DISS. ETH NO. 24361

CLIMATE EXTREMES AND THEIR IMPACT ON
ECOSYSTEM-ATMOSPHERE INTERACTIONS

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by
SEBASTIAN DOMINIK SIPPEL

M. Sc. Geookologie, Universitit Bayreuth
M. Sc. Environmental Change and Management, University of Oxford
born on 20.12.1987

citizen of Germany

accepted on the recommendation of
Prof. Dr. Sonia I. Seneviratne, examiner
Dr. Miguel D. Mahecha, co—examiner
Prof. Dr. Martin Heimann, co—examiner
Prof. Dr. Nicolas Gruber, co-examiner

2017






Contents

Summary xiii
Zusammenfassung xvii
Acknowledgements XXi
1. Introduction 1
1.1. Motivation for the present thesis . . . . . . ... ... ... ... 1
1.2. Climate extremes - background, definitions & examples . . . . . . 3
1.2.1. Climatic variation and extremes . . . . . ... ... ... 3

1.2.2.  On the definition of climate extremes . . . . ... .. .. 4

1.2.3. Quantifying climate extremes in a changing climate . . . . 5

1.2.4. Attribution of climate extremes and their impacts . . . . . 12

1.3. Energy, water, and carbon: Processes . . . . . . . ... ... ... 15
1.3.1. The surface energy balance . . . . . . . .. ... ... .. 15

1.3.2. The surface water balance . . . ... ... ........ 18

1.3.3. The terrestrial carboncycle . . . . . ... ... .. .... 19

1.4. Climate extremes and their impact on the terrestrial carbon cycle . 24
1.5. Structure of thethesis . . . . . . .. ... ... ... ... ... 26

Statistical quantification of extremes in observations
and model ensembles 31

Quantifying changes in climate variability and extremes: pitfalls
and their overcoming 33
2.1. Introduction . . . . . . . . . .. ... 33



Contents

2.2. Methodology andresults . . . . ... ... ... ......... 35
2.2.1. Normalisation-induced artefacts and an analytical correc-

tion for quantifying extremes . . . . . . . . ... ... .. 35

2.2.2. Quantifying extremes in Earth observationdata . . . . . . 40

2.2.3. Implications for large-scale assessments of variability
and asymmetry . . . . . ... ..o 42

2.3. Outlookandconclusion . . . . . .. ... ... .. ........ 45

Have precipitation extremes and annual totals been increasing in

the world’s dry regions over the last 60 years? 47
3.1. Introduction . . . . ... ... .. ... ... ... 48
3.2. On data pre-processing based on a time-invariant reference period 50
3.3. Onthe definitionof adryregion . . . ... ... ......... 56
34. Conclusions . . . . ... ... 59

Combining large model ensembles with extreme value statistics

to improve attribution statements of rare events 63
4.1. Introduction . . . . . . . . . . ... 64
4.2. Materialandmethods . . . . . ... ... ... .. ........ 68
4.3. Resultsanddiscussion . . . ... ... .............. 74

4.3.1. Combining extreme value analysis with large ensemble
simulations . . . ... ... o o L 75

4.3.2. The anthropogenic influence on European minimum tem-
peratures and precipitation in winter 2013/14 . . . . . . . 79
44. Conclusion . . . . ... ... .. 83

Observations-based constraints to improve the simu-
lation of climate extremes and ecosystem impacts 87

. A novel bias correction methodology for climate impact simula-

tions 89
5.1. Introduction . . . . . . . . . . . ... 91



Contents

5.2.1. Climate model simulations . . . ... ... ........ 94

5.2.2. Simulation of atmosphere-biosphere carbon and water

fluxes . . . . .. ... 97
5.23. Observations . . . . . . . ... 99
53. Methods . . . . . .. ... 99
5.3.1. Statistical bias correction . . . . . . ... ... 99
5.3.2. A novel resampling-based ensemble bias correction scheme 102
5.3.3. Analysis methodology . . . ... ... .......... 104
54. Results. . . . . ... 106
5.4.1. Evaluation of resampling bias correction . . . . ... .. 106
5.4.2. Sensitivity of climatic extremes to bias correction . . . . . 108
5.4.3. The impact of bias correction on simulated ecosystem
water and carbon fluxes . . . ... ... . oL L. 111
55. Discussion . . . . ... 115
5.6. Conclusions . . . . . . .. ... 119
6. The role of anthropogenic warming in 2015 Central European heat
waves 121
6.1. Summer 2015inEurope . . ... ... ... ... ... ..., 121
6.2. Methodsanddata . . . ... .. ... ... .. ... ... 124
6.3. Resultsanddiscussion . . ... ... ... ... ... ...... 126
6.4. Conclusion . . . .. ... ... ... ... 128

7. Refining multi-model projections of temperature extremes by

evaluation against land-atmosphere coupling diagnostics 131
7.1. Introduction . . . . . . .. .. .. ... ... 132
72. Dataandmethods . . . . . ... ... ... ... ......... 137

7.3.

7.2.1. Datasets for T-ET coupling analysis and model evaluation 137
7.2.2. Diagnostic-based model evaluation using T-ET coupling . 140
Results and discussion . . . . . ... ... ... ... ... ... 143
7.3.1. Evaluation of land-atmosphere coupling in CMIP5 mod-

els and the link to temperature variability and extremes . . 144
7.3.2.  Analysis of constrained multi-model ensemble and impli-

cations for future climate projections . . . . .. ... .. 148



iv Contents
74. Conclusions . . . . . .. .. 153
lll. Extreme events in terrestrial ecosystems: Drivers and
attribution 157
8. Contrasting and interacting changes in spring and summer car-
bon cycle extremes in European ecosystems 159
8.1. Introduction . . . . . ... ... ... 160
8.2. Dataandmethods . . . . ... .. ... ... ... . 162
8.2.1. Regional climate model simulations and physically con-
sistent bias correction . . . . . . ... ... oL L. 163
8.2.2. Terrestrial ecosystem simulations: Model description . . . 165
8.2.3. Factorial model simulations . . . . ... ... ...... 166
8.2.4. Analysis methodology . . .. ... ... .. ....... 167
83. Results. . . . .. .. ... 169
8.3.1. An illustrative attribution analysis of ecosystem produc-
tIVILY @XIremes . . . . . . . oo b e 169
8.3.2. Attribution of trends in ecosystem productivity extremes . 172
8.3.3. Elucidating spring-summer interacting carbon cycle ef-
fects due to climate extremes . . . . . . . ... ... ... 173
84. Discussion . . . . . . ... 176
8.5. Conclusion . . . ... ... ... 180
9. Conclusions and outlook 185
9.1. Statistical quantification of extremes . . . . . . .. ... ... .. 187
9.2. Observation-based constrains for bias correction . . . . . . . . .. 191
9.3. Extremes events in terrestrial ecosystems: Drivers and attribution . 193
9.4. A data-driven perspective on terrestrial ecosystem productivity . . 195
10. Bibliography 201
A. Ecosystem impacts of climate extremes crucially depend on the

timing A-1

A.1. Identifying carbon cycle components that cancelout. . . . . . . . A-3



Contents v

A.2. The role of plant-soil-atmosphere feedbacks . . . . . ... .. .. A-5
B. Supplementary Material for Chapter 2 B-1
B.1. Guide to the artificial normalisation example . . . . . . . ... .. B-1
B.2. Normalisation-induced changes to Gaussian time series . . . . . . B-3
B.2.1. Normalisation in the out-of-base period . . . . ... . .. B4
B.2.2. Normalisation in the reference period . . . ... ... .. B-6
B.3. Monte Carlo simulations . . . . . ... .. ... ......... B-9
B.4. Normalisation bias in non-stationary time series . . . . . . . . .. B-11
B.5. Subtraction of trend components . . . . . ... ... L. B-14
B.6. Asymmetry in temperature distributions . . . . . ... .. ... B-16
C. Supplementary Material for Chapter 3 C-1
C.1. Analytical approximation of the normalisation-induced bias . . . . C-1
C.1.1. Gaussian distribution . . . . . .. ... ... ... ..., C3
C.1.2. Generalised extreme value distribution . . . . . . . . . .. C-6

C.1.3. Short remark on non-stationarity in the out-of-base period C-8

C.2. Aridity-based vs. precipitation-based definition of dryness . . . . C-10

D. Supplementary Material for Chapter 6 D-1

E. Supplementary Material for Chapter 9 E-1

E.1. Supplementary Methods . . . . ... ... ... .. ....... E-1
E.1.1. Attribution of trends in ecosystem productivity to indi-

vidual climatic drivers . . . . . . ... .. ... ... .. E-3

E.1.2. Analysis methodologyandCode . . . . . .. .. ... .. E-6

E.2. Supplementary Results . . . . . ... ... ... ......... E-6
E.2.1. Attribution of trends in ecosystem productivity to driving

climate variables . . . . ... ... ... ... ..., E-6

E.2.2. Interacting carbon cycle effects due to climate extremes . E-10






List of Figures

1.1.
1.2.

1.3.
1.4.

2.1.

2.2.

2.3.

2.4.

3.1.

3.2

3.3.
3.4.

4.1.
4.2.

4.3.

Hypothesised changes in the distribution of temperature . . . . . .
Conceptualised quantification of changes in climate extremes and
associated impacts . . . . . .. ... ..o
Conceptual depiction of ecosystem-atmosphere interactions.

Structure of the thesis . . . . . . . . . ... ... ... ... ...

Biases in the detection of extreme events in stationary and inde-
pendent Gaussian data induced by normalisation. . . . . . . . ..
Correction of normalisation-induced biases in stationary and non-
stationary time Series . . . . . . . . ... ... .o
Increase in normalised hot temperature extremes in a spatio-
temporal dataset . . . . . .. ... .. L L
Normalisation-induced changes in variability . . . ... ... ..

Conceptual example of biases in the mean induced by normalisa-
tion based on a fixed reference period . . . . .. ... ... ...
Normalisation-induced biases on time series and trend estimates
Different masks of the world’s dry and wet regions . . . . . . ..
Time series, trends, and 30-year means of spatially aggregated

heavy precipitation and annual rainfall totals in dry regions . . . .

Synoptic analysis of winter 2013/14 in Europe . . . . . . . . . ..
Return level plots of GEV distributions fitted to extremes of daily
minimum temperatures and heavy precipitation . . . . . ... ..

Illustration of bias-variance trade-offs . . . . ... ... ... ..

55



viii

List of Figures

44.

45.

5.1.
5.2.
5.3.

54.

5.5.

5.6.

5.7.

6.1.
6.2.

7.1.

7.2.
7.3.

74.

7.5.

Return periods of seasonal block minimum temperatures and
heavy rainfallin NW Russia . . . . ... ... ... ... .... 82

Difference in warming of the warm and the cold tail of daily win-

(Er eXIIEMES . . . . o o v v et e e e e e e e e e e 84
Methodological workflow of the study . . . . . . . ... ... .. 95
Illustration of ensemble-based resampling methodology . . . . . . 105

Evaluation of the resampling bias correction methodology for the
study area in Central Europe . . . . . ... .. ... ... .... 107
Return times of hot and cold temperature extremes in summer in
the original regional model simulations, in the resampled ensem-
ble and the mean-adjusted ensemble . . . . ... ... ...... 110
Return times of wet and dry rainfall extremes in summer in the
original regional model simulations, in the resampled ensemble
and the mean-adjusted ensemble . . . . . ... ... .. ..... 112
LPJmL simulated distributions of ecosystem-atmosphere carbon
and water fluxes for Central European natural vegetation for each
bias correction scheme . . . . .. ... ... L. 114

Sensitivity of simulated annual NEE to growing season rainfall in

LPJmL under four different bias correction schemes . . . . . . . . 116
Analysis of summer 2015 in Central Europe . . . . . . . ... .. 123
Ensemble-based analysis of summer 2015 in Central Europe . . . 127

Conceptual illustration of land-atmosphere coupling processes
and temperature — evapotranspiration coupling . . . . . . . . . .. 135
Evaluation of T-ET coupling in global climate models . . . . . . . 145
Relationship between temperature-evapotranspiration coupling
and simulated temperature variability in models . . . . . ... .. 148
Reduction in temperature biases through land-atmosphere cou-
pling constraints . . . . . . ... ... L. 150
Application of land-atmosphere coupling constraints to climate

Projections . . . . . . . . . ..o e e 151



List of Figures ix

7.6.

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

9.1.

9.2.

Al.

A2.

B1.
B2.
B3.
B4.

BS.

Projected warming in mean and extreme temperatures and changes

induced by land-atmosphere coupling constraints . . . . . . . .. 154

Conceptual illustration of spring-summer interacting carbon cy-
cle effects due to climate extremes . . . . . . . ... ... .... 162
Ilustration of seasonal cycles in vegetation phenology in obser-
vations and model ensemble simulations . . . . . . ... ... .. 164
Extreme value analysis of changes in spring and summer net
ecosystem productivity extremes in a temperate European region . 170
Attribution of trends in spring and summer ecosystem productiv-
ity extremes in six Europeanregions . . . . . . ... ... .. .. 174
lustration of spring-summer interacting carbon cycle effects due
to climate exXtremes . . . . . . . . ... ..o 175
Trends and interannual variability in spring-summer interacting

carbon cycle effects due to climate extremes . . . . . .. ... .. 178

Evaluation of empirical estimates of seasonal-scale anomalies in
satellite-observed FPAR. . . . . . ... ... ... 196
Climatic variables that drive recent changes in F'PAR in spring

and summer derived from data-driven predictions. . . . . . . . .. 198
Spring (March-April) and summer (July-August) anomalies in
vegetation activity in 2012 over the contiguous US . . . . . . .. A4
Conceptual framework of potential plant-soil-atmosphere feed-

backs and ecosystem impacts . . . . . . ... ... L. A7
Proposed analytical correction for normalisation-induced artefacts B-9
Sensitivity tests of normalisation-induced biases in the tails . . . . B—12

Increase in normalised hot temperature extremes (ref. period

1951-1980) . . . . . . .. B-15
Increase in normalised hot temperature extremes (ref. period
1921-1950) . . . . .o B-17

Spurious increase in asymmetry due to data pre-processing . . . . B—19



List of Figures

CI.

C2.

C3.

DI.

D2.

El.

E2.

E3.

E4.

ES.

Analytical and empirical estimates of normalisation-induced bias
for Gaussian distributed random variables . . . . . ... ... ..
Analytical and empirical estimates of normalisation-induced bias
for GEV distributed random variables . . . . . ... ... .. ..
Comparison between aridity-based and precipitation-based dry-
nessdefinition . . . . . ... ...

Anomalies in European summer 2015 seasonal mean temperature
and precipitation . . . . . .. ... ..o
Conceptual example of the relevance of biases for attribution

statements . . . . ... L oL oL

Representativity of selected regions determined by seasonal veg-
etation activity. . . . . . . . ... oL
Evaluation of additive approximation of LPJmL-simulated car-
bon fluxes for trend attribution. . . . . . . ... ... ... ...
Extreme value analysis of changes in spring and summer gross
primary productivity extremes in a temperate European region
Climatic variables that drive recent changes in GPP across six
European regions in spring and summer in LPJmL simulations. . .
Same as Figure E4, but for NEP. . . .. ... .. ... .....

. BT

E-8



List of Tables

3.1.

3.2
3.3.

4.1.

5.1.
5.2

6.1.

7.1.

8.1.

8.2.

El.

E2.

Statistical pre-processing uncertainties and biases in period incre-

ments and trend slopes . . . . . ... ... L. 54
Uncertainties regarding the definition of a ‘dry region’, Rx1d.. . . 61
Uncertainties regarding the definition of a ‘dry region’, PRCPTOT. 62

Regions used in this study and their geographical boundaries. . . . 70

Datasets used for bias correction and evaluation. . . . . . . . . .. 100
Annual mean ecosystem-atmosphere water and carbon fluxes
simulated by LPJml. . . . . ... ... 0000 115

Location of meteorological stations and probability ratios esti-

mated from observed and simulated data. . . . . ... ... ... 129
Datasets used for model evaluation . . . . ... ... ... .... 139
Overview over factorial model simulations®. . . . . . . . ... .. 166

Spring compensation of summer extremes in GPP and contribu-

tion of dynamical effects. . . . . . .. ... ... ... ... 177

Overview over the six European regions that are scrutinised in
thisstudy. . . . . . . ... E-2
Correlation of spring-summer carry-over effects with soil moisture.E-10






Summary

Extreme weather and climate events (summarised as ‘climate extremes’ from here
onwards) are a crucial aspect of Earth’s climatic variability. However, climate ex-
tremes are frequently associated with adverse impacts on socio-economic and
ecological systems. For example, heat in combination with drought may severely
affect the functioning of terrestrial ecosystems, and in some cases these events
have the potential to undo several years of ecosystem carbon sequestration. More-
over, the intensity and frequency of several types of climate extremes, such as
heat, cold, and heavy rainfall, have been changing in recent years. These changes
are projected to continue in the 21st century, thus raising concerns about the ca-
pacity of ecological and socio-economic systems to cope with these events in the
future.

Nonetheless, our scientific understanding of climate extremes and the mech-
anistic pathways through which these events propagate into ecological or socio-
economic systems, remains limited. The impact of climate extremes varies widely
depending on their type and spatio-temporal structure, and these impacts are me-
diated by the vulnerability and exposure of the system under scrutiny. There-
fore, the quantification of these phenomena, and the attribution to their respective
drivers across space and time is often ambiguous. Accordingly, closing scientific
knowledge gaps and improving methodologies to scrutinise climate extremes and
their impacts constitutes a research priority of high societal relevance.

The overarching objective of the present PhD thesis is to improve the quan-
tification of, and contribute to the understanding of climate extremes and their
impact on ecosystem-atmosphere interactions. To address these objectives, the
thesis relies on joint analyses and integration of observation-based datasets and
model ensemble simulations. Specifically, the thesis explores (1) a wide range

of generic statistical-methodological considerations, (2) approaches to enable



xiv Summary

sound process-oriented model ensemble simulations using observation-based
constraints, towards (3) a comprehensive attribution of ecosystem impacts aris-

ing from climate extremes.

1. Statistical quantification of extremes in observed or simulated spatio-
temporal gridded datasets (Part I).
An investigation and quantification of extremes in spatio-temporal datasets
requires robust statistical methodologies and diagnostics. Therefore, the
thesis scrutinises statistical methods, both empirically and analytically, to
explore recent changes in temperature and precipitation extremes in grid-
ded observations. These analyses reveal that conventional statistical meth-
ods that are based on a reference period standardisation might induce sub-
stantial biases in spatially aggregated estimates of extremes. For example,
the occurrence of extremes that exceed two standard deviations in standard-
ised data could be overestimated by 48.2% outside a given reference period
of 30 years in independent and identically distributed Gaussian data. An-
alytical corrections for these kinds of statistical errors are derived in the
thesis.
Because climate extremes are inevitably rare in temporally and spatially
limited observational records, ensemble simulations constitute an indis-
pensable and complementary tool to scrutinise climate extremes from a
statistical perspective, circumventing small sample issues in observations.
Hence, the thesis also illustrates how model ensembles can be used as sur-
rogate observations to benchmark statistical methods and metrics for an

accurate assessment of climate extremes in observations.

2. Observation-based constraints improve model ensemble simulations of
climate extremes and ecosystem impacts (Part II).
Climate model ensemble simulations generated for the purpose of quanti-
fying and attributing climate extremes typically exhibit biases in their out-
put that hinder any straightforward simulation or assessment of impacts.
Therefore, I develop, apply, and evaluate tools to constrain climate model
ensembles based on observational diagnostics related to land-atmosphere
interactions. The application of these constraints simultaneously reduces
multivariate biases in model ensembles and thus might offer a novel route
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to bias correction for climate impact simulations and analyses of climate

extremes.

3. Extremes events in the terrestrial biosphere: drivers and attribution
(Part III).
Linking or attributing extreme responses in the terrestrial biosphere to cli-
matic drivers is not straightforward because respective analyses often rely
on small sample sizes or even singular events in observations. Therefore,
I construct an ensemble of climate-ecosystem impact simulations, con-
strained by observational diagnostics developed in Part II, that is designed
(a) to systematically investigate and attribute changes in the intensity and
frequency of simulated ecosystem productivity extremes (‘EPEs’) to the
respective drivers, and (b) to assess the effect of timing and seasonal inter-
action of EPEs in the terrestrial biosphere. Thus, a perspective centred on
ecosystem impacts is adopted.
An analysis of these simulations reveals that (a) recent trends in the inten-
sity of EPEs in Europe are contrasting seasonally, i.e. spring EPEs show
consistent trends towards increased carbon uptake, while trends in summer
EPEs are predominantly negative (higher net carbon release under drought
and heat in summer) or close to neutral. Furthermore, the analyses re-
veal that (b) spring-summer interacting carbon cycle effects due to climate
extremes and thus their timing plays an important role in shaping EPEs
in Europe. These interacting effects include both partial compensation of
drought or heat wave induced carbon losses in summer due to increased
carbon uptake in the preceding spring (driven by higher temperatures), and
conversely, spring ‘carry-over’ effects into summer arising from depleted

soil moisture that exacerbates summer carbon losses.

In conclusion, the thesis lays out a comprehensive framework for systemati-
cally quantifying and attributing the impacts of climate extremes in the terrestrial
biosphere using joint analyses of observations and model ensembles. The thesis
shows that firstly, scrutinising statistical methods and diagnostics, and evaluat-
ing observation-based constraints on model ensembles, are key to an improved
understanding as well as quantification of climate extremes and their impacts.
Secondly, a consequent probabilistic interpretation of climate-ecosystem model
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ensemble simulations offers novel perspectives on the mechanistic pathways and

interacting effects of terrestrial ecosystem responses to climate extremes.



Zusammenfassung

Extreme Wetter- und Klimaereignisse (hier zusammengefasst als ‘Klimaextre-
me’) sind ein zentraler Aspekt klimatischer Variabilitit des Erdsystems. Aller-
dings sind diese Ereignisse hiufig mit negativen Auswirkungen auf soziodkono-
mische und 6kologische Systeme verbunden. Als Beispiel konnen Hitzewellen
genannt werden, die in Verbindung mit Trockenheit die Funktionsweise terre-
strischer Okosysteme nachhaltig beeintrichtigen, und in einigen Fllen sogar die
Netto-Kohlenstoffaufnahme einiger Jahre zunichte machen konnen. Ferner wur-
den in den letzten Jahren und Jahrzehnten Verdnderungen in der Intensitit wie
auch Hiufigkeit von Klimaextremen, wie beispielsweise Hitze- oder Kiltewellen
und Starkniederschldgen festgestellt. Diese Verdnderungen werden sich voraus-
sichtlich im 21. Jahrhundert fortsetzen, und infolgedessen geben diese Prognosen
Anlass zu Bedenken, ob und inwiefern tkologische und soziookonomische Sy-
steme diese Ereignisse in Zukunft bewiltigen konnen.

Dennoch ist das wissenschaftliche Verstidndnis von Klimaextremen und den
Prozessen, die Auswirkungen in 6kologischen und soziookonomischen Systemen
verursachen, derzeit begrenzt. Die Auswirkungen von Klimaextremen variieren
stark je nach Art und raumlich-zeitlicher Struktur des jeweiligen Ereignisses, und
Auswirkungen werden auflerdem durch Vulnerabilitit und Exposition des jeweili-
gen Systems beeinflusst. Deshalb ist die Quantifizierung von Klimaextremen und
deren Auswirkungen, wie auch die Zuordnung zu deren jeweiligen Ursachen in
Raum und Zeit oft nicht eindeutig, und im Allgemeinen unsicher. Dementspre-
chend stellen der wissenschaftliche Erkenntnisgewinn und methodische Verbes-
serungen zur Analyse von Klimaextremen und deren Auswirkungen ein wichtiges
Forschungziel mit hoher gesellschaftlicher Relevanz dar.

Das vorrangige Ziel dieser Dissertation ist es, die Quantifizierung und das Ver-

standnis von Klimaextremen und deren Auswirkungen auf die Funktionsweise
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terrestrischer Okosysteme, insbesondere Okosystem-Atmosphire-Interaktionen,
zu verbessern. Zentraler methodischer Ansatzpunkt dieser Arbeit ist dabei die
Analyse und Integration von Beobachtungs-basierten Datensitzen und modell-
basierten Ensemble-Simulationen. Im Einzelnen untersucht die Dissertation (1)
statistisch-methodische Fragestellungen zur Quantifizierung von Klimaextremen,
(2) Ansitze, die verbesserte prozess-orientierte Ensemble-Simulationen mit Hil-
fe beobachtungs-basierter Eigenschaften des Klimasystems ermoglichen, um (3)
eine umfassende Zuordnung der Okosystem-Auswirkungen von Klimaextremen

zu deren Ursachen vorzunehmen.

1. Statistische Quantifizierung von Extremen in beobachteten und simu-

lierten riumlich-zeitlichen Datensiitzen (Thema I).

Die Analyse und Quantifizierung von Extremen in rdaumlich-zeitlichen Da-
tensétzen erfordert robuste statistische Methoden. Daher untersucht die-
se Dissertation sowohl empirisch als auch analytisch statistische Metho-
dik, die zur Diagnostizierung von Verdnderungen in Temperatur- und Nie-
derschlagsextremen in gitter-basierten Beobachtungsdatensitzen verwen-
det werden. Diese Analysen zeigen, dass konventionelle statistische Me-
thoden, denen eine Standardisierung auf Basis einer Referenzperiode zu-
grunde liegt, erhebliche Fehler in rdaumlich aggregierten Schitzungen von
Extremereignissen hervorrufen kénnen. Zum Beispiel wiirde die Auftre-
tenswahrscheinlichkeit von Extremen, die in standardisierten Daten zwei
Standardabweichungen iiberschreiten, um 48,2% auflerhalb eines gegebe-
nen 30-jdhrigen Referenzzeitraums in unabhéngigen und identisch verteil-
ten Gauf3schen Daten iiberschitzt werden. Eine analytische Korrektur die-
ses statistischen Artefakts wird in der Dissertation hergeleitet.

Klimaextreme treten definitionsgemif} in zeitlich und rdumlich begrenz-
ten Beobachtungsdatensitzen relativ selten auf. Deshalb stellen modell-
basierte Ensemble-Simulationen ein wichtiges komplementires Instrument
dar, um Klimaextreme aus statistischer Perspektive zu untersuchen und das
Problem kleiner Stichproben in Beobachtungen zu umgehen. Diese Dis-
sertation zeigt daher ebenso auf, wie Ensemble-Simulationen als Surrogat-
Beobachtungen verwendet werden kdnnen, um statistische Methoden und
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Diagnostiken zur exakten Bewertung von Klimaextremen in Beobachtun-

gen zu evaluieren.

2. Verbesserung von Ensemble-Simulationen zur Analyse von Klimaex-
tremen und Okosystem-Auswirkungen durch beobachtungs-basierte
Constraints! (Thema 1)

Modell-basierte Ensemble-Simulationen zeigen hiufig systematische Feh-
ler in simulierten Klimavariablen, die eine direkte Anwendung zur Quan-
tifizierung und ursdchlichen Zuordnung von Klimaextremen und deren
Auswirkungen erschweren. Deshalb entwickle und evaluiere ich in die-
ser Dissertation Methoden, die eine Filterung von Ensemble-Simulationen
mit Hilfe beobachtungs-basierter Diagnostiken (z.B. Diagnostiken von
Okosystem-Atmosphire-Interaktionen), ermoglichen. Die Anwendung die-
ser Filter reduziert systematische Fehler in mehreren Variablen und der
multivariaten Korrelationsstruktur in Ensemble-Simulationen und erdffnen
so eine neue Moglichkeit zur systematischen Fehlerkorrektur fiir Simula-

tionen von Klimafolgen oder Analysen von Klimaextremen.

3. Extremereignisse in der terrestrischen Biosphire: Ursachen und Zu-
ordnung (Thema III)

Die Verkniipfung oder Zuordnung von extremen Okosystemreaktionen zu
klimatischen Ursachen ist oft nicht direkt moglich, da sich solche Analy-
sen hdufig auf kleine Stichprobengroen oder sogar einzelne Ereignisse in
Beobachtungen stiitzen. Deshalb generiere ich Ensemble-Simulationen des
Klima-Okosystem Wirkungsgefiiges mit Hilfe eines Okosystemmodells,
die (a) zur systematischen Untersuchung von Verdnderungen in Intensi-
tit und Hiufigkeit von simulierten Extremen in Okosystemproduktivitit
(‘EOP’), und zur Zuordnung der jeweiligen Ursachen verwendet werden
konnen, und (b) die Riickschliisse iiber das zeitliche und saisonale Zu-
sammenwirkens von EOPs in der terrestrischen Biosphire zulassen. Somit
wird eine auf die Okosystem-Auswirkungen von Klimaextremen fokussier-

te Perspektive eingenommen.

"hier: Constraints sinngemiB als ‘Filter” iibersetzt
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Zusammenfassung

Eine Analyse dieser Simulationen zeigt (a) saisonal gegenldufige Trends
in der Intensitit von simulierten EOPs in Europa, d.h. EOPs im Friihjahr
zeigen robuste Trends hin zu erhohter Okosystem-Kohlenstoffaufnahme,
wihrend EOPs im Sommer iiberwiegend negative (d.h. hohere Netto-
Kohlenstofffreisetzung unter Trockenheit und Hitze im Sommer) oder
neutrale Trends aufweisen. Diese Analysen zeigen aullerdem, dass (b)
Okosystem-Interaktionen zwischen Friihling und Sommer, und somit der
Zeitpunkt des Auftretens von Klimaextremen, eine wichtige Rolle fiir
EOPs in Europa einnehmen. Diese Wechselwirkungen beinhalten sowohl
die Teilkompensation von Diirre- oder Hitze-induzierten Kohlenstoffverlu-
sten im Sommer aufgrund einer erhdhten Kohlenstoffaufnahme im voran-
gegangenen Friihling (aufgrund hoherer Temperaturen); wie auch den ge-
gensitzlichen Effekt, ndmlich eine negative Nachwirkung von Friihlings-
effekten im Sommer durch reduzierte Bodenfeuchtigkeit, die Okosystem-

Kohlenstoffverluste im Sommer verschirfen kann.

Insgesamt legt die Dissertation einen umfassenden methodischen Ansatz fiir

die systematische Quantifizierung und ursidchliche Zuordnung von Klimaextre-

men und deren Auswirkungen auf Okosystem-Atmosphire-Interaktionen vor,

der auf einer Analyse von Beobachtungen und Ensemble-Simulationen basiert.

Im Hauptergebnis zeigt die Dissertation, dass eine umfangreiche Untersuchung

von statistischen Methoden zur Quantifizierung von Klimaextremen, und die

Anwendung von beobachtungs-basierten Diagnostiken als Filter fiir Ensemble-

Simulationen entscheidend zu einem besseren Verstéindnis sowie Quantifizierung

von Klimaextremen und deren Auswirkungen beitragen kann. Weiterhin erdffnet

eine probabilistische Interpretation von Klima-Okosystem Ensemblesimulationen

neue Perspektiven auf Prozesse und wechselwirkende Effekte in der Funktions-

weise terrestrischer Okosysteme unter Klimaextremen.
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1. Introduction

1.1. Motivation for the present thesis

“"Die hohen Fluthen haben fast ein Menschenalter uns in Ruh’ gelassen; wenn
aber eine von den schlimmen wiederkommt (...), so kann mit einem Mal die ganze
Herrlichkeit zu Ende sein;" (...) "Vor dreiflig Jahren ist der alte Deich gebrochen;
dann riickwdrts vor fiinfunddreiflig, und wiederum vor fiinfundvierzig Jahren;
seitdem aber, (...) haben die hochsten Fluthen uns verschont. Der neue Deich

"

aber soll trotz solcher hundert und aber hundert Jahre stehen;"’ Hauke Haien,
The Dykemaster in Theodor Storm’s novella ‘The Rider on the White Horse’!
from 1888, contemplates about the risk of severe storm surges and floods that are
recurring regularly on time scales from decades to centuries, and that have the

potential to impose disastrous impacts on coastal communities.

Extreme weather and climate events, such as storms, floods, cold spells, heat-
waves or droughts have long affected human societies - with often adverse and
sometimes catastrophic impacts, and as a source of great concern within com-
munities and the society at large. For example, tree-ring based proxy records
(Biintgen et al., 2011b; Cook et al., 2015; Luterbacher et al., 2016) and docu-
mentary evidence (Biintgen et al., 2011a; Wetter et al., 2014) reveal pronounced
hydro-climatic variability and extremes over past centuries in Europe—with indi-
vidual extreme events such as drought and heat in 1540 (labelled a ‘worst-case’
scenario, Wetter et al., 2014), or severe rain and cold periods 1315-1317 that are
associated with food shortages and famine (e.g. the ‘Great European Famine’,

1315-1317, Lucas, 1930) that under some conditions could even overturn social

ITheodor Storm. 1888/2011. Der Schimmelreiter (‘The Rider on the White Horse’). ISBN
3458362169.
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and political power relationships (Bauch, 2016).

But, conversely, extreme weather and climate events (summarised as ‘climate ex-
tremes’ in this introduction) also serve as a source of admiration for the strong
forces of nature, inspiring writers, poets, and scientists throughout centuries. The
mere possibility of occurrence of climate extremes can trigger coherent societal
planning or even innovation (a simple and straightforward example is the Dyke-
master’s invention to build flatter dykes based on mathematical considerations in
the tale cited above), and -under some circumstances- might lead to societal cohe-
sion and adaptation in the aftermath of climate extremes (Luterbacher and Pfister,
2015).

In more recent years, various types of climate extremes have occurred, on all
continents, and on a range of spatial and temporal scales (AghaKouchak et al.,
2012; Coumou and Rahmstorf, 2012). These events, modulated by vulnerability
and exposure of any system under consideration, regularly impose substantial im-
pacts on human societies and ecosystems (Easterling et al., 2000; IPCC, 2012).
The impacts range from the loss of human lives (Le Tertre et al., 2006; Gasparrini
et al., 2015), economic losses either through direct or indirect effects (Smith and
Katz, 2013; Zander et al., 2015; Burke et al., 2015), effects on terrestrial ecosys-
tems and ecological communities (Parmesan et al., 2000; Thibault and Brown,
2008; Jentsch et al., 2009) and the global carbon cycle (Reichstein et al., 2013;
Zscheischler et al., 2014b). Moreover, the role of climate extremes in triggering
or shaping human conflict continues to be investigated and debated (Scheffran
et al., 2012; Schleussner et al., 2016a).

The occurrence of a few ‘high-impact’ climate extremes in recent years raised
attention and awareness among the public, policy-makers and institutions to pre-
pare for these events under changing climatic conditions (WMO, 2011; IPCC,
2012). For example, a heat summer in Central Europe that was unprecedented
in centuries occurred in 2003 (Luterbacher et al., 2004) - a statistically very un-
likely event with estimated return periods of at least several thousand years even
if recent warming would be taken into account (Schir et al., 2004). The event had
been interpreted as a first sign of increasing variability of summer temperatures
(Schir et al., 2004) and was associated with strong land-atmosphere feedbacks

that might be expected in future European climate (Seneviratne et al., 2006; Fis-
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cher et al., 2007). The death toll of this event was large, estimates range from
40.000-70.000 excess deaths due to heat (WMO, 2011), and socio-economic costs
due to crop failure and forest fires were in the range of around 13 billion Euros
(Garcia-Herrera et al., 2010). Furthermore, drought and heat undid several years
of net carbon sequestration in European ecosystems (Ciais et al., 2005), which
thus constitutes a positive feedback in the climate system exacerbating climate
change.

The role of climate extremes as a crucial feature of the Earth’s climate, and the
impacts of climate extremes on human societies and ecosystems (IPCC, 2012)
provides the main motivation for the present thesis. In this Chapter, I first pro-
vide an introduction to the notion of climate extremes in the context of climate
variability and change. This includes a short overview of observed changes in
climate extremes that are most relevant for terrestrial ecosystems and the carbon
cycle (temperature extremes, heavy precipitation, and drought). Uncertainties
around the quantification of these phenomena are shortly discussed, and model
ensemble simulations are introduced (Section 1.2). Second, I review key land-
atmosphere and ecosystem-atmosphere interactions that arise through basic (bio-
)physical and biogeochemical principles and mechanistic links between the en-
ergy, water, and carbon (Section 1.3). Third, I focus on the impacts of climate
extreme events on the terrestrial carbon cycle (Section 1.4). Lastly, the structure
of the thesis and key findings of each chapter are outlined (Section 1.5).

1.2. Climate extremes - background, definitions & examples

1.2.1. Climatic variation and extremes

The Earth’s climate varies over a wide range of time scales - from seconds to
millions of years (Gettelman and Rood, 2016). This continuum of variability
can be understood as a response to deterministic insolation forcing with daily,
annual and longer-term (e.g. ‘Milankovich’ cycles, see Hays et al. (1976)) peri-
odicities, and a transfer of spectral energy across frequencies through non-linear
dynamics in the Earth system associated with atmosphere-ocean, atmosphere-
land (including atmosphere-ecosystem), and atmosphere-cryosphere interactions

(Huybers and Curry, 2006). Hence, variation in the Earth system can be con-
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ceptualised as the super-position of characteristic periodicities, including trends,
and stochastic components (Ghil et al., 2011). In this context, the occurrence of
extreme values, or climate extremes, constitutes a crucial aspect and manifesta-
tion of climatic variability, across space and time, and against the backdrop of

long-term climatic changes (e.g. Tingley and Huybers, 2013).

1.2.2. On the definition of climate extremes

Extremes are commonly understood as very large, and unusual deviations from a
normal state of any system under consideration. Hence, a simple and straightfor-
ward definition is that climate extremes can be described as the ‘occurrence of a
value of a weather or climate variable above (or below) a threshold value near
the upper (or lower) ends of the range of observed values of the variable’ (IPCC,
2012). Accordingly, extreme values typically constitute the (upper or lower) tail
of a univariate probability distribution (Ghil et al., 2011).

However, it should be emphasised that no universally accepted definition of
climate extremes exists (Stephenson et al., 2008). For instance, the Oxford En-
glish Dictionary defines extreme as ‘the outermost’, ‘farthest from the centre’, or
‘very advanced in any direction; utmost; uttermost’, but also as ‘Going to great
lengths’, and ‘opposed to moderate’>. While all of these terms might correspond
to the intuitive understanding of extremes referred to above, it highlights that any
quantitative definition is inherently relative and thus somewhat subjective, and
depends on what is considered extreme by the observer or in any given context
(Stephenson et al., 2008). Likewise, the definition in IPCC (2012) cited above
does not account for unusual sequences of events, or unusual bi- or multivariate
constellations of individual variables (so-called ‘compound events’, e.g. IPCC
(2012); Leonard et al. (2014)), and is not per se relevant for impacts. Hence,
an obvious alternative starting point to define or diagnose extremes would be to
start from the distribution of impact variables in the system under consideration
and assess climate variables that led to these extreme impacts in a ‘backwards’
manner (Smith, 2011; Zscheischler et al., 2013). However, the IPCC (2012) def-
inition has been applied, implicitly or explicitly, in a large number of studies and

proved useful for practical applications (see IPCC, 2012, and references therein),

20xford English Dictionary Online, http: //www.oed.com.
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because it allows a straightforward quantification of climate extremes (Sillmann
et al., 2013b,a) and detailed mathematical description of the tails of the probabil-
ity distributions (Coles et al., 2001). Therefore, it serves as a useful conceptual
model to approach climate extremes, and is adopted as such in the present thesis.
However, as the different chapters in this thesis have different objectives, the def-
inition of climate extremes, and the choice of variables, is specified separately in

each chapter.

1.2.3. Quantifying climate extremes in a changing climate

Conceptual framework In a changing climate, the frequency, intensity and
spatio-temporal characteristics (e.g. affected area, duration, or time-area inte-
gral) of climate extremes are expected to change (Mearns et al., 1984; Meehl
et al., 2000; Easterling et al., 2000). A simple conceptual framework is shown
in Figure 1.1, following IPCC (2012) but originating earlier (presumably Meehl
et al. (2000)) that illustrates how changes in the (a) mean, (b) variance, and (c)
shape of a univariate probability distribution could result in changes in the tails.
Although this schematic is highly simplified and not based on physical consid-
erations, it can yield useful insights: First, even relatively small changes in the
mean of a (climate) variable can lead to disproportionate changes in the number
or frequency of climate extremes in the tails, including record-breaking events
(Rahmstorf and Coumou, 2011) (whereas the intensity of the events would scale
with the mean shift) — with potentially profound implications if any particular
impact would be triggered by the exceedance of a fixed threshold (Mearns et al.,
1984). Second, changes in variance can have large effects on the frequency and
intensity of climate extremes. Based on theoretical work, it has been shown that
for a comparable change in mean and variance of a univariate probability distri-
bution, the frequency of these events is more sensitive to changes in variability
than in averages (Katz and Brown, 1992). Third, it is also conceivable that non-
linear mechanisms in the Earth system might lead to changes in the symmetry of
a climate variable’s probability distribution, i.e. changes only in one tail of the
distribution. Such non-linear changes in only one tail of the distribution might be

well-expected based on physical reasoning for some variables (e.g. precipitation,
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see Section 1.3), but the detection of this phenomenon still poses challenges (see
e.g. Chapter 2).
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mean shift, b) increased temperature variability (no shift in the mean), and
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Quantifying change in climate and weather extremes An obvious starting
point to detect, quantify, and understand potential changes in the frequency or in-

tensity of climate extremes is to analyse long-term meteorological observations.
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Over past decades, many studies have shown that the occurrence probabilities
and intensity of several types of climate extremes have been changing in obser-
vations. Here, I provide a few examples and brief overview of observed changes
and first-order expectations of changes in temperature extremes, heavy precipi-
tation extremes, and drought at large spatial scales. These hydro-meteorological
extremes are highly relevant for terrestrial ecosystems and the carbon cycle (Re-
ichstein et al., 2013; Zscheischler et al., 2014b, see also Section 1.4), and are thus
considered as the main hydro-meteorological hazards investigated in this thesis.
A more detailed examination and review of climate extremes is given elsewhere
(e.g. IPCC, 2012).

Temperature extremes On a global scale, observations point towards a
widespread increase in positive temperature extremes consistent with expecta-
tions in a generally warming climate. These trends have been shown in max-
imum and minimum daily temperatures (Alexander et al., 2006; Donat et al.,
2013b), in the area affected by temperature extremes (Hansen et al., 2012; Dittus
et al., 2015), the duration of heat waves (Perkins et al., 2012), and an increase
in record-breaking monthly temperatures (Coumou and Robinson, 2013). Ac-
cordingly, reductions in the occurrence of cold conditions are observed globally
(Alexander et al., 2006), although this does not mean that cold events are not oc-
curring any more (e.g. Cattiaux et al., 2010; Kodra et al., 2011). These trends
also hold qualitatively on continental scales, where individual studies have shown
that increases in observed temperature extremes have been widespread, for in-
stance in the Mediterranean (Kuglitsch et al., 2010), North America (Peterson
et al., 2008; Grotjahn et al., 2016), Australia (Alexander and Arblaster, 2009),
China (Zhou and Ren, 2011), and many other regions (see, for instance, IPCC,
2012). In summary, IPCC (2012) conclude that it is very likely® that an increase
of warm days and nights, and a decrease of their cold counterparts, has occurred
at the global scale. Furthermore, projections point towards continued increases in
temperature extremes (Kharin and Zwiers, 2000; Kharin et al., 2007; Orlowsky
and Seneviratne, 2012; Sillmann et al., 2013a) and scale approximately linearly

with global temperatures, but with larger slopes (Seneviratne et al., 2016). How-

3In IPCC-terminology this denotes a confidence of 90-100% (Mastrandrea et al., 2010)
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ever, it is important to recognise that temperature extreme events are not merely
random events, but are typically associated with distinct atmospheric conditions
such as quasi-stationary anticyclonic circulation anomalies or atmospheric block-
ing in mid-latitudes (Xoplaki et al., 2003; Meehl and Tebaldi, 2004). Heat waves
can be further enhanced through interactions with the land surface (Seneviratne
et al. (2006), see more detailed description and basic physical principles of land-

atmosphere interactions introduced in Section 1.3).

Precipitation extremes In a warmer world, substantial changes to the hydro-
logical cycle are expected (Stocker et al., 2013). Radiation-induced energy budget
changes in the troposphere and near the surface lead to an acceleration of the hy-
drological cycle, and hence increased evapotranspiration from the ground that en-
hances atmospheric moisture content (Trenberth, 1999; Allen and Ingram, 2002).
The water-holding capacity of the atmosphere increases by approximately 7% per
°C of warming at the surface following the Clausius-Clapeyron equation. These
considerations have led to the expectation that changes in heavy rainfall extremes
are physically constrained by that rate (Trenberth, 2011), albeit only in regions
without major changes in atmospheric circulation (Pall et al., 2007). However,
uncertainty remains as scaling rates of extreme precipitation and atmospheric wa-
ter vapour with temperature are not identical, and the former affected by several
factors (O’Gorman and Schneider, 2009) with large model spread in heavy pre-
cipitation scaling rates in the tropics (ibid.), and some observational records and
model simulations that even indicate higher scaling rates for extremes at sub-
daily time scales (Lenderink and Van Meijgaard, 2008; Bao et al., 2017). Hence,
in combination, a certain redistribution of precipitation, i.e. enhanced heavy pre-
cipitation events, and somewhat smaller increases in mean precipitation (Allen
and Ingram, 2002) in tandem with potentially longer dry spells (but which is still
uncertain, Fischer and Knutti, 2013), might be expected in the near future and at
the global scale (Trenberth, 2011). Indeed, increases in heavy precipitation ex-
tremes are projected in many land regions of the globe (Fischer and Knutti, 2015),
although local and regional variation is prevalent over land (see for instance a re-
gional simulation over the United States, Prein et al., 2016). In observational

time series, widespread significant trends in precipitation extremes and totals are
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found in observations at the global scale, with a clear majority of stations show-
ing upward trends (Westra et al., 2013), and in an averaged signal across wet and
—to a lesser extent— dry regions (Donat et al. (2016), see also Chapter 3). At
the global scale the number of record-breaking events has increased faster than
expected in a stationary climate, and consistent with Clausius-Clapeyron expec-
tations (Lehmann et al., 2015). However, on regional scales, changes are often
relatively noisy and spatially somewhat heterogeneous (Alexander et al., 2006;
Donat et al., 2013b). A markedly high sensitivity of precipitation extremes to
temperature increases has been found in the tropics and at high latitudes (Wes-
tra et al., 2013)IPCC (2012) conclude that it is likely* that heavy precipitation
extremes have increased both in frequency and as a proportion of heavy rainfall

over many areas of the globe.

Drought Drought constitutes a major hazard in many regions of the world, be-
cause it can severely affect agricultural systems and thus food production but also
terrestrial biota and ecosystems. Therefore, the question to which extent drought
is changing in a warming climate is crucial. However, drought is a complex phe-
nomenon that can be defined in various ways based on a deficit in precipitation,
soil moisture, or runoff, that is commonly referred to as meteorological drought,
agricultural drought (or ‘soil-moisture drought’), or hydrological drought, respec-
tively (IPCC, 2012, leaving aside water scarcity here, which is at least partly a
socio-economic phenomenon).

As soil-moisture droughts and hydrological droughts ultimately arise from a
lack of water on land, these events depend on multiple variables that determine the
water balance at the land surface. In particular, a critical precipitation deficit (or
meteorological drought) is typically a necessary but not sufficient condition for
the development of soil-moisture or hydrological drought, because evapotranspi-
ration (the flux of water from the land surface to the atmosphere, see Section 1.3
for a more detailed description), and initial water storage conditions equally shape
drought events. Evapotranspiration is jointly controlled by 1) the supply of wa-
ter from the land surface, and 2) the evaporative demand of the atmosphere (also

called ‘potential evapotranspiration’, PET), which is related to the ability of the

466-100% probability (Mastrandrea et al., 2010).
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atmosphere to evaporate, absorb, and transport water. Hence, PET depends on a
variety of variables, including radiation, wind speed, and vapour-pressure deficit
(VPD); whereas temperature affects PET indirectly through its effect on VPD
(Seneviratne et al., 2012).

Besides the complexities in the meteorological drivers from which drought
conditions arise, observational estimates of evapotranspiration and precipitation
as the main drivers of drought are often notoriously uncertain (Seneviratne et al.,
2010a; Wang and Dickinson, 2012; Trenberth et al., 2014) and observations are
(sometimes severely) limited in space and time.

As a result, assessments of historical trends in drought at the regional or global
scale are often uncertain (Seneviratne et al., 2012; Trenberth et al., 2014). For
example, different formulations of drought indicators show widely differing sen-
sitivities to temperature change (Milly and Dunne, 2011; Sheffield et al., 2012),
depending on whether the computation of PET is based on simplified and typ-
ically empirical approaches that depend to a large extent on temperature (e.g.
Thornthwaite, 1948), or whether it is derived from physics-based formulations
such as the Penman-Monteith equation (see e.g. Wang and Dickinson, 2012, for
an introduction). Hence, the Intergovernmental Panel on Climate Change con-
cluded with medium confidence that ‘some regions of the world have experienced
more intense and longer drought [...], but opposite trends also exist’ (Seneviratne
et al., 2012), thus reflecting large uncertainties in historical drought assessments.

Moreover, developing theory-based expectations, or evaluating model projec-
tions of future changes in drought occurrence, intensity or duration is even more
complex. This is because, in addition to the uncertainties outlined above, sev-
eral feedback mechanisms and interactions between meteorological variables are
likely to shape future drought events (Seneviratne, 2012, see more details on land-
atmosphere interactions in Section 1.3), notwithstanding indirect effects through
variations or possible changes in large-scale oceanic or atmospheric circulation
regimes that affect droughts (Trenberth et al., 2014).

One might anticipate that in a warmer world, increased heating at the land sur-
face might enhance evapotranspiration and thus could exacerbate droughts (Dai,
2011; Trenberth et al., 2014). However, under dry conditions land-atmosphere

interactions can enhance temperatures close to the surface (see Section 1.3), and
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thus high temperatures might be (partly) a consequence, rather than the cause, of
drought (Sheffield et al., 2012). Moreover, several negative feedbacks between
a warmer climate and droughts might also be expected: First, increased evapo-
transpiration could lead to a corresponding increase in relative humidity (and thus
decrease in VPD), thus partially counteracting drought (Seneviratne, 2012). Sec-
ond, evapotranspiration from a dry land surface becomes limited by soil moisture,
which then naturally prevents further drying (Seneviratne et al., 2012). Third, it
is expected that under higher CO> concentrations, terrestrial plants’ water use
efficiency increases (Drake et al., 1997), leading to reduced evapotranspiration
via reduced stomatal conductance, thus reducing the occurrence of soil moisture
droughts in process-oriented models (Burke, 2011).

In summary, drought trends at the global scale, and future projections of
drought in a warmer climate remain uncertain, depending crucially on the drought
indicators used, and the considered processes and underlying assumptions. For
example, Burke and Brown (2008) showed that drought indicators that incor-
porate the atmospheric demand for moisture show an increase of 5%—45% of
the land surface in drought, which is significant albeit its large spread (whereas
indicators based on precipitation alone show little change). Nonetheless, the
dominant source of uncertainty in projections of soil-moisture drought across an
ensemble of state-of-the-art models relates to the formulation of the underlying
model (Orlowsky and Seneviratne, 2013). This is in contrast to projections of (for
instance) temperature extremes (as outlined above), which are primarily related
to the specified scenario of greenhouse gas forcing, and thus highlights uncer-
tainties in model projections of future drought. Nonetheless, several regions have
indeed experienced trends towards a higher frequency of drought conditions in
recent years (medium confidence according to IPCC, 2012), such as for example
South-Central Europe (Stahl et al., 2010).

Uncertainties in the quantification of climate extremes at large spatio-
temporal scales Analyses of extreme events in observational data are chal-
lenging, because observational records are typically limited in length, often con-
tain heterogeneities, and extremes are rare by definition (Nicholls, 1996), all of

which makes analyses sensitive to outliers. Therefore, on-going monitoring, data
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availability, data exchange, and data quality control are all crucial prerequisites
for reliable analyses (Nicholls, 1996; Alexander et al., 2006; Donat et al., 2013b;
Alexander, 2016). The detection and quantification of changes in climate ex-
tremes depends on the variable, definition of thresholds or metrics, and spatial
and temporal scales of analysis. Moreover, the detection and quantification of cli-
mate extremes are contingent on the statistical methods applied (AghaKouchak
et al., 2012). Since assessments of observed trends in climate extremes under cli-

mate change routinely enter, inform and influence public discourse’

, an accurate
quantification of these phenomena in tandem with explicit definitions and metrics
is vital to enable informed discussions about climate change impacts. Therefore,
a key issue in this context is to ascertain statistical accuracy and robustness of
the metrics that are used to quantify climate extremes. Part I of the present thesis
revisits state-of-the-art methodologies that are widely used to detect globally or
regionally aggregated signals of climate extremes (see conceptual Figure 1.2a) in
spatio-temporal datasets of temperature (Chapter 2) and precipitation (Chapter 3).
However, these methodological results are generic in that they apply to any other

spatio-temporal data as well.

1.2.4. Attribution of climate extremes and their impacts

A question that arises frequently in the public discussion in the aftermath of spe-
cific climate extremes is whether anthropogenic climate change could have played
arole, or could even be blamed, for the occurrence of a particular climate extreme
event. However, there is no straightforward answer to this question (Allen, 2003),
because any climate extreme event could occur in an unperturbed climate as well
and the observational record is inevitably limited. Nonetheless, insights into fre-
quency and magnitude of specific classes of climate extremes can be derived from
a probabilistic perspective - hence addressing the question how the odds of occur-
rence of these events have changed in response to specific forcings (Allen, 2003;
Stone and Allen, 2005; Stott et al., 2016). Because observed weather constitutes
only one of many possible trajectories of the system, a probabilistic approach

requires a collection of possible trajectories from repeated model simulations

Se.g. http://www.nytimes.com/2012/08/07/science/earth/extreme-heat-
is-covering-more-of-the-earth-a-study-says.html


http://www.nytimes.com/2012/08/07/science/earth/extreme-heat-is-covering-more-of-the-earth-a-study-says.html
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FIGURE 1.2.: Conceptualised quantification of changes in climate extremes and as-
sociated impacts. a) State-of-the-art methodologies to quantify changes
in climate extremes (depicted as changes in the probability distribution
P(envyeys) to P(envnover)) are revisited in Part I of this thesis. b) Con-
ceptualised relationship between a multivariate distribution of climate vari-
ables and the distribution of an impact variable. Part II of this thesis deals
with suitable constraints on P(env) to improve the simulation of climate
extremes, and Part III assesses the impacts of climate extremes in the ter-
restrial biosphere (P(sys)) using ensemble simulations of a climate and
ecosystem model. Please note that climate impacts are also modulated by
vulnerability and exposure (IPCC, 2012), which is omitted in this figure for
simplicity. Figure courtesy M. Mahecha.

(Gneiting and Raftery, 2005), typically called ensemble simulations, to be able
to address rare events in the tails of the distribution.

Probabilistic attribution of climate extremes therefore usually aims to get a
notion of how the odds of a specific type of climate extreme might have changed
due to a change in external forcing (Stone and Allen, 2005; Stott et al., 2016). For
example, the Russian heat wave in 2010 was a meteorologically highly unusual

event that broke long-term records (Barriopedro et al., 2011; Tingley and Huy-



14 Introduction

bers, 2013) causing over 55.000 casualties (Guha-Sapir et al., 2011) and severe
reductions in vegetation productivity (Bastos et al., 2014). The event was asso-
ciated with a long-lived blocking situation that arises due to natural climate vari-
ability (Dole et al., 2011). Conversely, however, Rahmstorf and Coumou (2011)
showed that the frequency of events similar in magnitude to the Russian heat wave
had increased by a factor of roughly five - implying that with an 80% chance this
disastrous event would not have occurred without climate warming. Using large
ensembles of climate model simulations, Otto et al. (2012) showed that a proba-
bilistic attribution of the odds of events does not contradict that the event mainly
originated from natural climate variability. Furthermore, ensemble-based attribu-
tion studies investigated and attributed extremes in more impact-related variables
such as floods (Pall et al., 2011; Schaller et al., 2016) and heat-health related
metrics (Mitchell et al., 2016a), but detailed understanding or tools for relating
attribution research to impacts in various fields is still widely lacking (Hansen
and Stone, 2016; Otto, 2016), and event attribution results often depend on the
specific framing of the attribution question and the event definition (Stott et al.,
2016). Moreover, as models are inevitably imperfect, several uncertainties re-
main in attempts to attribute climate extremes that are due to model biases and
poor reliability (Massey et al., 2015; Bellprat and Doblas-Reyes, 2016), and the
imperfect representation of long-term trends (Min et al., 2013), amongst others.
Nonetheless, model ensemble simulations constitute a powerful tool to charac-
terise the probability distribution of possible weather states in response to vari-
ous climate forcings - and hence to assess weather-related risks in forecast (e.g.
Gneiting and Katzfuss, 2014) and hindcast (Massey et al., 2015). This includes
assessments of return times of climate extremes, potential interactions of driving
variables, and associated (simulated) impacts. Therefore, climate model ensem-
ble simulations are used extensively in this thesis: This includes approaches to
scrutinise the probability distribution of climate variables (and changes therein,
but not focusing on impacts explicitly, depicted conceptually in Figure 1.2a), by
using model ensembles to benchmark statistical inferences about rare climate ex-
tremes (Part I, Chapter 4). Further, model ensembles are used to develop and
apply bias correction methods based on observation-based constraints (Part II);

and finally to assess climate-impact relationships in model ensembles explicitly
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(Part III, Chapter 8), which includes scrutinising extremes and recent changes in

ecosystem impact variables ‘backwards’ (conceptually illustrated in Figure 1.2b).

1.3. Energy, water, and carbon: Processes and
land-atmosphere interactions

The Earth’s atmosphere and the land surface are intimately linked. This coupling
includes both the direct atmospheric influence on the land surface, including eco-
logical and hydrological systems, but also associated feedbacks induced by land
surface processes that in turn shape the atmosphere and climate (Bonan, 2015). A
conceptual scheme that illustrates the mutual links between the atmosphere and
the land surface, and associated processes is shown in Fig. 1.3. Land-atmosphere
interactions occur primarily via biogeophysical (i.e., physical transfer of energy
and moisture) and biogeochemical (i.e., cycling of elements) processes, and on
almost instantaneous time scales up to centuries (Bonan, 2015) and perhaps even
on evolutionary time scales (Lovelock and Watson, 1982). For example, slow in-
teractions would include changes in structure or species composition changes in
ecosystems that would affect the energy balance via albedo feedbacks (Ganopol-
ski et al., 1998), or carbon cycle feedbacks to climate change in the 21st century
(Friedlingstein et al., 2014). Conversely, fast interactions occur for instance as a
direct response of plants’ stomatal conductance to variation in weather variables
such as light, temperature or moisture availability. In this section, I illustrate the
main mechanisms of land-atmosphere interactions that link the energy and water

balances at the land surface, and the terrestrial carbon cycle.

1.3.1. The surface energy balance

The Earth’s climate and weather is driven primarily by solar insolation forcing.
The solar constant, i.e. the energy transferred by photon flux (or the integral
of the sun’s electromagnetic spectrum) at the top of the atmosphere amounts to
1361 W m~? (scientific measurements of this fundamental quantity date back at
least to the early 19th century, Abbot, 1914), which equals 341 W m~2 in incom-
ing shortwave radiation averaged over diurnal and seasonal variation and globally
at the top of the atmosphere (Trenberth et al., 2009). The net radiation (R,,.;) at
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FIGURE 1.3.: Conceptual depiction of ecosystem-atmosphere interactions. Terrestrial
ecosystems affect weather, climate, and atmospheric composition through
biogeophysical and biogeochemical processes (detailed in Section 1.3), me-
diated by watershed and ecosystem dynamics on longer time scales. From
Bonan (2015).

the land surface is given by (see e.g. Bonan, 2015)
Ruer = (S L =S+ (LL-L1). (1.1)

The incoming shortwave radiation® (S |= 161.2 W m ™2, Sjypq = 145.1 W m~2)
and longwave radiation (L |= 333Wm™2, Lignd = 303.6 W m~2) com-
ponents are balanced by their outgoing counterparts (S 1= 23.1 Wm 2,
Siand 1= 39.6 Wm~2 and L 1= 396 W m™2, Ligng T= 383.2 Wm™?). At

the land surface, net radiation is partitioned into the turbulent fluxes of sensible

6all values given as long-term averages for the globe (no subscript) and global average over land
(subscript ;4,,,4) according to Trenberth et al. (2009)
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(H = 17Wm™2, Higna = 27 Wm™2) and latent heat (A\ET = 80.0 W m~2,
AET}ana = 38.5 W m~2, X denotes the energy required for vaporisation of wa-
ter, and ET is evapotranspiration), and the ground heat flux (|G| < 1W m~2,
|Glandl < 1Wm™2), ie.

Rpet = H+ \ET + G. (1.2)

All terms of the energy balance vary in space and time (Fasullo and Trenberth,
2008), and differ between land and ocean (Trenberth et al., 2009). The energy
used by plants to drive photosynthesis does not show up directly in long-term
averages of the surface energy balance, because chemical energy produced by
photosynthesis (driven by S |) and stored in organic compounds is later released
by decomposition that leads to surface heating, which would yield a long-term net
zero energy balance under an equilibrium assumption. Earth’s vegetation converts
on average only about 0.27% of the incident photosynthetically active radiation
(which is about half of S |) into biomass (Hall and Rao, 1999). Nonetheless,
the relationship between the absorption of photosynthetically active radiation by
vegetation, based on incident shortwave radiation, and biomass produced by the
plants’ photosynthetic machinery forms the basis for an important class of photo-
synthesis models, namely light-use efficiency models (Field et al., 1998).

Land-atmosphere interactions emerge directly from the energy balance: For
instance, the albedo of the land surface (o = %) directly links the structure
of the land surface (i.e. plant form and structure, ultimately: ‘life’) to surface
climate through its control on the surface energy balance. These insights led
to the notion that climate and living organisms could evolve in tandem, albeit
under simplified assumptions (Lovelock and Watson, 1982), but also that active
albedo management can be used to mitigate hot temperature extremes (Davin
et al., 2014).
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1.3.2. The surface water balance

The water balance at the land surface is given by (see e.g. Bonan (2015), but these
fundamental ideas go back at least to Thornthwaite and Mather (1955))
ds

— =P—FET - 1.3
i R, (1.3)

where changes in water storage (%) are balanced by precipitation inputs (P) and
losses through evapotranspiration (F£7') and runoff (R), with some underlying
soil water storage S. This long-term water balance subsumes surface runoff and
drainage commonly as runoff, and neglects fluxes such as capillary water rise,
plant-induced hydraulic redistribution of water (Horton and Hart, 1998), lateral
transport, and anthropogenic irrigation.

The surface water and energy balances are linked through evapotranspiration
(E'T) from the land surface. ET is the sum of (1) physical evaporation from
the soil or water surfaces (ET,,q;), (2) interception of water from leaf surfaces
(ETinterc), and (3) transpiration from plants (ETyqnsp), 1.€. Water loss through
plant stomata. More than half of the global evapotranspiration flux is made up
by transpiration (% ~ 60% =+ 15%), with typically higher values in moist
forest ecosystems, and almost half of global land precipitation is lost through
transpiration (% ~ 45%, according to Schlesinger and Jasechko (2014)).
Hence, the importance of transpiration in the global water cycle highlights the
role of terrestrial ecosystems, and in particular plants’ stomata, in mediating water
fluxes, with direct links to carbon assimilation and the carbon cycle.

A direct insight that follows from a joint consideration of the land energy and
water balances is that the E'T" flux is limited either by the available energy, or the
availability of water on the ground (Budyko, 1974). Land-atmosphere interac-
tions such as soil moisture-temperature and soil moisture-precipitation coupling
can arise through these controls and feedbacks with the energy and water balance
typically on daily to seasonal time scales (see e.g. Seneviratne et al. (2010a) for a
detailed overview). These interactions arise because the evaporative fraction (de-

fined as the ratio between latent heat and the sum of the turbulent energy fluxes,
e EF — AET AET

NET +H Ry —G

) is highly variable in space and time (Pit-



1.3 Energy, water, and carbon: Processes 19

man, 2003) and mediated by soil moisture availability. This variation in water and
energy controls on evapotranspiration has important implications for climate vari-
ability and extremes: For example, a positive radiation anomaly under wet land
surface conditions would enhance evapotranspiration, which is insensitive to soil
moisture in this regime, thus causing no direct feedbacks with the atmosphere, or
even a weak dampening effect due to latent cooling (Seneviratne et al., 2010a).
Conversely, under soil moisture limitation, i.e. under dry-transitional land surface
conditions, the climate anomaly would be amplified due to reduced evapotranspi-
ration and enhanced sensible heating, which warms the boundary layer and thus
leads to even higher temperatures (ibid.). This mechanism has been shown in
observations and models to be at work in many high-impact heat waves in re-
cent years (Fischer et al., 2007; Hirschi et al., 2011; Whan et al., 2015), and the
expansion of dry-transitional climate regimes might even enhance climate vari-
ability and climate extremes in a future climate (Seneviratne et al., 2006; Fischer
and Schir, 2009). However, climate models disagree considerably on the rep-
resentation of land-atmosphere coupling (Chapter 7), and hence these processes
constitute a key weakness in present-day Earth system models leading to consid-
erable biases in atmospheric variables (Pitman, 2003) but also in simulated carbon
cycle impacts (Chapter 5). Nonetheless, the recent availability of observations-
based benchmarking datasets of evapotranspiration allows to constrain model en-
sembles to a certain degree by observational data (see e.g. Fischer et al., 2012;
Stegehuis et al., 2013). In Part II of this thesis, I explore whether climate model
ensemble simulations can be constrained by observation-based metrics to yield
an improved simulation of climate extremes and ecosystem impacts. These ap-
proaches include the development (Chapter 5) and application (Chapter 6) of a
constraint-based bias correction methodology that uses the distribution of sum-
mer temperature as a constraint; and a land-atmosphere coupling metric is used
to improve the representation of temperature extremes in a multi-model ensemble
(Chapter 7).

1.3.3. The terrestrial carbon cycle

Carbon dioxide (CO3) constitutes an important greenhouse gas in the atmosphere

that exerts major control on global climate (Lacis et al., 2010). In its present ele-
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vated concentration it contributes an additional radiative forcing of +1.82 W m~2
relative to 1750 (Myhre et al., 2013, the total additional radiative forcing due
to anthropogenic activities is estimated at +2.83 W m~2). Therefore, an under-
standing of the global carbon cycle, including fluxes between different reservoirs,
is imperative.

The carbon cycle describes the cycling of carbon in organic and inorganic form
between the ocean, the atmosphere, the land, and the lithosphere. Carbon release
from fossil fuel combustion, cement production and land use changes have led
to an increase in the atmospheric COy concentration from around 280 ppm in
pre-industrial times to above 400 ppm in 2016 (Betts et al., 2016), and an asso-
ciated major perturbation and redistribution of carbon between its reserves (Ciais
et al., 2014). Here, I focus on the terrestrial component of the carbon cycle, i.e.
atmosphere-ecosystem exchanges of carbon. A detailed introduction to the global
carbon cycle, including natural and perturbed reservoir sizes and fluxes is given
elsewhere (e.g. Ciais et al., 2014).

The ecophysiological basis of ecosystem-atmosphere carbon exchange
At site level, net ecosystem carbon uptake (/N E P) is given by the difference be-
tween the ecosystem’s gross primary productivity (G P P) and respiration (R¢c,)
losses (Chapin III et al., 2006; Schulze, 2006) that occur either through plant au-

totrophic respiration ([24) or decomposition in soils (heterotrophic respiration,
Rp),

NEP =GPP — Reco =GPP — Ry — Ry = NPP — Ry. (1.4)

NPP is the net uptake of carbon after accounting for autotrophic respiration
losses. Often, the ecosystem carbon balance is simplified by using NEP in-
terchangeably with net ecosystem exchange (N E'E) but with opposite sign (i.e.
NEFE = —N EP). However, similarly to the water balance discussed above, this
approach ignores several fluxes that would have to be considered at larger spatial
scales (Korner, 2003), for instance lateral or vertical fluxes of dissolved organic
carbon, carbon emissions due to land use change or fire, and transport of carbon

by humans (timber or crop harvest, etc.) or animals.
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On the ecosystem level, G PP subsumes plant photosynthetic uptake of COs,
that is the chemical reaction by which CO2 and water are converted into plant
organic compounds using photochemical energy absorption in the chloroplasts
(Hall and Rao, 1999) that are small organelles in leaves of green plants. The
release of organic carbon into the atmosphere via ecosystem respiration, that is the
flux inverse to carbon uptake, consists of plant or microbial metabolic processes
(R4 and Ry, respectively) and depends on temperature (Lloyd and Taylor, 1994;
Mahecha et al., 2010b), but also on the availability of water (Lloyd and Taylor,
1994) and carbon supply (Hogberg et al., 2001; Ilie et al., 2016).

Plants regulate diffusion of COs into the leaf’s interior through opening their
stomata. Stomatal conductance regulation can be thought of as a process by
which plants maximise CO assimilation (which diffuses from the atmosphere
into inner-cellular air spaces), and minimise transpiration water losses (Medlyn
et al., 2011). This key concept constitutes a fundamental physiological link be-
tween the carbon and water cycle (Fatichi et al., 2015). These basic principles un-
derlie ecosystem models that simulate water-carbon processes at the land surface
(see Sellers et al. (1997); Bonan (2015) for a general introduction; and Sitch et al.
(2003) for the LPJ model that is used in Chapter 5 and 8). A variety of ecosystem-
atmosphere interactions and longer-term carbon-climate feedbacks arise from this
connection: For example, under increased CO5 concentrations it is expected that
stomatal conductance reduces, with an associated reduction in transpiration, caus-
ing higher runoff rates (Betts et al., 2007) but also higher temperatures (Cao et al.,
2010), including under heat waves (Kala et al., 2016), and these plant physiolog-
ical adjustments imply reduced drought stress projections (Swann et al., 2016).

In the context of ecosystem respiration, the explicit temperature dependence
of photosynthesis kinetics and soil microbial activity, and thus soil respiration,
raises concerns of pronounced climate-carbon cycle feedbacks in a warmer cli-
mate (Luo, 2007; Heimann and Reichstein, 2008; Bond-Lamberty and Thom-
son, 2010; Crowther et al., 2016). Nonetheless, ecosystem-atmosphere feed-
back chains are complex (Heimann and Reichstein, 2008), particularly on multi-
decadal time scales that typically exceed time horizons of ecosystem experiments,
and involve interactions with other biogeochemical cycles such as nitrogen and
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phosphorous (Falkowski et al., 2000; Luo, 2007; Gruber and Galloway, 2008;
Zaehle et al., 2010).

Measuring and modelling ecosystem-atmosphere exchange of carbon
However, despite ecological theory and evidence for ecosystem-atmosphere inter-
actions from ecological experiments and long-term monitoring, the quantification
of carbon fluxes, and hence ecosystem-atmosphere interactions on large spatial
scales remains a difficult task. This is because direct carbon flux measurements
are only available at site scale. The most popular measurement approaches are
forest or ecosystem inventories (Pan et al., 2011) and the Eddy covariance (EC)
technique (e.g. Foken, 2008b). While forest inventories have typically a relatively
poor temporal resolution, the eddy covariance technique measures turbulent ex-
change of water and carbon as an integrated signal between an ecosystem foot-
print and the atmosphere’s boundary layer in high temporal resolution (typically
aggregated to half-hourly fluxes). Therefore, the EC technique has been used ex-
tensively over the past two decades to investigate carbon dynamics, seasonality,
and inter-annual variability, extremes, and relationships to other ecological vari-
ables in a large variety of ecosystems (e.g. Wofsy et al., 1993; Baldocchi, 2008).
However, unresolved methodological issues such as the energy balance closure
problem (Foken, 2008a) remain, and the partitioning of the measured net flux
(NEEFE) into GPP and respiration R.., is challenging (Reichstein et al., 2005).
Regional and global networks of EC towers are now in routine use to describe car-
bon cycle dynamics (Baldocchi et al., 2001) and the joint exploitation of multiple
site measurements often improves confidence in results, e.g. for the assessment
of drought impacts on ecosystem carbon uptake (Wolf et al., 2016).

Nonetheless, despite the availability of point-based measurements, top-down
constraints from atmospheric measurements (Graven et al., 2013), satellite and
air-borne observations that can act as proxies for carbon cycle dynamics, terres-
trial carbon cycle dynamics remain uncertain (Le Quéré et al., 2009). Because
of these uncertainties in observations of the land component of the carbon cycle,
residuals in the global carbon budget are often attributed to land processes (ibid.).

Empirical and process-oriented biogeochemical models constitute indispens-

able and complementary tools to scrutinise and conceptualise carbon cycle dy-
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namics. On the one hand, process-oriented models encapsulate ecological under-
standing about relevant ecological processes (Sellers et al., 1997). These tools
are widely used to project carbon cycle processes and dynamics in the 21st cen-
tury and to study potential climate-carbon cycle feedbacks (e.g. Cox et al., 2000;
Bonan, 2015) - although uncertainty on the relevant processes, parameterisation
schemes, dynamics and feedbacks makes their projections uncertain (Heimann
and Reichstein, 2008), and leads to often considerable deviations from observa-
tions (Mahecha et al., 2010a). On the other hand, empirical models typically
employ a statistical relationship or machine learning algorithm to extrapolate (or:
‘upscale’) an ensemble of point measurements to global fields of carbon or water
fluxes, and often also employ satellite measurements for extrapolation (Jung et al.,
2011; Tramontana et al., 2016). Alternatively, considerations around ecosystem
water use efficiency, i.e. the link between carbon uptake and water lost via tran-
spiration at the ecosystem level, can be used to estimate carbon fluxes (Beer et al.,
2007, 2009). Empirical models have proven useful for instance to explain inter-
annual variability in the terrestrial carbon cycle (Jung et al., 2017). Also, em-
pirical estimates of carbon fluxes are widely used to benchmark process-oriented
models (Luo et al., 2012; Anav et al., 2013; Sippel et al., 2016b).

Uncertainties in the terrestrial carbon sink Based on combined evidence
from atmosphere and ocean observations it can be inferred that the biosphere acts
as a sink of carbon at present (Le Quéré et al., 2009). Terrestrial vegetation ab-
sorbs about 30% of present-day anthropogenic carbon emissions, while another
27% are taken up by the oceans and 43% remain in the atmosphere (Le Quéré
et al., 2009). Hence, carbon sequestration by terrestrial ecosystems provides
an important ecosystem service in mitigating the increase of CO; in the atmo-
sphere. Although ultimately terrestrial reservoirs and the ocean can only slow
down the increase in atmospheric CO4 (Field et al., 1998), it remains a crucial
question whether the presently observed sink is only a temporary slowdown - po-
tentially induced by faster tree growth but eventually halted due to unchanged
stocks (Korner, 2017), or whether structural changes in ecosystems can absorb
and store substantial amounts of carbon for longer time periods, as might be in-

dicated by an observed increasing trend in the ampltiude of the seasonal cycle of
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COs in high latitudes (Graven et al., 2013). Climate-carbon cycle simulations re-
flect these key uncertainties, as process model projections do not agree in whether
the biosphere will act as a carbon sink or source under climate change in the
21st century (Friedlingstein et al., 2014). In summary, the fate of the terrestrial
biosphere in the 21st century is a key uncertainty in global climate projections
(Heimann and Reichstein, 2008).

1.4. Climate extremes and their impact on the terrestrial
carbon cycle

A striking feature that emerges from global-scale carbon cycle observations is
that the biosphere’s ability to absorb carbon from the atmosphere is highly vari-
able between years - including years in which the ‘land carbon sink’ turns into a
net source of carbon (Le Quéré et al., 2009). Variability in land-atmosphere car-
bon exchange is inextricably linked to variability in weather and climate factors
(Jung et al., 2017), and climate extremes contribute significantly to inter-annual
variability in ecosystem carbon uptake (Zscheischler et al., 2014b). Hence, cli-
mate extremes are indeed key features that affect terrestrial ecosystem dynamics
via various ecophysiological pathways, and can affect ecosystem structure and
function (Smith, 2011; Reyer et al., 2013; Frank et al., 2015). Evidence for the
effects of climate extremes on terrestrial ecosystems is available from multiple
ecological archives and exploration tools such as tree rings analyses (Babst et al.,
2012; Williams et al., 2013; Rammig et al., 2015), in-situ observation networks
(Ciais et al., 2005; Reichstein et al., 2007; Wolf et al., 2016), ecosystem manipula-
tion experiments (Knapp et al., 2002; Jentsch et al., 2007), satellite observations
(Chambers et al., 2007; Zscheischler et al., 2013), and biogeochemical model
simulations (Van Oijen et al., 2014; Rolinski et al., 2015).

Ecosystems sequester carbon slowly, but carbon release is thought to occur fast
(Korner, 2003; Frank et al., 2015), for instance due to fire, windthrow, harvest, or
drought. This expectation is consistent with a highly skewed distribution of car-
bon cycle anomalies globally, where in most regions losses induced by negative
carbon uptake anomalies strongly exceed positive uptake anomalies (Zscheischler

et al., 2014¢). For example, the European heatwave and drought 2003 has been
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shown to undo four years of carbon sequestration (Ciais et al., 2005), thereby rais-
ing concerns that more frequent or intense climate extremes might turn ecosys-
tems into carbon sources in the future. In fact, losses in ecosystem carbon have
been reported for a number of large climate extremes in recent years such as
droughts in Europe (Ciais et al., 2005; Reichstein et al., 2007), North America
(Schwalm et al., 2012; Wolf et al., 2016), Australia (Ma et al., 2016), and the
Amazon (Phillips et al., 2009; Lewis et al., 2011). Further, it has been shown
that seasonal interactions of water and carbon dynamics, and soil moisture inter-
actions, can shape the evolution of climate extremes (Seneviratne et al., 2010a;
Teuling et al., 2010; Wolf et al., 2016). On the global scale a deficit in water avail-
ability is the main driver of carbon losses due to climate extremes (Zscheischler
et al., 2014b).

However, a conceptual generalisation of the ecosystem impacts induced by cli-
mate extremes, or even upscaling to larger regions is a very difficult task for
several reasons. First, ecosystem impacts of climate extremes are inherently non-
linear, including abrupt climatic thresholds that induce damages (Reichstein et al.,
2013). Second, impacts can occur through direct and indirect pathways, and
might occur concurrent to the climate extreme or lagged (see e.g. Anderegg et al.
(2015) for an example of drought legacy on forest ecosystems, and Frank et al.
(2015) for a conceptual overview and detailed review). Not all events that are ex-
treme from a climatological perspective induce extreme impacts (Smith, 2011).
Third, not all data streams that are used to investigate ecosystem extremes are
equally suitable to investigate different types of ecosystem impacts. For example,
satellite proxies of vegetation productivity might overlook effects in evergreen
vegetation, because leaf or canopy properties do not show strong changes despite
changing physiology (Frank et al., 2015). Fourth, productivity and respiration
are partly sensitive to different driving variables and can thus be affected differ-
ently, which might therefore lead to differential net responses (Schwalm et al.,
2010). Fifth, different ecosystem types and different plant species respond dif-
ferently to climate extremes (Teuling et al., 2010; Babst et al., 2012; Yang et al.,
2016), responses might change seasonally (Wolf et al., 2016), and physiological
and phenological processes might interact (Reyer et al., 2013). Finally, the ob-

servational record is limited in time (continuous satellite records of more than a
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decade or two are only now becoming available (Schimel et al., 2015)) and space
(in-situ observation networks and tree-ring archives are typically skewed towards
temperate and boreal biomes (Baldocchi et al., 2016; Babst et al., 2017)). Further,
extremes are rare by definition such that the number of ecosystem extremes that
are available for comprehensive analysis is simply small. Therefore, crucial gaps
remain in the understanding and quantification of ecosystem responses to climate
extremes (Beier et al., 2012), and in particular regarding how different events are
interacting in space and time.

Hence, long time series that allow to investigate ecosystem impacts of climate
extremes, their interaction, and driving variables would constitute a crucial start-
ing point to improve and generalise the impacts of climate extremes on terrestrial
ecosystems. In Part III of this thesis, I introduce bias-corrected climate-ecosystem
ensemble simulations that are designed for a comprehensive analysis of ecosys-
tem extreme responses, and interacting carbon cycle effects due to climate ex-

tremes on a sub-continental scale in Europe.

1.5. Structure of the thesis

The central aim of this PhD thesis is to improve the quantification of, and con-
tribute to the understanding of climate extremes and their impact on ecosystem-
atmosphere interactions by a joint analysis and integration of observational
datasets with model ensemble simulations. To arrive at these objectives, I first
revisit methodological choices that allow a statistically robust quantification of
climate extremes in either observational or simulated spatio-temporal datasets
(Part I, Chapters 2-2). Second, I develop and apply tools to constrain and bias-
correct climate model ensemble simulations with observational data in order to
derive physically plausible and realistic datasets for an assessment of climate ex-
tremes and simulation of impacts (Part II, Chapters 5-7). Third, I assess and
attribute the impacts of climate extremes in the terrestrial biosphere at regional
scales in mid-latitude regions with a focus on spring-summer interactions of ex-
treme ecosystem responses (Part III, 8, and Appendix A). Figure 1.4 illustrates

the structure of the thesis in a conceptual sketch.
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FIGURE 1.4.: Structure of the thesis. The central theme of this thesis is an integra-
tion and use of both model ensemble simulations and observational datasets
to improve the understanding, quantification and attribution of climate ex-
tremes and their impact in terrestrial ecosystems. This includes 1) an eval-
uation of methodological choices, datasets, and models: This is achieved
by revisiting statistical methodologies to quantify climate extremes in ob-
served or simulated spatio-temporal datasets (Part 1), and by identifying
and testing useful observation-based constraints for assessments of climate
extremes and their ecosystem impact (Part II). The evaluation of methods
directly feeds into 2) an assessment of climate extremes (Part I & II) and
their impacts in the terrestrial biosphere (Part II & III), including an attri-
bution scheme for extreme ecosystem responses and interactions between
different events.

Chapter 2 revisits a conventional statistical methodology that is used to quan-
tify changes in climate variability and the occurrence of climate extremes (e.g.
in temperature) in spatio-temporal observational datasets. It is shown that con-
ventional standardisation of gridded data relative to the local mean and standard
deviation of a reference period leads to an artificial increase in climate extremes
and variability in the time steps that lie outside of a given reference period. In
time-invariant Gaussian data with a reference period length of 30 years, the over-
estimation of ‘2-sigma extremes’ would amount to 48.2%. It is also shown that

the statistical artefacts can be corrected analytically assuming a Gaussian distri-
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bution, and earlier studies are revised to correct for normalisation-induced biases
in estimating the occurrence of climate extremes.

Chapter 3 builds directly on Chapter 2 and elaborates further on a related phe-
nomenon - namely statistical artefacts that are induced by standardisation of non-
negative climate variables such as e.g. precipitation, i.e. dividing a random vari-
able by a sample mean derived from a fixed reference period. The chapter rein-
vestigates the question whether observed precipitation extremes and annual totals
have been increasing in the world’s dry regions over the last 60 years. Despite
recently postulated increasing trends, it is demonstrated that large uncertainties
prevail that still preclude a definite answer to this question due to (1) statistical
artefacts induced by data processing as noted above, and (2) the choice of dry-
ness definition. Furthermore, an analytical description of the artefact induced by
standardisation is induced that allows to estimate and correct for these biases.

Chapter 4 illustrates how climate model ensemble simulations can serve
as a useful test bed for assessing the statistical robustness of methodological
approaches—even if only small sample sizes are available. An empirical analy-
sis of a large ensemble simulation is compared to inferences about rare climate
extremes based on extreme value theory—in a case study of cold extremes and
heavy precipitation at the regional scale in Europe. It is found that the parameter
choices in extreme value statistical analysis are indeed crucial (e.g. the choice of
‘block size’ for selecting climate extremes), and biases could result if chosen in-
appropriately. Hence, model ensemble simulations can inform parameter choices
for inferences about climate extremes in observations that are inherently limited
in spatial and temporal extent.

In Chapter 5, a novel bias correction methodology is developed that is designed
to minimise biases in regional climate model ensemble simulations while pre-
serving multivariate correlations between variables and physical consistency on a
seasonal time scale. The method uses an observed temperature distribution as a
constraint to resample ensemble members, and is shown to considerably reduce
biases in non-constrained variables such as precipitation or radiation. The repre-
sentation of climate extremes is improved, and it is shown, using a biogeochem-
ical model, that an accurate representation of climate forcing is a prerequisite for

a plausible simulation of extreme impacts in the terrestrial biosphere.
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In Chapter 6, the role of human-induced warming in Central European heat-
waves in summer 2015 is assessed using a regional climate model ensemble, fol-
lowing the bias correction in Chapter 5, in tandem with an extreme value analysis
based on observations. The attribution analysis shows that human-induced warm-
ing plays a role in occurrences of heatwaves in Europe, but quantitative estimates
of risk ratios differ between observations and models.

Chapter 7 highlights the intimate links between the state of the land surface dur-
ing heat events and observed biases in the representation of temperature extremes
(cf. Chapter 5) in multi-model ensembles. Best estimates of land-atmosphere
coupling and its uncertainties are inferred from a set of 54 different combinations
of observations-based benchmark datasets of temperature and evapotranspiration,
which are used to constrain a multi-model ensemble of climate simulations. This
procedure is shown to reduce the magnitude of temperature extremes at present
and in future predictions, which is highly relevant for predicting climate impacts
for instance in the terrestrial biosphere.

In Chapter 8, an explicit assessment of extreme ecosystem impacts due to
climate extremes at regional scale is presented using an ensemble of climate-
ecosystem model simulations. It is shown that spring and summer trends over
the last 25 years in ecosystem productivity extremes contrast each other (higher
carbon uptake in spring extremes, carbon losses in summer extremes), which are
driven by a spring vs. summer reversal in the response of ecosystem produc-
tivity to recent climatic changes (mainly to warming). Furthermore, evidence
for interactions between spring and summer climate extremes affecting terrestrial
ecosystems (cf. Appendix A) is presented.

Appendix A is a short commentary that highlights the role of the seasonal tim-
ing of climate extremes in triggering impacts in terrestrial ecosystems, and land-
atmosphere feedbacks that amplify summer drought and result from early vegeta-
tion activity in spring. The commentary summarises a recent study that illustrated
this phenomenon in the United States in 2012 (Wolf et al., 2016), where positive
carbon cycle impacts due to a warm spring could compensate for drought-induced
losses in ecosystem carbon uptake in summer. The study by Wolf et al. (2016) and
Appendix A thus briefly present a motivation and conceptual basis of Chapter 8

in its current form.



30 Introduction

In Chapter 9, I conclude on the research presented in this thesis, and poten-
tial directions of future research that could build upon the methods, tools and

hypotheses that were developed in this thesis.



Part I.

Statistical quantification of extremes in
observations and model ensembles






2. Quantifying changes in climate variability and
extremes: pitfalls and their overcoming’-2

Abstract

Hot temperature extremes have increased substantially in frequency and magni-
tude over past decades. A widely used approach to quantify this phenomenon
is standardizing temperature data relative to the local mean and variability of a
reference period. Here we demonstrate that this conventional procedure leads to
exaggerated estimates of increasing temperature variability and extremes. For
example, the occurrence of ‘2-sigma extremes’ would be overestimated by 48.2%
compared to a given reference period of 30 years with time-invariant simulated
Gaussian data. This corresponds to an increase from a 2.0% to 2.9% probability
of such events. We derive an analytical correction revealing that these artifacts
prevail in recent studies. Our analyses lead to a revision of earlier reports (e.g.
Huntingford et al., 2013): For instance we show that there is no evidence for a
recent increase in normalised temperature variability. In conclusion, we provide
an analytical pathway to describe changes in variability and extremes in climate

observations and model simulations.

2.1. Introduction

Quantifying to what extent the magnitude and frequency of extreme events are
changing is a priority in climate change research (IPCC, 2012; Seneviratne et al.,

IThis chapter is published as Sippel, S., J. Zscheischler, M. Heimann, F. E. L. Otto, J.
Peters, and M. D. Mahecha. 2015. Geophysical Research Letters 42(22), 9990-9998.
doi:10.1002/2015GL066307.

2Supplementary material that complements this Chapter with more detailed explanations is available
in Appendix B.
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2014). In recent years, unusually hot temperature extremes have occurred and
these events are increasingly exceeding the range of historical variability (Rahm-
storf and Coumou, 2011; Mora et al., 2013). Considerable scientific debate has
sparked around whether present-day changes in extreme events are due to the
shifting mean climatology, or whether we are also confronted with changing vari-
ability (Hansen et al., 2012; Huntingford et al., 2013; Alexander and Perkins,
2013; Mora et al., 2013; Seneviratne et al., 2014). Of particular focus in this
context are changes in temperature extremes, which have direct impacts upon hu-
man wellbeing and likewise affect ecosystem services and global biogeochemical
cycles (IPCC, 2012; Reichstein et al., 2013).

A widely used approach to address this question relies on normalizing climate
data relative to a reference period (Hansen et al., 2012; Coumou and Robinson,
2013; Huntingford et al., 2013; Kamae et al., 2014; Curry et al., 2014) aiming to
objectively compare temperature variability and extremes across space and time.
This approach conventionally derives standardised anomalies by locally subtract-
ing the mean (ft,..¢) from and dividing the observations by the standard deviation
(0rey) estimated from some reference period:

_ X - Href
Oref

z 2.1
The idea is to rank or count events based on departures from the local climatology
(as defined by the reference period) in units of standard deviation (o). Transfor-
mations of this kind underpin studies of changes in the occurrence of monthly
or seasonal temperature extremes (Hansen et al., 2012; Coumou and Robinson,
2013; Kamae et al., 2014; Curry et al., 2014) and variability (Huntingford et al.,
2013). Further, so-derived standardised anomalies have been used to determine
continental-scale rankings of the most significant meteorological or geophysical
extreme events (Grumm and Hart, 2001; Hart and Grumm, 2001; Root et al.,
2007; Graham and Grumm, 2010), and Kodra and Ganguly (2014) study asym-

metry in the distributions of temperature extremes using a variant of this method-

ology.
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In this paper, we demonstrate that this conventional normalisation procedure
inevitably leads to erroneous and exaggerated estimates of temperature extremes
and variability outside a specified ‘reference period’. Furthermore, we derive an
analytical correction that accounts for these statistical artifacts and allows for an

accurate quantification of large-scale climate variability and extremes.

2.2. Methodology and results

2.2.1. Normalisation-induced artefacts and an analytical correction for
quantifying extremes

To test the suitability of the reference-period normalisation, we conduct Monte-
Carlo simulations with independent and identically distributed random variables
drawn from a standard Gaussian distribution (N (z = 0,02 = 1)). This numer-
ical experiment is set-up in analogy to investigations of monthly or seasonally
standardised extremes (see Hansen et al., 2012, for an example) in gridded tem-
perature data with k& = 10* time series (‘grid cells’) and n = 60 data points per
time series (‘years of data’), but consisting of purely random Gaussian variables
(i.i.d.). For each time series we generate anomalies and subsequently standard-
ise these based on the conventional procedure (Eq. 2.1). Both mean (fi,..r) and
standard deviation (G, y) are estimated from each time series’ first 30 values (i.e.
Nrer = 30). The number of values exceeding o extremes are counted at each
time step in the original and normalised dataset (Figure 2.1, grey and red line,
respectively).

Given that the statistical properties of the artificial data are time-invariant, there
should be no change in the number of extremes across the dataset. However, in
fact we find substantial increases in the number of extreme events outside the
reference period along with a reduction in extremes within the reference period
(Figure 2.1a, R code to reproduce these results in Section B.1). A quantification
of 20 extremes across all grid cells in the artificial dataset leads to a considerable
increase (red line in Figure 2.1a) in the out-of-base period relative to the reference
period of about 48.2%. Considering only the out-of-base period the number of
20 (30) events would be overestimated by 29.1% (131.0%) relative to the orig-

inal Gaussian data (black line in Figure 2.1a), which corresponds to an increase
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FIGURE 2.1.:

from a 2.3%

Biases in the detection of extreme events in stationary and independent
Gaussian data induced by normalisation. a) Occurrences of positive 2-
sigma extremes in artificial Gaussian time series based on 10,000 repli-
cates over 60 time-points before normalizing the data (black line), and af-
ter normalizing each replicate using the first 30 samples as reference pe-
riod. b) Illustration of variance inflation and reduction through the genera-
tion of anomalies in the out-of-base (blue) vs. reference period (red) PDF
(nres = 8 for illustration). c) Changing tails in normalised (i.e., divided by
the SD estimate) Gaussian variables (n,.; = 8 for illustration). Coloured
shading in (a) indicates the 5th to 95th percentile in repeated simulations.

(1.3%0) chance to 2.9% (3.1%0). For illustration purposes, the dis-

tributions at a random time step inside and outside the reference period across all

time series is

shown in Figure 2.1b and 2.1c for anomalies and standardised vari-

ables, respectively. Overall, the artificial experiment reveals potentially severe

artefacts in the widely applied reference period normalisation. In the following

paragraphs, we reveal the consequences of this conventional normalisation and

derive an analytical solution for the induced artefacts.
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To understand the origin of the apparent increase in extremes we have to con-
sider that the ‘true’ values for mean and variability are inherently unknown, which

changes Eq. 2.1 to:

X_A'r‘e
o = 2 Href

_ 2.2)
Oref

The estimates of the mean (fi,.s) and standard deviation (6,.f) are random
variables with well-known statistical properties (Von Storch and Zwiers, 2001),
drawn from an independent sample in case of analyzing the out-of-base period
(Zhang et al., 2005) (see Section B.2 for a detailed statistical description), and
subsequently pooled in space. Consequently, the biases between both periods
are induced by a combination of two effects, firstly the generation of anomalies
(Xanom = X — [iref), and secondly the standardisation (z = %:fm) (Fig-
ure 2.1b,c): The generation of anomalies systematically increases (decreases) the
variance across grid cells in the out-of-base (reference) period (Tingley, 2012),
but does not affect the underlying distribution (Section B.2). However, the lo-
cal standardisation of each time series induces qualitative changes to the (spatial)
distribution (for an analytical derivation see Section B.2) such that heavier tails
outside the reference period are induced (Figure 2.1c). This qualitative differ-
ence stems from the fact that any time point in the out-of-base period follows a
t-distribution with ...y — 1 degrees of freedom (Section B.2). Hence, the heavier
tails generated by the conventional standardisation lead to a consistent and po-
tentially severe overestimation of extreme events in the out-of-base period (Fig-
ure 2.1a) for relatively short, but in practice often used, sometimes unavoidable,
reference periods. However, the distribution after normalisation can be derived
analytically (Section B.2), and hence the biases can be rectified separately both
for the reference and the out-of-base periods. Specifically, instead of counting 2
(30) extremes in the out-of-base period, a search for the corresponding percentile
threshold in the variance-adjusted #-distribution (2.120 (3.320), respectively, if
n = 30) would allow for the detection of the correct number of events (Fig-
ure 2.2a, Figure B1 for an illustration of the correction procedure). Further, it is
worth noting that even with an increasing number of samples in the reference pe-

riod, the convergence to small biases is slow. For autocorrelated data the artefacts
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are even more pronounced owing to a smaller effective sample size (Figure B2a
and Figure B2b, respectively).

Before applying the proposed analytical correction we have to consider that
temperatures at monthly or seasonal time scales are typically non-stationary (Ji
et al., 2014), i.e. simulated or observed time series might contain spatially and
temporarily diverse trends. Using Monte-Carlo type simulations of normalised
Gaussian time series with changing trends and variability we find that both exerts
strong influence on the magnitude of the biases (Section B.3). Increasing (de-
creasing) trends or variability in the out-of-base period severely deflates (inflates)
the biases for the upper tail (Figure B2a,b). These insights are equally applicable
to the lower tail of the distribution if the sign of the trend is reversed. To assess the
issue of non-stationarity in more detail, we consider trends and changes in vari-
ability in the artificial dataset introduced in Figure 2.1. First, random linear trends
are added in the out-of-base period to each random Gaussian time series, where
the magnitudes of the trends at the last time step are drawn randomly for each
grid cell from a uniform distribution in the interval [-1 < § < 1] in units of o
(Figure 2.2b). Second, we investigate a trend in the out-of-base period coinciding
with randomly assigned changes in variability (0.8 < o < 1.2, Figure 2.2c).

Following the solution for stationary time series outlined above, we offer an
analytical correction that allows handling of the additional artefacts induced by
non-stationarities (Section B.4). In essence, normalizing non-stationary data in-
duces a non-central version of Student’s #-distribution. This analytical distribution
can be used to avoid normalisation-induced biases entirely if changes in the trend
or variability are known (Figure 2.2b,c). Likewise, estimating the trend and/or
changes in variability largely allowes for removing the biases (Figure 2.2b,c). As
above, o-extremes are counted based on the biased estimate of the conventional
procedure (red line), and based on the application of the suggested correction pro-
cedure using known (blue) and estimated (green) trends and changes in variabil-
ity. Throughout this paper, Singular Spectrum Analysis (SSA), a non-linear spec-
tral decomposition methodology (Golyandina and Zhigljavsky, 2013; von Buttlar
etal., 2014) is used to estimate trend components, before the analytical correction
procedure based on the noncentral ¢-distribution is applied. Trends are extracted

as 31-year and larger components using a 45-year SSA window length (L = 45).
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FIGURE 2.2.: Correction of normalisation-induced biases in stationary and non-stationary
time series consisting of independent random variables. Detecting 2-
sigma extreme events in a) Stationary Gaussian time series, b) Gaussian
time series with random linear trends added in the out-of-base period
(—1 < 8460 < 1, in units of o), ¢) Gaussian time series with random
linear trends (—1 < d:=¢0 < 1, in units of o) and changing variance
(0.80ref < AOrep < 1.20.c¢) in the out-of-base period. In each panel,
coloured shading indicates the 5th to 95th percentile in repeated simula-
tions (k = 10* simulated time series in all panels).
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2.2.2. Quantifying extremes in Earth observation data

In this subsection, we assess how monthly temperature extremes on land have
changed over the second half of the 20th century in the Northern hemisphere up
to present by applying the statistical approach outlined above. In order to avoid
potential inhomogeneities related to gridded observations, we analyse the state-
of-the-art Twentieth Century Reanalysis dataset (Compo et al., 2011) (Version
2). The reanalysis dataset assimilates only surface pressure measurements and
monthly sea surface temperatures into an atmosphere and land general circulation
model (Compo et al., 2011) and is hence independent from station temperature
measurements. The dataset has been specifically designed to assess climate vari-
ability and extremes statistics ‘spanning the instrumental record’, and has been
demonstrated to reproduce the observed temperature trends and variability to a
very large extent (Compo et al., 2011).

In our analysis, we first interpolate the dataset to a 2° x 2° regular latitude-
longitude grid, and mask ocean pixels. Second, we estimate separately for each
month and grid cell the trend component, local mean and (non-detrended and
detrended) standard deviation in two different reference periods (1921-1950 and
1951-1980). Thirdly, each pixel time series is normalised using both reference
periods and the detrended and non-detrended oy estimates. For each month we
calculate the area affected by 2¢ and 30 extremes, using the conventional normal-
isation approach and our correction. We use the trend estimates for our correction,
but assume an approximately unchanged variance over the past decades (Hunt-
ingford et al., 2013). Lastly, we derive seasonal averages of the ‘area affected by
extremes’ for Northern hemisphere summer (JJA, Figure 2.3).

Our analysis reveals that the exceedance of monthly 20 and 30 temperature
extremes in summer has indeed increased substantially over the Northern hemi-
sphere (Figure 2.3a,b for land areas in the NH outer tropics). However, the bias-
adjusted time series show a consistently slower and smoother increase as com-
pared to the conventionally applied uncorrected normalisation procedure. A break
point analysis using piecewise linear regression (Toms and Lesperance, 2003)
based on our revised figures indicates that the recent rapid increase in hot sum-
mer months in the Northern hemisphere (20 and 30 events) started to emerge
around the late 1980s or early 1990s (Figure 2.3b).
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FIGURE 2.3.: Full caption is displayed on the next page.

The magnitude of the biases and the discontinuities at the reference and out-of-

base period are robust across different reference periods, and also hold if trends
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FIGURE 2.3.: (continued) Increase in normalised hot temperature extremes in a spatio-
temporal dataset (20th Century Reanalysis (Compo et al., 2011)). a,b) Time
series of fraction of extratropical Northern hemisphere land area covered
by positive monthly 2o (a) and 30 (b) events in summer (reference period:
1951-1980). Horizontal lines indicate decadal averages for the conventional
normalisation procedure (light blue) and our proposed correction (orange).
¢) Zonal evolution of fraction of land area covered by monthly positive 20
extremes in Northern hemisphere summer. d) Zonal evolution of relative
biases induced by the conventional normalisation approach.

are subtracted before estimating local variability (Coumou and Robinson, 2013)
(Figure B3 and Figure B4). Increases in extremes relative to local variability show
a clear zonal pattern (Figure 2.3c) with the largest increases in the tropics and
subtropics. Therefore, biases induced by the normalisation are largest in areas
where the trend is relatively small compared to local variability (Figure 2.3d).
However, it is worth noting that peculiarities of the station-based observational
record such as urban heat islands or local land-use changes are not accounted
for in the 20th Century Reanalysis (Parker, 2011). In addition, the availability
of pressure observations varies through time (Compo et al., 2011). As such, the
main purpose of the present analysis is to illustrate the potential biases induced
by reference period standardisation in spatio-temporal datasets.

2.2.3. Implications for large-scale assessments of variability and
asymmetry

Normalisation-induced biases are not only relevant for assessments of extremes,
but a careful consideration of such statistical pre-processing techniques is equally
important for analysis of variability and asymmetry in spatio-temporal datasets.
An example is provided by a recent study that investigated whether temperature
variability has changed over the second half of the 20th century on global and con-
tinental scales (Huntingford et al., 2013). The authors argue that annual temper-
atures in low-variance regions have become more variable over the past decades,
whilst global temperature variability has remained near constant. This explana-
tion stems from the authors’ observation that normalised variability has increased

more than absolute (spatial) variability (16% vs. 2% increases between 1963-
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1980 and 1981-1996). Using the 20th Century reanalysis dataset we reproduce
the increases in the annual, global, area-weighted standard deviation (12.9% vs.

1.8% increases, when using the conventional data processing scheme (Hunting-
ford et al., 2013), Figure 2.4).

Standard Deviation
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[ T I T T I
1960 1970 1980 1990 2000 2010
Years
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—— SD: Normalized, ref. period 1963 — 1980
—— SD: Normalized, empirical correction, ref. period 1963 — 1980
—— SD: Normalized, analytical correction, ref. period 1921 —1950

Change in global SD (1981 —1996 vs. 1963 — 1980, in %):

+ 2 % time —averaged global SD

+ 13 % uncorrected, time — averaged normalized SD
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FIGURE 2.4.: Normalisation-induced changes in variability. a,b) Time series of nor-

malised variability following the data processing scheme of Huntingford
et al. (2013) in an artificial example (k = 10* time series) with i.i.d. Gaus-
sian variables (a) and in the 20th Century Reanalysis dataset (b).
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However, an artificial experiment in analogy to the previous subsection shows
that the conventional normalisation procedure changes the standard deviation
of the data (Figure 2.4a), and in particular yields an increase in standard de-
viation between the reference and the out-of-base period. Therefore, we cor-
rect the conventionally normalised standard deviation of annual temperatures in
the 20th Century Reanalysis dataset empirically and analytically. The former is
achieved by simulating the reduction in standard deviation in artificial Gaussian
data (Fig. 2.4a), whereas the latter is achieved by using an earlier reference period
(1921-1950) and the application of our analytical correction. The empirical and
analytical corrections reduce the increase in normalised variability from 12.9%
to 5.6% and 6.0%, respectively (see Fig. 2.4b). A permutation-based significance
test (Fay and Shaw, 2010) shows that the increases in mean corrected normalised
standard deviation between both periods are not significant (Pempiricar = 0.147
and panaiyticat = 0.110), whereas conventional normalisation yields a highly
significant increase (Pconventional = 0.004). Hence, the relatively small and non-
significant difference between the increases in standardised and absolute variabil-
ity might indeed be due to the explanation offered previously (Huntingford et al.,
2013), and potentially related to major El-Nifio events in the latter period (Fe-
dorov and Philander, 2000). If the periods before and after 1980 are extended to
derive a larger sample, this reduces the increase in normalised variability to only
2% (1981-2006 vs. 1955-1980). Thus, based on our proposed normalisation we
cannot confirm that changes across low-variance regions have occurred over the
past decades. Nonetheless, our results underpin that global temperature variabil-
ity has not changed (Huntingford et al., 2013), and additionally show that this
finding holds both in absolute and normalised terms.

Finally, another recent study (Kodra and Ganguly, 2014) reports that asym-
metry in temperature distributions of seasonal extreme values at daily time scale
(both minima and maxima, i.e. the hottest and coldest day per season) is strongly
increasing towards both the cold and hot tails in model projections of future cli-
mate conditions relative to a recent period. As a pre-processing step, the authors
derive ‘anomalies’ of seasonal extremes by subtracting the mean of the recent
(historical) climatology of seasonal extremes from both periods. This procedure

leads to narrower distributions in the reference period and a broader distribution
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in the future (independent) period (see Section B.2). This variance inflation in
skewed extreme value distributions leads to the observed effect even in station-
ary time series, and should hence be interpreted with caution (Figure BS, and
Section B.6).

2.3. Outlook and conclusion

The observation that a commonly used normalisation of temperature data is in-
appropriate for assessing changes in variability, extremes, and asymmetry is of
general validity and should also be considered in investigations of other clima-
tological and Earth observations. The steadily growing archives of Earth obser-
vations derived from both ground based as well as satellite remote sensing data
requires reconsidering conventional data analytic approaches such as standardi-
sation. For instance, extremes in gridded standardised anomalies of rainfall and
storms (Grumm and Hart, 2001; Hart and Grumm, 2001; Root et al., 2007; Gra-
ham and Grumm, 2010; Curry et al., 2014) have been studied using varieties of
the conventional standardisation procedure and are potentially distorted by the
artefacts discussed in this paper. Further, our results might facilitate the interpre-
tation of single climatic extreme events or trends that are frequently characterised
in terms of standardised departure from climatology, both inside and/or outside
the climatological reference period (Schir et al., 2004; Barriopedro et al., 2011;
Xu et al., 2012; Ramos et al., 2014; Cook et al., 2015). Although our analytical
treatment using the ¢-distribution is confined to distributions that can be approx-
imated as Gaussian, we emphasise that the induction of biases in the tails due to
dependent/independent estimators of location and scale are fundamental and hold
indeed across a wide range of distributions. Furthermore, because temperature
extremes are bounded (Nogaj et al., 2006), approximations of temperature values
by distributions with infinite tails (such as Gaussian and the #-distribution) might
poorly estimate the most extreme temperatures. Here we offer a correction which
adjusts biases in variability and extremes induced by a widely used data prepro-
cessing approach. Alternatively, statistically more advanced but readily available
tools, such as the theory of extreme values (Katz et al., 2013; Nogaj et al., 2006)
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offer complementary approaches to quantify extreme events under non-stationary
conditions that are not affected by the statistical issues reported in this paper.

In conclusion, data normalisation for the detection of changes in extremes or
variability has to be applied with caution: otherwise there is a risk to arbitrarily
inflate both extremes and variability in the time periods under scrutiny. Our study
demostrates how to avoid biases of this kind. However, our analyses do not call
into question the major qualitative results that were outlined in previous studies
(Hansen et al., 2012; Seneviratne et al., 2014): hot temperature extremes have
increased considerably on the global scale, a trend which is most likely to con-
tinue throughout the 21st century (Coumou and Robinson, 2013; Sillmann et al.,
2013a).



3. Have precipitation extremes and annual totals
been increasing in the world’s dry regions over
the last 60 years?'-2

Abstract

Daily precipitation extremes and annual totals have increased in large parts of
the global land area over the past decades. These observations are consistent
with theoretical considerations of a warming climate. However, until recently
these trends have not been shown to consistently affect dry regions over land. A
recent study, published by Donat et al. (2016), now identified significant increases
in annual-maximum daily extreme precipitation (Rx1d) and annual precipitation
totals (PRCPTOT) in dry regions. Here, we revisit the applied methods and ex-
plore the sensitivity of changes in precipitation extremes and annual totals to
alternative choices of defining a dry region (i.e. in terms of aridity as opposed
to precipitation characteristics alone). We find that (a) statistical artifacts intro-
duced by data pre-processing based on a time-invariant reference period lead to
an overestimation of the reported trends by up to 40 %, and that (b) the reported
trends of globally aggregated extremes and annual totals are highly sensitive to
the definition of a ‘dry region of the globe’. For example, using the same ob-
servational dataset, accounting for the statistical artifacts, and based on differ-

ent aridity-based dryness definitions, we find a reduction in the positive trend of

I'This chapter is published as Sippel, S., J. Zscheischler, M. Heimann, H. Lange, M. D. Mahecha,
G. J. van Oldenborgh, F. E. L. Otto, and M. Reichstein. 2017. Hydrology and Earth System Sci-
ences 21, 441-458. doi:10.5194/hess-21-441-2017. The statistical results presented in this chap-
ter underlie an Addendum published as Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman,
P. A., and Mabher, N. 2017. Nature Climate Change 7, 154—158. doi:10.1038/nclimate3160.

2Supplementary material that complements this Chapter with more detailed explanations is available
in Appendix C.
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Rx1d from the originally reported +1.6 % decade™" to +0.2 to +0.9 % decade™"
(period changes for 1981-2010 averages relative to 1951-1980 are reduced to
—1.32 to +0.97 % as opposed to +4.85 % in the original study). If we include
additional but less homogenised data to cover larger regions, the global trend
increases slightly (Rx1d: +0.4 to +1.1 %decade™"), and in this case we can
indeed confirm (partly) significant increases in Rxld. However, these globally
aggregated estimates remain uncertain as considerable gaps in long-term obser-
vations in the Earth’s arid and semi-arid regions remain. In summary, adequate
data pre-processing and accounting for uncertainties regarding the definition of
dryness are crucial to the quantification of spatially aggregated trends in precip-
itation extremes in the world’s dry regions. In view of the high relevance of the
question to many potentially affected stakeholders, we call for a well-reflected
choice of specific data processing methods and the inclusion of alternative dry-
ness definitions to guarantee that communicated results related to climate change

be robust.

3.1. Introduction

Daily precipitation extremes are expected to increase over large parts of the global
land area roughly by 6—7 % per °C of warming due to a higher atmospheric water-
holding capacity as specified by the Clausius—Clapeyron equation (Allen and In-
gram, 2002; Trenberth et al., 2003). Quantifying and predicting changes in pre-
cipitation characteristics due to climate change is crucial for water availability as-
sessments and adaptation to climate change (IPCC, 2012; Greve et al., 2014). On
a global scale, daily precipitation extremes have been observed to intensify (Donat
et al., 2013b; Westra et al., 2013; O’Gorman, 2015), consistent with global model
simulations (Fischer and Knutti, 2015), and coincide with a global-scale increase
in observed annual precipitation totals (Donat et al., 2013b). However, there is
little information to date on how precipitation characteristics have changed in the
past over dry land areas and how they will change in the future. Donat et al. (2016)
investigated whether and to what extent daily precipitation extremes (Rx1d) and
annual precipitation totals (PRCPTOT) have increased over the last 60 years us-

ing observational data. The authors identified rapid increases in Rx1d over dry
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regions, which strongly outpace the corresponding increases over wet areas, and
found a similar pattern for PRCPTOT.

The question whether precipitation extremes increase in dry regions is highly
relevant in the context of climate change adaptation, as generally dry areas may be
less prepared to deal with precipitation extremes (Ingram, 2016). Consequently,
the recent report on increasing Rx1d in dry areas was highlighted in major Science
journals (including Nature News (Tollefson, 2016), and Nature Climate Change
(Ingram, 2016)) and received a lot of media coverage®, which indicates the impor-
tance of this topic for the scientific community, the public and decision makers.

However, scrutinizing the findings by Donat et al. (2016) reveals two major
issues of concern: first, the applied statistical approach introduces two systematic
biases that lead to a substantial overestimation of the increase in PRCPTOT and
Rx1d of up to 40 % in dry regions. Wet regions, by contrast, are only affected to
a limited degree due to an approximate cancellation of errors in trend estimates.
Second, the definition of a dry region used in Donat et al. (2016) based on PRCP-
TOT and Rx1d alone does only partly reflect the water balance and thus water
availability (for instance, it ignores losses through evapotranspiration). Further-
more, defining dryness based on low Rx1d (Donat et al., 2016) takes a decision
on whether a region is dry or not based on only 1 day in the year. The chosen def-
initions thus induce considerable uncertainty in the reported results. If we test al-
ternative but well-established definitions of a ‘dry region’ (based on water supply
and demand, either implicitly or explicitly; see Koppen, 1900; Greve et al., 2014)
and apply the appropriate statistical tools, we find strongly reduced trends and
period changes (1981-2010 averages relative to the 1951-1980 reference period)
in PRCPTOT and Rx1d in the world’s dry regions. An accurate quantification

of trends and changes in precipitation characteristics is of high relevance and a

3http://www.huffingtonpost.com/entry/global-warming—
will-bring-extreme-rain-and-flooding-study-
finds_us_56e081c7e4b0860£99d796ab,
https://www.theguardian.com/environment/2016/mar/08/hotter—
planet-spells-harder-rains-to-come-study,
https://www.sciencedaily.com/releases/2016/03/160308105625.htm,
http://phys.org/news/2016-03-global-world-driest-areas.html,
http://www.abc.net.au/news/2016-03-08/climate-change-could-bring-
more-rain-to-deserts-study/7229236,
http://www.asce.org/magazine/20160412-climate-change-to-cause-
more-precipitation-in-dry-regions,-researchers-say/
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FIGURE 3.1.: Conceptual example of biases in the mean induced by normalisation based
on a fixed reference period. a) Probability distributions and their respec-
tive means for an artificial dataset of 10% grid cells each comprised of ran-
dom variables sampled from a generalised extreme value distribution (GEV;
p=1, o0=1, £=0, sample size n.,¢ =8 for illustration) distribution, and
normalised following Donat et al. (2016) with different reference periods.
b) Shift in the mean of spatially aggregated variables due to reference period
normalisation (n..s = 30 following Donat et al., 2016, confidence intervals
denote the 5th to 95th percentile). Code to reproduce this example is pro-
vided in the Supplement.

crucial prerequisite in the context of making climate change adaptation decisions
(e.g. IPCC, 2014).

3.2. On data pre-processing based on a time-invariant
reference period

As a first step in the analysis of Donat et al. (2016), the authors normalise the 60-
year time series in the gridded HadEX2 dataset (Donat et al., 2013b) for each grid
point with the sample mean of a 30-year reference period (1951-1980), which is a
widespread procedure in climate science. However, this procedure artificially in-
creases the mean of the spatial distribution in the out-of-base period (1981-2010)
in all investigated time series, simply because variability in the sample means
inflates the signal in the latter period (Sippel et al., 2015b). To illustrate this
point, consider two hypothetical climate regions of the same size; in region one,
the mean of a precipitation quantity increases between two periods (from 100 to

200 mm, say), for example due to a few large extremes, whereas it decreases by
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exactly the same amount in region two (i.e. from 200 to 100 mm). Consequently,
over the combined period the spatial average and the spread of the two regions
would be statistically indistinguishable. However, normalizing by the mean of
the first time period would imply that the spatial average across both regions for
the second period is 1.25 (the average of 0.5 and 2), i.e. a spurious increase of
25 % between both periods. This issue is illustrated in Figure 3.1 for an artificial
dataset that consists of n = 10* time series (e.g. ‘grid cells’) that are drawn ran-
domly and independently from a generalised extreme-value (GEV, Coles et al.,
2001) distribution. The GEV distribution provides an asymptotical limit model
for maxima derived from a sequence of random variables with a fixed block size
(Coles et al., 2001, e.g. Rx1d,), and is therefore appropriate to illustrate this is-
sue. Normalizing each time series in the artificial dataset by its mean in the first
period yields a spatial ‘reference period distribution’ that is different from the
spatial ‘out-of-base period distribution’ (and from the original GEV distribution;
Figure 3.1a). In particular, this normalisation leads to increased spatial averages
in the out-of-base period (Figure 3.1b). Furthermore, the normalisation procedure
induces a considerable increase in the variance, skewness, and higher statistical
moments in the spatial distribution in the out-of-base period (see e.g. Figure 3.1a),
which would be of relevance if higher statistical moments (e.g. changes in spa-
tial variance) were studied. The reason for this difference lies in the fact that the
estimated sample means (of the reference period) are statistically dependent to
reference period time series, but (virtually) independent to the time period that
lies outside of the reference period (Zhang et al., 2005; Sippel et al., 2015b). It is
worth noting that these biases can be understood analytically (Section C.1). The
expected value Ay, defined as the relative bias in the out-of-base period, can be

well approximated for each grid cell with

o2

Abias ~ (3 1)

N2 Tref ’
where i, o, and n.s denote the time series’ mean, standard deviation, and ref-
erence period length, respectively (Section C.1). Thereby, it can immediately be

seen that the introduced bias is systematically positive outside of the reference
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FIGURE 3.2.: Normalisation-induced biases on time series and trend estimates. a, b) Time
series, trends, and 30-year means of spatially aggregated heavy precipita-
tion (Rx1d) in (a) dry and (b) wet regions. c, d) Time series, trends, and
30-year means of spatially aggregated total precipitation (PRCPTOT) in
(a) dry and (b) wet regions. Orange lines are taken from Donat et al. (2016)
(ref. period: 1951-1980), black lines are corrected for biases (ref. period:
1951-2010), and blue lines indicate a hypothetical 1981-2010 reference
period.

period, and it is proportional to the ratio of Z—Z for any fixed reference period
length.

An additional statistical bias stems from the choice of the world’s 30 % wettest
and 30 % driest regions based on the climatology of PRCPTOT and Rx1d in the
reference period (1951-1980). Because 30 years is fairly short to derive a robust
climatology of the tails of the precipitation distribution, the computed changes in
wet and dry regions are distorted by the ‘regression to the mean’ phenomenon
(Galton, 1886; Barnett et al., 2005). To illustrate this issue, recall the concep-

tual two-region example quoted above, where variation between the two available
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FIGURE 3.3.: Different mask of the world’s dry and wet regions. a)-d) Dryness/wetness
masks based on 1951-1980 and HadEX2 (a, b; see Donat et al. (2016)) and
1951-2010 (c, d; to avoid ‘regression to the mean’ selection bias, see text)
for Rx1d (left panels) and PRCPTOT (right panels). ‘NDNW’ indicates
neither dry nor wet areas, white inland areas indicate less than 90 % data
availability in the HadEX2 dataset and were not considered. e, f) Dry re-
gions based on the Koppen—Geiger classification as updated by Kottek et al.
(2006) and data availability in HadEX2. g, h) Dry and transitional regions
following Greve et al. (2014) and data availability in HadEX2.
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TABLE 3.1.: Statistical pre-processing uncertainties and biases in period increments and trend slopes

World Region  Precipitation Ref. Period Ref. Pe-  Period Bias [%] Sen slope Bias[%] Type of
characteristic (Normalisa- riod (region Increment! [decade—1] bias
tion) selection) [%]
Rx1d 1951-1980 1951-1980 4.85 40.4 0.016 33.3 2
Dry (HadEX2, Rxld 1981-2010 1981-2010 1.29 -62.7 0.006 -50.0 3
30% lowest Rx1d 1951-2010 1951-2010 3.45 0.0 0.012 0.0 4
Rx1day) Rx1d 1951-1980 1951-2010 397 15.1 0.014 16.7 5
Rx1d 1951-2010 1951-1980 433 25.3 0.014 16.7 6
Rx1d 1951-1980 1951-1980 2.09 2.2 0.007 8.7 2
Wet (HadEX2, RxlId 1981-2010 1981-2010 2.09 22 0.007 -1.5 3
70% highest Rx1d 1951-2010 1951-2010 2.04 0.0 0.007 0.0 4
Rx1day) Rx1d 1951-1980 1951-2010 2.41 18.1 0.008 16.0 5
Rx1d 1951-2010 1951-1980 1.73 -15.3 0.006 -4.8 6
PRCPTOT 1951-1980 1951-1980 6.32 32.9 0.020 40.4 2
Dry (HadEX2, PRCPTOT 1981-2010 1981-2010 3.38 -29.0 0.010 -29.5 3
30% lowest PRCPTOT 1951-2010 1951-2010 4.76 0.0 0.015 0.0 4
PRCPTOT) PRCPTOT 1951-1980 1951-2010 5.74 20.8 0.019 27.5 5
PRCPTOT 1951-2010 1951-1980 5.34 12.2 0.017 14.9 6
PRCPTOT 1951-1980 1951-1980 0.83 -13.7 0.003 -13.6 2
Wet (HadEX2, PRCPTOT 1981-2010 1981-2010 1.30 35.5 0.005 28.9 3
70% highest PRCPTOT 1951-2010 1951-2010 0.96 0.0 0.004 0.0 4
PRCPTOT) PRCPTOT 1951-1980 1951-2010 1.32 38.5 0.005 38.2 5
PRCPTOT 1951-2010 1951-1980 0.40 -58.6 0.002 -52.4 6

1 Period increment denotes the change in period means between 1981-2010 vs. 1951-1980.

2 Combination of ‘Normalisation” and ‘Regression to mean’ (RTM) bias, ‘early’ ref. period (i.e. following Donat et al. (2016))
3 Combination of ‘Normalisation’ and ‘RTM’ bias, ‘late’ ref. period

4 Ref. Period covering the entire temporal domain (no bias)
5 ‘Normalisation” bias only

6 ‘RTM" bias only. Red indicates period increments and trend estimates based on the 1951-1980 reference period; blue indicates period increments

and trend estimates based on the 1981-2010 reference period.
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FIGURE 3.4.: a)-f) Time series, trends, and 30-year means of spatially aggregated heavy
precipitation (Rx1d, a, c, e) and annual rainfall totals (PRCPTOT, b, d, f)
in dry regions following (a, b) the Koéppen—Geiger classification (Kottek
et al., 2006), (c, d) Greve et al. (2014), and (e, f) dry and transitional re-
gions combined (Greve et al., 2014). Red lines are drawn as reported in
Donat et al. (2016) for comparison, i.e. based on the 1951-1980 reference
period and dryness defined as ‘moderate extreme precipitation’ (Rx1d) and
annual precipitation totals (PRCPTOT). Grey and black lines are corrected
for statistical artefacts (1951-2010 reference period), and dry regions are
defined based on aridity. Grey lines report 90 % complete time series, black
lines report only data with 100 % complete temporal coverage. All p values
are given for two-sided (one-sided) Mann—Kendall trend tests.
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time periods would be entirely due to random causes. If any of the two periods
would be chosen to stratify the dataset in one dry and one wet region, this would
result in opposing changes (i.e. dry gets wetter, wet gets drier) in the independent
period. In other words, selecting from the dry (wet) end of the spatial distribution
in one subset of the dataset, or ‘reference period’, will result in a higher proba-
bility for wetter (drier) conditions in the remaining years if any type of random
variation plays a role (Table 3.1, and Figure 3.2 for changes due to both statistical
effects). Although random variations in 30-year averages are not very large (cf.
Figure 3.3a and 3.3b and Figure 3.3c and 3.3d), it is important to consider this
effect as it is indeed noticeable in the reported results (Table 3.1).

The chosen normalisation approach combined with the spatial point selection
method results in a bias toward PRCPTOT and Rx1d increasing at a faster rate in
dry regions compared to wet regions. Over dry regions, both effects lead to an
overestimation of the trends in precipitation totals and extremes by +40.3 and
+33.2% (+32.9 and 440.4 % overestimation in the reported period changes
from 1951-1980 to 1981-2010), respectively (Figure 3.2, Table 3.1). In contrast,
in wet regions both errors roughly cancel each other out in the case of extremes
(increase by only +8.7 %) and lead to a small underestimation of the increase in
total precipitation (—13.7 %). In summary, we find that the applied pre-processing
steps are crucial to accurately quantify changes in precipitation extremes and an-
nual totals. In the study under scrutiny, if the dryness definition is kept, trends and
period increments are corrected to much lower values, but the trends and period

increments remain positive and significant (see Figure 3.2).

3.3. On the definition of a dry region

Climatological dryness is typically not determined by water supply alone but also
depends on atmospheric water demand, i.e. the ability to evaporate water from the
land surface (Koppen, 1900). This means that ‘we cannot tell whether a climate is
moist or dry by knowing precipitation alone; we must know whether precipitation
is greater or less than potential evapotranspiration’, as Charles Warren Thornth-
waite put it in a landmark paper (Thornthwaite, 1948); a statement that is indeed

mirrored in present-day literature (e.g. Hulme, 1996; Cook et al., 2004; Feng and
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Fu, 2013; Greve et al., 2014; Sherwood and Fu, 2014; Huang et al., 2015), and
international reports (Middleton and Thomas, 1992; Millennium Ecosystem As-
sessment, 2005; Adeel et al., 2005). Metrics and indicators that are typically
used to determine climatological dryness and changes therein are derived from
this concept, e.g. the aridity index as the ratio of precipitation to potential evap-
otranspiration (e.g. Hulme, 1996; Greve et al., 2014; Milly and Dunne, 2016).
However, in other studies dry regions are defined based on monthly or annual pre-
cipitation totals (Allan et al., 2010; Sun et al., 2012; Liu and Allan, 2013). Donat
et al. (2016) defined dry regions for the PRCPTOT analysis based on low annual
precipitation totals, and dry regions for the Rx1d analysis are based on moderate
annual-maximum daily precipitation. Consequently, this latter definition takes a
decision whether a region is dry or not based on the precipitation amount of a sin-
gle day per year. Regions in northern Europe, such as parts of Scandinavia or the
Netherlands, fall in the ‘dry’ class because of relatively small annual-maximum
daily precipitation (Figure 3.3). Hence, different notions of what constitutes a
dry region can contrast each other, resulting in regions being dry in one defini-
tion and wet in another (e.g. parts of north-eastern Europe; Figure 3.3). These
variations in dryness definitions consequently induce uncertainties in the interpre-
tation of changes in precipitation extremes and totals in the ‘world’s dry regions’.
These definition-related differences can be substantial — for example, as much
as 50.8 % (PRCPTOT) and 71.8 % (Rx1d) of the ‘dry grid cells’, following the
respective definitions in Donat et al. (2016), are neither arid nor semi-arid (Sec-
tion C.2, Figure C3), and would thus not be considered dry if a definition based
on both water supply and atmospheric demand were to be used.

To clarify this issue, we test the sensitivity of the reported increases in Rx1d
and PRCPTOT to the choice of dryness definition by using a variety of different
dryness definitions (Figure 3.3). Hence, we evaluate trends and period increments
in Rx1d and PRCPTOT in

1. regions that fall below the global 30 % quantile in HadEX2 in the respective
diagnostic (Rx1d or PRCPTOQOT), following Donat et al. (2016);

2. dry regions (‘B-climates’) from a traditional climate classification based on

temperature and precipitation (Kdppen, 1900; Kottek et al., 2006);
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3. dry regions as identified from an aridity-based definition of dryness (Greve
et al., 2014);

4. dry and transitional regions combined from the latter definition (Greve
et al., 2014).

In addition, we test uncertainties related to the temporal coverage of the dataset
by relying on time series with at least 90 % coverage (cf. Donat et al., 2016) and
furthermore also analyse only time series without missing values (100 % cover-
age).

Our results show that, if dry regions are defined based on water availability (i.e.
dry regions following either Greve et al. (2014) or Koppen (1900)) and statisti-
cal artefacts are accounted for, in dry or dry and transitional regions combined,
the trends reduce from the originally reported 1.6 % decade™! (2.0 % decade™!)
to +0.2 to +0.9 % decade ™! (40.0 to +1.2 % decade™") for Rx1d (PRCPTOT),
respectively (see Figure 3.4). The uncertainty range reflects the choice of the arid-
ity mask used and the temporal coverage of the time series considered (see Ta-
bles 3.2 and 3.3). Similarly, period changes between 1951-1980 and 1981-2010
would be reduced to —1.32 to +0.97 % (4-0.5 to +3.8 %) as opposed to +4.85 %
(+6.3 %) for Rx1d (PRCPTOT) in the original study. Although the trends re-
main positive, based on a two-sided Mann—Kendall test, no significant trends in
Rx1d and PRCPTOT can be detected in the world’s dry regions (Figure 3.4).
However, the coverage of the world’s arid regions with long-term observational
monitoring data is rather sparse and largely confined to arid and semi-arid regions
in North America and Eurasia (Figure 3.3), and thus large uncertainties remain.
A few of the data gaps in HadEX2 in arid and semi-arid regions can be filled
with available data from the less homogenised GHCNDEX dataset (Donat et al.,
2013a). In the dry (Koppen, 1900; Greve et al., 2014) and dry-transitional regions
(Greve et al., 2014) of this merged dataset, the magnitude of the trends and period
changes remains largely the same for Rx1d (trends: +0.4 to +1.1 % decade*;
period changes: —0.16 to 4+1.41 %), but with now more significant p values due
to a higher data coverage (Table 3.2). For PRCPTOT, the HadEX2-GHCNDEX-
merged dataset reveals on average increased and significant trends (4-0.6 % to
+1.9 % decade ') and period changes (41.7 to +5.1 %). The reported results are
consistent with earlier studies that report modest increases in Rx1d and PRCP-
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TOT in predominantly arid and semi-arid subsidence regions based on model
simulations (Kharin et al., 2007; Fischer and Knutti, 2015), and in observations
for individual subtropical regions such as Australia or the Mediterranean (Westra
et al., 2013; Lehmann et al., 2015). If ‘the world’s dry regions’ are defined based
on falling below a global 30 % threshold in Rx1d or PRCPTOT in the HadEX?2
dataset (Donat et al., 2016), we indeed confirm robust increases in both Rx1d
and PRCPTOT. Thus, the originally reported robust increases in both diagnostics
are highly sensitive to the definition of a ‘dry region’, and appear to stem from
regions with relatively moderate extreme (Rx1d) or average (PRCPTOT) precip-
itation, such as regions in northern Europe (Rx1d, Figure 3.3) or north-eastern
Siberia (PRCPTOT, Figure 3.3).

3.4. Conclusions

Monitoring and an accurate quantification of trends in meteorological risks in a
rapidly changing Earth system is a prerequisite to well-informed decision-making
in the context of climate change adaptation (IPCC, 2014). In this context, short
reference periods that are defined on a subset of the available dataset for nor-
malisation or data pre-processing purposes should be avoided, as this procedure
inevitably introduces biases (Zhang et al., 2005; Sippel et al., 2015b). In the
present study under scrutiny, these statistical effects reduce the reported trends
and period changes by up to 40 %, but the direction of the overall signal remains
unchanged (i.e. increasing trends in Rx1d and PRCPTOT in regions of moderate
extreme precipitation and low annual totals, respectively).

Furthermore, the definition of a ‘dry region’ induces considerable uncertainty
in quantifying changes in Rx1d and PRCPTOT in such areas. If dryness is defined
based on water supply and demand (i.e. aridity), we find much smaller trends and
period increments in Rx1d and PRCPTOT, which are almost exclusively posi-
tive but in many cases insignificant (Tables 3.2 and 3.3). Hence, overall we can
confirm an indication towards increases in both metrics in the world’s dry re-
gions. However, it is important to stress that many of the world’s dry regions,
such as large arid and semi-arid regions in Africa, the Arabian Peninsula, and

partly South America, are not covered by monitoring datasets that are available at
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present. This fact highlights the importance of consistent, long-term monitoring
efforts, data quality control, development and maintenance of long-term datasets
(Alexander et al., 2006; Donat et al., 2013b,a), and also emphasises that the re-
sults reported here should be regarded as indicative only for those arid regions
where data are available.

In summary, understanding and disentangling ongoing changes in precipitation
characteristics in the world’s dry regions remains a research priority of high rel-
evance. In this context, our paper demonstrates that (1) data pre-processing can
introduce substantial bias, and (2) trends and period changes can be sensitive to
the specific choice of dryness definition that is used; therefore, we urge authors
to be considerate and specific regarding both choices and to consider associated

uncertainties.
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TABLE 3.3.: Uncertainties regarding the definition of a ‘dry region’, PRCPTOT.

Dry Region Definition Dataset Ref. Period Temporal Period Trend Slope  two-sided p-value  Sample
Coverage Increment* (decade™ 1) (one-sided) size
(%) (%)

Donat et al. (2016), global 30% quantile in  HadEX2Z 1951-1980 90% 6.32 0.020 < 0.001 (< 0.001) 299

PRCPTOT

Donat et al. (2016), global 30% quantile in ~ HadEX22 1951-1980 100% 5.93 0.015 0.002 (0.001) 108

PRCPTOT

Donat et al. (2016), global 30% quantile in ~ HadEX22 1951-2010 90% 4.76 0.015 < 0.001 (< 0.001) 299

PRCPTOT

Donat et al. (2016), global 30% quantile in ~ HadEX2? 1951-2010 100% 4.37 0.010 0.157(0.077) 108

PRCPTOT

Koppen (1900), dry climates (‘B-climates’) HadEX2? 1951-2010 90% 1.98 0.007 0.195 (0.100) 183

Koppen (1900), dry climates (‘B-climates’) HadEX2? 1951-2010 100% 3.80 0.012 0.073 (0.036) 119

Greve et al. (2014), dry regions HadEX2? 1951-2010 90% 1.00 0.004 0.511 (0.254) 183

Greve et al. (2014), dry regions HadEX2? 1951-2010 100% 2.56 0.007 0.228 (0.113) 120

Greve et al. (2014), dry+transitional regions HadEX2? 1951-2010 90% 0.51 0.000 0.985 (0.510) 296

Greve et al. (2014), dry+transitional regions HadEX2? 1951-2010 100% 0.92 0.001 0.813 (0.404) 205

Koppen (1900), dry climates (‘B-climates”) HadEX2- 1951-2010 90% 3.47 0.013 0.030 (0.015) 234
GHCNDEX?

Koppen (1900), dry climates (‘B-climates’) HadEX2- 1951-2010 100% 5.14 0.019 0.009 (0.004) 175
GHCNDEX?

Greve et al. (2014), dry regions HadEX2- 1951-2010 90% 2.63 0.011 0.077 (0.038) 231
GHCNDEX?

Greve et al. (2014), dry regions HadEX2- 1951-2010 100% 4.20 0.017 0.024 (0.012) 170
GHCNDEX?

Greve et al. (2014), dry+transitional regions HadEX2- 1951-2010 90% 1.67 0.006 0.200 (0.099) 356
GHCNDEX?

Greve et al. (2014), dry+transitional regions HadEX2- 1951-2010 100% 2.47 0.009 0.084 (0.041) 275
GHCNDEX®

! Period increment denotes the change in period means between 1981-2010 vs. 1951-1980.
2 HadEX2 is the same dataset used in the original study (Donat et al., 2016).
3 HadEX2-GHCNDEX is a merged version, where GHCNDEX data (Donat et al., 2013a) has been added to HadEX2 data in arid regions.



4. Combining large model ensembles with
extreme value statistics to improve attribution
statements of rare events'-?

Abstract

Gaining a better understanding of rare weather events is a major research chal-
lenge and of crucial relevance for societal preparedness in the face of a changing
climate. The main focus of previous studies has been to apply a range of relatively
distinct methodologies to constrain changes in the odds of those events, including
both parametric statistics (extreme value theory, EVT) and empirical approaches
based on large numbers of dynamical model simulations.

In this study, the applicability of EVT in the context of probabilistic event attri-
bution is explored and potential combinations of both methodological frameworks
are investigated. In particular, this study compares empirical return time esti-
mates derived from a large model ensemble with parametric inferences from the
same data set in order to assess whether statements made about events in the tails
are similar. Our analysis is illustrated using a case study of cold extremes and
heavy rainfall in winter 2013/14 in Europe (focussing on two regions: North-West
Russia and the Iberian Peninsula) for a present-day (including ‘anthropogenic’
influences) and an alternative ‘non-industrial’ climate scenario. We show that
parametric inferences made about rare ‘extremes’ can differ considerably from

estimates based on large ensembles. This highlights the importance of an ap-

I'This chapter is published as Sippel, S., D. Mitchell, M. T. Black, A. J. Dittus, L. Har-
rington, N. Schaller, and F. E. L. Otto. 2015. Weather and Climate Extremes 9, 25-35.
doi:10.1016/j.wace.2015.06.004.

2Supplementary Online Material (SOM) that provides additional information but that is not nec-
essary for understanding the scientific content of this Chapter is available under http://
www.sciencedirect.com/science/article/pii/S2212094715300050
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propriate choice of block and sample sizes for parametric inferences of the tails
of climatological variables. For example, inferences based on annual extremes
of daily variables are often insufficient to characterise rare events due to small
sample sizes (i.e. with return periods > 100 years). Hence, we illustrate how a
combination of large numerical simulations with EVT might enable a more objec-
tive assessment of EVT parameters, such as block and sample size, for any given
variable, region and return period of interest. By combining both methodologies,
our case study reveals that a distinct warming of cold extremes in winter has
occured throughout Europe in the ‘anthropogenic’ relative to the non-industrial
climates for given sea surface temperatures in winter 2013/14. Moreover, heavy
rainfall events have become significantly more frequent and more pronounced in
North and North-East Europe, while other regions demonstrate no discernible
changes. In conclusion, our study shows that EVT and empirical estimates based
on numerical simulations can indeed be used to productively inform each other,
for instance to derive appropriate EVT parameters for short observational time
series. Further, the combination of ensemble simulations with EVT allows to sig-

nificantly reduce the number of simulations needed for statements about the tails.

4.1. Introduction

It is a major scientific challenge to better understand extreme meteorological
events and potential changes in the odds of their occurence in a warming climate
(IPCC, 2012; Zhang et al., 2014). This is due to a number of reasons, including
limitations of the observational record to capture rare extreme events, and issues
of data availability and quality. Moreover, structural and parametric model un-
certainties, as well as the proverbial chaotic nature of weather (Lorenz, 1963)
hinder any straightforward attribution of causality between climatic drivers and
any particular extreme weather event.

To overcome these difficulties, many scientific studies use either one of the
following approaches:

First, extreme value theory (EVT) has been developed to provide a means to
model the tails of statistical distributions based on mathematical theory (Coles

et al., 2001). Such an analysis allows statistical statements to be made based on
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parametric extreme value distributions (see Wigley, 2009, for illustrative exam-
ples). For example, scientific assessments have been made to investigate trends in
temperature and precipitation extremes in the 21st century in atmosphere-ocean
coupled models (Kharin and Zwiers, 2000; Kharin et al., 2007, 2013), allowing
the estimation of return levels and their associated statistical uncertainties. Fur-
ther illustrative applications of the (univariate) EVT framework elucidate causes
for geophysical extremes, such as the connection between atmospheric modes of
variability and cold extremes (Sillmann et al., 2011). However although EVT is
increasingly used in climatological studies to constrain the odds of rare events
(Katz, 2010), including extensions to account for non-stationarity, multivariate
and spatial extremes (see Ghil et al., 2011, for a review), Katz et al. (2013) argues
that its full potential has not yet been tapped for many geophysical applications.

Second, an alternative approach to improve the understanding of extremes and
their changing odds in a non-stationary climate has been to deploy very large
ensembles of dynamical models, namely probabilistic event attribution (PEA,
Stone and Allen, 2005; Allen, 2003). This methodology is used extensively to
sample rare events and subsequently estimate their probabilities under different
climate forcing scenarios (Stott et al., 2004; Otto et al., 2012; Massey et al., 2015).
The latter often serves to estimate the anthropogenic contribution (‘fraction of at-
tributable risk’) to changes in the meteorological risk of present-day weather and
climate extremes (Allen, 2003; Stott et al., 2013; Bindoff et al., 2013; Christidis
et al., 2013). Importantly, an assessment of this type addresses the odds of spe-
cific extreme weather events - often those that had happened in a particular year
such as droughts, heat waves or cold spells (Herring et al., 2014). Notable exten-
sions to the PEA methodology include the attempt to account for more impact-
related variables, for instance through a coupling with hydrological models to as-
sess floods (Pall et al., 2011). Nonetheless, PEA assessments are typically based
on rather data-intensive empirical estimates of return times, and rely to a large
extent on dynamical model simulations.

Our study addresses the following research questions:

1. Is the statistical framework of EVT applicable in the context of a probabilis-
tic assessment of extreme events? Accordingly, can both methodological

frameworks be productively combined to inform each other?
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2. Using a combined methodology, how have meteorological extremes at daily
time scales in the European winter of 2013/14 changed relative to a pre-

industrial climate?

Based on our first research question, we envision an application in which both
methodological frameworks could inform each other in order to a) derive insights
about appropriate parameter choices (i.e. required sample and block sizes) for
the application of statistical models based on EVT for the meteorological char-
acteristics of any variable or region of interest; and b) given informed parameter
choices, how many numerical simulations are actually needed to estimate a given
‘target return period’ to a satisfactory degree of accuracy?

Hence, our study details a joint assessment of both methodologies and eval-
uates whether statements made about the tails of meteorological variables such
as temperature and precipitation are comparable. This methodological compar-
ison might serve as a starting point to reconcile the two statistical frameworks
for climatological applications, i.e. to inform each other about relevant parame-
ter choices (EVT) or the number of samples needed to estimate a specific return
level. To illustrate this comparison and to address the second research question, a
large ensemble of atmosphere-only regional climate simulations for the European
2013/14 winter season is investigated as a case study along with a ‘non-industrial’
climate scenario of winter 2013/14 (i.e. with anthropogenic forcings removed
(Schaller et al., 2014), see Section 4.2).

The particular season of interest, winter 2013/14 in Europe, provides an in-
teresting case study, because it came along with exceptionally mild temperatures,
severe storm depressions, both winter dryness and heavy precipitation on regional
to sub-continental scales. Significant but diverse societal impacts were associated
with those events, for instance exceptionally early vegetation greening and a re-
duction of fossil fuel consumption for heating due to the absence of severe frosts
in some regions®. Seasonal temperatures ranked among the highest ever recorded
in a range of countries according to national weather services (e.g. Austria, Den-
mark, France, Germany, the Netherlands, Norway, Poland, Slovakia, Switzerland,
and the UK, e.g. Figure 4.1, Deutscher Wetterdienst (2014)). When it comes to

seasonal rainfall anomalies, a remarkable east-west divide persisted over most of

3http://www.pecad.fas.usda.gov/highlights/2014/03/EU_12march2014/


http://www.pecad.fas.usda.gov/highlights/2014/03/EU_12march2014/

4.1 Introduction 67

the winter, where central and south-eastern parts of the continent received ex-
ceptionally low rainfall, whereas its most western stretches, such as Ireland and
the UK, experienced a record wet season (Huntingford et al. (2014); Figure 4.1).
These remarkable patterns resulted from a synoptic situation with many storm
depressions that moved along the English Channel, over the British Isles and
into the North Sea, hence advecting warm air into Central and East European
regions, and causing rainfall and severe winds in Britain and along the Atlantic
coast. This synoptic situation is also reflected by seasonal geopotential height
anomalies (Figure 4.1), which were strongly negative over the North Atlantic and
the British Isles, whereas positive anomalies prevailed over Eastern Europe (see

Huntingford et al. (2014) for a more detailed discussion).
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FIGURE 4.1.: Synoptic analysis of winter 2013/14 in Europe: Seasonal temperature
anomalies (top left), SST anomalies (top right), anomalies in cumulative
rainfall (bottom left), and geopotential height anomalies (bottom right).
Temperature and precipitation data were taken from E-OBS, SSTs and
geopotential height anomalies were calculated from ERA-Interim (refer-
ence period: 1981-2010). The study regions over Spain and Russia are
drawn as rectangular boxes.
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This study’s analysis focuses on cold temperature and heavy rainfall extremes,
which allows to state how the odds of occurence of extremes in these two vari-
ables have changed between a ‘non-industrial’ climate and the contemporary win-
ter climate in 2013/14. These two variables provide a good case study, because
we expect temperature to be relatively spatially coherent, and precipitation to
be somewhat noisier both in space and time. We illustrate our methodological
approach as well as the attribution analysis for two spatially averaged regions,
North-West Russia and the Iberian Peninsula, as well as for the entire European
model domain.

In Section 4.2, we describe the experimental setup, evaluate and bias-adjust the
regional climate model and outline the statistical methodology to estimate return
times. In Section 4.3, we first outline the results of the methodological compar-
ison (EVT vs. empirical return time estimates), and discuss related issues such
as parameter choices for a potential combination of both methodologies. Second,
the illustrative attribution case study of winter minimum temperatures and precip-
itation is presented. Lastly, we draw some conclusions about the applicability of
EVT based return time estimates in the context of probabilistic event attribution
(Section 4.4).

4.2. Material and methods

Model structure and experiment setup In this study, we analyse large
ensemble simulations of the HadAM3P atmosphere-only, global circulation
model with an embedded, identically formulated regional model for Europe
(HadRM3P), which has been used extensively elsewhere (Jones, 2004; Massey
etal., 2015). The global (nested regional) models are run with a spatial resolution
of 1.875°x1.25° (0.44°x0.44°) on a rotated grid identical to the EURO-CORDEX
region*, with 19 vertical levels and a temporal resolution of 15 (5) minutes
(Massey et al., 2015). The model is based on the atmospheric component of the
HadCM3 general circulation model (see Pope et al. (2000) for a full description)
with improvements with respect to the calculation of clouds and convection, and

a more realistic coupling of vegetated surfaces with the soil (Massey et al., 2015).

4http://www.euro-cordex.net /About-Euro-Cordex.1864.0.html
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Since atmosphere-only simulations were conducted, observed sea surface temper-
atures (SSTs) and sea ice fractions for the observed period (DJF 2013/2014) are
provided to the model from the Operational Sea Surface Temperature and Sea Ice
Analysis (OSTIA) dataset (Stark et al., 2007; Donlon et al., 2012). Further model
drivers include the observed atmospheric composition (CO5, CHy4, N2O, halocar-
bons and ozone), natural and anthropogenic emissions of different sulfur species,
and solar anomalies (see Massey et al. (2015) for a more detailed description and
evaluation of the modelling framework). Initial conditions are perturbed in the
global circulation model on 1st December for each ensemble member (ibid.).

As observed SST patterns from ‘the world that might have been’ (i.e. the ‘non-
industrial’ scenario) in the absence of anthropogenic emissions are not known
precisely, estimates are made using some of the state-of-the-art coupled ocean-
atmosphere models taken from the Coupled Model Intercomparison Project,
phase 5 (CMIP5, Taylor et al. (2012)). Eleven of these models have run ‘nat-
ural forcings only’ simulations of the historical climate, and these are subtracted
from the ‘all forcings’ simulations to obtain an estimate for the change in the
SSTs (hereafter, delta SSTs). The differencing is performed on climatological
monthly means over the last decade available, i.e. 1996-2005. The delta SSTs are
then used to change the observed SSTs accordingly. To sample uncertainty, we
use these different CMIP5 models which cover the main modelling groups from
around the world (see Schaller et al., 2014, for details). All non-anthropogenic
forcings such as aerosols, volcanoes and the solar cycle are kept constant in both
scenarios.

The large model ensemble investigated in this paper is derived through the
weather @home framework, in which citizen scientists donate idle computer time
in order to perform computationally intensive calculations in a distributed man-
ner. This approach provided model ensemble simulations for 13260 DJF periods
in an industrial world and 22129 for the non-industrial case, using the variety of
different SST reconstructions. Data preprocessing consists of regridding the re-
gional model ensembles to a regular 0.5° grid over Europe, using a second order
conservative remapping scheme (Jones, 1999). Subsequently, a meteorological
sanity check is conducted, in which all ensemble members with meteorologically

implausible values are removed, before we validate our model and analyse the en-
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semble’s statistics of extremes (see below). We derive both 1-day spatial averages
over selected regions and 5-day grid-based averages for minimum temperatures
and heavy precipitation, where both aggregation steps are computed on the orig-
inal gridded time series. Two regions were chosen to represent different Euro-
pean climates with predominantly maritime/Mediterranean (Spain) and continen-
tal (North-West Russia) influences (Table 4.1). The grid-based European-scale
analysis is noisier due to a lower level of aggregation, but nevertheless provides
valuable spatially explicit details. Due to model spinup time, the first two weeks
of December are disregarded, after which it was checked that no remainder spinup

effects are detectable.

Region Eastern Western Southern Northern
boundary boundary boundary boundary
B B CN) CN)

Spain -8 -1 39 43

NW Russia 32 39 53 59

TABLE 4.1.: Regions used in this study and their geographical boundaries.

Model validation and bias adjustment A high-quality grid-based European
land-only observational data set in 0.5° resolution (E-OBS, version 10.0, Hay-
lock et al., 2008) is used in order to quantify biases in simulated meteorological
variables and to conduct a simple synoptic assessment for winter 2013/14 (Fig-
ure 4.1). Since our ensemble is based on the SST patterns of one winter season,
an assessment of model performance would not be representative based on the
ensemble alone. Hence, we use 50 randomly chosen ensemble members per year
(i.e. 1300 model years in daily resolution) for the winter seasons from 1986-2010
from an identical model setup (Massey et al., 2015) for the purpose of valida-
tion. Differences in statistical distributions are assessed graphically by quantile-
quantile plots. The spread of the ensemble is illustrated similarly to Massey et al.
(2015) by appending randomly chosen ensemble members without replacement in
order to derive 50 winter time series for each of the years 1986-2010 (Figure 4.1).

The model’s winter simulations of daily temperature show relatively good
agreement with the distribution of daily minimum temperatures in E-OBS in both

regions, although with a slight cold bias over NW Russia. For the whole European
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domain, larger biases are observed in Scandinavia, and towards the southern mar-
gins of the regional model domain (Supplementary Online Figure 2). Nonethe-
less, it can be noted that the regional model performs better in simulating tem-
peratures in winter as compared to summer (Massey et al., 2015). Hence, we
conclude that our model simulates temperatures to a reasonable degree, and this
also holds for percentiles relatively far away from the mean (Figure. 4.1, Supple-
mentary Online Figure 1).

Precipitation simulations do not always agree favourably with observations.
Considerable wet biases towards the upper tails of the distributions of daily rain-
fall over the two regions remain, as well as for most grid cells throughout Europe
(Supplementary Online Figure 1). Here, we use a very simple bias adjustment
methodology to account for this bias. Due to the obvious positivity constraint,
an additive correction of biases, which is often applied to climatic variables such
as temperature (Hempel et al., 2013; Sippel and Otto, 2014), is not feasible for
precipitation. Hence, we determine a multiplicative correction factor similar to

Hempel et al. (2013), which quantifies biases in the 97.5th percentile:

_ OBSo7.5th

¢ = 2DP9T.5th
MODyz 5:n

4.1)

Subsequently, daily rainfall values are scaled by ¢, which removes some of the
biases in the high percentiles. Although using a single percentile is a somewhat
subjective choice, we argue that it is relatively robust with respect to the observa-
tions, since in the period used for model validation (DJF 1986-2010), the 97.5th
percentile corresponds approximately to the 50th largest value, hence a relatively
robust sample. This simple multiplicative adjustment yields a better match of
simulated and observed rainfall amounts also in higher quantiles, without any
invasive changes to the distribution. Importantly however, scaling the absolute
values with an adjustment factor does not affect any relative changes between
fitted extreme value distributions.

Further, it is important to note that an acceptable simulation of daily precip-
itation statistics does not warrant satisfying simulation at monthly or seasonal
time scales. For an evaluation and discussion for model performance at monthly

time scales, we refer the interested reader to Massey et al. (2015). Moreover,
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while we acknowledge that the resolution of the regional model is too coarse to
resolve local convection or thunderstorm-related activity, Supplementary Online
Figure 1 demonstrates that the distribution of daily rainfall events in the model

agrees broadly with the observations for both regions, including its tails.

Statistical estimates of return periods The primary objective of this study
is to compare statistical inferences for the tails of meteorological variables based
on EVT with empirical return time estimates. The ensemble simulations are con-
ducted for one season only (DJF 2013/14 in a ‘natural’ and ‘anthropogenic’ sce-
nario), hence stationarity for the EVT based estimates of the tails is assumed.
Further, we fit generalised extreme value (GEV) distributions of the form (Coles
et al., 2001)

G(2) = eap(—=[1 +¢=—F]7O), (42)
to a sample of 1-day (5-day) minimum temperatures and maximum cumulative
rainfall events for each simulated winter season for each area-averaged region
(grid cell). Here, u, o and ¢ denote the location, scale and shape parameter of
the GEV distribution. Unless otherwise stated, confidence intervals representing
5-95% parametric uncertainty are given based on the normality of the GEV pa-
rameter estimates (Coles et al., 2001). To address the influence of GEV parameter
choice (block and sample size) on the return time estimates (Section 4.3), we re-
sample the large ensemble to derive different block and sample sizes for various
return time estimates. This procedure is iteratively repeated for each parameter
combination in order to derive resampling based 5%-95% confidence intervals for
return time estimates that are comparable to the empirical estimates.

For the analysis of rare winter extremes, a resampling strategy is used in order
to avoid biases associated with an extrapolation from 1-yr extremes to several
hundred year return level extremes (see Section 4.3), which might also entail
a very different dynamical structure of the atmospheric circulation in the real
world. Therefore, 10-yr block extremes are drawn from the large sample by a
random selection of ten ensemble members, from which only the most extreme

value is retained. This procedure is repeated 200 times (for both regions and for
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each CMIP5 model’s SST reconstruction) to derive a statistical distribution of
10-year block extremes, which is subsequently used to fit a GEV distribution as
specified above.

Throughout our analysis, a Generalised Maximum Likelihood Estimation
(GMLE) approach is used for fitting the parametric model to the data (Martins
and Stedinger, 2000), which is conducted using the extRemes software package
(Gilleland and Katz, 2011). We also tested the GEV parameter estimation us-
ing the L-moment and MLE methods: these were found to yield estimates very
similar to the GMLE method that we employ here. All statistical analysis is per-
formed in the R statistical environment (R Development Core Team, 2013) using
the add-on packages ‘boot’ and ‘ADGofTest’.

Empirical return time estimates are constructed by plotting the sorted values
of the ensemble against its rank. To assess uncertainty of this empirical estimate,
we derive bootstrapped uncertainty intervals (5%-95%) by resampling (n = 5000

ensemble members, R = 1000 times).

Evaluation of fitted extreme value distributions The parametric fits are
evaluated in a three-fold approach:

First, we use adjusted mean residual life plots (Coles et al., 2001) in order
to test whether the exceedance of any threshold u yields an approximately lin-
ear scaling of the ‘residual means’ (i.e. the average of the values exceeding the
threshold u). This concept is frequently used to determine an appropriate thresh-
old for peak over threshold models with a prior declustering of extremes. It can
be shown that the residual means follow a linear function of the threshold, if
the peak over threshold model is appropriate (Coles et al. (2001), p. 79). Here,
this idea is slightly modified, and we plot the ‘mean residual life’ of the sea-
sonal block maxima, thus it could be seen similarly to a seasonal declustering
approach (i.e. assuming that any two extreme events in one season are not inde-
pendent). Present non-linearities in these plots might indicate that extreme events
are subject to different physical/dynamical climatic regimes, and will be further
discussed/evaluated below.

Second, each fitted GEV (both regional and grid cell based) is tested for its
goodness of fit using a parametric Anderson-Darling (AD) test based on a signif-
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icance level of a = 5%. We chose the AD test over a Kolmogorov-Smirnov (KS)
test used in earlier studies (Kharin et al., 2007), because it is more sensitive to the
tails of the distribution by implementing a weight function instead of a maximum
distance approach such as the KS test.

Lastly, in order to evaluate deviations of the fitted GEV distributions from the
empirical large ensemble for rare events in the tails (Section 4.3), we adopt a
somewhat ad-hoc but practically useful definition of ‘biases’ (see Figure 4.2 and
associated discussion): Since our focus is on ‘rare events’, we determine the max-
imum absolute difference in return levels in the interval of 100 to 1000 years (i.e.
99th to 99.9th percentile) between the fitted GEV’s and the empirical return lev-
els of the large ensemble, using monotonic Hermite spline interpolation to derive
a continuous curve for the latter. To compare the biases in GEV fits from the
empirical ensemble with the ‘expected biases’ inherent in any GEV model for a
given block size (Section 4.3), we simulate a large number of random values from
the fitted extreme value distributions for each region. Subsequently, we determine
the distance (‘bias’, as defined above) between GEV fits from this data using each
block size of interest from a ‘large empirical GEV sample’ (n = 15000). Hence,
these artificial simulations mimic the comparison between the empirical ensemble
and GEV fits with different block sizes. The uncertainty of an empirical estimate
of the tail is tested by resampling from a known GEV model (Supplementary On-

line Figure 4), the variance of which becomes large for very high return periods.

4.3. Results and discussion

In this section, we first test a combination of stationary EVT analysis with a large
ensemble of numerical simulations and present a systematic evaluation of the pa-
rameter choices in EVT-based assessments regarding its effects on return time
estimates for meteorological variables (Section 4.3.1). Subsequently, we analyse
changes in cold temperature and heavy precipitation extremes in winter 2013/14
relative to a pre-industrial scenario in the large ensemble simulation using ex-

treme value theory (Section 4.3.2).
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Return level plots of GEV distributions fitted to 1-yr (n=1000) and 10-
yr (n=100) block extremes of daily minimum temperatures (top left) and
heavy precipitation (top right). Coloured dots reflect the ‘empirical’ large
ensemble, observations are denoted in black (EOBS, 1951-2014). Shading
represents parametric uncertainty as taken from the fitted generalised ex-
treme value distributions. (Middle panels) Mean residual life plot of annual
block minima of daily temperatures (left) and block maxima of daily rain-
fall (right) for NW Russia. (Bottom) Biases in rare events (100 to 1000 year
return periods, as defined in Section 4.2) estimated from GEV distributions
as a function of block size for the model ensemble and as would be expected
by sampling from ‘ideal’ GEV distributions.

4.3.1. Combining extreme value analysis with large ensemble

simul

ations

A comparison of the fitted GEV distributions based on resampled sub-ensembles

with the emp

irical estimate of the tail for the NW Russia region is presented in
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Figure 4.2 (top), including a stationary GEV fit to the E-OBS observations for
illustrative purposes only (1951-2014, black dots and line)>.

The methodological comparison reveals that GEV-based inferences with large
block sizes (e.g. 10-yr return periods, Figure 4.2 (top), dark-blue / dark-red line
and shading) agree well with the empirical estimate (circles). However, infer-
ences made for shorter return periods (e.g. 1-yr events: orange / light blue)
overestimate (minimum temperatures) or underestimate (maximum rainfall) re-
turn levels of rare events (e.g. 100+ year return levels). This analysis is presented
in for the NW Russia region, and occurs similarly over Spain (Supplementary
Online Figure 3), although less pronounced. These differences are important to
consider, because a relatively large proportion of the GEV'’s fitted to resampled
sub-ensembles (n = 1000, annual block extremes) is not rejected by a statistical
Goodness-of-Fit test®, and could thus be misinterpreted if only a small ensemble
were available. However, these differences in the inferences about the tails can be
readily detected in the mean residual life plots, for example in the NW Russia re-
gion (Figure 4.2, middle) with a non-linear breakpoint approximately around the
median (marked as 50th percentile, corresponding to 2-yr return events). Hence,
extreme value statistics of seasonal minimum daily temperatures or precipitation
might not be rare enough in order to satisfactorily constrain events that are lo-
cated far in the tails. This could potentially lead to notorious biases in statistical
models, which are most pronounced for large return periods (i.e. 99th to 99.9th
percentile in this case) if the chosen block size is too small. Comparing these
biases with biases in the tails for independent and identically GEV-distributed ar-
tificial data (see Section 4.2) for a detailed description of the resampling strategy
to obtain these ‘expected biases in the tails’) for any given block size shows that
for large enough block sizes these biases are reduced (Figure 4.2). Hence, al-
though the ultimate reason for non-adequate statistical model fits for rare events
are limited sample and block sizes (Fisher and Tippett, 1928; Coles et al., 2001),

characteristics of climatological variables such as serial correlation, climatic vari-

SHowever, it should be kept in mind that the observations are based on a 63-year period, including
potential non-stationarities and cover a variety of synoptic conditions, whereas the model ensem-
ble is run conditional on 2013/14 SST’s.

6Based on the AD-test, the proportion of the null hypothesis not rejected is for the anthropogenic
(natural) ensemble: 41% (30%) NW Russia, 100% (100%) Spain (minimum temperatures), and
99% (98%) NW Russia, 99% (100%) Spain (heavy rainfall).
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ability and noise, or potential dynamic regime changes under extreme conditions
might considerably amplify these deviations.

The illustrative example highlights that the choice of block size is critical in cli-
matological applications of EVT. To further and more systematically investigate
this issue, we conducted a range of resampling experiments to assess the influ-
ence of parameter choice on an EVT-based estimation of climatological events
in the extreme tails. Those parameter choices are inherently a trade-off between
bias (short block size) and variance (due to small sample sizes for large blocks
Coles et al., 2001), which is illustrated in Figure 4.3 for two different return times
(20 and 1000-years) in NW Russia. We note that from a practical perspective, for
example for the analysis of relatively short observational time series, the choice
of block size depends not only on the available sample size and climatological
variable of interest, but also on the ‘target return time’ upon which a statement
should be made (Figure 4.3, see also tabulated values in Supplementary Online
Table 1 and 2). To this end, it is interesting to note that these biases require care-
ful consideration if, for example, statistical models are derived based on annual
extremes of daily variables, which is widely being done (see for example: Coles
et al., 2001). On the other hand however, GEV-based inferences with larger block
sizes allow to derive very consistent statements for high return intervals, for which
a reduced number of ensemble simulations are already sufficient (e.g. compare
GEV-based inference with an ensemble of size » = 1000 in Figure 4.3 with the
empirical estimate, n = 13260).

At this point, a couple of cautionary remarks might be appropriate. First, it
should be noted that in this paper we investigate the simplest case of an applica-
tion of EVT: Daily extremes determined from seasonal blocks under stationary
conditions (i.e. Winter 2013/14 under anthropogenic or natural forcing condi-
tions). Hence, it should be stressed that EVT can also be applied under non-
stationary conditions (Kharin and Zwiers, 2000; Kharin et al., 2007, 2013) and
with covariates accounting for additional information (see for example Sillmann
etal.,2011). Furthermore, peak-over-threshold models constitute an important al-
ternative to modelling block maxima with GEV’s (Coles et al., 2001); a detailed
investigation of this in terms of informed parameter choices based on ensemble

simulations could be a topic for future study.
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20-year (right) return time events of daily minimum temperature (top) and
maximum precipitation (bottom) in the Russia region for the bootstrapped
empirical ensemble and GEV'’s fitted to resampled ensembles using various
sample and block sizes.

Second, as we are concerned here about the statistics of rare events, and thus
the dynamical structure of such events is not investigated. In Europe, such rare
events might be related to relevant modes of atmospheric variability, such as for
example the North Atlantic Oscillation (NAO) (Sillmann et al., 2011). Therefore,
our analysis and estimation of return periods of extremes is conditional on sea sur-
face temperature patterns that were present in winter 2013/14 in the Euro-Atlantic
region with the NAO being in its positive phase (Huntingford et al., 2014).

Third, it should be pointed out that an analysis of rare events is inherently
uncertain. In this paper, we are addressing statistical (Section 4.3.1) and scenario
reconstruction uncertainties (Section 4.3.2). Hence, possibly large uncertainties
that might stem from the models’ (imperfect) structure or parametrisation are
not examined here, although an attempt was made to implicitly account for such
issues using the empirical bias correction for precipitation (Section 4.2).
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To summarise, our analysis reveals that seasonal block extremes in an ensem-
ble of regional model simulations of daily meteorological variables might not be
robust enough to infer statistical statements on the odds of particularly rare events
of both temperature and precipitation. A resampling scheme is shown to improve
the fits to the tails based on larger than annual block sizes. Therefore, the combi-
nation of a large number of dynamical model simulations with statistical extreme
value models might enable a more informed selection of parameter choices for
EVT-based inferences. In return, EVT-based estimates might point at the num-
ber of numerical simulations needed to adequately constrain a given return period
of interest (Figure 4.3). Hence, we conclude that for climatological applications
both methodologies might benefit from a statistical setup in which EVT and large
numerical simulations inform each other, for example to choose EVT parameters
for the analysis of relatively short observational time series.

4.3.2. The anthropogenic influence on European minimum
temperatures and precipitation in winter 2013/14

In this subsection, we present and discuss how climatic changes between the
counterfactual scenario and the present might have altered the odds of cold ex-
tremes and heavy precipitation as an application of the extreme value analysis
outlined above. We also illustrate for two regions how uncertainties in the re-
construction of a counterfactual past might induce uncertainties in attribution
statements. Finally, we discuss our results in the context of changes in extremes

throughout Europe.

Temperatures In a winter season such as DJF2013/14 in Europe, minimum
temperatures have warmed significantly and unambiguously in both study regions
(Figure 4.4, Supplementary Online Figure 6) and throughout Europe (Supple-
mentary Online Figure 7). For example, the location parameter of GEV distribu-
tions fitted to 10-yr resampled minimum temperatures in NW Russia has shifted
significantly under all scenarios (Figure 4.4). However, the reconstruction of a
‘non-industrial world’ scenario induces considerable uncertainties, with a warm-
ing of roughly two and four degrees at the lower and upper end, respectively, of

the CMIP5 models used for reconstruction (Figure 4.4). Hence, scenario uncer-
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tainties are larger in magnitude than statistical uncertainties resulting from fitting
statistical models in this type of study. Furthermore, the decreasing odds of ex-
tremely cold temperatures in the two regions studied in this paper seem to a very
large proportion caused by a shift in the location parameter of the GEV, rather
than by changes in the scale or shape of the distribution. In fact, none of the
different SST reconstructions shows a significant change in scale or shape in any
region under study (not shown), and computing GEV parameters over each grid
cell of the European model domain yields only minor and largely non-significant
changes in the shape and scale parameters of seasonal cold extremes. This find-
ing indicates that the year-to-year variability of seasonal cold extremes (around
the shifting mean) has not changed markedly in our model, though the interpre-
tation of individual GEV parameters is to be made with caution (Gilleland, pers.
comm.).

Nonetheless, testing different assumptions about potential chages in the scale
and shape of the tails is a highly topical issue in climatology - not least because
recent findings point at a decreasing temperature variability at the sub-seasonal
scale in northern latitudes (Screen, 2014). Consequently, we further investigate
this issue in our model ensemble with a focus on the tails. To do so, we compare
the present-day warming relative to the pre-industrial scenario in winter maxi-
mum temperatures with the warming in the coldest winter temperatures (i.e. a
‘differential warming of winter temperature extremes’ is defined as the differ-
ence between the warming in the warmest and coldest winter temperatures ex-
pressed through 100-year return levels). To this end, we find a clear, spatially
coherent and widely significant pattern (Figure 4.5): In large areas of North and
Central Europe, cold extremes have warmed considerably stronger than warm ex-
tremes. Only in the Mediterranean region and towards the eastern edges of our
model domain this pattern is not as clearly pronounced. This finding is qual-
itatively consistent with previous studies that have shown that daily minimum
temperatures (nights) are warming faster than maximum temperatures (days) in
observations (Alexander et al., 2006; Donat et al., 2013b) and that sub-seasonal
temperature variability in northern latitudes is decreasing (Screen, 2014), both of
which might contribute to the differential warming seen here. Mechanisms be-

hind the day-night assymetry might indeed include stronger night-time effects of
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increased greenhouse gas forcing, whereas changes in sub-seasonal variability in
northern latitudes might be driven by the Arctic amplification, i.e. temperatures
of northerly winds might have warmed faster than southerly winds over the last
decades (Screen, 2014). Disentangling these effects is not the focus of this paper,
but would provide an interesting topic for further study.

In brief, our analysis suggests that cold and warm temperatures extremes have
warmed considerably since pre-industrial times, but the upper and lower (ex-
treme) tail might indeed warm at different rates. However, our present analy-
sis does not show any evidence that the year-to-year variability of seasonal cold

temperature extremes has changed.

Precipitation When it comes to wintertime heavy rainfall events, changes be-
tween the ‘non-industrial’ (NAT) and anthropogenic (ANT) scenarios are less
pronounced and vary among regions and the CMIP5 models used for reconstruct-
ing the SST patterns. We find a significant shift towards stronger heavy precipi-
tation events in NW Russia (Figure 4.4, bottom), whereas in Spain no significant
overall changes are shown by the model (Supplementary Online Figure 6). More-
over, the counterfactual world reconstructions clearly show that scenario uncer-
tainty is large when it comes to heavy rainfall:

In NW Russia all except one SST reconstructions for the ‘non-industrial’ scenario
lead to a significant increase in the location parameter, however results for Spain
show the sign of the location parameter to differ between SST estimates leading
to an overall small but non-significant increase in the location parameter. Like the
results for temperature, we also observe that the scale and shape parameters are
not changing significantly across the studied regions.

To understand further, we derived GEV fits for heavy precipitation for each grid
cell of the European model domain (Supplementary Online Figure 8). Most attri-
bution studies conducted to date have been looking at regional averages, mainly
because spatial (or temporal) aggregation reduces the level of noise. Although
we acknowledge that this type of spatially explicit analysis presented here might
involve considerable uncertainties, particularly as local features such as processes
on a sub-grid cell scale might not be well-represented in the model, we argue that

Supplementary Online Figure 8 allows to identify European regions that show
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FIGURE 4.4.: (Top panel) Return periods of seasonal block minimum temperatures (left)
and heavy rainfall (right) in NW Russia. (Middle panel) Warming in the
GEV’s location parameter (left) and densities of the fitted GEV distributions
for 10-yr resampled block minimum 1-d temperatures. (Bottom) Changes
in the location parameter (left) and GEV density (right) of 10-yr resampled
heavy precipitation events. Changes in the GEV’s location parameter (mid-
dle and bottom left panel) and single SST reconstructions (turquoise lines)
are given for the 11 different natural SST estimates, and the CMIP5 models
from which the estimates were obtained are listed in Schaller et al. (2014).
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a spatially coherent signal of human-induced changes in 100-year return levels
of daily rainfall. Whilst the overall pixel-based signal is much noisier and does
not point at strongly pronounced changes in extreme winter rainfall in Central or
Southern Europe, we are able to identify regions in North and North-East Europe
that exhibit a spatially coherent signal of increasing 100-yr return levels (Fig-
ure 4.5). Here again, those changes can be attributed to a shift in the location pa-
rameter of the GEV, rather than changes in scale or shape (Supplementary Online
Figure 8). In conclusion, we find clear indications that winter rainfall extremes
are changing in parts of North Europe, whilst in southern regions, particularly
in the Mediterranean no clear statement can be made at present. Although the
mechanisms behind intensified extreme rainfall are still debated (O’ Gorman and
Schneider, 2009), they can be conceptualised as a subtle interplay between ther-
modynamical effects (i.e. the amount of moisture held within a fixed volume
of air, described by the well-known Clausius-Clapeyron relationship, e.g. Held
and Soden (2006)) and large-scale atmospheric dynamics in a warming climate
(Emori and Brown, 2005). Nonetheless, our results in European regions agree
qualitatively well with previous findings of intensified daily rainfall in model sim-
ulations for the mid-high latitudes, and relatively minor changes in the extreme
percentiles over the Mediterranean (Pall et al., 2007). Likewise, Westra et al.
(2013) show that maximum precipitation events at daily time scales are becom-
ing more intense in the observational record for most stations globally, with least
pronounced changes occuring in drier sub-tropical regions, such as the Mediter-

ranean.

4.4. Conclusion

In this study we examined two commonly used techniques for assessing the odds
of extreme weather events in a changing climate. The purpose of which was to
test if using statistical inferences on relatively small sample sizes (as is common
in observational studies) would give quantitatively similar results to using large
sample sizes of the simulated climate (as is used in complementary experiments,
e.g. Stott et al. (2004); Otto et al. (2012)). When it comes to attribution statements

it is important to account for such potential differences, because statements are
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FIGURE 4.5.: (Top) Difference in warming of the warm and the cold tail of 100-year re-
turn periods of daily winter extremes. (Bottom) Percent changes in 100 year
return levels of 5-day rainfall sums in Europe between DJF2013/14 and a
counterfactual ‘non-industrial’ winter season with a similar sea surface tem-
perature pattern. Black dots indicate poor goodness-of-fit as indicated by
the AD-test, while grey stippling indicates non-significant changes in return
levels.
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often based on the evaluation of relatively subtle changes in the tails. The analysis
is then used to understand how the lower and (upper) tails of temperature (rainfall)
distributions change under anthropogenic climate change in a European winter
season.

We show that for some regions of Europe, the definition of what counts as
extreme data can drastically change how the extreme value distribution (in this
case the GEV) is fitted. In some cases, for instance winter temperatures over
NW Russia, the GEV model based on an annual block size does not fit well to
empirical estimates of the tails from thousands of ensemble members of a cli-
mate simulation. The reason for the observed disparity may well be because of
different dynamic regimes under very extreme meteorological conditions that do
not occur in every seasonal simulation. As such, a careful choice of parameters
is crucial when using EVT for understanding extreme events, especially if small
sample sizes akin to observational data are used. We argue that large ensemble
simulations might offer a route to test the robustness of such parameter choices for
any particular variable or region of interest. Further, a combination of GEV-based
inference with ensemble simulations allows to reduce the number of required sim-
ulations substantially for estimating high return periods. For example, we show
that when analysing extreme temperatures over Russia, a statement regarding the
1000-year return period can be made by fitting an extreme value distribution to a
sample size of 1000 years, whereas empirical estimates would require an order of
magnitude larger sample size. Similar conclusions can be drawn for Spain.

Using the refined resampling technique for understanding rare extremes and
with respect to the case study of the unusual winter 2013/14, we find a widespread
warming pattern throughout Europe, which led to a reduction of return periods of
very cold winter days (as derived from seasonal minima). This is accompanied by
an increase in warm winter anomalies both in frequency and magnitude through-
out the model domain. Crucially, the observed warming of daily winter temper-
ature minima is larger than the maxima, showing an asymmetry in the changes
in extremes. Finally, predominantly northern parts of Europe show significant
increases in unusually extreme daily rainfall events, emphasizing the importance

of considering extreme events on a regional basis.
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5. A novel bias correction methodology for
climate impact simulations'-2

Abstract

Understanding, quantifying and attributing the impacts of extreme weather
and climate events in the terrestrial biosphere is crucial for societal adap-
tation in a changing climate. However, climate model simulations gener-
ated for this purpose typically exhibit biases in their output that hinders any
straightforward assessment of impacts. To overcome this issue, various bias
correction strategies are routinely used to alleviate climate model deficiencies
most of which have been criticised for physical inconsistency and the non-
preservation of the multivariate correlation structure. In this study, we in-
troduce a novel, resampling-based bias correction scheme that fully preserves
the physical consistency and multivariate correlation structure of the model
output. This procedure strongly improves the representation of climatic ex-
tremes and variability in a large regional climate model ensemble (HadRM3P,
http://www.climateprediction.net/weatherathome), which is il-
lustrated for summer extremes in temperature and rainfall over Central Europe.
Moreover, we simulate biosphere-atmosphere fluxes of carbon and water using a
terrestrial ecosystem model (LPJmL) driven by the bias corrected climate forc-
ing. The resampling-based bias correction yields strongly improved statistical

distributions of carbon and water fluxes, including the extremes. QOur results

IThis chapter is published as Sippel, S., F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M.
Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha. 2016. Earth System
Dynamics 7, 71-88. doi:10.5194/esd-7-71-2016.

2Supplementary Online Material (SOM) that provides additional information but that is not nec-
essary for understanding the scientific content of this Chapter is available under http://
www.earth-syst-dynam.net/7/71/2016/esd-7-71-2016-supplement.pdf
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thus highlight the importance to carefully consider statistical moments beyond
the mean for climate impact simulations. In conclusion, the present study intro-
duces an approach to alleviate climate model biases in a physically consistent
way and demonstrates that this yields strongly improved simulations of climate
extremes and associated impacts in the terrestrial biosphere. A wider uptake of
our methodology by the climate and impact modelling community therefore seems

desirable for accurately quantifying changes in past, current and future extremes.
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5.1. Introduction

Weather and climate extreme events such as heat waves, droughts or storms cause
major impacts upon human societies and ecosystems (IPCC, 2012). In recent
years, these climatic events have changed in intensity and frequency in many
parts of the world (Barriopedro et al., 2011; Donat et al., 2013b; Seneviratne et al.,
2014) and changes are likely to continue throughout the 21st century (Sillmann
et al., 2013a). Therefore, improving the scientific understanding of these events,
including the link to impacts, constitutes an important research challenge (IPCC,
2012; Zhang et al., 2014).

The impacts of climate extremes and potential changes therein are strongly felt
in the terrestial biosphere. For example, heat and drought events trigger eco-
logical responses (Reyer et al., 2013; Frank et al., 2015), which in turn induces
changes to the cycling of water and carbon through such systems with potential
feedback to the atmosphere and climate system (Reichstein et al., 2013; Frank
et al., 2015). Indeed, on continental to global scales, it has been shown that large-
scale reductions in photosynthetic uptake of carbon by plants are mainly driven by
water limitations (Zscheischler et al., 2014b,c). Furthermore, it has been demon-
strated that a single large event such as the European heat and drought summer
2003 alone might undo several years of ecosystem carbon sequestration (Ciais
et al., 2005), thus potentially jeopardizing the terrestrial carbon sink potential
(Lewis et al., 2011).

A widely debated question in this realm is whether the observed changes in
the occurrence of climatic extremes and associated impacts can be attributed to
specific changes in climate forcing, both anthropogenic or natural (Allen, 2003;
Stone and Allen, 2005; Stone et al., 2009). To this end, large climate model
ensembles are needed in order to derive robust probabilistic conclusions about
changes in the odds of these events (Bindoff et al., 2013; Massey et al., 2015),
because direct assessments of rare extremes are often prohibited by the lack of
long and good quality observational time series. Hence, climate models are indis-
pensable tools to study present and future climate extremes on various spatial and
temporal scales, and the availability of such simulations is often a prerequisite for

studying climate impacts.
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However, despite considerable progress in recent years, global and regional
climate models typically exhibit biases in various statistical moments of their
simulated variables (Ehret et al., 2012; Wang et al., 2014), which often impedes
direct assessments of climate extremes (Otto et al., 2012; Sippel and Otto, 2014)
or simulating impacts (Maraun et al., 2010; Hempel et al., 2013). These biases
are often due to an imperfect representation of physical processes in the models,
parametrisations of sub-grid scale processes, and an over- or underestimation of
feedbacks with the land-atmosphere or ocean-atmosphere feedbacks (Ehret et al.,
2012; Mueller and Seneviratne, 2014). Due to the various origins of model biases,
these biases are frequently varying depending on weather patterns both spatially
and temporally, for instance in the distributed weather@home ensemble-based
modelling framework (Massey et al., 2015) or in an ensemble of regional climate
models (Vautard et al., 2013).

To alleviate this issue, various bias correction schemes have been developed in
recent years that generally aim to statistically transform biased model output in or-
der to derive more realistic simulations (see e.g. Maraun et al., 2010; Teutschbein
and Seibert, 2012). To do so, a statistical relationship (‘transfer function’) is
built between the statistical distribution of an observed and simulated variable
(Piani et al., 2010). Such methods span a wide range from very simple paramet-
ric transformations adjusting simulated means to observations (i.e. also called
the ‘delta method’ (additive) or ‘linear scaling’ (multiplicative), (Teutschbein and
Seibert, 2012)) to sophisticated, nonparametric approaches that aim to correct var-
ious statistical moments of the simulated distributions such as quantile mapping
approaches (Wood et al., 2004; Gudmundsson et al., 2012).

However, the application of bias correction implicitly requires that a range
of assumptions are met, which might be questionable in many cases and are
discussed in detail in Ehret et al. (2012). Most importantly, the application of
bias correction implicitly assumes that the statistical transformation improves the
simulated output time series (‘effectiveness’), whilst the signal of interest, e.g.
the climate change signal or properties of the extremes, remains accurately de-
tectable (‘reliability’). Those assumptions are not always fulfilled since statistical
bias correction methods are not based on physical principles, but operate rather

heuristically on an observed model-data mismatch. To this end, even relatively
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simple methods that are designed to adjust ‘only’ simulated long-term monthly
means to observations (e.g. Hempel et al., 2013) lack a sound physical ratio-
nale to whether these adjustments are to be made additively or multiplicatively.
Further, the assumption of time invariant biases that currently underlies state-of-
the-art bias correction procedures (Christensen et al., 2008; Ehret et al., 2012)
might be especially critical for century-long climate simulations spanning sev-
eral degrees of warming (Christensen et al., 2008; Buser et al., 2009) including
changing land-atmosphere feedback processes (Seneviratne et al., 2006). Recent
studies have shown that this assumption is questionable for future climate simu-
lations (Maraun, 2012; Bellprat et al., 2013), and have made attempts to address
time-dependent biases.

Furthermore, an adjustment of daily variability does not necessarily improve
monthly statistics, thus emphasizing the role of time scales at which bias cor-
rection is conducted (Haerter et al., 2011). Lastly, if impact simulations are to
be conducted with bias-corrected output of numerical climate models, the multi-
variate correlation structure between climate variables deserves attention: Most
bias-correction schemes that are currently in use to simulate impacts have been
suggested to correct each variable separately (Hempel et al., 2013) and hence de-
pendencies between variables are often not retained. This is especially critical
for assessments of extreme events and ‘compund events’ (Leonard et al., 2014),
where inter-variable interactions, such as soil moisture-temperature feedbacks
might play an important role (Seneviratne et al., 2006). Although recent progress
has been made to derive bivariate bias correction schemes (Hoffmann and Rath,
2012; Piani and Haerter, 2012; Li et al., 2014), to the best of our knowledge cur-
rently no bias correction scheme retains a multivariate correlation structure of a
larger set of input variables for impact simulations.

In conclusion, accounting for biases in climate model output is crucial in order
to produce credible climate model simulations. Nonethless, statistical transfor-
mations are to be applied with caution and the changes induced to the simulated
statistical moments, multivariate dependencies and spatio-temporal patterns de-
serve considerable attention. Since the tails of statistical distributions are espe-
cially sensitive to changes in statistical moments such as the mean and variance

(Katz and Brown, 1992), the latter holds in particular for assessments of extreme
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events and highlights the need for physically consistent ways to alleviate climate
model biases.

In this paper, we demonstrate how a physically consistent bias correction of a
regional climate model ensemble might aid to better simulate climatic extreme
events and impacts in the terrestrial biosphere (see Figure 5.1 for the method-
ological workflow of the paper).

First, we introduce a novel methodology to alleviate biases in the output of
climate model ensembles that successfully circumvents major deficiencies of sta-
tistical bias correction (Section 5.3): an ensemble-based probabilistic resampling
approach retains the physical consistency of the regional climate model output.
This includes the preservation of the multivariate correlation structure, and the
procedure is shown to considerably improve the simulation of various statistical
moments of the simulated variables. Secondly, we assess contemporary tem-
perature and precipitation extreme events in Central Europe on monthly to sea-
sonal time scales by comparing a widely used ‘standard’ statistical bias correc-
tion methodology (Hempel et al., 2013) with the original model simulations and
the probabilistic resampling (Section 5.4.1 and 5.4.2). This evaluation also fo-
cuses on the uncertainty induced by different observational datasets used as a
basis for any bias correction approach. Thirdly, we explicitly test how differently
corrected climatic data propagates into the simulation of impacts on major com-
ponent fluxes of terrestrial carbon (net ecosystem exchange (NEE), gross primary
production (GPP) and ecosystem respiration (Reco)) and water cycling (actual
evapotranspiration, AET) in the terrestrial biosphere using a dynamic vegetation
model (LPJmL, Section 5.4.3). To this end, we demonstrate that different ways to
deal with biases in climate simulations yield both qualitatively and quantitatively
different results regarding simulated impacts, which affect both central moments

of the distribution as well as extremes and variability.

5.2. Data

5.2.1. Climate model simulations

In this study, regional climate model ensemble simulations spanning 26 years

(1986-2011) with approx. 800 ensemble members per year from the weather @home
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FIGURE 5.1.: Methodological workflow of the study.

distributed computing platform are investigated (Massey et al., 2015).

a) Generation of regional cli-

mate model simulations using a large ensemble modelling framework (cli-
mateprediction.net/weatherathome). b) Adjustment of biases in the regional
climate model’s output. c) Assessment of weather and climate extreme
events. d) Ensemble simulation of ecosystem-atmosphere fluxes of carbon

and water using the LPJmL model.

The

‘atmosphere-only’ simulations were conducted over the European region (iden-
tical to the EURO-CORDEX region Giorgi et al., 2009) using a regional model
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(HadRM3P) on a rotated grid nested into the global HadAM3P model. Both
models share the same model formulation and are described in Pope et al. (2000).
The regional (global) simulations are run with a spatial resolution of 0.44°x0.44°
(1.875°x1.25°) with 19 vertical levels, and the temporal resolution is set to 5
(15) minutes (Massey et al., 2015). The models are driven by observed sea sur-
face temperatures and sea ice fractions, the observed composition of the atmo-
sphere (greenhouse gases, aerosols) and anomalies in the solar cycle (Massey
et al., 2015). To derive different ensemble members, the initial conditions of the
driving GCM are perturbed on 1st December of each 1-year simulation (ibid.).
For further analysis and bias correction, the ensemble simulations were remapped
to 0.5 © spatial resolution using a conservative remapping scheme (Jones, 1999).

Massey et al. (2015) demonstrate that the ensemble setup described above pro-
duces a realistic representation and statistics of European weather events, includ-
ing the extremes for most seasons and regions. However, despite these encourag-
ing results, a relatively large mismatch remains between the statistical distribution
of the ensemble simulations and the observations in Northern hemisphere sum-
mer, which holds for the means of simulated seasonal temperature and precipita-
tion (Massey et al., 2015) as well as for higher statistical moments, shown in the
Supplement against the ERA-Interim reanalysis dataset (Dee et al., 2011). Espe-
cially in more continental parts of the European model region, HadRM3P shows
a pronounced hot and dry bias in simulated summer weather (Supplementary On-
line Figures S1-S3b). However, note that the ensemble setup still captures the
entire range of the observed distribution (Supplementary Online Figure S1). In
HadRM3P, these biases are likely related to an imperfect parametrisation of cloud
processes in the model, leading to an overestimation of incoming solar radiation,
which in turn triggers warm and dry summer conditions (R. Jones, 2015, pers.
comm.) that are further amplified by strong soil moisture-temperature coupling
in the model (Supplementary Online Figure S4). In this context, it is worthwhile
to note that these biases are not a peculiarity of the regional climate model em-
ployed in this study, but indeed hold for many dynamically downscaled regional
climate model simulations over Europe (Buser et al., 2009; Boberg and Chris-
tensen, 2012).
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5.2.2. Simulation of atmosphere-biosphere carbon and water fluxes

To assess terrestrial biosphere impacts of bias correcting regional climate simu-
lations, we simulate ensembles of atmosphere-biosphere fluxes of carbon (NEE,
GPP, Reco) and water (AET) using the Lund-Potsdam-Jena managed land scheme
(LPJmL, Version 3.5, Sitch et al., 2003; Bondeau et al., 2007), a state-of-the-art
process-based dynamic global vegetation model that accounts for human land use.
We follow Schulze (2006) and Chapin III et al. (2006) in their definition of major
components of carbon cycling in terrestrial ecosystems: Gross primary produc-
tivity (GPP) denotes the vegetation’s gross photosynthetic uptake of carbon from
the atmosphere, whereas ecosystem respiration (Reco) is defined as the respira-
tory release of carbon by plants and microbes in the ecosystem, i.e. including both
(autotrophic) plant respiration and (heterotrophic) soil organic matter decompo-
sition. Net ecosystem exchange (NEE) constitutes the net carbon flux from the
ecosystem to the atmosphere, i.e. the difference between Reco and GPP.

LPJmL simulates vegetation dynamics (growth, competition and mortality) and
fully coupled cycling of carbon (photosynthesis, autotrophic & heterotrophic res-
piration) and water (transpiration, evaporation, interception, runoff) in terrestrial
ecosystems and managed systems (Sitch et al., 2003; Gerten et al., 2004; Bondeau
et al., 2007). The model is driven with monthly or daily climatic input data (tem-
perature, precipitation, incoming shortwave radiation & net longwave radiation),
atmospheric carbon dioxide concentrations and soil texture. Vegetation structure
in LPJmL is characterised by the fractional coverage of 11 plant functional types
that differ in their bioclimatic limits and ecophysiological parameters. Vegetation
dynamics and competition are explicitly represented using a set of allometric and
empirical equations and updated annually (Sitch et al., 2003).

GPP in LPJmL follows the process-oriented coupled photosynthesis and water
balance scheme of the BIOME3 model (Haxeltine and Prentice, 1996). Sub-
sequently, autotrophic (growth and maintenance) respiration is subtracted from
GPP, and the net carbon uptake is allocated to plant compartments based on a
set of allometric constraints (Sitch et al., 2003). Ecosystem heterotrophic respi-
ration depends on temperature and moisture in each litter and soil carbon pool;
carbon decomposition dynamics are simulated as first-order kinetics with speci-

fied decomposition rate in each pool (Sitch et al., 2003). Water cycling in LPJmL
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has been improved by Gerten et al. (2004) and Schaphoff et al. (2013), where
actual evapotranspiration (the sum of evaporation, transpiration and interception)
is computed as a function from atmospheric demand and soil moisture supply.
Phenology and photosynthesis-related parameters in the LPJmL version used in
this paper have been optimised against remote sensing observations for an im-
proved simulation of natural vegetation greenness dynamics (Forkel et al., 2014),
including the introduction of a novel phenology scheme.

LPJmL has been applied in a range of studies assessing ecosystem responses
to anomalous climatic conditions (Rammig et al., 2015; Van Oijen et al., 2014;
Zscheischler et al., 2014c¢; Rolinski et al., 2015). Rolinski et al. (2015) argued that
the model might be able to capture various ecosystem physiological responses to
climatic extreme events such as heat or drought through various pathways. These
include a water stress response through reduced stomatal conductance, which in
turn decreases both photosynthetic carbon uptake and transpiration. Further, the
model responds to very high temperatures by a photosynthesis inhibition and in-
creased respiration (Rammig et al., 2015).

In this paper, we use the weather @home climate data to derive ensemble-based
simulations of the functioning of terrestrial ecosystems. LPJmL simulations are
conducted in natural vegetation mode (i.e. no human land use, fire or permafrost)
in 0.5° spatial resolution and monthly time steps over Central Europe. For each
bias-corrected ensemble dataset, 2000 years of spinup to equilibrate soil carbon
pools were conducted, using randomly chosen years from the first 10 years of
the HadRM3P ensemble. Subsequently, atmosphere-biosphere fluxes were sim-
ulated at the monthly time scale for 1986-2010 over Central Europe (see Fig-
ure 4.1 for methodological workflow). This procedure was repeated five times
to check that no carry-over effects from the randomised spinup affect simulated
biosphere-atmosphere carbon fluxes in the transient period. Since this was not
the case, differences in carbon and water fluxes and their extremes can be directly
attributed to the bias correction of the climatic forcing in the transient period, and

are analysed in Section 5.4.3.
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5.2.3. Observations

Any statistical assessment or correction method of biases requires reference
datasets, and the quality of bias adjustment is thus restricted by the quality of
observations or reanalysis data available (Ehret et al., 2012; Hempel et al., 2013).
Consequently, the sensitivity of ‘bias corrected’ model output to any given set of
observations needs to be tested. In this study, a range of observational datasets
is used in order to characterise uncertainty induced by using different observa-
tions for bias correction. In total, seven different temperature and precipitation
datasets consisting of gridded observations/reanalysis were used (one at a time)
for the univariate bias correction (Section 5.4.2) and are detailed in Table 5.1. The
simultaneous correction of multiple variables for the impact simulations in the ter-
restrial biosphere presented in Section 5.4.2 are conducted using ERA-Interim as
reference dataset (Dee et al., 2011, see Table 5.1).

To conduct the sensitivity analysis of climatic extremes and associated bio-
sphere impacts to the type of bias correction applied, we select one focus region
in Central Europe. This region roughly encompasses Germany (47.5 — 55.0°N,
6.0 — 15.0°E) and consists of temperate mid-latitude climate with maritime in-
fluence to the North-West and more continental characteristics to the East. In
addition, to sample local (i.e. grid cell scale) variability we test different bias cor-
rection scheme on one single grid cell located in Central Germany (‘Jena pixel’,
50.75°N, 11.75°E).

5.3. Methods

In this section, we describe the different bias correction methods deployed in this
study. First, a bias correction methodology for impact simulations that has been
adopted widely is summarised (Hempel et al., 2013). Second, we introduce the
novel resampling-based bias correction scheme and lastly the methodologies for

evaluation are described.

5.3.1. Statistical bias correction

Hempel et al. (2013) presented a bias-correction that is designed to preserve long-
term trends in simulated impacts and that has been used widely in simulating
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TABLE 5.1.: Datasets used for bias correction and evaluation.

Name of dataset

Climate variables

Domain & Orig. Res-
olution

Provider & Reference

Berkeley Earth Observations (grid-
ded experimental)

Climate Research Unit (CRU),
High-resolution gridded datasets

CRUNCEP
Global Precipitation  Climatol-
ogy Centre monthly precipitation

(GPCC)
E-OBS gridded dataset

ERA-Interim, Version 2 (ERAI)

Model Tree Ensembles

‘WATCH-harmonised
monised)

(WFDhar-

WATCH ERA-Interim (WFDEI)

Tair

Tair, Precip.

Tair, Precip.,
SWdown, LW-
down

Precip.

Tair, Precip.

Tair, Precip.,
SWdown, LW-
down, LE

LE

Tair, Precip.,
SWdown, LW-
down
Tair, Precip.,
SWdown, LW-
down

Europe, 0.25°,
monthly, 1850-2012
Global, 0.5°,

monthly, 1901-2012

Global, 0.5°, daily,
1948-2012

Global, 0.5°,
monthly, 1901-2012

Europe, 0.5°, daily,
1951-2014

Global, ~ 0.7°, 6-
hourly, 1979-2014

Global 0.5°, monthly,
1982-2011
Europe, 0.5°, daily,
1901-2012

Global, 0.5°, daily,
1979-2012

http://www.berkeleyearth.org, Rohde
etal. (2013)

Climate Research Unit, http://
www.cru.uea.ac.uk/cru/data/hrg/,
Harris et al. (2014)
http://dods.extra.cea.fr/data/
p529viov/cruncep/readme.htm

Global Precipitation Climatology  Center
(GPCC), http://gpcc.dwd.de/, Schneider
etal. (2014)

European Climate Assessment & Dataset
(ECA&D), http://www.ecad.eu, Haylock
et al. (2008)

European  Centre for Medium Range
Weather  Forecasts (ECMWEF), http:
//apps.ecmwf.int/datasets/data/
interim-full-daily/, Deeetal. (2011)
MPI Biogeochemistry Jena, Jung et al. (2011)

MPI Biogeochemistry Jena, Weedon et al.
(2011); Beer et al. (2014)

Weedon et al. (2014)



http://www.berkeleyearth.org
http://www.cru.uea.ac.uk/cru/data/hrg/
http://www.cru.uea.ac.uk/cru/data/hrg/
http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm
http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm
http://gpcc.dwd.de/
http://www.ecad.eu
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
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effects of climatic changes in different sectors such as water, agriculture, ecosys-
tems, health, coastal infrastructure, and agro-economy (see Warszawski et al.,
2014, for an overview).

The approach builds on earlier, conventional statistical bias correction schemes
(Piani et al., 2010; Haerter et al., 2011) and is based on linear transfer functions

of the form
Teoor = @+ b 5.1

Here, x and z,, represent the simulated and corrected climatic variable, a and b
are coefficients to be calibrated.
In Hempel et al. (2013) the transfer function is applied additively (for temper-

ature, i.e. b = 1), such that

a = Tops — Trmod; 5.2)

where T},,,q and T, represent the means of simulated and observed monthly
temperatures, respectively.

To account for positivity constraints for precipitation and radiation compo-
nents, Hempel et al. (2013) suggested a multiplicative adjustment of those vari-
ables (i.e. a = 0), such that

(5.3)

These parametric transformations are applied on each grid cell and for each
month separately to account for potential temporal and spatial structure in the bi-
ases. By applying this transfer function, long-term monthly means of the sim-
ulated distributions are matched with those in observations for each grid cell
(Hempel et al., 2013). In addition to adjusting monthly means, Hempel et al.
(2013) also adjust daily variability about the monthly means, but (importantly)
the year-to-year variability at monthly time scales remains unchanged. In our
present analysis, we follow this conventional bias correction scheme for compar-
ison and denote it by ‘ISIMIP’.
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Furthermore, to isolate the effects of bias-correcting the full suite of impact
variables (temperature, precipitation and radiation) vs. correcting simulated pre-
cipitation only, we conduct impact simulations with a ‘precipitation only’ bias-
corrected scenario (‘PRECIPCOR”).

5.3.2. A novel resampling-based ensemble bias correction scheme

In this subsection, we introduce a novel ‘bias correction scheme’ suitable for
ensemble simulations that retains the physical consistency and multivariate cor-
relation structure of the model output. The idea is to resample plausible ensemble
members from a large ensemble simulation given the statistical distribution of
an observable meteorological metric (‘constraint’). The procedure is illustrated
using the weather@home ensemble described above.

The largest biases in the HadRM3P simulation occur in the summer season
(JJA) over the European model domain, where the model ensemble produces too
frequent and too pronounced hot and dry conditions (Massey et al., 2015). Im-
portantly however, the ensemble spans the entire distribution of observed summer
conditions in most parts of Europe, i.e. some (but too few) ensemble members
produce relatively wet and cold summers. Therefore, our resampling-based cor-
rection approach is designed to alleviate the representation of summer conditions
in the model ensemble.

The bias correction procedure consists of the following steps and is illustrated

in Figure 5.2:

1. Define an observable meteorological metric that is poorly represented (‘bi-
ased’) in the model ensemble. In this paper, we use summer mean temper-
atures over Central Europe, which are relatively well-constrained in obser-
vational datasets.

2. Estimate the probability distribution function of the meteorological con-
straint from observational datasets using e.g. a kernel density fit ( fobs(x),
see e.g. Figure 5.2a, blue line for an illustration), where = denotes the con-
straint. Here, we use a Gaussian kernel with reliable data-based bandwidth

selection (Sheather and Jones, 1991) fitted over the observed meteorologi-
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cal constraint for the period 1986-2011 using various observational datasets

(one at a time).

3. Estimate the probability distribution of the meteorological constraint in the
model ensemble using the same estimation procedure as above over all en-
semble members and all years ( fmod(x), see Figure 5.2a, red line). The
deviation between the red and blue line in Figure 5.2a illustrates the tem-

perature bias in the weather@home ensemble.

4. Derive a transfer function that maps any given quantile in the observa-
tions (gobs,x) to the respective quantile in the model ensemble (¢mod, x
see Figure 5.2b), such that ¢,,0q, x = TF(gobs, x ) using the fitted kernels
fobs(x) and fmod(m) to determine empirical quantile functions. For exam-
ple, a ‘median temperature’ summer over Central Europe (approx. 17.2°C)
would correspond to the 50th percentile in the observations-based kernel
(by definition). The transfer function would then map the 50th percentile
in fobs to the corresponding 20.4th percentile in fmod (i.e. average sum-
mer temperatures of 17.2° would correspond to the 20.4th percentile in
the model ensemble, see Figure 5.2b). In this study, we use Cubic Her-
mite splines (Fritsch and Carlson, 1980) to determine the transfer function
shown in Figure 5.2b.

5. Derive a new ‘bias-corrected’ ensemble (of sample size n) by randomly
resampling n times from observed percentiles (gops,x) and retaining the
ensemble member that corresponds to g,,04, x as given by the transfer func-

tion (n = 800 per year in our study).

Hence, the outlined procedure does not adjust any output variable in the model
ensemble thus preserving physical consistency, but rather selects plausible en-
semble members. This procedure invariably leads to a reduction in the effective
ensemble size: For example in the HadRM3P ensemble, roughly the hottest 20%
of simulations are effectively not chosen for the resampled ensemble since they
are implausibly hot (Figure 5.2a). However, an evaluation of the sample size in
the bias corrected ensemble shows that at least 4% of the ensemble simulations

match any decile of observations (Figure 5.2d, in an unbiased ensemble exactly
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10% of ensemble simulations would match each decile of observations), corre-
sponding to an effective sample size of at least approx. 1000 model years (=
ensemble members) per decile of observations (Figure 5.2d).

In conclusion, the outlined approach to bias correction is conceptually similar
to earlier ideas of assigning weights to different regional climate model projec-
tions based on each model’s performance in order to derive probabilistic multi-
model projections (Piani et al., 2005; Collins, 2007; Knutti, 2010; Christensen
et al., 2010). However, instead of a weight assignment specific ensemble mem-
bers are selected and combined into a new ensemble using the statistical distribu-

tion of observed meteorological constraints.

5.3.3. Analysis methodology

In Section 5.4.1 the outlined bias correction method is evaluated for the simula-
tion of temperature, rainfall and radiation using standard evaluation metrics such
as seasonal mean values and interannual variability. Further, we evaluate soil
moisture coupling in the original and bias corrected ensemble against reanaly-
sis data and upscaled observations by computing the correlation between sum-
mer mean temperatures and the mean latent heat flux following Seneviratne et al.
(2006).

Moreover, we analyse empirical return times of the original and bias-corrected
ensembles that are derived by plotting each ensemble value against its rank both
for climatological extremes (Section 5.4.2: monthly summer temperatures and
cumulative summer rainfall) and simulated ecosystem-atmosphere annual fluxes
of water and carbon (Section 5.4.3).

To further understand discrepancies between the bias-corrected ensemble sim-
ulations and observed climate extremes (Section 5.4.2), we characterise the tails
of simulated and observed variables by extreme value theory (Coles et al., 2001).
Hence, generalised extreme value distributions (GEV) are derived from monthly
temperature and precipitation in a procedure similar to Sippel et al. (2015a), i.e.
by resampling block-maxima in randomly concatenated 10-year sequences of en-
semble data and fitted to a GEV model using generalised maximum likelihood
estimation. In observational data, only a relatively small sample size is avail-

able (mostly 1901-2014 only) that is additionally plagued by non-stationarity and
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FIGURE 5.2.: Illustration of ensemble-based resampling methodology. a) Empirical cu-
mulative density function of JJA mean temperatures over Central Europe
in ERA-Interim. The non-parametric fit to the cumulative density using
a Gaussian kernel for observations and the model ensemble are shown by
the blue and red lines, respectively. b) A transfer function between the ob-
served and modelled distribution is derived using Cubic Hermite splines.
¢) Quantile-quantile plot for the original and resampled ensemble for the
JJA temperature constraint. d) Fraction of original ensemble members in
percentile bins of the observed distribution (blue line in (a)), i.e. ‘effective
ensemble size’ after resampling.

does not match the period in which ensemble simulations are available (1986-

2011). Hence, for monthly temperatures we subtract the trend and seasonal cycle
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from the original time series using Singular Spectrum Analysis (von Buttlar et al.,
2014), and subsequently resample (monthly) summer temperature anomalies (for
the whole time series) by adding a trend and seasonal cycle component drawn
randomly from the period of available ensemble simulations (1986-2011, each
observational dataset is analysed separately). Approximate stationarity was as-
sumed for seasonal precipitation, and hence no further adjustments were made.
Lastly, GEV models were fitted to the observations following the procedure as

described above.

5.4. Results

This section is structured as follows: First, we evaluate the bias correction pro-
cedure both for resampling based on an area mean and grid cell based constraint.
Second, climate extreme statistics and their sensitivity to bias correction schemes
are investigated (Section 5.4.2). More specifically, the probabilistic resampling
scheme introduced in sect. 3.2 is evaluated against a conventional bias correction
scheme (Hempel et al., 2013, Section 5.3.1) and compared against the uncorrected
simulations and different observational datasets. Third, we illustrate how biases
and their ‘correction’ propagate into climatic impacts exemplified by simulations

ecosystem water and carbon fluxes in Central European natural vegetation.

5.4.1. Evaluation of resampling bias correction

An evaluation of the distribution of variables in the resampled ensemble in Central
Europe shows that it not only improves the simulation of seasonal mean tempera-
tures (which it does by construction), but also yields considerable improvements
to the simulation of rainfall and radiation components (Figure 5.3). This suggests
that these biases are related to specific synoptic situations in summer, justifying to
apply the bias correction approach to summer months. Hence, the multivariate co-
variance structure between temperature, precipitation and radiation as simulated
by HadRM3P appears to be well represented in the model simulations posterior to
the updating procedure given the reanalysis/observational data. Moreover, while
this procedure also improves the simulation of summer temperatures and precipi-
tation on a monthly time scale, virtually no changes in the ensemble statistics are
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induced to non-summer months (Supplementary Online Figure S1), indicating
that the time scales of temporal decorrelation are short enough for a successful
application of the resampling procedure. However, while conventional statistical
bias correction following Hempel et al. (2013) adjusts monthly means of the dis-
tributions of precipitation and radiation (by construction), changes are induced by
the multiplicative adjustment to the width and shape of the distribution, including

its tails (Figure 5.3, see also Section 5.4.2).
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FIGURE 5.3.: Evaluation of the resampling bias correction methodology for the study area
in Central Europe for (a) temperature, (b) precipitation, (c) incoming short-
wave radiation, and (d) incoming long-wave radiation. Both sides of each
violin are constructed as rotated, equal-area kernel density estimates, and a
standard boxplot is drawn inside each violin.

An evaluation of the resulting spatial patterns of the resampling bias correction
shows that the representation of the simulated statistical distributions of temper-
ature and precipitation are considerably improved in Central Europe (area mean
constraint) and across the entire European model region (single grid cell con-
straints, Supplementary Online Figures S2a—S3b). Remarkably, this holds not
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only for seasonal averages, but also for higher statistical moments such as the
inter-decile range.

Furthermore, we test the representation of land-atmosphere coupling in the
original and resampled model ensemble by investigating the correlation strength
between summer mean temperatures (T) with latent heat (LE) fluxes following
Seneviratne et al. (2006). The original HadRM3P ensemble shows strong water
limitation of evapotranspiration in summer (negative correlation between LE and
T) for most temperate and Mediterranean European regions, thus overestimating
soil moisture control compared to reanalysis data and upscaled observations (Sup-
plementary Online Figure S4). In the resampled ensemble, land-atmosphere cou-
pling remains strongly soil moisture controlled in the Mediterranean regions, but
reduces in temperate European regions, resulting in spatial patterns that resemble
those of land-atmosphere coupling in ERA-Interim (Supplementary Online Fig-
ure S4). The latter finding indicates that the procedure of eliminating implausible
ensemble members also yields an improved representation of physical processes

such as land-atmosphere coupling in the resampled ensemble.

5.4.2. Sensitivity of climatic extremes to bias correction
Summertime temperature extremes

Summertime monthly extreme temperatures are shown in Figure 5.4 as a spatial
average for the study region located over Central Europe and for an illustrative
and randomly chosen grid cell (‘Jena grid cell’).

The location, slope and shape of the lines in the return time plots shown in Fig-
ure 5.4 reveal that the tails of simulated monthly temperature extremes are highly
sensitive to the type of bias correction applied, both for a regional average and
a single grid cell: Uncorrected simulations overestimate both location and scale
(i.e. slope of the line in the return time plot) of positive temperature anomalies
in summer, while this is not the case for anomalously cold summer months (Fig-
ure 5.4). An additive adjustment of monthly means (orange lines in Figure 5.4,
Hempel et al., 2013) preserves slope and shape of the tail, i.e. preserves the year-
to-year variability of simulated monthly temperatures (and biases therein) in the

ensemble. Note that this procedure cannot account for the asymmetry between
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the upper and lower tail of simulated monthly temperatures - i.e. the offset cor-
rection leads to an overcorrection of cold months, whereas the statistics of the hot
tails improve only marginally. This is confirmed by a statistical extreme value
analysis (Supplementary Online Figures S5a—S6b): The temperature offset ap-
proach adjusts only the location of the GEV yielding spurious artefacts in the
(originally well simulated) cold tail, whilst not accounting fully for the upper tail
due to the aforementioned asymmetries. This is a fundamental drawback of using
linear parametric transfer functions, i.e. even if the variability of the simulated
distributions would have been adjusted along with the means (see e.g. Sippel and
Otto, 2014), the outlined ‘asymmetry’ issue would not necessarily improve. On
the other hand, the probabilistic resampling procedure alters both the location and
slope of the lines in the return time plot, where resampling based on a spatial av-
erage as well as on a grid cell constraint yield relatively similar representations of
the tails. An evaluation of the extreme value statistics shows that the probabilis-
tic procedure indeed considerably improves the statistical characteristics of the
simulated tails in the ensemble compared to (long-term) observations (Supple-
mentary Online Figure S5a-S6b). To this end, resampling the original ensemble
changes location and scale of the extreme value distributions, but the shape pa-
rameter of the tails remain effectively unchanged. Some caution is required due
to the relatively scarce availability of observed monthly mean temperatures (i.e.
1901-2014), which induces considerable uncertainties to the parameters of the fit-
ted GEV distributions. Moreover, the different time periods of observations and
ensemble simulations (1986-2011) impede a direct ‘evaluation’ of the bias cor-
rection. Nonetheless, this indicative comparison yields very promising results of
bias-correcting without invasive changes to the simulated statistical distribution.
Lastly, our analysis shows that any bias correction based on a single grid-cell
level induces some uncertainty due to the choice of observational dataset. This
is an important issue to consider if impact model simulations on a grid cell scale
are to be conducted, whereas regional averages are not as strongly affected. Fig-
ure 5.4 shows that resampling the ensemble based on a spatial average constraint
reduces this uncertainty as compared to adjusting monthly means or resampling

on a grid cell scale.
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FIGURE 5.4.: Return times of hot (a,c) and cold (b,d) temperature extremes in summer
(JJA) in the original regional model simulations (‘ORIG’), in the resampled
ensemble (‘PROBCOR’) and the mean-adjusted ensemble (‘ISIMIP’). Plots
are shown as spatial averages over Central Europe (top panels) and for an
illustrative grid cell (Jena, bottom panels). Black dots in each plot indicate
empirical return times estimated from observations taken from 7 different
datasets that were used for bias correction.

Summertime rainfall extremes

We extend the analysis of the previous paragraph to investigate how resampling
based on a temperature constraint alters the representation of summer precipita-
tion in a large ensemble simulation. The original HadRM3P simulated summer
seasons are too dry in average over Central Europe, which is largely due to a
much too dry lower tail (Figure 5.5), whilst simulated heavy monthly precipita-

tion matches relatively well the available observational data (Figure 5.5).
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The tails of simulated (cumulative) seasonal precipitation are sensitive to bias
correction. As above, the plots in Figure 5.5 illustrate that a statistical adjustment
of the means can be detrimental to statistics of extremes and variability. For in-
stance, scaling monthly means to match observations (Hempel et al., 2013) leads
to an inflation of very wet seasons that are physically implausible given the ob-
servations (Figure 5.5, orange lines). Likewise, the (biased) dry tail in HadRM3P
improves only to a very limited extent if the scaling approach is used. The ex-
treme value analysis (Supplementary Online Figures S6a and S6b) shows that the
multiplicative adjustment changes both location and scale of the tail distribution
- and that both parameters are not necessarily improving (indeed often deterio-
rating, see e.g. scale parameters in Supplementary Online Figure S6a and S6b)
by applying a simple statistical bias correction. However, resampling based on
a temperature constraint yields a new ensemble, in which the simulation of both
tails has improved (Figure 5.5, Supplementary Online Figure S6b). Only minor
changes have been induced to the (well-simulated) wet tail, whilst the previously
strongly biased dry tail has considerably improved (Figure 5.5), indicating that
temperature-based resampling as deployed here successfully separates ‘plausi-
ble’ ensemble members from the (unrealistic) hot and dry members. The extreme
value analysis shows that resampling largely alters the location of the simulated
distribution of seasonal rainfall extremes, whilst the scale and shape of the tails
remain largely unchanged.

To conclude, it was shown that resampling based on a univariate observations-
based temperature constraint improves the simulation of rainfall variability and
extremes by teasing out ensemble members that are implausibly hot and dry in

our case study region.

5.4.3. The impact of bias correction on simulated ecosystem water and
carbon fluxes

In this subsection, we present HadRM3P-LPJmL ensembles of simulated fluxes
of carbon and water and discuss bias correction methods with a focus on the ex-
treme tails of the simulated distributions. Further, we investigate the sensitivity of
the simulated carbon fluxes to an accurate representation of rainfall in the climatic

input data.
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FIGURE 5.5.: Return times of wet (a,c) and dry (c,d) rainfall extremes in summer (JJA)
in the original regional model simulations (‘ORIG’), in the resampled en-
semble (‘PROBCOR’) and the mean-adjusted ensemble (‘ISIMIP’). Plots
are shown as spatial averages over Central Europe (top panels) and for an
illustrative grid cell (‘Jena pixel’, bottom panels). Black dots in each plot
indicate empirical return times estimated from observations taken from 7
different datasets that were used for bias correction.

Annual mean fluxes across the large ensemble of NEE, GPP, Reco, and AET
are shown in Table 5.2 for the 1986-2010 period for each bias correction and the
control simulation. Conventional statistical bias correction that matches monthly
means of the HadRM3P ensemble exactly to those of the ERA-Interim control
climate simulation yields differences in fluxes of —6.6%, —7.5% and —4.7%
for GPP, Reco and AET, respectively. Note that differences in the resampled
HadRM3P ensemble are less pronounced (—4.2%, —4.5%, and —2.0%, respec-
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tively), although no attempt has been made to adjust the statistical properties of
the model output. Those differences in simlated annual mean fluxes are related to
higher statistical moments of the statistical distributions and shown in Figure 5.6.

To this end, simulated GPP, NEE, and AET show strong asymmetry in their
simulated distributions (Figure 5.6): Negative anomalies in GPP and AET are
much more pronounced than positive ones; this holds also for NEE but with an
inverted sign (ecosystem carbon release corresponds to positive fluxes). How-
ever, the simulation of these extremes is highly sensitive to bias correction, where
the lower tails of GPP and AET in the original and statistically bias corrected
ensemble strongly overestimate reductions in carbon and water flux. In contrast,
negative GPP and AET anomalies in the resampled ensemble (corresponding to
positive ones in NEE) exhibit a much less pronounced lower tail and asymmetry
and agree well with the control simulations.

For example, a positive anomaly in NEE corresponding to a 30-year return
period exceeds +200 g C m~2 year! in the conventionally bias corrected sim-
ulations and the original ensemble, whereas such an anomaly in the resampled

2 year~! (Figure 5.6b) roughly corre-

ensemble hardly reaches +150 g C m™
sponding to an empirical 30-year return event in the ERA-Interim control sim-
ulations. Similar arguments can be made for negative anomalies in annual GPP
and annual AET (Figure 5.6). The different tails of the simulations occur because
the original meteorological ensemble implies large hot and dry biases in summer,
inducing negative anomalies in ecosystem-atmosphere carbon and water cycling.
These biases are not accounted for by conventional statistical bias correction but
they are alleviated if an ensemble resampling scheme is used (see previous sub-
section). However, this is remarkable because monthly means of precipitaton in
PRECIPCOR and ISIMIP are identical to the control climate simulation, which
highlights the importance to consider statistical moments beyond the mean for
impact simulations.

However, note that the positive tails of GPP and AET are not as strongly af-
fected. Furthermore, ecosystem respiratory fluxes show a relatively lower sensi-
tivity to bias correction (i.e. to hot and dry summer conditions).

Further, we investigate whether different bias correction schemes induce dif-

ferent sensitivities of LPJmL simulated carbon fluxes to rainfall. Here, the rela-
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FIGURE 5.6.: LPJmL simulated distributions of ecosystem-atmosphere carbon and wa-
ter fluxes for Central European natural vegetation for each bias correction
scheme. Each row shows the simulated distribution and the upper and lower
tail of NEE (a,b,c), GPP (d,e.f), Reco (g,h,i) and AET (j.k,1), respectively.
a,d,g,j) Both sides of each violin are constructed as rotated, equal-area ker-
nel density estimates, and a standard boxplot is drawn inside each violin.

tionship between a growing season rainfall proxy (April-September rainfall sums)

and annual NEE is characterised using piecewise linear regression (Figure 5.7a-
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TABLE 5.2.: Annual mean ecosystem-atmosphere water and carbon fluxes simulated by

LPJml.

Bias Correction Method NEE (g C GPP (g C Reco (g C ET (mm
m—2a-1) m—2a-1) m—2a-1) a—l)

HadRM3P-ORIG —26.5 1206.4 1179.9 501.5

HadRM3P-PROBCOR —-30.3 1295.8 1265.5 525.9

HadRM3P-ISIMIP —31.6 1262.3 1230.7 525.2

HadRM3P-PRECIPCOR —38.2 1263.2 1225.0 511.2

ERAI-CONTROL —28.4 1353.3 1324.8 536.7

d). Figure 5.7e shows that LPJmL simulated annual NEE responds to rainfall
in a roughly similar way across different bias correction schemes, which high-
lights the need of an accurate representation of precipitation in climate impact
simulations in the terrestrial biosphere. However, characterizing the annual NEE
response for each quantile of the rainfall distribution shows that the resampled
rainfall distribution (PROBCOR) leads to a less negative NEE response to rainfall
(larger slopes in Figure 5.7f), whereas a dry summer tail (in the ORIG, ISIMIP,
and PRECIPCOR simulations) yields a generally stronger NEE response (more
negative sloped in Figure 5.7f).

In conclusion, different bias correction methods induce different statistical
properties of simulated ecosystem-atmosphere fluxes of carbon and water. This
affects the variability and skewness of NEE, GPP and AET simulations (as shown
in Figure 5.6), where hot and dry biases in summer imply a disproportional reduc-
tion in carbon and water fluxes in climatically ‘unfavourable’ years. Conventional
statistical bias correction cannot account for this issue, whereas the novel proba-

bilistic bias correction schemes alleviates those biases to a very large extent.

5.5. Discussion

In this paper, we have introduced a novel ensemble-based resampling bias cor-
rection approach that retains the physical consistency and multivariate correla-
tion structure of regional climate model output. The approach thus relies on a
physically consistent set of climate model simulations (i.e. closure of water and
energy balances). The methodology is conceptually similar to earlier approaches

designed to constrain future probabilistic climate predictions based on observa-
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dRainfall) between regularly spaced quantiles of the rainfall distribution for
each bias correction scheme, shown as violin plots.
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tional constraints (Piani et al., 2005; Collins, 2007). Its application has been
shown in this paper to yield considerably improved simulations of weather and
climate extremes. Remarkably, the improvement holds for variables that have not
been constrained upon (i.e. constraining on seasonal mean temperatures improves
the representation of mean and extreme precipitation), which indeed emphasises
the importance to bias correct in a physically meaningful way.

Furthermore, simple but widely used statistical bias correction methodologies
(e.g. Hempel et al., 2013) have been evaluated with respect to the effect on the rep-
resentation of weather and climate extremes on monthly to seasonal time scales.
These methods cannot account for biases associated with e.g. specific synop-
tic situations that result in biases in higher statistical moments of the simulated
distributions, which indeed emphasises the importance to bias correct in a phys-
ically meaningful way. We demonstrated that this shortcoming of conventional
methodologies can be detrimental to statistics of weather and climate extremes
and their variability. More sophisticated statistical bias-correction schemes (see
Gudmundsson et al., 2012, for an overview) that might have an improved skill
in rectifying biases in higher statistical moments (such as e.g. asymmetries in
simulated distributions) have not been explicitly tested in this study. However,
the fundamental question of how physical consistency can be preserved after bias
correction (Ehret et al., 2012), including multivariate dependencies between vari-
ables, remains elusive. Therefore non-linear and nonparametric bias correction
techniques (Gudmundsson et al., 2012) might potentially improve statistics of ex-
treme events if a large enough sample of observations is available, but cannot
retain physical consistency (Sippel and Otto, 2014) and may ultimately fall short
for correcting a set of input variables.

To this end, we have explicitly simulated an ensemble of ecosystem-atmosphere
fluxes of carbon and water using a state-of-the-art biosphere model (LPJmL) in
order to test the sensitivity to bias correction. Similarly to above, we find that
bias correction induces strong effects on the representation of extremes and vari-
ability in carbon and water fluxes (Section 5.4.3). Mechanistically, the stark con-
trast between the bias correction schemes can be traced back to the sensitivity
of the LPJmL model to dry conditions (see e.g. Rammig et al., 2015; Rolinski
et al., 2015): NEE, GPP and AET in Central Europe are to a large extent driven
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by the availability of rainfall in the growing season, except for wet conditions,
under which the relationship levels off (Figure 5.7). Bias correction strongly
affects the variability and extremes of rainfall (as shown above), thus inducing
pronounced asymmetries in simulated water and carbon fluxes (Figure 5.7f, Fig-
ure 5.6). Therefore, our results highlight the importance to account not only for
biases in the mean but also for higher moments in the climatic input in order to
generate robust insights into the past, present and future climate impacts. Our
results demonstrate that physically consistent bias correction schemes might be
preferable for this task. Moreover, it has been shown recently that climatic drivers
exert multivariate controls on ecosystem responses such as phenology and veg-
etation greenness dynamics (Forkel et al., 2015), therefore accurate ecosystem
impact simulations requires bias correction schemes that preserve the correlation
structure of climatic data.

However, several limitations of the present methodology should be discussed:
First, probabilistic resampling based on a regional observational constraint can-
not account for biases on very large regional or continental scales if the biases
show a spatially or temporally heterogenous structure or gradients. In the lat-
ter case, resampling-based bias correction could lead to spurious artefacts in the
spatio-temporal structure of the bias-corrected model domain. Hence, a careful
evaluation of the ensemble resampling approach has to be made - particularly
with a focus on the spatial and temporal extent of the constraint and the resam-
pled ensemble: A trade-off exists between resampling on small domains (e.g.
grid-cell based) that is sensitive to the choice of observational dataset, and very
large domains that might be prone to a spatio-temporal bias structure. Secondly,
the resampling approach requires relatively large ensemble sizes to be effective:
in order to plausibly cover the climate space in any particular location, the simu-
lated ensemble should cover the entire observed distribution. However, this con-
dition does not necessarily restrict resambling-based bias correction methods to
large ensemble simulations: For example, under the assumption of ergodicity for
a given time period, resampling shorter time periods (e.g. single years) from
smaller ensembles such as CORDEX regional simulations (Giorgi et al., 2009)
would provide a promising topic for further study. In this context, the applica-

bility of the resampling methodology would depend on the remaining effective
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sample size after the resampling step. The latter is a function of the biases in the
model and the number of ensemble members available, and could be tested in
an evaluation step similarly to Figure 5.2d. Thirdly, the applicability of bias cor-
rection methods for future projections is currently unclear, since previous studies
have shown that biases in climate projections (e.g. for the 21st century) might not
be stationary (Ehret et al., 2012; Maraun, 2012). However, an application of the
resampling approach to future projections similarly to the current practice of sta-
tistical bias correction (Hempel et al., 2013, e.g.) would be straightforward, i.e.
based on a calibration using present or past conditions. Lastly, a clear distinction
between bias correction and statistical downscaling is crucial (Maraun, 2013):
While the resampling bias correction is designed to account for the former, no
attempt of statistical downscaling or bridging any scale mismatches is made (see,
e.g. Maraun, 2013, for a detailled discussion).

Notwithstanding these limitations however, we show the usefulness of the
novel bias correction scheme that might be a useful and physically consistent al-
ternative to conventional statistical bias correction as long as global and regional

dynamical climate models suffer from pertinent biases.

5.6. Conclusions

In this paper, we introduced a novel bias correction method that retains physical
consistency and the multivariate correlation structure of the climate model output
based on an ensemble resampling approach. We showed that such an approach

strongly improves
a) statistics of weather and climate extreme events, and

b) the simulation of climate impacts such as ecosystem-atmosphere fluxes of

carbon and water, including extremes and variability therein.

The methodology could be readily taken up in probabilistic event attribution
studies that deploy large ensembles simulations (see Stott et al., 2013, for an
overview) in order to more realistically describe the statistics of (changing) ex-
treme events.

Furthermore, detecting and attributing the impacts of climatic variability and

extremes on hydrological and socio-ecological systems has emerged as a highly
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topical research area (Stone et al., 2009, 2013), including demonstrated interest by
stakeholders across various sectors (Schiermeier, 2011; Stott and Walton, 2013;
Sippel et al., 2015¢). To this end, our study showed that it is crucial to account for
higher statistical moments in biased climatic input data, and to correct climatic
biases in a physically consistent way. Therefore, our methodology could be taken
up by the climate impact modelling community to reduce climate forcing biases
to a very large extent without requiring any modifications to the climate model

output.



6. The role of anthropogenic warming in 2015
Central European heat waves'?3

Abstract

Station-based observations and bias-corrected model simulations show that the
Jfrequency of short-term heat waves in Central Europe has increased, albeit quan-

titative estimates of risk ratios differ considerably between methods.

6.1. Summer 2015 in Europe

The summer 2015 in Europe was highly unusual, as persistent heat and dryness
prevailed in large parts of the continent. In Central and Eastern Europe, a combi-
nation of record-low seasonal rainfall (Orth et al., 2016) and record-high monthly
July/August temperatures were observed over an area stretching from France to
Western Russia (Figure D1). The anomalous temperatures were caused by a se-
quence of four intense heat waves that struck the region from the end of June to
early September (e.g. Figure 6.1a). It is precisely the few-day heat that causes
problems with human health, especially when combined with high humidity (Mc-
Gregor et al., 2010). Here we analyse seasonal maxima of 3-day mean temper-
ature (Tairsq, max) and seasonal maxima of 3-day daily maximum wet bulb tem-

perature (WBTX34, max), @ measure of human thermal discomfort that combines

I'This chapter is published as Sippel, S., F. E. L. Otto, M. Flach, and G. J. van Oldenborgh. 2016. In
Herring, S. C., Hoell, A., Hoerling, M. P., Kossin, J. P., Schreck III, C. J., and Stott, P. A. (Eds.),
Explaining Extremes of 2015 from a Climate Perspective. Bulletin of the American Meteorological
Society, 97(12), S51-S56. doi:10.1175/BAMS-D-16-0149.

2©Copyright 16.12.2016 American Meteorological Society (AMS).

3Supplementary material that complements this Chapter with more detailed explanations is available
in Appendix D.
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temperature and humidity and is a proxy for heat stress on the human body (Fis-
cher and Knutti, 2013; Sherwood and Huber, 2010).

The series of heat waves began with a strongly meandering jetstream, i.e. sum-
mertime ‘omega-blocking’ (Dole et al., 2011), and the advection of very warm
subtropical air into Central and Western Europe (Figure D1). Later in the sea-
son, the jetstream was displaced to the north, so that stable high-pressure systems
could prevail over Central and East Europe bringing heat there. The first heat
wave in early July was hence most pronounced in western parts of the continent,
while South-Central and East-Central Europe experienced the highest tempera-
tures in the subsequent heat waves later in the season (Figure 6.1b).

Anomalies in the hottest 3-day mean temperature reached up to +6°C rela-
tive to climatology (Figure 6.1c,d) and temperature records tumbled: This in-
cluded nation-wide records* (Kitzingen, Germany: 40.3°C), various station-
records stretching from France to the Balkan countries and Southern Sweden?,
night-time temperatures (Vienna, Austria: 26.9°C), record 3-day mean tempera-
tures across Central Europe (Figure 6.11e), and inland water temperatures (e.g.
Lake Constance). Europe experienced the hottest August ever recorded (NOAA
National Centers for Environmental Information, 2016), and the entire summer
season ranked 3rd after the unusual summers of persistent heat in 2003 and 2010
with their hotspots in France and Western Russia, respectively (Barriopedro et al.,
2011; Stott et al., 2004). This extraordinary sequence of events raises the ques-
tion to what extent human-induced climate change played a role in short-term
heat waves beyond natural climate variability.

A potential anthropogenic contribution to the summer 2015 heat events had
already been investigated in near real-time®, and in the present paper we build
upon and substantiate the previous analysis: We investigate two diagnostics
(Tairzg, max and WBTX34 max) at four locations in long-term station-based obser-
vational records and in a large ensemble of consistently bias-corrected regional

climate model simulations.

“https://weather.com/news/climate/news/europe-heat-wave-poland-
germany-czech—august-2015

Shttp://www.meteofrance.fr/actualites/26913226-episode-de-tres—
fortes—-chaleurs—-en-france

6http: //www.climatecentral.org/europe-2015-heatwave-climate-change
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FIGURE 6.1.: a) Time series of 3-daily mean temperatures in summer 2015 at the Jena
site (grey shading denotes 20 deviations relative to long-term inter-annual
variability). b) Day of seasonal temperature record in summer 2015. Full
caption is continued on the following page.
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FIGURE 6.1.: (continued) ¢) Annual time series of seasonal maximum of 3-day mean tem-
peratures (Tairsg, max) at the Jena site (summer 2015 is marked by a red dot).
d) Anomalies in Tair3d,max over Europe in summer 2015 relative to 1981-
2010. e) Difference to previous heat records (1950-2014) in Tairsq, max in the
EOBS dataset. Positive differences indicate a new heat record in JJA 2015.
f, g) Return time plots of GEV fits for Tairsg, max and WBTX3q, max, respec-
tively, at the Jena site. Red (orange) lines indicate the fit for 2015 climate,
darkblue (lightblue) lines indicate the fit for 1901 climate for a smoothed
global mean temperature covariate (smoothed local summer temperature
covariate).

6.2. Methods and data

First, we analyse long-term observational data (115 years of data for each station)
from the ECA&D dataset (Klein Tank et al., 2002) of four Central and East Eu-
ropean stations that were affected by the heat waves in summer 2015 (Table 6.1),
using data from 1901 onwards. For each station, annual time series of Tairsg max
and WBTX34, max are calculated for July-August. WBTX34 max is derived from
daily maximum air temperature and vapour pressure (computed from relative hu-
midity and daily mean temperature) using an iterative procedure based on the
psychrometric equation’ (Sullivan and Sanders, 1974). Subsequently, generalised
extreme value (GEV) statistical models are fitted to the data (Coles et al., 2001)
excluding the year 2015, using two different assumptions about changes in cli-

mate:

i. A ‘local’ station-based covariate to the location parameter of the GEV
(21-year smoothed local summer temperatures, SLST) as a proxy for any

changes to local climate;

ii. A ‘global’ covariate to the location parameter (21-year smoothed global
mean temperatures, SGMT) as a proxy for anthropogenic influence on cli-
mate (Van Oldenborgh et al., 2012).

To avoid over-fitting the relatively low number of data points, no dependence in
the scale or shape parameter is assumed. Probability ratios based on the GEV as
a metric to quantify human-induced change in the odds of extreme events (PR =

"http://www.srh.noaa.gov/epz/?n=wxcalc_rh
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PANT

PNAT
of an event as warm or warmer than the observed 2015-event in a 2015-climate

, Fischer and Knutti (2015)) were obtained by calculating the probability

(panT), and in 1901 as a proxy for pre-industrial climate.

Second, a model ensemble-based assessment using the global general circu-
lation model HadAM3P (1.875° x 1.25° x 15min resolution) and a dynamically
downscaled regional variant (HadRM3P, 0.44° x 0.44° x Smin resolution) is con-
ducted to complement the empirical analysis (see Massey et al., 2015, for all
details regarding the model setup). Initial condition ensembles are generated for
an ‘anthropogenic scenario’ (ANT, n = 2286), in which the model is driven by
observed (2015) sea surface temperatures (SST) and anthropogenic forcings in
atmosphere-only mode for one year at a time (starting December 1st, Massey et al.
(2015)); and a ‘natural scenario’ (NAT, n = 4414) with all anthropogenic forcings
(i.e., greenhouse gases, aerosols, halocarbons and ozone) set to pre-industrial lev-
els and 11 different estimates of ‘natural’ SSTs (Schaller et al., 2014). For each
of the four locations (centred over a 1°x1° grid cell), a resampling bias correction
strategy based on an observational constraint is applied to the model ensemble
(Sippel et al., 2016a), because the raw model output is notoriously too hot and dry
(Black et al., 2015; Massey et al., 2015) severely compromising attribution state-
ments (Figure D2). The seasonal maximum 21-day average temperature from
the E-OBS dataset (Haylock et al., 2008) is used as resampling constraint and a
percentile-based transfer function is calibrated for each station separately on the
1986-2010 climatology using an identical model setup (Massey et al., 2015). Sub-
sequently, both ‘natural’ and ‘anthropogenic’ simulations are resampled using the
derived relationship (Sippel et al., 2016a). In contrast to widely used methods like
quantile-quantile mapping, resampling retains the full multivariate structure and
physical consistency of the model output, but reduces the available ensemble size
and chooses colder and wetter ensemble members therefore alleviating the hot
and dry bias (Sippel et al., 2016a). In the context of event attribution it is applied
for the first time in this paper (Figure 6.2a-d, see next section). To avoid potential
mean biases due to station location, the mean of the resampled ensemble is ad-
justed to the station mean (Figure D2c-d). Results are demonstrated exemplarily

for one station (Jena), and probability ratios are reported for all stations.
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6.3. Results and discussion

The statistical analysis of estimated return times of Tairsq max reveals that 2015-
like heat events occur in present day climate approximately every 27 years in Jena
with the one-sided 5% lower confidence bound at 16 years (Figure 6.1). Including
both the local and global climate change covariates into the GEV fit demonstrates
a profound increase in return times of those types of events relative to earlier
years for both Tairsg max and WBTX34 max in Jena (Figure 6.1f,g) and all other
locations with probability ratios typically exceeding a value of ten (Table 6.1).
The intensity of heat waves increases by about 3 degrees in Tairzq max but only
1.1K in WBTX34, max (Figure 6.1f,g). In spite of this difference, the increase in
the probability ratio is similar.

A similar analysis is conducted in a very large ensemble of model simula-
tions. The 21-day resampling constraint considerably improves the representation
of short-term heat waves by avoiding physically implausible simulations (Fig-
ure 6.2a-d) and improving the simulated variability of heat waves (Figure D2c,d).
The correlation structure between the temperature constraint and short-term heat
stress (WBTX34, max) in the observations is reproduced in the resampled model
ensemble, but not in the original model ensemble (Figure 6.2a,c). This indicates
that robust attribution statements for impact-related, and thus multivariate quan-
tities (such as WBTX34 max) require a physically consistent bias correction of
model output.

Consistent with the observations, the model-based assessment shows a shift
in the return periods towards more frequent and more pronounced summer heat
stress (Figure 6.2b) in all locations (Table 6.1) and both bias-corrected and orig-
inal simulations. The probability ratios derived from the bias-corrected model
ensembles range from 1.1 to 2.9 (Tairsg max) for the four locations (PR=1.3-
3.1 for WBTX34, max in Jena and De Bilt), depending on the magnitude of the
2015-event, the model-simulated warming and inter-annual variability. These es-
timates are thus lower than those estimated from the observations, but can be
largely explained by method- and data-related differences: For instance, the sta-
tistical method assumes that the trend is caused fully by anthropogenic factors,
while the model analysis is based on a ‘real counterfactual’ scenario but tends

to underestimate warming trends in temperature extremes in Europe (Min et al.,
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FIGURE 6.2.: a,c) Correlation between 21-day seasonal maximum temperature (observa-
tional constraint for resampling bias correction) and impact-related quan-
tities (Tairsq, max and WBTX34, max, respectively). Pink dots correspond to
1986-2010, the period used for calibration of the bias correction resam-
pling function. b,d) Return time plots for original and bias-corrected model
output for Tairsg, max and WBTX34, max, respectively.

2013). The mean observed change across all locations between 2015 and 1901
of 3.1K (Tairzq, max) and 2.2K (WBTX34, max) 1S much larger than in the original
(+1.1K in Tairsg, max and +0.5K in WBTX34, max) and bias corrected (+0.9K in
Tairsg, max and +0.5K in WBTX34 max) model simulations. Hence, replacing the
model-simulated warming by the observed change between 1901 and 2015 causes
roughly a tripling of probability ratios for the bias-corrected simulations at all lo-
cations (e.g. 3.4-8.7 for Tairsg, max, and 2.7 to exceeding 10 for WBTX34, max,
cf. Table 6.1). Furthermore, uncertainties due to event selection (Christiansen,
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2015), dependence on the spatial and temporal scale (Angélil et al., 2014), high
non-linearity in attribution metrics such as the probability ratio (Figure D2), and
a slightly higher variability on sub-monthly time scales in the model simulations
than in the observations despite bias correction further contribute to model-data

discrepancies and variability in the presented estimates of the probability ratios.

6.4. Conclusion

In conclusion, the multi-method analysis applied in this paper provides consistent
evidence that human-induced climate change has contributed to the increase in the
frequency and intensity of short-term heat waves and heat stress such as the Cen-
tral and East Europe 2015 event. However, quantitative estimates of the risk ratio
at local scales can differ widely depending on the exact methodologies applied,
thus highlighting large method- and data-related uncertainties. In this study, due
to the large discrepancy between observed and modelled trends in temperature
extremes the model-estimated probability ratios are lower than those estimated

from the observations.
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7. Refining multi-model projections of
temperature extremes by evaluation against
land-atmosphere coupling diagnostics'-

Abstract

The Earth’s land surface and the atmosphere are strongly interlinked through
the exchange of energy and matter. This coupled behaviour causes various land-
atmosphere feedbacks, and an insufficient understanding of these feedbacks con-
tributes to uncertain global climate model projections. For example, a crucial
role of the land surface in exacerbating summer heat waves in mid-latitude
regions has been identified empirically for high-impact heat waves, but indi-
vidual climate models differ widely in their respective representation of land-
atmosphere coupling. Here, we compile an ensemble of 54 combinations of
observations-based temperature (T) and evapotranspiration (ET) benchmarking
datasets and investigate coincidences of T anomalies with ET anomalies as a
proxy for land-atmosphere interactions during periods of anomalously warm tem-
peratures. First, we demontrate that a large fraction of state-of-the-art climate
models from the Coupled Model Intercomparison Project (CMIPS) archive pro-
duces systematically too frequent coincidences of high T anomalies with nega-
tive ET anomalies in mid-latitude regions during the warm season and in several
tropical regions year-round. These coincidences (high T, low ET) are closely

related to the representation of temperature variability and extremes across the

IThis chapter is published as Sippel, S., J. Zscheischler, M. D. Mahecha, R. Orth, M. Reichstein, M.
Vogel, and S. I. Seneviratne. 2016. Earth System Dynamics 8, 387-403. doi:10.5194/esd-8-387-
2017.

2Supplementary Online Material (SOM) that provides additional information but that is not nec-
essary for understanding the scientific content of this Chapter is available under http://
www.earth-syst—-dynam.net/8/387/2017/esd-8-387-2017-supplement.pdf
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multi-model ensemble. Second, we derive a land-coupling constraint based on the
spread of the T-ET datasets and consequently retain only a subset of CMIP5 mod-
els that produce a land-coupling behaviour that is compatible with these bench-
mark estimates. The constrained multi-model simulations exhibit more realistic
temperature extremes of reduced magnitude in present climate in regions where
models show substantial spread in T-ET coupling, i.e. biases in the model en-
semble are consistently reduced. Also the multi-model simulations for the coming
decades display decreased absolute temperature extremes in the constrained en-
semble. On the other hand, the differences between projected and present-day
climate extremes are affected to a lesser extent by the applied constraint, i.e. pro-
Jjected changes are reduced locally by around 0.5°C to 1°C - but this remains a
local effect in regions that are highly sensitive to land-atmosphere coupling. In
summary, our approach offers a physically consistent, diagnostic-based avenue
to evaluate multi-model ensembles, and subsequently reduce model biases in sim-

ulated and projected extreme temperatures.

7.1. Introduction

The exchange of matter and energy between the land surface and the atmosphere
is a crucial feature of the Earth’s climate (Seneviratne et al., 2010a; Bonan, 2015;
van den Hurk et al., 2016). On one hand, the atmosphere exerts a key influence
on land surface processes such as vegetation growth by supplying light, water and
carbon dioxide (Koppen, 1900). On the other hand, the land surface feeds back
to the atmosphere, for example through the partitioning of energy into latent and
sensible heat fluxes, or by modifying land surface properties, thus implying a di-
rect link to near-surface climate (Koster et al., 2004; Seneviratne et al., 2010a).
Conceptually, coupling between the atmosphere and the land surface is often clas-
sified into two qualitatively different regimes, a so-called ‘energy-limited’ and
‘water-limited’ regime (Seneviratne et al., 2010a): In the wet (energy-limited)
regime, the land surface is largely controlled by the atmosphere through radi-
ation (see conceptual Figure 7.1a,b), implying a positive association between
near-surface temperature (T) and evapotranspiration (ET). In contrast, in a dry,

water-limited state, the land controls near-surface climate through a lack of soil
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moisture, and a corresponding reduction in evapotranspiration and latent cool-
ing (see conceptual Figure 7.1a,b) with a negative association between T and ET.
Therefore, the state of the land surface and land-atmosphere feedbacks modulate
and amplify climatic extreme events such as heat waves in mid-latitude regions
(Seneviratne et al., 2006; Fischer et al., 2007; Hirschi et al., 2011; Whan et al.,
2015; Hauser et al., 2016). An understanding of these feedbacks might yield im-
proved seasonal predictability of extremes (Quesada et al., 2012), and could help
to constrain and better predict model-simulated present and future climate vari-
ability in these regions (Seneviratne et al., 2006; Lorenz et al., 2012; Dirmeyer
et al., 2013; Seneviratne et al., 2013; van den Hurk et al., 2016; Davin et al.,
2016).

However, at present large uncertainties and methodological inconsistencies
prevail in both understanding and quantification of land-atmosphere coupling at

various spatial and temporal scales, which relate to

1. scarcity of accurate observational products of soil moisture or evapotran-
spiration at large spatiotemporal scales and relatively short observational

periods (Seneviratne et al., 2010a),

ii. the metrics and variables used to quantify land-atmosphere coupling dif-
fer widely in the variables they address (Seneviratne et al., 2010a), and in
emphasizing either the whole distribution (Dirmeyer, 2011; Lorenz et al.,
2012; Miralles et al., 2012), or the tails of relevant variables (Zscheischler
etal., 2015).

As a consequence, uncertainties and methodological inconsistencies contribute to
a greatly diverging representation of land-atmosphere coupling in state-of-the art
climate models (Koster et al., 2004; Boé and Terray, 2008, see also Figure 7.1a,b
for a simple conceptual example), and further contribute to uncertainties related
to projected increases in summer temperature variability in the 21st century in
mid-latitude regions (Seneviratne et al., 2006; Dirmeyer et al., 2013). In this
context, it has been noted that accurate simulations of temperature variability
and extremes require a realistic representation of land-atmosphere interactions
(Seneviratne et al., 2006; Fischer et al., 2012; Bellprat et al., 2013). In other

words, biases in temperature variability and extremes might in part stem from an
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unrealistic representation of land-atmosphere interactions (Fischer et al., 2012;
Lorenz et al., 2012; Davin et al., 2016), likely leading to temperature-dependent
biases in multi-model ensembles (Boberg and Christensen, 2012; Bellprat et al.,
2013).

A model evaluation focus on interpretable land-atmosphere coupling diagnos-
tics might serve as a complementary strategy to traditional model validation and
testing (Seneviratne et al., 2010b; Santanello et al., 2010; Mueller et al., 2011b;
Mueller and Seneviratne, 2014). Hence, this approach is intended towards test-
ing and understanding the spread and physical consistency in simulated relation-
ships in state-of-the-art multi-model ensembles (e.g. the Coupled Model Inter-
comparison Project, CMIP5 Taylor et al., 2012) against available observations-
based datasets. For example, in the context of land-atmosphere coupling, earlier
studies used bivariate correlation- or regression-based metrics to test and evalu-
ate coupling behaviour (Hirschi et al., 2011; Lorenz et al., 2012). Conceptually,
the notion of ‘diagnostic-based model evaluation’ as discussed here is consistent
with so-called ‘pattern-oriented model evaluation’ (Grimm and Railsback, 2012;
Reichstein et al., 2011) - the latter being applied in the context of evaluating sim-
ulated and observed patterns at multiple scales in a data-driven way (e.g. in the
context of ecosystem carbon turnover times, Carvalhais et al., 2014).

In the context of extracting credible and relevant information from large (multi-
)model ensembles, weighting or selecting models based on observations-based
constraints has become increasingly popular recently (Tebaldi and Knutti, 2007;
Knutti, 2010), as a priori model ensembles might be seen as a somewhat arbitrary
collection of model runs (or ‘ensembles of opportunity’). For example, empirical
and/or physics-based criteria have been used to constrain snow-albedo feedbacks
(Hall and Qu, 2006), constrain carbon cycle projections (Cox et al., 2013; Wenzel
etal., 2014; Mystakidis et al., 2016), or in the context of refining precipitation pro-
jections (Orth et al., 2016). Moreover, empirical diagnostics are applied to select
models for event attribution analyses (Perkins et al., 2007; King et al., 2016; Otto
et al., 2015) and analyses of drought projections based on model performance
(Van Huijgevoort et al., 2014), or to resample large initial-condition ensembles
to alleviate biases without distorting the multivariate structure of climate model

output (Sippel et al., 2016a). In the context of land-atmosphere coupling, Fischer
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FIGURE 7.1.: Illustration of qualitatively contrasting warm season temperature-
evapotranspiration (T-ET) coupling in global climate models. a, b) Con-
ceptual illustration of T-ET coupling in (a) wet, and (b) dry & transitional
regimes. In wet regimes T and ET are positively associated (atmosphere
impacts land), while in dry & transitional regimes T and ET are negatively
associated due to soil moisture feedbacks (i.e., land impacts atmosphere via
reduced ET amd concurrent increases in sensible heat and T). Full caption
is continued on the following page.
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FIGURE 7.1.: (continued) c—f) Different CMIP5 models show contrasting T-ET coupling
behaviour in a mid-latitude region in summer (Central Europe, spatial av-
erage, JJA, 1989-2005): (c,e) NorESM1-M produces predominantly wet
regimes, i.e. a positive T-ET coupling, while (d,f) ACCESS1-3 produces
predominantly dry regimes (negative T-ET coupling), illustrated as time se-
ries (c-d) and in the T-ET plane (e-f). Red lines in (c-f) indicate thypper
for T and ET, blue lines indicate thY ., (70th and 30th percentile in each
individual time series, respectively).

et al. (2012) and Stegehuis et al. (2013) have constrained a regional model ensem-
ble over Europe using present-day interannual variability of summer temperature,
and observations-based estimates of summer sensible heat fluxes. However, these
studies came to somewhat conflicting results with respect to the obtained change
in warming projections, which probably was due to the underlying choices of
datasets to obtain the constraints (Stegehuis et al., 2013). Hence, care is needed in
that these practices might not necessarily translate into improved future climate
projections or reduced uncertainties. That is because the selection of relevant
metrics is clearly not trivial but subjective, and because good model performance
w.r.t. any given metric does not translate directly into (more) reliable projections
(Knutti, 2008).

Therefore, the starting point for the present analysis -in the sense of being
necessary, but not sufficient to assure reliability of future climate projections- is

that physically motivated, observations-based diagnostics might offer

1. a link to identify and interpret relevant processes across multiple models

(i.e., model evaluation), and

2. to reduce biases by focusing the interpretation of multi-model ensembles
on models that are ‘right for the right reasons’. Most notably climate im-
pacts, including extremes, typically depend on the multivariate structure of
climate variables, where simple univariate statistical bias correction meth-
ods are prone to failure (Ehret et al., 2012; Cannon, 2016).

In this study, we first evaluate land-atmosphere coupling in state-of-the-
art global climate models from the CMIP5 archive and a large ensemble of
observations-based ET datasets (Mueller et al., 2013) that has been compiled to
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address the aforementioned uncertainties in land-atmosphere coupling. In our
analyses a land-atmosphere coupling metric that is based on coincidences of tem-
perature and evapotranspiration anomalies is applied. The idea behind a coin-
cidence metric as opposed to a traditional univariate evaluation of model simu-
lated ET fluxes or temperature is that it is insensitive to biases in the simulated
means or variances, and thus focusses only on an abstract property of the data,
namely the bivariate dependence structure of T and ET. Secondly, we derive a
model constraint based on the physically motivated land-coupling diagnostic and
the ensemble of benchmarking datasets in order to explore the implications of a
reduced ensemble but with land-atmosphere coupling that is within the range of

the benchmarking datasets.

7.2. Data and methods

7.2.1. Datasets for T-ET coupling analysis and model evaluation

Global temperature and evapotranspiration datasets In order to evalu-
ate T-ET coupling in global climate models, an ensemble of 18 gridded ET esti-
mates, taken from the LandFlux-EVAL multi-data set synthesis project (Mueller
etal., 2013), are combined with three different observations-based and reanalysis-
driven temperature datasets, yielding in total 54 T-ET combinations (see Ta-
ble 7.1). T-ET coincidence rates are calculated from each of those 54 com-
binations to evaluate and constrain the multi-model ensemble of global climate
models (Section 3). The ensemble of ET reference datasets has been generated
by combining a wide range of different ET estimates, consisting of five diagnos-
tic (based on remote sensing or in-situ observations) products, five land surface
models driven by observed climate forcing and four reanalysis products (Mueller
et al., 2013). The three temperature datasets are based on one observational prod-
uct (Climate Research Unit dataset, Harris et al., 2014) and two reanalysis prod-
ucts (ERA-Interim reanalysis (ERAI, Dee et al., 2011), and Climate Forecast
System Reanalysis (CFSR, Saha et al., 2010), see Table 7.1 for details). The
large number of T-ET dataset combinations is used in order to take uncertainties
in both T- and ET datasets into account. We have tested that the spread between

individual ET datasets is substantially larger than the spread between individual
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T datasets (not shown). This indicates that the largest source of uncertainty stems
from the choice of ET dataset, and therefore we consider only three different T
datasets. Each of the 54 T-ET dataset combinations (denoted as ‘T-ET coupling
benchmarks’ in the remainder of the paper) is consistently derived from observa-
tions, and thus can be expected to represent relevant features in T-ET coupling
under different assumptions that underlie diagnostic datasets, reanalyses and land
surface models. Therefore, these datasets represent a very large spread of plausi-
ble T-ET coupling estimates, and the spread can be considered as a conservative
benchmark for model evaluation (including observational noise, i.e. allowing a
wide range of T-ET coupling in models). However, it should be emphasised that
the datasets are not independent realisations. Thus, we only use the spread of the
T-ET coupling benchmarks, but we do not interpret the probability distribution of
dataset combinations.

For the analysis of historical and future simulations of the monthly maximum
value of daily maximum temperatures (TXx) in Section 3.2 we use ERA-Interim

(Dee et al., 2011) as a reference dataset.

Multi-model ensemble simulations The Climate Model Intercomparison
Project (CMIPS) has been designed to allow for multi-model comparison and
evaluation studies (Taylor et al., 2012). Although large model spread, biases and
uncertainties remain in the ensemble projections (Knutti and Sedl4dcek, 2013), for
example with respect to extremes (Sillmann et al., 2013b), the water (Mueller
et al., 2011b; Mueller and Seneviratne, 2014), and land carbon cycle (Anav et al.,
2013), the archive of standardised scenario-driven model experiments provides
one of the main avenues to study climate variability and change (e.g. (Stocker
et al., 2013)), including present and future climate extremes (Sillmann et al.,
2013a; Seneviratne et al., 2016). We use one ensemble member from 37 indi-
vidual models or model variants (Table S1) to avoid unequal sample sizes in the
multi-model ensembles. Furthermore, this choice is made to assess variability in
land-atmosphere coupling across models, because individual ensemble members
from the same model show comparably small spread in land-atmosphere cou-
pling and present-day and future land-atmosphere coupling are highly correlated

(Supplementary Online Figure S1, metric and definition is provided below). This
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indicates that the large spread between models is dominated by variability across
models, and thus land-atmosphere coupling is a model-inherent feature on cli-
matological time scales (Supplementary Online Figures S1 and S2, see further
discussion below). On shorter (e.g. annual or seasonal) time scales, models in-
deed show substantial variability in their land-atmosphere coupling (Sippel et al.,
2016a), which could be used as a constraint in large single-model ensembles but

is beyond the scope of the present study.

Data processing and analysis All datasets were remapped to a common
2.5°x2.5° spatial resolution for analysis and before computing T-ET coinci-
dences. For model evaluation (Section 3.1), all computations and analyses are
performed on a monthly temporal resolution and are restricted to the time pe-
riod 1989-2005 due to data availability constraints of the ET reference datasets
(Mueller et al., 2013). Thus, the reference period for model evaluation corre-
sponds to the last 17 years of the ‘historical’ scenario in CMIP5 models. T-ET
coincidences are computed based on monthly deseasonalised and linearly de-
trended time series of T and ET, and coincidence rates are calculated separately
for each individual season. Only land pixels outside of desert regions following
the Koppen-Geiger climate classification are considered (Kottek et al., 2006). The
model evaluation is conducted based on all individual pixels, and additionally on
area-averages for so-called IPCC-SREX regions (IPCC, 2012).

7.2.2. Diagnostic-based model evaluation using T-ET coupling

The T-ET link and the Vegetation-Atmosphere Coupling (VAC) Index An
adequate characterisation of the coupling between soil moisture and temperature
is key to model evaluation using observations-based datasets. This coupling is
often diagnosed by correlation-based metrics such as for example between T and
ET, p(r,ET) (Seneviratne et al., 2006; Lorenz et al., 2012), or the difference in the
covariability of temperature and sensible heat, where the latter is calculated with
and without accounting for soil moisture deficits (Miralles et al., 2012). Here,
we aim to exploit the T-ET coupling by using a natural extension of p(1 g7y that
focusses on the tails of T-ET dependedencies. Deseasonalised and detrended time

series of ET (zF7) and T (27, i denotes the time step), are partitioned into five



7.2 Data and methods 141

distinct classes of Vegetation-Atmosphere Coupling (VAC) following (Zscheis-

VAC.

chler et al., 2015), resulting in a time series of discrete events x;

a, if 7 < thigye, and xfT <this,,
b if ol > thl, .. and oFT >thEL

/A =1q ¢ if > thgpper and 2" < thigy,e,,
d, if ] <thigye, and T > thi,.,
0 otherwise.

Event thresholds thjoyer and thypp,e, might be chosen relative to the variability
of each time series by fixing the probability p to exceed or fall below a threshold

through the choice of an appropriate quantile:
Pr(iX > thypper] = Pr[X < thiower] = p (7.1)

Taking time series length restrictions into account, we choose the 30th and
70th percentile as lower and upper thresholds in all time series (i.e. such that
PriX < thiower] = Pr[X > thypper] = 0.3). Here, we focus on coincidences
of warm temperature anomalies (‘T-events’: x] > thl ..) with anomalies in
ET (‘ET-events’, i.e. either 2’7 > thl)l  for VAC, or 2" < thfil . for
VAC.), we derive coincidence rates 7y 4, by counting the number of V AC)-
events (see Quiroga et al. (2002); Donges et al. (2016) for earlier formulations of
event coincidence analysis, and e.g. Rammig et al. (2015); Siegmund et al. (2016)

for applications in an ecological context):

N
1
TVAC, = FO Z 1[b] (%VAC)
i=1

Here, 1 4(z) is the indicator function, defined as 1 4(x) = 1 if zeA and 14(x) =
0 otherwise, N denotes the length of the time series. Hence, we simply count
coincidences of T and ET in a given category (e.g. positive T and positive ET for
V ACy) to get the average coincidence rate (1 4¢,). No acts as a normalisation
constant and is chosen in our study such that 0 < ry 4¢, < 1, i.e. we normalise
with the total number of “T-events’, Ny = Zivzl LT >tnt

upper
all (or none) of the ‘T-events’ in the time series would coincide with ‘ET-events’,

1(z]). Hence, if
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then the average coincidence rates would be given by 7y ac, = 1 (or ryac, = 0).
For independent time series, i.e. no coupling, ry 4¢, would approximate the oc-
currence rate of ‘ET-events’ in the time series (defined for V AC}) that is governed
by the chosen threshold, ie. ryvac, = N Zfil 1[Z£;T>thprper] (xFT) (hence,
rvac, ~ 0.3 in our case). Coincidence rates 7y 4c, follow equivalently by re-
placing VAC}, with VAC. and in the definition of ‘ET-events’ in the previous
description. We compute 7y 4¢, and ry 4¢, for all seasons but with an emphasis
on the warmest season of the year. In this study, significance of coincidence rates
is established by randomly permuting one time series with respect to the other
100 times. Hence, V AC-rates from models or observations-based benchmarks
that fall outside the Sth to 95th percentile range of the V AC-rates obtained from
randomly permuted time series are significantly different from independent data
at the 0.1 level.

In other words, 7y 4c, gives the fraction of the highest 30% of temperatures
that coincide with the highest 30% of ET (i.e., occurrence rate of ‘energy-limited
regimes’), while ry 4c, denotes the fraction of the highest 30% temperatures
that correspond with the lowest 30% ET (i.e., occurrence rate of ‘water-limited
regimes’). Figure 7.1c-d shows a simple example of monthly time series of T and
ET simulated from two CMIP5 models and occurrences of VACy, and V AC.,. are
highlighted, and Figure 7.1e-f shows the correlation of T and ET. Note that for
the same region (area-average over Central Europe, CEU) and time of the year
(monthly data for June, July, and August), one model produces predominantly
energy-limited regimes (V ACj, Figure 7.1c,e and compare to conceptual illus-
tration in Figure 7.1a), whereas the other model produces predominantly water-
limited regimes (V AC'., Figure 7.1d,f and concept in Figure 7.1b).

We abbreviate the average occurrence rates v 4¢, and ry4c, as VAC, and
V AC. for convenience in the remainder of the paper. In comparison to more tra-
ditional coupling metrics, such as e.g. p(r,g1), V AC might be expected to yield
similar results on very long time scales, whereas on shorter time scales the VAC
index picks up non-linearities in the tails (e.g. during warm temperature anoma-
lies). At the monthly time scale (as used in this study), VAC} and VAC, de-
tect distinct non-linearities in models and observations in summer T-ET coupling
e.g. in CEU: Supplementary Online Figure S3 shows that, by correlating V AC;,
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with V AC,. derived from individual models, observations-based benchmarks, and
from a two-dimensional Gaussian distribution, VAC}, and V AC,, rates in mod-
els and observations-based benchmarks exceed those that would be expected in
random data. This deviation indicates that the warm tail is indeed different to
the remainder of the distribution (we observe no such deviation for the cold tail,
Supplementary Online Figure S3), and hence an evaluation metric that focuses
on the tail such as the VAC index is indeed useful for our present purpose. In
addition to the main text, the model evaluation is presented for p(r, ) to demon-
strate robustness to the chosen methodological approach (Supplementary Online
Figure S4), and for the VAC' index using a 90th percentile threshold (Supple-
mentary Online Figure S4). Both alternatives show qualitatively similar results

(see Results and Discussion section).

A constraint on T-ET coupling in multi-model ensembles In general, a
constraint links an observations-based diagnostic with a key model output vari-
able across multiple models (Cox et al., 2013), and thus can be used to reduce
model uncertainties and spread. Here, we derive a T-ET coupling constraint as
the uncertainty range from the 54 combinations of T-ET benchmarking datasets.
A Gaussian kernel with reliable data-based bandwidth selection (Sheather and
Jones, 1991) is fitted over all 54 1989-2005 coincidence rates (ry ac.) for each
meteorological season and pixel (and each SREX region average). Throughout
this paper, the 5th to 95th percentile range of the fitted Gaussian kernels is taken
as the plausible range of observations, and the reduced (constrained) ensemble of
CMIPS simulations is obtained by retaining only those CMIP5 models that simu-

late T-ET coincidences that fall within this range of observational uncertainty.

7.3. Results and discussion

In this section, we first evaluate land-coupling in CMIP5 models explicitly against
an observations-based ensemble of T-ET combinations and explore the link to
temperature variability and extremes (Section 3.1). All model evaluation results
are presented globally and exemplarily for Central Europe (CEU) as a region
where global models and observations differ widely. Subsequently, we constrain

the ensemble of CMIP5 models using each model’s land-coupling as diagnosed
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through the V AC,. index and discuss implications for biases in simulated present-

day temperature extremes and warming projections (Section 3.2).

7.3.1. Evaluation of land-atmosphere coupling in CMIP5 models and
the link to temperature variability and extremes

Evaluation of T-ET coupling in CMIP5 models. Models and observations-
based datasets show a relatively large spread in their representation of T-ET cou-
pling, as expressed exemplarily in CEU through both VAC}, and V AC, across
various seasons (Figure 7.2a,b) or diagnosed through more traditional coupling
metrics such as p(r gy (Supplementary Online Figure S4). Individual mod-
els indicate pronounced qualitative differences in the warm season, where some
models point to energy-limited, whereas others indicate predominantly water-
limited conditions (Figure 7.2a,b, and Figure 7.1, for an illustrative example).
Observations-based T-ET datasets agree qualitatively, i.e., indicating energy-
limited to neutral conditions in the CEU example, thus implying an overestima-
tion of water-limited regimes in CEU in roughly 50% of CMIP5 models (Fig-
ure 7.2).

This pattern holds across most regions of the globe, as many CMIP5 models
consistently overestimate occurrences of V AC, regimes (and correspondingly
underestimate V AC}, occurrences) in the warm season of the year (Figure 7.2¢,d,
see Supplementary Online Figure S5 for a definition of the warm season in each
pixel). In mid-latitude and several tropical regions (e.g. Central North America,
Central Europe, the Amazon, India, parts of Africa), more than 25% and up to
50% of CMIP5 models lie outside the observational range (Figure 7.2d). These
discrepancies hold also if metrics that emphasise the whole distribution (o(1, gT))
or more extreme parts of the tail (VAC based on a 90th percentile threshold)
are used for model evaluation (Supplementary Online Figure S4, results for in-
dividual seasons are presented for VAC. and V AC} in Supplementary Online
Figures S6 and S7, respectively). Moreover, the spread between the individual
models’ representation of land-atmosphere coupling strongly exceeds the spread
in observational datasets, although different diagnostic, reanalyses and land sur-

face model datasets are included in the observations-based ensemble (Figure 7.2¢
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for CMIP5 model spread and Figure 7.2f for spread in observations-based bench-

mark datasets).
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FIGURE 7.2.: Evaluation of T-ET coupling in global climate models. Full caption is con-
tinued on the following page.

Furthermore, the models’ land-atmosphere coupling, as diagnosed here through

the VAC-index, is a highly model-inherent feature, as different model variants or
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FIGURE 7.2.: (continued) a, b) VACb and VACc coupling in the CMIP5 climate model
ensemble and observations-based benchmarking datasets in Central Europe
(CEU, 1989-2005, area-average) with systematic warm season differences
(circles, diamonds, and triangles indicate diagnostic, land surface models,
and reanalyses reference datasets, respectively). Randomness indicates the
5th to 95th percentile range obtained by randomly permutating both time
series with respect to the other (/N = 100 times) to obtain independent
data. c) Difference in the VACc median of the CMIP5 ensemble and bench-
marking datasets. d) Fraction of CMIPS models that are inside the Sth-
95th percentile spread of the benchmarking datasets. e, f) Range of VACc-
occurrences (5th to 95th percentile range) in CMIP5 models (e) and in the
ensemble of observations (f).

ensemble members from the same model generally lie relatively close to each
other (Supplementary Online Figures S1 and S2). However, model-specific sig-
natures of model output are not unusual, as diagnosed before for spatial patterns
of temperature and precipitation (Knutti et al., 2013) or the statistical informa-
tion content in carbon fluxes (Sippel et al., 2016b). Furthermore, present-day
land-atmosphere coupling is strongly related to future land-atmosphere coupling
in the individual models (Supplementary Online Figure S1). A detailed overview
of VAC, coupling in individual models and ensemble members relative to the
benchmark datasets for Central Europe and Central North America is presented in
Supplementary Online Figures S1 and S2. Despite regionally pronounced qual-
itative discrepancies, it should be noted that on a global scale, the distribution
of water-limited and energy-limited patterns in models and observations agrees
qualitatively (Supplementary Online Figure S8). Likewise, the findings of cli-
matologically too pronounced water-limited regimes in individual models w.r.t.
observations does not exclude the possibility of future changes in the coupling
strength in transitional regions (Seneviratne et al., 2006) or of strong water limi-
tations during extreme events in the real world (Miralles et al., 2012; Whan et al.,
2015). To this end, an evaluation of the year-to-year variability of the coupling
behaviour in larger ensembles of individual models, including very rare events,
could constitute a topic for further study, as this study was restricted to relatively
moderate events in a 16 year period (70th percentile threshold for the computation
of the VAC-index) and one ensemble member per model. Besides, we also note

that observations-based benchmark datasets show systematic (albeit smaller) dif-
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ferences in the representation of land-atmosphere coupling: Diagnostic datasets
indicate more frequent energy-limited regimes (see e.g. Figure 7.2), and thus dif-
fer consistently to generally drier land surface models and reanalysis products,

consistent with earlier findings (Santanello et al., 2015).

T-ET coincidences and the link to temperature variability and extremes.
The representation of T-ET coupling as diagnosed through the VAC index largely
determines the variability of temperatures at monthly and inter-annual time scales
across the CMIP5 multi-model ensemble in CEU (Figure 7.3a) and in most re-
gions of the globe except in some subarctic climates (Figure 7.3b). Therefore,
this relationship is indicative for the strong influence of land-atmosphere cou-
pling on surface climate. This is consistent with previous findings in Europe in
models with and without land-atmosphere interactions (Seneviratne et al., 2006;
Fischer and Schir, 2009; Fischer et al., 2012). An important result is that models
that produce V AC, indices within the range of benchmark datasets also pro-
duce a realistic near surface temperature variability, whereas models that fall too
frequently in water-limited regimes also overestimate summer temperature vari-
ability (Figure 7.3a). Moreover, in mid-latitude and tropical regions, the state of
the land surface is strongly associated with the mean and variability of tempera-
ture extremes at the daily time scale in the warmest season (TXx, Figure 7.3c,d).
The link between between the representation of land-atmosphere coupling and
simulated temperature extremes and variability in global climate models is con-
sistent with earlier studies, which has been demonstrated for Europe in individual
models (Seneviratne et al., 2006; Lorenz et al., 2012; Davin et al., 2016) and in
ensembles of regional models (Fischer et al., 2012; Bellprat et al., 2013). There-
fore, the relationship between T-ET coincidence rates and temperature extremes
might offer an avenue to derive an explicit land-atmosphere coupling constraint
(the likely root cause for biases) to alleviate biases in temperature variability and

extremes in the multi-model CMIP5 ensemble.
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FIGURE 7.3.: a, b) Relationship between model-specific T-ET coupling (expressed
through VACc) and model simulated variability of monthly temperature
anomalies (JJA) in Central Europe (a), and globally (b). c, d) Relation-
ship betweeen VACc-coupling and mean (c) and standard deviation (d) of
simulated monthly maximum value of daily maximum temperature (TXx)
in summer (JJA).

7.3.2. Analysis of constrained multi-model ensemble and implications
for future climate projections

A constraint on land-atmosphere coupling in the CMIP5 ensemble.
The association between T and ET in the constrained ensemble resembles the
observations-based benchmarking datasets in T-ET coupling very well (shown as
a bivariate density estimate in Figure 7.4a-b for CEU and CNA, respectively),
whereas the unconstrained CMIP5 ensemble produces too many occurrences of
V AC, conditions in both CEU and CNA. Due to the intimate link between land-
atmosphere coupling and temperature variability and extremes (see previous Sec-
tion), we expect that the improvement in the representation of land-atmosphere
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coupling in the constrained ensembles yields a corresponding improvement in
the representation of temperature extremes at the daily time scale in coupling-
sensitive regions.

Coupling-sensitive regions are prone to warm season biases in climate models
(Christensen and Boberg, 2012; Bellprat et al., 2013). In the present analysis,
high biases in temperature extremes are indeed prevalent in the original (uncon-
strained) CMIP5 ensemble in these regions (Figure 7.4c.e). For example, the en-
semble mean warm season TXX is overestimated by up to 5°C, and higher biases
are detected in the 90th percentile of TXx in CNA, CEU or the Amazon (all biases
in daily variables relative to ERA-Interim, see Figure 7.4c,e). In a CMIP5 ensem-
ble constrained by the land-atmosphere coupling metric V AC.,, the representation
of temperature extremes is improved in regions prone to coupling-induced biases
(Figure 7.4d,f), i.e. both mean TXx and the 90th percentile of TXx are signifi-
cantly reduced. The ensemble mean of present-day temperature extremes in other
regions remains unchanged. Moreover, projected future temperature extremes are
reduced in the constrained ensemble (Figure 7.5), similarly to present-day reduc-
tions in regions prone to present-day biases in land-atmosphere coupling. This
is illustrated in Figure 7.5a for TXx (monthly area-averages in summer) in CEU,
where the hot end of the original model ensemble is in fact never realised in
observed temperatures. The application of the constraint thus not only affects
mean TXX, but also reduces the spread of the model ensemble (Figure 7.5a,b).
The reduction in ensemble mean and ensemble spread is retained for the entire
21st century (Figure 7.5a,b). Hence, this result reinforces that coupling-related
biases are model-inherent features, i.e. models that simulate too many V AC,-
occurrences today (and associated high biases in extreme temperatures) are very
likely to do so in the future. However, one should keep in mind that the reduction
in ensemble mean and spread is confined to coupling-sensitive regions in CEU,
CNA, and to some degree in the Amazon region (Figure 7.5¢,d).

Our results imply that an accurate representation of land surface processes is
crucially relevant for a correct simulation of temperature extremes, and more gen-
erally for simulated near-surface climate variability. Land-atmosphere coupling
is thus an important source of bias in state-of-the-art global climate model sim-

ulations. By using an observations-based land-atmosphere coupling diagnostic
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FIGURE 7.4.:
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a-b) Contour lines of bivariate kernel density estimates of T-ET relation-
ship in the benchmarking datasets, the original and constraint CMIP5 en-
semble for (a) Central Europe, and (b) Central North America (1989-2005,
area-average). ¢, €) Biases in warm season (¢) TXx mean, and (e) 90th per-
centile of TXx in the original CMIP5 ensemble, and (d, f) reduction in (d)
TXx mean, and (f) 90th percentile TXx through the application of the land-
coupling constraint. Regions with a significant reduction in (d) TXx mean,
and (f) the across-model average in the 90th percentile of TXx according to
a permutation significance test are stippled.
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FIGURE 7.5.: Application of land coupling constraint to CMIP5 ensemble. a, b) Ensem-
ble prediction of original and constrained multi-model ensemble for (a) fu-
ture absolute TXx and (b) range of TXx anomalies relative to global mean
temperature anomalies in each model, following Seneviratne et al. (2016).
Envelopes indicate 5th to 95th percentile. ¢, d) Global maps of projected
changes in simulated (c) mean TXXx, and (d) 90th percentile of TXx in the
VACc-constrained CMIP5 ensemble.

to constrain the multi-model CMIP5 ensemble, we have shown that biases in ex-
tremes in the large ensemble can be alleviated to a certain degree. As bias correc-
tion methodologies that take the physical causes for biases into account are still
widely lacking (Ehret et al., 2012; Bellprat et al., 2013) and multivariate bias cor-
rection methods are currently in development (Cannon, 2016), the identification
of models with a physically plausible representation of near-surface climate and
land-atmosphere interactions at the regional scale might be crucial to extract ac-
curate and relevant information about climate extremes in the context of climatic
changes in the 21st century (Mitchell et al., 2016b; Schleussner et al., 2016b;
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Seneviratne et al., 2016). For example, model selection for event attribution stud-
ies or a quantification of changes in univariate climate extremes is often based on
a statistical performance criterion (Perkins et al., 2007; King et al., 2016; Otto
et al., 2015). Our results indicate that these procedures could be further refined
through incorporating observations-based diagnostics or constraints in order to
analyse model simulations that are indeed ‘right for the right reasons’ (at least
given physics-guided and observations-based relationships). Moreover, the im-
pacts of climate and its extremes e.g. on human health or ecosystems (Mitchell
et al., 2016a; Frank et al., 2015) are often inherently related to multiple climate
variables (Ehret et al., 2012; Leonard et al., 2014). Therefore, simple constraints
as motivated for instance in the present study might complement more conven-
tional bias correction procedures (e.g. Hempel et al., 2013) to derive physically
consistent estimates of climate impacts. This approach appears promising, be-
cause biases within climate models (i.e. in different variables) and across climate
model ensembles are often correlated (e.g. Knutti, 2010; Mueller and Senevi-
ratne, 2014; Sippel et al., 2016a). Hence, beyond soil moisture control on sim-
ulated temperature extremes as the present study’s focus, related biases in other
variables such as warm season precipitation or ET might be similarly relevant
in this context. For example, V AC. occurrences across the CMIP5 ensemble
are negatively associated with precipitation and ET in the warm season in mid-
latitude regions (Supplementary Online Figure S9) - both crucial variables in the
water cycle that show pronounced summer low biases in CMIP5 models (Mueller
and Seneviratne, 2014). Therefore, a constrained model ensemble with improved
land-atmosphere coupling, a likely root cause of biases (Lorenz et al., 2012),
might not only improve temperature extremes and variability, but additionally

might reduce biases in associated variables such as ET or precipitation.

Is there a link between present-day land-atmosphere coupling and
warming projections? We investigate whether the representation of land-
atmosphere coupling in climate models affects the magnitude of 21st century
warming (e.g. Fischer et al., 2012; Stegehuis et al., 2013). We first note that re-
gions sensitive to land-atmosphere coupling in the CMIP5 model ensemble also

show relatively strong warming in daily-scale temperature extremes (TXx), for
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example Central America or South and Central Europe (Figure 7.6a,b). More
importantly, however, models that produce frequent V AC, occurrences (water-
limited regimes) tend to be associated with larger rates of warming in TXx, al-
though it should be emphasised that this relationship is not simple or linear (Fig-
ure 7.6c,d, see also Fischer et al. (2012)). Conversely, this pattern reverses in
boreal regions, where strongly energy-limited models (i.e. very few VAC. oc-
currences) tend to produce larger warming. However, in boreal regions this ap-
parent relationship likely stems from a spurious correlation with the individual
models’ background warming (i.e., warming in annual averages), as the corre-
lation in fact disappears if the background warming is subtracted from summer
warming (Supplementary Online Figure S10). In contrast, in mid-latitude regions
warm season warming that exceeds annual average warming remains confined
to the warm season. A multi-model projection constrained by a plausible repre-
sentation of land-atmosphere coupling reduces differences in TXx estimates in a
future climate relative to the present in coupling-sensitive regions such as Central
Europe and Central North America by locally by around 0.5°C to 1°C - but this
remains a regional effect (Figure 7.6e,f). These results are consistent with ear-
lier studies that used an ensemble of regional models over Europe that used the

standard deviation of temperatures as a constraint (Fischer et al., 2012).

7.4. Conclusions

In the present study, we have evaluated land-atmosphere coupling in state-of-the-
art climate models with an ensemble of observations using a diagnostic based
on coincidences of T and ET anomalies (the so called V AC' index). While ob-
servations and models broadly agree on spatial patterns of land-atmosphere cou-
pling, our results reveal that models differ widely in coupling-sensitive regions
in the mid-latitudes and the tropics. Several models exhibit systematically too
frequent coincidences of high temperature anomalies with negative ET anomalies
(water-limited regimes) in mid-latitude regions in the warm season, and in sev-
eral tropical regions year-round. Across the multi-model ensemble, we found a
strong association of land-atmosphere coupling with simulated temperature vari-

ability and extremes. The spread between models largely explains differences in
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FIGURE 7.6.: a, b) Projected warming in warm season (a) mean temperature, and (b) TXx
across the CMIP5 ensemble (RCP8.5 scenario, 2071-2100 relative to 1981-
2010). c, d) Correlation between VACc in the warm season and the pro-
jected warming in (c) mean temperature, and (d) TXx. Stippling indicates
significant correlations. e, f) Relative change in (e) mean warming and (f)
TXx warming due to the application of the land-atmosphere coupling con-
straint, warming defined as 2071-2100 relative to 1981-2100.

simulated monthly temperature variability and daily extremes. We applied a land-
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atmosphere coupling constraint to the multi-model ensemble, which considerably
improves the representation of land-atmosphere coupling in the ensemble, and re-
duces biases in temperature variability and extremes in present-day simulations in
a physically consistent manner (Figure 7.4). Furthermore, the constraint leads to
reduced variability and lower extreme temperatures in future projections. How-
ever, the overall projected changes in temperature extremes are not so strongly af-
fected (reduction around 0.5 — 1.0°C locally in regions that are sensitive to land-
atmosphere coupling), because the models with overestimated land-atmosphere
coupling display similar anomalies from the multi-ensemble mean in present and
future. In conclusion, we selected models with a physically plausible represen-
tation of land surface processes (and near-surface climate) using observations-
based constraints that are guided by physical considerations. This approach com-
plements more traditional bias correction approaches and offers new avenues to

obtain improved estimates of future climate impacts.
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8. Contrasting and interacting changes in spring
and summer carbon cycle extremes in
European ecosystems’?

Abstract

Climate extremes have the potential to cause extreme responses of terrestrial
ecosystem functioning. However, it is neither straightforward to quantify and pre-
dict extreme ecosystem responses, nor to attribute these responses to specific cli-
mate drivers. Here, we construct a factorial experiment based on a large ensem-
ble of process-oriented ecosystem model simulations driven by a regional climate
model (12.500 model-years in 1985-2010) in six European regions. QOur aims
are to (1) attribute changes in the intensity and frequency of simulated ecosys-
tem productivity extremes (EPEs) to recent changes in climate extremes, COq
concentration, and land-use, and to (2) assess the effect of timing and seasonal
interaction on the intensity of EPEs. Evaluating the ensemble simulations reveals
that (1) recent trends in EPEs are seasonally contrasting: Spring EPEs show
consistent trends towards increased carbon uptake, while trends in summer EPEs
are predominantly negative in net ecosystem productivity (i.e. higher net carbon
release under drought and heat in summer) and close-to-neutral in gross produc-
tivity. While changes in climate and its extremes (mainly warming) and changes
in COs increase spring productivity, changes in climate extremes decrease sum-

mer productivity neutralizing positive effects of COs. Furthermore, we find that

IThis chapter is published as Sippel, S. M. Forkel, A. Rammig, K. Thonicke, M. Flach, M. Heimann,
F E. L. Otto, M. Reichstein and M. D. Mahecha. 2017. Environmental Research Letters 12(7),
075006. doi:10.1088/1748-9326/aa7398.

2Supplementary material that complements this Chapter with more detailed explanations is available
in Appendix E.
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(2) drought or heat wave induced carbon losses in summer (i.e. negative EPEs)
can be partly compensated by a higher uptake in the preceding spring in temper-
ate regions. Conversely, however, "carry-over* effects from spring to summer that
arise from depleted soil moisture exacerbate the carbon losses caused by climate
extremes in summer, and are thus undoing spring compensatory effects. While the
spring-compensation effect is increasing over time, the carry-over effect shows
no trend between 1985-2010. The ensemble ecosystem model simulations provide
a process-based interpretation and generalization for spring-summer interacting
carbon cycle effects caused by climate extremes (i.e. compensatory and carry-
over effects). In summary, the ensemble ecosystem modelling approach presented
in this paper offers a novel route to scrutinize ecosystem responses to changing
climate extremes in a probabilistic framework, and to pinpoint the underlying

eco-physiological mechanisms.

8.1. Introduction

Climate variability and extremes are key features influencing terrestrial ecosystem
functioning (Smith, 2011; Reyer et al., 2013; Baldocchi et al., 2016). Climatic
extremes directly propagate into the biosphere through various eco-physiological
pathways, for instance affecting plant phenological events (Jentsch et al., 2009;
Ma et al., 2015) or carbon cycling from regional to global scales (Knapp et al.,
2002; Reichstein et al., 2013; Zscheischler et al., 2014a; Frank et al., 2015). Major
climatic extreme events such as the European heat wave and drought 2003 (Ciais
et al., 2005; Reichstein et al., 2007), or droughts in North America (Schwalm
et al., 2012; Wolf et al., 2016), Australia (Ma et al., 2016) and the Amazon
(Phillips et al., 2009; Lewis et al., 2011) consistently cause net carbon losses.
However, because the number of directly observed large-scale extreme climate
events and associated impacts on ecosystem productivity are rare, and because
field experiments are often limited in extent and thus difficult to upscale to larger
regions (Beier et al., 2012), crucial uncertainties remain in our understanding of
processes that control these phenomena.

Climatic extreme events are changing in magnitude and frequency (Alexander
et al., 2006; IPCC, 2012), and these occur in addition to more gradual climatic
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changes in, e.g., seasonal variation (Stine et al., 2009; Cassou and Cattiaux, 2016)
and climate trends. These changes, in tandem with non-linear feedbacks or lagged
effects (Frank et al., 2015), might impart decisive consequences for regional and
global-scale carbon balances of terrestrial ecosystems (Reichstein et al., 2013).

For example, the extreme summer drought 2012 in the contiguous United
States caused losses in carbon uptake in summer (Wolf et al., 2016) which
were offset by warming-induced increases in spring carbon uptake, leading to
a spring-summer compensation of the regional carbon balance (Figure 8.1). Fur-
thermore, Wolf et al. (2016) hypothesised that earlier spring plant activity could
have induced negative carry-over effects to summer productivity via soil-moisture
deficits (Figure 8.1), as suggested before (Richardson et al., 2010). However, as
the evidence for seasonal compensation of extremes in Wolf et al. (2016) is based
on a single event only it remains uncertain whether such interacting effects can be
expected generally for climate extremes in summer. Long time series allowing to
comprehensively study additional independent climatic extreme events in spring
and/or summer would be required as such lagged effects in ecosystem productiv-
ity could have simply occurred by chance.

Climate extremes may cause immediate or delayed responses in ecosystems
(Frank et al., 2015), but not all climate extremes lead to an extreme ecosystem
response (Smith, 2011). Therefore, systematic quantification and attribution of
contemporary trends in ecosystem productivity extremes, including potential in-
teractions of events, is required. Respective analysis on observations is often hin-
dered by small sample sizes. Alternatively, large ensembles of climate-ecosystem
model simulations might complement a ‘case study type’ assessment of extremes
in the observational record because they allow to explore how climate variabil-
ity and extreme events are related to extreme ecosystem responses (Ciais et al.,
2005; Schwalm et al., 2012; Wolf et al., 2016). For example, multi-thousand
member ensembles of climate simulations were used to analyse and attribute ex-
treme climate events, such as the Russian heat wave 2010 (Otto et al., 2012), or to
investigate the role of climate extremes in causing, e.g., floods (Pall et al., 2011;
Schaller et al., 2016) and heat-health related issues (Mitchell et al., 2016a). This
approach is appropriate when analysing the impact of climatic extreme events on

ecosystem functions.
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Spring weather Meteorological Heat wave
(warm / cold) drought
Longer term
effects
+/ . + 5 " -
() (c)

Plant activity & growth Soil  (© Plant activity & growth
Net carbon uptake R FelE ~ Net carbon uptake
Gross primary production (0) S Gross primary production
Ecosystem respiration Ecosystem respiration

Spring Summer
Quantification of spring-summer compensation effects (in years with summer extreme) on the carbon cycle:
(a) Carbon cycle impact of spring conditions if an extreme summer follows

(b) Carbon cycle impact of carry-over effects of spring conditions via water fluxes and soil moisture
(c) 'Direct" carbon cycle impacts of summer meteorology (drought & heat, direct or via soil moisture)

FIGURE 8.1.: Conceptual illustration of spring-summer interacting carbon cycle effects
due to climate extremes. In years affected by summer heat and drought (Ar-
rows (c)), warm spring conditions could potentially partly compensate for
carbon losses in summer due to higher carbon uptake in spring (Arrow (a),
associated with (+)). Conversely, however, warm spring conditions might
lead to earlier soil moisture depletion (Arrow (b), associated with (+)) and
thus a carry-over effect from spring to summer carbon cycling. Diagram
modified from Sippel et al. (2016c¢).

This study investigates two main objectives: Our first objective is to system-
atically assess changes in EPEs in spring and summer using climate-ecosystem
model ensemble simulations, and to attribute seasonal changes in EPEs to changes
in climate extremes, atmospheric CO5 and land-use change. Second, we focus
on interactions between negative summer EPEs and the preceding spring condi-
tions, and reinvestigate the outlined spring compensation and carry-over effects
in years affected by negative summer EPEs on regional carbon cycling from a
climate-ecosystem ensemble modeling perspective, and provide a model-based

interpretation and generalisation of these effects.

8.2. Data and methods

The methodological workflow of the study is as follows: We use a large en-

semble of bias-corrected regional climate model simulations (Section 8.2.1) to
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drive an ensemble of ecosystem model simulations (Section 8.2.2) for six eco-
physiologically different European regions. Factorial model simulations are set
up (Section 8.2.3) and used to disentangle climatic and non-climatic drivers of
seasonal changes in EPEs, and to scrutinise respective spring-summer interacting

carbon cycle effects (Section 8.2.4).

8.2.1. Regional climate model simulations and physically consistent
bias correction

The core ingredient to the present study is an ensemble of regional climate sim-
ulations over Europe that cover 26 years of transient climate change (1985-
2010) and 800 ensemble members in each year (i.e. 20,000 members in to-
tal) based on perturbed initial conditions. Climate model simulations have
been generated through distributed computing on citizen scientists’ computers
(http://www.climateprediction.net/weatherathome), using the global general cir-
culation model HadAM3P (1.875°x1.25°x15min resolution, 19 vertical levels)
and a dynamically downscaled regional model version (HadRM3P, 0.44°x0.44°x5min
resolution, Massey et al. (2015)) in atmosphere-only mode. Hence, the model is
driven by observed sea surface temperatures, sea ice fractions, the solar cycle,
and the observed atmospheric composition (greenhouse gases, aerosols, ozone,
see Massey et al. (2015) for further details). The present experimental setup has
been used to assess and attribute changes in climatic extreme events and its im-
pacts in various sectors (Otto et al., 2012; Sippel and Otto, 2014; Schaller et al.,
2016; Mitchell et al., 2016a), because the large available sample size allows to
scrutinise even small changes in the odds of climatic extreme events. European
summer climate in HadRM3P and other climate models is frequently too hot and
dry (Massey et al., 2015). To alleviate this issue, we apply a resampling-based
bias correction that preserves the physical consistency in the ensemble simula-
tions (for details see Sippel et al. (2016a)): A Gaussian kernel fitted over 1985-
2010 mean summer area-averaged temperatures in the ERA-Interim dataset (Dee
etal., 2011) in each of the six European regions (Table E1) is used as a constraint
for resampling 500 ensemble members in each year. The resampling procedure

improves the representation of summer climate in HadRM3P substantially, but
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reduces the available sample size of the ensemble and cannot account for all pos-
sible biases (Sippel et al., 2016a).
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FIGURE 8.2.: a) Illustration of seasonal cycles in vegetation phenology (indicated by the
Fraction of Absorbed Photosynthetically Active Radiation, FPAR) in satel-
lite observations (MODIS) and in the ensemble of LPJmL model simula-
tions (420 range) in all six regions studied in this paper. b, ¢) Identification
of extremes in the response variable’s distribution in the presence of trends
in (b) spring and (c) summer: Quantile regression of the 10th and 90th con-
ditional percentile against time.
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8.2.2. Terrestrial ecosystem simulations: Model description

The process-based Lund-Potsdam-Jena managed Land dynamic model (LPJmL,
Version 3.5) simulates terrestrial vegetation dynamics (growth, competition and
mortality), land-atmosphere fluxes of carbon (gross and net primary productivity,
ecosystem respiration) and water (evaporation, transpiration, interception) in nat-
ural ecosystems (Sitch et al., 2003) and under human land use (Bondeau et al.,
2007). Carbon allocation in LPJmL follows the fully coupled photosynthesis
and water balance scheme of the BIOME3 model (Haxeltine and Prentice, 1996),
i.e. the photosynthetic light-use efficiency is subject to environmental controls
via co-limiting light-limited enzyme regeneration and rubisco-limited enzyme-
kinetic rates (ibid.). Respiration from plant compartments follows a modified
Arrhenius relationship (Lloyd and Taylor, 1994). Heterotrophic decomposition
of litter and soil carbon pools depends additionally on soil moisture and follows
first-order kinetics (Sitch et al., 2003). LPJmL consists of 11 natural plant func-
tional types and 13 crop functional types that differ in their bioclimatic limits
and ecophysiological parameters. Here, we run LPJmL with an improved hy-
drology scheme (Gerten et al., 2004; Schaphoff et al., 2013), human land use
(Bondeau et al., 2007), agricultural water use (Rost et al., 2008), and an improved
phenology module (Forkel et al., 2014). Phenology and photosynthesis-related
parameters have been optimised against remote sensing observations resulting in
an improved simulation of natural vegetation greenness dynamics (Forkel et al.,
2015). LPJmL ensemble simulations are performed at a monthly temporal and at
0.5° spatial resolution. The spinup procedure consists of 1,200 years by randomly
concatenating individual ensemble members (sampled from the first ten available

years, 1986-1995) with transient CO5 concentration and land use.

Region selection All ensemble simulations are conducted for six individual
regions in Europe that broadly sample the spectrum of variability of vegetation
productivity in Europe (Figure E1), revealed from seasonal cycles in the satellite
observed Fraction of Photosynthetically Active Radiation (FPAR) taken from the
MODIS FPAR product (Myneni et al., 2002). Spring (March-May) and summer
(July-September) cover very different seasonality patterns in FPAR (Figure 8.2).
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The LPJmL ensemble reproduces seasonal dynamics of vegetation phenology at
the regional scale and the regional gradient in FPAR dynamics (Figure 8.2).

8.2.3. Factorial model simulations

The factorial set of climate-ecosystem model simulations (Table 8.1) is based on
a standard run (‘All’), in which LPJmL is run with all drivers, including tran-
sient CO> concentrations and human land-use (Fader et al., 2010). Moreover,
LPJmL is run separately for constant COy (‘CONSTCO2’), constant land-use
(‘CONSTLU’), and both constant CO5 and land-use (‘CONSTLUCO2’). In this
factorial, ensemble-based setup the differences between these runs are used to
disentangle and pinpoint climatic and non-climatic (CO-, land-use) drivers of
contemporary changes in EPEs (Section 8.3.1 and 8.3.2). Lastly, to investigate
carry-over effects from spring conditions to EPEs in summer (Section 8.3.3), an
additional LPJmL simulation driven by randomised spring climatic conditions
(‘SPRINGRAND?) is conducted. This step consists of randomly concatenat-
ing members of the climate ensemble between summer and spring (on June 1st)
within each year such that summer meteorology remains identical to the ‘All’ run,
but spring conditions are different. Hence, the difference in summer carbon cy-
cling between ‘All’ and ‘SPRINGRAND’ is driven by lagged effects from spring

in the ecosystem model.

TABLE 8.1.: Overview over factorial model simulations®.

Scenario name CO2 land-use climate Section
All transient CO2 transient land-use transient climate 8.3.1-8.3.3
CONSTCO2 constant COx ° transient land-use transient climate 8.3.1-8.3.2
CONSTLU transient CO9 constant land-use®  transient climate 8.3.1-8.3.2
CONSTLUCO2 constant CO9 b constant land-use®  transient climate 8.3.1-8.3.2
SPRINGRAND transient COq transient land-use transient cli- 8.3.3

mate, spring

randomisation®

@ Each factorial simulation is conducted for 1986-2010 climate and propagated through the entire

climate ensemble.

b fixed to 345ppm in 1985
¢ fixed to 1985 land-use values

@ Ensemble members have been randomly concatenated on June Ist in each year (‘random spring’,

but meteorological summer and autumn are identical to the other scenarios).
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8.2.4. Analysis methodology

Selection of extreme events All individual ensemble members are averaged
to regional and seasonal means for further analysis. Ecosystem productivity ex-
tremes (EPEs) are sampled directly from the tail of the response variable distri-
bution (sensu Smith (2011)), which is either gross primary productivity (GPP)
or net ecosystem productivity (NEP) in the present study. Let x; s fq. denote
the response variable x (x € {GPP, NEP}), an arbitrary ensemble member ¢,
in year ¢, season s, and from any factorial run fac (region is not indexed sepa-
rately to lighten the notation). Ensemble members in which the response variable

exceeds or falls below a given threshold in the ‘All’-simulations are labelled as

set . “+extreme —extreme : .
positive and negative EPEs (x," " " and x; ;"% ", respectively). The in-
dex j runs only over ensemble members within in a given category (~¢%"¢€ or

+extremey In Section 8.3.1, an illustrative extreme value analysis is conducted
by fitting a Generalised Pareto Distribution (GPD) to extremes in the response
variable, where the GPD constitutes a suitable limit distribution for such peak-
over-threshold selection of extreme values (Coles et al., 2001). These statistical
fits are derived from the ‘All’ simulations separately for the response variables’s
lower and upper tails (negative and positive EPEs) using a 5th and 95th quan-
tile threshold to identify EPEs, and separately for each season and two decadal
periods (1986—1995 and 2001-2010).

In Section 8.3.2 and 8.3.3, a quantile regression of the 10th (90th) conditional
percentile against time in the ‘All’ simulation is performed (Cade and Noon,
2003) to identify EPEs relative to time-dependent thresholds, thus accounting
for potential trends in the 25-year period. This yields a selection of 1250 EPEs
(out of 12.500 members) for each response variable, region, and season (see Fig-

ure 8.2b,c for an illustration).

Attribution to drivers of change In Section 8.3.1 (Figure 8.3), the ef-
fects of individual factors on changes in EPEs (COy: Azcgy ™, land-use:
Azprtreme, climate: Az, indicated here exemplarily only for nega-
tive extremes) between both periods and in season s are teased out by computing
the difference between both time periods of the averaged individual effects from

the factorial simulations (averages over any specific dimension are denoted as %.):



168 Changes in spring and summer carbon cycle extremes

—extreme __ ——extreme ——extreme
Af”cozs (33.,200172010,3,,411 - x-,200172010,s,CONSTCO2> -
——extreme ——extreme
(‘x-,198671995,s,All - x~,1986—1995,s,CONSTCOQ) (8.1)
Ax—eztreme _ (——emtrmne _ f—extreme ) _
LU, - -,2001—2010,s,All +,2001-2010,s, CONSTLU
——extreme ——extireme
(x-,1986—1995,s,All - m~,198671995,s,CONSTLU) (82)
—extreme __ ——extreme
A'rclima‘ceS - (x‘,2001—2010,s,CONSTLUCO2 -

——extreme
(‘T',1986—1995,s,CONSTLUCOQ)' (83)

In Section 8.3.2, the contribution of changes in CO», land-use and climate to
trends in EPEs are estimated individually for each tail, response variable, region

and season. We assumer linear trend slopes over the 25-year period and computed

—etheme)’

these in both tails separately (illustrated here for the negative tail, San

—extreme
6 —extreme _ M 8.4
All, = At : (8.4)
The contribution of trends in COy (Bcoz; ““"°"¢), land-use (Bru; "),

—extreme

and climate (Bclimates

) to changes in the response variable is determined

from factorial model simulations, i.e.

—extreme —extreme
—extreme (w-;,s,All - x~7-,s,CONSTC02)
Bcoz; = (8.5)
At
—extreme —extreme
—extreme (x-,-,s,All - w~,-,s,CONSTLU)
Bru, = (8.6)
) At
( —extreme )
—extreme __ x~,-,s,CONSTLUCO2
Bclimates - At . (87)

To further examine climate-related drivers of change in ecosystem productivity,
we analyse the individual contribution of trends in temperature, precipitation and
radiation to fSclimates)- A simple statistical attribution framework is presented
in the Supplementary Material to this Chapter based on the ‘CONSTLUCO2’

scenario.
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Spring-summer interacting carbon cycle effects due to climate extremes
In Section 8.3.3, we identify all ensemble members that experience a negative
EPE in summer (June-September, i.e., xjifﬁzlf;el;ne"UAS) using a time-dependent
10th percentile threshold. To detect spring compensation effects, we analyse
the preceding spring conditions in the identified ensemble members in terms of
ecosystem productivity anomalies that might potentially alleviate carbon losses
in summer. Furthermore, the contribution of carry-over effects from spring to
negative summer EPEs (e.g. via soil moisture depletion) is disentangled using
factorial model simulations by analysing the difference between the ‘All’ and
‘SPRINGRAND’ simulations, i.e. with identical summer meteorology in both
factorial simulations, but randomised spring meteorology. Hence, we compute
spring-summer carry-over effects as the difference between the identified nega-

tive summer EPEs in both scenarios.

8.3. Results

In this section, we firstly illustrate in one region how large ensembles of climate-
ecosystem model simulations can be used to study EPEs (Section 8.3.1) and, sec-
ondly present a systematic assessment of spring and summer trends in EPEs and
an attribution to drivers (Section 8.3.2). Lastly, we investigate spring-summer

interacting carbon cycle effects due to climate extremes (Section 8.3.3).

8.3.1. An illustrative attribution analysis of ecosystem productivity
extremes

The probability distributions of monthly GPP and NEP from the LPJmL ensem-
ble in CEU-FRA for an earlier (1986-1995) and a more recent (2001-2010) pe-
riod reveal an overall upward shift of GPP and NEP in spring but more nuanced
changes in summer (Figure 8.3a for NEP and Figure E3a for GPP). To investi-
gate these changes in more detail, we apply an extreme value analysis to the tails
of the probability distributions in both periods. Return time plots (Figure 8.3b-e
for NEP and Figure E3b-e for GPP) have been used widely in event attribution
studies (National Academies of Sciences, Engineering, and Medicine, 2016) to

scrutinise the tails of a distribution by plotting the magnitude of an extreme event
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FIGURE 8.3.: a) Seasonal cycle of NEP distribution as simulated by the LPJmL-ensemble

for 1986-1995 and 2001-2010 in the France subregion. (b—e) Return time
plots of seasonal NEP extremes (i.e. plotting the magnitude of an extreme
event as a function of return time) in spring (b,d) and summer (c,e) for
the upper (b,c) and lower (d,e) tail of the distribution for 1985-1995 and
2001-2010 (solid blue and orange lines, respectively, derived from fitting a
Generalized Pareto Distribution (GPD) to threshold exceeding extremes in
each tail, c.f. Coles et al. (2001)). b—e) Differences between the blue and
orange lines indicate how the likelihood of extremes occurring has changed
between the two compared decades. To illustrate the relative importance of
individual drivers, we also plot the effects of changes in NEP that are driven
individually by CO2, land-use, and climate from factorial model simula-
tions depicted by the dashed lines, following Eqgs. 8.1-8.3. Dots indicate
individual ensemble members.



8.3 Results 171

as a function of return time. Here, an event in the upper (lower) tail with an av-
erage return time of 20 years corresponds to a 95th (5th) percentile event when
using annual data.

Differences between the blue and orange lines in Figure 8.3b-e indicate how
the likelihood of EPEs occurring has changed between the two compared decades
for a given season and extreme type. In spring, terrestrial ecosystems exhibit an
increase in GPP and NEP under extreme conditions in the upper and lower tail
of the distribution in the more recent period (both tails shifted upward for any
given return time, Figure 8.3b,d and figure E3b,d). These increases are driven by
a roughly equal positive contribution of climate and CO- changes in the upper
tail, and a larger contribution of climate change in the lower tail, in particular
for GPP (Figure E3d). Changes in the tails of the GPP distribution between both
periods that are induced by individual drivers in the ecosystem model are largely
additive, i.e. the average contribution of changes in CO., land-use, and climate
added to the statistical model for the 1986-1995 tail matches the statistical fit for
the 2001-2010 tail (Figure 8.3b-e and Figure E3).

Changes in summer GPP are close to neutral, because the negative response to
climate change is compensated by a positive contribution of CO5. NEP has sig-
nificantly reduced (Figure 8.3c,e), predominantly due to negative climate effects.
For illustration, the European heat wave and drought of 2003 (Figure 8.2e, dashed
horizontal line) results in a roughly 1-in-80 year event in the 1985-1995 decade
but is already a 1-in-35 year event in the recent period. While the difference be-
tween the two decades used in this study is not comparable to a counterfactual
climate simulation as utilised in other attribution studies (Mitchell et al., 2016a)
it is reasonable to assume that the main difference in the climate simulations and
thus NEP simulations comes from anthropogenic climate change.

Because ecosystem responses to climate extremes are often highly nonlinear
and asymmetric depending on the type of extreme, changes in the likelihood of
EPE:s as discussed here are likely different from risk ratios based on meteorolog-
ical variables alone (Stott et al., 2004, 2013). This study therefore exemplifies a
simulation of the whole chain of events from meteorology to ecosystem responses
in extreme event attribution (Stone and Allen, 2005) and presents a framework for

studying extreme ecosystem impacts.
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8.3.2. Attribution of trends in ecosystem productivity extremes

Across all six European regions, trends towards increased gross productivity in
spring for both positive and negative EPEs from 1986-2010 confirm a general
upward shift in the GPP distribution (Figure 8.4a) that is driven by both climate
and CO; changes. The pattern of an upward shift in spring is also found for NEP,
but to a smaller extent that can be explained by a smaller sensitivity to recent
changes in CO5 and climate (Figure 8.4b). This is because recent climate change
and CO,, fertilisation are not only enhancing primary productivity in spring but
also ecosystem respiration, causing a smaller net response. Positive GPP trends
are generally more than twice as large as NEP trends, i.e. less than half of the
increased carbon uptake remains in the system after increased respiratory losses
are accounted for, which is a consistent pattern for both positive and negative
EPEs.

In summer, the response of ecosystem productivity to recent climate change re-
verses (with few exceptions), but remains positive for CO, changes: Hence, pre-
dominantly negative ecosystem productivity responses to recent climate change
are balanced by a positive response to CO, change, causing a mix of slightly
increased (two regions), close-to-neutral (three regions) and reduced (one re-
gion) gross carbon uptake. Summer increases are confined to energy-limited re-
gions in northern Europe (NEU-SCA and CEU-RUS) and more pronounced for
the upper tail of GPP - because the response of positive EPEs to recent climate
change is marginally positive (in contrast to the other regions, Figure 8.4a). Sim-
ilar to spring, summer NEP trends are generally smaller in magnitude than GPP
trends, and almost exclusively negative. The observed negative trends in summer
ecosystem productivity and EPEs are most pronounced in water-limited regions
in southern Europe (MED-SEE, MED-ESP, CEU-FRA) with relatively similar
trend slopes in the upper and lower tail. The energy-limited regions in northern
Europe experience reduced summer productivity under negative EPEs, but small
increases in NEP under positive EPEs due to slightly different climate respones
in the upper and lower tail (Figure 8.4b).

Overall, LPImL ensemble simulations reveal that seasonally contrasting re-
sponses of EPEs to changing climate conditions will be a crucial factor in

determining regional-scale carbon balances in the near future. Further ana-
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lyzing climate-induced trends in spring and summer ecosystem productivity
(Betimate ps aas a0d Belimate s 45) in the Supplementary Material to this Chap-
ter reveals that climate-induced positive productivity trends are mostly driven
by warming temperatures in spring, whereas the ecosystem response to summer
warming is negative for NEP and GPP across Europe (except GPP in NEU-SCA).

8.3.3. Elucidating spring-summer interacting carbon cycle effects due
to climate extremes

In 2012, the contiguous United States experienced a very warm spring followed
by an extreme summer drought. Wolf et al. (2016) hypothesised that warmer
spring conditions and elevated spring plant activity might have induced soil mois-
ture deficits, thereby exacerbating the impacts of summer drought (Figure 8.1).
Here, we analyse lagged effects in all ensemble members that experience extreme

reductions in summer productivity® (negative EPEs). Specifically, we investigate

a) whether productivity losses induced by summer droughts are (increasingly)
compensated by warmer spring conditions (‘spring compensation’, concep-

tual link (a) in Figure 8.1), and

b) whether spring-summer ‘carry over effects’ via soil moisture depletion
further exacerbate negative EPEs in summer (conceptual link (b) in Fig-
ure 8.1)?

The conditional selection of summer extremes over NEU-ENG (Figure 8.5a)
shows that negative summer extremes can be preceded by various ecosystem pro-
ductivity conditions in spring (Figure 8.5a), i.e. there is no obvious deterministic
link. However, there is indeed a probabilistic link between carbon cycling under
summer extremes and the preceding spring productivity conditions, as four out of
five European regions show -on average- increased spring GPP that compensates
to a small extent for summer reductions (2.7-19.0% average compensation, Ta-
ble 8.2), but smaller effects are observed for NEP (-4.3% to +7.8%). The MED-
SEE region is an exception where summer extremes co-occur with on average
reduced spring productivity (-4.6% in GPP and -10.4% in NEP of the summer

3The subregion over Spain is excluded from the analysis because seasonality in ecosystem produc-
tivity differs strongly from other European regions, see Figure 8.2
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FIGURE 8.4.: Factorial attribution of spring (MAM) and summer (JAS) trends in EPEs in
six European regions to changes in land-use, CO2 and climate, for (a) GPP,
and (b) NEP, as simulated by LPJmL.

anomaly are in addition lost in spring). Moreover, elevated ecosystem productiv-
ity in spring (GPP, and less so NEP) is increasingly compensating reductions in

summer productivity in all European regions over the past 25 years (Figure 8.6),

albeit average spring compensation of negative EPEs in summer can only account
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for a fraction of the summer anomaly. These trends might be a consequence of

seasonally contrasting trend slopes (Section 8.3.1 and Section 8.3.2).
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FIGURE 8.5.: Spring-summer interacting carbon cycle effects due to climate extremes il-
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with summer (June-September) anomalies in individual ensemble mem-
bers. b) Differences in soil water content explain spring-summer carry-over
effects in the carbon cycle. The average spring compensation and contribu-
tion of carry-over effects to negative EPEs in summer are indicated by a hor-
izontal red arrow in (a) and vertical red arrow in (b), respectively. Marginal
distributions are plotted at the edge of each plot as individual ticks for all
ensemble members (gray) and negative summer extremes (red).

Is there a causal link between spring carbon cycling and summer ex-
tremes? Carry-over effects from spring to summer contribute on average 8.3-
23.5% for GPP (6.0-19.1% for NEP) to the magnitude of extreme productivity
reductions in summer (negative EPEs, see Figure 8.5b for an illustration). This
carry-over contribution is revealed by analysing differences in summer EPEs in
the ‘All’ and ‘SPRINGRAND’ simulations (Table 8.1), where summer meteorol-
ogy is identical but spring conditions randomised in the latter simulation. Hence,
summer ecosystem productivity extremes would be less severe if they would have
been preceded by random spring conditions. The carry-over effects simulated by
LPJmL are due to soil moisture depletion, because differences in soil moisture

content explain a large fraction of the magnitude of carry-over effects across all
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regions (Table E2, Figure 8.5b for NEU-ENG). These carry-over effects have
been largely stable over the last 25 years (Figure 8.6).

In summary, the analyses presented here provide an independent process model
explanation and generalisation of the observed seasonal compensation mecha-
nism (Wolf et al., 2016). However, we find that the average spring compensation
of summer extremes is relatively small for GPP, almost neutral for NEP, and even
negative (spring amplification of summer extreme) in MED-SEE for both GPP
and NEP. Conversely, carry-over effects from spring to summer extremes via soil
moisture play an important role in shaping simulated EPEs and exacerbate car-
bon cycle impacts on average. Hence, a substantial contribution of compensation
effects (as observed for the 2012 US event, Wolf et al., 2016) cannot gener-
ally be expected at present in Europe, and the role of these effects remains to be
quantified on larger spatial scales, including uncertain long term legacy effects
of climate extremes (Anderegg et al., 2015). Furthermore, positive compensa-
tion trends as found for recent years (Figure 8.6) cannot continue indefinitely,
simply because there are natural limits to shifts in ecosystem phenology (Koérner
and Basler, 2010) and plant physiological responses to warming (Norby and Luo,
2004).

8.4. Discussion

The results of our study provide evidence that EPEs in European ecosystems show
a seasonally contrasting response to changes in climate when investigated using a
large ensemble of ecosystem model simulations. Spring climatic changes tend to
shift the GPP and NEP distribution upwards (including extremes in the upper and
lower tails), whereas climatic changes in summer, most notably warming, lead
to approximately neutral (GPP) or even negative trends (NEP), i.e. intensified
carbon losses under climate extremes. Further, summer carbon losses as a result
of climate extremes are partly compensated by a higher uptake in the preceding
spring in temperate regions, but these spring compensatory effects are largely un-
done through a negative carry-over effect from spring to summer via depleted soil

moisture, which further exacerbates summer carbon losses. Hence, our analyses



177

iscussion

8.4D

(4) SOLIRISE UB Aq PAJEDIPUL ST [9AS] SOUIPYUOD 9§ Y3 Je sado[s pudxn 3y} JO duedYSIS 4
‘Surpue)siapun Jo ases 10J A[ewiour Iowwuns ay) 0) 2ane[al uonesuadwod Surds Jo uonendwod ay) J0J PIsIdAal st usis ayJ, ,

« V0" L8 1'c- «¥0 ¥01- ge- 6'vC- diaN HAS-AdN

« V0" I'T1 6°C « 01 £ 9'1- €L diaN VI4-0d0

00 09 0¢C xS0 e 'l e dAN SNI-NFD

* 80- 16l I's- « C'1 8¢ Sl LT dAN DONH-NEAN

%« C0 I'6 61- « €0 8'L 0¢ S'6l1- diN VOS-NdN

1’0 98 I'e- « L0 9Y- | £ve- ddd HAS-AdN

10- 144! 8V « L1 Lc 01 Lee- ddD VI4-090

00 €8 £e « 01 ! LS '8¢ ddd SNI-NFD

* V0" §'eT G'8- « 1'C el 9 1'9¢- ddd DONH-NAN

1'0- Sl 8¢ w L1 06l 9°¢ 0'vC- ddD VOS-NdN
(Arewoue  (;_ypuow (;_Teak (Arewoue  (_tpuow (;—puow
(;—Teof  rwumsjo  ._w D3I) %) wwnsjo  _w D3) W D3)
%) qPURIL, %) UBSN UBIN qoPURLL %) pUBSN UBIN UBIN
Eliie)i]

103JJ9 J9A0-A11eD) uonesuadwods Suudg -Xo JowWwng  J[qBLIBA uorSoy

*$199JJ9 [BITWRUAP JO UONINGLIUOD PUB JJO) UT SAWANXI Jowwns Jo uonesuadwod Sutdg :"g g 31av]L



178 Changes in spring and summer carbon cycle extremes

(@, _ _ (b)g
3 < Spring compensation of summer extremes, GPP 3 ° Spring compensation of summer extremes, NEP
E 3
g g
2
§ 2+ g%
£ £
8 8
° o ° 9
2 4
e
K 3
o © - oo -
&
5] 2
2 ed 2g
g 0 g 9§
)
2 NEU-ENG &
5 94 NEU-SCA § Q NEUSo
E T CEU-RUS E 1 | A
5 CEUFRA E SEU-RUS
s 8 MED-SEE & o oA
5 8 234 MED-SEE
S J J J J J s T T T T 1
1885 1890 1868 2000 2005 2010 = ygg5 1990 1995 2000 2005 2010
s °
( ) ° Contribution of spring carry-over effects to summer GPP extreme (d ) © Contribution of spring carry-over effects to summer NEP extreme

0 20 40
1 1 1

-20
1

NEU-ENG
NEU-SCA

o NEU-ENG
¥ 1 NEU-SCA

—40
L

[%] contribution to summer negative GPP extreme ()
[%] contribution to summer negative NEP extreme

CEU-RUS CEU-RUS
CEU-FRA CEU-FRA
8f m MED-SEE 8f m MED-SEE
T T T T T 1 T T T T T 1
1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010
Years Years

FIGURE 8.6.: Trends and interannual variability in spring-summer interacting carbon cy-
cle effects due to climate extremes in summer. a, ¢) Spring compensation
of negative summer EPEs in (a) GPP, and (b) NEP. b, d) Contribution of
spring-summer carry-over effect to negative summer EPEs in (b) GPP, and
(b) NEP.

provide a model generalisation and interpretation of seasonal compensation and
carry-over effects of carbon-cycle extremes.

However, the results of the present analysis might be confined by the fact that
the underlying climate ensemble is based on just one regional climate model and
uncertainties related to simulated trends, changes in (individual) climate vari-
ables, potential feedback mechanisms, and the applied bias correction remain
(Massey et al., 2015; Sippel et al., 2016a).

Ecosystem models are derived from well-established theory of plant-atmosphere
carbon exchange (Bonan, 2015), and are widely analysed in the context of cli-
mate extremes (Ciais et al., 2005; Reichstein et al., 2007; Zscheischler et al.,
2014a). Nonetheless, the results presented here can still be influenced by scale

mismatches, where models scale carbon assimilation from leaf to the ecosystem
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scale (Rogers et al., 2017), or ecophysiological processes are simulated without
considering a diurnal cycle and averaged over 0.5° grid cell size.

Moreover, a possible caveat of the present study is that ecosystem and car-
bon cycle models tend to overestimate the response of terrestrial carbon cycling
to drought conditions if compared to observations-based datasets (Huang et al.,
2016). LPJmL and related earlier versions have been shown to overestimate the
sensitivity of ecosystem productivity to precipitation deficits in central European
regions as compared to tree ring data (Babst et al., 2013; Rammig et al., 2015),
albeit qualitative responses are largely captured (Rammig et al., 2015). Temper-
ature extremes that are not associated with precipitation deficits are not affected
(ibid.). On the continental scale in Europe, extremes in LPJmL simulated GPP
respond more sensitively to climate extremes than data-driven products, but in
a qualitatively consistent way considering for example the ratio between positive
and negative GPP extremes in Europe (Zscheischler et al., 2014c). In this context,
comparing the upper and lower tail of simulated ecosystem productivity in this
study (Figure 8.3c vs. Figure 8.3e) reveals that extreme carbon losses in the lower
tail are larger in magnitude than gains due to positive EPEs for a given return pe-
riod (slopes in the return time plots in the lower tail exceed those in the upper
tail for both GPP and NEP). This asymmetry in EPEs is consistent with analyses
at the continental and global scale in observations-based products (Zscheischler
et al., 2014c). Van Oijen et al. (2014) compares ecosystem productivity sim-
ulations and the vulnerability to precipitation deficits to satellite observations of
vegetation greenness and finds that LPJmL (and other vegetation meodels) largely
reproduce spatial patterns across Europe. Furthermore, the LPJmL version used
in the present study incorporates a phenology scheme that improves phenological
dynamics and variability of FPAR (Forkel et al., 2015), and thus might overcome
one of the previously identified key weaknesses of earlier LPJmL versions (Ma-
hecha et al., 2010a).

Nonetheless, the analysis and attribution of simulated EPEs ignores a number
of ecosystem processes and potential feedbacks between these, as these are miss-
ing in the LPJmL ecosystem model (e.g. wind disturbance, pests, nitrogen and
phosphorous limitations) and generally many ecosystem processes and feedbacks

during climatic extreme events are still unknown or uncertain (Reichstein et al.,
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2013; Frank et al., 2015). Hence, model improvements can only be conducted in
synthesis with improving our process understanding of climatic extreme events.
Therefore, dedicated ecosystem manipulation experiments (Knapp et al., 2002;
Jentsch et al., 2007; Beier et al., 2012) will be crucial to evaluate and scrutinise
model predictions.

Despite these caveats, we argue that the analyses and tools presented here are
useful to investigate specific hypotheses related to extremes in terrestrial ecosys-
tems. Our approach allows a physically consistent probabilistic assessment of
extremes in ecosystem productivity. Because the outlined probabilities and return
times of EPEs are based on one ecosystem model, they should not be taken at
face value, but rather be regarded as an approach to scrutinise model sensitivities
and attribute drivers behind contemporary changes in ecosystem risk on decadal
time scales.

An application of the analysis metrics developed for this study to other process-
oriented ecosystem models or data-driven approaches (Tramontana et al., 2016)
could be one way to sample respective ecosystem model uncertainties, and to
further scrutinise various hypotheses about interacting and contrasting contempo-
rary changes in the frequency and intensity of ecosystem productivity extremes.
Thereby, our suggested ensemble analyses might complement state-of-the-art
ecosystem risk assessments (Van Oijen et al., 2014; Rolinski et al., 2015) and
possibly guide ecosystem manipulation experiments towards pinpointing the most

relevant and uncertain drivers of contemporary change in ecosystem extremes.

8.5. Conclusion

In this paper, we illustrate large ensemble simulations of ecosystem productivity
as a useful tool to explore variability and change in EPEs from a probabilistic
perspective. The approach allows to identify the drivers of changes in EPEs using
attribution-type analyses (Stott et al., 2013) and to analyse interacting carbon cy-
cle effects caused by climate extremes (i.e. compensatory and carry-over effects).
We find contrasting trends in spring vs. summer carbon cycle extremes in six
eco-physiologically different European regions. A recent upward shift in the dis-

tribution of spring ecosystem productivity (including extremes) can be attributed
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to recent climate warming and COs increases, whereas in summer, ecosystem
extremes are intensifying for NEP (i.e. more carbon lost to the atmosphere un-
der drought and heat conditions) and roughly stable for GPP, despite a positive
response to increasing COy. Despite these overarching trends, regional differ-
ences are emerging, in that water-limited regions in South Europe show smaller
trends in spring, hence benefitting to a smaller degree from warming, while neg-
ative trends in summer net ecosystem productivity and its extremes are least pro-
nounced in temperature-limited northern regions.

Furthermore, spring GPP increasingly compensates negative EPEs in summer
GPP in four out of five European regions. However, this compensation occurs
only partly, on average in the range of 2.7-19.0% of the summer anomaly, but de-
pends on the definition of extremes (Figure 8.5). Spring compensation effects and
trends are smaller but mostly positive for NEP. Conversely, spring-summer carry-
over effects exacerbate carbon cycle losses under summer extremes (contribution
of 8-23% in GPP and 6-19% in NEP to summer anomaly), thereby counterbal-
ancing and undoing positive compensation-related effects. Therefore, we expect
that climate extremes increasing in frequency and intensity (IPCC, 2012) might
further exacerbate legacy effects of ecosystem extremes in the long term beyond

the actual events (Anderegg et al., 2015).
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9. Conclusions and outlook

A few years after contemplating about return times of severe storm surges that
have been causing disastrous impacts on coastal villages in the past, Hauke Hain,
the Dykemaster and central character in Theodor Storm’s Schimmelreiter (quoted
in the Introduction of this thesis), finished the construction of a new, flatter dyke
at some sections of the coastline. However, a few years further on, he finds the
dykes and himself amidth a century flood and storm surge that he had not expected
in that intensity:

“"Der Wind ist umgesprungen!" rief er "nach Nordwest, auf halber Springfluth!
Kein Wind; - wir haben solchen Sturm noch nicht erlebt!" (...) Da sank aufs Neu’
ein grofies Stiick des Deiches vor ihm in die Tiefe, und donnernd stiirzte das Meer
sich hinterdrein; (...) dann ritt er an den Abgrund, wo unter ihm die Wasser,
unheimlich rauschend, sein Heimathsdorf zu iiberfluthen begannen; (...) aber
unten auf dem Deiche war kein Leben mehr, als nur die wilden Wasser, die bald
den alten Koog fast vollig tiberfluthet hatten.

These quotes round off the tale of the Schimmelreiter' (‘The Rider on the
White Horse’). In short, a century flood and storm surge unfolds that severely
threatens the dykes that protect the coastal village. However, Hauke Haien de-
cides not to cut off ‘his’ newly constructed dyke, which might have, according to
the legend, relieved pressure from the old dykes and possibly inundated uninhab-
ited lands. Eventually, the old dykes break, causing a severe flood disaster in the

coastal village.

This tale serves as a reminder and analogy of two rather general but crucial

points that might help to put the findings of this thesis into a broader context:

ITheodor Storm. 1888/2011. Der Schimmelreiter (‘The Rider on the White Horse’). ISBN
3458362169.
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First, climate extremes are an essential part of climatic variability. Hence, in-
cidences of climate extremes will recur with certainty in the future, but a com-
prehensive physical understanding or prediction of these events still constitutes
an enormous scientific challenge (Zhang et al., 2014). Nonetheless, analysing
the statistics of climate extremes that occurred in the past (e.g. Alexander et al.,
2006), and scrutinising the drivers behind these events (Otto et al., 2016), one
might be able to learn about the statistical properties and probabilities of climate
extremes occurring, and how these might be changing due to various and inter-
acting drivers. The present dissertation contributes in this context by scrutinising
statistical quantification methodologies (Part I), and tools to improve the interpre-
tation and bias correction of climate model ensemble simulations (Part II).

Second, the impact of climate extremes on socio-economic and ecological sys-
tems is often highly nonlinear (e.g. in the case of dyke breaks) and mediated by
various external drivers or system properties, and management decisions (see e.g.
IPCC (2012) for an in-depth discussion, or Reichstein et al. (2013) with a focus
on terrestrial ecosystems). In this context, this thesis presents tools for an explicit
impact assessment of climate extremes in the terrestrial biosphere (Part III) that
can be used for instance to disentangle seasonally interacting drivers and nonlin-

ear effects of climate extremes in ecosystem carbon cycling.

The overarching objective of the present PhD thesis is to improve the quan-
tification of, and contributing to the understanding of climate extremes and their
impact on ecosystem-atmosphere interactions. To achieve these goals, the the-
sis explores a wide range of generic methodological considerations (Part I), ap-
proaches to enable sound process-oriented model ensemble simulations using
observation-based constraints (Part II), towards an attribution of ecosystem im-
pacts arising from climate extremes (Part III). Overall, the thesis lays out a com-
prehensive framework for systematically quantifying and attributing the impacts
of climate extremes in the terrestrial biosphere using joint analyses of observa-
tions and model ensembles. While the generic methodological issues in Part I
(Chapters 2—4) are of general interest for everyone dealing with the robust quan-
tification of climate extremes and variability in relation to some reference period,

Part IT (Chapters 5-7) is more specific to improve the interpretation and bias cor-
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rection of model-ensemble simulations through observation-based constraints. In
contrast to conventional statistical bias correction, these approaches retain the
physical consistency of the original model simulations, which is of crucial rele-
vance for any assessment of climate extremes or their impacts in the terrestrial
biosphere. Finally, Part III (Chapters A and 8) illustrates an assessment of ex-
treme responses in ecosystem productivity to climate extremes using an ensemble
of climate-ecosystem model simulations. These analyses are used to (1) attribute
trends in the intensity of ecosystem productivity extremes to various drivers, and
(2) disentangle effects of seasonally interacting carbon cycle effects due to cli-
mate extremes.

Overall, the thesis shows that firstly, scrutinising statistical methods and di-
agnostics, and evaluating observation-based constraints on model ensembles, are
key to an improved understanding as well as quantification of climate extremes
and their impacts. Secondly, a consequent probabilistic interpretation of climate-
ecosystem model ensemble simulations offers novel perspectives on the mecha-
nistic pathways and interacting effects of terrestrial ecosystem responses to cli-
mate extremes. In the following, I derive an outlook on the implications for each
of the tree Parts of this thesis (Sections 9.1-9.3), and also highlight future research
needs emerging from the findings of this thesis. Finally, I adopt a data-driven per-
spective on ecosystem functioning and explore illustratively how climate model
ensemble simulations could be combined with purely data-driven ecosystem mod-

els to complement process-oriented ecosystem model simulations (Section 9.4).

9.1. Statistical quantification of extremes

In Part I of this thesis, I revisited several methodological choices that contribute to
a robust quantification of spatially aggregated climate extremes in observational
or simulated gridded datasets (Chapters 2—4). Chapter 2 and 3 showed that con-
ventional statistical methodologies that are based on a reference period standard-
isation of gridded data can impose substantial biases outside the reference period
on spatially or temporally aggregated estimates of climate extremes. For exam-
ple, the occurrence of ‘two-sigma extremes’ could be overestimated by 48.2%

compared to a reference period of 30 years in randomly Gaussian distributed data
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in the absence of any trends. This phenomenon occurs because the statistical es-
timators of mean and standard deviation, used for the standardisation procedure,
are statistically dependent on the reference period but independent from periods
outside the reference period.

Hence, these findings highlight that assessing the robustness of methodolog-
ical choices is a crucial first step in analyses of climate extremes in spatio-
temporal datasets. In particular, as these analyses often attract media attention,
and are sometimes related to anthropogenic climate change?, robust and trans-
parent methods for quantification are simply essential to enable informed public
discourse.

Several implications follow specifically from the normalisation-induced biases
that I will briefly illustrate in a few examples that go beyond the issues discussed
in Part I:

* The use of 30-year reference periods to derive grid-cell based statistics such
as the sample mean or sample standard deviation for normalisation does not
warrant accurate analyses of spatio-temporal climate extremes, although
30-year reference periods might appear as common practice (WMO, 1989;
Donat et al., 2017).

 Standard climate datasets that are used widely in the climate or climate im-
pact community are computed from gridded monthly station-based anoma-
lies in a common reference period such as the CRU-TS datasets (Harris
et al., 2014). Therefore, some noteworthy properties of these datasets, such
as reduced spatial variability within the reference period (Tingley, 2012),
might stem at least partly from the anomaly-based generation of these
datasets. For example, consider independent and identically distributed

Gaussian data in a surrogate ‘true and perfect climate’ in any given month:

Xt i~ N(u,0?), 9.1)

2http://www.nytimes.com/2012/08/07/science/earth/extreme-heat—is—
covering-more-of-the-earth-a-study-says.html


http://www.nytimes.com/2012/08/07/science/earth/extreme-heat-is-covering-more-of-the-earth-a-study-says.html
http://www.nytimes.com/2012/08/07/science/earth/extreme-heat-is-covering-more-of-the-earth-a-study-says.html
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where ¢ is a grid cell index over a large number of grid cells and ¢ is an
arbitrary time step in an arbitrary month m. For any given reference pe-
riod length n,., the reference perlod sample means in each grid cell and
month follow fip, ; ~ N (uref R —2—), and anomalies are calculated such
as Xonom,t = X — [lres (subscript ¢ and m are dropped for convenience).
Hence, generating a gridded anomaly dataset that is based on a reference
period that does not cover the full time period will lead to a spatially differ-

ent distribution inside and outside the reference period, respectively:

Xanom,te{obase} ~ N(Oa (]- + ﬁ)o—Q)v and (92)
Xanomaegresy ~  N(0,(1 = 1-)0?). 9.3)

Obviously, differences in the variability of the spatial distributions could
impose deleterious biases on the detection and quantification of climate
extremes in gridded datasets. In further research, phenomena of this
kind could be further investigated and potentially addressed analytically

as shown in Chapters 2 and 3.

* Statistical bias correction methodologies typically calibrate a relationship
between a simulated variable (e.g. 7T,,,q4) and the corresponding ob-
served variable (1,,5) based on a long-term probability distribution (Ma-
raun, 2016) in a given reference period for which observations are avail-
able. This relationship is then often extrapolated to future simulations
(see e.g. Hempel et al., 2013). Assuming uncorrelated transient climate
model runs and some ‘perfect and true’ observations, consider a simple
example of monthly mean bias correction: We assume that X,,04.¢,m,i ~
N (Bmod.tm.is Tmod,t,m,i)» A Xobs tm,i ~ N (Hobs,t,m.is O tm,;) With
the subscripts ¢, m, 7 denoting time, month, and grid cell as above.
Subtracting the mean bias defined as the difference between the sample
means of the observations and model simulations in the reference period
yields statistically bias corrected time series (for each month m and grid
cell ¢, subscripts dropped for convenience):

Xmodfcor,t = Xmod,t - ,amod + ﬂobs = Xanom,t + ,aobs (94)
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Because fiops ~ N (Lobs, Zi—) and with Eq. 9.2 and 9.3 above, it follows:

bs
ef

Xmodfcor,tG{obase} ~ N(/:Lobsa (1 + %)O’?nod)v and (95)

Xmod—cor,te{ref} ~ N(,aob& U?nod)' (9.6)

Therefore, care is needed when analysing spatio-temporal variability or ex-
tremes in datasets that have been bias corrected or otherwise statistically
pre-processed based on a fixed reference period, which remains a standard
method for bias correcting climate data for state-of-the-art impact assess-
ments (e.g. Hempel et al., 2013; Frieler et al., 2016; Mitchell et al., 2017).
Similarly, if anomalies are derived relative to a sample mean (e.g. typically
used for precipitation), this procedure might not only inflate the variability
in the out-of-base period, but might also increase the long-term averages
(see Chapter 3 for a detailed discussion), and the examples shown here

could be easily extended to this analogous case.

In summary, Chapter 2-3 and the brief examples presented here highlight that
any assessments of extreme events in gridded spatio-temporal datasets of climate
or ecosystem variables require careful statistical pre-processing and robust detec-
tion metrics. Therefore, comprehensive testing and benchmarking of detection
algorithms and detection metrics is crucial, particularly as new and more com-
plex indicators are being developed. For example, these include metrics to quan-
tify magnitude and extent of climate extremes simultaneously (Russo et al., 2014,
2015), or to detect multivariate extreme events (Flach et al., 2016). In this context,
climate model ensemble simulations that feature large sample sizes might serve
as a useful test bed for assessing the statistical robustness of methodological ap-
proaches. Chapter 4 illustrates such a benchmarking approach, and compares an
empirical analysis of an ensemble simulation to inferences about climate extremes
based on extreme value theory, but from smaller available sample sizes. This anal-
ysis showed that model ensemble simulations can inform parameter choices for
inferences about extreme values in observations that are inherently limited in spa-
tial and temporal extent. In conclusion, integrating methodological sanity checks
of this kind into future research practice would provide an important step towards
robust science.
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9.2. Observation-based constraints to improve the
simulation of climate extremes and ecosystem impacts

Part II of this thesis is dedicated to the development and application of meth-
ods that constrain climate model ensemble simulations using observational data
to reduce biases in climate variables and their extremes, while retaining physical
consistency across multiple climate variables. Bias correction is a crucial step
for assessing climate impacts (e.g. Frieler et al., 2016; Ahlstrom et al., 2017),
and in particular the impacts of climate extremes (e.g. Chapter 5), but conven-
tional statistical bias correction methods are not ideally suited for this task due to
their physical inconsistency and inability to retain feedbacks or the multivariate
correlation structure of climate variables (Ehret et al., 2012; Sippel et al., 2016a).

Chapter 5 details a novel bias correction methodology designed to minimise bi-
ases in regional climate model ensemble simulations, including simulated climate
extremes and ecosystem impacts, while physical consistency is preserved. The
method uses the distribution of observed temperatures as a resampling constraint.
Using a similar concept, Chapter 7 shows that biases in temperature extremes in
multi-model ensembles can be reduced if the ensemble is constrained by suitably
chosen diagnostic metrics that are based on observational datasets (here: a land-
atmosphere coupling metric). The application of observation-based constraints
to climate model ensembles is conceptually similar to the concept of emerging
constraints in the climate system (Hall and Qu, 2006; Cox et al., 2013; Wenzel
et al., 2014), but instead of seeking relationships between present-day observ-
ables and future metrics, we here seek diagnostics that are related to processes
that determine present-day model biases. While it is often not straightforward to
pinpoint the physical origin of model biases, addressing biases jointly using suit-
able constraints might constitute a physically consistent way forward, because
model biases affect variables not independently from each other. Overall, Part IT
of this thesis showed that constraint-based approaches that reduce biases in cli-
mate model ensembles by resampling or reweighting individual ensemble mem-
bers constitute a useful avenue for investigating the impacts of climate extremes,

and one that might complement conventional statistical bias correction.
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However, several methodological caveats remain at present that could be ad-
dressed in future research:

* Biases in climate models stem from uncertainties in the representation of
many different processes and thus differ among regions, seasons and vari-
ables. Therefore, it is unlikely that there exists one or a small set of con-
straints that can address climate model biases globally in a ‘one fits all’
manner. For example, Chapter 7 showed that an observation-based land-
atmosphere coupling constraint can significantly reduce biases in a multi-
model ensemble in regions that are sensitive to the representation of land-
atmosphere coupling, but the constraint has no effect elsewhere. Hence,
applications of constraint-based bias correction methods presented in this
thesis require thorough testing and evaluation. Addressing this caveat
by a more objective analysis of constraints for bias correction might fur-
ther probe the possibilities and limitations of this method for analysing
climate-impact simulations. Such enquiries could be embedded in system-
atic model-observation comparisons, and might benefit from high quality

observational datasets as demonstrated by Massonnet et al. (2016).

* At present, conventional statistical bias-correction that is widely used for
impact assessments (e.g. Hempel et al., 2013; Frieler et al., 2016) and
constraint-based bias correction appear almost mutually exclusive. There-
fore, it might be worthwhile to explore whether observation-based con-
straints that screen out plausible from implausible ensemble members could
be combined with conventional bias correction approaches. For example, a
two-step approach is conceivable, in which first constraints are applied to
pinpoint physically implausible simulations, and second remaining biases
that do not compromise physical consistency could be removed statistically.
These approaches thus might assist and improve impact assessments in the
context of 1.5° vs. 2°C global climate targets (Schleussner et al., 2016b;
Mitchell et al., 2016b). Ultimately, however, bias correction methods can-
not and should not replace model development and improvement.
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9.3. Extremes events in terrestrial ecosystems: Drivers and
attribution

In Part III, extensive climate-ecosystem ensemble simulations are scrutinised to
investigate how climate extremes, and changes in their occurrence frequency and
intensity, might affect carbon cycling in European terrestrial ecosystems. The
analyses reveal a seasonally contrasting response of terrestrial ecosystem produc-
tivity extremes to recent changes in climate: Spring gross and net carbon uptake
is increasing, while extremes in ecosystem productivity in summer point towards
reduced carbon uptake, hence higher net carbon release under drought and heat
conditions. Moreover, spring-summer interacting carbon cycle effects due to cli-
mate extremes are disentangled, which include spring compensatory effects for
summer extremes in the ecosystem carbon balance, and contrariwise, carry-over
effects from spring to summer that might exacerbate the effect of climate extremes
in summer (see Chapter A for a discussion). Chapter 8 shows that both effects
play out as crucial factors in the response of European terrestrial ecosystems to
climate extremes. However, in the context of spring-summer interactions under
climate extremes, it remains an important research question as to whether spring
compensatory or carry-over effects will dominate ecosystem responses to these
events in the future. In other words, whether ecosystems can sustain their eco-
physiological functioning under more intense or frequent future climate extremes
through simple temporal compensatory effects, or whether temporal shifts under
climate extremes might exacerbate adverse impacts on ecosystem functioning, in-
cluding potential long-term legacy effects, remains an open research question of
high relevance.

The analysis presented in Chpater 8 might serve as a blueprint of how climate-
ecosystem ensemble simulations might constitute a useful framework to investi-
gate specific hypotheses related to the response of ecosystem carbon cycling to
climate extremes. Climate model ensemble simulations are increasingly becom-
ing available to the scientific community, e.g. to assess future climate targets
(Mitchell et al., 2017) or historical runs (see e.g. Angélil et al. (2017) for a de-
scription). These ensembles now comprise a larger number of models and are

often computed in a spatial resolution that is suitable for the analysis of impacts
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of climate extremes in various sectors (Mitchell et al., 2017). Therefore, the anal-
ysis methods in Chapter 8 also illustrate how ensemble-based impact simulations
could be investigated and interpreted in related sectors in future research, such as
agricultural or heat-health related impacts (e.g. Mitchell et al., 2017).
Specifically with regard to a comprehensive probing into ecosystem responses
to climate extremes, a variety of important research questions and methodological

challenges remain to be addressed:

* Climate variability and extremes affect terrestrial ecosystems through com-
plex pathways (Reichstein et al., 2013; Frank et al., 2015). For exam-
ple, ecosystem carbon uptake under warmer spring conditions prior to ex-
tremely dry and hot summers might compensate temporally for summer
carbon losses (Wolf et al., 2016). Moreover, Jung et al. (2017) showed
that inter-annual variability in global land carbon uptake arises from spa-
tially compensating responses to local water availability. Such spatial com-
pensation of ecosystem responses might be also expected under climate
extremes. Therefore, comprehensive, long-term climate-ecosystem ensem-
bles might serve as an invaluable resource for testing hypotheses of this
kind, and might complement observational datasets that are limited in time
and space with a probabilistic dimension (Allen and Stainforth, 2002).

* Assome climate extremes are changing in frequency and magnitude (IPCC,
2012), the question to what extent ecosystem impacts of climate extremes
can be attributed to climatic drivers becomes relevant (Hansen et al., 2016;
Otto, 2016). Chapter 8 has shown illustratively how various climatic- and
non-climatic drivers affect changes in the odds of ecosystem productivity
extremes, but this analyses is contingent on one process-oriented ecosystem
model. Therefore, using ensembles of several process-oriented ecosystem
models, carefully evaluated against observation-based datasets, could po-
tentially further pinpoint the drivers behind changes in ecosystem produc-
tivity extremes for a broader set of models, different biomes, and for future
periods - towards addressing the challenge of attributing not only climate
extremes, but also extremes in climate impacts (Hansen et al., 2016; Otto,
2016).
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The research outlook presented above is based on process-oriented ecosystem
models that are designed to simulate ecosystem functioning based on established
ecological theory (Bonan, 2015). However, these models can represent ecosys-
tem functioning only to a limited degree, and for instance often overestimate the
response to drought (Rammig et al., 2015; Huang et al., 2016). In recent years,
data-driven models based on observational datasets and derived through machine
learning or statistical techniques have emerged as a complement to process-
oriented models (Jung et al., 2011; Tramontana et al., 2016; Jung et al., 2017).
Therefore, combining climate model ensembles with data-driven models (see ex-
ample provided in Section 9.4) might overcome limitations that are inherent to
process models—which might thus further contribute to robust scientific answers

to the research questions sketched above.

9.4. A data-driven perspective on terrestrial ecosystem
productivity based on satellite-derived vegetation
productivity proxies

In the final section of this thesis, I illustrate that elaborating the suggested re-
search avenues is straightforward. I explore if one can obtain a purely data-driven
perspective on the quantification of terrestrial ecosystem productivity, and their
climate drivers, using the ensemble based approach elaborated in Chapter 8. Here,
I first train several statistical models of the Fraction of Absorbed Photosyntheti-
cally Active Radiation (FPAR) as a satellite-observed vegetation greenness proxy
(Gobron et al., 2010) using meteorological observations as predictors. In a sec-
ond step, I drive the empirical models forward using the regional climate model
ensemble and pinpoint the contribution of individual climate variables to recent

trends in vegetation greenness.

Methodology The method is largely based on Chapter 8 (and Supplemen-
tary Material), but instead of statistically emulating a process-oriented ecosystem
model, we use FPAR obtained from the MODIS satellite (MOD15A2, Myneni
et al., 2002) in conjunction with gridded reanalysis fields of meteorological vari-

ables as predictors. The methodology is briefly reviewed here:
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FIGURE 9.1.: Evaluation of empirical estimates of seasonal-scale anomalies in satellite-
observed FPAR. Histograms of observations vs. model predictions as de-
termined by R?, for each region and season after 10-fold pixel-based cross-
validation.

1. We train several additive regression models (i.e. assuming no interactions
between predictor variables), stratified by plant functional type in the time
period 2001-2012, using multivariate adaptive regression splines (Friedman
et al., 2001):

k . k .
syss = f(env) = Zm:1 9Tair; (Tairy,) + Zm:1 9Precipm (Precip,,) +
Sk | 9Radiation,, (Radiation,,, ). 9.7)

The target variable (sys;) is seasonal FPAR in 0.5° pixels across the North-
ern hemisphere, and a separate model is trained for each dominant natural
plant functional type in each region (see Table E1 based on MODIS-derived
land cover (MOD12Q1, Friedl et al., 2010)) and each season (denoted by
subscript s: spring or summer; 12 models in total). Meteorological vari-
ables (temperature, precipitation, short-wave radiation) in monthly resolu-
tion (subscript m; k denotes the total number of months considered in the
statistical model, here: k& = 7) from ERA-Interim (Dee et al., 2011) in the
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three concurrent months (i.e. March—-May for spring) and four preceding
months (Nov—Feb for spring) are used as predictors (explained in detail in
Eq. E.3, Supplementary Material to Chapter 8).

2. 10-fold cross-validation of the derived models and aggregation of the pre-
dictions to regional averages (see Table E1 for region definition) shows that
10 out of 12 models exceed R2-values of 0.6 (Figure 9.1), i.e. the meteo-
rological predictors explain a significant fraction of year-to-year variations

in FPAR on a regional level.

3. The regional climate model ensemble simulations presented in Chapter 8§
are used to predict the statistical FPAR models forward (i.e. separately
for the dominant plant functional type in each region and season), and to
calculate contributions of individual variables to recent trends in FPAR.

The linear trend contributions are calculated as:

k . k .
B _ y~ Agrair,, (Taitm)  B9precipn (Precipm) , (0.8)
At At At
M= e e m=1
Tair contrib.: Brair Precip contrib.: Bprecip

Results and Conclusion The analysis presented here reveals positive trends
in FPAR across all six regions in spring (the trend is very small in one Mediter-
ranean region, MED-ESP), but in summer FPAR trends are small with two out
of six regions showing negative trends (Figure 9.2). Hence, FPAR trends de-
rived through combining a data-driven model with climate ensemble forcing con-
firm a seasonally contrasting response of European ecosystems to recent climatic
changes (shown in Chapter 8). The strongest positive trends in summer FPAR
are observed in forest-covered regions in Northern Europe (NEU-SCA and CEU-
RUS).

Positive trends in spring FPAR are driven almost exclusively by warmer con-
current (i.e. spring) temperatures, with a small but consistently positive contri-
bution of warmer preceding (winter) temperatures. For summer FPAR, the con-
tribution of warmer concurrent (summer) temperatures is small (and negative in
two regions), and concurrent changes in short-wave radiation appear to increase

FPAR by a small amount in all regions. Interestingly, a negative contribution of
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FIGURE 9.2.: Climatic variables that drive recent changes in F'P AR across six European
regions in spring and summer derived from empirical model predictions.
The width of the link between the env-variable (left) and FFPAR in each
region (right) indicates the contribution of the individual driver (e.g. Srair,
BPrecip, €tc.). Note that brown colours indicate a negative trend contribu-
tion of the respective driver, whilst green colours indicate a positive con-
tribution (trans. - at time of seasonal anomaly, early - before seasonal flux
anomaly).

warming in the preceding spring temperatures appears to reduce summer FPAR
consistently across all regions. This feature might further point at a crucial role of
carry-over effects for ecosystem functioning in a warming climate (potentially in-
duced via soil moisture depletion), which has been observed and discussed earlier
for boreal forests at high Northern latitudes (Buermann et al., 2013).

In conclusion, the illustrative data-driven analysis shows that a combination
of data-driven climate-ecosystem relationships with a regional climate model en-
semble yields estimates of drivers and contemporary trends in ecosystem produc-
tivity that are consistent with process-oriented model results presented in Chap-
ter 8. Thus, a combination of data-driven models with regional or global climate

model ensembles might provide a productive route for future research into the im-
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pacts of climate extremes and variability on terrestrial ecosystem functioning that
is complementary to process-oriented ecosystem model ensembles (Section 9.3).

This final section only intended to concretely illustrate one of the many po-
tential avenues that could be followed using the methodology developed in this
thesis. Overall, I see highest potential in systematically expanding the approaches
to global analyses and different system responses by combining climate model en-
sembles with both process-oriented and data-driven models of ecosystem func-
tioning. Thereby, explicit links between climate extremes, recent changes in their
frequency and intensity, the underlying drivers, and ecosystem impacts can be dis-
entangled towards systematic ‘end-to-end’ attribution studies (Stone and Allen,
2005), thus bridging a crucial research gap that probabilistically links anthro-
pogenic emissions and other climate drivers to observed impacts of climate and its
extremes (Hansen and Stone, 2016; Otto, 2016). Other points could be investigat-
ing explicit climate extremes to ecosystem impact relationships under large-scale
modes of climatic variability such as El Nifio, including interacting and compen-
satory effects of ecosystem responses to climate extremes across space and time
(e.g. Wolf et al., 2016; Jung et al., 2017), and extending these approaches be-
yond ecosystem carbon cycling, e.g. towards agricultural impacts or biodiversity

patterns.
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A. Ecosystem impacts of climate extremes
crucially depend on the timing’

‘The year 1540 was unprecedented in centuries. It was dreadful,
bright, and hot. Bright weather and heat [...] lasted for 29 weeks, in
which rain fell on not more than 6 days [...]. Meadows and forests
were yellow from the heat and the earth opened large cracks; at sev-
eral locations grapes and vine withered, many forests burned, foun-
tains and springs dried out completely. [...] (But) there was an abun-

dance of corn and a lot of delicious wine.’

Translated from German, a contemporary witness describing the contrasting im-
pacts of a mega-heat and drought event of 1540 in Europe (Wetter et al., 2014).

The impacts of climate extremes have always been of crucial importance to hu-
man societies, but they also play a key role in affecting structure and functioning
of ecosystems. Whether there are any impacts at all, and how these impacts man-
ifest themselves, critically depends on the timing, magnitude, extent, and type of
the climate anomaly. Although many studies have been undertaken to investigate
the impacts of climate extremes on ecosystem functioning, attempts to build an
overarching framework have had little success so far and many open questions
remain (Frank et al., 2015). A study published in Proceedings of the National
Academy of Sciences of the United States of America (Wolf et al., 2016) provides
new insights into the question of how impacts of climate extremes occurring dur-
ing different periods of the year can interact and counteract each other.

Wolf et al. (2016) investigated the year 2012 and its impacts on terrestrial car-
bon fluxes in the continental United States, an extreme year in which a record

IThis chapter is published as Sippel, S., J. Zscheischler, and M. Reichstein. 2016. Proceed-
ings of the National Academy of Sciences of the United States of America 113(21), 5768-5770.
doi:10.1073/pnas.1605667113.
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warm spring was followed by a severely dry and hot summer (Knutson et al.,
2013; Hoerling et al., 2014). The authors analysed three independent streams
of observational data and data-driven models, and demonstrated that losses in
net carbon uptake during summer were largely offset by unusual carbon gains in
spring caused by its record-exceeding warmth and early arrival. In this way, the
continental United States remained a carbon sink despite the exceptional drought
that spanned most of the country. This news is good and suggests that warmer
springs can alleviate the devastating impacts of summer droughts (Figure Al).
The bad news, however, might follow suit: Because ecosystem fluxes of carbon
and water are tightly coupled through plant stomata, higher spring carbon uptake
might lead to an earlier depletion of soil water resources through increased evap-
otranspiration, thus amplifying extreme temperatures in the summer. Wolf et al.
(2016) hypothesise that this effect has exacerbated the 2012 summer drought and
contributed to elevated surface heating, and thereby highlight the important role
that land-atmosphere feedbacks could play during climate extremes. However, it
cannot be excluded that a less warm spring would have depleted soil water re-
sources less rapidly, rendering the impacts of the rainfall deficit in summer less
severe. These important questions have not been answered definitely and deserve
more detailed investigations. It is critical to disentangle the different counteract-
ing feedbacks, not least because events such as the year 2012 in the United States
might occur more often in the future.

The authors arrive at their synthesis by combining so-called ‘bottom-up’ with
‘top-down’ approaches. A network of local flux tower measurements of carbon
and water exchange across the United States on land was complemented with
photosynthetic carbon uptake derived from satellite remote sensing and an atmo-
spheric inverse model that estimates net carbon uptake using atmospheric mea-
surements of CO2 concentrations. The study thus provides empirical evidence
both at the ecosystem and continental scales that two different but prevalent types
of climate extremes in temperate ecosystems can have compensatory impacts on
the carbon cycle. The results complement previous analyses indicating that dry
summers offset increases in vegetation carbon uptake driven by warmer springs
in the Northern Hemisphere extratropics (Angert et al., 2005). Empirical insights

into carbon and water cycle dynamics aside, however, the study highlights impor-
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tant scientific questions related to (i) disentangling the extent, magnitude, and rel-
evant components that contributed to a compensation of climate extreme-related
impacts and (ii) understanding and quantifying plant-soil-atmosphere feedbacks

in a warmer world.

A.1. Identifying carbon cycle components that cancel out

To advance our process understanding about impacts of events such as the extreme
spring and summer in 2012 in the United States, it is important to understand
which components of the carbon cycle contributed to the observed compensation.
The net ecosystem carbon flux is the difference between the plant’s photosyn-
thetic carbon uptake and carbon losses through ecosystem respiration. During
the summer of 2012, reductions in photosynthetic carbon uptake exceeded the re-
duction in respiratory carbon flux, consistent with previous observations during
droughts (Ciais et al., 2005). Despite the observed surplus in gross carbon up-
take in spring, annual gross carbon uptake remained substantially below average
across the continental United States. Surprisingly, annual net carbon uptake in
the continental United States was still close to average, which highlights the role
of ecosystem respiration in shaping the impacts of climate extremes on net car-
bon uptake. Ecosystem respiration increased in spring only moderately, whereas
its decrease in summer was large. Grasping how individual carbon cycle compo-
nents react to climate extremes and implementing these processes into mechanis-
tic models may thereby lead to better constrained carbon projections (Friedling-
stein et al., 2014). On a different note, Wolf et al. (2016) find that high spring
uptake, particularly in the eastern temperate forests, prevented the United States
from shifting from a carbon sink to a carbon source. The spatially nonuniform sig-
nal demonstrates how the impacts of climate extremes differ between ecosystems
and illustrates the challenge associated with finding general response patterns to
climate extremes (Frank et al., 2015). What can be beneficial for one ecosystem
might be devastating for another (Teuling et al., 2010). Global climate models
indicate that warm spring temperatures similar to the temperatures in 2012 lie at
the cooler end of the temperature distribution in the second half of the 21st cen-

tury (Wolf et al., 2016). In contrast, severe summer droughts will remain rare but
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FIGURE A1.: Early spring gains (a, March-April) and late summer reductions (b, July-
August) in the Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR; %), an indicator for vegetation activity, in the year 2012 relative
to 2001-2014. Grid cells with a long-term mean FAPAR below 10% are
shown in gray.
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impacts will likely be exacerbated by hotter temperatures (Williams et al., 2013).
Over the past few decades, net carbon uptake in temperate forests has increased
because of warmer spring temperatures that induce a lengthening of the growing
season (Menzel et al., 2006; Keenan et al., 2014). Overall warmer springs might
thus offset some of the adverse impacts of hot summer droughts. However, to start
leaf unfolding, temperate forests also require a sufficient degree of winter chill-
ing, which implies that the observed warming-induced changes might not sim-
ply follow spring temperatures in the future (Korner and Basler, 2010; Fu et al.,
2015). Wolf et al. (2016) have disentangled temporal and spatial components
of ecosystem carbon impacts of the anomalous year 2012, but experimentalists
and modelers will have to work together to figure out whether positive impacts
of more favourable spring conditions or adverse impacts of dry and hot summers

will prevail under future climate conditions.

A.2. The role of plant-soil-atmosphere feedbacks in
enhancing summer heat

That land-atmosphere feedbacks can strongly influence the magnitude of extreme
heatwaves and droughts has long been acknowledged (Seneviratne et al., 2010a).
Dry soils can exacerbate extremely high temperatures, whereas wet soils impede
the development of extreme heat waves through evaporative cooling (Miralles
et al., 2014). The role of plants in these feedback mechanisms is much less well
understood. Warmer conditions, accompanied by higher radiation, generally lead
to higher photosynthetic activity, particularly in the energy-limited areas that span
most of the United States. More photosynthetic activity induces higher evapo-
transpiration rates, thereby depleting soil water. If photosynthesis is strongly en-
hanced in spring and soil water is not replenished through precipitation, in tandem
with high summer temperatures (e.g., through a blocking event), the dry soils will
enhance the summer heat because more of the incoming radiation is translated
into sensible heat (Seneviratne et al., 2010a). Quantifying the different contribu-
tions of vegetation, lack of precipitation, and spring temperatures to the resulting
concurrent drought and heatwave in summer is challenging (Figure A2). To dis-
entangle the impacts of enhanced photosynthesis in spring on summer drought
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and summer temperatures, one could conduct, for example, factorial model runs
with and without vegetation. Wolf et al. (2016) show in their study that neither
seasons (spring and summer) nor carbon, water, and energy fluxes should be in-
terpreted separately when analyzing the impacts of climate extremes. On the one
hand, the authors see depletion of soil moisture through early vegetation activity
in a warm spring potentially amplifying summer heating, a typical lagged di-
rect effect of an extremely warm spring (Frank et al., 2015). On the other hand,
spring and summer, and photosynthesis and respiration, compensate each other
with respect to the net annual effect on the carbon cycle, leading to a near-neutral
same-year carbon balance. Can one thus speak of an overall reduced net carbon
impact of the 2012 drought? The future will tell, because lagged and indirect
effects can be important. Mechanisms for such effects include, for instance, de-
pending on the ecosystem, plant mortality, pathogen dynamics, or soil erosion
and degradation (Allen et al., 2010; Reichstein et al., 2013). If 2012 conditions
become more frequent in the future, in concert with potential mitigation effects
through elevated CO4 (Leakey et al., 2009), the competition between plant popu-
lations induced by vegetation dynamics may lead to either enhanced carbon stor-
age (e.g., in woody vegetation) or depletion. Thus, for understanding the ‘true’
integral effect of a year like 2012, it is important that we monitor and analyse
subsequent years, which is possible thanks to long-term observations established
by the respective research networks [e.g., AmeriFlux, Europe’s Integrated Carbon
Observation System (ICOS), and the National Ecological Observatory Network
(NEON)]. In addition, even longer term archives (e.g., in tree rings or lake sedi-
ments) should provide complementary information in terms of the time scale and

processes involved.
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FIGURE A2.: Conceptual framework of potential plant-soil-atmosphere feedbacks and
ecosystem impacts. Solid arrows indicate direct impacts (positive or neg-

ative), and dashed arrows show hypothesised longer term effects of summer
drought. H, sensible heat; LE, latent heat or evapotranspiration.
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B.1. Guide to the artificial normalisation example

We provide the original source code that was used to carry out the artificial
normalisation example shown in Figure 2.1 in a step-by-step guide using the
R Statistical Programming Environment (R Development Core Team, 2013).
We first generate an artificial dataset containing 10,000 time series, where each
time series consists of n = 60 independent and identically distributed Gaus-
sian variables. As stated in the main text, this can be understood as an anal-
ogy to a spatio-temporal temperature dataset that comprises 60 years of data
across 10,000 geographical grid cells. Subsequently, each time series is cen-
tered and scaled with estimates of the mean and standard deviation as derived
from a reference period of length n,.; = 30 (here, the first 30 values of each
time series are chosen). For each time point ¢, we then count the number of
o-extremes in the original Gaussian data and the normalised data (Figure 2.1).
Lastly, the proposed correction (for a formal derivation see Section B.2) leads
to the corrected normalised time series shown in Figure 2.2a. A more de-
tailed tutorial and R-code for normalisation and correction is available under

https://github.com/sebastian-sippel/normalization.

# Define parameters for normalisation example:

nref = 30; # Length of reference period

3l ngridcells = 10000; # Number of independent grid cells
sigma = 2; # Sigma threshold
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# Generate Gaussian time series each of which consists of 60 values

data.orig = sapply (l:ngridcells , FUN=function(x) rnorm(60));

# Estimate the mean and standard deviation of each time series

# based on the reference period (first 30 values):

mean. estimate = sapply (l:ngridcells , FUN=function(x) mean(data.orig
[1:nref ,x]));

sd.estimate = sapply(l:ngridcells , FUN=function(x) sd(data.orig[1:
nref ,x]));

# Generate anomalies, and normalise each time series with its
sample mean

# and sample standard deviation:

data.anom = sapply (1:ngridcells , FUN=function(x) data.orig[,x]—mean
.estimate [x]);

data.norm = sapply (l:ngridcells , FUN=function(x) data.anom[,x]/sd.
estimate [x]);

# count +2sigma events throughout each time series and at each time
step, for the

# original and normalised data:

data.orig.2sigma.extremes = apply(X=data.orig, 1, function(x)
length (which(x > 2)));
data.norm.2sigma.extremes = apply(X=data.norm, 1, function(x)

length (which(x > 2)));

# Compute the corrected number of sigma extremes:

# Out—of—base period:

data.norm.2sigma.extremes.obase.cor = apply(X=data.norm, MARGIN=c
(1,

FUN=function (x) length(which((x / sqrt(l+1/nref)) > qt(pnorm(sigma)
, df=nref—1))));

# Reference period:

data.norm.2sigma.extremes.ibase.cor = apply(X=data.norm, MARGIN=c
(1),

FUN=function (x) length (which (((x*x)=*nref/((nref —1)«(nref—1))) >
gbeta (pnorm(sigma),

shapel = 0.5, shape2 = nref/2—-1))));
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# Plot the number of sigma extremes:

2| plot(data.norm.2sigma.extremes, col= , pch=8)
points (data.orig.2sigma.extremes, col= , pch=8)
points(x = l:nref, data.norm.2sigma.extremes.ibase.cor[l:nref], col
pch=8)
points(x = c(1:60)[—(l:nref)], data.norm.2sigma.extremes.obase.cor
[—(l:nref)],
col= , pch=8)
legend ( , ¢ s
), col=c( s , , ),
pch=8)

B.2. Normalisation-induced changes to stationary and
independent Gaussian time series

At any grid cell ¢, time series of the form X, ;;t = 1,...,n;7 = 1,...,k are
normalised to yield standardised ‘z-scores’ with respect to a defined reference

period as a subset of the full record:

_ Xt,i - /lref,i

2t N
Oref,i

(B.1)

In this example, each sample in each time series X, ; is drawn independently
from a Gaussian distribution with the expected value E[X; ;] = p; and the vari-
ance given by Var(X; ;) = o?. Thus, the estimators fi; for the mean y; and the
estimator 67 for the variance o7 satisfy (Von Storch and Zwiers, 2001) in each
grid cell
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1 < o2
i =~ Xpi~N(pi, =) and B2
il "2 ti~ N(p n) an (B.2)
P fj(Xm—ﬂi)%o-W L (B.3)
7 n—1 5 7 nfln_l

t=1

Hence, the collection of sample means fi,..  ; follows a normal distribution with

expected value Efirc ;] = p; and variance Var(fires,) = n‘:? . (Eq. B.2) across
grid cells. Here we show that this widely used normalisation approach changes
the statistical properties of the distribution across grid cells. This extends an is-
sue previously discussed (Zhang et al., 2005), but here we are not confined to
percentile-based estimates of temperature extremes. In the following subsections
we distinguish normalisation in the reference period (where the estimators are de-
pendent on the samples) from the normalisation in the out-of-base period, where
the estimators are independent from the samples.

In the following sections we consider each grid cell independently. In order to
improve readability, we therefore omit the index ¢ for the grid cells and simply

write X;.

B.2.1. Normalisation in the out-of-base period

At any time ¢ in the (independent) out-of-base period, the anomalies are given by
the random variable

Xanom,t = Xt - .[Lref 3 (B4)

with different realisations across grid cells. Consequently, anomalies that are
generated by subtracting the reference period (that is, independent) sample mean

follow again a Gaussian distribution, because the difference between two Gaus-
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sian variables X = X; — X5 is Gaussian distributed (Johnson et al., 1994) with

W = uy — pio and variance 02 = o7 + 03, i.e.,

1

nref

Xanomt ~N(0,0°(1+—)) . (B.5)
Please note that the increase in variance caused by deriving anomalies and
implied by Eq. B.5 holds for any distribution with finite variances, i.e. not only
Gaussian distributions.
Dividing anomalies by the estimated standard deviation (‘standardizing’)

yields standardised ‘z-scores’:

X{znom,t

Oref

Zy = (B.6)
Following Eq. B.3, the ‘z-scores’ are characterised by Student’s #-distribution
with v = n — 1 degrees of freedom (cf. the definition of the t-distribution (Fisher,

1925)), which is scaled by the variance inflation given in Eq. B.5:

Zze~ 4 [14 “t(Npey —1) . (B.7)

Npef
Hence, after normalisation, we expect the grid cell values at any given time step ¢
in the out-of-base period to follow a scaled t-distribution (Eq. B.7), rather than the
Gaussian distribution as implied in earlier reports (Hansen et al., 2012; Coumou
and Robinson, 2013). Although the #-distribution converges against the Gaussian
distribution for a large number of degrees of freedom (i.e. increasing n,.s, see
Figure 2.1 and Figure B1), its tails are considerably heavier even for a relatively
large number of degrees of freedom. This well-known distribution allows us to
derive a correction based on quantiles for normalised z-scores that can be con-
structed by adjusting the ‘o-extreme’ of interest using Eq. B.7 (see Figure B1 for
an illustration). For example, the probability of a 2o-extreme in a Gaussian dis-
tribution corresponds to a 2.12¢ event in the scaled ¢-distribution (for n,.y = 30,
Section B.1).
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B.2.2. Normalisation in the reference period

In the reference period, the estimators of mean and variance are not independent
from the samples. This fact causes the underestimation of extremes in the ref-
erence period, as illustrated for instance in Figure 2.1. In this subsection, we
first discuss the changes induced to the distribution by deriving anomalies (i.e.
Eq. B.4), and secondly demonstrate how changes induced by normalisation ac-
cording to Eq. B.6 in the reference period can be analytically corrected.

The generation of anomalies in the reference period in analogy to Eq. B.4 re-
duces the variability across grid cells to Var(Xanom.t) = 02(1— ﬁ) Note that
this result does not only hold for the Gaussian distribution but for any distribution

with finite second moments:

Lemma: Let there be k£ independent random variables X;, each having the same
standard deviation o (i.e., Var(X;) = 02). Assume we draw n samples i.i.d from
each random variable and let X; ; be suchasample (i = 1,...,kand j = 1, ..., n).
Let further i(X); denote the sample mean of X; estimated from those n samples.
Then
~ 0'2
Cov(X,; j, (X)) — o foreach j=1,...,n as k—oo. (B.8)

Proof: W.l.o.g. let j = 1. Then

Cov(X; 1, (X)) =
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1 k 1 n 1 n
= 4]{ 1 Z(Xz,l Xz 1)(5 0,7 — Z 1,]) (Bga)
i=1 j=1 j=1
1 k 1 k 1 n 1 k n
=1 =1 j:1 m-lg:l
(B.9b)
& 1 E Lo L
:k—1Z(X“_EZXH)gZ(Xu—EZXmJ) (B.9¢)
i=1 =1 j=1 m=1
1 n 1 k 1 k 1 k
== > 1 > (Xia - z > X)Xy - z > Xomj) (B.9d)
j=1 i=1 1=1 m—1
k k
1,1 1
= E(m Z(Xi,l % ZX1,1)2+
=1 =1
n 1 k 1 k 1 k
E_1 Z(Xivl T ZXl,l)(Xi,j % ZXL,J')) (B.9e)
j=2 i=1 =1 =1
1 o N — 1 -
= 50' + n COU(X.J,X.J'?H) (B.9f)
0,2
O

With the above lemma it follows (assuming that k, the number of grid cells, is

very large):
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VaT(Xanom,t) = VaT(Xt - ﬂTEf (X>)

Var(X,
= Var(Xy) —2Cov(Xy, firef(Xt)) + %
ref
L e Var(Xy)
=Var(X;) -2 Z Cov(Xy, Xs) +
Nrer 2 Nref
9 2
= U2 - 2 7 + Z

A subsequent standardisation of anomalies following Eq. B.6 in the refer-
ence period changes the sample distribution across grid cells qualitatively to a
non-Gaussian distribution. The resulting distribution follows a beta-distribution
(Thompson, 1935; Johnson et al., 1995)

Xanom,t )2

Nref — 1)
a-7"ef

~ ny5Beta(0.5, 5

(B.10)
Alternatively, the distribution of standardised anomalies within the reference

period has been described as a ‘tau-distribution’ (Thompson, 1935), where 7

Xanom,t
Oref

Nrep — 2 degrees of freedom by 7 = ¢, /%. Similarly to above, the
transformation given by Eq. B.10 can be used to adjust the detection of normalised

is defined as 7 = . Here, tau is related to a t-distribution with v =

extremes within the reference period by quantile adjustments (see Figure B1).
From the quantile-quantile plots shown in Figure B1 it becomes obvious that a
normalisation across time-invariant Gaussian data yields an underestimation of
extremes in the reference period (a), and an overestimation in the out-of-base

(independent) period (b).
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B.3. Monte Carlo simulations

6

t—distribution (df = 14)

correction
Quantile-quantile plots of original Gaussian distributions vs.
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Gaussian distribution

for normalisation-induced artefacts.
a) tau-

distribution and b) the corresponding t-distribution after normalisation. The
reference period length was chosen as n = 15 for illustration purposes.
The simple quantile correction proposed is illustrated for the normalisation
within a reference period (a) and in the out-of-base (independent) period
(b) for 20 and 30 extremes.

In order to test how specific features that are present in climatic data might affect

the biases in normalised tails in the detection of spatially aggregated extremes,

we conduct a variety of Monte-Carlo type simulations.

Each simulation is set up as follows:

o Generate k = 10° time series, each of which with n = 130 data points,

drawn independently from a Gaussian distribution (exception: autocorre-

lated time series, see below).

* Define a reference period length of n,.; = 30, which has been used in

climatological studies (Hansen et al., 2012) (exception: experiment using a

variable reference period length, see below).

* Define remaining 100 data points in each time series as the out of base

period.
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* Detect extremes by counting ‘o extremes’ in normalised and original time

series for each time step ¢.

* Calculate the biases in the tails as relative differences (in percent) between
the conventionally normalised time series (Eq. 2.2) and the original time

series (i.e. without normalisation).

First, we test how the length of the reference period influences biases in the
tails. It can be seen from the analytical argument put forward in section B.2 that
the biases in the normalised tails are a function of sample size in the reference
period. To illustrate this, we vary the length of the reference period (Figure B2a).
The biases are decreasing for longer reference periods. However, in practical
terms relatively large sample sizes in the reference period are needed in order to
detect relatively rare events with small biases if the conventional normalisation
scheme is used.

Second, we assess the effect of autocorrelation on the biases in the normalised
tails. Autocorrelation is a feature frequently present in climatic time series
(Zwiers and von Storch, 1995), and hence should be accounted for in statistical

analyses. We simulate time series from an AR(1) process as
Xari(t) = aXari(t = 1) + Z(1), (B.11)

with white noise innovations Z ~ AN(0,72). The model’s parameter o deter-
mines the strength of the autocorrelation and is varied in the range 0 < a < 0.9.
The overestimation of extremes strongly increases for autocorrelated data, which
urges for caution in using a normalisation scheme in such time series. The reason
for the stronger overestimation compared to the standard normalisation proce-
dure is three-fold: Firstly, the variance of the sample mean of autocorrelated data

(Zieba, 2010) is larger as compared to Eq. B.2:

nfl 2
~ ag
X g ref = N(0,[n + 2 ;(n —k)pr] ), (B.12)

where pj, denotes the autocorrelation coefficient of the AR(1) model.
Secondly, the standard variance estimator (Eq. B.3) is biased for autocorre-

lated data (Bayley and Hammersley, 1946). The construction of an unbiased vari-
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ance estimator is possible (Zieba, 2010), but requires the autocorrelation struc-
ture to be known exactly. Thirdly, the normalised distributions follow Student’s
t-distribution (as above), if the variance and mean estimates are derived from an
independent sample. Hence, these three issues are causing the drastically increas-
ing biases seen in Figure B2b for autocorrelated data.

Furthermore, trends and changing variance are common features in climatic
time series (Ji et al., 2014; Huntingford et al., 2013; Screen, 2014). We test empir-
ically how changes in the mean or variance in the independent period are changing
the detection biases in normalised extremes. To do so, we add various offsets in
the range —1 < § < +2[o]. Similarly, we change the variance in the out-of-base
period to 0.5 < ¢ < 2. Subsequently, the relative difference between the standard
normalisation scheme and the true number of extremes is calculated (Figure B2c).
Our Monte-Carlo simulations reveal that normalisation biases (as discussed in the
main text) are not constant under changes of the mean and variance of the time se-
ries. Although an analytical treatment is possible (see Section B.4), this empirical
exercise allows to illustrate the sensitivity of the biases to both sign and magni-
tude of trends and changes in variance. Positive changes in the mean or variance
are reducing the observed biases in the upper tail of the distribution, because any
positive o extreme would ‘shift’ towards the center of the distribution in this case.
However, negative trends or changes in variance would induce the opposite effect
and lead to a drastic overestimation in the upper tail. These results are equally
applicable to the lower tail if the sign of the trend is reversed. We conclude that
any assessment of extremes or the tails of normalised climatic data across dif-
ferent spatial or temporal domains needs to take potential non-stationarities into

account.

B.4. Normalisation bias in non-stationary and independent
time series

This section is motivated by the fact that normalisation-induced biases are sen-
sitive to trends or changes in variance (see Section B.3). Here, we outline a
correction method that takes such non-stationarities into account. Consider any

random variable Xopig ~ N(piref, 07, ), from which fi ey and &7, are esti-
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FIGURE B2.: (continued) Sensitivity tests of normalisation-induced biases in the tails.
Monte-Carlo type simulations are conducted to show how the biases in the
upper tail are affected by a) varying sample size, b) different degrees of au-
tocorrelation, c,d) trends and changing variance in the out-of-base period,
respectively.

mated. Assume that at any time ¢ outside the reference period the mean changes
tO [t obase = Mref + O¢ and the standard deviation changes to oopgse = A - Opey.
Non-stationarity in the out-of-base period would change the Gaussian distribu-

tion to
Xi ~ N(p 464, A2 - 0?). (B.13)

The generation of anomalies for Gaussian data is given in Eq. B.4 and the
sample means follow Eq. B.2. Put together, this yields a distribution of anomalies

across grid cells given by

1

Nyef

Xanom,t ~ N (6,07 (A\% + ). (B.14)
Accordingly, and similar to Eq. B.5, the spatial aggregation for the detection of
extremes in the tails would result in a broader (but qualitatively unchanged) dis-
tribution. A search for non-adjusted ¢ extremes becomes hence inadequate.
However, the subsequent standardisation of non-stationary and independent
time series is more important for biases in the tails. A generalisation of Stu-
dent’s t-distribution is the non-central t-distribution (Johnson et al., 1995), which
is skewed and results from Eq. B.6, if X 4,0y ¢ 1S replaced by a random Gaussian
variable with non-zero mean (Von Storch and Zwiers, 2001). Hence, a standard-

isation of non-stationary Gaussian time series based on Eq. B.6 yields a spatial



B-14 Supplementary Material for Chapter 2

distribution of

[Xanom75t + Ot ]
T 1
Xanome . 1 VTR VRS (B.15)
&T@f nref &Te‘f
X 1 ’
== N2 (v=n—1np= ————)

(B.16)

This can be seen as a centering and scaling of the enumerator in Eq. B.15 to yield
a unit normal variable and an additive non-centrality-parameter. Hence, the divi-
sion by the estimates of the standard deviation &,..¢ yields a scaled version of the
non-central t-distribution (Eq. B.16), implying & = n,..y — 1 degrees of freedom.
Therefore, an analytical correction similar to Section B.2 can be constructed if
the change in location and scale outside the reference period can be estimated
(see also Figure 2.2). However, since estimates of trends or variance changes are
made on relatively short time series, and because these are not independent from
the estimated mean or variability, some minor biases remain (Figure 2.2). These
biases are negligible if only the mean has changed, and they are much smaller
than biases in the tails induced by an uncorrected normalisation procedure if vari-
ance changes are estimated as well. Nevertheless, we argue for some caution if
very rare events are to be detected based on the application of a normalisation
transformation.

B.5. Subtraction of trend components before computing
standard deviation estimates

Several previous papers have used detrending procedures before estimating the
standard deviation in a reference period (Coumou and Robinson, 2013; Hunting-
ford et al., 2013). This data preprocessing step is assumed to avoid an overesti-
mation of variability due to potential trends in time series in the (arbitrarily cho-
sen) reference period. Others have used the period 1951-1980 as the reference,
because this period is widely assumed to be associated with largely stationary

temperatures (Hansen et al., 2012). The removal of trends before computing the
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FIGURE B3.: (continued) Increase in normalised hot temperature extremes in a spatio-
temporal dataset (20th Century Reanalysis). a,b) Time series of fraction of
extratropical Northern hemisphere land area covered by positive monthly
20 (a) and 30 (b) extremes in summer (reference period: 1951-1980). Hor-
izontal lines indicate decadal averages for the conventional normalisation
procedure (light blue) and our proposed correction (orange). ¢) Zonal evo-
lution of fraction of land area covered by monthly positive 20 extremes in
Northern hemisphere summer. d) Zonal evolution of relative biases induced
by the conventional normalisation approach. In all panels, the time series
have been detrended before estimating the estimate of the standard devia-
tion in the reference period (1951-1980).

standard deviation of each time series reveals only very minor changes both in
terms of the overall increase in extremes and the preprocessing-induced biases.
We estimate trends in each time series using Singular Spectrum Analysis as de-
scribed in the Methodology section of the main paper, but other methodologies
are likewise applicable. Next, we standardise each time series with the standard
deviation estimates computed from detrended series and reproduce Figure 2.3
from the main paper (Figure B3).

To test the sensitivity of the biases and extremes to the choice of reference
period, we repeat the previous analysis by normalizing the data based on mean
and detrended SD estimates calculated for 1921-1950 (Figure 2.4). Although the
choice of reference period influences the absolute number of o extremes (because
1951-1980 had been warmer than 1921-1950), the biases that are induced by the

normalisation procedure are still in a similar magnitude (Figure 2.4).

B.6. Asymmetry in temperature distributions

Another important question to test is whether recent estimates of asymmetry (Ko-
dra and Ganguly, 2014) in seasonal extreme value distributions might be affected
by subtracting a ‘historical climatology’, estimated from each time series. For
this purpose, we follow the methodology of an earlier study (Kodra and Ganguly,
2014) but with i.i.d. Gaussian variables:

* We generate 60 seasons with each 90 days in k£ = 10, 000 time series (that

is, in analogy to spatial replicates)
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FIGURE B4.: (continued) Increase in normalised hot temperature extremes in a spatio-

As

temporal dataset (20th Century Reanalysis). a,b) Time series of fraction of
extratropical Northern hemisphere land area covered by positive monthly
20 (a) and 30 (b) extremes in summer (reference period: 1921-1950). Hor-
izontal lines indicate decadal averages for the conventional normalisation
procedure (light blue) and our proposed correction (orange). ¢) Zonal evo-
lution of fraction of land area covered by monthly positive 20 extremes in
Northern hemisphere summer. d) Zonal evolution of relative biases induced
by the conventional normalisation approach. In all panels, the time series
have been detrended before estimating the estimate of the standard devia-
tion in the reference period (1921-1950).

For each season, we only retain the maximum value. This procedure yields
a distribution that can be approximated by a Weibull type extreme value
distribution (Coles et al., 2001)

Now, each time series is split into a historical and future period (first and

second half of the time series, respectively)

Following Kodra and Ganguly (2014), we compute the mean of the ‘histor-

ical’ period and subtract it from each times series.

Subsequently, percentiles of the future and historical period are computed
across all time series, and percentile-wise differences between the future

and historical period are analysed (Figure B5a)

We compare the so-derived percentile-wise changes to simply generating
the differences between future and historical percentiles without the previ-

ous transformation (Figure B5a)

shown in Section B.2, this procedure invariably leads to an inflation (re-

duction) of the variance in the surrogate ‘future’ (‘historical’) period. Hence,

the upper tail of the ‘future’ extreme value distribution has increased, whereas

the lower tail has decreased relative to untransformed changes (see red and grey

lines in Figure B5a). However, since extreme value distributions are skewed, the

change in variability also explains the observation of increased assymetry, if the

changes in both tails are compared (Figure B5b). This increased asymmetry is not

observed if the analysis is conducted without subtracting historical means (grey
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line in Figure B5b). These results are shown for extreme value distributions gen-
erated by retaining the highest value in each season, but would apply equally if

only seasonal minima were retained (but with reversed changes in asymmetry).
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FIGURE B5.: Spurious increase in asymmetry due to data pre-processing. a) Percentile-
wise changes across a large number of time series, expressed as the differ-
ence between a ‘historical’ and ‘future’ period. Induction of asymmetry oc-
curs only if a historical mean climatology is estimated and subtracted from
each time series. b) Like above, but differences in symmetric percentiles
between the upper and lower tail, further illustrating induced asymmetry in
the upper tail. Results are likewise applicable to the lower tail (with reversed
asymmetry), if extreme value distribution are generated from minimum val-
ues.
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C.1. Analytical approximation of the expected value for the
normalisation-induced bias

Assumptions and Notation:

* Assume independent and identically distributed (i.e., stationary) variables
X;,; with mean given by E(X) = p and variance Var(X) = o2. Let
the subscripts ¢ and ¢ denote time and grid cell index, respectively. Note
that in real-world applications, the biases could be estimated analytically
by allowing for different sample means and variances across space.

e Let t,0, be an arbitrary time step in the ‘out-of-base’ (independent) period,
and t,.y as an arbitrary time step inside the reference period. Let n,.f
denote the length of the reference period.

o Let Apjgs = E(X“Jiob) — 1 denote the relative change induced by normal-

Href,i

isation by the mean of an independent reference period (i.e., ‘normalisation

bias’, X; is not contained in fiyer ;).

00bsl

Our objective is to find an analytical approximation of the expected value for
the artificially induced relative change (Ap;,s) by dividing a random variable
X, as defined above by a sample mean estimated from different samples (‘ref-
erence samples’) drawn from the same distribution (fiyer; = % Z:::l Xtyoris

where E(jiyefi) = 1), i.e.

Xtoopi
Apias = E(ﬁ) — 1= fft, 0, Nrer)- (C.1)



C-=2 Supplementary Material for Chapter 3

Clearly, for large n,s this quantity should go to 0. Because X; ; and fi,.r; are

independent, we can write,

1 1
Apigs = E(X ) E(——) — 1 = pE(= )—1. (C.2)
/ffrcf,i ﬂrcf,i

0_2

T pPnger

If we subsitute firer; = p(1 + €rer;), Where E(e;) = 0, Var(e;)
(because €,cf; = % — 1, and E(fiyes,i) = p and Var(fiyef,:) = %)’ and

the subscript ref has been dropped from ¢; for convenience, we get

1 1
Apjns = iB(——— )~ 1=E —1. C3
b a (M(1+6¢)) (1+ei) (3
A Taylor expansion around the function g(z) = ﬁ at z = 0 yields
1 2_ 3, 4_ 5
g(z) =l—z+z*—a°+2"—2°+ ... (C4)

:1—1—:10

We will see below that the convergence criterion €; < |1| of the Taylor series is
met in practically relevant cases, but it should be noted that convergence cannot
be ensured in all theoretically conceivable cases. Using Taylor expansion, Ap;qs
can be approximated, making use of the linearity of the expectation operator E()
and of the fact that E(¢;) = 0 and E(e2?) = Var(e¢;) = "Zrcf by definition,

= 2

1

Abias = E(l i Ei) -1 (C.5a)
=E(l-+&—-E+ed—d+.)-1 (C.5b)
2
__ 3 4 5
= B E(e;) + E(e;) — E(e]) + ... (C.5¢)

This expression yields a sum over the central moments of the distribution of ¢;’s.
For a symmetric probability distribution (recall that ¢; denote the deviations of the
sample means in a reference period around the underlying true mean), F(e¥) = 0,

where k is any uneven exponent k£ € N. Eq. C.5a then reduces to

2
Abias = —— + E()) + E(5) + ... (C.6)

Hznref
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As long as €; < |1| is fulfilled, the quadratic term dominates both Eq. C.5a and
Eq. C.6. The present analytical approximation (both Eq. C.5a and Eq. C.6) pro-

vides the important insights that

1) normalisation with a ‘reference period sample mean’ leads to an artificial
increase of spatial averages in the out-of-base period, i.e. the bias is always

positive in the out-of-base period, Ap;qs > 0, and

2) that Ap;s x (2 L )2, i.e. the square of the coefficient of variation in the
KA/ Mref

distribution of sample means (i.e., ¢, [firer,i] = W%).
For any fixed n..t, the amplitude of the normalisation-induced biases only de-
pends on the square of the ratio % We verify below numerically that this approx-

imation works well for random variables X ; drawn from
1. a Gaussian distribution,
ii. a Generalised Extreme Value distribution with two different choices for the
shape parameter (£ = 0, ‘Gumbel distribution’, and £ # 0).
C.1.1. Gaussian distribution

Assume X;; ~ N (u,0?), the distribution of the sample mean deviations from

g 1

1/ Mrer Y,

. 2 . .
the true mean will follow €; ~ N/(0, 7 —). If we substitute with ¢; =

where Y ~ A(0, 1) in Eq. C.6, the above expression reduces to

o? o 1

o 1
Apigs = + (= B + (-
bia N2nref (/J, \ Nref ) ( ) (M vV Nyef

Because higher-order moments of a standard normal distributed random vari-

YEYS 4+... (€7

able are well-known and can be derived analytically (Johnson et al., 1994, i.e.,
E(Y?) = 3, E(Y®) = 15), an analytical expression of the normalisation-induced

bias becomes straightforward:

o? 1 o 1

g
4+ 3(— —
ﬂ2nref (,U vV Nyef 1% AV Nyef

A comparison of Eq. C.8 (i.e. the first three terms in the Taylor approxima-

)* +15( )S. (C.8)

Abias ~

tion) to numerical simulations shows that the analytical approximation works well
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(Figure Cla). Furthermore, the estimation of mean and standard deviation from
the empirical time series to calculate the expected value for the biases is unbiased
and show surprisingly little variation (Figure C1b) even for a relatively small
number of grid cells, where random variation in stationary time series becomes
considerable (Figure C1b).

However, one important caveat is that Eq. C.3 and the subsequent approxima-
tion only works as long as ¢; < |1] is fulfilled. How likely is a violation of this
criterion? Numerical simulations for n,.s = 30 appear to be very stable for any
£ > 0.8 in the X} ;’s, i.e. corresponding roughly to a Cy[firef,s] = 0.2. For such
a choice of C,, the chance of |¢;| > 1 corresponds to a —5¢ event with a probabil-
ity of roughly 1 to 3.5 million. Given that the observed £ ratios are considerably
larger than the values tested here even in the driest regions of the world, we con-
clude that the approximation can be used for the vast majority, if not all, practical

considerations.
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a) Ratio of mean to sd vs. normalisation-induced bias in a Gaussian distri-
bution for numerical simulations with various mean values (dots), and the
derived analytical approximation (black line). The reference period length is
taken as ..y = 30, and numerical simulations are conducted with n = 10°
grid cells with each 60 time steps. b) Analytical estimates of biases as cal-
culated from sample mean and sample standard deviation following Eq. 3.1
in the main text (dark blue) for a given number of independent grid cells
(£ =1, nrer = 30). For comparison, the magnitude of random changes in
stationary time series (i.e. empirical variation in the quantity Ap;qs, follow-
ing Eq. C.1) with nyef = 30 and nopase = 30 is shown in black. Error bars
indicate the 5th to 95th percentile in repeated numerical simulations.
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C.1.2. Generalised extreme value distribution

We investigate whether in Eq. C.5a the higher-order terms in the Taylor approx-
imation can be ignored in practical applications, where an assumption of Gaus-
sianity might not hold. Here, we test this for the Generalised Extreme Value dis-
tribution as an appropriate model for annual maxima as investigated in the main

manuscript with two different choices for the distribution’s shape parameter ().

i. Gumbel distribution We first assume, in analogy to the paragraph above,
independent and identically distributed (i.e., stationary) random variables drawn
from a Generalised Extreme Value distribution with zero shape parameter (‘Gum-
bel distribution’, X; ; ~ GEV (i, o', = 0), where 1/, 0’ and £ = 0 denote the
GEV’s location, scale and shape parameter, respectively, see e.g. Johnson et al.,
1995). The expected values for mean (1) and variance (o) of a GEV are given
by p = ¢ + o'+, where v denotes Euler’s constant.

Folllowing Eq. C.5a, we can readily derive an analytical expression for the

expected value of the normalisation-induced bias, i.e.

—E() 4+ E(¢}) —E(?) + ... (C.9)

?

2 —E(&)+E(}) —E(&)) + ... (C.10)

V 6nref (% + ’7) ’

Here, we note again that the quadratic term dominates the expression. If we
make the simplifying assumption that the sample means fiyef; for n.s = 30
follow (approximately) a Gaussian distribution (the assumption is only needed
for the higher order terms of the Taylor expansion), we can derive an analytical

approximation for the normalisation-induced bias by insertion and in analogy to

above, i.e.
™ o 1
Apiags & (—F+— )2 + (= EYY + .. (C.11)
ow % (i Vo (RO
T T
~ ( , )2+ 3( - ) (C.12)
V 6nref % + 'Y) V 6nref(f7*/ + ’Y)
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Hence, we find that the magnitude of the bias estimates is proportional to the
ratio of scale to location parameter (Z—:) for any fixed reference period length
(but also the proportionality to the square of the ratio of standard deviation to
mean remains, i.e. Eq. 3.1 (or Eq. C.11)). The analytical approximation can be
verified by numerical simulation using GEV-distributed random variables, and is
found to fit the data very well (Figure C2a). Furthermore, an estimator of the
expected value of the biases by only estimating the mean and standard deviation
of empirical time series (i.e., using the first term in the Taylor approximation)
can be derived easily and is found to work reliable also for a small number of
independent grid cells (Figure C2c).

ii. GEV distribution with ¢ # 0 Here, we test whether the analytical argument
from above can be extended to Generalised Extreme Value distributions with £ £
0. In practical applications of the GEV to observed maximum precipitation, a
shape parameter of £ ~ 0.2 is often found (Van den Brink and Koénnen, 2011),
therefore we test here for X;; ~ GEV(y/,0’,& = 0.2). The expected values
for mean (1) and variance (02) of a GEV, when 0 > ¢ < 1, are given by y =

_ 2
7 +a'% and 02 = (0/)2(%591), where g, = T'(1 — k&), k = 1,2, and
I'(t) is the gamma function (Johnson et al., 1995).
Hence, the (dominant) quadratic term in the Taylor approximation in Eq. C.5a

reads,

2
(92 — g%) (C.13)

€[ + mf)l]z-

The approximation works again very well in numerical simulations (Fig-

Abias ~

ure C2b), and shows that if £ # 0, there is a dependency on &, n..¢, and again the
ratio of Z—:, which determine the magnitude of the normalisation-induced bias.
Please note that the approximation works similarly well for random variables
drawn from a GEV-distribution with negative shape parameter (¢ = —0.2, not

shown).
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FIGURE C2.: a) Ratio of location to scale parameter vs. normalisation-induced bias in
a Generalised Extreme Value distribution for the analytical approximation
(black line) and numerical simulations with various location parameter val-
ues (dots), with a) zero shape parameter, and b) £ = 0.2. Reference period
length is taken as n,ef = 30, and numerical simulations are conducted with
n = 10° grid cells with each 60 time steps. ¢) Analytical estimates of bi-
ases as calculated from sample mean and sample standard deviation follow-
ing Eq. 3.1 in the main text (dark blue) for a given number of independent
grid cells drawn from a GEV distribution (% =1,& = 0, nrer = 30).
For comparison, the magnitude of random changes in stationary time se-
ries (i.e. empirical variation in the quantity Ap;qs, following Eq. C.1) with
Nref = 30 and Nopase = 30 is shown in black. Error bars indicate the 5th to
95th percentile in repeated numerical simulations.

C.1.3. Short remark on non-stationarity in the out-of-base period

Many real-world precipitation time series show non-stationarities due to climatic
variations (O’Gorman, 2015) that are typically diagnosed as relative changes in
the precipitation amount. Hence, we can ask whether and how any ‘real change
in the expected value’ outside the reference period can be disentangled from the
normalisation-induced bias. Given the analytical approximation above, we can
show that the highlighted normalisation-induced bias scales non-stationarities in

the out-of-base period in a multiplicative way:
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Let c denote any change between the reference period expected value and some
future period (e.g. assume one is interested in global or latitudinal changes in a
past and future climatic period), i.e. such that E(X;, , ;) = cE(Xq__, i), then the
bias (Ap;as, after accounting for the ‘real change’) would simply scale with the

relative change (A denotes the total apparent change):

Xyi
A=cE(—)—1 (C.14)
Href i
1
=cE -1 C.15
Bl (1)
2
= c¢—1 —E(&)+E(¢}) —E(ed) + ... C.16
¢l el — —B(e) + Ble)) ~B() + ] (C16)
true change
Abpias

From Eq. C.16, it is straightforward to see that for any multiplicative changes in
the expected value of the out-of-base variables, the normalisation-inudced bias
scales with the change. Hence, this expression implies that to detect the ‘true
change ¢’ between two periods, the normalisation-induced bias has to be ac-

counted for, i.e.

A+1

= ——: .1
1+ Abiaus (C 7)

C
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C.2. Comparison between aridity-based and
precipitation-based definition of dryness
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FIGURE C3.: Relationship between annual-maximum daily rainfall (Rx1d from HadEX2-

GHCNDEX merged dataset) and aridity (a), and precipitation totals (PRCP-
TOT from HadEX2-GHCNDEX merged dataset) and aridity (b). Poten-
tial evapotranspiration is taken from the CRU-TS3.23 dataset (Harris et al.,
2014)
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FIGURE D1.: a, c) Anomalies in European summer 2015 seasonal mean temperature and
precipitation, respectively. b,d) Differences to previous July/August records
in mean temperature and low rainfall, respectively, relative to 1950-2014
as in the main text. e) Seasonal temperature versus seasonal rainfall in Vi-
enna, Austria. The ellipse denotes a quantile of 5% multivariate extremes
computed by Hotelling’s T2 control chart (Santos-Fernandez, 2012) using
robust mean and covariance estimates (Rousseeuw and Hubert, 2011). f)
500 hPa Geopotential heights over Europe on July 1st 2015.
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E.1. Supplementary Methods
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TABLE E1.: Overview over the six European regions that are scrutinised in this study.

Region Short  Full name Longitude Range  Latitude Range Dominant natural %  land % of Nat-
Name ecosystem type® cover ural
NEU-SCA Scandinavia 12° - 17°E 57.5° - 65°N Evergreen 68.7% 70.9%
needleleaf forest
(ENF)
NEU-ENG England -3°-1°E 50.5° - 55°N Grasslands 17.5% 41.3%
CEU-RUS North-West Rus-  28° - 38°E 53°-59°N Mixed  forests 54.0% 85.7%
sia (MF)
CEU-FRA France -1°-6°E 43° - 49°N MF 9.8% 50.1%
MED-SEE South-East 20° - 25°E 40° - 45°N Deciduous 13.4% 50.3%
Europe broadleaf forest
(DBF)
MED-ESP Spain -8° --1°E 37° -43°N Woody Savannas  34.7% 55.9%

@ Based on MODIS PFT classification (Friedl et al., 2010).
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E.1.1. Attribution of trends in ecosystem productivity to individual
climatic drivers

In addition to factorial model simulations outlined in Chapter 8, we describe a
statistical framework that can be used to pinpoint the individual contributions of
trends in climatic variables to trends in ecosystem productivity. Our goal is to de-
rive a statistical model that emulates the process-oriented ecosystem model. This
approach is presented here in an illustrative manner and complements Chapter 8.

Assume that a relationship (named mapping hereafter) between external
forcing variables (env) and response variables in the biosphere (sys, sys €
{GPP, NEP}, following notation in Chapter 8) exists for any season in the

ecosystem model:

syss = f(env) = f(Tair,,, Tair,,_1, ..., Tair,,_x, Precip,,, Precip;,—1, ...,

Precip,,,—k, Radiation,,, Radiation,,,_1, ..., Radiation,,, _ )(E.1)

Here, the subscript s denotes any given season (e.g. spring ecosystem carbon
uptake), m denotes individual months and respective temporal lags in the cli-
matic variables, and k£ is the total numbers of lags considered in the statistical
model. For example, if the target variable is spring ecosystem productivity in
spring (sysaranr), we train a model based on the environmental variables in in-

dividual months in spring and before:

SYSMAM = f(envma,w CNVapril, €0Vimarch, €NV feb, ) (EZ)

Assuming an additive approximation of the system yields:

k k
syss = f(env) = Z 9Tair,, (Tair,, ) + z gPrecip,, (Precipy,) +
m=1 m=1
k
Z 9Radiationn, (Radiationm>- (E.3)
m=1

If the additive approximation holds, we can directly investigate the contribution

of individual drivers to long-term trends in ecosystem productivity by considering
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the linear trend slopes of individual terms, i.e.

A SYySs _ Zk AgTairm (Tairm) Zk AgPrecipm (PreCipm)

At m=1 At m=1 At
~— —
Tair contrib.: Brair Precip contrib.: Bprecip
+... (E.4)
= BTairm + BPrecipm + ... (E.5)

The 3’s in Eq. E.5 are the contribution of trends in individual climate variables to
the overall trends in the ecosystem response variable and directly comparable to
Bco, and By in Chapter 8.

To illustrate this approach, we use ‘multivariate adaptive regression splines’
(MARS, Friedman et al. (2001)) as an additive regression technique, i.e. sensu
Eq. E.3. In MARS, the g, ()’s are so-called hinge-functions that allow one break-
point (‘knot’) per entering variable, which yields piecewise linear relationships
with no higher-order terms or interactions allowed. As an additional control, we
use multiple linear regression, i.e. where all individual contributions g, are linear
regression coefficients. We train statistical models individually for each regres-
sion technique, each of the six regions (see Chapter 8), spring (MAM) and sum-
mer (JAS), and separately for two terrestrial ecosystem fluxes (GPP and NEP) as
response variables at the seasonal time scale. In each of the examples presented
here, monthly climate variables (temperature, precipitation, and short-wave radi-
ation) in the three concurrent months (e.g. March-May for spring, ‘transient’ in
Figure E4), and four lagged months (Nov-Feb for spring, ‘early’ in Figure ES) are
considered as predictors. The LPJmL ensemble simulations with constant land-
use and constant COz (‘CONSTLUCO?2’, Chapter 8) are used for training and
evaluation of the statistical models. Training and prediction of MARS models
uses the R package earth (Milborrow, 2015).

Evaluation of additive approximation of LPJmL All statistical models are
10-fold cross-validated against an independent out-of-sample set of ensemble
members. The so-derived additive approximation of area-averaged GPP and NEP
fluxes in LPJmL works relatively well (e.g. in summer, cross-validated R? of the

predictions exceed 0.8 in 11 out of 12 cases, in spring cross-validated R? exceeds
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0.8 in eight out of 12 cases, see Figure E2). However, there is some seasonality
in the goodness of fits: In summer, where most regions are moisture limited in
LPJmL, the performances of the predictions are very high (R? > 0.9), whereas in
spring the predictions only reach very high values in strongly temperature-limited
boreal regions such as NEU-SCA or CEU-RUS.
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FIGURE E2.: Evaluation of additive approximation of LPJmL-simulated carbon fluxes
for trend attribution. Histograms of (a) 10-fold cross-validated MARS-
predictions and (b) 10-fold cross-validated predictions based on multiple
linear regression (shown for comparison). ¢) Overview matrix of 10-fold
cross-validated R? values from MARS-predictions for each of the six re-
gions, both seasons and GPP/NEP predictions.
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E.1.2. Analysis methodology and Code

All statistical analyses have been performed in R R Development Core Team
(2008). We use the packages ncdf4 and raster for data processing Pierce (2014);
Hijmans (2015), earth for training and prediction of MARS models Milborrow
(2015), extRemes and quantreg for analysing data and selection of extremes Gille-
land and Katz (2011); Koenker (2015), and riverplot, vioplot and ggplot2 Weiner
(2014); Adler (2005); Wickham (2009) for data visualisation.

E.2. Supplementary Results

E.2.1. Attribution of trends in ecosystem productivity to driving climate
variables

The illustrative statistical attribution scheme presented here shows that spring
warming is the main climatic factor for increasing trends in spring GPP in the
LPJmL ensemble simulations (Figure E4). In summer, warming temperatures de-
crease GPP in the LPJmL ensemble in five out of six regions, and regions in
Southern Europe are additionally affected by a negative precipitation trend that
decreases summer GPP (Figure E4). For NEP, as discussed in Chapter 8,
trends are generally weaker (Figure E4): The positive contribution of warming
spring temperatures to spring N E P trends is found only marginally in three re-
gions in North Europe (NEU-SCA, NEU-ENG, and CEU-RUS), while warming
summer temperatures cause a strongly decreasing N E'P trend in summer across
all regions. In summary, a contrasting response to warming temperatures in spring
vs. summer is responsible for the contrasting response of ecosystem productivity

to recent changes in climate (discussed in detail in Chapter 8).
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FIGURE E3.: a) Seasonal cycle of GPP distribution as simulated by the LPJmL-ensemble

for 1986-1995 and 2001-2010 in the France subregion. b—e) Return time
plots of carbon flux extremes in spring (b,d) and summer (c,e) for the up-
per (b,c) and lower (d,e) tail of the GPP distribution for 1985-1995 and
2001-2010 (solid lines). Dotted lines indicate the changes imposed to the
1986-1995 GPP tail by adding the average individual contribution of CO2-,
climate-, and land use-driven changes between the two periods.
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Tair-early

Precip-trans.
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FIGURE EA4.: Climatic variables that drive recent changes in G PP across six European
regions in spring and summer in LPJmL simulations. The width of the link
between the env-variable (left) and G P P in each region (right) indicates the
contribution of the individual driver (e.g. Brair, SPrecips €tc.). Note that
blue colours indicate a negative trend contribution of the respective driver,
whilst green colours indicate a positive contribution (trans. - at time of sea-
sonal anomaly, early - before seasonal flux anomaly).
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E.2 Supplementary Results
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E.2.2. Interacting carbon cycle effects due to climate extremes

TABLE E2.: Correlation of spring-summer carry-over effects with soil moisture.

Carry-over effects in this study are inferred from the differences between
negative extremes in summer GPP and GPP under the same meteorological
forcing in summer but with randomised spring conditions (i.e. AGPP =
GPPj?f?XS?;Z{zJAS - GPPgtjif:gTZg;{z?icRAND’ where AGPP de-
notes carry-over effect). Therefore, we test whether differences in soil mois-
ture content between both runs can explain the observed carry-over effects.
Carry-over effects in NEP follow similarly. SWC1 and SWC?2 denote
soil water content in soil layers 1 and 2, respectively, and p() is the Pearson

correlation coefficient.

Region o(AGPP, o(AGPP, o(ANEP, o(ANEP,
ASWC1) ASWC2) ASWC1) ASWC2)
NEU-SCA 0.78 0.87 0.83 0.90
NEU-ENG 0.52 0.85 0.53 0.88
CEU-RUS 0.80 0.92 0.82 0.90
CEU-FRA 0.32 0.90 0.35 0.91
MED-ESP 0.13 0.88 0.22 0.59
MED-SEE 0.19 0.92 0.31 0.91
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