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FUNDAMENTAL REPRESENTATIONS OF

QUANTUM AFFINE SUPERALGEBRAS AND

R-MATRICES

HUAFENG ZHANG∗

Departement Mathematik
Institut für Theoretische Physik

ETH Zürich, Switzerland

huafeng.zhang@math.ethz.ch

Abstract. We study a certain family of finite-dimensional simple representations over
quantum affine superalgebras associated to general linear Lie superalgebras, the so-called
fundamental representations: the denominators of rational R-matrices between two fun-
damental representations are computed; a cyclicity (and so simplicity) condition on tensor
products of fundamental representations is proved.

Introduction

Fix M,N two natural numbers and q a non-zero complex number which is not
a root of unity. Let g := gl(M,N) be the general linear Lie superalgebra. Let
Uq(ĝ) be the associated quantum affine superalgebra. This is a Hopf superalgebra
neither commutative nor co-commutative, and it can be seen as a deformation of
the universal enveloping algebra of the affine Lie superalgebra Lg := g⊗C[t, t−1].
In this paper we are mainly concerned with the structure of tensor products of
finite-dimensional simple Uq(ĝ)-modules.

Quantum affine superalgebras, as supersymmetric generalizations of quantum
affine algebras, were defined previously by Yamane [Ya] with Drinfeld–Jimbo gener-
ators (and with Drinfeld loop generators for Uq(ĝ)). They appeared as the algebraic
supersymmetries of solvable models such as the q–state vertex model [PS] and the
t–J models [Ko]; their highest weight representations were identified in these mod-
els with the spaces of states to compute correlation functions. Recently, various
quantum superalgebras (finite type, affine type, Yangian) together with their finite-
dimensional representations associated to the simple Lie superalgebra psl(2, 2) are
linked to the integrability structures in the context of the AdS/CFT correspon-
dence and in the Hubbard model (see [BGM] and its references). The quantum
affine superalgebra associated to the exceptional Lie superalgebra D(2, 1;x) is re-
lated to generalized hypergeometric equations [BL].

Compared to the rich literature on quantum affine algebras (see the review pa-
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HUAFENG ZHANG

pers [CH], [Le]), quantum affine superalgebras have been less studied. Technical
difficulties already arise in the situation of finite-dimensional simple Lie superal-
gebras: all the Borel subalgebras are not conjugated, Weyl groups are not enough
to characterize linkage, etc.

The series of papers [Zh1], [Zh2], [Zh3] studied systematically finite-dimensional
representations of Uq(ĝ). In [Zh1], there is a similar highest ℓ-weight classification
[CP2] of finite-dimensional simple modules adapted to the Drinfeld new realization
of Uq(ĝ). Our motivating questions are as follows. Let S1, S2, . . . , Sn be such
Uq(ĝ)-modules.

(I) Construct Uq(ĝ)-module morphisms from S1 ⊗ S2 to S2 ⊗ S1.

(II) Determine when S1 ⊗ S2 ⊗ · · · ⊗ Sn is a highest ℓ-weight module.

In the non-graded case, (I) and (II) are related to each other by the notion of
normalized R-matrix RS1,S2 proposed in [AK]. This is a matrix-valued rational
function depending on the ratio a/b of spectral parameters a, b ∈ C× of S1 and S2

respectively. Whenever it is well-defined (in other words the denominator of RS1,S2

is non-zero when specialized to S1, S2), RS1,S2 composed with the flip map is a
module morphism from S1⊗S2 to S2⊗S1. It was proved in [Ka] (first conjectured
in [AK]) that the tensor product in (II) is of highest ℓ-weight if RSi,Sj is well-
defined for all i < j, under the assumption that the Si are good modules within
the framework of crystal base theory. Similar results were obtained by Varagnolo–
Vasserot [VV] for fundamental modules over simply-laced quantum affine algebras
via Nakajima quiver varieties, and by Chari [Ch] in general situations via the braid
group action on affine Cartan subalgebras. Here fundamental modules are certain
simple modules whose highest ℓ-weights are of particular forms [CH, Def. 3.4].

Quite recently, normalized R-matrices were used to establish generalized Schur–
Weyl duality between representations of quantum affine algebras and those of
quiver Hecke algebras and monoidal categorifications of (quantum) cluster algebras
[HL], [KKK], [KKKO]. We refer to the table in [Oh, Appendix A] for a summary of
pôles with multiplicity of normalized R-matrices between two fundamental modules
over quantum affine algebras. We mention earlier works of Chari–Pressley [CP1]
on zeros and pôles of R-matrices for Yangians.

In this paper, we study (I) and (II) for fundamental modules over Uq(ĝ). The
fundamental modules V ε

r,a over Uq(ĝ) are defined by a fusion procedure (Definition
2). They depend on a spectral parameter a ∈ C× and a Dynkin node together with
signature (r, ε): positive if (ε = +, 1 ≤ r ≤ M) and negative if (ε = −, 1 ≤ r ≤ N).
When N = 0 they are the fundamental modules in the non-graded case [DO]. The
main results of this paper are:

(A) denominators of R-matrices between two fundamental modules (Theorems
11–12);

(B) a sufficient condition for a tensor product
⊗n

i=1 V
εi
ri,ai

of fundamental mo-
dules to be of highest ℓ-weight when (ε1ε2 · · · εn) = (+ + · · · + − − · · ·−)
(Theorem 15).

In §7 we indicate a general idea to study tensor products of arbitrary signatures.
Eventually it is enough to solve a problem of linear algebra (Question 1). (B) has
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QUANTUM AFFINE SUPERALGEBRAS

the following two consequences. Let S1, S2, . . . , Sn be fundamental modules.

(C) S1⊗S2⊗· · ·⊗Sn is simple if and only if so is Si⊗Sj for all i < j (Theorem
28).

(D) if the parities of the Si are the same, then S1 ⊗ S2 ⊗ · · · ⊗ Sn is simple if
and only if it is of highest ℓ-weight and of lowest ℓ-weight (Corollary 22).

Let us make comparisons of (A)–(D) with related results in the literature.
1. When restricted to the finite type quantum superalgebra Uq(g), a positive

(resp. negative) fundamental module is in the category O (resp. its dual category
O∗) of [BKK], and their tensor products may not be semi-simple. In deducing
(A) we make tricky use of a fact (Lemma 1) on the tensor product of a highest
ℓ-weight module and a lowest ℓ-weight module, as opposed to the non-graded case
[CP1], [DO], [KOS], [Oh] where spectral decompositions of tensor products were
needed.

Our arguments can be applied to the non-graded case. However, it seems that
even in the situation [DO] of quantum affine algebras of type A the calculations
would become more involved than those in Theorems 11–12. By the fusion pro-
cedure lowest ℓ-weight vectors of fundamental modules are pure tensors in our
situation, while they are alternating sums over symmetric groups in [DO]. The de-
nominators in Theorems 11–12 are simpler than those in [DO, Eq. (2.8)]. Notably,
if S1 and S2 are fundamental modules of different signatures, then the denominator
of RS1,S2 is a polynomial of degree 1.

We expect similar simplification of denominators of RS1,S2 for more general
simple Uq(ĝ)-modules S1 in the category O and S2 in the category O∗. This might
be related to the crystal base theory developed in [BKK] for Uq(g)-modules.

2. (B) can be viewed as a super version of cyclicity results in [Ch], [Ka], [VV].
As explained in the introduction of [Zh2], the methods in the non-graded case
do not admit straightforward generalizations. Nevertheless a weaker result has
been proved in [Zh2] under the assumption that in the tensor product of (B) the
(ri, εi) must be the same. This weaker result has been used in [Zh3] to construct
asymptotic modules in the sense of Hernandez–Jimbo [HJ], and it will again be
needed in the present paper to validate the fusion procedure (in the proof of
Proposition 2).

The idea of proof in [Zh2] is a modification of Chari’s reduction arguments in

[Ch]: to restrict Uq(ĝ)-modules to Uq(ĝl(1, 1))-modules. Every step of reduction
therein resulted in tensor products of two-dimensional simple modules. An essen-
tial improvement in this paper is to view these tensor products as Weyl modules
(Lemma 20). From this viewpoint the reduction arguments in [Zh2] work equally
well even if the (ri, εi) change.

The Weyl modules over Uq(ĝ) were defined in [Zh1]; they are super analogs of
Weyl modules over quantum affine algebras [CP3]. The case of gl(1, 1) is already
useful enough to prove (B). It would be interesting to look at the general case of
gl(M,N).

We mention the recent works of Guay–Tan [GT] on a similar cyclicity result
where the braid group action in [Ch] was defined for Yangians. It is the question
of construcitng a similar braid group (or groupoid) action in the super case in
order to study more general simple modules. For this, it might be useful to look
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at different RTT realizations of Uq(ĝ) (by permuting the parity of the base vectors
in V [Zh2, Def. 3.5]).

3. (C) is true for all finite-dimensional simple modules over quantum affine
algebras. Its proof in [He] utilized the deep theory of q-characters of Frenkel–
Reshetikhin. When we are restricted to fundamental modules, up to some duality
arguments, (C) is a direct consequence of (B).

(D) is special in the super case, and has been proved in [Zh2] for all finite-

dimensional simple modules over Uq(ĝl(1, 1)). In the non-graded case, due to the
action of Weyl groups, such a tensor product is of highest ℓ-weight if and only if
it is of lowest ℓ-weight.

This paper is organized as follows. §1 prepares the necessary background on
highest ℓ-weight modules and on fundamental modules. §2 constructs the nor-
malized R-matrices between two fundamental modules from elementary ones via
a fusion procedure. §3 computes the denominators of the normalized R-matrices.
§4 proves some easy but important properties of Weyl modules. §5 proves (B) by
a series of reductions. §6 then discusses the consequences of (B). §7 reduces the
general case of (B) without assumption on signature to a question of linear algebra
(Question 1).

Acknowledgments. The author is grateful to David Hernandez, Kenji Iohara and
Bernard Leclerc for interesting discussions. He thanks Masato Okado for sending
a reprint of [DO]. He thanks the anonymous referees for useful comments and
suggestions.

1. Preliminaries

Fix M,N ∈ Z>0. This section collects basic facts on quantum superalgebras
associated to the general linear Lie superalgebra gl(M,N) and their representa-
tions.

1.1. Quantum superalgebras

Set κ := M +N , I := {1, 2, · · · , κ} and

| · | : I → Z2, i 7→ |i| =:

{
0 (i ≤ M),

1 (i > M),
d· : I → Z, i 7→ di :=

{
1 (i ≤ M),

−1 (i > M).

Set qi := qdi . Set P :=
⊕

i∈I Zϵi. Let ( , ) : P × P → Z be the bilinear form
defined by (ϵi, ϵj) = δijdi. Let | · | : P → Z2 := Z/2Z be the morphism of abelian
groups such that |ϵi| = |i|.

In the following, we only consider the parity |x| ∈ Z2 of x when either x ∈
I, x ∈ P or x is a Z2-homogeneous vector of a vector superspace. Associated to
two vector superspaces V andW is the graded permutation cV,W : V ⊗W → W⊗V
defined by v⊗w 7→ (−1)|v||w|w⊗v. Except in §4, g always denotes gl(M,N), while
g′ = gl(N,M).

Let V =
⊕

i∈I Cvi be the vector superspace with Z2-grading |vi| = |i|. For
i, j ∈ I, let Eij ∈ End(V) be the endomorphism vk 7→ δjkvi. Introduce the
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Perk–Schultz matrix in End(V)⊗2:

R(z, w) =
∑
i∈I

(zqi − wq−1
i )Eii ⊗ Eii + (z − w)

∑
i̸=j

Eii ⊗ Ejj

+ z
∑
i<j

(qi − q−1
i )Eji ⊗ Eij + w

∑
i<j

(qj − q−1
j )Eij ⊗ Eji.

(1.1)

It is well-known that R(z, w) satisfies the quantum Yang–Baxter equation:

R12(z1, z2)R13(z1, z3)R23(z2, z3) = R23(z2, z3)R13(z1, z3)R12(z1, z2) ∈ End(V)⊗3.

Here we use the following convention for the tensor subscripts. Let n ≥ 2 and
A1, A2, · · · , An be unital superalgebras. Let 1 ≤ i < j ≤ n. If x ∈ Ai and y ∈ Aj ,
then

(x⊗ y)ij := (
⊗i−1

k=1 1Ak
)⊗ x⊗ (

⊗j−1
k=i+1 1Ak

)⊗ y ⊗ (
⊗n

k=j+1 1Ak
) ∈

⊗n
k=1 Ak.

Now we can define the quantum affine superalgebra associated to g.

Definition 1. [Zh2] The quantum affine superalgebra Uq(ĝ) is the superalgebra
defined by

(R1) RTT-generators s
(n)
ij , t

(n)
ij for i, j ∈ I and n ∈ Z≥0;

(R2) Z2-grading |s(n)ij | = |t(n)ij | = |i|+ |j|;
(R3) RTT-relations in Uq(ĝ)⊗ (EndV⊗2)[[z, z−1, w, w−1]]

R23(z, w)T12(z)T13(w) = T13(w)T12(z)R23(z, w),

R23(z, w)S12(z)S13(w) = S13(w)S12(z)R23(z, w),

R23(z, w)T12(z)S13(w) = S13(w)T12(z)R23(z, w),

t
(0)
ij = s

(0)
ji = 0 for 1 ≤ i < j ≤ κ,

t
(0)
ii s

(0)
ii = 1 = s

(0)
ii t

(0)
ii for i ∈ I.

Here

T (z) =
∑
i,j∈I

tij(z)⊗ Eij ∈ (Uq(ĝ)⊗ EndV)[[z−1]],

tij(z) =
∑

n∈Z≥0

t
(n)
ij z−n ∈ Uq(ĝ)[[z

−1]],

and similar definition of S(z) except that the z−n is replaced by the zn.

Uq(ĝ) has a Hopf superalgebra structure with counit ε : Uq(ĝ) → C defined by

ε(s
(n)
ij ) = ε(t

(n)
ij ) = δijδn0, and coproduct ∆ : Uq(ĝ) → Uq(ĝ)

⊗2:

∆(s
(n)
ij ) =

n∑
m=0

∑
k∈I

ϵijks
(m)
ik ⊗ s

(n−m)
kj ,

∆(t
(n)
ij ) =

n∑
m=0

∑
k∈I

ϵijkt
(m)
ik ⊗ t

(n−m)
kj .

(1.2)
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Here ϵijk := (−1)(|i|+|k|)(|k|+|j|). The antipode S : Uq(ĝ) → Uq(ĝ) is determined by

(S⊗ Id)(S(z)) = S(z)−1, (S⊗ Id)(T (z)) = T (z)−1. (1.3)

Here the right-hand side of the above formulas are well-defined owing to the last

two relations in Definition 1. The subalgebra of Uq(ĝ) generated by the s
(0)
ij , t

(0)
ij

is a sub-Hopf superalgebra denoted by Uq(g). To simplify notations, write sij :=

s
(0)
ij , tij := t

(0)
ij .

We recall the symmetry properties of Uq(ĝ), following mainly [Zh2], [Zh3].

For gl(N,M) =: g′, let us define the quantum superalgebras Uq(ĝ′), Uq(g
′) in

exactly the same way as Uq(ĝ), Uq(g), except that we interchangeM,N everywhere.

Let s
′(n)
ij , t

′(n)
ij for i, j ∈ I and n ∈ Z≥0 be the corresponding RTT generators of

Uq(ĝ′), so that their Z2-degrees are |s′(n)ij | = |t′(n)ij | = |i|′ + |j|′ where |i|′ = 0

for 1 ≤ i ≤ N and 1 otherwise. For i ∈ I, set î := κ + 1 − i. Let a ∈ C×.
The following are isomorphisms of Hopf superalgebras (εij := (−1)|i|+|i||j| and

ε′ij := (−1)|i|
′+|i|′|j|′):

Φa : Uq(ĝ) → Uq(ĝ), s
(n)
ij 7→ ans

(n)
ij , t

(n)
ij 7→ a−nt

(n)
ij , (1.4)

Ψ: Uq(ĝ) → Uq(ĝ)
cop, s

(n)
ij 7→ εjit

(n)
ji , t

(n)
ij 7→ εjis

(n)
ji , (1.5)

f : Uq(ĝ′) → Uq(ĝ)
cop, s

′(n)
ij 7→ ε′jis

(n)

ĵî
, t

′(n)
ij 7→ ε′jit

(n)

ĵî
. (1.6)

Here Acop of a Hopf superalgebra A takes the same underlying superalgebra but the
twisted coproduct ∆cop := cA,A∆ and antipode S−1. The Ψ, f restrict naturally
to isomorphisms of Uq(g) and Uq(g

′), still denoted by Ψ, f . Let f(z) ∈ 1 + zC[[z]]
and g(z) ∈ 1 + z−1C[[z−1]]. The following are morphisms of superalgebras:

eva : Uq(ĝ) → Uq(g), sij(z) 7→ sij − zatij , tij(z) 7→ tij − z−1a−1sij , (1.7)

ϕ[f(z),g(z)] : Uq(ĝ) → Uq(ĝ), sij(z) 7→ f(z)sij(z), tij(z) 7→ g(z)tij(z). (1.8)

These morphisms satisfy natural compatibility relations. For example,

Ψ ◦ eva = eva−1 ◦Ψ: Uq(ĝ) → Uq(g), f ◦ ev′a = eva ◦ f : Uq(ĝ′) → Uq(g).

1.2. Highest ℓ-weight modules

The Hopf superalgebra Uq(ĝ) is P-graded: an element x ∈ Uq(ĝ) is of weight λ ∈ P

if s
(0)
ii xt

(0)
ii = q(λ,ϵi)x for all i ∈ I. Indeed, s

(n)
ij and t

(n)
ij are of weight ϵi − ϵj . Such

a P-grading descends to Uq(g). For a Uq(g)-module V and λ ∈ P, we set (V )λ to

be the subspace of V formed of vectors v such that s
(0)
ii v = q(λ,ϵi)v for all i ∈ I,

and call it the weight space of weight λ.
Let V be a Uq(ĝ)-module. A non-zero vector v ∈ V is called a highest ℓ-weight

vector if it is a common eigenvector for the s
(n)
ii , t

(n)
ii and it is annihilated by the

s
(n)
ij , t

(n)
ij with i < j. V is called a highest ℓ-weight module if it is generated as

a Uq(ĝ)-module by a highest ℓ-weight vector. Similarly, there are the notions of
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lowest ℓ-weight vector/module by replacing (i < j) with (i > j). By dropping
the (n), we obtain the notions of highest/lowest weight vector/module related to
Uq(g)-modules. According to Equation (1.2), a tensor product of highest/lowest
(ℓ-)weight vectors is again a highest/lowest (ℓ-)weight vector. This is not necessar-
ily true when replacing “vector” with “module”, yet we have the following weaker
result [Zh2, Lem. 4.5].

Lemma 1. Let V+ (resp. V−) be a Uq(ĝ)-module of highest (resp. lowest) ℓ-
weight. Let v+ ∈ V+ (resp. v− ∈ V−) be a highest (resp. lowest) ℓ-weight vector.
Then the Uq(ĝ)-module V+ ⊗ V− (resp. V− ⊗ V+) is generated by v+ ⊗ v− (resp.
v− ⊗ v+).

The proof of this lemma in [Zh2] utilized the Drinfeld new realization of Uq(ĝ).
For λ =

∑
i λiϵi ∈ P, let L(λ) be the simple Uq(g)-module of highest weight λ;

it is finite-dimensional if and only if λi ≥ λi+1 for i ̸= M ; see [Zr].

Example 1. The vector representation ρ(1) of Uq(g) on V is defined by

ρ(1)(sii) = qiEii +
∑
j ̸=i

Ejj = ρ(1)(t
−1
ii ) for i ∈ I,

ρ(1)(sij) = (qi − q−1
i )Eij , ρ(1)(tji) = −(qi − q−1

i )Eji for i < j.

v1 (resp. vκ) is a highest (resp. lowest) weight vector and vi is of weight ϵi for
i ∈ I. The resulting Uq(g)-module V is L(ϵ1). For a ∈ C×, let V(a) denote the
Uq(ĝ)-module ev∗aV.

Example 2. The pull back Ψ∗V of the Uq(g)-module V by the isomorphism
Ψ in (1.5) defines another representation ρ(1)Ψ of Uq(g) on V. Let W be the
corresponding Uq(g)-module. For distinction, let us write wi := Ψ∗vi for i ∈ I.
Now wκ (resp. w1) is a highest (resp. lowest) weight vector and wi is of weight −ϵi.
SoW = L(−ϵκ) as Uq(g)-modules. For a ∈ C×, let W(a) denote the Uq(ĝ)-module
ev∗aW.

To motivate the definition of fundamental modules, let us recall the high-
est ℓ-weight classification of finite-dimensional simple Uq(ĝ)-modules from [Zh1],
[Zh3]. Let S be such a module. Firstly, S contains a unique (up to scalar mul-
tiple) highest ℓ-weight vector v. Secondly, for 1 ≤ i < κ, the eigenvalues of
sii(z)si+1,i+1(z)

−1, tii(z)ti+1,i+1(z)
−1 associated to v turn out to be the z = 0, z =

∞ Taylor expansions of a rational function fi(z) ∈ C(z) satisfying:2

(1) if i ̸= M , then fi(z) is a product of the qi(1− za)/(1− zaq2i ) with a ∈ C×;
(2) fM (z) is a product of the c(1− za)/(1− zac2) with c, a ∈ C×.

Thirdly S 7→ Π(S) := (fi(z))1≤i<κ ∈ C(z)κ−1 establishes a bijection between
the isomorphism classes of finite-dimensional simple Uq(ĝ)-modules up to tensor
products with one-dimensional modules and elements in C(z)κ−1 with conditions
(1)–(2). Lastly, if S, S′ are two finite-dimensional simple Uq(ĝ)-modules, then by

2We use rational functions instead of Drinfeld polynomials in [Zh1, Prop. 4.12] and
[Zh3, Prop. 6.7]; they are indeed equivalent under the Ding–Frenkel homomorphism re-
viewed in [Zh2, Thm. 3.12].
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Equation (1.2), S⊗S′ contains a highest ℓ-weight vector which gives rise to another
simple module S′′ with

Π(S′′) = Π(S)Π(S′) ∈ C(z)κ−1.

Remark 1. Let λ =
∑

i λiϵi ∈ P and a ∈ C×. When L(λ) is finite-dimensional,

Π(ev∗aL(λ)) =

(
qλ1 − zaq−λ1

qλ2 − zaq−λ2
, . . . ,

qλM−1 − zaq−λM−1

qλM − zaq−λM
,

qλM − zaq−λM

q−λM+1 − zaqλM+1
,

q−λM+1 − zaqλM+1

q−λM+2 − zaqλM+2
, . . . ,

q−λκ−1 − zaqλκ−1

q−λκ − zaqλκ

)
.

1.3. Fundamental representations

We are interested in such simple Uq(ĝ)-modules S that all but one component of
Π(S) are 1. They can be constructed by fusion procedures.

Definition 2. Let a ∈ C× and s, t ∈ Z>0 be such that s ≤ M and t ≤ N . The sub-
Uq(ĝ)-module of

⊗s
j=1 V(aq−2j) generated by v⊗s

κ is called a positive fundamental

module and denoted by V +
s,a. The sub-Uq(ĝ)-module of

⊗t
j=1 W(aq2j) generated

by w⊗t
1 is called a negative fundamental module and denoted by V −

t,a.

The terminology “positive/negative” will be justified at the end of this section.
The following proposition will be proved in §6 when twisted duals are introduced.

Proposition 2. V +
s,a and V −

t,a are simple Uq(ĝ)-modules for 1≤ s≤ M, 1≤ t≤N .

The following theorem is a special case of more general results in [BKK].

Theorem 3. Let 1 ≤ s ≤ M . The Uq(g)-module L(ϵ1)
⊗s = V⊗s is completely

reducible. Its submodule generated by v⊗s
κ is isomorphic to L(ϵ1+ϵ2+· · ·+ϵs) whose

weight spaces are one-dimensional and whose weights are the ϵi1 + ϵi2 + · · · + ϵis
where: i1 ≤ i2 ≤ · · · ≤ is; if ik = ik+1 then ik > M . Denote this sub-Uq(g)-module
by V +

s .

In [BKK], to certain λ ∈ P is associated an (M,N)-hook Young diagram Y λ (an
ordinary Young diagram without box at the (M + 1, N + 1)-position). Such L(λ)
has a crystal basis in the sense of Kashiwara labeled by semi-standard tableaux
(assignment of numbers between 1 and κ to the boxes according to certain rules)
in Y λ. In the above theorem, ϵ1 + ϵ2 + · · ·+ ϵs corresponds to the Young diagram
with s boxes in one column. The conditions of the ik are exactly those of being
a semi-standard tableau. For example, when M = N = 2 = s, the weights (and
crystal basis vectors) for the Uq(gl(2, 2))-module L(ϵ1 + ϵ2) are indexed by the
following tableaux:

M = N = 2, V +
2 = L(ϵ1 + ϵ2) :

1

2 ,

1

3 ,

1

4 ,

2

3 ,

2

4 ,

3

3 ,

3

4 ,

4

4 .

Lemma 4. For 1 ≤ s ≤ M , the sub-Uq(g)-module V +
s has a highest weight vector

v(s) :=
∑
σ∈Ss

(−q)l(σ)vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(s) ∈ V⊗s.

Here l(σ) denotes the length of a permutation σ ∈ Ss.
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Proof. Let us first prove that v(s) is a highest weight vector. By the weight grading
on V⊗s and Uq(g), it is enough to show that sjkv

(s) = 0 for 1 ≤ j < k ≤ s. By
using the relations of the sjk (see the proof of [Zh3, Prop.4.6]), we can assume
that k = j + 1. Let X be the set of permutations σ such that σ−1(j) < σ−1(k).
Let θ be the simple transposition (j, k). Then Ss is a disjoint union of X and θX,
and l(θσ) = l(σ)+1 whenever σ ∈ X. By using the formulas in Example 1, we are
reduced to the case s = 2 = k and j = 1. Now v1 ⊗ v2 − qv2 ⊗ v1 is easily shown
to be of highest weight.

v(s) generates a sub-Uq(g)-module S. It is of highest weight ϵ1+ϵ2+ · · ·+ϵs and
completely reducible by Theorem 3; S must be simple, and (S)sϵκ = (V⊗s)sϵκ =
Cv⊗s

κ . This implies that V +
s ⊆ S. Since S is a simple Uq(g)-module, V +

s = S and
v(s) ∈ V +

s . �
Lemma 5. Let a ∈ C× and 1 ≤ s ≤ M . as Uq(ĝ)-modules, V +

s,a
∼= ev∗aq−2s(V +

s )⊗
D for some one-dimensional module D. As sub-Uq(g)-modules of V⊗s, we have
V +
s,a = V +

s .

Proof. It is enough to prove the first part, as V +
s ⊆ V +

s,a. Let fi(z) be the eigen-

value of sii(z) associated to the lowest ℓ-weight vector v⊗s
κ in

⊗s
j=1 V(aq−2j).

Then fi(z) =
∏s

j=1(1 − zaq−2j) for i < κ and fκ(z) =
∏s

j=1(q
−1 − zaq−2j+1).

Similar statements hold for tii(z). Now set D = ϕ∗
[f(z),g(z)]C where C is the one-

dimensional trivial Uq(ĝ)-module and f(z) =
∏s−1

j=1(1− zaq−2j), g(z) =
∏s−1

j=1(1−
z−1a−1q2j). Then the lowest ℓ-weight vector of ev∗aq−2s(V +

s )⊗D and v⊗s
κ have the

same eigenvalues of the sii(z), tii(z). Since V +
s,a is a simple Uq(ĝ)-module, it must

be isomorphic to ev∗aq−2s(V +
s )⊗D. �

Similar results as in the above two lemmas hold true for negative fundamental
modules.

Lemma 6. Let a ∈ C× and 1 ≤ t ≤ N . Let V −
t be the sub-Uq(g)-module of

W⊗t generated by w⊗t
1 . Then as sub-Uq(g)-modules V −

t,a = V −
t , as Uq(ĝ)-modules

V −
t,a

∼= ev∗aq2(V
−
t )⊗D for some one-dimensional module D, and V −

t has a highest
weight vector

w(t) =
∑
σ∈St

(−q)l(σ)wκ−t+σ(1) ⊗ wκ−t+σ(2) ⊗ · · · ⊗ wκ−t+σ(t) ∈ W⊗t.

Proof. Let v′i,V
′, ϵ′i,P

′, V ′+
t,a be the corresponding objects for g′ (so 1 ≤ t ≤ N).

By comparing the highest ℓ-weight vectors we get a Uq(ĝ′)-linear isomorphism
θ : f∗W(a) ∼= V′(a) ⊗ C1, wi 7→ xiv

′
î
⊗ [1] where xi ∈ C× for i ∈ I and C1 =

C[1] is the one-dimensional odd module over Uq(ĝ′). The graded permutation

V′(a)⊗ C1 → C1 ⊗V′(a), being Uq(ĝ′)-linear, induces an isomorphism of Uq(ĝ′)-
modules

Σt :
⊗1

j=t(V
′(aq2j)⊗ C1) →

(⊗1
j=t V

′(aq2j)
)
⊗ C⊗t

1
.

The assignment
⊗t

j=1 uj 7→ (−1)
∑

k<l |uk||ul| ⊗1
j=t uj extends to a Uq(ĝ′)-linear

isomorphism σt : f
∗(
⊗t

j=1 W(aq2j)) →
⊗1

j=t f
∗W(aq2j) by Equation (1.6). The
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composition

f∗
(⊗t

j=1 W(aq2j)
)

σt−→
⊗1

j=t f
∗W(aq2j)

θ⊗t

−−→
⊗1

j=t(V
′(aq2j)⊗ C1)

Σt−→
(⊗1

j=t V
′(aq2j)

)
⊗ C⊗t

1

restricts to a Uq(ĝ′)-module isomorphism ϑt : f
∗V −

t,a → V ′+
t,aq2t+2 ⊗ C⊗t

1
. Lemmas

4–5 for the Uq(ĝ′)-module V ′+
t,a can be translated into those for the Uq(ĝ)-module

V −
t,a via ϑt. �

By comparing the weights, we see that as Uq(g)-modules, V −
t

∼= L(tϵ1)
∗. Here

the dual space V ∗ = hom(V,C) of a Uq(g)-module V is endowed with the Uq(g)-
module structure:

⟨xl, v⟩ := (−1)|l||x|⟨l, SΨ(x)v⟩ for x ∈ Uq(g), l ∈ V ∗, v ∈ V.

In [BKK], tϵ1 corresponds to the Young diagram with t boxes in one row. Again
consider the example M = N = 2 = t.

M = N = 2, V −
2 = L(2ϵ1)

∗ :

1 1
∗
, 1 2

∗
, 1 3

∗
, 1 4

∗
, 2 2

∗
, 2 3

∗
, 2 4

∗
, 3 4

∗
.

Example 3. V +
2 is spanned by the v⊗2

l and vi ⊗ vj − (−1)|i||j|qvj ⊗ vi with M <
l ≤ κ and 1 ≤ i < j ≤ κ; see [Zh2, §2]. By Lemma 6, V −

2 is spanned by the w⊗2
l

and wi ⊗ wj + (−1)|i||j|qwj ⊗ wi with 1 ≤ l ≤ M and 1 ≤ i < j ≤ κ. In general,
V +
s (resp. V −

t ) is seen as quantum exterior power
∧s

q V (resp. symmetric power

St
qW).

From Lemmas 5–6 and Remark 1, we see that for 1 ≤ s ≤ M and 1 ≤ t ≤ N ,

Π(V +
s,a)=

(
1s−1, q

1−zaq−2s−2

1−zaq−2s
, 1κ−1−s

)
, Π(V −

t,a)=

(
1κ−1−t, q−1 1−zaq2

1−za
, 1t−1

)
.

± indicate the positive/negative powers of q in Π(V ±
s,a)|z=0. Our definition of

fundamental modules, viewed in terms of the highest ℓ-weight classification, is then
in accordance with that in the non-graded case [CH, Def. 3.4]; see also footnote 4.

2. R-matrices of fundamental representations

The aim of this section is to construct Uq(ĝ)-linear maps between fundamental
modules. The following lemma is our starting point. Its proof, postponed to §6,
is independent of denominators of normalized R-matrices; see the remark before
Theorem 28.

Lemma 7. Let V,W be two fundamental modules with highest ℓ-weight vectors
v, w respectively. For a, b ∈ C×, denote Va := Φ∗

aV and Wb := Φ∗
bW . There exists

a finite set Σ ⊂ C× such that: if a/b /∈ Σ, then Va ⊗Wb is a simple Uq(ĝ)-module
and there exists a unique Uq(ĝ)-module isomorphism Va ⊗Wb → Wb ⊗ Va sending
v ⊗ w to w ⊗ v.
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Remark 2. Presumably the quantum affine superalgebra Uq(ĝ) admits a universal
R-matrix R(z) ∈ U+

q (ĝ)⊗̂U−
q (ĝ)[[z]]. Here U+

q (ĝ) (resp. U−
q (ĝ)) is the subalgebra

generated by the (s
(0)
ii )−1, s

(n)
ij (resp. the (t

(0)
ii )−1, t

(n)
ij ), and ⊗̂ is a completed tensor

product arising from the weight grading. The Uq(ĝ)-module isomorphism in the
above lemma can then be thought of as (up to a scalar product by a meromorphic
function in a/b) the specialization cV,WR(a/b)|V,W . In [Zh2, §3.3.6] a Hopf pairing
φ̂ between these two subalgebras was constructed. The author believes that φ̂ is
non-degenerate and its Casimir element gives R(z). See [Zh4] for a proof in the
case gl(1, 1).

The following result is taken from [Zh2, Lem. 4.6].

Lemma 8. For a, b ∈ C×, cV,VR(a, b) : V(a) ⊗ V(b) → V(b) ⊗ V(a) is Uq(ĝ)-
linear.

Let F : V(a) ⊗W(b) → W(b) ⊗V(a) be a Uq(ĝ)-linear map sending v1 ⊗ wκ

to wκ ⊗ v1; by Lemma 7, F exists when a/b is generic. We shall compute the
F (vi ⊗ wj).

Step I. For k ̸= l, Cvk ⊗ wl is the weight space of V(a) ⊗ W(b) of weight
ϵk − ϵl. The zero weight space is spanned by the vi ⊗ wi. Similar statements
hold for W(b)⊗V(a). Since F respects the weight spaces, there exist λij , θkl for
i, j, k, l ∈ I and k ≠ l such that θ1κ = 1,

F (vj ⊗ wj) =
∑
i∈I

λijwi ⊗ vi, F (vk ⊗ wl) = θklwl ⊗ vk for k ̸= l.

Step II. Let i, j, k ∈ I be such that i < j < k. Compare θij with θik. We have

F (sjk(vi ⊗ wj)) = sjkF (vi ⊗ wj) = θijsjk(wj ⊗ vi). (2a)

By Equation (1.2) and Examples 1–2:

sjk(vi ⊗ wj) =
k∑

l=j

(sjl ⊗ slk)(vi ⊗ wj) = (sjj ⊗ sjk)(vi ⊗ wj)

= (−1)|i|(|j|+|k|)sjjvi ⊗ sjkwj

= vi ⊗ sjkwj = (q−1
k − qk)vi ⊗ wk,

sjk(wj ⊗ vi) =
k∑

l=j

(sjl ⊗ slk)(wj ⊗ vi) = (sjk ⊗ skk)(wj ⊗ vi)

= (q−1
k − qk)wk ⊗ vi.

It follows from (2a) that θij = θik. Next compare θik and θjk by using

tji(vi ⊗ wk) = (tji ⊗ tii)(vi ⊗ wk) = (q−1
i − qi)vj ⊗ wk,

tji(wk ⊗ vi) = (tjj ⊗ tji)(wk ⊗ vi) = (−1)|i|+|j|(q−1
i − qi)wk ⊗ vj .
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Applying Ftji and tjiF to vi ⊗ wk we get θik = (−1)|i|+|j|θjk. Now compute

tkj(vj ⊗ wi) = (tkj ⊗ tjj)(vj ⊗ wi) = (q−1
j − qj)vk ⊗ wi,

tkj(wi ⊗ vj) = (tkk ⊗ tkj)(wi ⊗ vj) = (q−1
j − qj)wi ⊗ vk.

Applying Ftkj and tkjF to vj ⊗ wi we get θji = θki. At last consider

sij(vk ⊗ wi) = (sii ⊗ sij)(vk ⊗ wi) = (−1)|i|+|j|(q−1
j − qj)vk ⊗ wj ,

sij(wi ⊗ vk) = (sij ⊗ sjj)(wi ⊗ vk) = (q−1
j − qj)wj ⊗ vk.

Applying Fsij and sijF to vk ⊗ wi we get θki = (−1)|i|+|j|θkj .

Step III. We assume that j < k. Let us compare θjk and θkj . Compute

sjk(vk ⊗ wj)=(sjj ⊗ sjk+sjk ⊗ skk)(vk ⊗ wj)=(qj−q−1
j )(vj ⊗ wj−vk ⊗ wk),

tkj(vj ⊗ wk)=(tkk ⊗ tkj+tkj ⊗ tjj)(vj ⊗ wk)=(qj−q−1
j )(vj ⊗ wj−vk ⊗ wk).

By applying F to the above identities, we get θkjsjk(wj ⊗ vk) = θjktkj(wk ⊗ vj).
On the other hand, a straightforward calculation indicates that

sjk(wj ⊗ vk) = tkj(wk ⊗ vj)

= (qj − q−1
j )

(
q−1
j wj ⊗ vj +

∑
j<l<k

(q−1
j − qj)wl ⊗ vl

− (−1)|j|+|k|qkwk ⊗ vk

)
,

It follows that θjk = θkj and F (vj ⊗wj − vk ⊗wk) = θjk(qj − q−1
j )−1sjk(wj ⊗ vk).

In conclusion, for all i, j ∈ I, we have θij = θ1κ(−1)|i||j| = (−1)|i||j|.

Step IV. Assume that j < k. Let us apply Fsjk and sjkF to vk ⊗wk. We have

sjk(vk ⊗ wk) = (sjk ⊗ skk)(vk ⊗ wk) = q−1
k (qj − q−1

j )vj ⊗ wk.

So Fsjk(vk ⊗ wk) = θjkq
−1
k (qj − q−1

j )wk ⊗ vj . If i ̸= j, k, then sjk(wi ⊗ vi) = 0.
Otherwise,

sjk(wj ⊗ vj) = (sjk ⊗ skk)(wj ⊗ vj) = (q−1
k − qk)wk ⊗ vj ,

sjk(wk ⊗ vk) = (sjj ⊗ sjk)(wk ⊗ vk) = (−1)|j|+|k|(qj − q−1
j )wk ⊗ vj .

It follows that λkk − λjk = θjk(−1)|j|+|k|q−1
k .

Step V. Let us apply Fsκ1(z) and sκ1(z)F to v1 ⊗ wκ by developing

sκ1(z)(v1 ⊗ wκ) =(sκ1(z)⊗ s11(z) + sκκ(z)⊗ sκ1(z))(v1 ⊗ wκ)

= (q − q−1)za(1− zb)vκ ⊗ wκ + (1− za)(q−1 − q)zbv1 ⊗ w1,

sκ1(z)(wκ ⊗ v1) =
∑
l

(sκl(z)⊗ sl1(z))(wκ ⊗ v1)

=(q−1−q)zb(q−zaq−1)w1⊗v1−(q−zbq−1)(q−q−1)zawκ⊗vκ

+
∑

1<l<κ

(−1)|l|(q−1
l −ql)zb(q−q−1)zawl ⊗ vl.
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From the identity Fsκ1(z)(v1 ⊗ wκ) = sκ1(z)(wκ ⊗ v1) we deduce that:

F (v1 ⊗ w1) =
bq − aq−1

b− a
w1 ⊗ v1 +

a(q − q−1)

b− a

∑
l>1

wl ⊗ vl,

F (vκ ⊗ wκ) =
b(q − q−1)

b− a

∑
l<κ

wl ⊗ vl −
bq−1 − aq

b− a
wκ ⊗ vκ.

By using the identity for F (vi⊗wi−vκ⊗wκ) in Step III, we obtain that for i ∈ I,

F (vi ⊗ wi) =
∑
l<i

b(q − q−1)

b− a
wl ⊗ vl + (−1)|i|

bqi − aq−1
i

b− a
wi ⊗ vi

+
∑
l>i

a(q − q−1)

b− a
wl ⊗ vl.

Now let us introduce the matrix R+−
a,b := cW,VF ∈ End(V ⊗W):

R+−
a,b =

∑
i ̸=j

Eii ⊗ Ejj +
∑
i∈I

bqi−aq−1
i

b−a Eii ⊗ Eii

+
∑
i<j

a(qj−q−1
j )

b−a Eji ⊗ Eji +
∑
i>j

b(qi−q−1
i )

b−a Eji ⊗ Eji.
(2.9)

Here by abuse of language Eij is also in End(W) sending wk to δjkwi.

Lemma 9. cV,WR+−
a,b : V(a) ⊗ W(b) → W(b) ⊗ V(a) is a morphism of Uq(ĝ)-

modules provided that a, b ∈ C× and a ̸= b.

Proof. Let π1, π2 denote the representations of Uq(ĝ) on V(a)⊗W(b) and W(b)⊗
V(a) respectively. We need to show that for x an arbitrary RTT generator of
Uq(ĝ),

(a− b)cV,WR+−
a,b π1(x) = (a− b)π2(x)cV,WR+−

a,b . (∗)x

By Examples 1–2 and Equation (1.2), π1(x), π2(x) are polynomials in a, b. Com-
bining Equation (2.9), we see that (∗)x is a polynomial equation in a, b. Lemma
8 and the above explicit computation of F prove (∗)x when a/b is in the comple-
mentary of a finite subset of C×. By polynomiality (∗)x is true for all a, b ∈ C×.
�

Let us define two classes of fusion R-matrices: s, t ∈ Z>0,

R
s|t
a,b :=

1∏
j=t

s∏
i=1

(R+−
aq−2i,bq2j )i,s+j ∈ End(V⊗s ⊗W⊗t), (2.10)

Rs,t
a,b :=

1∏
j=t

s∏
i=1

R(aq−2i, bq−2j)i,s+j =
s∏

i=1

1∏
j=t

R(aq−2i, bq−2j)i,s+j

∈ End(V⊗s+t).

(2.11)

The last equation holds by definition of the tensor subscripts in §1.1.
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Lemma 10. Let 1 ≤ s ≤ M and t ∈ Z>0.

(A) Suppose t ≤ M . Then for all a, b ∈ C×, the linear map

cV⊗s,V⊗tRs,t
a,b :

(⊗s
i=1 V(aq−2i)

)
⊗
(⊗t

j=1 V(bq−2j)
)

→
(⊗t

j=1 V(bq−2j)
)
⊗
(⊗s

i=1 V(aq−2i)
)

restricts to a Uq(ĝ)-module map V +
s,a⊗V +

t,b → V +
t,b⊗V +

s,a. In particular, there

exist X,Y ∈ C[a, b] such that Rs,t
a,b(v

(s) ⊗ v(t)) = Xv(s) ⊗ v(t), Rs,t
a,b(v

⊗s+t
κ ) =

Y v⊗s+t
κ .

(B) Suppose t ≤ N . Let a, b ∈ C× be such that aq−2i ̸= bq2j for all 1 ≤ i ≤ s
and 1 ≤ j ≤ t. Then the linear map

cV⊗s,W⊗tR
s|t
a,b :

(⊗s
i=1 V(aq−2i)

)
⊗
(⊗t

j=1 W(bq2j)
)

→
(⊗t

j=1 W(bq2j)
)
⊗

(⊗s
i=1 V(aq−2i)

)
restricts to a Uq(ĝ)-module map V +

s,a ⊗ V −
t,b → V −

t,b ⊗ V +
s,a. Furthermore we

have R
s|t
a,b(v

(s) ⊗ w(t)) = v(s) ⊗ w(t), R
s|t
a,b(v

⊗s
κ ⊗ w⊗t

1 ) = v⊗s
κ ⊗ w⊗t

1 .

Proof. We shall prove (A); the same idea goes for (B). By Lemma 8, Fa,b :=
cV⊗s,V⊗tRs,t

a,b is indeed Uq(ĝ)-linear. By Equations (1.1) and (2.11),

Fa,b(v
⊗s+t
κ ) = Y v⊗s+t

κ , Y :=
s∏

i=1

t∏
j=1

(aq−2i−1 − bq−2j+1). (1)

It is therefore enough to show the following (by Lemmas 5–6 V +
s,a = V +

s )

Fa,b(V
+
s ⊗ V +

t ) ⊆ V +
t ⊗ V +

s , Fa,b(v
(s) ⊗ v(t)) ∈ Cv(t) ⊗ v(s). (2)

By Equation (1.1) the matrix coefficients of Fa,b ∈ End(V⊗s+t) are polynomial in
a, b. Let Σ ⊂ C× be as in Lemma 7, so that S1 := V +

s,a⊗V +
t,b

∼= V +
t,b⊗V +

s,a =: S2 are

simple Uq(ĝ)-modules whenever a/b /∈ Σ. We show that (2) holds for a/b ∈ C× \Σ.
This will imply (2) for all a, b ∈ C× by polynomiality, as in the proof of Lemma 9.

Let a/b /∈ Σ. Then the simple Uq(ĝ)-modules S1 and S2 are both generated
by v⊗s+t

κ . By (1), Fa,b restricts to Uq(ĝ)-linear map Fa,b : S1 → S2, and the first
relation in (2) is proved. Since v(s)⊗v(t) and v(t)⊗v(s) are highest ℓ-weight vectors
of S1, S2 respectively, they must be stable by Fa,b. This proves the second relation
in (2). �

3. Denominators of R-matrices

Lemma 10 together with its proof gives us three types of rational functions
of a/b: the End(V +

s ⊗ V +
t )-valued X−1Rs,t

a,b|V +
s ⊗V +

t
and Y −1Rs,t

a,b|V +
s ⊗V +

t
for 1 ≤

s, t ≤ M ; the End(V +
s ⊗ V −

t )-valued R
s|t
a,b|V +

s ⊗V −
t

for 1 ≤ s ≤ M, 1 ≤ t ≤ N .
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The denominator of such a rational function R(a, b) is defined as a homogeneous
polynomial D(a, b) in a, b of minimal degree such that D(a, b)R(a, b) is polynomial;
it is well-defined up to scalar product by a non-zero complex number. In this
section, we shall compute these denominators.

In the following, if v, w belong to the same vector space and v ∈ C×w, then we
write v

.
= w. The denominator of the third rational function is fairly easy.

Theorem 11. Let 1≤s≤M and 1≤ t ≤ N . The denominator of the End(V +
s ⊗

V −
t )-valued rational function R

s|t
a,b|V +

s ⊗V −
t

is bq2 − aq−2s.

Proof. By definition v⊗s
κ is a lowest ℓ-weight vector generating the simple Uq(ĝ)-

module V +
s,a. Owing to Lemmas 1 and 5, v⊗s

κ ⊗ w(t) generates the Uq(ĝ)-module

V +
s,a ⊗ V −

t,b. By Lemma 10, R
s|t
a,b respects the Uq(ĝ)-module structures. We are re-

duced to consider the rational function xa,b := R
s|t
a,b(v

⊗s
κ ⊗w(t)) ∈ V⊗s⊗W−

t (a, b).

Claim. A vector in the subspace V −
t of W⊗t is uniquely determined by its com-

ponents wi ⊗W⊗t−1 with i = κ or i ≤ κ− t. 3

Proof. We prove the equivalent following statement P (t) by induction on 1 ≤ t ≤
N :

V −
t ∩

( ∑
κ−t<j<κ

wj ⊗W⊗t−1
)
= 0. (P (t))

For t = 1, this is obvious. P (2) comes from Example 3. Assume that t > 2. Sup-

pose that the left-hand side of P (t) contains a non-zero vector y =
∑κ−1

j=κ−t+1 wj ⊗
xj . By Lemma 6

V −
t = Uq(g)(w

⊗t−1
1 ⊗ w1) ⊆ Uq(g)w

⊗t−1
1 ⊗W = V −

t−1 ⊗W.

The induction hypothesis P (t− 1) implies that xκ−t+1 ̸= 0. A careful analysis of
the first two tensor factors of y in view of V −

t ⊆ V −
2 ⊗ V −

t−2 leads to

y = wκ−t+1 ⊗
κ−1∑

j=κ−t+2

wj ⊗ yj +
κ−1∑

j=κ−t+2

wj ⊗ (−q)wκ−t+1 ⊗ yj .

Since V −
t ⊆ W ⊗ V −

t−1, we must have 0 ≠ xκ−t+1 =
∑κ−1

j=κ−t+2 wj ⊗ yj ∈ V −
t−1, in

contradiction with P (t− 1). This proves P (t). �

Let us determine the components V⊗s⊗wi⊗W⊗t−1 in xa,b. By Equation (2.10),

R
s|t
a,b = FtFt−1 · · ·F2F1, Fj =

s∏
l=1

(R+−
aq−2l,bq2j

)l,s+j .

3To illustrate this claim, let A be the algebra generated by the wi for i ∈ I and subject
to relations wiwj − (−1)|i||j|qwjwi = w2

l = 0 for 1 ≤ i < j ≤ κ and M < l ≤ κ; see
Example 3. Let 1 ≤ t ≤ N and m be a non-zero product of t wi’s. Then up to scalar
multiple m = wim

′ with i = κ or 1 ≤ i ≤ κ− t.
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Let τ ∈ St. If τ(1) ̸= t, then F1 fixes the term v⊗s
κ ⊗wκ−t+τ(1)⊗· · ·⊗wκ−t+τ(t)

in v⊗s
κ ⊗w(t). Applying FtFt−1 · · ·F2 to this term results in irrelevant components

V⊗s⊗wj⊗W⊗t−1 with κ−t < j < κ. We are reduced to consider the case τ(1) = t

and to evaluate R
s|t
a,b(v

⊗s
κ ⊗wκ⊗x), where x is a sum of (t−1)-fold tensor products

of the wj with κ− t < j < κ. By Equation (2.9), the term V⊗s ⊗wκ ⊗W⊗t−1 in
F1(v

⊗s
κ ⊗ wκ ⊗ x) is

s∏
l=1

bq2q−1 − aq−2lq

bq2 − aq−2l
v⊗s
κ ⊗ wκ ⊗ x = q−s bq2 − a

bq2 − aq−2s
v⊗s
κ ⊗ wκ ⊗ x.

Notice that the Fj with 2 ≤ j ≤ t fix v⊗s
κ ⊗ wκ ⊗ x. So the above term is exactly

the component of V⊗s⊗wκ⊗W⊗t−1 in xa,b. For 1 ≤ i ≤ κ− t, again by Equation
(2.9), the terms V⊗s ⊗wi ⊗W⊗t−1 in F1(v

⊗s
κ ⊗wκ ⊗ x) and in xa,b are the same:

s∑
k=1

(−1)(s−k)(|i|+1) bq
2(qi − q−1

i )

bq2 − aq−2k

s∏
l=k+1

bq2q−1 − aq−2lq

bq2 − aq−2l
v⊗k−1
κ ⊗vi⊗v⊗s−k

κ ⊗wi⊗x.

The coefficients are

(−1)(s−k)(|i|+1) bq
k−s+2(qi − q−1

i )

bq2 − aq−2s
.

Together with the claim, we conclude that the denominator of xa,b is bq2 − aq−2s.
�

The denominators of the first two rational functions are given as follows.

Theorem 12. Let 1 ≤ s, t ≤ M . Let u = min(s, t). In the situation of Lemma
10 (A), we have X/Y

.
= N/D where N =

∏u
j=1

(
a− bq−2(t−u+j)

)
, D =

∏u
j=1

(
a−

bq2(s−u+j)
)
. Moreover, N (resp. D) is the denominator of the End(V +

s ⊗ V +
t )-

valued rational function (1/X)Rs,t
a,b|V +

s ⊗V +
t

(resp. (1/Y )Rs,t
a,b|V +

s ⊗V +
t
).4

Proof. The idea is similar to that of Theorem 11. We shall compute X/Y and
prove the statement for (1/X)Rs,t

a,b|V +
s ⊗V +

t
. Notice that Y is computed in the proof

of Lemma 10.

Step I. By definition X is the coefficient of (−q)l(τ0)v(s) ⊗ vt ⊗ vt−1 ⊗ · · · ⊗ v1 in
Rs,t

a,b(v
(s) ⊗ v(t)); here τ0 ∈ St is the permutation j 7→ t+ 1− j.

Claim 1. For 1 ≤ i, j ≤ κ, the term V⊗s ⊗ vi appears in Rs,1
a,c(v

(s) ⊗ vj) only if
i ≤ j.

This comes from the fact that Rs,1
a,c(V

+
s,a⊗V +

1,c) ⊆ V +
s,a⊗V +

1,c and v(s) is a highest

ℓ-weight vector of V +
s,a. For 1 ≤ j ≤ t, let Xj denote the coefficient of v(s) ⊗ vj in

Rs,1
a,bq−2(t−j)(v

(s) ⊗ vj). Then X = XtXt−1 · · ·X1 by Equation (2.11).

4In the non-graded case, Uq(ĝlM ) has fundamental modules Vs,a where 1 ≤ s < M

and a ∈ C× such that Π(Vs,a) is of the form (1s−1, q 1−zaq−2s−2

1−zaq−2s , 1M−1−s); see §1.2. Up

to shifts of spectral parameters, Vs,a is V
(s)
a in [DO, §2.2], and the denominator for V

(s)
a

and V
(t)
b therein is a polynomial of degree min(s, t,M − s,M − t).
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If j > s, then the coefficient of vs ⊗ vs−1 ⊗ · · · ⊗ v1 ⊗ vj in Rs,1
a,bq−2(t−j)(vs ⊗

vs−1 ⊗ · · · ⊗ v1 ⊗ vj) gives Xj =
∏s

i=1(aq
−2i − bq−2(t+1−j)).

If j ≤ s, then the coefficient of u1 := vj⊗(vs⊗vs−1⊗· · ·⊗vj+1)⊗(vj−1⊗vj−2⊗
· · ·⊗v1)⊗vj in Rs,1

a,bq−2(t−j)(u1) gives Xj = (aq−1− bq−2(t+1−j)−1)×
∏s

i=2(aq
−2i−

bq−2(t+1−j)).
In the following, we mainly treat the case s ≤ t so that u = s. The case

s > t will be sketched at Step V. Consider the V⊗s+t-valued polynomial u2 :=
Rs,t

a,b(v
(s) ⊗ v⊗t

κ ). As in the proof of Theorem 11, the denominator of (1/X)u2 is

that of (1/X)Rs,t
a,b|V +

s ⊗V +
t
. Already

X
.
=

a− bq−2t

a− bq−2(t−s)

s∏
i=1

t∏
j=1

(aq−2i − bq−2j) and
Y

X

.
=

D

N
.

Step II. By Equations (1.1) and (2.11), u2 is a linear combination of the vj1 ⊗· · ·
· · ·⊗vjs+t where vi appears once if i ≤ s and t times if i = κ. Similar to the claim in
the proof of Theorem 11, it is enough to determine for a given pair (0 ≤ r ≤ s, σ ∈
Ss) the coefficient kr,σ in u2 of the vector v⊗r

κ ⊗ vσ(1)⊗ vσ(2)⊗ · · ·⊗ vσ(s)⊗ v⊗t−r
κ .

Step III. Let 1 ≤ i ≤ s. Define Wi to be the set of σ ∈ Ss such that σ(s) = i.
Set

v
(s)
i :=

∑
σ∈Wi

(−q)l(σ)vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(s−1) ∈ V +
s−1,a.

View Ss−1 as the subgroup of Ss formed of permutations fixing s. The multiplica-
tion Ss−1 → Ss, σ 7→ τiτi+1 · · · τs−1σ induces a bijective map Ss−1 → Wi which
increases the length of permutations by s − i; here the τj := (j, j + 1) denotes
simple transpositions. Now the next two claims come from Equations (1.1) and
(2.11).

Claim 2. Rs−1,t
a,b (v

(s)
i ⊗ v⊗t

κ ) is obtained from (−q)s−iRs−1,t
a,b (v(s−1) ⊗ v⊗t

κ ) by re-
placing the vj in the tensor factors with vj+1 whenever i ≤ j ≤ s− 1.

Claim 3. The term V⊗s−1 ⊗ vi ⊗ V⊗t in u2 is obtained by inserting fsvi at the

s-th position of the tensor factors of R
(s−1,t)
a,b (v

(s)
i ⊗ v⊗t

κ ). Here

fs =
t∏

j=1

(aq−2s − bq−2j). (a)

The next claim reduces the problem of V +
s ⊗ V +

t to the case V +
s ⊗ V +

s .

Claim 4. Let gr be the coefficient of v⊗r
κ ⊗ v1 ⊗ v2 ⊗ · · · ⊗ vr in Rr,r

a,b(v
(r) ⊗ v⊗r

κ ).

Then for σ ∈ Sr, the coefficient of v⊗r
κ ⊗ vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(r) ⊗ v⊗t−r

κ in

Rr,t
a,b(v

(r) ⊗ v⊗t
κ ) is

(−q)l(σ)gr ×
r∏

i=1

t∏
j=r+1

(aq−2i−1 − bq−2j+1) =: (−q)l(σ)hr. (b)
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Indeed, based on the explicit formula of v(r) ∈ V +
r , the coefficient of v⊗r

κ ⊗
vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(r) in Rr,r

a,b(v
(r) ⊗ v⊗r

κ ) ∈ V +
r ⊗ V +

r should be (−q)l(σ)gr.
Combining Claims 2–4, we obtain the following: for 0 ≤ r ≤ s and σ ∈ Ss, the
coefficient in u2 of the vector v⊗r

κ ⊗ vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(s) ⊗ v⊗t−r
κ is

(−q)xσ,s−rfsfs−1 · · · fr+1hr = kr,σ (c)

for certain xσ,l ∈ Z≥0 defined inductively by Claims 2 and 4.

Step IV. Compute gs. Let σ ∈ Ss with il := σ−1(l) for 1 ≤ l ≤ s. By Equations
(1.1) and (2.11), the coefficient of v⊗s

κ ⊗ v1 ⊗ v2 ⊗ · · · ⊗ vs in Rs,s
a,b(vσ(1) ⊗ vσ(2) ⊗

· · · ⊗ vσ(s) ⊗ v⊗s
κ ) is

(−1)l(σ)
∏
l ̸=i1

(aq−2l−bq−2) · aq−2i1(q − q−1)

·
∏

l ̸=i1,i2

(aq−2l−bq−4)·aq−2i2(q−q−1)·(aq−2i1−1−bq−3)

·
∏

l≠i1,i2,i3

(aq−2l−bq−6)·aq−2i3(q−q−1) · (aq−2i1−1−bq−5)(aq−2i2−1−bq−5) · · ·

·aq−2is(q − q−1) ·
∏
l ̸=is

(aq−2l−1−bq−2s+1)

=(−1)l(σ)as(q − q−1)sq−s(s+1)− s(s−1)
2

s∏
l=1

s−1∏
j=1

(aq−2l−bq−2j).

From the explicit formula of v(s) it follows that gs = asCs

∏s
l=1

∏s−1
j=1(aq

−2l−bq−2j)
where

Cs : = (q − q−1)sq−s(s+1)− s(s−1)
2

( ∑
σ∈Ss

ql(σ)
)

= (q − q−1)sq−s(s+1)− s(s−1)
2

s∏
i=1

qi − 1

q − 1
̸= 0.

Combining with the formulas (a)–(c) above, we have:

kr,σ
.
= fsfs−1 · · · fr+1hr

.
=

ar∏r
i=1(aq

−2i − bq−2t)

s∏
i=1

t∏
j=1

(aq−2i − bq−2j).

It follows that

kr,σ
X

.
= ar(a− bq−2(t−s))

t∏
j=t−r

(a− bq−2j)−1.

Step V. Finally, let us consider the case s > t. We determine the pôles of the
V⊗s+t-valued function Rs,t

a,b(v
⊗s
κ ⊗ v(t)) =: u3. We have

X
.
=

a− bq−2t

a− b

s∏
i=1

t∏
j=1

(aq−2i − bq−2j) and again
Y

X
=

D

N
.
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As in Step II, we are reduced to determine the coefficients k′r,σ in u3 of the vectors
v⊗s−r
κ ⊗ vσ(1) ⊗ · · · ⊗ vσ(t) ⊗ v⊗r

κ where (0 ≤ r ≤ t, σ ∈ St). Similar arguments as
Claims 2–4 and Step IV indicate that

k′r,σ
.
=

br∏t
j=t−r+1(aq

−2 − bq−2j)

s∏
i=1

t∏
j=1

(aq−2i − bq−2j).

Hence
k′
r,σ

X

.
= br(a− b)

∏t
j=t−r(a− bq−2j)−1. �

4. Weyl modules over quantum affine gl(1, 1)

In this section M = N = 1 and g = gl(1, 1). We discuss Weyl modules over
Uq(ĝ), which were previously defined in [Zh1].5

Let R0 be the set of rational functions f(z) ∈ C(z) which are products of
the c(1− za)/(1− zac2) with a, c ∈ C×. Let R1 be the set of pairs (f (z), P (z)) ∈
R0×C[z] such that P (z) ∈ 1+zC[z] and P (z)/f(z) ∈ C[z]. (So deg(P/f) = degP .)
For (f, P ) ∈ R1, the Weyl module W(f ;P ) is the Uq(ĝ)-module generated by an
even vector w and subject to relations:

(W1) s12(z)w = t12(z)w = 0, s22(z)w = t22(z)w = w, s11(z)w = f(z)w =
t11(z)w;

(W2) P (z)
f(z) s21(z)w ∈ W(f ;P )[[z]] is a polynomial of degree ≤ degP .

In the last two equations of (W1), f(z) ∈ C(z) is to be developed at z = 0,∞
accordingly. Let V (f) be the simple highest ℓ-weight Uq(ĝ)-module whose highest
ℓ-weight vector is even and verifies (W1). Let f =

∏
i ci(1− zai)/(1− zaic

2
i ) be

such that ai, ci ∈ C× and ai ̸= ajc
2
j whenever i ̸= j. Then

V (f) ∼=
⊗
i

V
(
ci

1− zai
1− zaic2i

)
as Uq(ĝ)-modules [Zh2, Thm. 5.2].

Recall from [Zh4, §2] the Drinfeld generators of Uq(ĝ): En, Fn, hs, ϕ
±
n , (s

(0)
11 )

±1

with n ∈ Z and s ∈ Z ̸=0. Set F
+(z) := −

∑
n>0 Fnz

n and ϕ±(z) =
∑

s≥0 ϕ
±
±sz

±s.
We have:

s
(0)
11 exp((q − q−1)

∑
s>0

hsz
s) = s11(z), (s

(0)
11 )

−1 exp((q−1 − q)
∑
s<0

hsz
s) = t11(z),

∆F+(z) = ϕ+(z)⊗ F+(z) + F+(z)⊗ 1, ∆ϕ±(z) = ϕ±(z)⊗ ϕ±(z),

[hs, Fn] =
1− q2s

s(q − q−1)
Fn+s, FnFm + FmFn = 0 = hsht − hths,

F+(z) = s21(z)s11(z)
−1.

The ϕ±
n are central. Let U− (resp. U≥0) be the subalgebra generated by the Fn

(resp. the other Drinfeld generators). Then Uq(ĝ) = U−U≥0.

5In [Zh1, §4.1] Weyl modules were defined in terms of Drinfeld loop generators. It is
not difficult to translate it by RTT generators, using the Ding–Frenkel homomorphism
reviewed in [Zh2, Thm. 3.12].
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Lemma 13. For (f, P ) ∈ R1, W(f ;P ) is spanned by the Fn1Fn2 · · ·Fnsw with
s ≥ 0 and nj > 0 for 1 ≤ j ≤ s and has a simple quotient V (f). Furthermore, for
all w′ ∈ W, (W2) holds and ϕ+(z)w′ = f(z)−1w′.

Proof. Let V (f)∼=
⊗l

i=1V (fi) be a decomposition with fi= ci(1−zai)/(1−zaic
2
i )

for 1 ≤ i ≤ l. Then P (z) is divisible by
∏l

i=1(1−zai). Let xi ∈ V (fi) be a highest

ℓ-weight vector. Set x :=
⊗l

i=1 xi. From the coproduct of F+(z) and ϕ+(z) we
get

F+(z)x =
l∑

j=1

(
⊗

i<jϕ
+(z)xi)⊗ F+(z)xj ⊗ (

⊗
i>jxi).

In view of the explicit construction of V (fi) in [Zh4, §5], both (1− zai)ϕ
+(z)xi =

c−1
i (1− zaic

2
i )xi and (1− zai)F

+(z)xi are polynomials of degree 1. It follows that∏l
i=1(1− zai)F

+(z)x is a polynomial of degree ≤ l, implying (W2) for x ∈ V (f).
So V (f) is a quotient of W(f ;P ). Observe from [Zh4, §2] that for the highest
ℓ-weight vector x we have ϕ+(z)x = s22(z)s11(z)

−1x ∈ C[[z]]x. The remaining
statements then come from Uq(ĝ) = U−U≥0 and from the commuting relations of
Drinfeld generators listed above. �

Proposition 14. Let (f, P ), (g,Q) ∈ R1. If the polynomials P/f and Q are co-
prime, then W(f ;P ) ⊗ W(g;Q) is of highest ℓ-weight and is a quotient of the
module W(fg;PQ).

Proof. Let degP = l and degQ = u. Let x′ ∈ W(f ;P ) and y′ ∈ W(g;Q) be

homogeneous vectors. From the above lemma, P (z)F+(z)v′ =
∑l

i=1 z
ixi and

Q(z)F+(z)y′ =
∑u

j=1 z
jyj for certain xi ∈ W(f ;P ) and yj ∈ W(g;Q).

F+(z)(x′ ⊗ y′) = F+(z)x′ ⊗ y′ + (−1)|x
′|ϕ+(z)x′ ⊗ F+(z)y′

=
1

P (z)Q(z)

(
Q(z)

l∑
i=1

zixi ⊗ y′ + (−1)|x
′|P (z)

f(z)

u∑
j=1

zjx′ ⊗ yj

)
.

P (z)Q(z)F+(z)(x′ ⊗ y′) is a polynomial of degree ≤ l + u. Introduce T (z) :=
(−1)|x

′|P (z)/f(z); it is a polynomial of degree l. Since Q(z) and T (z) are co-
prime, the polynomials ziQ(z), zjT (z) with 1 ≤ i ≤ l and 1 ≤ j ≤ u are linearly
independent, and the xi⊗y′, x′⊗yj are in the subspace spanned by the coefficients
of P (z)Q(z)F+(z)(x′ ⊗ y′).

We have proved that Fsx
′ ⊗ y′, x′ ⊗ Fsy

′ ∈ U−(x′ ⊗ y′) for all s ∈ Z>0 and
x′ ⊗ y′ ∈ W(f ;P )⊗W(g;Q). This implies by induction on s, t ∈ Z≥0 that

Fn1Fn2 · · ·Fnsx
′ ⊗Fm1Fm2 · · ·Fmty

′∈U−(x′ ⊗ y′) for n1, . . . , ns,m1, . . . ,mt∈Z>0.

Take x′, y′ to be the highest ℓ-weight generators of W(f ;P ) and W(g;Q). From
the above lemma we see that W(f ;P )⊗W(g;Q) = U−(x′⊗ y′). Moreover, x′⊗ y′

satisfies the conditions (W1)–(W2) in the definition of W(fg;PQ). �
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5. Cyclicity of tensor products

In this section we provide sufficient conditions for a tensor product of funda-
mental modules to be of highest ℓ-weight, improving previously established ones
in [Zh2].

The main result of this section is as follows. For r1, r2 ∈ Z≥0, set

Σ(r1, r2) := {q2l ∈ C | r2 −min(r1, r2) < l ≤ r2}.

Theorem 15. Let k, l ∈ Z>0. Let 1 ≤ r1, r2, . . . , rk ≤ M and 1 ≤ s1, s2, . . . , sl ≤
N . Let a1, a2, . . . , ak, b1, b2, . . . , bl ∈ C×. The Uq(ĝ)-module(⊗k

i=1 V
+
ri,ai

)
⊗
(⊗l

j=1 V
−
sj ,bj

)
=: S

is of highest ℓ-weight if the following three conditions are satisfied:

(C1) aj/ai /∈ Σ(ri, rj) for 1 ≤ i < j ≤ k;
(C2) bi/bj /∈ Σ(si, sj) for 1 ≤ i < j ≤ l;
(C3) aiq

−2ri /∈ bjq
2 for 1 ≤ i ≤ k and 1 ≤ j ≤ l.

The proof of the theorem needs a series of reduction lemmas. In the following,
for V1, V2 two Uq(ĝ)-modules, we write V1 ≃ V2 if as Uq(ĝ)-modules V1

∼= V2 ⊗D
for a one-dimensional Uq(ĝ)-module D. Let A,B be two Hopf superalgebras. Let
g : A → B be a morphism of superalgebras. (In general g does not respect
coproduct structures.) Let V be a B-module and W a sub-vector-superspace of
V . Suppose that W is stable by g(A). The action of g(A) endows W with an
A-module structure, denoted by g•W .

From now on, set U := Uq(ĝl(1, 1)). Let g1 : U → Uq(ĝ) be the superalgebra
morphism defined by(

s11(z) s12(z)
s21(z) s22(z)

)
7→

(
s11(z) s1κ(z)
sκ1(z) sκκ(z)

)
and similar formulas for the tij(z). The following special property of fundamental
modules is crucial in our reduction arguments. It was used implicitly in the proof
of [Zh2, Thm. 4.2]. We think of the trivial modules also as fundamental modules:
C = V ±

0,a.

Lemma 16. Let X1 (resp. X3) be a positive (resp. negative) fundamental module
with x1 (resp. x3) a lowest ℓ-weight vector and let Yj := g1(U)xj ⊆ Xj for j = 1, 3.
Let X2 be another Uq(ĝ)-module and Y2 a sub-vector-superspace of X2 stable by
g1(U). Then:

(1) Y1 ⊗ Y2 ⊗ Y3, as a subspace of the Uq(ĝ)-module X1 ⊗X2 ⊗X3, is stable by
g1(U);

(2) the identity map Id : g•1(Y1 ⊗ Y2 ⊗ Y3) ∼= g•1Y1 ⊗ g•1Y2 ⊗ g•1Y3 is U -linear.

Proof. Let us assume first that X3 is the trivial module. We shall prove that
sij(z)Y1 = 0 = tij(z)Y1 whenever i ∈ {1, κ} and j /∈ {1, κ}; this will imply (1)
and that the operators g⊗2

1 (∆U (y)) and ∆Uq(ĝ )(g1(y)) on Y1 ⊗ Y2 are identical
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for y an arbitrary RTT generator of U , which proves (2). Let X1 = V +
s,a with

1 ≤ s ≤ M . By Lemma 5 and Theorem 3, Y1 is two-dimensional, and its weights
are λ1 := sϵκ, λ2 := ϵ1 + (s − 1)ϵκ. Let u ∈ Y1 be of weight λk with k = 1, 2.
Then sij(z)u and tij(z)u are of weight λk + ϵi − ϵj , which is not a weight of V +

s,a

by Theorem 3. So sij(z)u = 0 = tij(z)u, as desired.

Secondly let us assume that X1 is the trivial module. We prove that sij(z)Y3 =
0 = tij(z)Y3 whenever j ∈ {1, κ} and i /∈ {1, κ}; this will also imply (2). Let
X3 = V −

r,a with 1 ≤ r ≤ N . The proof of Lemma 6 and Theorem 3 show that: Y3

is two-dimensional with weights µ1 := −rϵ1, µ2 := −(r−1)ϵ1−ϵκ. Now µk+ϵi−ϵj
is not a weight of V −

r,a for k = 1, 2, leading to the desired result.

The general case is just a combination of the above two cases. �

Let us fix three distinguished vectors of a positive fundamental module V as

follows: v1 is a highest ℓ-weight vector; v3 is a lowest ℓ-weight vector; v2 = s
(0)
1κ v

3.
For a negative fundamental module W , the three vectors w1, w2, w3 are defined in
the same way. We shall be in the situation of Theorem 15, and add sub-indexes
to emphasize the fundamental modules; for example v1i ∈ V +

ri,ai
and w3

j ∈ V −
sj ,bj

.
The following lemma comes from the proof of Lemma 16. It is the reduction from
gl(M,N) to gl(1, 1).

Lemma 17. Set Wi := g1(U)v3i ⊆ V +
ri,ai

and W ′
j := g1(U)w3

j ⊆ V −
sj ,bj

. Then

Wi = Cv2i + Cv3i and W ′
j = Cw2

j + Cw3
j . As U -modules

g•1Wi ≃ V
(
qri

1− zaiq
−2ri−2

1− zaiq−2

)
, g•1W

′
j ≃ V

(
q−sj

1− zbjq
2sj

1− zbj

)
,

and v2i , w
2
j (resp. v3i , w

3
j ) are highest (resp. lowest) ℓ-weight vectors.

Proof. We prove the negative case. Replace V −
s,b by ev∗bq2V

−
s according to Lemma

6. From the second part of the proof of Lemma 16 we see that: w2, w3 are of
weights (1 − s)ϵ1 − ϵκ,−sϵ1 respectively; W ′ = Cw2 + Cw2 and w2 is a highest
ℓ-weight vector of g•1W

′;

s11(z)sκκ(z)
−1w2 =

q1−s − zbq2+s−1

q − zbq2−1
w2 = q−s 1− zbq2s

1− zb
w2 = t11(z)tκκ(z)

−1w2.

This proves the second isomorphism in the lemma. �

Let U2 := Uq( ̂gl(M − 1, N)) and g2 : U2 → Uq(ĝ) be the superalgebra morphism
defined by sij(z) 7→ si+1,j+1(z) and similar formula for the tij(z). Let V

2±
r,a denote

the positive/negative fundamental modules over U2, with (+, 1 ≤ r < M) or
(−, 1 ≤ r ≤ N).

Lemma 18. Set Ki := g2(U2)v
1
i ⊆ V +

ri,ai
and K ′

j := g2(U2)w
1
j ⊆ V −

sj ,bj
. Then

v2i ∈ Ki and

g•2Ki ≃ V 2+
ri−1,aiq−2 , g•2K

′
j ≃ V 2−

sj ,bj

580



QUANTUM AFFINE SUPERALGEBRAS

as U2-modules, with v1i and v2i being highest and lowest ℓ-weight vectors of g•2Ki

respectively. Furthermore, K := (
⊗k

i=1 Ki) ⊗ (
⊗l

j=1 K
′
j) is stable by g2(U2), and

and identity map Id : g•2(K) ∼= (
⊗k

i=1 g
•
2Ki)⊗ (

⊗l
j=1 g

•
2K

′
j) is U2-linear.

Let U3 := Uq( ̂gl(M,N − 1)) and g3 : U3 → Uq(ĝ) be the superalgebra morphism
defined by sij(z) 7→ sij(z), tij(z) 7→ tij(z). Let V 3±

r,a denote the positive/negative
fundamental modules over U3, with (+, 1 ≤ r ≤ M) or (−, 1 ≤ r < N).

Lemma 19. Set Li := g3(U3)v
1
i ⊆ V +

ri,ai
and L′

j := g3(U3)w
1
j ⊆ V −

sj ,bj
. Then

w2
j ∈ L′

j and

g•3Li ≃ V 3+
ri,ai

, g•3L
′
j ≃ V 3−

sj−1,bj

as U3-modules, with w1
j and w2

j being highest and lowest ℓ-weight vectors of g•3L
′
j

respectively. Furthermore, L := (
⊗k

i=1 Li) ⊗ (
⊗l

j=1 L
′
j) is stable by g3(U3), and

the identity map Id : g•3(L)
∼= (

⊗k
i=1 g

•
3Li)⊗ (

⊗l
j=1 g

•
3L

′
j) is U3-linear.

Lemmas 18 and 19 can be deduced from Theorem 3 and Lemmas 5–6. We have
used the above three reductions in [Zh2] to prove a weaker version of Theorem 15.
The following lemma is new and is a crucial step in the proof of Theorem 15.

Lemma 20. Set

W := g1(U)((
⊗k

i=1 v
1
i )⊗ (

⊗l
j=1 w

1
j )) ⊆

( k⊗
i=1

V +
ri,ai

)
⊗
( l⊗

j=1

V −
sj ,bj

)
.

There exists a one-dimensional U -module D making W a quotient of

D ⊗W
( k∏

i=1

q − zaiq
−2ri−1

1− zaiq−2ri
·

l∏
j=1

1− zbjq
2

q − zbjq
;

k∏
i=1

(1− zaiq
−2ri−2) ·

l∏
j=1

(1− zbjq
2)

)
.

Proof. We can replace V +
r,a and V −

s,b by ev∗aq−2rV +
r and ev∗bq2V

−
s respectively. By

Lemmas 5–6, v1i , w
1
j are of weights ϵ1+ϵ2+ · · ·+ϵri ,−ϵκ−ϵκ−1−· · ·−ϵκ−sj+1. Let

v be ordered tensor product of the v1i , w
1
j and W = g1(U)v. By Equation (1.7):

s1κ(z)v = 0 = t1κ(z)v; sκ1(z)v is a polynomial of degree ≤ k + l; sii(z)v = fi(z)v
and tii(z)v = gi(z)v where

f1=
k∏

i=1

(q−zaiq
−2ri−1)·

l∏
j=1

(1−zbjq
2), g1=f1 ·(−z−1)k+l

k∏
i=1

(a−1
i q2ri)

l∏
j=1

(b−1
j q−2),

fκ=
k∏

i=1

(1−zaiq
−2ri)·

l∏
j=1

(q−zbjq), gκ=fκ ·(−z−1)k+l
k∏

i=1

(a−1
i q2ri)

l∏
j=1

(b−1
j q−2).

Let D1 = ϕ∗
[f−1

κ ,g−1
κ ]

(C) = Cd be the one-dimensional U -module. Then the tensor

product of U -modules D1 ⊗W is generated by d⊗ v. Moreover, d⊗ v satisfies all
the relations in the definition of W( f1fκ ; q

−kf1); the latter therefore has D1 ⊗W as
a quotient. �
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Corollary 21. We have v31 ⊗ (
⊗k

i=2 v
1
i ) ⊗ (

⊗l
j=1 w

1
j ) ∈ g1(U)(v21 ⊗ (

⊗k
i=2 v

1
i ) ⊗

(
⊗l

j=1 w
1
j )) if a1 ̸= aiq

−2ri , bjq
4 for all i, j. Similarly, if bl ̸= aiq

−2ri−2sl , bjq
−2sl

for all i, j, then (
⊗k

i=1 v
1
i )⊗(

⊗l−1
j=1 w

1
j )⊗w3

l ∈ g1(U)((
⊗k

i=1 v
1
i )⊗(

⊗l−1
j=1 w

1
j )⊗w2

l ).

Proof. Let us prove the second part, the first part being similar. We are in the
situation of Lemma 16 where X1 is trivial, X3 := V −

sl,bl
, Y3 := W ′

l ⊆ X3 (see
Lemma 17) and

X2 :=

( k⊗
i=1

V +
ri,ai

)
⊗

( l−1⊗
j=1

V −
sj ,bj

)
, Y2 := g1(U)((

⊗k
i=1 v

1
i )⊗ (

⊗l−1
j=1 w

1
j )) ⊆ X2.

It follows that g•1(Y2 ⊗ Y3) = g•1Y2 ⊗ g•1Y3. The U -modules g•1(Y2) and g•1(Y3) (see

Lemma 17) are generated by highest ℓ-weight vectors (
⊗k

i=1 v
1
i )⊗ (

⊗l−1
j=1 w

1
j ) and

w2
l respectively. It is therefore enough to prove that g•1Y2 ⊗ g•1Y3 is of highest

ℓ-weight. Up to tensor products by one-dimensional modules, by Lemma 20, g•1Y2

is a quotient of the Weyl module

W2 := W
( k∏

i=1

q − zaiq
−2ri−1

1− zaiq−2ri
·

l∏
j=1

1− zbjq
2

q − zbjq
;

k∏
i=1

(1−zaiq
−2ri−2)×

l−1∏
j=1

(1−zbjq
2)

)
;

by Lemmas 17 and 13 g•1Y3 is a quotient of the Weyl module

W3 := W
(
q−sl

1− zblq
2sl

1− zbl
; 1− zblq

2sl

)
.

By assumption blq
2sl /∈ {bj , aiq−2ri : 1 ≤ i ≤ k, 1 ≤ j < l}. We deduce from

Proposition 14 that W2 ⊗ W3 is of highest ℓ-weight. Its quotient g•1Y2 ⊗ g•1Y3 is
also of highest ℓ-weight. �

Now we can prove three special cases of Theorem 15.

Corollary 22. Under conditions (1)–(2) in Theorem 15, both of the tensor prod-

ucts
⊗k

i=1 V
+
ri,ai

and
⊗l

j=1 V
−
sj ,bj

are highest ℓ-weight modules.

Proof. We shall prove the positive case by induction on M and k; the negative
case uses essentially the same arguments. It is useful to include the case M = 0
where the ri = 0 and S is trivial. Let M > 0. (C1) implies the conditions of the
ai in the above corollary. So

v31 ⊗ (
⊗k

i=2 v
1
i ) ∈ g1(U)(v21 ⊗ (

⊗k
i=2 v

1
i )). (1)

Now consider the U2-module g•2(K) in Lemma 18 with K = g2(U2)(
⊗k

i=1 v
1
i ) (so

l = 0). Since (C1) stays the same when replacing M by M − 1, the induction
hypothesis applied to M − 1 indicates that g•2(K) is of highest ℓ-weight and

v21 ⊗ (
⊗k

i=2 v
1
i ) ∈ g2(U2)(

⊗k
i=1 v

1
i ). (2)

Next the induction hypothesis applied to k − 1 together with Lemma 1 indicates
that

Uq(ĝ)(v
3
1 ⊗ (

⊗k
i=2 v

1
i )) =

k⊗
i=1

V +
ri,ai

. (3)

From (1)–(3) it follows that
⊗k

i=1 V
+
ri,ai

is of highest ℓ-weight. �
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Corollary 23. Let 1 ≤ r ≤ M, 1 ≤ s ≤ N and a, b ∈ C×. If aq−2r ̸= bq2 then
V +
r,a ⊗ V −

s,b is of highest ℓ-weight.

Proof. Firstly use induction on M . By Corollary 21, v3 ⊗ w1 ∈ g1(U)(v2 ⊗ w1) if
a ̸= bq4. Consider K = g2(U2)v

1 and K ′ = g2(U2)w
1 in Lemma 18; the induction

hypothesis applied to M − 1 shows that if aq−2r ≠ bq2 then v2⊗w1 ∈ g2(U2)(v
1⊗

w1). Combining with Lemma 1, we see that V +
r,a ⊗ V −

s,b is of highest ℓ-weight if

a ̸= bq4 and aq−2r ̸= bq2.
Secondly use induction on N . By Corollary 21, v1 ⊗ w3 ∈ g1(U)(v1 ⊗ w2) if

b ̸= aq−2r−2s. Consider L = g3(U3)v
1 and L′ = g3(U3)w

1 in Lemma 19; the
induction hypothesis applied to N − 1 shows that if aq−2r ̸= bq2 then v1 ⊗ w2 ∈
g3(U3)(v

1 ⊗ w1). Thus V +
r,a ⊗ V −

s,b is of highest ℓ-weight if b ̸= aq−2r−2s and

aq−2r ̸= bq2.
Conclude as {a ̸= bq4, aq−2r ̸= bq2} ∪ {b ̸= aq−2r−2s, aq−2r ≠ bq2} = {aq−2r ̸=

bq2}. �
Corollary 24. If a2/a1 /∈ Σ(r1, r2) and a1/a2 /∈ Σ(r2, r1), then V +

r1,a1
⊗ V +

r2,a2
∼=

V +
r2,a2

⊗ V +
r1,a1

as Uq(ĝ)-modules. Similarly, the Uq(ĝ)-modules V −
s1,b1

⊗ V −
s2,b2

and

V −
s2,b2

⊗ V −
s1,b1

are isomorphic if b1/b2 /∈ Σ(s1, s2) and b2/b1 /∈ Σ(s2, s1).

Proof. It is enough to consider positive fundamental modules as f∗(V −
r,a)

∼=V ′+
r,aq2r+2

in view of the proof of Lemma 6. By Lemma 10 (A) and Theorem 12, there exists a
Uq(ĝ)-linear map Rr1,r2 : V +

r1,a1
⊗V +

r2,a2
→ V +

r2,a2
⊗V +

r1,a1
sending v11⊗v12 to v12⊗v11 .

By Corollary 22, v12 ⊗ v11 generates V +
r2,a2

⊗ V +
r1,a1

. So Rr1,r2 is an isomorphism of
Uq(ĝ)-modules. �
Corollary 25. Under conditions (C1)–(C2) in Theorem 15, we have σ ∈ Sk, τ ∈
Sl:

(1) as Uq(ĝ)-modules,

k⊗
i=1

V +
ri,ai

∼=
k⊗

i=1

V +
rσ(i),aσ(i)

and

l⊗
j=1

V −
sj ,bj

∼=
k⊗

j=1

V −
sτ(j),bτ(j)

;

(2) aσ(i)/aσ(j), bτ(j)/bτ(i) /∈ q2Z<0 whenever i < j.

One can copy the proof of [AK, Cor. 2.2] using Corollaries 22 and 24.

Proof of Theorem 15. We use induction on M +N and k + l. Owing to Corollary
25, we can assume that for 1 ≤ i < j ≤ k, either ai/aj ∈ q2Z≥0 or ai/aj /∈ q2Z.
If one of the two assumptions in Corollary 21 is satisfied, then using reduction to
either U2 in Lemma 18 or to U3 in Lemma 19 together with Lemma 1, we can
conclude as in the proof of Corollary 22 that S is of highest ℓ-weight.

Suppose that first assumption in Corollary 21 fails, so that a1 = btq
4 for some

1 ≤ t ≤ l. Now let us rearrange the tensor product
⊗l

j=1 V
−
sj ,bj

as in Corol-

lary 25 in such a way that bτ(l)/bt ∈ q2Z≥0 . (This is possible by Corollary 24,
and possibly τ(l) = t.) Assume next that the second assumption in Corollary
21 fails, so that bτ(l) = aiq

−2ri−2sτ(l) for some 1 ≤ i ≤ k. It follows that

bτ(l)/bt = ai/a1q
4−2ri−2sτ(l) . From bτ(l)/bt ∈ q2Z≥0 we obtain ai/a1 ∈ q2Z and
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so ai/a1 ∈ q2Z≤0 . This forces ri = sτ(l) = 1, ai = a1 and btq
2 = a1q

−2 = aiq
−2ri ,

in contradiction with (C3). This completes the proof of Theorem 15. �
The following lemma (actually only the case k+ l = 2) will be used in the next

section.

Lemma 26. In Theorem 15, if k = l = 1, or l = 0 or k = 0, then (C3), or (C1),
or (C2) is necessary for S to be of highest ℓ-weight.

Proof. The case k + l = 2 comes from the proof of Lemmas 6, 10 and Theorems
11–12 and the case kl = 0 from Corollary 24 by induction on k + l as in the proof
of Theorem 15. �

6. Simplicity of tensor products

We give equivalent conditions for a tensor product of fundamental modules to
be simple.

Let us recall the notion of twisted dual to pass from “highest/lowest ℓ-weight”
to “simple”. Let V be a finite-dimensional Uq(ĝ)-module. Its twisted dual is the
dual space hom(V,C) endowed with a Uq(ĝ)-module structure, denoted by V ∨, as
follows:

⟨xl, v⟩ := (−1)|l||x|⟨l, SΨ(x)v⟩ for x ∈ Uq(ĝ), l ∈ hom(V,C), v ∈ V.

For V,W finite-dimensional Uq(ĝ)-modules, by Equation (1.5) we have a natural
isomorphism of Uq(ĝ)-modules (V ⊗W )∨ ∼= V ∨ ⊗W∨. For 1 ≤ i ≤ n, let Vi be
a finite-dimensional simple Uq(ĝ)-module generated by a highest ℓ-weight vector
vi. Then V ∨

i is again simple and contains a highest ℓ-weight vector v∗i such that
v∗i (vi) = 1. By the duality argument, the tensor product

⊗n
i=1 Vi is of highest

ℓ-weight if and only if the submodule S of
⊗n

i=1 V
∨
i generated by

⊗n
i=1 v

∗
i is

contained in all the other non-zero submodules. (S must then be simple and is the
socle of

⊗n
i=1 V

∨
i .) The tensor product

⊗n
i=1 Vi is simple if and only if

⊗n
i=1 Vi

and
⊗n

i=1 V
∨
i are both of highest ℓ-weight. Similar statements hold for lowest

ℓ-weight modules.
The twisted dual of V(a) has been computed in [Zh3, Eq. (3.26)]:

V(a)∨ ≃ V(a−1q2M−2N ).

Next let us compute the twisted dual of W(a) in Example 2. Denote by ρa the
representation of Uq(ĝ) on W(a). As in [Zh3, §3.2], introduce

X(z)=(ρa ⊗ IdEndW)
(∑

i,j

sij(z)⊗ Eij

)
=
∑
i

(q−1
i − zaqi)Eii ⊗ Eii + (1− za)

∑
i̸=j

Eii ⊗ Ejj

+
∑
i<j

(q−1
j − qj)Eji ⊗ Eij + za

∑
i>j

(q−1
j − qj)Eji ⊗ Eij ∈ End(W⊗2)[[z]].
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Set A := (1− zaq2)(1− zaq−2). By Equation (1.3), we have

X(z)−1=(ρa ⊗ IdEndW)
(∑

i,j

S(sij(z))⊗ Eij

)
=

1

A

{∑
i

(qi − zaq−1
i )Eii ⊗ Eii + (1− za)

∑
i̸=j

Eii ⊗ Ejj

+
∑
i<j

(qj − q−1
j )Eji ⊗ Eij + za

∑
i>j

(qj − q−1
j )Eji ⊗ Eij

}
.

Similarly we can find the ρa(S(tij(z))). By comparing highest ℓ-weights, we obtain

W(a)∨ ≃ W(a−1).

Proof of Proposition 2. Let us consider the positive case; the negative case can
then be implied as in the proof of Lemma 6. Recall the following fact in [Zh2,
Prop.4.7]:

⊗s
i=1 V(aq2i) is of lowest ℓ-weight for all a ∈ C× and s ∈ Z>0. By

taking the twisted dual and using the formula of V(a)∨, we see that the lowest
ℓ-weight vector v⊗s

κ generates the simple socle of
⊗s

i=1 V(aq−2i) for all a ∈ C×.
In particular, V +

s,a in Definition 2 is simple. �

Lemma 27. (V +
r,a)

∨ ≃ V +
r,a−1q2(M−N+1+r) and (V −

s,a)
∨ ≃ V −

s,a−1q−2s−2 for a ∈ C×.

Proof. Let us prove the positive case. Recall from the proof of Proposition 2 that⊗1
j=r V(aq−2j) is of lowest ℓ-weight. This gives rise to a diagram of Uq(ĝ)-modules

1⊗
j=r

V(aq−2j)
θ−→ V +

r,a
τ−→

r⊗
j=1

V(aq−2j)

where θ, τ are Uq(ĝ)-linear and they both fix v⊗r
κ . Taking the twisted dual and

using the formula of V(a)∨, one obtains a similar diagram where the Uq(ĝ)-linear
maps fix lowest ℓ-weight vectors. One can use Definition 2 to conclude (V +

r,a)
∨ ≃

V +
r,a−1q2(M−N+1+r) . �

Proof of Lemma 7. From Corollaries 22–23 we see that in Lemma 7, if the signature
of (V,W ) is (++) or (−−) or (+−), then Va ⊗Wb is of highest ℓ-weight for a

b in
the complementary of a finite subset of C×. By Lemma 27 and the twisted dual
argument, the same is true when replacing “highest ℓ-weight” with “simple”. When
Va⊗Wb is simple, according to the highest ℓ-weight classification in §1.2, we must
have a unique Uq(ĝ)-linear isomorphism Va⊗Wb

∼= Wb⊗Va fixing highest ℓ-weight
vectors v ⊗ w 7→ w ⊗ v. Such an isomorphism also resolves the case where the
signature of (V,W ) is (−+). �

We would like to emphasize that the above proofs of Proposition 2, Lemmas 27
and 7 are independent of the results in §§2–3. They use essentially Weyl modules
in §4, [Zh2, Prop.4.7] on lowest ℓ-weight modules, and the twisted dual formula in
[Zh3, Eq.(3.26)].
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Theorem 28. A tensor product of fundamental modules V1⊗V2⊗· · ·⊗Vs is simple
if and only if so is Vi ⊗ Vj for all 1 ≤ i < j ≤ s.

Proof. The “only if” part is trivial as in the non-graded case in [He, §6]: if
⊗s

i=1 Si

is simple, then so are Si ⊗ Si+1 and
⊗s

j=1 Sσ(j) for 1 ≤ i < s and σ ∈ Ss

by comparing highest ℓ-weights. For the “if” part, since Vi ⊗ Vj is simple, it is
isomorphic to Vj⊗Vi. Without loss of generality we can assume that

⊗n
i=1 Vi =: S

is of the form in Theorem 15: a tensor product of positive fundamental modules
followed by that of negative fundamental modules. By Lemma 26, such a tensor
product verifies the conditions (C1)–(C3) in Theorem 15 and is therefore of highest
ℓ-weight. Using similar arguments adapted to (

⊗s
i=1 Vi)

∨ ∼=
⊗s

i=1 V
∨
i by Lemma

27, we conclude that S∨ is of highest ℓ-weight. So S is simple. �

Remark 3. Let us make explicit the simplicity condition. Index i = (ri, εi) where
1 ≤ ri ≤ M if εi = + and 1 ≤ ri ≤ N if εi = −. Define

∆ij :=


∏min(ri,rj)

l=1 (ai − ajq
∓2(rj−min(ri,rj)+l)) if εi = εj = ±,

ai − ajq
2ri+2 if (εi, εj) = (+,−),

ai − ajq
−2M+2N−2ri−2 if (εi, εj) = (−,+).

(6.12)

Then
⊗s

i=1 V
εi
ri,ai

is simple if and only if ∆ij ̸= 0 for all i ̸= j.

Corollary 29. A tensor product of positive fundamental modules is simple if and
only if it is both of highest ℓ-weight and of lowest ℓ-weight.

Proof. The “only if” part is trivial by definition. The “if” part is a direct conse-
quence of Theorem 12, Lemma 26 and the above theorem. �

The above corollary remains true for tensor products of negative fundamental
modules, by using the pull back f∗ in the proof of Lemma 6. In [Zh2, §5], the
above corollary was proved for all finite-dimensional simple modules over a Borel

subalgebra of Uq(ĝl(1, 1)) (and so over the full quantum affine superalgebra), the
so-called q-Yangian.

Example 4. Corollary 29 fails if “positive” is removed. Consider S := V(a) ⊗
W(b) = V +

1,aq2 ⊗ V −
1,bq−2 . We have v11 = v21 = v1 and w1

2 = w2
2 = wκ. Set

W = g1(U)v11 and W ′ = g1(U)w1
2. By Lemmas 16, 17 and 20, as U -modules

g•1(W ⊗W ′) ∼= g•1W ⊗ g•1W
′ ≃ V

(q − zaq−1

1− za

)
⊗ V

( 1− zb

q − zbq−1

)
.

It follows that S is of highest ℓ-weight and of lowest ℓ-weight if a ̸= b. On the
other hand, S is simple if and only if a ̸= b and b ̸= aq−2M+2N .

Example 5. Let 1 ≤ s ≤ M and 1 ≤ t ≤ N be such that s − t = M − N . The
tensor product V +

s,a ⊗ V −
t,b is simple if and only if it is of highest ℓ-weight.
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7. Final remarks

In this final section, we make remarks which are not used in the proof of the
main results.

We use the convention in Remark 3: associated to an index 1 ≤ i ≤ s is a couple
(ri, εi) where either (εi = +, 1 ≤ ri ≤ M) or (εi = −, 1 ≤ ri ≤ N). Consider the
tensor product S :=

⊗s
i=1 V

εi
ri,ai

. We want to know when S is of highest ℓ-weight.
Let us call (ε1ε2 · · · εs) the signature of S. Theorem 15 gives a criteria for S to

be of highest ℓ-weight in signature (++ · · ·+−− · · ·−). In the proof of Theorem
15, Corollary 21 is the crucial step to go from s to s − 1, whose proof relies on
reductions: from g to gl(M,N−1) in Lemma 19; from g to gl(M−1, N) in Lemma
18; from g to gl(1, 1) in Lemmas 16, 17 and 20. Except for Lemma 16, all the other
lemmas hold regardless of the signature of S. For Lemma 16, we need the case X1

negative and X3 positive.
Let us define the quantum affine superalgebra Uq−1(ĝ) in the same way as Uq(ĝ)

except that q is replaced by q−1 everywhere; let s̃
(n)
ij , t̃

(n)
ij , s̃ij(z), t̃ij(z) denote its

RTT generators.

Lemma 30. There is an isomorphism of Hopf superalgebras

h : Uq−1(ĝ) → Uq(ĝ)
cop,∑

i,j

s̃ij(z)⊗ Eij 7→
(∑

i,j

sij(z)⊗ Eij

)−1

,
∑
i,j

t̃ij(z)⊗ Eij 7→
(∑

i,j

tij(z)⊗ Eij

)−1

.

Proof. The idea is the same as that of [Zh2, Prop.3.4], based on the identity

Rq(z, w)
−1 =

1

(zq − wq−1)(zq−1 − wq)
Rq−1(z, w) ∈ End(V⊗2)(z, w).

and on the definition of Uq(ĝ) in [Zh2, Def. 3.5]. �
h is inspired by the involution of quantum affine algebras in [AK, Appendix A].

Let Ṽ ±
r,a be the corresponding fundamental modules over Uq−1(ĝ). From the

definition of twisted dual and from Lemma 27, we obtain

h∗V +
r,a ≃ Ṽ +

r,aq−2M+2N−2r−2 , h∗V −
r,a ≃ Ṽ −

r,aq2r+2 . (7.13)

Now Lemma 16 and Corollary 21 can be generalized accordingly. For this
purpose, let us define the Kl

ij and Kr
ij associated to the tensor product S =⊗s

i=1 V
εi
ri,ai

as follows:

(Kl
ij ,K

r
ij)

:=


(1, 1) if εi = εj ,

(ai−ajq
4, ai−ajq

2ri+2rj ) if (εi, εj)=(+,−),

(ai−ajq
−2M+2N−4, ai−ajq

−2M+2N−2ri−2rj ) if (εi, εj)=(−,+),

(7.14)

f l
i :=

∏
j<i

∆ij ×
∏
j ̸=i

Kl
ij , fr

i :=
∏
j ̸=i

Kr
ji ×

∏
j>i

∆ji. (7.15)

To unify notations in §5, let u1
i and u3

i be highest and lowest ℓ-weight vectors

of V εi
ri,ai

and u2
i = s

(0)
1κ u

3
i . From Theorem 3 and Lemmas 5–6, we see that u2

i
.
=

h(s̃
(0)
1κ )u

3
i . Corollary 21 together with its proof is now generalized as follows.
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Corollary 31. Assume that ∆ij ̸= 0 for all 1 ≤ i < j ≤ s. If f l
i ̸= 0, then

S ∼= V εi
ri,ai

⊗(
⊗

j ̸=i V
εj
rj ,aj ) =: Sl

i as Uq(ĝ)-modules and u3
i ⊗(

⊗
j ̸=i u

1
j ) ∈ Uq(ĝ)(u

2
i ⊗

(
⊗

j≠i u
1
j )) ⊆ Sl

i. Similarly, if fr
i ̸= 0, then S ∼= (

⊗
j ̸=i V

εj
rj ,aj ) ⊗ V εi

ri,ai
=: Sr

i as

Uq(ĝ)-modules and (
⊗

j ̸=i u
1
j )⊗ u3

i ∈ Uq(ĝ)((
⊗

j ̸=i u
1
j )⊗ u2

i ) ⊆ Sr
i .

In the corollary,
⊗

j ̸=i means the ordered tensor product (
⊗i−1

j=1) ⊗ (
⊗s

j=i+1).
We arrive at the following problem of linear algebra.

Question 1. For 1 ≤ i ≤ s, let (ri, εi) be as above and let ai ∈ C×. Define
∆ij , f

l
i , f

r
i by Equations (6.12), (7.14) and (7.15). Suppose that f l

i = fr
i = 0 for

all 1 ≤ i ≤ s. Then is it necessarily true that
∏

i<j ∆ij = 0?

Remark 4. Suppose that the answer to the above question is positive for all par-
ities. Then we can argue as in the proof of Corollary 22 to conclude that S =⊗s

i=1 V
εi
ri,ai

is of highest ℓ-weight if
∏

i<j ∆ij ̸= 0.
The proof of Theorem 15 together with Lemma 30 and Equation (7.13) actually

affirms the cases (ε1 · · · εs) = (+ + · · ·+−− · · ·−) and (−− · · · − ++ · · ·+). So
Theorem 15 remains true when the tensor product is of signature (−− · · · −++
· · ·+).

Example 6. Let s = 3. The answer to Question 1 is affirmative. Indeed the only
essential difficulty appears when (ε1ε2ε3) = (+ − +) and

∏
i<j ∆ij ≠ 0 = ∆21 =

∆32. (If ∆21 ̸= 0 then one can exchange ε1 and ε2 to arrive at the known signature
(− + +); similar arguments apply for ∆32.) Suppose f l

i = fr
i = 0. By definition,

f l
1 = Kl

12 = 0 and fr
3 = Kr

23 = 0. From

Kl
12 = 0 = ∆21 = a1 − a2q

4 = a2 − a1q
−2M+2N−2r2−2

we get 2 = 2M − 2N + 2r2. Next from Kr
23 = a2 − a3q

−2M+2N−2r2−2r3 = 0 we
get a1 = a3q

2−2r3 . But ∆13 ̸= 0, we have min(r1, r3) = 1. Since ∆12 = a1 −
a2q

2r1+2 ≠ 0 and a1 = a2q
4, r1 > 1. Since ∆23 = a2 − a3q

−2M+2N−2r2−2 ̸= 0 and
a2 = a3q

−2M+2N−2r2−2r3 , r3 > 1. It follows that min(r1, r3) > 1, a contradiction.
As a consequence, V ε1

r1,a1
⊗ V ε2

r2,a2
⊗ V ε3

r3,a3
is of highest ℓ-weight if

∏
i<j ∆ij ̸= 0.

Example 7. Assume that ri = 1 for all 1 ≤ i ≤ s. Since f l
1 = 0 =

∏s
i=2 K

l
1i = 0,

there exists 1 < i ≤ s such that Kl
1i = 0. It follows that ε1 ̸= εi and ∆1i =

Kl
1i = 0. As a consequence, the tensor product

⊗s
i=1 V

εi
1,ai

is of highest ℓ-weight if∏
i<j ∆ij ̸= 0.
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1|N + 1)) chain with a boundary, J. Math. Phys. 54, no. 4 (2013), 043507.

[Le] B. Leclerc, Quantum loop algebras, quiver varieties, and cluster algebras, in:
Representations of Algebras and Related Topics, EMS Ser. Cong. Rep., Euro-
pean Mathematical Society, Zürich, 2011, pp. 117–152.
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