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Abstract

We propose a new approach for detecting repeated pat-
terns on a grid in a single image. To do so, we detect repeti-
tions in the space of pre-trained deep CNN filter responses
at all layer levels. These encode features at several con-
ceptual levels (from low-level patches to high-level seman-
tics) as well as scales (from local to global). As a result,
our repeated pattern detector is robust to challenging cases
where repeated tiles show strong variation in visual appear-
ance due to occlusions, lighting or background clutter. Our
method contrasts with previous approaches that rely on key-
point extraction, description and clustering or on patch cor-
relation. These generally only detect low-level feature clus-
ters that do not handle variations in visual appearance of
the patterns very well. Our method is simpler, yet incorpo-
rates high level features implicitly. As such, we can demon-
strate detections of repetitions with strong appearance vari-
ations, organized on a nearly-regular axis-aligned grid Re-
sults show robustness and consistency throughout a varied
database of more than 150 images.

1. Introduction

Repeated patterns are ubiquitous, especially in man-
made environments like cities (see Fig 6). They provide
insight about the structure of the elements they compose
and can give strong geometric or semantic cues. As such,
their detection can be beneficial to many algorithms in com-
puter vision and graphics. For example, it can be used for
retrieval of images with similar patterns in a database, or
for disambiguation of pixel matching in a structure from
motion pipeline [26]. Several repetitions can also provide
multiple viewpoints on a similar pattern, which can be use-
ful for estimating reflectance for instance [1].

Automating repetition detection in a single image is a
challenging task as it is not even well understood how hu-

mans handle it: repetitions suddenly occur, but there is no
principled definition of that mechanism. Perfect repetitions
are trivial to detect, e.g., a checkerboard pattern observed
in a fronto-parallel way. In real-life conditions however,
most repetitions are irregular in either or both their spa-
tial positioning and/or visual content (the G and A scores
in [10], respectively). In this paper, we substantially im-
prove on the robustness of repetition detections w.r.t. intra-
pattern visual content variation by exploiting feature activa-
tions produced by running a pre-trained convolutional neu-
ral network (CNN) on a target image. To demonstrate the
gained robustness w.r.t. this intra pattern variation, we pur-
posefully limit the structural complexity by detecting repe-
titions organized on a nearly-regular axis-aligned grid. Our
algorithm is the first to incorporate CNN for this task.

Many algorithms have tackled spatial deviation from
regularity and thus handle perspective distortion or even
random positioning for example [8, 9]. Robustness to visual
content variation has been less attended to. That is because
these variations are complex: they can be induced by natural
variations (e.g., lighting conditions, weathering) or simply
by visual variance among semantically similar classes (e.g.,
human faces) or context (e.g., belonging to a foreground or
background item). Hence, it requires handcrafting a com-
plex and robust feature detector and algorithm.

In this work, we explore the capabilities of pre-trained
CNN for this task. CNN can be seen as a multi-level feature
extractor, ranging from low-level and local image patches
to high-level semantic classes. Hence, we think it is the
right space to tackle the problem (see Fig 1). As a result,
our approach heavily simplifies repeated pattern detection
by alleviating the cumbersome classical process of feature
extraction, description and clustering in a single step of run-
ning a CNN on an image, leveraging a simpler yet robust
pipeline providing the estimated grid.
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Figure 1. Illustration of our pipeline. i) An image is run through the convolutional filters of a CNN, producing activations that peak at
repetitive locations at several scales. ii) A voting scheme defines the most consistent displacement vector on strong activations in the
Hough voting space. iii) An Implicit Pattern Model representing the tile is computed and correctly aligned to the repetitions. iv) Instances
of repetitive tiles are detected and produce the layout of the grid.

1.1. Related Work

Convolutional neural networks (CNN) have been suc-
cessfully applied in many computer vision problems such
as object detection [19], classification [4], image segmenta-
tion [11] or text recognition [24]. They exist in many fla-
vors and shapes, yet they share the common pattern of a
convolutional part followed by fully connected layers and
a final classifier [5]. They proved their ability to capture
natural image statistics and real world variations. It was
shown in [12] that the learned convolutional filters repre-
sent useful visual concepts of increasing complexity rang-
ing from low-level and local image patches (e.g., edges,
ridges) to high-level semantic elements (e.g., fences, win-
dows) inferred from more global information. We want to
use this descriptiveness to simplify the repeated pattern de-
tection task and make it robust. In this work, we focus on
the convolutional part of the trained CNN which can be ap-
plied on inputs of arbitrary size1. The convolutional layers
of the network apply multiple convolution filters on a target
image and produce “activations”. We explore these activa-
tions to detect spatially repeated patterns.

Repeated elements have been used in various different
tasks to segment objects [18] or reconstruct 3D appear-
ance from multiple occurrences of the same structure [26]
in a single image without any other prior knowledge about
the scene. Repetition detection algorithms can be analyzed
from two points of view: pattern definitions (i.e., what they
are composed of) and pattern layout assumptions (i.e., how
they are arranged in the image).

It is still a bit of a philosophical question what de-
fines a repeated pattern. Hence, there is no common way
of detecting nor benchmarking detections. A pattern is
commonly associated with clustered local features such
as keypoints [21, 15], stable regions [16] or even whole
tiles [17, 9]. A more recent algorithm combines constella-
tions of local features into more complex patterns [8]. Rep-
etitions are not expected to be perfect. Rather, tolerance to
appearance and geometry changes, as caused by change in

1Still, the approximate scales of objects in the training and testing
stages should be similar.

lighting or intra-class pattern variation, is favored. Hence,
features have to be carefully designed to be robust to that.
We avoid this cumbersome process.

The assumptions about the structure of the repeated pat-
tern differ as well: 1- or 2-dimensional lattice [2, 15],
fronto-parallel projection [27], thin plate spline warped
lattice [14] or more general unstructured “stamps” on
a plane [16, 8]. For handling perspective transforma-
tions, rectification can be applied by detecting vanishing
points [22, 25]. Alternatively, co-variant keypoints can de-
tect canonical shapes of a blob or region and use the as-
sumption of multiple occurrences of the element to rectify
the dominant plane [2, 16]. Multiple planes were studied
for geolocalization in urban environments [18].

We tackle the case of detecting repeated elements or ob-
jects on a regular pre-rectified lattice, and improve on the
variance that repeated elements can show while still being
detected. Thanks to the automatic multi-level feature ex-
traction and clustering provided by CNNs, a deeper under-
standing of repetitions is obtained. This allows for exam-
ple transparent structures in front of a complex and varying
background to be detected more robustly, while not com-
promising on low-level features when they are of impor-
tance. Finally, to partially compensate for the lack of com-
mon benchmarks, we provide a manually annotated ground
truth dataset on which we quantitatively evaluate our algo-
rithm.

1.2. Overview

In section 2, we detail why and how we exploit spatially
recurring patterns in the space of pre-computed CNN re-
sponses to infer repetitions in image space. Section 3 de-
scribes algorithmic details regarding parameter tuning. Fi-
nally, in section 4, we present qualitative and quantitative
results of our method, showing more robustness and consis-
tency over state of the art methods.

2. Repeated Pattern Detection

The standard local feature based approach for detecting
repeated patterns uses a pipeline consisting of keypoint ex-



traction and description, descriptor clustering, displacement
vector extraction and finally pattern model creation and in-
stances detection [8] or structure modeling [14]. We in-
tend to replace the keypoint extraction, description and clus-
tering stages of the pipeline – that are traditionally hand-
crafted – by the activations of filters in the convolutional
layers. These are both more descriptive and simpler to ob-
tain. The convolutional filters in each layer are learned dur-
ing the pre-training of the network, where they are forced
to yield sparse, invariant and sufficiently complete repre-
sentations of the parts in the training images. A natural hi-
erarchy of filters with increasing complexity arises as the
outputs of the lower levels are inputs for the next. The first
layer filters respond mainly to low level image features such
as corners, lines or colors, while the higher layers capture
more conceptual features. To exploit this, we extract ac-
tivation peaks of the response maps using a standard non-
maxima suppression procedure. These activation peaks will
form the base observations of similarity used to detect and
describe the repeated patterns. This simple procedure al-
leviates key challenges of the keypoint approach by trans-
forming the keypoint detection, description and clustering
into a simple application of convolutional filters. This re-
quires a good algorithm for fusing the activations across
multiple layers, with their different scales and conceptual
levels, which is our core contribution.

2.1. Consistent Displacement Vector Selection

When a pattern repeats regularly on a grid, CNN filters
generate characteristic regular activation peaks that follow
the grid structure. To explore this regularity across different
filters and layers, we fuse vectors linking pairs of activation
peaks by a Hough-like voting in the image domain.

Let us denote by fl a filter fl : R2 → R, fl ∈ Fl

of layer l ∈ L, where L is a set of convolutional lay-
ers. Let p : R2, p ∈ Pfl be the location of an acti-
vation peak of filter fl, and Pfl be the set of activation
peaks of the filter fl. For every pair of peaks pi, pj ∈
Pfl , we form a set Dfl of displacement vectors Dfl ={
di,j : |pi − pj |, ∀pi, pj ∈ Pfl , i 6= j

}
. where |.| denotes

the element-wise absolute value on vectors. Displacement
vectors for all filters and all layers cast votes into the dis-
placement vector Hough voting space V : R2 → R. To re-
flect the uncertainty of the localization of activation peaks,
due to different resolutions and strides of the filters, every
displacement vector vote is modeled with a 2D normal dis-
tribution centered at di,j with σl corresponding to the layer
l. Additionally, to normalize the overall energy of each fil-
ter fl, the vote is weighted by the number of displacement
vectors |Dfl | across all layers and filters, formally:

V =
∑
x∈R2

∑
l∈L

fl∈Fl

1

|Dfl |
∑

di,j∈Dfl

Vfl,i,j (1)

Figure 2. Voting for displacement vectors illustration. Top: regular
pattern with small lighting effects, occluded grid and transparent
fence, respectively. Bottom: cast votes for displacement vectors.
The peaks’ coordinates (reddest dots) correspond to the separation
vectors of the strongest repetitions.

where

Vfl,i,j =
1

2π
√
|Σ|

exp

(
−1

2
(x− di,j)>Σ−1(x− di,j)

)
Σ =

(
σ2
l 0

0 σ2
l

)
Assuming an axis-aligned rectangular grid, we extract the
most consistent displacement vector d∗ as the maxima of
the voting space on the x and y axes:

d∗ = (argmax
x

Vx,0, argmax
y

V0,y) (2)

Examples of the displacement vector voting space V are
shown in Fig 2.

2.2. Repeated Pattern Model

Once a displacement vector d∗ has been selected, we
construct a model of the repeated pattern. The model is in-
spired by the Implicit Shape Model (ISM) with its weighted
votes [6]. This construction consists of three steps. First,
we find the consistent set of filters that composes the pattern
responsible for the strongest displacement vector. Second,
the implicit pattern model (IPM) is built from the votes on
those filters in the displacement vector space. Finally the
newly created IPM is used to detect instances of the pattern,
on which a model of the grid structure is fitted.

2.2.1 Filter Selection

The first step, filter selection aims to pick the filters with
activation peaks most consistent with the selected displace-
ment vector d∗. We gather all the votes of displacement
vectors di,j consistent with d∗, called consistent votes D∗fl :

D∗fl = {di,j ∈ Dfl : ||di,j − d∗|| < 3 ∗ αl}, (3)



Figure 3. Lattice detection voting cast by the learned IPM. Red
dots show the maxima used for defining the final grid.

where parameter αl describes the radius of the neighbor-
hood considered at layer l as the close surrounding of the
selected displacement vector. The consistent votes are then
attributed with weights wi,j,fl :

wi,j,fl =
1

|Dfl |+ φ
· exp

(
−||d

i,j − d∗||2

2α2
l

)
(4)

where φ is a flat prior estimated from the expected number
of repetitions computed on the distribution of D∗fl . The in-
tuition behind the selection of this parameter is in the grid
assumption. In the ideal case, all filters respond to a spe-
cific part of the tile, i.e. approximately the same number
of times. The first component of Eqn. (4) sets the balance
between filters having a lot of activation peaks, e.g., on an
uniform texture, and filters having significantly smaller than
expected numbers of repetitions. The second component
of Eqn. (4) exponentially down-weights votes based on the
distance to the expected location of d∗.

The weight of a particular filter wfl is given as the sum
of the weights of its consistent votes:

wfl =
∑

di,j∈D∗
fl

wi,j,fl (5)

Finally, filters in every layer l are ordered bywfl to select
the set of consistent filters F∗l that will participate in the
repeated pattern model. The filters with weights larger than
δlw
∗
fl

are kept, where w∗fl is the highest weight among the
filters in Fl, and δ is a threshold parameter controlling the
specificity of the pattern (see section 3.2).

2.2.2 Implicit Pattern Model

The IPM created for the tile of the pattern will use the con-
sistent votes of the selected filtersF∗l to vote for the centroid
of the tile. To gather the relative locations of displacement
vector votes, we first reduce them in modulo space:

M : R2 → [0, d∗x]× [0, d∗y]

M(v) →
(
vx mod d∗x, vy mod d∗y

)

Figure 4. Example of a failed displacement vector estimate and
lattice voting: model corrupted due to the spatial non-regularity in
the pattern combined with the strong appearance changes.

However this arbitrary reduction produces patterns that are
randomly placed w.r.t. the information sources (e.g., in be-
tween 2 windows on the façades). To correct it, and produce
a meaningful centroid of the pattern, we compute the offset
o∗ = (ox, oy) that minimizes the weighted average distance
of the consistent votes to the center of the pattern:

o∗ = argmin
o

∑
l∈L

fl∈F∗
l

di,j∈D∗
fl

wi,j,f∗
l
||M(di,j − o)− d∗/2|| (6)

2.2.3 Lattice Detection Voting

Similarly to the ISM [6], the lattice detection voting pro-
cess takes the activation peaks of the selected filters F∗l and
casts votes for the centroid of the tile corresponding to their
weights in the model. Successful examples of such voting
can be seen in Fig. 3 and an example of voting with a model
corrupted by the non-regular positioning of the patterns is
shown in Fig. 4.

Finally, the lattice is detected by fitting an elastic model
of a 2-dimensional grid using RANSAC to the extracted
maxima of the implicit model voting (last step in Fig. 1).

3. Technical Details
3.1. Feature pre-computation

We use the Caffe deep learning framework [3] to load
the CaffeNet network pre-trained on the ImageNet dataset.
The convolutional part of the network is applied on the full
resolution images and the activations of convolutional filters
at each level are kept and further analyzed. The structure
of the network replicates AlexNet [5] and is composed of
five convolutional layers (further referenced by Ci | i ∈
{0, . . . , 4}), with resp. 96, 256, 384, 384 and 256 filters.



At each layer, each filter is convolved with the activations
of the filters at the previous layer. At the first layer, it is
convolved with the three color channels of the input image.
The filter sizes are (11× 11), (5× 5), (3× 3), (3× 3) and
(3× 3), respectively. The two first layers have a stride of 2
while the last three have a minimal window stride of 1, i.e.
come with evaluations at every location of the input.

3.2. Parameter Setting

Three parameters influence the method’s accuracy. To
optimize them, we performed a grid search over each of
the most important parameters independently, keeping all
others fixed. The results produced were then used to ob-
serve the global optimum and the trend. We guided our
search with the quantitative evaluation measuring preci-
sion and recall w.r.t. our ground truth dataset (see Sec-
tions 4.1 and 4.4).

Expected Number of Repetitions φ. The first important
parameter is a flat prior φ introduced in Eqn. (5). It is a
percentile related to the number of consistent votes. The
intuition behind this parameter is that with a fixed, given
number of repetitions, the majority of the consistent filter
responses should vote once per observed occurrence of the
repeated tile. Filter responses showing partial regularity
should be penalized for the misses. Its role is to compen-
sate for overfitting the weights to filters which have only
few peak activations. If no flat prior was used, the weight
of those votes becomes relatively high with respect to other
filters. This biases the pattern model towards such filters,
which can be considered as an overfit. The optimization
procedure showed that a value between 80th and 90th per-
centiles produced the best results. Lower values increased
the number of missed detections. In the remainder of this
paper, we used the value of φ = 80th percentile.

Consistent Displacement Vector Precision αl. This is
a set of parameters (standard deviations) that define the
size of the neighborhood around the selected displacement
vector d∗ considered for the creation of the implicit pat-
tern model. They are primarily linked to the robustness of
the collection of the filters composing the pattern model,
namely its robustness to noise and the imprecision in the
peak localization. This is even more important at higher
layers where the interpolation and the max-pooling present
in the network might shift the correct peak from its optimal
location. To account for the different resolutions of the lay-
ers and different spatial extents of the convolution filters,
we use different values for each layer.

The range of values giving the best results is between
[3,6,10,10,10] and [5,7,15,15,15] pixels (respectively for
[α1, α2, α3, α4, α5]). For the lower values, only a couple
of filters with very precisely localized activation peaks will

be considered. This results in an overfit to these filters
and reduces the robustness of the implicit pattern model on
slightly distorted parts of the pattern, thus decreasing the de-
tection performance. Higher values did not show improve-
ments in detection performance as it reached an apparent
asymptote. In the remainder of this paper, we used the value
of [α1, α2, α3, α4, α5] = [5, 7, 15, 15, 15] percentile.

Filter Selection Threshold δ. The filter selection thresh-
old controls the fraction of filters considered for the pattern
model construction by removing filters less than δ times
lower than the highest filter’s weight at every layer. Too
high values make the model too selective, ending up in an
increased fraction of missing tiles or failures in lattice de-
tection. Lower values augment the general descriptiveness
of the pattern at the cost of specificity, too low values tend
to flatten the detection peak and increase the false positive
detections. In this paper, we used the value of δ = 0.65

The experiments with the baseline algorithm revealed a
couple of observations. First, the displacement vector can
be guessed most of the time with even a small number of
keypoints correctly extracted in the image and clustered to-
gether. The number of these non-random occurrences ap-
pearing on the pattern are enough to make a significant peak
in the displacement vector space. The main drawback of
the keypoints based method is the non-consistency along
the pattern instances, i.e., the corresponding keypoints are
not detected on every instance of the pattern or detected
at a slightly different location. Consequently, the result-
ing significant appearance variations lead to assignment of
the corresponding keypoints into different clusters. This
produces a bigger number of clusters of smaller size mak-
ing them harder to distinguish from clusters that consists of
non-pattern or background keypoints.

4. Results

In this section we present qualitative and quantitative re-
sults of our algorithm and compare to the state of the art
when suitable (sections 4.3 and 4.4, respectively). To allow
for quantitative evaluation, we first introduce the dataset we
compiled, with associated manual ground truth labels (sec-
tion 4.1). Then we present the state of the art algorithms
we compare to, including a custom-built baseline method
allowing fair assessment (section 4.2).

4.1. Dataset and Ground Truth Annotation

We composed the Nearly-Regular Pattern (NRP) dataset
that is in line with the scope of our contribution. It con-
tains rectified images with repetitions lying on a regular or
slightly irregular grid. We expect the former to be well
handled, the latter will show the extent and possible lim-
its of our regularity assumption. In either cases, repetitions



Figure 5. Examples of ground truth image annotations. We define
a regular grid and label each cell as green (instance of a repetitive
item), yellow (instances with strong appearance changes) or red
(not an instance of the repetitive pattern).

at higher conceptual levels are included, something tradi-
tional datasets do not provide. The existing public dataset
for near-regular texture detection is focused on textures and
symmetries of the tiles, and the grid usually covers the
whole image [7]. We kept images that satisfy our axis-
aligned grid assumption. We also added our own images
whose manual rectification form an almost perfect grid with
very similar tiles. We have decided to use the ECP façade
dataset [20] and particularly the CVPR 2010 subset, com-
posed of 109 rectified images of façades. We ran our al-
gorithm on the full NRP dataset. Results are provided as a
supplementary document.

To quantitatively evaluate our results, we manually anno-
tate our dataset and will make our labels publicly available.
As we already highlighted, there is no common definition
of repetitive patterns. Hence, a ground truth dataset is still a
subjective choice. We aim at imperfect types of repetitions
rather than perfectly repeated tiles, similarly to what human
beings would notice. So we loosely defined four labels as
follows (see Fig. 5). First, a regular “most consensual” grid.
Then rectangles shown in red are labeled as non-repeated
elements with either heavy occlusion or substantially dif-
ferent appearance. The rectangles shown in yellow are bor-
der cases. They exhibit strong appearance changes, but still
represent the same semantic element, e.g., windows par-
tially obstructed by sparse vegetation or shutters. Finally,
green elements are unobstructed tiles that may also exhibit
appearance changes, but that would undoubtedly be labeled
as repeated by a human observer. In the following, we con-
sider green and yellow labels to be positive repetitions of
the same pattern.

Figure 6. Results of the proposed repeated pattern detection algo-
rithm on repetitions exhibiting different levels of noise and visual
appearance changes.

4.2. Baseline and Related Work

We considered comparing to two state of the art meth-
ods. GRASP is the state of that art among generic methods,
i.e., assuming no grid [8]. It is keypoint-based. Among
lattice-based methods, the work of Park et al. is a refer-
ence and uses the classical feature design and clustering ap-
proach [14]. Qualitative observation shows that averaged
numerical comparison with these methods would be unfair,
as they fail dramatically in some cases (see section 4.3).
Hence, we built a custom baseline method to quantitatively
and qualitatively assess the impact of the feature space.

We implemented a baseline algorithm that replaces the
convolutional features with state of the art handcrafted key-
point features in our framework. In detail, the convolutional
feature extraction and the hierarchical displacement vec-
tor voting is replaced by a keypoint detection, description
and clustering procedure. The other parts of the algorithm
(i.e., displacement vector selection, implicit pattern model
creation and pattern instance detection) remain unchanged.
Keypoints are detected using scale and affine covariant fea-
ture detectors (provided by [23]), and SIFT descriptors are
computed on the normalized patches [13]. SIFT was cho-
sen for its proven descriptiveness and robustness. To ex-
ploit the fronto-parallel constraint of our setup, the domi-
nant orientation was not computed and all descriptors were
vertically aligned. The Affinity Propagation clustering al-
gorithm with a damping value of 0.5 was preferred to alle-



Figure 7. Qualitative comparison to related work: GRASP [8], [14] (best of 3 randomly-initialized runs) and our baseline. While related
work is distracted by appearance variations in at least one of the images, our method allows for robust detection of repeated patterns.

viate the cumbersome selection of the number of clusters.
To reflect the size and uncertainty in localization of the key-
points on higher scales, the scale of the keypoints is used to
distribute the votes during displacement vector voting and
implicit pattern model creation.

4.3. Qualitative Evaluation

In this qualitative evaluation we present the lattices de-
tected by our algorithm on a variety of challenging images
of the NRP dataset in Figs. 6 and 7. Our method perfectly
detects regular grids exhibiting small illumination and ap-
pearance variations (Fig. 6, top left, and Fig. 7, left). Sim-
ilarly, partially transparent repeated patterns on cluttered
background are well detected (Fig. 6, top right, and Fig. 7,
second image). Finally, occlusions of the repeated pattern
and strong pattern irregularities are also satisfyingly de-
tected (Fig. 6, row 2 and Fig. 7, last two images). Note
that there is no manual parameter tuning involved: all ex-

amples were processed by the same algorithm. We kindly
refer the reader to the supplemental document to see results
on the full dataset.

When pattern appearances change too much from one
instance to another (e.g., drastic lighting changes, clut-
tered background, occlusions), keypoint methods strug-
gle, because they need distinctive local neighborhoods to
match. Fig. 7 compares our results to related work. While
GRASP [8] tackles a much wider problem of detecting un-
constrained patterns, it should reliably work on our less gen-
eral problem (i.e., regular grid). However, their keypoint-
based approach is distracted by heavy background clutter
(second image), misses positives close to occluded areas
(middle) or lighting changes (right). Similarly, with [14]
significant background variations and occlusions hinder op-
timal detection. Our method conversely takes advantage of
the high-level convolutional layer filters which capture non-
local semantic information to correctly detect repetition.



Keypoint Baseline Our work
Prec. Recall Prec. Recall

Reg. façades 92.72 56.52 86.94 93.23
Irreg. façades 77.19 57.42 76.35 91.19
Reg. PSU 94.52 50.65 79.37 99.27
Irreg. PSU 92.41 46.16 63.71 93.86
All images 92.52 51.80 81.70 94.46

Table 1. Summary of quantitative results. Average precision and
recall (in %) over different portions of our dataset.

4.4. Quantitative Evaluation

The dataset with ground truth was used for quantitative
evaluation: we computed precision and recall averaged over
the set. Comparison to related work is difficult here: it
would be unfair for [14] because detection fails dramatically
on some particular images (Fig. 7, right), and is impossible
to quantify for GRASP [8] as no grid is detected. Hence,
we compare to our baseline and evaluate the added value of
using CNN features.

Table 1 summarizes quantitative evaluation over differ-
ent subsets of our dataset: façades and PSU data, both di-
vided in regular (still showing significant appearance vari-
ations) and non-regular (e.g., non-regular spacing between
repetitive elements). While our method degrades precision,
recall is dramatically improved. That is, we detect nearly all
positives, but still tend to detect too many. Note that this is
also relative to subjective ground truth annotations. For ex-
ample (cf. façade images in Fig. 7): a roof window is often
detected by our method, while we annotated it as a negative
repetition of a (non-roof) window.

Finally, computing CNN activations is generally faster
than the keypoint-based pipeline. Our non-optimized algo-
rithm takes tens of seconds to minutes to extract a grid. Re-
lated work have similar computation times but have to be
launched several times to find a good random initialization.

4.5. Discussion

We have emphasized that our algorithm takes advantage
of high-level features. Rather, we like to think of it as “se-
lecting” the most important features in the multi-layer space
of CNN activations. As an illustration, Fig. 8 (top) shows a
repetitive pattern of 5 × 4 squares. As humans, we (only)
used our high-level understanding to annotate each square
as a repeated element (left). Conversely, our algorithm ex-
ploited both high-level knowledge to identify the squares,
and low-level color comparisons to find out that every fourth
(vertical) or fifth (horizontal) square is identical (right).

In some cases, this is arguable: in Fig. 8 (bottom), it
is unclear which pattern should be favored. Our algorithm
tends to favor large pattern repetitions which are expressed

Figure 8. Surprising results. Left: our ground truth annotation.
Right: grid detected by our algorithm, which differs. Top: human
annotation was surpassed by our algorithm, which detected that
every 5×4 squares form a repeated pattern. Bottom: our algorithm
made the arguable choice of favoring the smaller repetitions.

throughout all layers, from shallow to deep. Conversely,
smaller repetitions may be too small to be visible in the
deeper activation maps, which are of low resolution in the
architecture we chose [5]. Adapting the architecture could
cancel this effect. Nevertheless, consistent small patterns
can be strongly expressed in the shallower layers and hence
be detected as the major repetition (cf. Fig. 8, second row).

5. Conclusion

We presented an algorithm that uses learned filters of
CNN convolutional layers for extraction and description of
translational repetitions in images. This new way of tack-
ling repeated pattern detection alleviates key challenges in
the old keypoint clustering based approaches, and brings
robustness to differences in visual appearance and seman-
tic level of the repetition (e.g., foreground or background).
As a result, elements of the repetition that vary significantly
in appearance but contain some well-aligned parts are de-
tected. We demonstrated the capabilities on a manually an-
notated dataset of very challenging regular and non-regular
façades and repetitive patterns which will be made publicly
available. The proposed algorithm achieved high recall on
most images. The degree of allowable variation is defined
by the learned convolutional neural network which com-
bines the repetitions at multiple conceptual levels. An in-
teresting future work consists of adapting CNN training for
target scenes or data (e.g., urban, paintings), with the hope
of boosting performance.
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