning community. Should the next investigation focus
on substantially more difficult datasets, extending the methods
introduced in Chapter 3 to state-of-the-art architecture and the most
challenging machine learning problems?

Instead, it is the belief of the author that a more fundamen-
tal question ought to be addressed first: how to deal with non-
stationary, event-based inputs. Fundamentally, the goal of this
thesis has not yet been accomplished by the novel algorithms in-
troduced so far. While these algorithms permit computation on
event-based inputs that preserve the advantages of the event-based
sensors described in Chapter 1, the networks only operate on a very
artificial form of an event-based “sensor”: the software model that
converts stationary images to Poisson spike trains. On real event-
based inputs, as described above, these networks lack the ability to
discern the spatiotemporal patterns that characterize event-based
outputs.

An algorithm is needed which can natively learn to process
the complex spatio-temporal surfaces generated by event-based
sensors.

deep neural networks and hardware for event-driven data 87

1 Dzmitry Bahdanau, Kyunghyun Cho,
and Yoshua Bengio. “Neural machine
translation by jointly learning to
align and translate”. In: arXiv preprint
arXiv:1409.0473 (2014)
2 Tomas Mikolov, Martin Karafiát,
Lukas Burget, Jan Cernockỳ, and
Sanjeev Khudanpur. “Recurrent neural
network based language model.” In:
Interspeech 2 (2010), p. 3

3 Alex Graves, Abdel-Rahman Mo-
hamed, and Geoffrey Hinton. “Speech
recognition with deep recurrent neural
networks”. In: 2013 IEEE Interna-
tional Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2013,
pp. 6645–6649

4 Kyunghyun Cho, Aaron Courville,
and Yoshua Bengio. “Describing
multimedia content using attention-
based encoder-decoder networks”. In:
IEEE Transactions on Multimedia 17.11

(2015), pp. 1875–1886

5 Kelvin Xu, Jimmy Ba, Ryan Kiros,
Kyunghyun Cho, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel,
and Yoshua Bengio. “Show, Attend
and Tell: Neural Image Caption
Generation with Visual Attention”.
In: International Conference on Machine
Learning. 2015

6 Sepp Hochreiter and Jürgen Schmid-
huber. “Long short-term memory”.
In: Neural Computation 9.8 (1997),
pp. 1735–1780

7 Kyunghyun Cho, Bart van Merrien-
boer, Caglar Gulcehre, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio.
“Learning phrase representations
using RNN encoder-decoder for sta-
tistical machine translation”. In: arXiv
preprint arXiv:1406.1078 (2014)

5
Developing a Model to Directly Learn from Event-based
Data

5.1 Introduction

Previous chapters have introduced methods for converting static
neural networks, which lack a representation of time, into spiking
neural networks. As discussed in the conclusion of Chapter 4, while
the spiking neural networks accumulate evidence over time, the
algorithms for these spiking networks introduced so far operate on
static, unchanging inputs. That is, these spiking networks sorely
lack an ability to deal with dynamic inputs. Instead, it could make
sense to pair dynamic, time-evolving sensors with a neural network
architecture that has a native understanding of time.

The obvious choices for this model are RNN architectures, as
these models equip neural networks with memories. In recent
years, RNNs have achieved ever greater success in a variety of
application domains, including natural language processing 1,2,
speech recognition 3, and attention-based models for mulitmodal
processing 4,5. Their popularity has also grown as larger datasets,
more powerful computing resources, and better training algorithms
have made these models more effective and easier to use. Pio-
neering advances such as Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) 6,7, which equip these models with
gates, have enabled these models to learn realistically complex and
long sequences. However, in light of the goal to use an RNN with
an event-driven sensor, modern RNNs are discrete, timestepped
models which are rather incompatible with the continuous-time
event-driven sensors. While some previous approaches realized the
resulting limitations of pursuing only timestepped recurrent neural
networks 8,9,10 and looked towards continuous-time dynamical sys-
tem approaches for RNNs, most modern RNN implementations use
discrete timesteps.

This chapter introduces one of the main contributions of this
thesis, the Phased LSTM model, which equips modern, state-of-
the-art recurrent neural network models with the ability to process
continuous-time signals.

This has important implications in real-world tasks such as au-

deep neural networks and hardware for event-driven data 88

10 Gert Cauwenberghs. “An analog
VLSI recurrent neural network learn-
ing a continuous-time trajectory”. In:
IEEE Transactions on Neural Networks
7.2 (1996), pp. 346–361

11 Daniel Neil, Michael Pfeiffer, and
Shih-Chii Liu. “Phased LSTM: Accel-
erating Recurrent Network Training
for Long or Event-based Sequences”.
In: Advances in Neural Information
Processing Systems. 2016, pp. 3882–3890

12 Sepp Hochreiter and Jürgen Schmid-
huber. “Long short-term memory”.
In: Neural Computation 9.8 (1997),
pp. 1735–1780

13 Alex Graves. “Generating sequences
with recurrent neural networks”. In:
arXiv preprint arXiv:1308.0850 (2013)

tonomous driving and robotics, as the need to integrate input from
a variety of sensors with differing sampling rates is an important
but largely unexplored problem within deep neural networks. The
variety of sensors that enrich a platform - for example, auditory,
visual, gyroscopic, distance-measuring - are each likely to have
their own sampling rate. As a result, a standard discrete-time RNN
would be forced to operate at the smallest time step merely to ac-
commodate the sensors with a high sampling frequency (resulting
in unnecessarily higher computation and power consumption), or
instead to sacrifice response-time latency to run at a slower rate.

Instead, a model which can natively make use of the continu-
ous time of event-based sensors can process inputs with very low
latencies and accurate timing, preserving the advantages laid out
in Chapter 1. Excitingly, Phased LSTM also is able to give back to
the machine learning community as it is able to succeed in a vari-
ety of standard machine learning tasks where previous approaches
have failed. This validates the hypothesis in Chapter 1 that the data
manipulations typically performed (discrete timesteps, significant
normalization, clean and regular data) do indeed constrain the
models that are designed, and that forcing researchers to confront
the challenges can yield advantageous models that were otherwise
overlooked.

The text in Section 5.2-5.4 originally appeared previously 11.
Section 5.2 introduces the formulation of the Phased LSTM model.
Section 5.3 shows the results of this model when applied to a va-
riety of tasks designed to stress its capabilities. Finally, Section 5.4
concludes this chapter with the summary of the model and its im-
plications, and Section 5.5 discusses the model in the context of this
thesis.

5.2 Model Description

Long short-term memory (LSTM) units 12 (Fig. 5.1) are an impor-
tant ingredient for modern deep RNN architectures. First, the defi-
nition of the update equations in the commonly-used version from
13:

it = σi(xtWxi + ht−1Whi + wci � ct−1 + bi) (5.1)

ft = σf (xtWx f + ht−1Wh f + wc f � ct−1 + b f) (5.2)

ct = ft � ct−1 + it � σc(xtWxc + ht−1Whc + bc) (5.3)

ot = σo(xtWxo + ht−1Who + wco � ct + bo) (5.4)

ht = ot � σh(ct) (5.5)

The main difference to classical RNNs is the use of the gating
functions it, ft, ot, which represent the input, forget, and output gate
at time t respectively. ct is the cell activation vector, whereas xt and
ht represent the input feature vector and the hidden output vector
respectively. The gates use the typical sigmoidal nonlinearities σi,
σf , σo and tanh nonlinearities σc, and σh with weight parameters

deep neural networks and hardware for event-driven data 89

14 Felix A Gers and Jürgen Schmid-
huber. “Recurrent nets that time
and count”. In: Proceedings of the
IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN).
vol. 3. IEEE. 2000, pp. 189–194

Whi, Wh f , Who, Wxi, Wx f , and Wxo, which connect the different in-
puts and gates with the memory cells and outputs, as well as biases
bi, b f , and bo. The cell state ct itself is updated with a fraction of
the previous cell state that is controlled by ft, and a new input state
created from the element-wise (Hadamard) product, denoted by
�, of it and the output of the cell state nonlinearity σc. Optional
peephole 14 connection weights wci, wc f , wco further influence the
operation of the input, forget, and output gates.

Input
Gate

it ot

ft

xt xt

xt

xt ct ht

Forget Gate

Output Gate

Figure 5.1: Model architecture of the
standard LSTM model.

xt

Input
Gate

ct

it ot

ft

xt
xt

xt

ht

Forget Gate

Output
Gate

ct
~

t

kt

t

kt

Figure 5.2: Model architecture, Phased
LSTM model, with time gate kt con-
trolled by timestamp t. In the Phased
LSTM formulation, the cell value ct
and the hidden output ht can only
be updated during an “open” phase;
otherwise, the previous values are
maintained.

The Phased LSTM model extends the LSTM model by adding a
new time gate, kt (Fig. 5.2(b)). The opening and closing of this gate
is controlled by an independent rhythmic oscillation specified by
three parameters; updates to the cell state ct and ht are permitted
only when the gate is open. The first parameter, τ, controls the real-
time period of the oscillation. The second, ron, controls the ratio of
the duration of the “open” phase to the full period. The third, s,
controls the phase shift of the oscillation to each Phased LSTM cell.

All parameters can be learned during the training process.
Though other variants are possible, here is proposed a particularly
successful linearized formulation of the time gate, with analogy to

deep neural networks and hardware for event-driven data 90

t

Input tj-2

Layer 1

Layer 2

j-2

Input tj-1

Layer 1

Layer 2

j-1

Input tj

Layer 1

Layer 2

j

OutputOutputOutput

...

closedopen

Figure 5.3: Diagram of Phased LSTM
behaviour. The rhythmic oscillations to
the time gates of 3 different neurons;
the period τ and the phase shift s is
shown for the lowest neuron. The
parameter ron is the ratio of the open
period to the total period τ. Bottom:
Note that in a multilayer scenario, the
timestamp is distributed to all layers
which are updated at the same time
point.

Input

k
t O

pe
nn

es
s

1 2 3 4
Time

c t
 S

ta
te

Figure 5.4: Illustration of Phased
LSTM operation. A simple linearly
increasing function is used as an input.
The time gate kt of each neuron has a
different τ, identical phase shift s, and
an open ratio ron of 0.05. Note that the
input (top panel) flows through the
time gate kt (middle panel) to be held
as the new cell state ct (bottom panel)
only when kt is open.

15 Kaiming He, Xiangyu Zhang, Shao-
qing Ren, and Jian Sun. “Delving Deep
into Rectifiers: Surpassing Human-
Level Performance on ImageNet
Classification”. In: The IEEE Interna-
tional Conference on Computer Vision
(ICCV). 2015, pp. 1026–1034

16 Jan Koutnik, Klaus Greff, Faustino
Gomez, and Juergen Schmidhuber. “A
clockwork RNN”. in: arXiv preprint
arXiv:1402.3511 (2014)

the rectified linear unit that propagates gradients well:

φt =
(t− s) mod τ

τ
, kt =

2φt

ron
, if φt <

1
2

ron

2− 2φt

ron
, if

1
2

ron < φt < ron

αφt, otherwise

(5.6)

φt is an auxiliary variable, which represents the phase inside the
rhythmic cycle. The gate kt has three phases (see Fig. 5.3): in the
first two phases, the "openness" of the gate rises from 0 to 1 (first
phase) and drops from 1 to 0 (second phase). During the third
phase, the gate is closed and the previous cell state is maintained.
The leak with rate α is active in the closed phase, and plays a simi-
lar role as the leak in a parametric “leaky” rectified linear unit 15 by
propagating important gradient information even when the gate is
closed. Note that the linear slopes of kt during the open phases of
the time gate allow effective transmission of error gradients.

In contrast to traditional RNNs, and even sparser variants of
RNNs 16, updates in Phased LSTM can optionally be performed at
irregularly sampled time points tj. This allows the RNNs to work

deep neural networks and hardware for event-driven data 91

with event-driven, asynchronously sampled input data. The short-
hand notation cj = ctj is used for cell states at time tj (analogously
for other gates and units), and let cj−1 denote the state at the previ-
ous update time tj−1. Then, the regular LSTM cell update equations
for cj and hj (from Eq. 3 and Eq. 5) can be rewritten using proposed
cell updates c̃j and h̃j mediated by the time gate k j:

c̃j = f j � cj−1 + ij � σc(xjWxc + hj−1Whc + bc) (5.7)

cj = k j � c̃j + (1− k j)� cj−1 (5.8)

h̃j = oj � σh(c̃j) (5.9)

hj = k j � h̃j + (1− k j)� hj−1 (5.10)

A schematic of Phased LSTM with its parameters can be found
in Fig. 5.3, accompanied by an illustration of the relationship be-
tween the time, the input, the time gate kt, and the state ct in
Fig. 5.4.

One key advantage of this Phased LSTM formulation lies in the
rate of memory decay. For the simple task of keeping an initial
memory state c0 as long as possible without receiving additional
inputs (i.e. ij = 0 at all time steps tj), a standard LSTM with a
nearly fully-opened forget gate (i.e. f j = 1− ε) after n update steps
would contain

cn = fn � cn−1 = (1− ε)� (fn−1 � cn−2) = . . . = (1− ε)n � c0

(5.11)

This means the memory for ε < 1 decays exponentially with every
time step. Conversely, the Phased LSTM state only decays during
the open periods of the time gate, but maintains a perfect memory
during its closed phase, i.e. cj = cj−∆ if kt = 0 for tj−∆ ≤ t ≤ tj.
Thus, during a single oscillation period of length τ, the units only
update during a duration of ron · τ, which will result in substan-
tially fewer than n update steps. Because of this cyclic memory,
Phased LSTM can have much longer and adjustable memory length
via the parameter τ.

The oscillations impose sparse updates of the units, therefore
substantially decreasing the total number of updates during net-
work operation.

During training, this sparseness ensures that the gradient is
required to backpropagate through fewer updating timesteps, al-
lowing an undecayed gradient to be backpropagated through time
and allowing faster learning convergence. Similar to the shielding
of the cell state ct (and its gradient) by the input gates and forget
gates of the LSTM, the time gate prevents external inputs and time
steps from dispersing and mixing the gradient of the cell state.

5.3 Results

In the following sections, the advantages of the Phased LSTM
model are investigated in a variety of scenarios that require ei-
ther precise timing of updates or learning from a long sequence.

deep neural networks and hardware for event-driven data 92

17 Diederik Kingma and Jimmy Ba.
“Adam: A method for stochastic
optimization”. In: arXiv preprint
arXiv:1412.6980 (2014)
18 James Bergstra, Olivier Breuleux,
Frédéric Bastien, Pascal Lamblin, Raz-
van Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley,
and Yoshua Bengio. “Theano: a CPU
and GPU math expression compiler”.
In: Proceedings of the Python for scientific
computing conference (SciPy). Vol. 4.
2010, p. 3

19 Sander Dieleman et al. Lasagne:
First release. Aug. 2015. doi: 10.
5281/zenodo.27878. url: http:
//dx.doi.org/10.5281/zenodo.27878

For all the results presented here, the networks were trained with
Adam 17 set to default learning rate parameters, using Theano 18

with Lasagne 19. Unless otherwise specified, the leak rate was set to
α = 0.001 during training and α = 0 during test. The phase shift, s,
for each neuron was uniformly chosen from the interval [0, τ]. The
parameters τ and s were learned during training, while the open
ratio ron was fixed at 0.05 and not adjusted during training, except
in the first task to demonstrate that the model can train successfully
while learning all parameters.

5.3.1 Frequency Discrimination Task

16 18 20 22 24 26 28 30
Time [ms]

-1.0

-0.5

0.0

0.5

1.0

(a)

16 18 20 22 24 26 28 30
Time [ms]

-1.0

-0.5

0.0

0.5

1.0

(b)

16 18 20 22 24 26 28 30
Time [ms]

-1.0

-0.5

0.0

0.5

1.0

(c)

Standard
sampling

High
resolution
sampling

Async.
sampling

50

60

70

80

90

100

A
cc

ur
ac

y
at

 5
0

Ep
oc

hs
 [%

]

Phased LSTM
BN LSTM
LSTM

(d)

Figure 5.5: Frequency discrimination
task. The network is trained to dis-
criminate waves of different frequency
sets (shown in blue and gray); every
circle is an input point. (a) Standard
condition: the data is regularly sam-
pled every 1 ms. (b) High resolution
sampling condition: new input points
are gathered every 0.1ms. (c) Asyn-
chronous sampling condition: new
input points are presented at intervals
of 0.02 ms to 10 ms. (d) The accuracy
of Phased LSTM under the three sam-
pling conditions is maintained, but the
accuracy of the BN-LSTM and stan-
dard LSTM drops significantly in the
sampling conditions (b) and (c). Error
bars indicate standard deviation over 5

runs.

In this first experiment, the network is trained to distinguish two
classes of sine waves from different frequency sets: those with a
period in a target range T ∼ U (5, 6), and those outside the range,
i.e. T ∼ {U (1, 5) ∪ U (6, 100)}, using U (a, b) for the uniform dis-
tribution on the interval (a, b). This task illustrates the advantages
of Phased LSTM, since it involves a periodic stimulus and requires
fine timing discrimination. The inputs are presented as pairs 〈y, t〉,
where y is the amplitude and t the timestamp of the sample from
the input sine wave.

https://doi.org/10.5281/zenodo.27878
https://doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878

deep neural networks and hardware for event-driven data 93

20 Awni Hannun, Carl Case, Jared
Casper, Bryan Catanzaro, Greg Di-
amos, Erich Elsen, Ryan Prenger,
Sanjeev Satheesh, Shubho Sengupta,
Adam Coates, et al. “Deep speech:
Scaling up end-to-end speech recogni-
tion”. In: arXiv preprint arXiv:1412.5567
(2014)

Figure 5.5 illustrates the task: the blue curves must be separated
from the lighter curves based on the samples shown as circles.
Three conditions for sampling the input signals are evaluated: In
the standard condition (Fig. (a)), the sine waves are regularly sam-
pled every 1 ms; in the oversampled condition (Fig. (b)), the sine
waves are regularly sampled every 0.1 ms, resulting in ten times as
many data points. Finally, in the asynchronously sampled condition
(Fig. (c)), samples are collected at asynchronous times over the du-
ration of the input. Additionally, the sine waves have a uniformly
drawn random phase shift from all possible shifts, random num-
bers of samples drawn from U (15, 125), a random duration drawn
from U (15, 125), and a start time drawn from U (0, 125− duration).
The number of samples in the asynchronous and standard sam-
pling condition is equal. The classes were approximately balanced,
yielding a 50% chance success rate.

Single-layer RNNs are trained on this data, each repeated with
five random initial seeds. The Phased LSTM configuration can be
compared to regular LSTM, and Batch-normalized (BN) LSTM
which has found success in certain applications 20. For the regular
LSTM and the BN-LSTM, the timestamp is used as an additional
input feature dimension; for the Phased LSTM, the time input con-
trols the time gates kt. The architecture consists of 2-110-2 neurons
for the LSTM and BN-LSTM, and 1-110-2 for the Phased LSTM. The
oscillation periods of the Phased LSTMs are drawn uniformly in
the exponential space to give a wide variety of applicable frequen-
cies, i.e., τ ∼ exp(U (0, 3)). All other parameters match between
models where applicable. The default LSTM parameters are given
in the Lasagne Theano implementation, and were kept for LSTM,
BN-LSTM, and Phased LSTM. Appropriate gate biasing was investi-
gated but did not resolve the discrepancies between the models.

All three networks excel under standard sampling conditions
as expected, as seen in Fig. (d) (left). However, for the same num-
ber of epochs, increasing the data sampling by a factor of ten has
devastating effects for both LSTM and BN-LSTM, dropping their
accuracy down to near chance (Fig. (d), middle). Presumably, if
given enough training iterations, their accuracies would return
to the normal baseline. However, for the oversampled condition,
Phased LSTM actually increases in accuracy, as it receives more in-
formation about the underlying waveform. Finally, if the updates
are not evenly spaced and are instead sampled at asynchronous
times, even when controlled to have the same number of points as
the standard sampling condition, it appears to make the problem
rather challenging for traditional state-of-the-art models (Fig. (d),
right). However, the Phased LSTM has no difficulty with the asyn-
chronously sampled data, because the time gates kt do not need
regular updates and can be correctly sampled at any continuous
time within the period.

The previous task is extended by training the same RNN archi-
tectures on signals composed of two sine waves. The goal is to dis-

deep neural networks and hardware for event-driven data 94

21 Sepp Hochreiter and Jürgen Schmid-
huber. “Long short-term memory”.
In: Neural Computation 9.8 (1997),
pp. 1735–1780

tinguish signals composed of sine waves with periods T1 ∼ U (5, 6)
and T2 ∼ U (13, 15), each with independent phase, from signals
composed of sine waves with periods T1 ∼ {U (1, 5) ∪ U (6, 100)}
and T2 ∼ {U (1, 13) ∪ U (15, 100)}, again with independent phase.
Despite being significantly more challenging, Fig. 5.6 demonstrates
how quickly the Phased LSTM converges to the correct solution
compared to the standard approaches, using exactly the same pa-
rameters. Additionally, the Phased LSTM appears to exhibit very
low variance during training.

0 50 100 150 200 250 300
Epoch

45
50
55
60
65
70
75
80
85
90

A
cc

ur
ac

y
[%

] Phased LSTM
BN LSTM
LSTM

Figure 5.6: Accuracy during training
for the superimposed frequencies
task. The Phased LSTM outperforms
both LSTM and BN-LSTM while
exhibiting lower variance. Shading
shows maximum and minimum over
5 runs, while dark lines indicate the
mean.

5.3.2 Adding Task

0 20 40 60 80 100
Epoch

10-5

10-4

10-3

10-2

10-1

100

M
SE

LSTM
PLSTM (¿» eU(0; 2))
PLSTM (¿» eU(2; 4))
PLSTM (¿» eU(4; 6))
PLSTM (¿» eU(6; 8))

Figure 5.7: Mean-squared error over
training on the addition task, with
an input length of 500. Note that
longer periods accelerate learning
convergence.

To investigate how introducing time gates helps learning when
long memory is required, an original LSTM task called the adding
task 21 is revisited here. In this task, a sequence of random numbers
is presented along with an indicator input stream. When there is
a 0 in the indicator input stream, the presented value should be
ignored; a 1 indicates that the value should be added. At the end
of presentation the network produces a sum of all indicated values.
Unlike the previous tasks, there is no inherent periodicity in the
input, and it is one of the original tasks that LSTM was designed
to solve well. This would seem to work against the advantages
of Phased LSTM, but using a longer period for the time gate kt

deep neural networks and hardware for event-driven data 95

22 G. Orchard, A. Jayawant, G. Cohen,
and N. Thakor. “Converting static im-
age datasets to spiking neuromorphic
datasets using saccades”. In: Frontiers
in Neuroscience 9 (2015), p. 437. doi:
10.3389/fnins.2015.00437. url:
http://journal.frontiersin.org/

article/10.3389/fnins.2015.00437
23 Christoph Posch, Teresa Serrano-
Gotarredona, Bernabe Linares-
Barranco, and Tobi Delbruck.
“Retinomorphic event-based vision
sensors: bioinspired cameras with
spiking outputs”. In: Proc. of the IEEE
102.10 (2014), pp. 1470–1484

could allow more effective training as a unit opens only a for a few
timesteps during training.

In this task, a sequence of numbers (of length 490 to 510) was
drawn from U (−0.5, 0.5). Two numbers in this stream of numbers
are marked for addition: one from the first 10% of numbers (drawn
with uniform probability) and one in the last half (drawn with
uniform probability), producing a model of a long and noisy stream
of data with only few significant points. Importantly, this should
challenge the Phased LSTM model because there is no inherent
periodicity and every timestep could contain the important marked
points.

The same network architecture is used as before. The period τ

was drawn uniformly in the exponential domain, comparing four
sampling intervals exp(U (0, 2)), exp(U (2, 4)), exp(U (4, 6)), and
exp(U (6, 8)). Note that despite different τ values, the total number
of LSTM updates remains approximately the same, since the overall
sparseness is set by ron. However, a longer period τ provides a
longer jump through the past timesteps for the gradient during
backpropagation-through-time.

Moreover, whether the model can learn longer sequences more
effectively when longer periods are used can be investigated. In-
deed, by varying the period τ, the results in Fig. 5.7 show longer τ

accelerates training of the network to learn much longer sequences
faster.

5.3.3 N-MNIST Event-Based Visual Recognition

1
2

3

(a) (b)

0

1
×10

5

Time [us]

2

3

(c)

Figure 5.8: N-MNIST experiment.
(a) Sketch of digit movement seen by
the image sensor. (b) Frame-based
representation of an ‘8’ digit from the
N-MNIST dataset obtained by inte-
grating all input spikes for each pixel.
(c) Spatio-temporal representation of
the digit, presented in three saccades
as in (a). Note that this representation
shows the digit more clearly than the
blurred frame-based one.

To test performance on real-world asynchronously sampled data,
the publicly-available N-MNIST 22 dataset for neuromorphic vision
is used. The recordings come from an event-based vision sensor
that is sensitive to local temporal contrast changes 23. An event
is generated from a pixel when its local contrast change exceeds
a threshold. Every event is encoded as a 4-tuple 〈x, y, p, t〉 with
position x, y of the pixel, a polarity bit p (indicating a contrast
increase or decrease), and a timestamp t indicating the time when
the event is generated. The recordings consist of events generated
by the vision sensor while the sensor undergoes three saccadic
movements facing a static digit from the MNIST dataset (Fig. 5.8a).
An example of the event responses can be seen in Fig. 5.8c).

https://doi.org/10.3389/fnins.2015.00437
http://journal.frontiersin.org/article/10.3389/fnins.2015.00437
http://journal.frontiersin.org/article/10.3389/fnins.2015.00437

deep neural networks and hardware for event-driven data 96

24 Daniel Neil and Shih-Chii Liu. “Ef-
fective Sensor Fusion with Event-Based
Sensors and Deep Network Archi-
tectures”. In: IEEE Int. Symposium on
Circuits and Systems (ISCAS). 2016,
pp. 2282–2285

25 Peter O’Connor, Daniel Neil, Shih-
Chii Liu, Tobi Delbruck, and Michael
Pfeiffer. “Real-time classification
and sensor fusion with a spiking
Deep Belief Network”. In: Frontiers in
Neuroscience 7 (2013)

26 Sander Dieleman et al. Lasagne:
First release. Aug. 2015. doi: 10.
5281/zenodo.27878. url: http:
//dx.doi.org/10.5281/zenodo.27878

27 G. Orchard, A. Jayawant, G. Cohen,
and N. Thakor. “Converting static im-
age datasets to spiking neuromorphic
datasets using saccades”. In: Frontiers
in Neuroscience 9 (2015), p. 437. doi:
10.3389/fnins.2015.00437. url:
http://journal.frontiersin.org/

article/10.3389/fnins.2015.00437
28 Gregory Kevin Cohen, Garrick
Orchard, Sio Hoi Ieng, Jonathan
Tapson, Ryad Benjamin Benosman,
and André van Schaik. “Skimming
Digits: Neuromorphic Classification of
Spike-Encoded Images”. In: Frontiers
in Neuroscience 10.184 (2016). doi:
10.3389/fnins.2016.00184

In previous work using event-based input data 24,25, the timing
information was sometimes removed and instead a frame-based
representation was generated by computing the pixel-wise event-
rate over some time period (as shown in Fig. 5.8(b)). Note that
the spatio-temporal surface of events in Fig. 5.8(c) reveals details
of the digit much more clearly than in the blurred frame-based
representation.The Phased LSTM allows us to operate directly on
such spatio-temporal event streams.

Table 5.1 summarizes classification results for three different
network types: a CNN trained on frame-based representations of
N-MNIST digits and two RNNs, a BN-LSTM and a Phased LSTM,
trained directly on the event streams. Regular LSTM is not shown,
as it was found to perform worse. The CNN was comprised of
three alternating layers of 8 kernels of 5x5 convolution with a leaky
ReLU nonlinearity and 2x2 max-pooling, which were then fully-
connected to 256 neurons, and finally fully-connected to the 10

output classes. The event pixel address was used to produce a
40-dimensional embedding via a learned embedding matrix 26,
and combined with the polarity to produce the input. Therefore,
the network architecture was 41-110-10 for the Phased LSTM and
42-110-10 for the BN-LSTM, with the time given as an extra input
dimension to the BN-LSTM.

Table 5.1 shows that Phased LSTM trains faster than alternative
models and achieves much higher accuracy with a lower variance
even within the first epoch of training. A factor ρ is further defined
which represents the probability that an event is included, i.e. ρ =

1.0 means all events are included. The RNN models are trained
with ρ = 0.75, and again the Phased LSTM achieves slightly higher
performance than the BN-LSTM model. When testing with ρ =

0.4 (fewer events) and ρ = 1.0 (more events) without retraining,
both RNN models perform well and greatly outperform the CNN.
This is because the accumulated statistics of the frame-based input
to the CNN change drastically when the overall spike rates are
altered. The Phased LSTM RNNs seem to have learned a stable
spatio-temporal surface on the input and are only slightly altered
by sampling it more or less frequently.

Finally, as each neuron of the Phased LSTM only updates about
5% of the time, on average, 159 updates are needed in comparison
to the 3153 updates needed per neuron of the BN-LSTM, leading to
an approximate twenty-fold reduction in run time compute cost. It
is also worth noting that these results form a new state-of-the-art
accuracy for this dataset 27,28.

5.3.4 Visual-Auditory Sensor Fusion for Lip Reading

Finally, the use of Phased LSTM can be demonstrated on a task
involving sensors with different sampling rates. Few RNN mod-
els ever attempt to merge sensors of different input frequencies,
although the sampling rates can vary substantially. For this task,

https://doi.org/10.5281/zenodo.27878
https://doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
https://doi.org/10.3389/fnins.2015.00437
http://journal.frontiersin.org/article/10.3389/fnins.2015.00437
http://journal.frontiersin.org/article/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2016.00184

deep neural networks and hardware for event-driven data 97

CNN BN-LSTM Phased LSTM (τ = 100ms)

Accuracy at Epoch 1 73.81% ± 3.5 40.87% ± 13.3 90.32% ± 2.3
Train/test ρ = 0.75 95.02% ± 0.3 96.93% ± 0.12 97.28% ± 0.1

Test with ρ = 0.4 90.67% ± 0.3 94.79% ± 0.03 95.11% ± 0.2
Test with ρ = 1.0 94.99% ± 0.3 96.55% ± 0.63 97.27% ± 0.1

LSTM Updates – 3153 per neuron 159 ± 2.8 per neuron

Table 5.1: Accuracy on N-MNIST.

Time

MFCCs

In
pu

ts

Video
Frames

220 260 300 340
Time [ms]

Merged-2
PLSTM

Merged-1
PLSTM

Video
PLSTM

Audio
PLSTM

k
j
 O

pe
nn

es
s

Figure 5.9: Inputs and openness
of time gates for the lip reading
experiment. Note that the 25fps
video frame rate is a multiple of
the audio input frequency (100 Hz).
Phased LSTM timing parameters are
configured to align to the sampling
time of their inputs.

29 Martin Cooke, Jon Barker, Stuart
Cunningham, and Xu Shao. “An
audio-visual corpus for speech per-
ception and automatic speech recog-
nition”. In: The Journal of the Acous-
tical Society of America 120.5 (2006),
pp. 2421–2424

30 Itseez. Open Source Computer Vision
Library. https://github.com/itseez/
opencv. 2015

the GRID dataset 29 is used. This corpus contains video and audio
of 30 speakers each uttering 1000 sentences composed of a fixed
grammar and a constrained vocabulary of 51 words. The data was
randomly divided into a 90%/10% train-test set. An OpenCV 30

implementation of a face detector was used on the video stream to
extract the face which was then resized to grayscale 48x48 pixels.
The goal here is to obtain a model that can use audio alone, video
alone, or both inputs to robustly classify the sentence. However,
since the audio alone is sufficient to achieve greater than 99% ac-
curacy, sensor modalities were randomly masked to zero during
training to encourage robustness towards sensory noise and loss.

The network architecture first separately processes video and au-
dio data before merging them in two RNN layers that receive both
modalities. The video stream uses three alternating layers of 16 ker-
nels of 5x5 convolution and 2x2 subsampling to reduce the input of
1x48x48 to 16x2x2, which is then used as the input to 110 recurrent
units. The audio stream connects the 39-dimensional MFCCs (13

MFCCs with first and second derivatives) to 150 recurrent units.
Both streams converge into the Merged-1 layer with 250 recurrent

https://github.com/itseez/opencv
https://github.com/itseez/opencv

deep neural networks and hardware for event-driven data 98

500 1500 2500
Time [ms]

0
5

10
15
20
25
30
35

M
FC

C
Figure 5.10: Example input of video
(top) and audio (bottom).

10-2

10-1

Lo
w

 R
es

.
Lo

ss

0 10 20 30 40 50
Epoch

10-2

10-1

H
ig

h
Re

s.
Lo

ss

Phased LSTM
BN LSTM
LSTM

Figure 5.11: Test loss using the video
stream alone. Video frame rate is
40ms. Top: low resolution condition,
Mel-Frequency Cepstral Coefficientss
(MFCCs) computed every 40ms with a
network update every 40 ms; Bottom:
high resolution condition, MFCCs
every 10 ms with a network update
every 10 ms.

units, and is connected to a second hidden layer with 250 recurrent
units named Merged-2. The output of the Merged-2 layer is fully-
connected to 51 output nodes, which represent the vocabulary of
GRID. For the Phased LSTM network, all recurrent units are Phased
LSTM units.

In the audio and video Phased LSTM layers, the open periods
of the time gates are manually aligned to the sampling times of the
inputs and disable learning of the τ and s parameters (see Fig. 5.9).
This prevents presenting zeros or artificial interpolations to the
network when data is not present. In the merged layers, however,
the parameters of the time gate are learned, with the period τ of
the first merged layer drawn from U (10, 1000) and the second from
U (500, 3000). Fig. 5.10 shows a visualization of one frame of video
and the complete duration of an audio sample.

During evaluation, all networks achieve greater than 98% accu-

deep neural networks and hardware for event-driven data 99

31 Michael Wand, Jan Koutník, and
Jürgen Schmidhuber. “Lipreading
with Long Short-Term Memory”. In:
2016 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP). 2016, pp. 6115–6119

32 Stanislau Semeniuta, Aliaksei Sev-
eryn, and Erhardt Barth. “Recurrent
Dropout without Memory Loss”. In:
arXiv arXiv:1603.05118 (2016)

33 Kyunghyun Cho, Bart van Merrien-
boer, Caglar Gulcehre, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio.
“Learning phrase representations
using RNN encoder-decoder for sta-
tistical machine translation”. In: arXiv
preprint arXiv:1406.1078 (2014)
34 György Buzsaki. Rhythms of the Brain.
Oxford University Press, 2006

35 Bernhard Nessler, Michael Pfeiffer,
Lars Buesing, and Wolfgang Maass.
“Bayesian computation emerges in
generic cortical microcircuits through
spike-timing-dependent plasticity”. In:
PLoS Comput Biol 9.4 (2013), e1003037

racy on audio-only and combined audio-video inputs. However,
video-only evaluation with an audio-video capable network proved
the most challenging, so the results in Fig. 5.11 focus on these re-
sults (though result rankings are representative of all conditions).
Two differently-sampled versions of the data were used: In the first
“low resolution” version (Fig. 5.11, top), the sampling rate of the
MFCCs was matched to the sampling rate of the 25 fps video. In
the second “high-resolution” condition, the sampling rate was set
to the more common value of 100 Hz sampling frequency (Fig. 5.11,
bottom and shown in Fig. 5.9). The higher audio sampling rate did
not increase accuracy, but allows for a faster latency (10ms instead
of 40ms). The Phased LSTM again converges substantially faster
than both LSTM and batch-normalized LSTM. The peak accuracy of
81.15% compares favorably against lipreading-focused state-of-the-
art approaches 31 while avoiding manually-crafted features.

5.4 Conclusion

The Phased LSTM has many surprising advantages. With its rhyth-
mic periodicity, it acts like a learnable, gated Fourier transform
on its input, permitting very fine timing discrimination. Alterna-
tively, the rhythmic periodicity can be viewed as a kind of persis-
tent dropout that preserves state 32, enhancing model diversity. The
rhythmic inactivation can even be viewed as a shortcut to the past
for gradient backpropagation, accelerating training. The presented
results support these interpretations, demonstrating the ability to
discriminate rhythmic signals and to learn long memory traces. Im-
portantly, in all experiments, Phased LSTM converges more quickly
and theoretically requires only 5% of the computes at runtime,
while often improving in accuracy compared to standard LSTM.
The presented methods can also easily be extended to GRUs 33, and
it is likely that even simpler models, such as ones that use a square-
wave-like oscillation, will perform well, thereby making even more
efficient and encouraging alternative Phased LSTM formulations.
An inspiration for using oscillations in recurrent networks comes
from computational neuroscience 34, where rhythms have been
shown to play important roles for synchronization and plasticity 35.
Phased LSTMs were not designed as biologically plausible models,
but may help explain some of the advantages and robustness of
learning in large spiking recurrent networks.

5.5 Discussion

This model presents a large step forward towards applying state-
of-the-art models to event-driven data, as it can learn the complex
spatio-temporal structure of event-based signals while operating in
continuous time and preserving the advantages outlined in Chap-
ter 1. The sparseness Phased LSTM exhibits is sparseness in space
and sparseness in time, as only a small percentage of neurons are

deep neural networks and hardware for event-driven data 100

active at any given point, which matches it well with the sparseness
in space and time of the sensor. Moreover, drawing inspiration from
the hardware design experiments in Chapter 2, the sparseness is
predictable, as it obeys a simple cyclic formulation, which skirts the
bottleneck of large, unpredictable memory access.

Phased LSTM also maintains the latency-accuracy and computation-
accuracy tradeoffs at both the runtime point and at the architecture
design point. A stationary representation, like an image producing
spikes, can be continually improved over time through additional
sequential computation (i.e., more timepoints processed by Phased
LSTM). Moreover, like standard neural networks, more Phased
LSTM neurons can be added to gain additional computation at the
cost of more computation and higher latency, but Phased LSTM
also permits a parameter tweak (Phased LSTM’s ron) to increase
per-timestep computation without changing the number of neu-
rons. This creates multiple levels of flexibility for computation.

Finally, as the model produces a new state for every input that
arrives, assuming that at least a percentage of neurons are on,
Phased LSTM exhibits pseudo-simultaneity. For every input time-
point, in continuous time, a partial computation of the output state
is performed, permitting the network to be used in situations re-
quiring extremely low latency.

Phased LSTM, however, has parameters and design choices that
seem arbitrary. A systematic analysis of its advantages, where these
advantages arise from, and whether the model can be simplified is
important to determine whether further effort should be dedicated
to this model, and whether it can be advantageous for future event-
driven implementations.

deep neural networks and hardware for event-driven data 101

1 Daniel Neil and Shih-Chii Liu. “Ex-
panded Working Memory Enhances
Phased LSTM”. 2017

2 Sepp Hochreiter and Jürgen Schmid-
huber. “Long short-term memory”.
In: Neural Computation 9.8 (1997),
pp. 1735–1780

3 Kyunghyun Cho, Bart van Merrien-
boer, Caglar Gulcehre, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio.
“Learning phrase representations
using RNN encoder-decoder for sta-
tistical machine translation”. In: arXiv
preprint arXiv:1406.1078 (2014)
4 Alex Graves. “Generating sequences
with recurrent neural networks”. In:
arXiv preprint arXiv:1308.0850 (2013)

6
Determining the Efficacy of a New Architecture

6.1 Introduction

The introduction of the Phased LSTM model laid out in Chapter 5

raises many new questions about how precisely this new model
works, and whether it is the simplest possible implementation
that yields the necessary advantages: efficacy on continuous-time
signals, strong memory persistence across memory timescales, and
predictable sparse computation patterns.

The purpose of this chapter is to investigate these questions,
organized into several parts. Section 6.2 introduces the new models
that are designed to stress particular aspects of the Phased LSTM
model. Section 6.3 discusses the measure of merit that will be used
when discussing these models. Section 6.4 showcases the results of
the models on a variety of artificial and real-world tasks. Finally,
Section 6.6 discusses the conclusions that can be drawn from these
results. The text in Sections 6.2-6.6 will appear as part of a separate
publication 1.

6.2 Models

6.2.1 LSTM

Gated models such as LSTM units 2 and GRU units 3 are important
for modern deep RNN models. First, the update equations from
their commonly-used version in 4:

it = σi(xtWxi + ht−1Whi + wci � ct−1 + bi) (6.1)

ft = σf (xtWx f + ht−1Wh f + wc f � ct−1 + b f) (6.2)

ct = ft � ct−1 + it � σc(xtWxc + ht−1Whc + bc) (6.3)

ot = σo(xtWxo + ht−1Who + wco � ct + bo) (6.4)

ht = ot � σh(ct) (6.5)

These equations differ from classical RNNs with their use of gating
functions, which are continuously-valued mixing factors which
range between 0 and 1. Linear mixing preserves the gradient better
than classical RNNs over multiple timesteps, as the neuron is able
to control to what extent it updates its internal state with respect

deep neural networks and hardware for event-driven data 102

5 Felix A Gers and Jürgen Schmid-
huber. “Recurrent nets that time
and count”. In: Proceedings of the
IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN).
vol. 3. IEEE. 2000, pp. 189–194

6 Daniel Neil, Michael Pfeiffer, and
Shih-Chii Liu. “Phased LSTM: Accel-
erating Recurrent Network Training
for Long or Event-based Sequences”.
In: Advances in Neural Information
Processing Systems. 2016, pp. 3882–3890

to the current state and inputs. These gate activation vectors, it, ft,
ot, represent the input, forget, and output gates respectively. The
value each neuron stores is the internal cell activation vector ct,
with xt and ht representing the input vector and the hidden state
vector respectively. To constrain the gates to lie between 0 and 1,
the nonlinearity σi, σf , σo for the input, forget, and output gates
use the sigmoidal nonlinear transformation y = 1/(1 + e−x).
Each gate has a weight parameter for the input x and the hidden
state h, resulting Wxi and Whi, Wx f and Wh f , Wxo and Who for the
input, forget, and hidden gates. Each also has a bias, bi, b f , and
bo. The cell state ct is updated with a linear interpolation using
the elementwise (Hadamard) product � of the previous cell state,
controlled by ft, and a new cell state controlled by it. The cell state
is then further transformed by the output gate ot to produce a new
hidden state ht. Optional peephole connections 5 wci, wc f and wco

use the cell state ct to further influence the input, forget, and output
gates.

6.2.2 Phased LSTM

The Phased LSTM model, introduced in 6, extends the LSTM model
with a novel time gate kt. The time gate controls the operation
of the neuron; as it acts multiplicatively, when the value of the
time gate is closed the neuron performs no updates, and when
its value lies close to one it updates as a standard LSTM cell. The
opening and closing is a periodic oscillation controlled by three
parameters. The first parameter, the period τ, controls the duration
of an entire cyclical open and close period. The second, the shift s,
applies an offset that adjusts the phase shift of the oscillation. The
third, ron, is the ratio of open duration to total period. With an ron

of 1, the Phased LSTM would always update, and with an ron of 0,
the Phased LSTM would always remain closed and never update.
To encourage long memory and sparsity, ron is typically set to about
10%.

The openness of the time gate kt can be calculated thusly:

φi,t =
(t− si) mod τi

τi
(6.6)

ki,t =

2φi,t

ron,i
, if φi,t <

1
2

ron,i

2− 2φi,t

ron,i
, if

1
2

ron,i < φi,t < ron,i

αφi,t, otherwise

(6.7)

The neuron index i has be added to the parameters for clarity to
demonstrate which parameters and variables are neuron-specific
(φi,t, ki,t, si, τi, ron,i) and which are global (t, α). The variable φi,t is
an auxiliary variable which represents the percentage of the phase
within the rhythmic cycle, ranging from 0% to 100%. The operation
of the gate is specified in three piecewise phases: a rising opening

deep neural networks and hardware for event-driven data 103

7 Kaiming He, Xiangyu Zhang, Shao-
qing Ren, and Jian Sun. “Delving Deep
into Rectifiers: Surpassing Human-
Level Performance on ImageNet
Classification”. In: The IEEE Interna-
tional Conference on Computer Vision
(ICCV). 2015, pp. 1026–1034

8 Daniel Neil, Michael Pfeiffer, and
Shih-Chii Liu. “Phased LSTM: Accel-
erating Recurrent Network Training
for Long or Event-based Sequences”.
In: Advances in Neural Information
Processing Systems. 2016, pp. 3882–3890

phase (during the first half of ron), a falling opening phase (during
the second half of ron) and an off phase. During the off phase, note
that there is a leak α, with analogy to the leaky rectified linear unit
7, which during training propagates important gradient information
even while the gate is closed. After training, α = 0 so as to require
no update of the neuron at all during the off-phase. Furthermore,
note that the linear slopes of the rising and falling phase have a
constant gradient, preserving the strong gradient information that
allows ReLUs to train so well.

Advantageously for Phased LSTM (PLSTM), the oscillation is
defined at all continuous time points t, allowing irregularly-spaced
time points tj to be used within this RNN framework. As arbi-
trary time points can be used, Phased LSTM can natively work
with event-driven, asynchronously-sampled input data. Here, the
shorthand notation cj = ctj for cell states c at time tj is used, with
the other gates following analogously. Similarly, cj−1 = ctj−1 for
previously-sampled times in continuous time. Then, the equations
for the standard LSTM updates are rewritten, with a proposed cell
update c̃j and hidden state update h̃j controlled by the time gate k j:

ij = σi(xjWxi + hj−1Whi + wci � cj−1 + bi)

f j = σf (xjWx f + hj−1Wh f + wc f � cj−1 + b f)

c̃j = f j � cj−1 + ij � σc(xjWxc + hj−1Whc + bc)

cj = k j � c̃j + (1− k j)� cj−1

oj = σo(xtWxo + hj−1Who + wco � c̃j + bo)

h̃j = oj � σh(c̃j)

hj = k j � h̃j + (1− k j)� hj−1

Though this formulation appears to require more updates, it of-
fers substantial speedups as a large proportion of the neurons are
skipped in a timestep at runtime. For further information, refer to
the formulation of Phased LSTM in 8.

A note on gradient flow is important here, because this technical
detail can result in a variety of different behaviours. As the output
is dependent on the opening phase, and the opening phase is de-
pendent on the mod function, it is worth clarifying the derivative.
Defining mod thusly:

y = mod(t, τ) = t−
⌊

t
τ

⌋
τ (6.8)

(6.9)

deep neural networks and hardware for event-driven data 104

9 Daniel Neil, Michael Pfeiffer, and
Shih-Chii Liu. “Phased LSTM: Accel-
erating Recurrent Network Training
for Long or Event-based Sequences”.
In: Advances in Neural Information
Processing Systems. 2016, pp. 3882–3890

The partial derivatives can be specified:

∂y
∂t

=
∂t
∂t
− τ

∂

∂t

(⌊
t
τ

⌋)
−
⌊

t
τ

⌋
∂

∂t
(τ) (6.10)

= 1− 0− 0 (6.11)

∂y
∂τ

=
∂

∂τ
t− τ

∂

∂τ

(⌊
t
τ

⌋)
−
⌊

t
τ

⌋
∂

∂τ
(τ) (6.12)

= 0− 0−
⌊

t
τ

⌋
(6.13)

∂y
∂t

= 1,
∂y
∂τ

= −
⌊

t
τ

⌋
,

t
τ

/∈ Z (6.14)

Note that the derivative of floor is always zero, as the function is
flat everywhere except at points where it performs a step change
and thus has an undefined derivative. Here, the restriction t

τ /∈ Z is
disregarded as it is unlikely to precisely happen in a floating-point
system and the derivative is mathematically correct everywhere
else. Applying a minute amount of jitter would also resolve the
issue.

The formulation of the derivative given here, however, raises a
point: the gradient with respect to the period increases over time,
and thus is not translationally invariant in time. If timesteps are
used with large text corpora, the end of the corpus will more
strongly influence the period than the beginning; for other appli-
cations, adding an offset in time or changing to Unix timestamps
will also change the result. In practice, the effect has not yet caused
problems, but an argument can be made to replace ∂y

∂τ := −1 for
more consistent behaviour.

6.2.3 Joint

Phased LSTM provides a unique tradeoff between computation
within a timestep and memory over time. By extending τ and de-
creasing ron, more neuron states represent older moments in the
input history. From the previous work in 9, it is clear that PLSTM
excels at long-term memory. However for many tasks, including
natural language processing, short-term time dependencies may be
as important as long-term memories. The extended off-period of
PLSTM neurons leaves neurons unable to respond for long stretches
to short-term fluctuations in input that can be of great importance.
To address this deficiency, a simple hybrid PLSTM model is devel-
oped in which a majority of neurons are PLSTM neurons which
maintain long-term context, while a percentage of regular LSTM
neurons are reserved to compute on shorter timescales and consis-
tently update every time step.

A joint PLSTM-LSTM neural model can be implemented by

deep neural networks and hardware for event-driven data 105

forcing the kt gate fully open for the last percentage of neurons:

φi,t =
(t− si) mod τi

τi
(6.15)

k̃i,t =

2φi,t

ron,i
, if φi,t <

1
2

ron,i

2− 2φi,t

ron,i
, if

1
2

ron,i < φi,t < ron,i

αφi,t, otherwise

(6.16)

ki,t =

{
k̃i,t if i/n < Θ

1 otherwise
(6.17)

As above, the helper variable φi,t is introduced which represents the
cycle position of neuron i of n neurons at time t, using phase shift
si, period τi, on ratio ron,i and time-gate ki,t. Here the notation k̃i,t is
introduced for the proposed time gate state, which is set to 1 (fully
open), if the ratio of neuron index to total neurons i/n exceeds the
PLSTM ratio of Θ.

6.2.4 Random-Dropout LSTM: No periodicity

A possible source of the advantages seen in PLSTM is the sparse
opening pattern of the neurons. Neurons are exposed to fewer
timesteps, allowing a more powerful gradient to be preserved
through training and decreasing the number of effective timesteps
to which a neuron is exposed. Unfortunately, it is not a priori clear
whether the advantage lies with the sparsity or the periodicity. To
determine which is the dominant factor, a neuron which has identi-
cal wake-sleep sparsity can be designed, yet without any learnable
periodicity:

ki,t =

{
1, if pi ∼ U (0, 1) < Θ

0, otherwise
(6.18)

The neuron time gate ki,t for neuron i at time t is set to 1 if a ran-
dom variable pi drawn from the uniform distribution between 0
and 1, is less than the sparsity threshold Θ. Therefore the mean
occupancy of the time gate, which is the mean number of on-
states, will match the mean occupancy of a Phased LSTM model
if ron = Θ. The success of the random dropout model (RndDrp)
with ron and Θ matched would imply that the sparseness is a driving
factor in the advantages found for Phased LSTM. However, poor
performance of the Random Dropout LSTM model implies that
indeed the periodicity of the wake-sleep cycles have importance.

6.2.5 Square-wave Phased LSTM: No edge gradients

While the three-phase model with rising-, falling-, and off-phases
does preserve the gradients along all points, it is not clear such a
complex model is necessary. A simpler implementation would be
a square wave oscillation, in which there are only two phases, an

deep neural networks and hardware for event-driven data 106

on- and off-phase. Concretely, the time gate kt from the standard
PLSTM formulation can be replaced with a simplified formulation:

φi,t =
(t− si) mod τi

τi
, ki,t =

{
1, if φi,t < ron,i

αφi,t, otherwise
(6.19)

During the open phase, the time gate is fully open without the
rising and falling scaling associated with Phased LSTM. Unfortu-
nately, no gradient information to the period τ is then provided
during the open phase; however, during the off phase, the leak still
allows learning of the period. The square-wave model therefore
can test the importance of learning during the period τ during the
open phase. If its performance exceeds the original PLSTM model,
then either the reduction of the parameters needed or the flat open
period provides an advantage over PLSTM.

6.2.6 Cyclic LSTM: Fixed phase relationships

Similarly, if individual periodicity of the PLSTM opening peri-
ods are the primary driver of the advantages, then using a single
parameter to represent the period of a PLSTM neuron suffices to
create a periodic oscillation. Each neuron has a fixed phase relation-
ship to the other neurons, and a single timestep of opening allows
just one parameter, the period τ to be used:

ki,t =

{
1, if round(t mod τi) = 0

α|φi,t − 0.5|, otherwise
(6.20)

Here the off-period is centered at half the phase, φt − 0.5, in order
to direct the gradient towards the first timestep. The off leak α is set
as above to allow propagation of gradient information during the
off phase. If the cyclic model succeeds, it provides further evidence
that the primary advantage lies in the periodicity; if it does not
nearly match the performance of PLSTM, then the parameters that
encode the relationship between neurons, the phase shift s and the
on duration ratio ron must learn useful re-alignments of neuron
activation patterns. Note that the period τ remains trainable in the
formulation in Eq. 6.20.

6.2.7 Refractory LSTM: Forced longest memories

Finally, as an even more extreme possibility, even the phase rela-
tionship could be unnecessary, and only the long memory of the
PLSTM neurons are required. This possibility can be tested by in-
troducing a refractory end time ri,t to track the time when a neuron
can emerge from an off, or refractory, period:

ki,t =

{
1, if t > ri,t

0, otherwise
(6.21)

ri,t+1 =

{
t + τi, if t > ri,t

ri,t otherwise
(6.22)

deep neural networks and hardware for event-driven data 107

10 Daniel Neil, Michael Pfeiffer, and
Shih-Chii Liu. “Phased LSTM: Accel-
erating Recurrent Network Training
for Long or Event-based Sequences”.
In: Advances in Neural Information
Processing Systems. 2016, pp. 3882–3890

The time gate ki,t thus is open as soon as the current time t exceeds
the refractory end time ri,t for neuron i. Once it is updated, it re-
enters a refractory state in which it remains fixed until reopening
after the refractory period τ. The refractory model ensures that
memories of the past are maintained and not overwritten, and also
eliminates any dependency between neurons; waiting sufficiently
long before delivering an input can bring all neurons out of the
off-phase, while immediately then providing any inputs will place
all neurons into a refractory phase. If this model succeeds, then the
predominant factor in Phased LSTM’s success must be its distant
memory of events, which the refractory model maximizes.

6.3 Measures

0 10 20 30 40 50 60 70

10-1

100

Joint
PLSTM
Cyclic
Refrac
Square
RndDrp
BN LSTM
LSTM

Figure 6.1: Error for the various
models on the standard sampling
condition of the first frequency task.
The mean is displayed as a dark line,
with semi-transparent maximum and
minimum shaded around the line.
Note the diversity of model behaviours
over a fixed period of training epochs.

Comparison between neuron model types requires a measure
that incorporates a variety of effects. As can be seen in Fig. 6.1,
the behaviour of these models differs considerably. These error
curves correspond to the standard sampling task introduced in 10,
and consist of five runs from each model. Note that some models
quickly converge, then drop back to chance, only to converge again;
others exhibit very tight variance but high error; others have errors
that vary across orders of magnitude. Models’ ability to rapidly
decrease the overall error, remain converged, and achieve accept-
able final performance all varies quite considerably, necessitating a
single measure that can encapsulate the result of these effects.

In this work, the Integral of Error (IOE) will be used as a primary
error measure:

IOE =
N

∑
n=1
L(x, y) (6.23)

The integral of error is the sum of all losses L for minibatches in-
dexed n = 1 . . . N, composed of inputs x and targets y. Unlike
final performance as a criteria, it incorporates the difficulty a model
has in achieving high performance, penalizing models that take
substantially more epochs to reach the same performance level.
Unlike a time-to-convergence measure which records the number
of epochs required to arrive at a satisfactory performance level, it

deep neural networks and hardware for event-driven data 108

11 Daniel Neil, Michael Pfeiffer, and
Shih-Chii Liu. “Phased LSTM: Accel-
erating Recurrent Network Training
for Long or Event-based Sequences”.
In: Advances in Neural Information
Processing Systems. 2016, pp. 3882–3890

can always be defined and calculated, regardless of whether the
model has converged. Additionally, the integral of error naturally
incorporates errors that arise from models that are fragile and have
difficulty maintaining convergence, increasing sharply in error after
convergence or oscillating in performance. In addition to being easy
to calculate, as it is simply the sum of all batchwise errors, useful
statistics like variance and skewness of errors can be calculated for
further information.

As the integral of error has arbitrary scaling and is dependent
on the run length, it will only be used to compare between models.
Furthermore, the resulting integral of error will be multiplicatively
normalized here to yield useful comparisons against a reference
run, e.g., the standard Phased LSTM model.

6.4 Experiments

This section will introduce a battery of experiments designed to
stress different components of the models on a variety of artificial
and real-world benchmarks.

6.4.1 Frequency Analysis

The first experiment revisits the initial experiment of Phased LSTM
11. The frequency discrimination task is particularly useful for elu-
cidating the different axes of advantages that PLSTM offers, as data
sequence length and sampling rate can be probed independently.
In the task, a series of points < y, t > are presented to the model
arising from a sin wave of unknown period and phase shift, and
the model must determine whether the points correspond to a sin
wave with a period from a particular range from those with a pe-
riod faster or slower than the target range. Classes are balanced,
yielding a 50% chance rate.

The models are tested under three conditions. The first (Fig. (a)),
which corresponds to the dominant method in which RNNs are
currently used, presents on average 70 datapoints at regularly-
spaced timestep intervals. All models succeed at the task, and the
error is primarily determined by how quickly the model is able to
converge to a lower error. In the second (Fig. (b)), the sampling rate
is increased by a factor of ten, leading to input sequences an order
of magnitude longer. This test particularly probes a model’s ability
to quickly learn long sequences. Finally, in the third (Fig. (c)), the
models receive the same number of input points as in the first but
instead are sampled asynchronously. This test probes a model’s
ability to learn and generalize data which occurs in continuous time
(asynchronous samples).

Note that in all figures, the integral of error measure has been
set such that the error of PLSTM on the standard sampling con-
dition is 1 to ease comparisons. For example, Fig. (c) shows that
asynchronous sampling increases the IOE by 50% compared to hav-

deep neural networks and hardware for event-driven data 109

100 101

RndDrp (6.0)

LSTM (5.6)

Square (2.5)

BN LSTM (1.9)

Joint (1.5)

Cyclic (1.3)

PLSTM (1.0)

Refrac (0.8)

(a)

100 101

LSTM (8.0)

BN LSTM (7.5)

RndDrp (3.2)

Cyclic (2.3)

Square (1.3)

PLSTM (1.0)

Refrac (0.7)

Joint (0.6)

(b)

100 101

LSTM (7.7)

RndDrp (7.1)

BN LSTM (6.9)

Square (4.5)

Cyclic (3.0)

Joint (1.7)

PLSTM (1.5)

Refrac (1.5)

(c)

Figure 6.2: Frequency discrimination
task IOE. (a) Standard condition: the
data is regularly sampled every 1 ms.
(b) High resolution sampling condi-
tion: new input points are gathered
every 0.1ms. (c) Asynchronous sam-
pling condition: new input points are
presented at intervals of 0.02 ms to 10

ms. Boxplots indicate the mean in gray,
minimum and maximum with whisker
lines, and the box extends to the lower
and upper quartile of the results. IOE
has been normalized such that the IOE
of PLSTM on the standard task is 1.

ing evenly-stepped timesteps. In general, these results lay out the
conclusion that will be echoed in the subsequent experiments: in
general, PLSTM is among the best-performing models. The joint
model, with long-term memory from PLSTM and short-term mem-
ory from LSTM, is nearly as performant and in some cases superior.
Standard models without augmentation to aid in managing these
sequences, such as batch-normalized LSTM and standard LSTM,
tended to perform worse.

Combining Longer and Shorter-term Memory The joint model com-
posed of both Phased LSTM (longer-term memory) and LSTM
(shorter-term memory) does indeed perform acceptably well. Sur-
prisingly, for the very long input sequences of the fast sampling
rate in Fig. (b), it is the top performer, exceeding PLSTM’s perfor-

deep neural networks and hardware for event-driven data 110

12 Daniel Povey, Arnab Ghoshal, Gilles
Boulianne, Lukas Burget, Ondrej
Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin
Qian, Petr Schwarz, et al. “The Kaldi
speech recognition toolkit”. In: IEEE
2011 workshop on automatic speech
recognition and understanding. EPFL-
CONF-192584. IEEE Signal Processing
Society. 2011

mance and actually converging faster for the long sequence than it
did for the short sequence, implying better sample complexity than
the other models.

Sparsity vs. Periodicity The random dropout, cyclical, and refrac-
tory models allow investigating whether the advantages of PLSTM
arise from sparsity or periodicity. Surprisingly, the random dropout
model (RndDrp) matching the sparsity of PLSTM consistently per-
formed among the worst for each input type, usually performing
better than LSTM but not other models. The cyclical and refrac-
tory models, designed to test whether periodicity and the resulting
long memory is important, often performed among the best for
each category. Both taken together suggest that the periodicity is the
dominant factor that allows PLSTM to be as performant as it is.

Alternative formulations The cyclical, refractory, and square models
suggest possible alternative formulations for PLSTM with reduc-
tions in parameters and complexity. Indeed, the refractory model,
which consistently maintains the longest neuron memories as they
cannot be overwritten until after the refractory period, even exceeds
the performance of PLSTM on all three tasks. The periodic model,
perhaps because multiple subsequent inputs can both resolve to
round(t mod τi) = 0 and overwrite the earlier, does not perform as
well. The square model, which removes the gradient information
to the period during the on-phase but has a simpler activation pro-
file, performs surprisingly poorly. Despite being as periodic as the
cyclical model, maintaining timing learnable parameters, and not
having to un-distort inputs manipulated by the rising and falling
open phase of PLSTM, the model performs on average worse than
the alternatives. Therefore, multiple sources of gradient information
to the period appear to be important, at least in this task.

6.4.2 Speaker Identification

The MOCHA-TIMIT dataset was used for a real-world speaker
identification task. Three speakers (two male, one female) were
recorded speaking 460 sentences, which were then split into a 90%,
10% train/test split. Each sentence was transformed into 23 filter-
bank features from Kaldi 12, padded per batch to match in length,
and used as the input to a network of 110 recurrent neurons of the
given model type, followed by a fully-connected layer of 3 softmax
output neurons which represent the probability of each target class.
For models that require a time input, an input step index ranging
t ∈ (0, L) for a sequence of length L was used.

Five independent seeds were used to produce the results found
in Fig. 6.3. The MOCHA task is used as an example of a real-world
challenge without an inherent periodic nature, in which the se-
quences are moderately long (averaging around 390 timesteps).
Most models achieve perfect performance by the end of training.

deep neural networks and hardware for event-driven data 111

13 Marcus Hutter. “The human
knowledge compression contest”.
In: http://prize.hutter1.net (2012)

14 Julian Georg Zilly, Rupesh Ku-
mar Srivastava, Jan Koutník, and
Jürgen Schmidhuber. “Recurrent
highway networks”. In: arXiv preprint
arXiv:1607.03474 (2016)

Note that in this simplistic and synchronous but real-world exam-
ple, most PLSTM variants perform about equally well with the ex-
ception of the sparsity-matching random dropout (RndDrp) model.
PLSTM, cyclical, joint, refractory, and even the square model to
some extent all exhibit similar integral of errors. They do, however,
perform better than standard models despite a synchronous and
consistent timestep.

10-1 100 101

BN LSTM (3.8)

RndDrp (1.9)

LSTM (1.8)

Square (1.4)

Refrac (1.1)

Joint (1.0)

Cyclic (1.0)

PLSTM (1.0)
Figure 6.3: Integral of Error on
MOCHA-TIMIT speaker identifica-
tion task. Errors (in parantheses) are
normalized such that PLSTM is 1.
Note that most PLSTM variants per-
form approximately equally, with the
notable exception of RndDrp, while
standard LSTM and batch-normalized
LSTM have more difficulty.

6.4.3 Natural Language Processing

One area that could be both fruitful and challenging for Phased
LSTM is natural language processing. The long memory of PLSTM
can greatly aid it in processing long documents, or interpreting
documents processed at fine (e.g., character) resolution. How-
ever, the success of n-grams indicate the surprisingly important
short-term context as well. Phased LSTM suffers under short-term
context, as many fewer of its neurons are reliably available every
timestep, and for now at least, training does not seem to yield so-
lutions in which the neurons are consistently on 100% of the time.
However, the joint model is perfect for merging the shorter-term
memory of LSTM with the longer, trainable longer-term memory of
PLSTM, so high performance would be expected of the joint model
on Natural Language Processing (NLP) tasks.

As a difficult long-context task, we choose the enwiki8 Hutter
100MB Wikipedia encoding example 13. The Hutter task consists
of creating a model that predicts the next byte in the Wikipedia
dataset, measuring the mean log-probability of the dataset. As
the goal of this task is to compare models, smaller models than
are used to achieve state-of-the-art results 14 are used here. The
network is composed of a 30-dimensional embedding layer, three
layers of 400 units, and a dense layer that connects to a softmax of
256 possible choices for the output byte. For models that require a
time input, an input step index ranging t ∈ (0, L) for a sequence of
length L was used.

deep neural networks and hardware for event-driven data 112

0 5 10 15 20 25
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Er

ro
r

BN LSTM
Cyclic
Joint
LSTM
PLSTM
Refrac
RndDrp
Square

Figure 6.4: Validation error (nats) on
the enwiki8 100MB Wikipedia dump.
Due to the long computation time
(approx. 1 hour/epoch on a GTX
980Ti), only a single run of each model
is shown as a qualitative comparison.

The results can be found in Fig. 6.4. Many of the trends men-
tioned before, such as the lower performance of LSTM, the RndDrp
model, and the square-wave model, are again borne out here. Sur-
prisingly, batch-normalized LSTM does quite well here, after an ini-
tial period of instability. As expected, the joint model outperforms
all other Phased LSTM models. The high performances of all the
phased models are surprising, considering that only approximately
1/20th of the neurons are being used per timestep, compared to
a standard recurrent model (with ron = 0.05). This suggests that
substantial redundancy exists in the standard recurrent models, and
that perhaps dramatically scaling up the number of neurons (e.g.,
by 20x to match) in the periodic models could yield large perfor-
mance improvements. Furthermore, the LSTM portion of the joint
model could be similarly improved by applying batch normaliza-
tion to its inputs.

6.5 PLSTM Parameter Importance

The Phased LSTM model contains timing parameters which have
not yet been systematically examined. The purpose of this section
is to study the effect of learning on the ron, τ, and s parameters
through denying learning or systematically corrupting these param-
eters after training.

6.5.1 Presence & Absence of Learning

A natural question that arises is the relative importance of learning
the timing parameters. While previous work has similarly inves-
tigated sparse-in-time gated neural network models, prior models
lacked the trainable timing parameters that PLSTM offers. By dis-
abling updates to the timing parameters during training, the perfor-
mance of PLSTM with and without learning can be elucidated.

The results can be found in Fig. 6.5. Solid lines correspond to
the standard PLSTM with learning for all parameters, while dashed
lines correspond to learning with training parameters disabled on

deep neural networks and hardware for event-driven data 113

the frequency discrimination task. In the high-resolution sampling
condition, little difference exists between learning and not learn-
ing the timing parameters (Fig. 6.5, green). However, convergence
and final error is improved for the standard sampling condition
(Fig. 6.5, purple) and a very large improvement exists for the asyn-
chronous sampling condition (Fig. 6.5, blue). Indeed, training the
parameters of Phased LSTM is important to yield good results for
at least certain tasks.

0 50 100 150 200
Epochs

10-3

10-2

10-1

100

Er
ro

r

PLSTM, Std.
No Learn, Std.
PLSTM, Async.
No Learn, Async.
PLSTM, High Res.
No Learn, High Res.

Figure 6.5: Comparison between
learning (solid lines) and not learning
(dashed lines) the timing parameters
of Phased LSTM, under the three
conditions of the frequency task. Min-
imum and maximum error for each
epoch is shown in the shaded area,
with the mean shown in a thick solid
lines. Note a significant advantage to
learning the timing parameters can be
found for certain tasks.

6.5.2 Parameter Ablation

Finally, the relative importance for each parameter type can be in-
vestigated by selectively corrupting those parameters of the model.
The parameter ablation process consists of the following procedure.
First, a neural network model that has completed training (from
Sec. 6.4.1) is loaded. Then, a random given percentage of neurons
are selected (e.g., 10%), and their parameters of the chosen parame-
ter type (e.g., periods) are permuted within the group. The random
percentage is swept from 0% to 100%, and this is repeated 10 times
for each model, of which there are five different random initializa-
tions.

The results of the parameter ablation can be found in Fig. 6.6.
As the classes have been balanced, the chance rate is 50%. Error
bars are the standard deviations for each point. As can be seen, the
parameters are used to varying extents in different tasks, as the col-
ored curves differ depending on the task. Permuting the periods
randomly most greatly affects the accuracy of the system, where
even at 50% permuted periods the models hover above chance
for all tasks. The shifts are the next most sensitive parameter, sur-
prisingly, and exhibit greater task-dependent results as the shift
appears to most greatly affect the standard sampling condition. Fi-
nally, the ron parameter appears substantially less important; even
if the ron values are completely shuffled within the network, the
network does substantially better than chance.

deep neural networks and hardware for event-driven data 114

One explanation for these results lies in the distribution of these
parameters. Periods are exponentially distributed over many mag-
nitudes, while the ron parameters were all initialized to the same
initial value and their final values remain close. Therefore, shuffling
the similar parameters results in more similar results than shuffling
parameters that differ more strongly. However, this methodology
does reinforce earlier results that a specified-duration open period
(given by ron) is not as necessary a parameter to the model. The
cyclic and refractory models both have a single on-step followed by
a long series of off-steps, and yet perform quite competitively with
PLSTM.

0 20 40 60 80 100
ron Shuffled [%]

50

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Std.
High Res.
Async.

0 20 40 60 80 100
Periods Shuffled [%]

50

60

70

80

90

100

0 20 40 60 80 100
Shifts Shuffled [%]

50

60

70

80

90

100 Figure 6.6: Parameter ablation for fre-
quency tasks. Each plot demonstrates
the shuffling of a particular parameter,
after training. Across the horizontal
axis, the percentage of parameters
shuffled; across the vertical axis, the
resulting decrease in accuracy. Error
bars are standard deviations calculated
from 5 different models, each with ten
random shuffled parameter subsets
at each point. Note the larger drop in
accuracy for the period compared to
the other two parameters; note also
task-specific parameter sensitivity with
the ron more sensitive to parameter
ablation in the high resolution and
asynchronous sampling conditions.

6.6 Conclusion & Discussion

For many applications, and with inspiration from biology, com-
bining shorter-term and longer-term memories is advantageous in
order to extract temporal patterns across a wide range of tempo-
ral scales. Currently, even with the advantages offered by gating
in LSTMs and GRUs, training for long sequences does not con-
verge rapidly. Conversely, Phased LSTM, which trades off per-
timestep computation in favor of longer memories, is optimized
for longer-term memories and suffers when there are significant
short-timestep interactions. In this work, we present the joint model
that combines both of these systems to obtain higher performance
across a wide variety of models. ‘ The Phased LSTM formulation
succeeds well, as does the Joint formulation which combines the
shorter and longer-term memory. The refractory model succeeds
very well, emphasizing the importance of mixing in distant memo-
ries with the current state. Conversely, the random dropout model
worked surprisingly poorly, emphasizing that the sparsity is not the
main factor in the advantages of Phased LSTM, but rather the dis-
tant memory of the past, with predictable timing. This result, that
distant memory is extremely important, is reinforced by the success
of the cyclic and refractory models.

deep neural networks and hardware for event-driven data 115

As many of these models have periodic open-close patterns, they
perform a frequency decomposition on the input. This could per-
haps underlie the advantage of WaveNet-style models that rely on
dilated convolutions as well, which similarly do a frequency sam-
pling of their input. While that makes intuitive sense for certain
tasks like audio processing, it is perhaps surprising that this same
principle works across the range of problem presented here, includ-
ing textual analysis and visual analysis. Moreover, these models
are used throughout the hierarchy, so they not only do a frequency
decomposition of their inputs, but also of the intermediate neuron
activations in response to this input. Future work can further ex-
plore whether a more explicit model of this timing analysis could
yield better representations, using e.g., a differentiable frequency
transform connected directly to a neuron model.

In the process of evaluating these models, it is quite clear that
traditional models have far more computational capacity than is
necessary. That is, with only a small fraction of neurons performing
any computation at a given time, the networks are able to achieve
new state-of-the-art accuracy levels. Part of the intuition for why
this might be is that the amount of computation is roughly fixed
per timestep in normal models, and the number of neurons is set
to maximize performance - that is, the amount of computation is
set by the maximum ever needed. On interesting and uninteresting
timesteps alike, the network expends the same amount of com-
putational effort which is likely to be the most ever needed. This
principle is similar to the relationship between frame-based and
event-based sensors, in which (traditionally) a full frame is read
out regardless of the amount of new or relevant information in that
image; in contrast, an event-based sensor only triggers computation
when useful changes happen.

Could, perhaps, the principles of event-based sensing can be
extended to event-based computation where computation is only
triggered when sufficiently interesting computations happen? The
following chapter will explore this idea.

deep neural networks and hardware for event-driven data 117

1 Daniel Neil, Jun Haeng Lee, Tobi
Delbruck, and Shih-Chii Liu. “Delta
Networks for Optimized Recurrent
Network Computation”. In: arXiv
preprint arXiv:1612.05571 (2016)

7
Extending the Principle of Event-based Sensors to Com-
putation

7.1 Introduction

The extremely computationally-sparse Phased LSTM model sug-
gests that significant redundances exist in the computation of recur-
rent neural networks. One very straightforward optimization would
be to skip unnecessary computations in a recurrent neural network
if the activation has changed by an insignificant amount. Moreover,
if this constraint included in training, it could allow the network to
become robust to skipped computations, and to signal extra neces-
sary computation through large recurrent state computation.

This chapter extends the principles of event-based sensing to
traditional neural network models, skipping computations that
arise from unchanging inputs. This is derived mathematically and
extended empirically, and offers computational speedups in tasks
that range from 6x-100x increases, which are significant savings
for traditional models, and again emphasizing the importance of
looking to apply principles from event-based sensing to state-of-
the-art machine learning models.

Section 7.3 introduces the delta network concept for basic matrix-
vector operations. Section 7.4 extends the formulation for a GRU
RNN. Section 7.5 proposes an approximation method using a finite
threshold for the deltas that offers greater speedups. Section 7.6
describes new training methods to optimally train Delta Networks.
Section 7.7 shows the results of accuracy against speedup for three
example tasks. The results are summarized in the final Section 7.8.

The text in Section 7.3-7.8 is in submission for another publica-
tion 1.

7.2 Motivation

RNNs require many matrix-vector multiplications per layer to cal-
culate the updates of neuron activations over time. RNNs also
require a large weight memory storage that is expensive to allocate
to on-chip static random access memory. In a 45nm technology, the

deep neural networks and hardware for event-driven data 118

0
5

10
15
20
25
30
35

M
FC

C

0 50 100 150 200
Time

0

50

100

150

200

N
eu

ro
n

Figure 7.1: Stability in RNN activations
over time. The top figure shows the
continually-changing MFCC features
for a spoken digit from the TIDIGITS
dataset; the bottom figure shows
the corresponding neural network
output activations in response to these
features. Note the slow evolution of
the network states over timesteps.

2 M. Horowitz. “1.1 Computing’s
energy problem (and what we can do
about it)”. In: 2014 IEEE International
Solid-State Circuits Conference Digest
of Technical Papers (ISSCC). Feb. 2014,
pp. 10–14. doi: 10.1109/ISSCC.2014.
6757323
3 Matthieu Courbariaux, Yoshua
Bengio, and Jean-Pierre David. “Bi-
naryconnect: Training deep neural
networks with binary weights during
propagations”. In: Advances in Neural
Information Processing Systems. 2015,
pp. 3123–3131

4 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)

5 Matthieu Courbariaux and Yoshua
Bengio. “Binarynet: Training deep
neural networks with weights and
activations constrained to+ 1 or-1”. In:
arXiv preprint arXiv:1602.02830 (2016)

energy cost of an off-chip dynamic 32-bit random access memory
(SDRAM) access is about 2nJ and the energy for a 32-bit integer
multiply is about 3pJ, so memory access is about 700 times more
expensive than arithmetic 2. Architectures can benefit from mini-
mizing the use of this external memory. Previous work has focused
on a variety of algorithmic optimizations for reducing compute
and memory access requirements for deep neural networks. These
methods include reduced precision for hardware optimization
3,4,5,6,7; weight encoding, pruning, and compression 8,9; and archi-
tectural optimizations 10,11,12. However these studies did not con-
sider the temporal properties of the data. Natural inputs to a neural
network tend to have a high degree of temporal autocorrelation,
resulting in slowly-changing network states. This slow-changing
activation feature is also seen within the computation of RNNs
processing audio inputs, for example, speech (Fig. 7.1).

Delta networks, as introduced here, exploit the temporal stability
of both the input stream and the associated neural representation
to reduce memory access and computation without loss of accu-
racy. By caching neuron activations, computations can be skipped
where inputs change by a small amount from the previous update.
Because each neuron that is not updated will save fetches of entire
columns of several weight matrices, determining which neurons
need to be updated offers significant speedups.

7.3 Delta Network Formulation

The purpose of a delta network is to transform a dense matrix-
vector multiplication (for example, a weight matrix and a state
vector) into a sparse matrix-vector multiplication followed by a full
addition. This transformation leads to savings on both operations
(actual multiplications) and more importantly memory accesses
(weight fetches). Fig. 7.2 illustrates the savings due to a sparse
multiplicative vector. Zeros are shown with white, while non-zero
matrix and vector values are shown in black. Note the multiplica-
tive effect of sparsity in the weight matrix and sparsity in the delta
vector. In this example, 20% occupancy of the weight matrix and
20% occupancy of the ∆ vector requires fetching and computing

https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323

deep neural networks and hardware for event-driven data 119

• =

Weight Matrix
Delta

Vector Nonzero Operations
Figure 7.2: Illustration of saved matrix-
vector computation using delta net-
works with sparse delta vectors and
weight matrices.

6 Steven K Esser, Paul A Merolla,
John V Arthur, Andrew S Cassidy,
Rathinakumar Appuswamy, Alexander
Andreopoulos, David J Berg, Jeffrey L
McKinstry, Timothy Melano, Davis R
Barch, et al. “Convolutional Networks
for Fast, Energy-Efficient Neuromor-
phic Computing”. In: Proceedings of
the National Academy of Sciences 113.41

(2016), pp. 11441–11446

7 Mohammad Rastegari, Vicente
Ordonez, Joseph Redmon, and Ali
Farhadi. “Xnor-net: Imagenet classi-
fication using binary convolutional
neural networks”. In: European Confer-
ence on Computer Vision. Springer, 2016,
pp. 525–542

8 Song Han, Huizi Mao, and William J
Dally. “Deep compression: Compress-
ing deep neural network with pruning,
trained quantization and huffman
coding”. In: CoRR, abs/1510.00149 2

(2015)
9 Song Han, Junlong Kang, Huizi
Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao,
Yu Wang, et al. “ESE: Efficient Speech
Recognition Engine with Compressed
LSTM on FPGA”. in: FPGA 2017; NIPS
2016 EMDNN workshop. 2016

10 Forrest N Iandola, Matthew W
Moskewicz, Khalid Ashraf, Song Han,
William J Dally, and Kurt Keutzer.
“SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and<
1MB model size”. In: arXiv preprint
arXiv:1602.07360 (2016)
11 Christian Szegedy, Wei Liu,
Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and An-
drew Rabinovich. “Going deeper with
convolutions”. In: Proceedings of the
IEEE Conference on Computer Vision and
Pattern Recognition. 2015, pp. 1–9

12 Gao Huang, Yu Sun, Zhuang Liu,
Daniel Sedra, and Kilian Q Wein-
berger. “Deep networks with stochastic
depth”. In: European Conference on
Computer Vision. Springer. 2016,
pp. 646–661

only 4% of the original operations.
To illustrate the delta network methodology, consider a general

matrix-vector multiplication of the form

r = Wx (7.1)

that uses n2 compute operations 13, n2 + n reads and n writes for a
W matrix of size n× n and a vector x of size n. Now consider mul-
tiple matrix-vector multiplications for a long input vector sequence
xt indexed by t = 1, 2, The result rt can be calculated recursively
as:

rt = W∆ + rt−1, (7.2)

where ∆ = xt − xt−1 and rt−1 is the result obtained from the previ-
ous calculation; if stored, the compute cost of rt−1 is zero as it can
be fetched from the previous timestep. Trivially, x0 = 0 and r0 = 0.
It is clear that

rt = W(xt − xt−1) + rt−1 (7.3)

= W(xt − xt−1) + W(xt−1 − xt−2) + . . . + r0 (7.4)

= Wxt (7.5)

Thus this formulation, which uses the difference between two sub-
sequent timesteps and referred to as the delta network formula-
tion, can be seen to produce exactly the same result as the original
matrix-vector multiplication.

7.3.1 Theoretical Cost Calculation

To illustrate the savings if ∆ from (7.2) is sparse, let us begin defin-
ing oc to be the occupancy of a vector, that is, the percentage of
nonzero elements in the vector.

Consider the compute cost for rt; it consists of the total cost
for calculating ∆ (n operations for a vector of size n), adding in
the stored previous result rt−1 (n operations), and performing the
sparse matrix multiply W∆ (oc · n2 operations for a W of size n× n
and a sparse ∆ vector of occupancy ratio oc). Similarly, the memory
cost for calculating rt requires fetching oc · n2 weights for W, 2n
values for ∆, n values for rt−1 and writing out the n values for rt.

deep neural networks and hardware for event-driven data 120

13 In this paper, a “compute” opera-
tion is either a multiply, an add, or
a multiply-accumulate. The costs of
these operations are similar, partic-
ularly when compared to the cost of
an off-chip memory operation. See
(Horowitz, “1.1 Computing’s energy
problem (and what we can do about
it)”) for a simple comparison of en-
ergy costs of compute and memory
operations.

14 Junyoung Chung, Caglar Gulcehre,
KyungHyun Cho, and Yoshua Ben-
gio. “Empirical evaluation of gated
recurrent neural networks on se-
quence modeling”. In: arXiv preprint
arXiv:1412.3555 (2014)

Overall, the compute cost for the standard formulation (Ccomp,dense)
and the new delta formulation (Ccomp,sparse) will be:

Ccomp,dense = n2 (7.6)

Ccomp,sparse = oc · n2 + 2n (7.7)

while the memory access costs for both the standard (Cmem,dense)
and delta networks (Cmem,sparse) can be seen from inspection as:

Cmem,dense = n2 + n (7.8)

Cmem,sparse = oc · n2 + 4n (7.9)

Thus, the arithmetic intensity (ratio of arithmetic to memory access
costs) as n → ∞ is 1 for both the standard and delta network meth-
ods. This means that every arithmetic operation requires a memory
access, unfortunately placing computational accelerators at a disad-
vantage. However, if a sparse occupancy oc of ∆ is assumed, then
the decrease in computes and memory accesses due to storing the
previous state will result in a speedup of:

Cdense/Csparse ≈ n2/(oc · n2) = (1/oc) (7.10)

For example, if oc = 10%, then the theoretical speedup will be 10X.
Note that this speedup is determined by the occupancy in each
computed ∆ = xt − xt−1, implying that this sparsity is determined
by the data stream. Specifically, the regularity with which values
stay exactly the same between xt and xt−1, or as demonstrated later,
within a certain absolute value called the threshold, determines the
speedup. In a neural network, x can represents inputs, intermediate
activation values, or outputs of the network. If x changes slowly
between subsequent timesteps then the input values xt and xt−1

will be highly redundant, leading to a low occupancy oc and a
correspondingly increased speedup.

7.4 Delta Network GRU

In GRUs, the matrix-vector multiplication operation that can be
replaced with a delta network operation appears several times,
shown in bold below. This GRU formulation is from 14:

rt = σr(Wxrxt + Whrht−1 + br) (7.11)

ut = σu(Wxuxt + Whuht−1 + bu) (7.12)

ct = σc(Wxcxt + rt � (Whcht−1) + bc) (7.13)

ht = (1− ut)� ht−1 + ut � ct (7.14)

Here r, u, c and h are reset and update gates, candidate activation,
and activation vectors, respectively, typically a few hundred ele-
ments long. The σ functions are nonlinear logistic sigmoids that
saturate at 0 and 1. The � signifies element-wise multiplication.
Each term in bold can be replaced with the delta update defined in

deep neural networks and hardware for event-driven data 121

(7.2), forming:

∆x =xt − xt−1 (7.15)

∆h =ht−1 − ht−2 (7.16)

rt =σr(Wxr∆x + zxr + Whr∆h + zhr + br) (7.17)

ut =σu(Wxu∆x + zxu + Whu∆h + zhu + bu) (7.18)

ct =σc(Wxc∆x + zxc + bc

rt � (Whc∆h + zhc)) (7.19)

ht =(1− ut)� ht−1 + ut � ct (7.20)

where the values zxr, zxu, zxc, zhr, zhu, zhc are recursively defined as
the the stored result of the previous computation for the input or
hidden state, i.e.:

zxr := zxr,t−1 = Wxr(xt−1 − xt−2) + zxr,t−2 (7.21)

The above operation can be applied for the other five values zxu,
zxc, zhr, zhu, zhc. The initial condition at time x0 is z0 := 0. Also,
many of the additive terms in the equations above, including the
stored full-rank pre-activation states as well as the biases, can be
merged into single values resulting into four stored memory values
(Mr, Mu, Mxc, and Mhr) for the three gates:

Mt−1 := zx,t−1 + zh,t−1 + b (7.22)

Finally, in accordance with the above definitions of the initial state,
the memories M are initialized at their corresponding biases, i.e.,
Mr,0 = br, Mu,0 = bu, Mxc,0 = bc, and Mhr,0 = 0, resulting in the
following full formulation of the delta network GRU:

∆x = xt − xt−1 (7.23)

∆h = ht−1 − ht−2 (7.24)

Mr,t := Wxr∆x + Whr∆h + Mr,t−1 (7.25)

Mu,t := Wxu∆x + Whu∆h + Mu,t−1 (7.26)

Mxc,t := Wxc∆x + Mxc,t−1 (7.27)

Mhc,t := Whc∆h + Mhc,t−1 (7.28)

rt = σr(Mr,t) (7.29)

ut = σu(Mu,t) (7.30)

ct = σc(Mxc,t + rt �Mhc,t) (7.31)

ht = (1− ut)� ht−1 + ut � ct (7.32)

7.5 Delta Network Approximations

The formulations described in Secs. 7.3 and 7.4 are designed to
give precisely the same answer as the original computation in the
network. However, a more aggressive approach can be taken in
the update, inspired by recent studies that have shown the pos-
sibility of greatly reducing weight precision in neural networks

deep neural networks and hardware for event-driven data 122

15 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)
16 Matthieu Courbariaux, Yoshua Ben-
gio, and Jean-Pierre David. “Low
precision arithmetic for deep learn-
ing”. In: arXiv preprint arXiv:1412.7024
(2014)

17 Thomas Laurent and James von
Brecht. “A recurrent neural network
without chaos”. In: arXiv preprint
arXiv:1612.06212 (2016)

without giving up accuracy 15,16. Instead of skipping a vector-
multiplication computation if a change in the activation ∆ = 0, a
vector-multiplication can be skipped if a value of ∆ is smaller than
the threshold (i.e |∆i,t| < Θ, where Θ is a chosen threshold value
for a state i at time t). That is, if a neuron’s hidden-state M activa-
tion has changed by less than Θ since it was last memorized, the
neuron output will not be propagated, i.e., its ∆ value is set to zero
for that update. Using this threshold, the network will not produce
precisely the same result at each update, but will produce a result
which is approximately correct. Moreover, the use of a threshold
substantially increases activation sparsity.

Importantly, if a non-zero threshold is used with a naive delta
change propagation, errors can accumulate over multiple time steps
through state drift. For example, if the input value xt increases
by nearly Θ on every time step, no change will ever be triggered
despite an accumulated significant change in activation, causing a
large drift in error. Therefore, in our implementation, the memory
records the last value causing an above-threshold change, not the
difference since the last time step.

More formally, the states x̂i,t−1 and ĥj,t−1 are introduced. These
states store the i−th input and the hidden state of the j−th neu-
rons, respectively, at their last change. The current input xi,t and
state hj,t will be compared against these values to determine the ∆.
Then the x̂i,t−1 and ĥj,t−1 values will only be updated if the thresh-
old Θ is crossed. The equations are shown below for x̂i,t−1 with
similar equations for ĥj,t−1:

x̂i,t−1 =

xi,t−1 if |xi,t − x̂i,t−1| > Θ

x̂i,t−2 otherwise
(7.33)

∆xi,t =

xi,t − x̂i,t−1 if |xi,t − x̂i,t−1| > Θ

0 otherwise
(7.34)

That is, when calculating the input delta vector ∆xi,t comprised of
each element i at time t, the difference between two values are used:
the current value of the input xi,t, and the value the last time the
delta vector was nonzero x̂i,t−1. Furthermore, if the delta change is
less than Θ, then the delta change is set to zero, producing a small
approximation error that will be corrected when a sufficiently large
change produces a nonzero update. The same formulation is used
for the hidden state delta vector ∆hj,t.

This input approximation does not guarantee that the output
error is bounded by the same threshold Θ. As supported by pre-
vious studies demonstrating that GRUs can be arbitrarily sensitive
to input perturbations 17, the per-timestep error can grow with the
input error. While thresholding should offer greater sparsity, the
accumulation of these approximations could result in a diverging
output error, therefore motivating the experiments in Sec. 7.7.1 that
examine the effect of approximation on trajectory evolution.

deep neural networks and hardware for event-driven data 123

18 Matthieu Courbariaux, Yoshua Ben-
gio, and Jean-Pierre David. “Low
precision arithmetic for deep learn-
ing”. In: arXiv preprint arXiv:1412.7024
(2014)
19 Evangelos Stromatias, Daniel Neil,
Michael Pfeiffer, Francesco Galluppi,
Steve B Furber, and Shih-Chii Liu.
“Robustness of spiking Deep Belief
Networks to noise and reduced bit
precision of neuro-inspired hardware
platforms”. In: Frontiers in Neuroscience
9 (2015)

7.6 Methods to Increase Accuracy & Speedup

This section presents training methods and optimization schemes
for faster and more accurate delta networks.

7.6.1 Training Directly on Delta Networks

The most principled method of training to minimize accuracy loss
when running as a delta network would be to train directly on
the delta network model. This should yield the best results as the
network will receive errors that arise directly from the truncations
of the delta network computation, and through training, learn to
become robust to the types of errors that delta networks make.

More accurately, instead of training on the original GRU equa-
tions Eq. 7.11–7.14, the state is updated using the delta network
model described in Eq. 7.23–7.34. Importantly, this change should
incur no accuracy loss between train accuracy and test accuracy,
though gradient descent may yet have more difficulty optimizing
the model during training.

7.6.2 Rounding Network Activations

As the truncation of network activation due to the delta network is
inherently non-differentiable, this training method should be com-
pared against more widely used methods to verify its effectiveness.
The delta network’s computation can be viewed as analogous to
the reduced-precision rounding training methods; small changes
are rounded to zero while larger changes are propagated. Since
many previous investigations have demonstrated methods to train
networks to be robust against small rounding errors by rounding
during training 18,19, these methods can be leveraged here to train
a network that does not rely on small fluctuations in inputs. Low-
precision computation and parameters can further reduce power
consumption and improve the efficiency of the network for dedi-
cated hardware implementations.

As explored in previous studies, a low-resolution activation θL in
signed fixed-point format Qm. f with m integer bits and f fractional
bits can be produced from a high-resolution activation θ by using a
deterministic and gradient-preserving rounding: θL = round(2 f ·
θ) · 2− f with 2 f · θ clipped to a bounding range [−2m+ f−1, 2m+ f−1]

to produce a quantized fixed-point activation. Thus, the output
error cost forces the network to avoid quantization errors during
training.

7.6.3 Adding Gaussian Noise to Network Activations

Random noise injection provides another useful comparison point.
By injecting noise, the network will be unable to rely on small
changes, and occasionally even larger changes will be incorrect
(as may be the case of threshold rounding). This robustness can

deep neural networks and hardware for event-driven data 124

20 Joachim Ott, Zhouhan Lin, Ying
Zhang, Shih-Chii Liu, and Yoshua
Bengio. “Recurrent Neural Networks
With Limited Numerical Precision”. In:
arXiv preprint arXiv:1608.06902 (2016)

be provided by adding Gaussian noise η to terms that will have a
thresholded delta activation:

rt =σr((xt + ηx)Wxr + (ht−1 + ηh)Whr + br) (7.35)

ut =σu((xt + ηx)Wxu + (ht−1 + ηh)Whu + bu) (7.36)

ct =σc((xt + ηx)Wxc+

rt � ((ht−1 + ηh)Whc) + bc) (7.37)

ht = (1− ut)� ht−1 + ut � ct (7.38)

where η ∼ N (µ, σ). That is, η is a vector of samples drawn from
the Gaussian distribution with mean µ and variance σ, and η ∈
{ηx, ηh}. Each element of these vectors is drawn independently.
Typically, the value µ is set to 0 so that the expectation is unbiased,
e.g., E[xt + ηx] = E[xt].

As a result, the Gaussian noise should prevent the network from
being sensitive to minor fluctuations, and increase its robustness to
truncation errors.

7.6.4 Considering Weight Sparsity

In all training methods, considering the additional speedup from
weight sparsity, in addition to skipping activation computation,
should improve the theoretical speedup. Studies such as in 20 show
that in trained low-precision networks, the weight matrices can be
quite sparse. For example, in a ternary or 3-bit weight network the
weight matrix sparsity can exceed 80% for small RNNs. Since every
nonzero input vector element is multiplied by a column of the
weight matrix, this computation can be skipped if the weight value
is zero. That is, the zeros in the weight matrix act multiplicatively
with the delta vector to produce even fewer necessary multiply-
accumulates, as illustrated above in Fig. 7.2.

The compute cost of the matrix-vector product will be Ccomp,sparse =

om · oc · n2 + 2n and the memory cost will be Cmem,sparse = om ·
oc · n2 + 4n for a weight matrix with occupancy om. By compar-
ison to Eq. 7.10, the system can achieve a theoretical speedup of
1/(om · oc). That is, by compressing the weight matrix and only
fetching nonzero weight elements that combine with the nonzero
state vector, a higher speedup can be obtained without degrading
the accuracy.

7.6.5 Incurring Sparsity Cost on Changes in Activation

Finally, a computation-specific cost can be associated with the delta
terms and added to the overall cost. In an input batch, the L1 norm
for ∆h can be calculated as the mean absolute delta changes, and
this norm can be scaled by a weighting factor β. This Lsparse cost
(Lsparse = β||∆h||1) can then be additively incorporated into the
standard loss function. Here the L1 norm is used to encourage
sparse values in ∆h, so that fewer delta updates are required.

deep neural networks and hardware for event-driven data 125

21 Sander Dieleman et al. Lasagne:
First release. Aug. 2015. doi: 10.
5281/zenodo.27878. url: http:
//dx.doi.org/10.5281/zenodo.27878
22 James Bergstra, Olivier Breuleux,
Frédéric Bastien, Pascal Lamblin, Raz-
van Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley,
and Yoshua Bengio. “Theano: a CPU
and GPU math expression compiler”.
In: Proceedings of the Python for scientific
computing conference (SciPy). Vol. 4.
2010, p. 3

23 Daniel Neil and Shih-Chii Liu. “Ef-
fective Sensor Fusion with Event-Based
Sensors and Deep Network Archi-
tectures”. In: IEEE Int. Symposium on
Circuits and Systems (ISCAS). 2016,
pp. 2282–2285

7.7 Results

This section presents results demonstrating the trade-off between
compute savings and accuracy loss, using Delta Network RNNs
trained on the TIDIGITS digit recognition benchmark. Furthermore,
it also demonstrates that the results found on small datasets also
translate to the much larger Wall Street Journal speech recognition
benchmark. The final example is for a CNN-RNN stack trained
on end-to-end steering prediction using a recent driving dataset.
The fixed-point Q3.4 (i.e. m = 3 and f = 4) format was used
for network activation values in all speech experiments except the
“Original” RNN line for TIDIGITS in Fig. 7.4, which was trained
in floating-point representation. The driving dataset in Sec. 7.7.4
used Q2.5 activation. The networks were trained with Lasagne 21

powered by Theano 22. Reported training time is for a single Nvidia
GTX 980 Ti GPU.

7.7.1 TIDIGITS Dataset Trajectory Evolution

0 5 10 15 20 25 30 35 40 45
Angle [Degrees]

0

5

10

15

20

Er
ro

r,
Re

la
tiv

e
to

 B
es

t T
ra

in
in

g
Er

ro
r [

%
]

Thr: 0.00
Thr: 0.05
Thr: 0.10
Thr: 0.15
Thr: 0.20
Thr: 0.25
Thr: 0.30
Thr: 0.35
Thr: 0.40
Thr: 0.45
Thr: 0.50
Thr: 0.55
Thr: 0.60
Thr: 0.65
Thr: 0.70
Thr: 0.75
Thr: 0.80
Thr: 0.85

160 180 200 220 240
Time [Timesteps]

0

10

20

30

40

50

60

70

80

90

A
ng

le
 [D

eg
re

es
]

Figure 7.3: Comparison of trajecto-
ries over time by increasing Θ from
0 to 0.85 in steps of 0.05. At left, an
increase of error angle between the
final training state and the final thresh-
olded state manifests as a decrease in
accuracy, with the Gaussian-trained
net as squares and Delta Network
(DN)-trained net as circles. At right,
the mean angle between the unap-
proximated state and the thresholded
state over time. In red, the angle over
time of an untrained network that has
the same weight statistics as a trained
network; in solid lines, a network
that was trained as a delta network;
in dashed lines, a network that was
only trained with Gaussian noise.
Curves for Θ = 0.55 are highlighted in
blue. Note that a DN-trained network
has lower angle error, especially at
higher thresholds, and an untrained
net always quickly converges to an
orthogonal state.

The TIDIGITS dataset was used as an initial evaluation task to
study the trajectory evolution of delta networks. Single digits (“oh”
and zero through nine), totalling 2464 digits in the training set and
2486 digits in the test set, were transformed in the standard way 23

to produce a 39-dimensional MFCC feature vector using a 25 ms
window, 10 ms frame shift, and 20 filter bank channels. The labels
for “oh” and “zero" were collapsed to a single label. Training time
is approximately 8 minutes for a 150 epoch experiment.

The network architecture consists of a layer of 200 GRU units
connected to a layer of 200 fully-connected units and finally to a
classification layer for the 10 digit classes. First, a network was
trained with Gaussian noise injection (Sec. 7.6.3) and subsequently
tested using the delta network GRU formulation given in Sec. 7.4.
A second network was trained directly on the delta network GRU

https://doi.org/10.5281/zenodo.27878
https://doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878

deep neural networks and hardware for event-driven data 126

formulation in accordance with Sec. 7.6.1, with the same architec-
ture and Θ = 0.5. Finally, a third network was constructed from
the DN-trained network by permuting its weights to produce an
“untrained” network with identical weight statistics.

To determine the robustness of the network to thresholded input,
the trajectory evolution of these three networks were examined in
comparison to their training conditions. Since the hidden states are
bounded by (-1, 1) from the tanh nonlinearity, each 200-dimensional
hidden state vector is normalized to construct a unit vector. Then,
the error angle between the hidden state at training time and the
hidden state with a threshold is measured. This error angle is cor-
related with the final accuracy, as seen in Fig. 7.3 left. The threshold
is swept from 0 to 0.85, producing the results found in Fig. 7.3 right,
in which each line represents the mean difference angle over all
states across time. The figure begins at the median start point of a
digit presentation (t=158), as the digits are pre-padded with zeros
to match lengths.

A Gaussian-trained network’s trajectory initially matches its
training trajectory to produce a low error angle at low thresholds,
which gradually increases as the threshold is raised. However,
across a wide range of Θ, a DN-trained net’s trajectory matches its
training trajectory much more closely to produce a tighter-spaced
arrangement and substantially lower angle error at higher thresh-
old. Finally, an untrained network is indeed very sensitive to input
approximations and quickly reaches an orthogonal representation,
thus emphasizing the role of training to provide robustness.

7.7.2 TIDIGITS Dataset Speedup and Accuracy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold at Test

90

91

92

93

94

95

96

97

98

99

A
cc

ur
ac

y
[%

, S
ol

id
]

1
1a

1ab
2, 2a

2ab

1: Original
1a: + Rounding during Train
1ab: + Noise
2: Train on DN
2a: + Account for Sparse Weights
2ab: + L1 Cost

0

2

4

6

8

10

12

14

Sp
ee

du
p

Fa
ct

or
 [D

as
he

d]

Figure 7.4: Test accuracy results from
standard GRUs run as delta networks
after training (curves 1, 1a, and 1ab)
and those trained as delta networks
(curves 2, 2a, and 2ab) under different
constraints on the TIDIGITS dataset.
The delta networks are trained for
Θ = 0.5, and the average of five runs
is shown. Note that the methods are
combined, hence the naming scheme.
Additionally, the accuracy curve for 2
is hidden by the curve 2a, since both
achieve the same accuracy and only
differ in speedup metric.

The results of applying the methods introduced in Sec. 7.6 can
be found in Fig. 7.4. There are two quantities measured: the change
in the number of memory fetches, and the accuracy as a function of
the threshold Θ. Fig. 7.5 shows the same results, but removes the

deep neural networks and hardware for event-driven data 127

0 2 4 6 8 10 12 14 16
Speedup Factor [x]

90

92

94

96

98

100
A

cc
ur

ac
y

[%
]

1

1a

1ab 2 2a

2ab

1: Original
1a: + Rounding during Train
1ab: + Noise
2: Train on DN
2a: + Account for Sparse Weights
2ab: + L1 Cost

Figure 7.5: Accuracy-speedup tradeoff
by adjusting Θ for TIDIGITS. By in-
creasing Θ (indicated by sample point
size), larger speedups can be obtained
at greater losses of accuracy. For net-
works trained as delta networks, the
training threshold is the first (leftmost)
point in the line point sequence.

threshold axis to directly compare the accuracy-speedup tradeoff
among the different training methods.

First, a standard GRU RNN achieving 96.59% accuracy on
TIDIGITS was trained without data augmentation and regular-
ization. This network has the architecture described in Sec. 7.7.1. It
was then subsequently tested using the delta network GRU formu-
lation given in Sec. 7.4.

The standard RNN run as a delta network (“Original”) achieves
95% accuracy (a drop from zero delta threshold accuracy of 96%)
with a speedup factor of about 2.2X. That is, only approximately
45% of the computes or fetches are needed in achieving this accu-
racy. By adding the rounding constraint during training (“+ Round-
ing during Training”), the accuracy is nearly 97% with an increase
to a 3X speedup. By incorporating Gaussian noise (“+ Noise”), 97%
accuracy can be maintained with a 5X speedup. Essentially, these
methods added generalization robustness to the original GRU,
while preventing small changes from influencing the network out-
put. These techniques allow a higher threshold to be used while
maintaining the same accuracy, therefore resulting in a decrease of
memory fetches and a corresponding speedup.

The best model for training is the delta network itself (“Train on
DN”). This network achieved 97.5% accuracy with a 8X speedup.
Accounting for the pre-existing sparsity in the weight matrix
(“+ Account for Sparse Weights”), the speedup increases to 10.5X,
without affecting the accuracy (since it is the same network). Fi-
nally, incorporating an L1 cost on network changes in addition to
training on the delta network model (“+ L1 cost”) achieves 97%
accuracy while boosting speedup to 11.9X. Adding in the final
sparseness cost on network changes decreases the accuracy slightly
since the loss minimization must find a tradeoff between both error
and delta activation instead of considering error alone. However,
using the L1 loss can offer a significant additional speedup while

deep neural networks and hardware for event-driven data 128

24 Stefan Braun, Daniel Neil, and
Shih-Chii Liu. “A Curriculum Learn-
ing Method for Improved Noise
Robustness in Automatic Speech
Recognition”. In: arXiv preprint
arXiv:1606.06864 (2016)

25 Eder Santana and George Hotz.
“Learning a Driving Simulator”. In:
arXiv preprint arXiv:1608.01230 (2016)
26 Martin Hempel. “Deep Learning
for Piloted Driving”. In: NVIDIA
GPU Tech Conference. 2016; Mariusz
Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D.
Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Ziebam. “End to End
Learning for Self-Driving Cars”. In:
arXiv preprint arXiv:1604.07316 (2016)
27 Martin Hempel. “Deep Learning for
Piloted Driving”. In: NVIDIA GPU
Tech Conference. 2016

retaining an accuracy increase over the original GRU network.
Finally, Fig. 7.5 also demonstrates the primary advantage given

by each algorithm; an increase in generalization robustness man-
ifests as an overall upward shift in accuracy, while an increase in
sparsity manifests as a rightward shift in speedup. As proposed,
methods 1a and 1b increase generalization robustness while only
modestly influencing the sparsity. Method 2 greatly increases both,
while method 2a only increases sparsity, and finally method 2ab
slightly decreases accuracy but offers the highest speedup.

7.7.3 Wall Street Journal Dataset

The delta network methodology was applied to an RNN trained on
the larger WSJ dataset to determine whether it could produce the
same gains as seen with the TIDIGITS dataset. This dataset com-
prised 81 hours of transcribed speech, as described in 24. Similar to
that study, the first 4 layers of the network consisted of bidirectional
GRU units with 320 units in each direction. Training time for each
experiment was about 120h.

Fig. 7.6 presents results on the achieved Word Error Rate (WER)
and speedup on this dataset for two cases: First, running an exist-
ing speech transcription RNN as a delta network (results shown as
solid curves labeled “RNN used as a DN”), and second, a network
trained as a delta network with results shown as the dashed curves
“Trained Delta Network”. The speedup here accounts for weight
matrix sparsity as described in Sec. 7.6.4 .

Surprisingly, the existing highly trained network already shows
significant speedup without loss of accuracy as the threshold, Θ,
is increased: At Θ = 0.2, the speedup is about 5.5X with a WER
of 10.8% compared with the WER of 10.2% at Θ = 0. However,
training theRNN to run as a delta network yields a network that
achieves a slightly higher 5.7X speedup with the same WER. Thus,
even the conventionally-trained RNN run as a delta network can
provide greater than 5X speedup with only a 1.05X increase in the
WER.

7.7.4 Comma.ai Driving DataSet

Driving scenarios are rapidly emerging as another area of RNN
focused research. Here, the delta network model was applied to
determine the gains of exploiting the redundancy of real-time video
input. The open driving dataset from comma.ai 25 with 7.25 hours
of driving data was used, with video data recorded at 20 Frames
Per Second (FPS) from a camera mounted on the windshield. The
network is trained to predict the steering angle from the visual
scene similar to 26. The approach in 27 is followed by using an RNN
on top of the CNN feature detector. The CNN feature detector
has three convolution layers without pooling layers and a fully-
connected layer with 512 units. During training, the CNN feature
detector was pre-trained with an analog output unit to learn the

deep neural networks and hardware for event-driven data 129

0.0 0.1 0.2 0.3 0.4 0.5
Threshold

0

2

4

6

8

10

12
Re

du
ct

io
n

in
 O

ps
 [M

ul
tip

le
s]

1.3x

3.1x

4.2x
4.7x

5.7x
6.2x

7.3x

8.5x
9.1x

10.3x

0

10

20

30

40

50

W
or

d
Er

ro
r R

at
e

10.2% 10.2% 10.2% 10.4% 10.8% 11.0% 12.1%
13.2% 14.2%

16.3%

Trained Delta Network
GRU Network used as a DN

Figure 7.6: Accuracy and speedup
tradeoffs on the WSJ dataset. The
solid lines show results from an
existing deep RNN run as a delta
network. The dashed lines show
results from a network trained as a
delta network with Θ = 0.2. The
horizontal lines indicate the non-delta
network accuracy level; similarly, the
solid and dashed horizontal lines
indicate the accuracy of the normal
network and the DN network prior to
rounding, respectively.

Figure 7.7: Reduction of RNN compute
cost in the steering angle prediction
task. Top figure shows the required #
of ops per frame for the delta network
GRU layer (trained with Θ = 0.1)
in comparison with the conventional
GRU case. Bottom figure compares
the prediction errors of CNN predictor
and CNN+RNN predictor. The RNN
slightly improves the steering angle
prediction.

recorded steering angle from randomly selected single frame im-
ages. Afterwards, the delta network RNN was added, and trained
by feeding sequences of the visual features from the CNN feature
detector to learn sequences of the steering angle. Since the Q2.5 for-
mat was used for the GRU layer activations, the GRU input vectors
were scaled to match the CNN output and the target output was
scaled to match the RNN output.

However, this raw dataset results in a few practical difficulties
and requires data preprocessing. By excluding the frames recorded
during periods of low speed driving, the segments where the steer-
ing angle is not correlated to the direction of the car movement can
be removed. Training time of the CNN feature detector was about
8h for 10k updates with the batch size of 200. Training of the RNN
part took about 3h for 5k updates with the batch size of 32 samples
consisting of 48 frames/sample.

A very large speedup exceeding 100X in the delta network GRU
can be seen in Fig. 7.7, computed for the steering angle prediction
task on 2000 consecutive frames (100s) from the validation set.
While the number of operations per frame remains constant for
the conventional GRU layer, those for the delta network GRU layer

deep neural networks and hardware for event-driven data 130

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
Thre shold

0

1 0 0

2 0 0

3 0 0

4 0 0

S
p

e
e

d
u

p

4 2 x

6 7 x

1 3 7 x

1 7 7 x

2 5 3 x

3 2 4 x

3 5 4 x

4 0 5 x

2 7

2 8

2 9

3 0

3 1

3 2

3 3

R
M

S
P

re
d

ic
ti

o
n

e
rr

[d
e

g
re

e
]

CNN only

Figure 7.8: Tradeoffs between predic-
tion error and speedup of the GRU
layer on the steering angle predic-
tion. The result was obtained from
1000 samples with 48 consecutive
frames sampled from the validation
set. Speedup here does not include
weight matrix sparsity. The network
was trained with Θ = 0.1. A speedup
of approximately 100X can be obtained
without increasing the prediction error,
using Θ between 0.1 and 0.25.

28 Peter O’Connor and Max Welling.
“Sigma Delta Quantized Networks”.
In: arXiv preprint arXiv:1611.02024
(2016)
29 Ken Chatfield, Karen Simonyan, An-
drea Vedaldi, and Andrew Zisserman.
“Return of the devil in the details:
Delving deep into convolutional nets”.
In: arXiv preprint arXiv:1405.3531 (2014)

varies dynamically depending on the change of visual features.
In this steering network, the computational cost of the CNN

(about 37 MOp/frame) dominates theRNN cost (about 1.58 MOp/frame),
therefore the overall system-level computational savings is only
about 4.2%. However, future applications will likely have efficient
dedicated vision hardware or require a greater role for RNNs in
processing numerous and complex data streams, which result in
RNN models that consume a greater percentage of the overall ener-
gy/compute cost. Even now, the steering angle prediction network
already benefits from a delta network approach.

7.8 Discussion and Conclusion

Although the delta network methodology can be applied to other
network architectures, as was shown in similar concurrent work for
CNNs 28, in practice a larger benefit is seen in RNNs because all the
intermediate activation values for the delta networks are already
stored between subsequent inputs. For example, the widely-used
VGG19 CNN has 16M neuron states 29. Employing the delta net-
work approach for CNNs requires doubled memory access and
significant additional memory space to store the entirety of the net-
work state. Because the cost of external memory access is hundreds
of times larger than that of arithmetic operations, delta network
CNNs seem impractical without novel memory technologies to
address this issue.

In contrast, RNNs have a much larger number of weight pa-
rameters than activations. The sparsity of the delta activations can
therefore enable large savings in power consumption by reducing
the number of memory accesses required to fetch weight parame-
ters. CNNs, however, do not have this advantage since the weight
parameters are few and shared by many units. Finally, the delta
network approach is extremely flexible as pre-existing networks
can be used without retraining, or trained specifically for increased

deep neural networks and hardware for event-driven data 131

optimization.

7.9 Conclusion: Extending Event-based Principles to Compu-
tation

These recurrent networks were inspired by the way event-based
sensors save on data transmission by not re-transmitting unchang-
ing pixels. Here, in this chapter, the inherent temporal redundancy
of neural activations over time was exploited to reduce computa-
tion, resulting in real-world speedups of 6x to 9x on speech applica-
tions and over 100x on steering angle prediction RNNs.

deep neural networks and hardware for event-driven data 133

1 Patrick Lichtsteiner, Christoph Posch,
and Tobi Delbruck. “A 128× 128

120 dB 15 µs latency asynchronous
temporal contrast vision sensor”. In:
IEEE Journal of Solid-State Circuits 43.2
(2008), pp. 566–576

2 S-C. Liu, A. van Schaik, B. Minch,
and T. Delbrück. “Asynchronous
Binaural Spatial Audition Sensor with
2× 64× 4 Channel Output”. In: IEEE
Trans. Biomed. Circuits Syst. 8.4 (2014),
pp. 453–464. doi: 10.1109/TBCAS.
2013.2281834
3 Ilya Kiselev, Daniel Neil, and Shih-
Chii Liu. “Event-Driven Deep Neural
Network Hardware System for Sensor
Fusion”. In: IEEE Int. Symposium on
Circuits and Systems (ISCAS). 2016

4 Ilya Kiselev, Daniel Neil, and Shih-
Chii Liu. “Live demonstration: Event-
Driven Deep Neural Network Hard-
ware System for Sensor Fusion”. In:
IEEE Int. Symposium on Circuits and
Systems (ISCAS). 2016

5 Evangelos Stromatias, Daniel Neil,
Francesco Galluppi, Michael Pfeiffer,
Shih-Chii Liu, and Steve Furber.
“Event-Driven Deep Neural Network
Hardware System for Sensor Fusion”.
In: 2015 IEEE International Symposium
on Circuits and Systems (ISCAS). 2015,
pp. 1901–1901

6 Kaiming He, Xiangyu Zhang, Shao-
qing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.
2016, pp. 770–778

7 Yu-Hsin Chen, Tushar Krishna, Joel S
Emer, and Vivienne Sze. “Eyeriss:
An energy-efficient reconfigurable
accelerator for deep convolutional
neural networks”. In: IEEE Journal of
Solid-State Circuits 52.1 (2017), pp. 127–
138

8
Conclusion, and Towards a Future of Event-based Ma-
chine Learning

The previous chapters have introduced many new algorithms
and implementations to increase the state-of-the-art, both in ac-
curacy and total-system cost of latency, computation, and power.
These designs resulted from a systematic investigation of bridging
the domains of deep learning with the advantages of event-based
sensors such as the silicon retina 1 and the silicon cochlea 2. Thank-
fully, this work has been fruitful in establishing directions that other
authors have pushed forward as well, and, in some cases, the state-
of-the-art lies far beyond what began in this thesis.

Chapter 2 introduced the Minitaur architecture for real-time clas-
sification of event-driven inputs. Other work 3,4 significantly sped
up the Minitaur architecture and demonstrated it in a real-time,
entirely-hardware, multi-modal audio-visual system. Similarly, the
event-driven Deep Belief Network on SpiNNaker was also demon-
strated in a real-time application 5. However, it was clearer by these
later developments that deep belief networks were not an ideal
model for image classification; convolutional neural networks had
begun to dominate image classification benchmarks 6, and ex-
tremely efficient platforms 7 provide exceedingly low-power, high-
compute ASICs to efficiently acquire the result of the computation.
While convolutional neural networks lacked the other advantages
of event-based processing, their high efficiency and compatibility
with traditional sensors make them extremely attractive targets for
research. At least for now, it appears that static image classification
is more closely aligned to be a problem for static sensors rather
than dynamic, active sensors.

Chapter 3 demonstrated how to convert a standard frame-based
Convolutional Neural Network into an event-driven spiking neural
network, and showcased the work on the simple but well-studied
dataset MNIST 8. Work on this path has continued, overcoming
challenges found when scaling up to more complex and interesting
datasets. Now, networks as complex as VGG 9, trained on the large-
scale image recognition challenge ImageNet 10 and even Residual
Networks 11 can be converted to spiking networks with high ac-

https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1109/TBCAS.2013.2281834

deep neural networks and hardware for event-driven data 134

8 Yann LeCun, Corinna Cortes, and
Christopher JC Burges. The MNIST
database of handwritten digits. 1998

9 Ken Chatfield, Karen Simonyan, An-
drea Vedaldi, and Andrew Zisserman.
“Return of the devil in the details:
Delving deep into convolutional nets”.
In: arXiv preprint arXiv:1405.3531 (2014)
10 Jia Deng, Wei Dong, R. Socher, Li-Jia
Li, Kai Li, and Li Fei-Fei. “ImageNet:
A large-scale hierarchical image
database”. In: IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR). 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848
11 Kaiming He, Xiangyu Zhang, Shao-
qing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.
2016, pp. 770–778

12 Bodo Rueckauer, Iulia-Alexandra
Lungu, Yuhuang Hu, and Michael
Pfeiffer. “Theory and Tools for the
Conversion of Analog to Spiking
Convolutional Neural Networks”. In:
arXiv preprint arXiv:1612.04052 (2016)
13 Hongjie Liu, Diederik Paul Moeys,
Daniel Neil, Shih-Chii Liu, and Tobias
Delbruck. “Combined frame- and
event-based detection and tracking”.
In: IEEE Int. Symposium on Circuits and
Systems (ISCAS). 2016

14 D. P. Moeys, F. Corradi, E. Kerr, P.
Vance, G. Das, D. Neil, D. Kerr, and
T. Delbrück. “Steering a predator robot
using a mixed frame/event-driven
convolutional neural network”. In:
2016 Second International Conference on
Event-based Control, Communication, and
Signal Processing (EBCCSP). June 2016,
pp. 1–8. doi: 10.1109/EBCCSP.2016.
7605233
15 Diederik Paul Moeys, Federico
Corradi, Emmett Kerr, Philip Vance,
Gautham Das, Daniel Neil, Dermot
Kerr, and Tobi Delbrück. “Steer-
ing a predator robot using a mixed
frame/event-driven convolutional neu-
ral network”. In: Event-based Control,
Communication, and Signal Processing
(EBCCSP), 2016 Second International
Conference on. IEEE. 2016, pp. 1–8

16 Yangqing Jia, Evan Shelhamer, Jeff
Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. “Caffe:
Convolutional Architecture for Fast
Feature Embedding”. In: arXiv preprint
arXiv:1408.5093 (2014)
17 J. Anumula, D. Neil, X-Y. Li, T.
Delbruck, and S-C. Liu. “Live Demon-
stration: Event-Driven Real-Time
Spoken Digit Recognition System”.
In: IEEE International Symposium on
Circuits and Systems. May 2017

curacy in the most recent advance 12. However, in practice, given
an event-based sensor, the methodology of converting a static con-
volutional network to a dynamic spiking network has been less
appealing than the reverse: converting the dynamic input into a
static frame compatible with a static convolutional network. That
is, rather than taking a convolutional network and turning into
a spiking one, practical experiments 13,14,15 - even ones that use
dynamic event-based sensors - tend to bin the events into static
frames. Unfortunately, the process of removing the dynamics by
binning events into frames has been more thoroughly explored in
the past, is easier to understand, and allows using state-of-the-art
and industry standard tools 16 for the more challenging and com-
putationally costly deep network training and execution. Further
work continues to explore new methods to convert events into static
frames 17 to attempt to maintain the advantages of both event-
driven sensing and the ease of standard toolsets.

Chapter 4 introduced novel methods of optimizing neural net-
work computation. These methods have been somewhat neglected
because image classification, as a task, does not appear to be one
which currently plays to the advantages of event-based sensors.
These techniques, which aim to classify effectively with lower data
integration time, could even be useful for convolutional networks
that operate on frames of events to achieve lower latency. Another
technique that has proved quite useful even for static convolutional
networks is the low-precision work introduced in Chapter 2. Exten-
sions of this work have produced a low-precision version of Caffe
which incorporates hardware implementation constraints (such as
bit precision of weights and activations) 18. This software is now
the dominant in-house method for training neural networks which
work on the highly-optimized hardware platforms produced by our
research group. In addition to low-precision constraints, perhaps
future work can also introduce some of these methods to allow
improved classification at reduced latencies.

Chapter 5 and Chapter 6 introduce the Phased LSTM model that
extends a state-of-the-art recurrent network model with a time gate
to make it compatible with continuous-time signals. To encourage
PLSTM’s use among the mainstream machine learning community,
many of the introduced tasks are aimed at very conventional ma-
chine learning tasks, such as natural language processing and audio
classification. However, while the experiments did indeed show
advances over the state-of-the-art for these tasks, much of the im-
provement appeared to come from the sparse representation’s long
memory of the past.

Yet the Phased LSTM model offers so much more. The purpose
of Phased LSTM is to work with continuous-time signals and ex-
pand the types of sensors to which state-of-the-art machine learning
can be applied. It was demonstrated in Chapter 5 to work with the
DVS surprisingly well, outperforming all other dynamic and static
models. Importantly for many applications, it also allows merg-

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/EBCCSP.2016.7605233
https://doi.org/10.1109/EBCCSP.2016.7605233

deep neural networks and hardware for event-driven data 135

18 Now developed in collaboration with
Moritz Milde, publication forthcoming.

ing multiply-timed sensors together, performing computation on
an input only when that particular sensor has input or when the
underlying periodicity encourages a neuron to wake up and pay
attention. In unpublished work, it was also used with wind farm
data, and offered an unexpected advantage: data which was miss-
ing, normally presenting a challenge for machine learning but a
frequent occurrence when using real-world datasets, was natively
handled. When data was missing due to collection difficulties or
sensor failure, the network that relies on this data interprets it like
all other points in continuous time that do not receive data and ig-
nores it - which can be difficult to do with standard RNN models
that expect a periodic timestep.

However, Phased LSTM was also introduced to tackle a larger
question. Time is an incredibly underutilized aspect of informa-
tion processing, as very few applications make use of continuous
time. One initial goal of Phased LSTM was to introduce a model
that allowed simpler and easier explorations of continuous-time
signals, as Phased LSTM effectively constructs a high-dimensional
learned discretization of continuous-time signals. The aim was
that the Phased LSTM models would latch onto the principal fre-
quencies that compose a signal, and neurons would emerge that
correspond to the rhythms of - for example - phonemes, syllables,
words, sentences, and dialogues. Instead, all attempts to under-
stand why Phased LSTM chooses the rhythms it learns have been
foiled. The rhythms do appear to be effective at solving the tasks,
but they follow no apparent logic. For the frequency discrimination
task, they do not choose to learn the frequency or its complement,
but rather remain close to their initial values perturbed in small but
apparently informative ways. Similarly surprising, nearly identical
accuracy results can be achieved with massively different distribu-
tions of timing parameters - whether favoring many shorter times,
many longer times, or biased mixes of the two. Yet, they do play a
critical role: disabling learning or perturbing the timing parameters
after training can lead to dramatic losses in accuracy. I would en-
courage further work to enhance this aspect: a model that learns to
decompose the data across time and shows an attentional focus that
reflects the expected periodicities in data. Ample data can be found
which exhibits patterns at multiple resolutions of time, e.g. solar
power output, and an interpretable model should show neuron
attentional cycles across hours, days, seasons, and years.

Finally, Chapter 7 outlined an algorithmic optimization for recur-
rent neural networks which offers 6x-100x speedups on real-world
problems by exploiting redundancy in the input representation.
While these theoretical speedups are significant, many challenges
remain to implement them in practice. Current tensor computation
methods suffer significant slowdowns when using sparse tensor
operations, and often only begin to be faster than their dense equiv-
alents when approximately 80% sparse. Faster sparse libraries and
Just-in-time (JIT) tensor compilation will continue to increase the

deep neural networks and hardware for event-driven data 136

19 Daniel Neil. “Online Learning in
Event-based Restricted Boltzmann
Machines”. PhD thesis. Institute of
Neuroinformatics, 2013

20 Emre Neftci, Srinjoy Das, Bruno
Pedroni, Kenneth Kreutz-Delgado, and
Gert Cauwenberghs. “Event-driven
contrastive divergence for spiking
neuromorphic systems”. In: Frontiers
in Neuroscience 7.272 (2013)
21 Enea Ceolini, Daniel Neil, Tobi
Delbruck, and Shih-Chii Liu. “Tem-
poral sequence recognition in a self-
organizing recurrent network”. In:
Event-based Control, Communication, and
Signal Processing (EBCCSP), 2016 Second
International Conference on. IEEE. 2016,
pp. 1–4

22 Giacomo Indiveri, Elisabetta Chicca,
and Rodney J Douglas. “Artificial cog-
nitive systems: From VLSI networks
of spiking neurons to neuromorphic
cognition”. In: Cognitive Computation
1.2 (2009), pp. 119–127

speed of sparse software implementations to realize these theo-
retical gains, but to achieve the maximum speedup a specialized
hardware approach should be used. Indeed, this hardware platform
is under development and, excitingly, currently demonstrates state-
of-the-art performance and efficiency for implementing recurrent
neural networks, reinforcing the advantages proposed in this initial
work.

8.1 Towards the Future

Much remains to be yet accomplished, even in the restricted
domain of deep learning for event-based sensors. While the advan-
tages of event-based sensors have been demonstrated on bench-
mark tasks, the lack of real-world results using event-based sensors
remains troubling. However, I am hopeful the future will make bet-
ter use of this low-power and low-latency event-based sensors, as
the next wave of applications seems to require the advantages of
these sensors.

Autonomous vehicles will demand substantially lower-latency sen-
sors to react quickly to unexpected stimuli. This sort of application,
in which a rapid-changing environment needs efficient and accu-
rate analysis, plays directly into the strengths of the sensors and
the algorithms that satisfy the goals of this thesis. Moreover, whole-
system analysis will become more commonplace in closed-loop
systems like autonomous driving; factors like sensor latency, power
consumption, and even sensor cost all play a role in determining
the efficacy of the platform in ways that do not appear in standard
machine learning benchmarks that focus solely on accuracy. Defin-
ing the holistic requirements for a sensor platform provides a way
for the event-based sensors to better compete with state-of-the-art
standard sensors, and the algorithms described in this thesis can
help reinforce the usefulness of such systems.

Another area of rapid exploration is an increased focus on on-
line learning. Rising concern about privacy issues is decreasing
the availability of the large datasets that power the effectiveness
of deep learning. Users have begun to desire increased personal-
ization without submitting their data to companies beyond their
control, which is exactly the scenario that online learning studies. A
significant history of work in online learning in the neuromorphic
community 19,20,21,22 should permit event-based methods relevance
in the initial foray into online learning using deep neural networks.

Finally, one major purpose of event-based learning is to feed
knowledge back into the neuroscience community that inspired
these sensors. Inherently, the algorithms that operate on event-
based inputs are algorithms that can use spikes; this property
should be advantageous when studying biological neural systems
which communicate using spikes. It would excite me greatly to
see methods like PLSTM applied to neuroscientific targets and any

deep neural networks and hardware for event-driven data 137

23 Peter O’Connor and Max Welling.
“Deep Spiking Networks”. In: arXiv
preprint arXiv:1602.08323 (2016)
24 Jun Haeng Lee, Tobi Delbruck, and
Michael Pfeiffer. “Training deep spik-
ing neural networks using backpropa-
gation”. In: Frontiers in Neuroscience 10

(2016)
25 Arash Samadi, Timothy P Lillicrap,
and Douglas B Tweed. “Deep Learning
with Dynamic Spiking Neurons and
Fixed Feedback Weights”. In: Neural
Computation (2017)
26 Timothy P Lillicrap, Daniel Cown-
den, Douglas B Tweed, and Colin
J Akerman. “Random feedback
weights support learning in deep
neural networks”. In: arXiv preprint
arXiv:1411.0247 (2014)
27 Jonathan Binas, Daniel Neil, Gi-
acomo Indiveri, Shih-Chii Liu, and
Michael Pfeiffer. “Precise deep neural
network computation on imprecise
low-power analog hardware”. In: arXiv
preprint arXiv:1606.07786 (2016)

insights that such an approach could yield.
Beyond event-based sensors, other approaches also attempt to

break free from the standard input and computation paradigms
of frame-based computation to offer significant advances for the
state-of-the-art. Recently, work has shown that backpropagation
can be used in conjunction with spiking networks to achieve some
of the highest benchmarked accuracy levels 23,24. Other research
groups have begun investigating how both the forward and back-
ward (backpropagated) training pass could be implemented in a
spiking way 25, arising from earlier work showing that mathemat-
ically precise backpropagation is not needed to train effectively 26.
Perhaps this hints at how biological implementations can train so
effectively. Moreover, incorporating the non-idealities of implemen-
tations into training 27 shows that the extreme noise of low-power
implementations can indeed be countered, and that deep network
computation can be implemented on an even wider range of plat-
forms than previously imagined.

Overall, returning to the question that motivated this thesis,
it does satisfyingly appear that substantial improvements can be
made over the state-of-the-art by freeing implementations from
the constraints implicitly chosen by frame-based data paradigms.
When using event-driven sensors and forced to consider aspects of
the real-world that are typically abstracted away, aspects such as
continuous time and gradual sensing, exciting new opportunities
emerge to improve existing algorithms. This thesis presents many
new algorithms that adapt ideas from the state-of-the-art in deep
learning that yet allow the advantages of event-driven sensors to be
maintained, yielding models that benefit both scientific fields.

deep neural networks and hardware for event-driven data 139

deep neural networks and hardware for event-driven data 141

Author’s Cited Works

Anumula, J., D. Neil, X-Y. Li, T. Delbruck, and S-C. Liu. “Live Demonstration: Event-Driven Real-Time
Spoken Digit Recognition System”. In: IEEE International Symposium on Circuits and Systems. May 2017.

Binas, Jonathan, Daniel Neil, Giacomo Indiveri, Shih-Chii Liu, and Michael Pfeiffer. “Precise deep neural
network computation on imprecise low-power analog hardware”. In: arXiv preprint arXiv:1606.07786
(2016).

Braun, Stefan, Daniel Neil, and Shih-Chii Liu. “A Curriculum Learning Method for Improved Noise
Robustness in Automatic Speech Recognition”. In: arXiv preprint arXiv:1606.06864 (2016).

Ceolini, Enea, Daniel Neil, Tobi Delbruck, and Shih-Chii Liu. “Temporal sequence recognition in a self-
organizing recurrent network”. In: Event-based Control, Communication, and Signal Processing (EBCCSP),
2016 Second International Conference on. IEEE. 2016, pp. 1–4.

Diehl, Peter U, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer. “Fast-
Classifying, High-Accuracy Spiking Deep Networks Through Weight and Threshold Balancing”. In:
International Joint Conference on Neural Networks (IJCNN). 2015.

Kiselev, Ilya, Daniel Neil, and Shih-Chii Liu. “Event-Driven Deep Neural Network Hardware System for
Sensor Fusion”. In: IEEE Int. Symposium on Circuits and Systems (ISCAS). 2016.

– “Live demonstration: Event-Driven Deep Neural Network Hardware System for Sensor Fusion”. In:
IEEE Int. Symposium on Circuits and Systems (ISCAS). 2016.

Liu, Hongjie, Diederik Paul Moeys, Daniel Neil, Shih-Chii Liu, and Tobias Delbruck. “Combined frame-
and event-based detection and tracking”. In: IEEE Int. Symposium on Circuits and Systems (ISCAS).
2016.

Moeys, D. P., F. Corradi, E. Kerr, P. Vance, G. Das, D. Neil, D. Kerr, and T. Delbrück. “Steering a preda-
tor robot using a mixed frame/event-driven convolutional neural network”. In: 2016 Second Inter-
national Conference on Event-based Control, Communication, and Signal Processing (EBCCSP). June 2016,
pp. 1–8. doi: 10.1109/EBCCSP.2016.7605233.

Moeys, Diederik Paul, Federico Corradi, Emmett Kerr, Philip Vance, Gautham Das, Daniel Neil, Dermot
Kerr, and Tobi Delbrück. “Steering a predator robot using a mixed frame/event-driven convolutional
neural network”. In: Event-based Control, Communication, and Signal Processing (EBCCSP), 2016 Second
International Conference on. IEEE. 2016, pp. 1–8.

Neil, Daniel. “Online Learning in Event-based Restricted Boltzmann Machines”. PhD thesis. Institute of
Neuroinformatics, 2013.

Neil, Daniel, Tobi Delbruck, and Shih-Chii Liu. “Event-Driven Deep Multi-Layered Network Architec-
tures”. In: IEEE, 2017.

Neil, Daniel, Jun Haeng Lee, Tobi Delbruck, and Shih-Chii Liu. “Delta Networks for Optimized Recur-
rent Network Computation”. In: arXiv preprint arXiv:1612.05571 (2016).

Neil, Daniel and S-C Liu. “Minitaur, an event-driven FPGA-based spiking network accelerator”. In: IEEE
Trans on Very Large Scale Integration (VLSI) Systems 22.12 (2014), pp. 2621–2628.

Neil, Daniel and Shih-Chii Liu. “Effective Sensor Fusion with Event-Based Sensors and Deep Network
Architectures”. In: IEEE Int. Symposium on Circuits and Systems (ISCAS). 2016, pp. 2282–2285.

– “Expanded Working Memory Enhances Phased LSTM”. 2017.

https://doi.org/10.1109/EBCCSP.2016.7605233

deep neural networks and hardware for event-driven data 142

Neil, Daniel, Michael Pfeiffer, and Shih-Chii Liu. “Learning to be Efficient: Algorithms for Training Low-
Latency, Low-Compute Deep Spiking Neural Networks”. In: ACM Symposium on Applied Computing.
Vol. 31. 2016.

– “Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences”. In:
Advances in Neural Information Processing Systems. 2016, pp. 3882–3890.

O’Connor, Peter, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and Michael Pfeiffer. “Real-time classifica-
tion and sensor fusion with a spiking Deep Belief Network”. In: Frontiers in Neuroscience 7 (2013).

Stromatias, Evangelos, Daniel Neil, Francesco Galluppi, Michael Pfeiffer, Shih-Chii Liu, and Steve
Furber. “Event-Driven Deep Neural Network Hardware System for Sensor Fusion”. In: 2015 IEEE
International Symposium on Circuits and Systems (ISCAS). 2015, pp. 1901–1901.

– “Scalable Energy-Efficient, Low-Latency Implementations of Spiking Deep Belief Networks on SpiN-
Naker”. In: Proceedings of the 2015 IEEE International Joint Conference on Neural Networks (IJCNN). 2015,
pp. 1–8. doi: 10.1109/IJCNN.2015.7280625.

Stromatias, Evangelos, Daniel Neil, Michael Pfeiffer, Francesco Galluppi, Steve B Furber, and Shih-
Chii Liu. “Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-
inspired hardware platforms”. In: Frontiers in Neuroscience 9 (2015).

https://doi.org/10.1109/IJCNN.2015.7280625

deep neural networks and hardware for event-driven data 143

Full Bibliography

Agis, R., E. Ros, J. Diaz, R. Carrillo, and E. M. Ortigosa. “Hardware event-driven simulation engine for
spiking neural networks”. In: International Journal of Electronics 94.5 (2007), pp. 469–480.

Anumula, J., D. Neil, X-Y. Li, T. Delbruck, and S-C. Liu. “Live Demonstration: Event-Driven Real-Time
Spoken Digit Recognition System”. In: IEEE International Symposium on Circuits and Systems. May 2017.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by jointly learn-
ing to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).

Benjamin, Ben Varkey, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R Chandrasekaran,
J Bussat, Rodrigo Alvarez-Icaza, John V Arthur, PA Merolla, and Kwabena Boahen. “Neurogrid: A
mixed-analog-digital multichip system for large-scale neural simulations”. In: Proceedings of the IEEE
102.5 (2014), pp. 699–716.

Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. “Theano: a CPU and GPU math
expression compiler”. In: Proceedings of the Python for scientific computing conference (SciPy). Vol. 4. 2010,
p. 3.

Berner, R., C. Brandli, M. Yang, S. C. Liu, and T. Delbruck. “A 240 × 180 10mW 12µs latency sparse-
output vision sensor for mobile applications”. In: 2013 Symposium on VLSI Circuits. June 2013, pp. C186–
C187.

Binas, Jonathan, Daniel Neil, Giacomo Indiveri, Shih-Chii Liu, and Michael Pfeiffer. “Precise deep neural
network computation on imprecise low-power analog hardware”. In: arXiv preprint arXiv:1606.07786
(2016).

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol
Ziebam. “End to End Learning for Self-Driving Cars”. In: arXiv preprint arXiv:1604.07316 (2016).

Braun, Stefan, Daniel Neil, and Shih-Chii Liu. “A Curriculum Learning Method for Improved Noise
Robustness in Automatic Speech Recognition”. In: arXiv preprint arXiv:1606.06864 (2016).

Brette, Romain, Michelle Rudolph, Ted Carnevale, Michael Hines, David Beeman, James M Bower,
Markus Diesmann, Abigail Morrison, Philip H Goodman, Frederick C Harris Jr, et al. “Simulation
of networks of spiking neurons: a review of tools and strategies”. In: Journal of Computational Neuro-
science 23.3 (2007), pp. 349–398.

Brunel, N. and M. C. W. van Rossum. “Lapicqueś 1907 paper: from frogs to integrate-and-fire”. In: Bio-
logical Cybernetics 97.5 (2007), pp. 337–339.

Buzsaki, György. Rhythms of the Brain. Oxford University Press, 2006.
Camunas-Mesa, Luis, Carlos Zamarreno-Ramos, Alejandro Linares-Barranco, Antonio J Acosta-Jimenez,

Teresa Serrano-Gotarredona, and Bernabé Linares-Barranco. “An event-driven multi-kernel convo-
lution processor module for event-driven vision sensors”. In: IEEE Journal of Solid-State Circuits 47.2
(2012), pp. 504–517.

Cao, Yongqiang, Yang Chen, and Deepak Khosla. “Spiking Deep Convolutional Neural Networks for
Energy-Efficient Object Recognition”. In: International Journal of Computer Vision (2014), pp. 1–13.

deep neural networks and hardware for event-driven data 144

Cassidy, A., A.G. Andreou, and J. Georgiou. “Design of a one million neuron single FPGA neuromor-
phic system for real-time multimodal scene analysis”. In: 45th Annual Conference on Information Sci-
ences and Systems (CISS). 2011, pp. 1–6.

Cauwenberghs, Gert. “An analog VLSI recurrent neural network learning a continuous-time trajectory”.
In: IEEE Transactions on Neural Networks 7.2 (1996), pp. 346–361.

Ceolini, Enea, Daniel Neil, Tobi Delbruck, and Shih-Chii Liu. “Temporal sequence recognition in a self-
organizing recurrent network”. In: Event-based Control, Communication, and Signal Processing (EBCCSP),
2016 Second International Conference on. IEEE. 2016, pp. 1–4.

Chan, V., S. C. Liu, and A. van Schaik. “AER EAR: A Matched Silicon Cochlea Pair With Address Event
Representation Interface”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 54.1 (Jan.
2007), pp. 48–59. issn: 1549-8328. doi: 10.1109/TCSI.2006.887979.

Chatfield, Ken, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Return of the devil in the
details: Delving deep into convolutional nets”. In: arXiv preprint arXiv:1405.3531 (2014).

Chen, Yu-Hsin, Tushar Krishna, Joel S Emer, and Vivienne Sze. “Eyeriss: An energy-efficient reconfig-
urable accelerator for deep convolutional neural networks”. In: IEEE Journal of Solid-State Circuits 52.1
(2017), pp. 127–138.

Cheung, K., S. R. Schultz, and W. Luk. “A large-scale spiking neural network accelerator for FPGA
systems”. In: International Conference Artificial Neural Networks and Machine Learning (ICANN 2012).
Vol. 7552. Springer, 2012, pp. 113–120.

Cheung, K., S.R. Schultz, and P.H.W. Leong. “A parallel spiking neural network simulator”. In: Interna-
tional Conference on Field-Programmable Technology (FPT 2009). 2009, pp. 247–254.

Cho, Kyunghyun, Aaron Courville, and Yoshua Bengio. “Describing multimedia content using attention-
based encoder-decoder networks”. In: IEEE Transactions on Multimedia 17.11 (2015), pp. 1875–1886.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. “Learning phrase representations using RNN encoder-decoder for statistical machine transla-
tion”. In: arXiv preprint arXiv:1406.1078 (2014).

Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. “Empirical evaluation of
gated recurrent neural networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555 (2014).

Ciresan, Dan Claudiu, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. “Deep, big, sim-
ple neural nets for handwritten digit recognition”. In: Neural Computation 22.12 (2010), pp. 3207–3220.

Cohen, Gregory Kevin, Garrick Orchard, Sio Hoi Ieng, Jonathan Tapson, Ryad Benjamin Benosman, and
André van Schaik. “Skimming Digits: Neuromorphic Classification of Spike-Encoded Images”. In:
Frontiers in Neuroscience 10.184 (2016). doi: 10.3389/fnins.2016.00184.

Cooke, Martin, Jon Barker, Stuart Cunningham, and Xu Shao. “An audio-visual corpus for speech per-
ception and automatic speech recognition”. In: The Journal of the Acoustical Society of America 120.5
(2006), pp. 2421–2424.

Courbariaux, Matthieu and Yoshua Bengio. “Binarynet: Training deep neural networks with weights and
activations constrained to+ 1 or-1”. In: arXiv preprint arXiv:1602.02830 (2016).

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect: Training deep neural
networks with binary weights during propagations”. In: Advances in Neural Information Processing
Systems. 2015, pp. 3123–3131.

– “Low precision arithmetic for deep learning”. In: arXiv preprint arXiv:1412.7024 (2014).
Delorme, A. and S.J. Thorpe. “SpikeNET: an event-driven simulation package for modelling large net-

works of spiking neurons”. In: Network: Computation in Neural Systems 14.4 (2003), pp. 613–627.
Deng, Jia, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet: A large-scale hierarchical

image database”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2009, pp. 248–
255. doi: 10.1109/CVPR.2009.5206848.

https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/10.3389/fnins.2016.00184
https://doi.org/10.1109/CVPR.2009.5206848

deep neural networks and hardware for event-driven data 145

Diehl, Peter U and Matthew Cook. “Efficient implementation of STDP rules on SpiNNaker neuro-
morphic hardware”. In: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE. 2014,
pp. 4288–4295.

Diehl, Peter U, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer. “Fast-
Classifying, High-Accuracy Spiking Deep Networks Through Weight and Threshold Balancing”. In:
International Joint Conference on Neural Networks (IJCNN). 2015.

Dieleman, Sander et al. Lasagne: First release. Aug. 2015. doi: 10.5281/zenodo.27878. url: http://dx.
doi.org/10.5281/zenodo.27878.

Esser, Steven K, Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathinakumar Appuswamy, Alexan-
der Andreopoulos, David J Berg, Jeffrey L McKinstry, Timothy Melano, Davis R Barch, et al. “Convo-
lutional Networks for Fast, Energy-Efficient Neuromorphic Computing”. In: Proceedings of the National
Academy of Sciences 113.41 (2016), pp. 11441–11446.

Farabet, Clément et al. “Comparison between frame-constrained fix-pixel-value and frame-free spiking-
dynamic-pixel convNets for visual processing”. In: Frontiers in Neuroscience 6 (2012).

Farabet, Clement, Camille Couprie, Laurent Najman, and Yann LeCun. “Learning hierarchical features
for scene labeling”. In: IEEE Trans on Pattern Analysis and Machine Intelligence 35.8 (2013), pp. 1915–
1929.

Fukushima, Kunihiko. “Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position”. In: Biological Cybernetics 36.4 (1980), pp. 193–202.

Funahashi, Ken-Ichi and Yuichi Nakamura. “Approximation of dynamical systems by continuous time
recurrent neural networks”. In: Neural Networks 6.6 (1993), pp. 801–806.

Furber, S.B., F. Galluppi, S. Temple, and L.A Plana. “The SpiNNaker Project”. In: Proceedings of the IEEE
102.5 (May 2014), pp. 652–665. issn: 0018-9219. doi: 10.1109/JPROC.2014.2304638.

Garbin, D., O. Bichler, E. Vianello, Q. Rafhay, C. Gamrat, L. Perniola, G. Ghibaudo, and B. DeSalvo.
“Variability-tolerant Convolutional Neural Network for Pattern Recognition Applications based on
OxRAM Synapses”. In: IEEE International Electron Devices Meeting (IEDM) (2014), pp. 1–13.

Gers, Felix A and Jürgen Schmidhuber. “Recurrent nets that time and count”. In: Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks (IJCNN). Vol. 3. IEEE. 2000, pp. 189–194.

Goodfellow, Ian J., David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. “Maxout
Networks”. In: ICML. 2013.

Graves, Alex. “Generating sequences with recurrent neural networks”. In: arXiv preprint arXiv:1308.0850
(2013).

Graves, Alex, Abdel-Rahman Mohamed, and Geoffrey Hinton. “Speech recognition with deep recur-
rent neural networks”. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2013, pp. 6645–6649.

Graves, Alex, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In: arXiv preprint arXiv:1410.5401
(2014).

Graves, Alex, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska,
Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al. “Hybrid com-
puting using a neural network with dynamic external memory”. In: Nature 538.7626 (2016), pp. 471–
476.

Han, Song, Huizi Mao, and William J Dally. “Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding”. In: CoRR, abs/1510.00149 2 (2015).

Han, Song, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao,
Yu Wang, et al. “ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA”. In:
FPGA 2017; NIPS 2016 EMDNN workshop. 2016.

Hannun, Awni, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,
Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. “Deep speech: Scaling up end-to-end speech
recognition”. In: arXiv preprint arXiv:1412.5567 (2014).

https://doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
https://doi.org/10.1109/JPROC.2014.2304638

deep neural networks and hardware for event-driven data 146

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image recogni-
tion”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–
778.

– “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. In:
The IEEE International Conference on Computer Vision (ICCV). 2015, pp. 1026–1034.

Hempel, Martin. “Deep Learning for Piloted Driving”. In: NVIDIA GPU Tech Conference. 2016.
Hinton, G.E. and R.R. Salakhutdinov. “Reducing the dimensionality of data with neural networks”. In:

Science 313.5786 (2006), pp. 504–507.
Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for deep belief

nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.
Hinton, Geoffrey E, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.

“Improving neural networks by preventing co-adaptation of feature detectors”. In: arXiv preprint
arXiv:1207.0580 (2012).

Hochreiter, Sepp and Jürgen Schmidhuber. “Long short-term memory”. In: Neural Computation 9.8
(1997), pp. 1735–1780.

Horowitz, M. “1.1 Computing’s energy problem (and what we can do about it)”. In: 2014 IEEE Inter-
national Solid-State Circuits Conference Digest of Technical Papers (ISSCC). Feb. 2014, pp. 10–14. doi:
10.1109/ISSCC.2014.6757323.

Huang, Gao, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. “Deep networks with stochas-
tic depth”. In: European Conference on Computer Vision. Springer. 2016, pp. 646–661.

Hutter, Marcus. “The human knowledge compression contest”. In: http://prize.hutter1.net (2012).
Iandola, Forrest N, Matthew W Moskewicz, Khalid Ashraf, Song Han, William J Dally, and Kurt Keutzer.

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size”. In: arXiv
preprint arXiv:1602.07360 (2016).

Indiveri, G., E. Chicca, and R. Douglas. “A VLSI figurable network of integrate-and-fire neurons with
spike-based learning synapses”. In: (2004).

Indiveri, Giacomo, Elisabetta Chicca, and Rodney J Douglas. “Artificial cognitive systems: From VLSI
networks of spiking neurons to neuromorphic cognition”. In: Cognitive Computation 1.2 (2009), pp. 119–
127.

Indiveri, Giacomo, Federico Corradi, and Ning Qiao. “Neuromorphic architectures for spiking deep
neural networks”. In: 2015 IEEE International Electron Devices Meeting (IEDM). 2015, pp. 2–4.

Itseez. Open Source Computer Vision Library. https://github.com/itseez/opencv. 2015.
Izhikevich, E.M. “Simple Model of Spiking Neurons”. In: IEEE Transactions on Neural Networks 14 (2003),

pp. 1569–1572.
Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio

Guadarrama, and Trevor Darrell. “Caffe: Convolutional Architecture for Fast Feature Embedding”. In:
arXiv preprint arXiv:1408.5093 (2014).

Jin, X., A. Rast, F. Galluppi, S. Davies, and S.B. Furber. “Implementing spike-timing-dependent plasticity
on SpiNNaker neuromorphic hardware”. In: Neural Networks (IJCNN), The 2010 International Joint
Conference on. IEEE. 2010, pp. 1–8.

Johnson, Justin, Andrej Karpathy, and Li Fei-Fei. “Densecap: Fully convolutional localization networks
for dense captioning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 4565–4574.

Jug, F., M. Cook, and A. Steger. “Recurrent competitive networks can learn locally excitatory topolo-
gies”. In: Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN). June 2012, pp. 1–
8. doi: 10.1109/IJCNN.2012.6252786.

Kingma, Diederik and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

https://doi.org/10.1109/ISSCC.2014.6757323
https://github.com/itseez/opencv
https://doi.org/10.1109/IJCNN.2012.6252786

deep neural networks and hardware for event-driven data 147

Kiselev, Ilya, Daniel Neil, and Shih-Chii Liu. “Event-Driven Deep Neural Network Hardware System for
Sensor Fusion”. In: IEEE Int. Symposium on Circuits and Systems (ISCAS). 2016.

– “Live demonstration: Event-Driven Deep Neural Network Hardware System for Sensor Fusion”. In:
IEEE Int. Symposium on Circuits and Systems (ISCAS). 2016.

Koutnik, Jan, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. “A clockwork RNN”. In: arXiv
preprint arXiv:1402.3511 (2014).

Krizhevsky, Alex and Geoffrey Hinton. “Learning multiple layers of features from tiny images”. In:
(2009).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep convolu-
tional neural networks”. In: Proc. of NIPS. 2012, pp. 1097–1105.

Lang, K. “Newsweeder: Learning to filter netnews”. In: Proceedings of the Twelfth International Conference
on Machine Learning. 1995, pp. 331–339.

Laurent, Thomas and James von Brecht. “A recurrent neural network without chaos”. In: arXiv preprint
arXiv:1612.06212 (2016).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553 (2015), pp. 436–
444.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

LeCun, Yann, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten digits. 1998.
Lee, Daniel D and H Sebastian Seung. “Learning the parts of objects by non-negative matrix factoriza-

tion”. In: Nature 401.6755 (1999), pp. 788–791.
Lee, Jun Haeng, Tobi Delbruck, and Michael Pfeiffer. “Training deep spiking neural networks using

backpropagation”. In: Frontiers in Neuroscience 10 (2016).
Leung, B., Y. Pan, C. Schroeder, S. O. Memik, G.n Memik, and M. Hartmann. “Towards an ’early neural

circuit simulator’: A FPGA implementation of processing in the rat whisker system”. In: International
Conference on Field Programmable Logic and Applications (FPL 2008). 2008, pp. 191–196.

Lichtsteiner, Patrick, Christoph Posch, and Tobi Delbruck. “A 128× 128 120 dB 15 µs latency asyn-
chronous temporal contrast vision sensor”. In: IEEE Journal of Solid-State Circuits 43.2 (2008), pp. 566–
576.

Lillicrap, Timothy P, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. “Random feedback
weights support learning in deep neural networks”. In: arXiv preprint arXiv:1411.0247 (2014).

Liu, Hongjie, Diederik Paul Moeys, Daniel Neil, Shih-Chii Liu, and Tobias Delbruck. “Combined frame-
and event-based detection and tracking”. In: IEEE Int. Symposium on Circuits and Systems (ISCAS).
2016.

Liu, S-C., A. van Schaik, B. Minch, and T. Delbrück. “Asynchronous Binaural Spatial Audition Sensor
with 2× 64× 4 Channel Output”. In: IEEE Trans. Biomed. Circuits Syst. 8.4 (2014), pp. 453–464. doi:
10.1109/TBCAS.2013.2281834.

Liu, Shih-Chii and Tobi Delbruck. “Neuromorphic sensory systems”. In: Current Opinion in Neurobiology
20.3 (2010), pp. 288–295.

Lobb, C.J., Z. Chao, R.M. Fujimoto, and S.M. Potter. “Parallel event-driven neural network simulations
using the Hodgkin-Huxley neuron model”. In: Workshop on Principles of Advanced and Distributed Simu-
lation (PADS) 2005. 2005, pp. 16–25.

Maass, Wolfgang and Henry Markram. “On the computational power of circuits of spiking neurons”. In:
Journal of Computer and System Sciences 69.4 (2004), pp. 593–616.

Maguire, L.P., T.M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin. “Challenges for large-
scale implementations of spiking neural networks on FPGAs”. In: Neurocomputing 71.1 (2007), pp. 13–
29.

Marian, I., R. Reilly, and D. Mackey. “Efficient event-driven simulation of spiking neural networks”. In:
Proceedings of 3rd WSES International Conference on: Neural Networks and Applications. 2002.

https://doi.org/10.1109/TBCAS.2013.2281834

deep neural networks and hardware for event-driven data 148

Merolla, Paul A, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp Akopyan,
Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. “A million spiking-neuron in-
tegrated circuit with a scalable communication network and interface”. In: Science 345.6197 (2014),
pp. 668–673.

Merolla, Paul, John Arthur, Filipp Akopyan, Nabil Imam, Rajit Manohar, and Dharmendra S Modha. “A
digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm”. In: 2011
IEEE Custom Integrated Circuits Conference (CICC). 2011, pp. 1–4.

Mikolov, Tomas, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. “Recurrent
neural network based language model.” In: Interspeech 2 (2010), p. 3.

Misra, J. and I. Saha. “Artificial neural networks in hardware: A survey of two decades of progress”. In:
Neurocomputing 74.1 (2010), pp. 239–255.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. “Human-level control
through deep reinforcement learning”. In: Nature 518.7540 (2015), pp. 529–533.

Moeys, D. P., F. Corradi, E. Kerr, P. Vance, G. Das, D. Neil, D. Kerr, and T. Delbrück. “Steering a preda-
tor robot using a mixed frame/event-driven convolutional neural network”. In: 2016 Second Inter-
national Conference on Event-based Control, Communication, and Signal Processing (EBCCSP). June 2016,
pp. 1–8. doi: 10.1109/EBCCSP.2016.7605233.

Moeys, Diederik Paul, Federico Corradi, Emmett Kerr, Philip Vance, Gautham Das, Daniel Neil, Dermot
Kerr, and Tobi Delbrück. “Steering a predator robot using a mixed frame/event-driven convolutional
neural network”. In: Event-based Control, Communication, and Signal Processing (EBCCSP), 2016 Second
International Conference on. IEEE. 2016, pp. 1–8.

Mohamed, A., G. E. Dahl, and G. Hinton. “Acoustic modeling using deep belief networks”. In: IEEE
Transactions on Audio, Speech, and Language Processing 20.1 (2012), pp. 14–22.

Neftci, Emre, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, and Gert Cauwenberghs. “Event-
driven contrastive divergence for spiking neuromorphic systems”. In: Frontiers in Neuroscience 7.272

(2013).
Neil, Daniel. “Online Learning in Event-based Restricted Boltzmann Machines”. PhD thesis. Institute of

Neuroinformatics, 2013.
Neil, Daniel, Tobi Delbruck, and Shih-Chii Liu. “Event-Driven Deep Multi-Layered Network Architec-

tures”. In: IEEE, 2017.
Neil, Daniel, Jun Haeng Lee, Tobi Delbruck, and Shih-Chii Liu. “Delta Networks for Optimized Recur-

rent Network Computation”. In: arXiv preprint arXiv:1612.05571 (2016).
Neil, Daniel and S-C Liu. “Minitaur, an event-driven FPGA-based spiking network accelerator”. In: IEEE

Trans on Very Large Scale Integration (VLSI) Systems 22.12 (2014), pp. 2621–2628.
Neil, Daniel and Shih-Chii Liu. “Effective Sensor Fusion with Event-Based Sensors and Deep Network

Architectures”. In: IEEE Int. Symposium on Circuits and Systems (ISCAS). 2016, pp. 2282–2285.
– “Expanded Working Memory Enhances Phased LSTM”. 2017.
Neil, Daniel, Michael Pfeiffer, and Shih-Chii Liu. “Learning to be Efficient: Algorithms for Training Low-

Latency, Low-Compute Deep Spiking Neural Networks”. In: ACM Symposium on Applied Computing.
Vol. 31. 2016.

– “Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences”. In:
Advances in Neural Information Processing Systems. 2016, pp. 3882–3890.

Nessler, Bernhard, Michael Pfeiffer, Lars Buesing, and Wolfgang Maass. “Bayesian computation emerges
in generic cortical microcircuits through spike-timing-dependent plasticity”. In: PLoS Comput Biol 9.4
(2013), e1003037.

O’Connor, Peter, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and Michael Pfeiffer. “Real-time classifica-
tion and sensor fusion with a spiking Deep Belief Network”. In: Frontiers in Neuroscience 7 (2013).

O’Connor, Peter and Max Welling. “Deep Spiking Networks”. In: arXiv preprint arXiv:1602.08323 (2016).

https://doi.org/10.1109/EBCCSP.2016.7605233

deep neural networks and hardware for event-driven data 149

– “Sigma Delta Quantized Networks”. In: arXiv preprint arXiv:1611.02024 (2016).
Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural networks”. In:

arXiv preprint arXiv:1601.06759 (2016).
Oord, Aäron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal

Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. “Wavenet: A generative model for raw au-
dio”. In: CoRR abs/1609.03499 (2016).

Orchard, G., A. Jayawant, G. Cohen, and N. Thakor. “Converting static image datasets to spiking neuro-
morphic datasets using saccades”. In: Frontiers in Neuroscience 9 (2015), p. 437. doi: 10.3389/fnins.
2015.00437. url: http://journal.frontiersin.org/article/10.3389/fnins.2015.00437.

Ott, Joachim, Zhouhan Lin, Ying Zhang, Shih-Chii Liu, and Yoshua Bengio. “Recurrent Neural Networks
With Limited Numerical Precision”. In: arXiv preprint arXiv:1608.06902 (2016).

Palm, R. B. “Prediction as a candidate for learning deep hierarchical models of data”. MA thesis. 2012.
Pearlmutter, Barak A. “Learning state space trajectories in recurrent neural networks”. In: Neural Compu-

tation 1.2 (1989), pp. 263–269.
Pérez-Carrasco, Jose and others. “Mapping from Frame-Driven to Frame-Free Event-Driven Vision Sys-

tems by Low-Rate Rate Coding and Coincidence Processing–Application to Feedforward ConvNets”.
In: IEEE Trans on Pattern Analysis and Machine Intelligence 35.11 (2013), pp. 2706–2719.

Posch, C., D. Matolin, and R. Wohlgenannt. “A QVGA 143 dB Dynamic Range Frame-Free PWM Image
Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS”. In: IEEE Journal of
Solid-State Circuits 46.1 (Jan. 2011), pp. 259–275. issn: 0018-9200.

Posch, C., T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck. “Retinomorphic Event-Based
Vision Sensors: Bioinspired Cameras With Spiking Output”. In: Proceedings of the IEEE 102.10 (Oct.
2014), pp. 1470–1484. issn: 0018-9219. doi: 10.1109/JPROC.2014.2346153.

Posch, Christoph, Teresa Serrano-Gotarredona, Bernabe Linares-Barranco, and Tobi Delbruck. “Retinomor-
phic event-based vision sensors: bioinspired cameras with spiking outputs”. In: Proc. of the IEEE
102.10 (2014), pp. 1470–1484.

Poultney, Christopher, Sumit Chopra, Yann L Cun, et al. “Efficient learning of sparse representations
with an energy-based model”. In: Advances in neural information processing systems. 2006, pp. 1137–
1144.

Povey, Daniel, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al. “The Kaldi speech recognition toolkit”.
In: IEEE 2011 workshop on automatic speech recognition and understanding. EPFL-CONF-192584. IEEE
Signal Processing Society. 2011.

Rastegari, Mohammad, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. “Xnor-net: Imagenet clas-
sification using binary convolutional neural networks”. In: European Conference on Computer Vision.
Springer, 2016, pp. 525–542.

Rueckauer, Bodo, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. “Theory and Tools for the
Conversion of Analog to Spiking Convolutional Neural Networks”. In: arXiv preprint arXiv:1612.04052
(2016).

Samadi, Arash, Timothy P Lillicrap, and Douglas B Tweed. “Deep Learning with Dynamic Spiking Neu-
rons and Fixed Feedback Weights”. In: Neural Computation (2017).

Santana, Eder and George Hotz. “Learning a Driving Simulator”. In: arXiv preprint arXiv:1608.01230
(2016).

Schmidhuber, Jürgen. “Deep learning in neural networks: An overview”. In: Neural Networks 61 (2015),
pp. 85–117.

Schoenauer, T., N. Mehrtash, Andreas Jahnke, and H. Klar. “MASPINN: novel concepts for a neuroaccel-
erator for spiking neural networks”. In: (1999), pp. 87–96. doi: 10.1117/12.343072. url: +%20http:
//dx.doi.org/10.1117/12.343072.

https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2015.00437
http://journal.frontiersin.org/article/10.3389/fnins.2015.00437
https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.1117/12.343072
+%20http://dx.doi.org/10.1117/12.343072
+%20http://dx.doi.org/10.1117/12.343072

deep neural networks and hardware for event-driven data 150

Seide, F., G. Li, and D. Yu. “Conversational Speech Transcription Using Context-Dependent Deep Neural
Networks”. In: Interspeech. 2011, pp. 437–440.

Semeniuta, Stanislau, Aliaksei Severyn, and Erhardt Barth. “Recurrent Dropout without Memory Loss”.
In: arXiv arXiv:1603.05118 (2016).

Sermanet, Pierre, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. “OverFeat:
Integrated recognition, localization and detection using convolutional networks”. In: arXiv preprint
312.6229 (2013).

Serrano-Gotarredona, R. and others. “CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hard-
ware Sensory–Processing– Learning–Actuating System for High-Speed Visual Object Recognition and
Tracking”. In: IEEE Trans on Neural Networks 20.9 (2009), pp. 1417–1438.

Serrano-Gotarredona, T. and B. Linares-Barranco. “A 128 × 128 1.5% Contrast Sensitivity 0.9% FPN 3

µs Latency 4 mW Asynchronous Frame-Free Dynamic Vision Sensor Using Transimpedance Pream-
plifiers”. In: IEEE Journal of Solid-State Circuits 48.3 (Mar. 2013), pp. 827–838. issn: 0018-9200. doi:
10.1109/JSSC.2012.2230553.

Seung, H Sebastian and Daniel D Lee. “The manifold ways of perception”. In: science 290.5500 (2000),
pp. 2268–2269.

Siegert, A. J. F. “On the first passage time probability problem”. In: Physical Review 81.4 (1951), p. 617.
Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,

Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. “Mastering the
game of Go with deep neural networks and tree search”. In: Nature 529.7587 (2016), pp. 484–489.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. “Dropout:
A simple way to prevent neural networks from overfitting”. In: The Journal of Machine Learning Re-
search 15.1 (2014), pp. 1929–1958.

Stromatias, E., F. Galluppi, C. Patterson, and S. Furber. “Power analysis of large-scale, real-time neu-
ral networks on SpiNNaker”. In: Proceedings of 2013 International Joint Conference on Neural Networks
(IJCNN). Aug. 2013, pp. 1–8. doi: 10.1109/IJCNN.2013.6706927.

Stromatias, Evangelos, Daniel Neil, Francesco Galluppi, Michael Pfeiffer, Shih-Chii Liu, and Steve
Furber. “Event-Driven Deep Neural Network Hardware System for Sensor Fusion”. In: 2015 IEEE
International Symposium on Circuits and Systems (ISCAS). 2015, pp. 1901–1901.

– “Scalable Energy-Efficient, Low-Latency Implementations of Spiking Deep Belief Networks on SpiN-
Naker”. In: Proceedings of the 2015 IEEE International Joint Conference on Neural Networks (IJCNN). 2015,
pp. 1–8. doi: 10.1109/IJCNN.2015.7280625.

Stromatias, Evangelos, Daniel Neil, Michael Pfeiffer, Francesco Galluppi, Steve B Furber, and Shih-
Chii Liu. “Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-
inspired hardware platforms”. In: Frontiers in Neuroscience 9 (2015).

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going deeper with convolutions”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 1–9.

Thomas, D.B. and W. Luk. “FPGA accelerated simulation of biologically plausible spiking neural net-
works”. In: 17th IEEE Symposium on Field Programmable Custom Computing Machines (FCCM ’09). 2009,
pp. 45–52.

Wan, Li, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. “Regularization of neural networks
using dropconnect”. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13).
2013, pp. 1058–1066.

Wand, Michael, Jan Koutník, and Jürgen Schmidhuber. “Lipreading with Long Short-Term Memory”. In:
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2016, pp. 6115–
6119.

Wen, B. and K. Boahen. “A silicon cochlea With active coupling”. In: IEEE Trans. Biomed. Circuits Syst. 3.6
(2009), pp. 444–455.

https://doi.org/10.1109/JSSC.2012.2230553
https://doi.org/10.1109/IJCNN.2013.6706927
https://doi.org/10.1109/IJCNN.2015.7280625

deep neural networks and hardware for event-driven data 151

Weston, Jason, Sumit Chopra, and Antoine Bordes. “Memory networks”. In: arXiv preprint arXiv:1410.3916
(2014).

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. “Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention”. In: International Conference on Machine Learning. 2015.

Yang, M., C. H. Chien, T. Delbruck, and S. C. Liu. “A 0.5 V 55 µW 64 x 2 Channel Binaural Silicon
Cochlea for Event-Driven Stereo-Audio Sensing”. In: IEEE Journal of Solid-State Circuits 51.11 (Nov.
2016), pp. 2554–2569. issn: 0018-9200. doi: 10.1109/JSSC.2016.2604285.

Yang, M., S. C. Liu, and T. Delbruck. “A Dynamic Vision Sensor With 1% Temporal Contrast Sensitiv-
ity and In-Pixel Asynchronous Delta Modulator for Event Encoding”. In: IEEE Journal of Solid-State
Circuits 50.9 (Sept. 2015), pp. 2149–2160. issn: 0018-9200.

Zilly, Julian Georg, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber. “Recurrent high-
way networks”. In: arXiv preprint arXiv:1607.03474 (2016).

https://doi.org/10.1109/JSSC.2016.2604285

deep neural networks and hardware for event-driven data 153

28 kiselev@ini.uzh.ch

29 https://github.com/dannyneil/

edbn

30 https://github.com/dannyneil/

spiking_relu_conversion

31 rbodo@ini.uzh.ch

32 https://github.com/dannyneil/

public_plstm

33 https://github.com/fferroni/

PhasedLSTM-Keras
34 https://github.com/Enny1991/

PLSTM
35 https://github.com/philipperemy/

tensorflow-phased-lstm
36 https://github.com/tensorflow/

tensorflow/blob/master/tensorflow/

contrib/rnn/python/ops/rnn_cell.py

Appendix: Source code and implementation details

The original FPGA source code for the Minitaur hardware system
outlined in Chapter 2 has been handed over to Ilya Kiselev 28 who
has dramatically improved the system from its original form. Fur-
ther details about the project, including descriptions of the simula-
tor, test suite, and real-world challenges (like the 14-hour place and
route compilation process) can be obtained in an unpublished short
project report from me or my advisor Shih-Chii Liu. The source
code for the SpiNNaker implementation of the event-based Deep
Belief Networks can be obtained from Evangelos Stromatias. The
source code used to train an event-based Deep Belief Network can
be obtained online 29.

The code that converts a standard convolutional or fully-connected
neural network to a spiking neural network was cowritten with Pe-
ter U. Diehl and Michael Pfeiffer, and is available online 30. It has
since been superseded by excellent advances from Bodo Rueck-
auer 31, who maintains an up-to-date toolbox with all the convesion
tricks that increase performance. The original Matlab implemen-
tation does indeed work and remains available on Github, but the
newest version of the toolbox includes code that runs dramatically
faster, converts much more powerful networks, and helps elucidate
why conversion does not go well if there are challenges. Please con-
tact him if you would like to pursue this research direction to be
caught up on the state-of-the-art.

The source code for the algorithms in Chapter 4 have not been
published, but can be made available on request. They are an ex-
tension of the Matlab DeepLearnToolbox, and the last work in this
thesis that was done using Matlab and trained without the use of a
GPU. Training time takes a few seconds per epoch; the completed
parameter sweeps took a few weeks of training time to complete.

The PLSTM implementation in Chapter 5 has been made avail-
able online, with a demonstration implementation of the first (fre-
quency discrimination) task 32. Alternative implementations have
been performed by the community, with available implementa-
tions in Keras 33, TensorFlow with the frequency task34 and on a
recurrent form of MNIST 35, and now an official Google implemen-
tation is available in the TensorFlow main branch 36. That work
discusses the training time in more detail, but in general is around
50% longer wall-clock time for the same number of epochs. Ex-
citingly, for many applications, accelerated convergence allows

kiselev@ini.uzh.ch
https://github.com/dannyneil/edbn
https://github.com/dannyneil/edbn
https://github.com/dannyneil/spiking_relu_conversion
https://github.com/dannyneil/spiking_relu_conversion
rbodo@ini.uzh.ch
https://github.com/dannyneil/public_plstm
https://github.com/dannyneil/public_plstm
https://github.com/fferroni/PhasedLSTM-Keras
https://github.com/fferroni/PhasedLSTM-Keras
https://github.com/Enny1991/PLSTM
https://github.com/Enny1991/PLSTM
https://github.com/philipperemy/tensorflow-phased-lstm
https://github.com/philipperemy/tensorflow-phased-lstm
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/rnn_cell.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/rnn_cell.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/rnn_cell.py

deep neural networks and hardware for event-driven data 154

37 eceoli@ini.uzh.ch

earlier wall-clock completion, despite this per-computation slow-
down. Hopefully, future work can accelerate the implementation
per-timestep as well.

The alternative models presented in Chapter 6 are written in
Theano, and can be made available upon request. In general, they
take approximately the same time to compute as Phased LSTM,
and are largely unoptimized as that work was more concerned with
correctness than optimization. Training times for each experiment
can be found in the description for that task.

The Delta RNN framework was originally developed under a
grant from an industrial partner, and releasing source code can be
challenging in this collaboration. The current maintainer of this
code is Enea Ceolini 37, to whom I would direct your inquiries.
The Delta RNN model was a prototype to lead to a hardware im-
plementation, currently in development, so the current version is
heavily instrumented to give statistics about sparsity and opera-
tions. It takes approximately twice as long to train per epoch as the
standard GRU implementation, but decreasing the instrumentation
will likely improve that. Using a sparse matrix implementation for
a real-world speedup is possible, and may be pursued in future
work.

eceoli@ini.uzh.ch

	Acronyms
	List of Figures
	List of Tables
	Abstract
	Abstract (Deutsch)
	An Introduction to Event-Based Sensors and Machine Learning
	The Amazing Progress of Deep Learning
	Towards Artificial Agents that Exist in the World
	An Introduction to Event-Based Sensors
	Event-based Inputs and Networks: New Challenges and New Opportunities

	Event-based Hardware Systems for Deep Networks
	Why Hardware?
	Minitaur
	SpiNNaker: An Optimized Hardware Implementation
	Low-precision Approximations for Hardware Systems
	Lessons Learned from Hardware Spiking Systems

	Bringing in the State-of-the-Art from Deep Learning
	Prior work: Deep Belief Networks and Spiking Networks
	Feed-forward Network Conversion
	Neural Network Architectures for Conversion
	Spiking Neural Networks
	Experimental Setup
	Results
	Conclusion

	Unique Optimizations for Event-based Deep Networks
	What new opportunities can be afforded?
	Methodology
	Results
	Discussion
	What Questions Should Be Addressed Next?

	Developing a Model to Directly Learn from Event-based Data
	Introduction
	Model Description
	Results
	Conclusion
	Discussion

	Determining the Efficacy of a New Architecture
	Introduction
	Models
	Measures
	Experiments
	PLSTM Parameter Importance
	Conclusion & Discussion

	Extending the Principle of Event-based Sensors to Computation
	Introduction
	Motivation
	Delta Network Formulation
	Delta Network GRU
	Delta Network Approximations
	Methods to Increase Accuracy & Speedup
	Results
	Discussion and Conclusion
	Conclusion: Extending Event-based Principles to Computation

	Conclusion, and Towards a Future of Event-based Machine Learning
	Towards the Future

	Author's Cited Works
	Full Bibliography
	Appendix: Source code and implementation details

