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Abstract – Recently, image representations derived from 
Convolutional Neural Networks (CNNs) have been 
demonstrated to achieve impressive performance on a wide 
variety of tasks, including place recognition. In this paper, we 
take a step deeper into the internal structure of CNNs and 
propose novel CNN-based image features for place recognition 
by identifying salient regions and creating their regional 
representations directly from the convolutional layer 
activations. A range of experiments is conducted on challenging 
datasets with varied conditions and viewpoints. These reveal 
superior precision-recall characteristics and robustness against 
both viewpoint and appearance variations for the proposed 
approach over the state of the art.  By analyzing the feature 
encoding process of our approach, we provide insights into what 
makes an image presentation robust against external variations.  

I. INTRODUCTION 

Visual place recognition can be interpreted as an image 
retrieval task, which consists of determining a match between 
the current scene and previously visited locations. Motivated 
by the success of deep learning in computer vision, the focus 
of place recognition research has recently moved from 
utilizing traditional handcrafted features [1], such as SIFT [2] 
or SURF [3], to more generic deep learning-based features 
extracted from Convolutional Neural Networks (CNNs).  

A fundamental question in utilizing deep learning for place 
recognition is how to generate an image representation from a 
pre-trained CNN. Generally, current approaches to this 
question fall into two broad categories that either (a) directly 
feed the whole image into a pre-trained CNN and extract its 
activations as the image representation [4-6] or (b) apply the 
pre-trained CNN to the regions of the input image and 
aggregate activations from each of these regions to create a 
final image representation [7, 8]. Usually, approaches in 
category (a), directly flatten activations from a single CNN 
layer, either a convolutional or a fully connected layer, to 
create a global image representation. Such global  
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Figure 1. Corresponding image regions across two views of the same scene 
are identified using our novel CNN-based image features, visualized here 
with the same color. A thorough evaluation on benchmark datasets reveals 
better performance of this method under significant viewpoint and condition 
variations against the state of the art 

representations are computed from the entire image and are 
therefore, not robust against effects, such as partial occlusion 
or severe viewpoint variations. Features arising in category (b) 
are more viewpoint-invariant, as such approaches usually 
involve combining an external landmark proposal technique 
with CNN-based features to match image patches over 
extreme appearance and viewpoint variations [7, 8]. However, 
these approaches rely on external landmark detectors and 
require applying the pre-trained CNN to each landmark 
proposal resulting in high computational cost. In other 
computer visions tasks, such as image retrieval or recognition, 
there have been a range of investigations into how to 
efficiently encode the convolutional layer activations of a 
pre-trained CNN [9-11].  There methods are proposed for 
tasks that are different in nature from place recognition. In 
this paper, we propose a place recognition-specific feature 
encoding method and demonstrate its superior performance 
over existing methods.   

We look at CNNs from a third, different perspective and 
propose a novel feature encoding method on CNN activations 
to tackle both viewpoint and appearance variations. Instead of 
relying on external landmark proposal techniques, the 
proposed method identifies salient regions by directly mining 
distinctive patterns based on activations of the convolutional 
layers. In particular, we utilize one convolutional layer for 
local feature extraction and another convolutional layer at a 
higher level, which usually embeds richer semantic 
information to discover meaningful image regions, from 
which local features can be extracted. Each image is then 
represented by a set of distinctive image regions (i.e. 
rectangular patches) and cross matching of these regions 
permits the comparison of two images. Figure 1 illustrates 
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such an example. We evaluate our method against other 
state-of-the-art place recognition algorithms and feature 
encoding approaches on several benchmark datasets that 
exhibit both appearance and viewpoint variations. In 
particular, this paper makes the following two main 
contributions: 
 

1) A novel, CNN-based feature encoding method to 
create image representations enabling the 
description of several different image regions 
without the need to feed multiple inputs to the 
CNNs; 

2) A region-based visual place recognition system that 
can tackle variations both in viewpoint and 
conditions, simultaneously; 

II. RELATED WORK 

In this section, we give a brief overview of previous work 
utilizing CNNs for place recognition and methods that have 
been developed to encode CNNs-based features.  

A. Visual Place Recognition with Convolutional Neural 
Networks 

The first step in visual place recognition is to extract image 
information that is salient in defining a particular place. The 
aim is not only to compress information captured along the 
camera’s trajectory, but also to suppress of non-useful image 
regions (i.e. regions that do not aid the distinctive 
representation of a particular place). Traditional approaches 
either operate directly on raw pixels [12] or utilize a fixed set 
of handcrafted features [1] (i.e. manually defined, as opposed 
to learning-based representations). Recently, the success of 
deep learning in computer vision has triggered a range of 
investigations of its applicability to visual place recognition 
resulting to impressive first findings, such as the 
demonstration of the effectiveness of utilizing the intermedia 
layer activations of a CNN as feature vectors [4-6] in 
repeatedly recognising a place. The approaches proposed in 
[13, 14] train CNN architectures for the specific place 
recognition tasks at hand, demonstrating improved 
performance under strong condition-variations. In contrast, 
the approach proposed in this paper can be deployed on any 
pre-trained CNN architecture to create more compact and 
robust representations.  

All aforementioned approaches extract global 
representations from an entire image, rendering them 
unsuitable in cases, where partial occlusions of the scene 
structure or severe viewpoint variations are expected. Instead, 
representations that break down an image into smaller 
regions, such as [15] can be more robust against scale and 
viewpoint variations. The approaches in [7, 8] combine an 
external landmark detector with CNN-based features to 
match regions over extreme viewpoint- and 
condition-variations. Our approach follows the direction of 
region-based representation, but does not require any external 
landmark proposal technique. The proposed approach 
directly identifies salient regions from the convolutional layer 

activations and only needs to run the network once for each 
image, significantly reducing the computation complexity. 

B. Existing Feature Encoding Approaches 

In many computer vision tasks, such as image retrieval or 
object detection, there have been extensive studies on 
deriving more powerful representations from the 
convolutional layer activations of a CNN. For example, the 
work in [10] demonstrates that sum-pooled convolutional 
feature works well in image retrieval, while [9] explores the 
use of spatial max-pooling to extract image representation 
from CNN layer activations for object retrieval. In [16], the 
Fisher vector is used to pool the extracted convolutional 
features for text recognition and segmentation. The works in 
[17, 18] are the most relevant to this work, employing pooling 
over convolutional activations for image recognition 
/classification. However, these approaches use the whole 
feature map to pool the features, which is demonstrated to 
achieve sub-optimal results for place recognition in our 
analysis in Section V.A.  

III. METHOD 

In this section, the key components of the proposed system 
are described in detail. We first describe the extraction of 
local features directly from convolutional layers, before we 
illustrate how to utilize a higher convolutional layer as 
guidance to pool extracted local features and create multiple 
region descriptors to represent each image. Analyzing the 
weighting scheme according to the importance of each 
individual region, we finally present how to calculate the 
similarity between two image representations. The schematic 
illustration of the proposed system is shown in Figure 2.  

A. Extracting Local Descriptors from Convolutional 
Activations 

This first stage aims at deriving local representations for a 
certain image region directly from the convolutional layer 
activations. Given a pre-trained CNN, for this step, we only 
consider its convolutional layers and discard all its fully 
connected layers. The major advantage of the convolutional  

Figure 2 A schematic illustration of the proposed feature encoding method. 
The input image is used to identify salient regions using late Convolutional 
activation, here visualized in a heat map (blue: not salient, orange: salient). 
CNN features are then extracted for each salient region. 



  

Figure 3. The structure of the convolutional layer activations. There are 𝐂 
feature maps and each feature map is a H × W matrix. 

layer activations over fully connected ones is that the former 
usually embeds rich spatial information, from which local 
descriptors can be constructed. Given an image  I , its 
activations at a certain convolutional layer can be arranged as 
a tensor of size H × W × C, where H and W denote the height 
and width of each feature map, respectively and C  is the 
number of feature maps. As illustrated in Figure 3, activations 
at a certain spatial location across all feature maps can be 
concatenated into a C -dimensional local descriptor to 
represent a local image region. The size of this region is equal 
to the receptive field of the filter. In this way, the 
convolutional layer activations can be considered as a 2D 
array of a C-dimensional local descriptor, with each feature 
describing a certain local region, essentially very similar to a 
traditional, handcrafted local descriptor. Formally, we 
represent the convolutional layer activations X ∈ 𝑅 × ×  as: 
 

X = {𝑥 ∈ 𝑅 |𝑖 ∈ {1, … , 𝐻 × 𝑊}}.                   (1) 
 

B. Encoding Regions from Local Descriptors 

Features extracted during the previous step can only 
describe a region of the size of its filter’s receptive field. In 
place recognition, however, each location is represented by a 
set of distinctive landmarks, which can take any shape and 
size. In order to represent a visual pattern at different sizes 
and in arbitrary shapes, a straightforward method would be to 
aggregate all local descriptors falling into that region to create 
a pooled feature vector. In other computer vision tasks, such 
as image retrieval or recognition, various feature pooling 
strategies have been proposed to aggregate the local 
descriptors, such as max-pooling [9], sum-pooling [10] or 
Fisher vectors [11]. Inspired by the lack of robustness of these 
approaches in dealing with viewpoint variance ubiquitous in 
place recognition tasks, the following section presents an 
alternative feature aggregating method that can significantly 
improve the features’ robustness against viewpoint variance. 

C. Mining Distinctive Patterns from a Late Convolutional 
Layer 

In order to discover landmarks useful for place recognition, 
here we directly mine distinctive patterns from a late 
convolutional layer. Generally, a feature map generated by a 
convolutional filter can be interpreted with the detection 
scores obtained by applying the convolution filter on the input  

 
Figure 4. Illustration of clusters 𝑆 ~ , from the Convolutional layer 
activations in an example image. 

image. Locations in this map with high activation values 
indicate that there exist visual patterns around them that the 
filter is searching for. It is observed that feature maps at a late 
convolutional layer are generally very sparse and selective to 
visual patterns corresponding to some semantically 
meaningful regions, such as a shape or an object part [19]. As 
a result, when a place is visited from different viewpoints, 
some of these visual ‘signatures’ will be preserved and can be 
detected in subsequent images of the same region by applying 
the same convolutional filter.  

Based on these observations, we propose a landmark 
discovery approach by searching for the strongest spatially 
localized regions at late convolutional feature maps. In 
particular, for each feature map of a particular convolutional 
layer from one image, we first group all non-zero and 
spatially proximal 8-connected activations into an individual 
cluster  𝑆 , ∀ j ∈ [1, … T] , where  T  denotes the number of 
clusters. Figure 4 illustrates the clusters obtained on an 
example image. For each activation cluster 𝑆 , we calculate its 
energy by averaging over all activations that fall into the 
cluster:  

 

𝐸 = ∑ 𝑎 , ∀𝑎 ∈ 𝑆 .                        (2) 

 
where 𝑎  denotes the 𝑖-th activation in cluster 𝑆 . We search 
for the M clusters with the highest energies and identify them 
as the basic Regions-Of-Interest (ROIs): 
 

𝑂 , ∀ 𝑡 ∈ [1, . . , 𝑀].                          (3) 
 

Each of these ROIs represents a salient region. For each of 
these ROI, we aggregate all the local descriptors 𝑥 ∈ 𝑅  
falling into the respective ROI and generate a pooled feature 
vector to represent it. In total, this strategy creates 𝑀 different 
pooled feature vectors 𝑃 , to represent one image: 



  

 
𝑃 = ∑ 𝑥 𝑎 ∈ , 𝑡 = 1, … , 𝑀.                     (4) 

where 𝑎  denotes the 𝑖-th activation value in region/cluster 𝑂 . 
It is worth noting that we do not concatenate these pooled 
vectors together to form a single image representation. 

D. Assignment of Weight to Each Region 

Each of the M pooled vectors describes one image region 
that is considered salient by the pre-trained CNN. Inspired by 
the bag-of-words approach [20], we develop a strategy to 
calculate the inverse-document-frequency of each of these 
salient regions. To this end, we built a separate training 
dataset of 𝐾 (𝐾 = 5000) images and constructed M pooled 
vectors 𝑃  from each of these images, resulting to a total of 
𝐾 × M  pooled vectors. A vocabulary was then built by 
clustering these features into N different words, assigning a 
weight 𝑊  to each visual word c as: 

 
𝑊 = 𝑙𝑜𝑔 (𝐾/𝑛 ), 𝑐 = 1, … , 𝑁.                (5) 

 
where 𝐾 is the total number of training images and 𝑛  is the 
number of images containing the visual word c. This weight is 
assigned to all feature vectors 𝑃  that belong to the visual 
word c.   

E. Image Matching 

To determine the similarity between two images A and B, we 
perform cross matching between all region vectors 𝑃  and 
𝑃  that were extracted from both images. The similarity 
between region i from A and region j from B can be 
calculated as: 
 

𝑠 , =  i = 1, … , M; j = 1, … , M.            (6) 

 

Crosschecking is applied here to accept only mutual matches. 
As a result, the overall similarity between two images A and 
B can be calculated as: 

 

𝑄 , = ∑ 𝑠 ,, × 𝑊 × 𝑊 .                    (7) 

 
where 𝑊  and 𝑊  denote the weight of the word that features 

𝑃  and 𝑃  belong to, respectively. The search for the best 
matching reference image A for the query image B goes 
through all reference images from the database and picks the 
one with the highest similarity score: 
 

𝑌(𝐵) = 𝑎𝑟𝑔 max 𝑄 ,                             (8) 

IV. EXPERIMENTAL SETUP 

This section describes the testbed used and the acquirement 
of ground truth used to conduct the evaluation of the proposed 
approach against the state of the art. 

A. Datasets 

We evaluated our proposed system on five benchmark place 
recognition datasets. These datasets capture different types of 
environments as well as exhibiting variations in both 
viewpoints and conditions. Details are summarized in Table 1. 
Each dataset consists of two traverses along the same route 
with the first traverse used for reference and the second one 
used for testing. Some example images are illustrated in 
Figure 5.  

The Gardens Point dataset was collected at the Queensland 
University of Technology campus with the first traverse 
recorded at the daytime along the left side of the walkways 
and the second traverse taken at night from the right side of 
the walkways. It has been evaluated in a number of previous 
studies [4, 5, 7]. The Synthesized Nordland dataset was 
recorded from a camera mounted on a train. The first traverse 
was recorded in spring and the second in winter (see [21] for a 
more detailed introduction). The Berlin A100, Berlin 
Halenseestrasse and the Berlin Kudamm datasets were all 
downloaded from a crowdsourced photo-mapping platform 
called Mapillary2 . It was first introduced in [7] as place 
recognition datasets. Each of the three datasets consists of 
two different sequences mapping the same route but uploaded 
by different users, exhibiting severe viewpoint and moderate 
appearance variations.  
 
Table 1 DATASET DESCRIPTIONS 

Dataset No. of 
frames 

Environme
nt 

Viewpoint 
variation 

Condition 
variation 

Garden Point 400 campus strong strong 
Synthesized 
Nordland 

970 train 
journey 

moderate strong 

Berlin A100 166 urban strong moderate 
Berlin 
Halenseestrasse 

225 Urban 
+suburban 

strong moderate 

Berlin kudamm 424 urban strong moderate 

 
Figure 5. Examples of the Berlin A100 (top row) and Berlin Kudamm (bottom 
row) datasets [7]. A strong viewpoint change can be observed in both 
examples. 

 
2 http://www.mapillary.com 



  

B. Ground Truth 

For the datasets Garden Point, Berlin A100, Berlin 
Halenseestrasse and Berlin kudamm, ground truth was 
obtained by manually parsing the frames and building 
frame-level correspondence. For the Synthesized Nordland 
dataset, we used the frame-level correspondence provided 
with the original dataset.  

C. Implementation Details 

We employed the VGG16 network [22] as the pre-trained 
CNN to evaluated our proposed approach. However, other 
pre-trained networks, such as ResNet [23], GoogleNet [24]  
or AlexNet [25], can also be employed. We utilized the 
second last convolutional layer to extract local descriptors 
and the last convolutional layer to discover salient regions. 
For all other baseline methods evaluated in our experiments, 
we also extracted the second last convolutional layer 
activation as image representation. For each image, we pick 
200 (𝑀 = 200) regions with highest average activations and 
we build a vocabulary of 10000 words (𝑁 = 10000). All 
images are first resized to 224 × 224 before they are fed to 
CNN for feature extraction. The parameters are set once and 
used across all experiments.  

V. RESULTS 

The proposed approach was evaluated against other 
state-of-the-art feature encoding and place recognition 
methods recording the Area Under the Curve (AUC) [26] 
computed on precision-recall curves. We also visualize the 
mutual matches established by our approach to provide 
insights about the superiority of our method. Finally, the 
runtime performance of our approach is analyzed. 

A. Precision-recall Characteristics 

The AUC is recorded on all five testing datasets for our 
proposed place recognition system against the most relevant 
state-of-the-art approaches for place recognition and feature 
encoding. The higher the AUC, the better the performance is. 
In particular, we compare against the feature-based method 
FAB-MAP [27] and the sequence-based SeqSLAM [12]. 
Since our approach is focused on deriving a more efficient 
visual representation from a pre-trained CNN, we also 
compare with other existing feature encoding methods; 
namely, the whole image representation used in [4, 5], 
sum-pooling [10], max-pooling [28] and cross-layer pooling 
[17], which uses a similar idea of pooling over convolutional 
activations.  

Figure 6 presents the AUC generated by these methods on 
the Berlin Halenseestrass dataset. It is evident that the 
proposed approach achieves significantly better performance 
than all other methods. Although FAB-MAP, as a 
feature-based place recognition system tackles viewpoint 
variation better than approaches using whole-image 
representations, such as SeqSLAM, it still underperforms on 
this challenging dataset. Cross-layer pooling achieves the 
closest performance to our method, indicating the potential 

benefits of utilizing late convolutional layer activations as the 
pooling guidance. 

Figure 7 presents results on the Berlin A100 dataset, with 
the proposed approach still outperforming the rest and the 
whole-image representation used in [4, 5] achieving the 
second best performance. It is interesting that applying 
SeqSLAM on the whole-image descriptors deteriorates the 
performance. A closer look at the dataset reveals that this is 
probably because there are varied intervals between 
consecutive frames and the temporal coherence required by 
SeqSLAM is violated.  

Figure 8 and Figure 9 illustrate the AUC results on the 
Berlin Kudamm and Synthesized Nordland dataset. On both 
datasets, the proposed approach achieves the best 
performance. Once again, using a whole-image 
representation, despite its apparent simplicity, still delivers 
inferior performance. The other encoding methods, such as 
sum-pooling or max-pooling, which have been demonstrated 
to achieve impressive performance in image retrieval and 
recognition, do not perform well. This is probably due to the 
fact that place recognition is different in nature from other 
vision tasks, such as image recognition or retrieval, where 
there is often a single object occupying the biggest part of the 
image. In place recognition, there is no such structural 
constraint and therefore, our proposed approach of 
decomposing a location into multiple region elements may be 
the main reason behind its superior performance. 

 

 
Figure 6. AUC levels on the Berlin Halenseestrasse dataset 

 
Figure 7. AUC levels on the Berlin A100 dataset 



  

 
Figure 8. AUC levels on the Berlin Kudamm dataset 

 
Figure 9. AUC levels on the Synthesized Nordland datast 

 
Figure 10. AUC levels on the Garden Point dataset 

Figure 10 illustrates that SeqSLAM achieves similar 
performance with our approach in the Garden Point dataset. 
It is observed that in this dataset, there is strong temporal 
coherence and therefore, SeqSLAM can leverage the 
sequential information to improve its performance. However, 
it is worth noting that our approach only requires a single 
image instead of a sequence of images required in SeqSLAM. 
Other methods, such as sum-pooling or max-pooling, still do 
not perform well on this dataset, indicating the challenge of 
place retrieval in the presence of strong condition variations. 
The cross-pooling method again achieves close performance 
to our approach.   

B. Qualitative Analysis of the Region-Matching 

In this section, we visualize the place recognition results 
and analyze the difference between our approaches and other 
feature encoding methods qualitatively. Figure 11 illustrates 
three such examples, where our method can correctly match 
the query images (shown in the top row of Figure 11) against 
the database, while other methods fail. We also visualize the 
top three region matches identified by our approach (i.e. the 
black, blue and green rectangles). Observing the results in the 
first column for example, our approach successfully identifies 
the white box on the left as a distinctive landmark for that 
place. Other methods return images, where the global 
semantics are similar to the query image (such as the trees and 
roads), but are most often confused with different places. 
Similar phenomenon can be observed in the second and third 
column. These examples illustrate the potential benefits of 
using region-based representation, when there are strong 
viewpoint variations.  

In Figure 12, we also visualize examples where our 
approach fails and others, such as cross-layer pooling, 
successfully recognize the place. In the first column, our 
approach identifies regions around a car as a mutual match, 
resulting in wrong recognition. It is worth noting the 
pre-trained CNN we utilized were trained on object datasets 
with many car images and this is probably why it focuses so 
much on car-like shapes. This indicates the influence of 
pre-trained CNN on the performance of our approach. 

In Figure 13, we visualize more correctly matching results 
from our algorithm to provide more insights into our 
approach. As illustrated in the figure, our approach can match 
places across various degrees of viewpoint and condition 
changes.  

C. Runtime Consideration  

Deep learning approaches are computationally intensive 
and therefore, an evaluation of their runtime performance is 
particularly important in order to realize their employments 
for robotics applications. We run experiments on 1000 
images and record the average runtime of the proposed 
method. For a single image, one forward pass through the 
VGG16 network costs approximately 59.4𝑚𝑠 using Caffe on 
an NVIDIA Titan X Pascal GPU and encoding the CNN 
features using our proposed approach on the Matlab platform 
takes about 0.349s. Matching between two images using the 
Matlab implementation takes approximately 7𝑚𝑠.  

VI. CONCLUSION 

Inspired by the success of region-based image 
representations for place recognition and the recent boom in 
deep learning techniques, in this paper, we present a novel 
feature encoding method to build image representations 
making use of CNN’s convolutional layer activations. We 
utilize one convolutional layer for local feature extraction and 
another, late convolutional layer to identify salient regions, 
from which local features can be extracted. The derived 
image presentation encodes several distinctive image regions  



  

 

 
Figure 11. Visualization of the top scoring image resulting from each method 
in each column, when querying the database with the corresponding image 
from the top row. The first row describes three query images and the second 
to the last row respectively illustrates the images returned from our approach, 
max-pooling [28], sum-pooling [10] and cross-pooling [17].  

 
Figure 12. The images are arranged the same way as in Figure 11. However, 
in these three examples, we approach returns incorrect match and the 
cross-pooling method successfully match the place. 

 
that can be used for cross matching in a later retrieval stage. 
Comparisons to state of the art techniques on extensive 

benchmarking datasets, demonstrate superior performance of 
the proposed method in place recognition tasks with strong 
viewpoint and condition variations. 

The pre-trained CNN used in this paper is trained on object 
recognition dataset, so future directions involve 
investigations on whether encoding features from a CNN that 
is particularly trained for place recognition can further 
improve the performance. Moreover, we will study the 
integration of temporal information in a bid to improve the 
place recognition performance under more severe conditions, 
by propagating place recognition hypotheses over time.  

 
Figure 13 Correctly matching examples from our approach, where the left 
column indicate query images and the right are our returns.  
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