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Abstract: Changes in soil moisture between two radar acquisitions can impact the observed
coherence in differential interferometry: both coherence magnitude |γ| and phase φ are
affected. The influence on the latter potentially biases the estimation of deformations. These
effects have been found to be variable in magnitude and sign, as well as dependent on
polarization, as opposed to predictions by existing models. Such diversity can be explained
when the soil is modelled as a half-space with spatially varying dielectric properties and a
rough interface. The first-order perturbative solution achieves–upon calibration with airborne
L band data–median correlations ρ at HH polarization of 0.77 for the phase φ, of 0.50 for |γ|,
and for the phase triplets Ξ of 0.56. The predictions are sensitive to the choice of dielectric
mixing model, in particular the absorptive properties; the differences between the mixing
models are found to be partially compensatable by varying the relative importance of surface
and volume scattering. However, for half of the agricultural fields the Hallikainen mixing
model cannot reproduce the observed sensitivities of the phase to soil moisture. In addition,
the first-order expansion does not predict any impact on the HV coherence, which is however
empirically found to display similar sensitivities to soil moisture as the co-pol channels HH
and VV. These results indicate that the first-order solution, while not able to reproduce
all observed phenomena, can capture some of the more salient patterns of the effect of
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soil moisture changes on the HH and VV DInSAR signals. Hence it may prove useful in
separating the deformations from the moisture signals, thus yielding improved displacement
estimates or new ways for inferring soil moisture.

Keywords: DInSAR; InSAR; interferometry; electromagnetic model; soil moisture;
deformations; displacement

1. Introduction

The techniques repeat pass radar interferometry and differential interferometric SAR (DInSAR) are
routinely applied to derive deformations of the Earth’s surface, digital elevation models or vegetation
heights [1]. A possible influence of soil moisture changes on the observables in DInSAR has been
surmised for decades [2]. Such an impact can impair the estimation of the aforementioned parameters
but might also open the possibility for soil moisture retrieval by this technique. Since the first conjecture
of the presence of such effects on the phase φ and the coherence |γ| [2], several explanations about
the origins have been advanced, and both observational studies (e.g., [3,4]) and dedicated experiments
(e.g., by Rudant et al. [5], Morrison et al. [6]) have been conducted. The empirical evidence tended to
be inconclusive and some results were inconsistent. This lack of agreement might be due to different
study designs—e.g., radar wavelength and soil properties—and shows that the prevalence and size of
these effects on the observables remains poorly understood.

This knowledge gap also encompasses the predictive power of the proposed explanations. Their
applicability has recently been analysed empirically at L band by Zwieback et al. [7]: for the two airborne
campaigns studied, the inferred dependence of φ on soil moisture changes ∆mv was not consistent
with the penetration depth hypothesis [8] or soil swelling, but only with a dielectric volume scattering
mechanism. More than 20 years ago the possibility of volume scattering within the soil was considered
by Gabriel et al. [2], but they preferred to attribute the observed phase patterns to deformations as the
soils studied were prone to swelling; the observed sign of φ was mostly consistent with such swelling.
The sign of the phase change was also studied by Rudant et al. [5] in two laboratory experiments: they
interpreted the phase signal not due to deformation as one of dielectric origin. A numerical model of a
heterogeneous soil (which gives rise to scattering) based directly on Maxwell’s equations predicts this
sign of the phase dependence [9], as does the analytical approach by De Zan et al. [10]. They considered
volume scatterers embedded in a soil bounded by a smooth surface: in the first-order scattering solution
the scattered field could be expressed as the superposition of the return from all the particles, the phase
and magnitude of each depending on its position and the bulk dielectric constant of the soil. The complex
coherence γ followed by ensemble averaging assuming no correlation between the returns from different
particles; it did not depend on the polarization.

At higher frequencies the opposite sign of the phase dependence has been observed in laboratory
experiments. The homogeneous samples of soil (S-band measurements by Yin et al. [11]) and pure
sand (C-band measurements by Morrison et al. [6]) were put into containers and the surface was
smoothed. The observed phase dependence on soil moisture was found to by consistent with the Small
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Perturbation Model by Yin et al. [11]. That is, the signals could be explained by scattering from a slightly
rough surface.

As both surface scattering and sub-surface volume scattering seem the most promising hypotheses for
explaining the effects on γ for different non-swelling soils and radar frequencies, we want to determine
whether these can be combined in an analytical model based directly on Maxwell’s equations [12]. The
relative importance of the two scattering contributions is intended to account for the variations in sign
and magnitude of the observed soil moisture effects. To this end, we propose to extend De Zan et al. [10]
and model the soil in a first order Born approximation, where the zero-order scenario corresponds to a flat
interface and a homogeneous soil. The first order expansion incorporates the roughness of the surface
and spatial variations in permittivity. The resulting parametric solutions allow us to make predictions
about the DInSAR observables—in particular the phase φ—for all polarizations, and compare them to
observations. The evaluation of the proposed model focusses on the consistency of the predictions for
different observables and polarizations, as well as the patterns in the data that the model cannot explain.

2. Proposed Model

The proposed model combines scattering from two origins, i.e., spatial variations of the soil
permittivity and the rough surface. The first-order impact of the permittivity fluctuations on the scattered
E field will be studied first, followed by an analysis of the surface roughness. Subsequently we will
combine these two and derive explicit expressions for the observables based on parameterizations of
the permittivity fluctuations. We will represent E as a phasor throughout, and employ the exp iωt

sign convention.

2.1. Permittivity Fluctuations

The soil is represented by the half space b in Figure 1a. Its dielectric properties are characterized (i) a
mean scalar permittivity ε and (ii) a fluctuating part εf prq with mean xεf prqy “ 0. The mean permittivity
ε is mainly governed by the amount of liquid water present in the soil but also e.g., the ice content and
soil texture [13,14]. This dependence can be described by dielectric mixing models such as those by
Hallikainen et al. [15], Peplinski et al. [16].

Let a plane wave of angular frequency ω impinge upon this half space. Following Tsang et al. [17],
let E and Eb be the electric field above (region a, Va) and inside (region b, Vb) the medium,
respectively. These electric field vectors are each split into two parts: a perturbation term and an
unperturbed component E

0
or E

0

b . These latter correspond to the E-field in the absence of permittivity
fluctuations. The following set of integral equations is readily obtained from Maxwell’s equations (see
[17] Chapter 6.2.3):

Eprq “ E
0
prq `

ż

Vb

G
0

abpr, rbq ¨ EbprbqQprbqdrb (1a)

Ebprq “ E
0

bprq `

ż

Vb

G
0

bbpr, rbq ¨ EbprbqQprbqdrb (1b)
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whereQprq “ ω2µεf and the fields with superscript 0 denote the solutions in the absence of fluctuations,

whereasG
0

ij represents the dyadic undisturbed Green’s function for a source in region j and an evaluation
point in region i. Equation (1a) relates the measurable field above the interface Eprq to the unperturbed
field E

0
prq and to the field Ebprbq at all points inside the half-space. The latter has to fulfill the

consistency relation of Equation (1b).
An approximate solution, which does not obey energy conservation, can be obtained using a

perturbative approach. In the first-order Born approximation the unknown field Eb on the right-hand
side is replaced by the unperturbed one E

0

b . This field corresponds to a plane wave, whose wave vectors
both above and below the interface are shown in Figure 1a, and whose magnitude is determined by the
Fresnel transmission coefficient for refraction into the lower half-space. For a smooth interface in the
far-field, using the plane-wave approximation for the phase, i.e., k0r2b

R
! 1 where R is the distance to

the antenna

G
0

abpr, rbq ¨ E
0

bprbq “
1

W
exp

“

2i
`

ka ¨ r ´ kb ¨ rb
˘‰

´

ThP h ` TvP v

¯

¨ e (2)

where W rm´1s can be considered a constant [17]. The rank one dyad P h projects any vector onto the
horizontal polarization vector in medium b and maps it to the horizontal polarization vector in medium a;
P v does likewise for the vertical polarization. The factors Th and Tv are the two-way amplitude Fresnel
coefficients (see Supplement, section 1), and e is the unit polarization vector of the incident field in
region b.

H

θi
r

rb

Va

Vb kb

ka

(a)

yi

ys

ya

H
R

θi

θt z

(b)

Figure 1. Description of the geometric setup: the circle at in the soil (halfspace Vb) is
illuminated by the antenna at height H in Va. The coordinate vectors with respect to
the origin (black circle at the surface) are shown in the left-hand panel, along with the
wave vectors k in red. The panel on the right illustrates the coordinate definitions used
in Section 2.3. (a) Geometry of the half-space; (b) Geometry for evaluating the phase.

Let qm “ rqHHm q
?

2HV
m qV Vm sT be the scattering vector in the lexicographic basis [18] for acquisition m.

It is a column vector as indicated by the transposition operation T and encodes the components of the
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scattered E-fieldEprq for different transmit polarizations e [18]. In interferometry two such acquisitions,
e.g., m and n, are combined: the position of the antenna can change rm ‰ rn, as can the dielectric
properties of the half-space b, εm ‰ εn. The interferogram is formed by cross-multiplying the scattering
vectors of the two acquisitions to yield the interferometric covariance matrix rCmnsv “ xqmq

:
ny [1].

Its predicted value according to the model under the Born approximation follows by rearranging (1)
using (2) and grouping the results according to both incident and scattered polarization components.
Denoting the acquisition with an additional index, we get

rCmnsv “
1

W 2
rTmns

ż

Vb

ż

Vb

xQmprb,mqQnprb,nq
‹
y

¨ exp
”

2i
´

pka,m ¨ rm ´ k
‹

a,n ¨ rnq ´ pkb,m ¨ rb,m ´ k
‹

b,n ¨ rb,n

¯ı

drb,mdrb,n

(3)

with

rTmns “

»

—

–

Th,mT
‹
h,n 0 Th,mT

‹
v,n

0 0 0

Tv,mT
‹
h,n 0 Tv,mT

‹
v,n

fi

ffi

fl

(4)

where the dielectric fluctuations are encoded in xQmprb,mqQnprb,nq
‹y. These variations represent

small-scale variations in the dielectric constant, due to e.g., pores, clumps or stones. If the fluctuations
are assumed to be uncorrelated in space, this reduces to Qmnprb,mqδprb,m ´ rb,nq, which eliminates one
of the integrals in Equation (3).

The polarimetric behaviour is only governed by the transmissivity matrix rT s in Equation (3);
a more general representation could be obtained using an effective covariance matrix rT s1 encoding
both transmission and scattering effects.

2.2. Surface Term

When the interface between regions a and b is not smooth, backscattering occurs even in the
absence of inhomogeneities. The perturbative analysis can be extended to the surface roughness
(characterized by a non-zero characteristic height η): the first order scattered field consists of (i) the
volume contribution excited by the zero-order fields Equation (3); (ii) the first order contribution from
the surface (Small Perturbation Model, SPM) [19]. The latter approximation is valid for small roughness
heights xkaη cos θiy ! 1 and small slopes Bη

By
! 1. The scattering vector qs,m at acquisition m is [18]

qs,m “ Z

»

—

–

cos θ ´
a

εm ´ sin2 θ

cos θ `
a

εm ´ sin2 θ
, 0,
pεm ´ 1q

`

sin2 θ ´ εm
`

1` sin2 θ
˘˘

´

εm cos θ `
a

εm ´ sin2 θ
¯2

fi

ffi

fl

T

(5)

where Z is a factor that does not depend on the dielectric constant, but on the roughness. Assuming
that Z is constant and that the volume and surface contributions are uncorrelated, the total scattering
covariance matrix rCmns “ rCmnsv ` rCmnss “ rCmnsv ` xqs,mq

:
s,ny. This assumption is commonly

done in both polarimetric [20,21] and interferometric modelling [18,22] of surface and “volume” terms.
Note that the surface contribution rCmnss can in principle also be modelled differently, e.g., by the
Kirchhoff Geometric Optics model, a constant or by semi-empirical formulae [23].
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2.3. Propagation Phase

The integration kernel in the volume contribution of Equation (1) modulates both the magnitude and
the phase of the return from any point in the halfspace. The propagation phase ϕm in Equation (2), i.e.,
its phase term, depends on the two-way propagation of the plane wave in half space a via the real part of
its wavevector <ka,m and similarly for half space b via <kb,m (see Figure 1a)

ϕm “ 2
`

<ka,m ¨ r ´ <kb,m ¨ rb
˘

(6)

“ 2k0

b

H2
m ` pyi,m ´ ya,mq

2 ` 2k0wm

b

z2 ` pys ´ yi,mq2 (7)

where the second line uses the coordinate definitions of Figure 1b and the scenario is kept two
dimensional for simplicity. yi is an internal variable determined by Snell’s law, and wm “
”

sin2 θi ` <2
´

a

εm ´ sin2 θi
¯ı0.5

—it corresponds to the index of refraction in the absence of
absorption—such that

<kb,m “ k0wm
`

0, sin θtm, cos θtm
˘T (8)

As described in more detail in the supplement (section 2, Fig. S1), the interferometric phase of a point
scatterer is given by the difference in the propagation phases and evaluates to

φmn “ ϕm ´ ϕn “ φ̃mn ` φ̄mn

« 2k0

„

wm

b

z2 ` pys ´ yi,mq2 ´ wn

b

z2 ` pys ´ yi,nq2


` 2k0

“

sin θi∆ya ´ cos θi∆H
‰

(9)

where the second line is obtained by linearization with respect to the position of the antenna
(FB “ k0B

2
KR

´1 ! 1, where BK is the projection of the baseline vector perpendicular to the line of
sight). φ̃mn is the part due to different background dielectric constants, whereas φ̄mn is a correction due
to an antenna offset in height ∆H and in the horizontal direction ∆ya.

For scatterers close to the interface it is expedient to simplify the expressions even further by
linearization with respect to the position. Particularly relevant are the changes with respect to z

at constant range Rm—the vertical interferometric wavenumber
`

Bφ
Bz

˘

Rm
—and with respect to Rm

at constant height–the range wavenumber
´

Bφ
BRm

¯

z
. The total differentials evaluated just below the

surface—the antenna positions being held constant—of the two terms in Equation (9) are derived in
the supplement:

dφ̄mn “

„

´2k0
BK
R

cos θi


dys `

«

´2k0
BK
R

cos θi sin θi
a

w2
m ´ sin2 θi

ff

dz (10)

dφ̃mn “

„

´2k0

ˆ

b

w2
m ´ sin2 θi ´

b

w2
n ´ sin2 θi

˙

dz (11)

The interferometric wavenumbers follow from Equations (10) and (11), cf. also Dall [24] for the
vertical one:

ˆ

Bφ

Bz

˙

Rm

“ ´2k0

«

b

w2
m ´ sin2 θi ´

b

w2
n ´ sin2 θi `

BK
R sin θi

w2
m cos θi

a

w2
m ´ sin2 θi

ff

(12)

ˆ

Bφ

BRm

˙

z

“ ´2k0
BK cos θi

R sin θi
(13)
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Note that the range wavenumber does not depend on the permittivity and is identical to the one
above the interface [25], thus opening the possibility to do range spectral filtering [26]. The linear
approximation for a difference in φ of two scatterers separated by ∆z is appropriate if Fz “

k0p∆zq
2R´1 ! 1.

2.4. Interferometric Observables

In interferometric SAR studies it is commonplace to normalize the measured covariance of
Equation (3) to obtain the coherence γmn

γmnpωq “
ω:rCmnsω

`

ω:rCmmsω ω:rCnnsω
˘

1
2

(14)

where ω is a polarimetric projection vector [27]. The phase of γmn is denoted by φmn, its magnitude
by |γmn|.

In astronomic interferometry the bispectrum is analysed when no adequate phase reference can be
established [28]. It is defined as a triple product of complex visibilities [29], which correspond to the
interferometric covariances rCmns. We propose to adapt this bispectrum to the bicoherence Γmno in
InSAR by forming the analogous triple product of the normalized covariance, i.e., the coherence

Γmno “ γmnγnopγmoq
‹ (15)

Its argument is the phase triplet [10] (or closure phase) Ξmno “ φmn`φno´φmo. For N acquisitions
there are only

`

n´1
2

˘

independent triplets, as opposed to
`

n
2

˘

phases [28]. The lost information consists
of the phase offset of each slave acquisition [30], which implies that these phase triplets are insensitive
to deformations, atmospheric influences and general phase offsets.

2.5. Parametric Solutions

In order to arrive at closed-form expressions, we propose to represent the dielectric fluctuations as
simple functions of depth. The magnitude of these fluctuations consequently does not depend on the
horizontal position but only on z. Using these representations, along with the linearized phase terms of
Equations (12) and (13) in Equation (1) will yield such analytic expressions. Let δ0 be a representative
penetration depth and z1 “ zδ´1

0 (k1 “ kδ0) the dimensionless depth (a dimensionless wavenumber).
The ensemble average in Equation (3) will be assumed real and parameterized as

xQmpz
1
qQnpz

1
q
‹
y “ Qmnpz

1
q “ Qmmpz

1
q “ Qnnpz

1
q “ apz1q (16)

where apz1q is a polynomial of degree A, which we represent in the Laguerre basis. Note that this
assumes (i) invariance of the dielectric fluctuations between acquisitions, i.e., only the mean ε changes;
and (ii) a lack of spatial correlation. These assumptions mean that these fluctuations are like white noise
added to the background dielectric constant. For simplicity only the cases A “ 0, i.e., apz1q “ a0, and
A “ 1, i.e., apz1q “ a0 ` a1p1´ z

1q, will be considered [31].
These two cases are illustrated in Figure 2. The representation as a zero-order polynomial (A “ 0)

implies constant heterogeneities with depth, which is shown in the left panel. The linear dependence with
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depth (A “ 1) is illustrated for a1 ą 0 in the right panel: the soil becomes increasingly homogeneous as
z1 increases.

surface

volume

z′

a(z′)a0

a1 = 0

(a)

surface

volume

z′

a(z′)a0

a1 > 0

(b)

Figure 2. Illustration of the depth dependence of the dielectric fluctuations apz1q of
Equation (16) for the parametric functions with A “ 0 (constant, top panel) and A “ 1

(linear dependence, bottom panel). In the left-hand diagrams, the graininess of the soil
corresponds to the magnitude of the dielectric fluctuations, whose spatial variation is shown
on the right. (a) A “ 0; (b) A “ 1.

The assumption of a real and acquisition-invariant profile of the spatially uncorrelated dielectric
fluctuations renders Equation (3) similar to the standard first-order scattering model employed in
interferometry, with apz1q corresponding to the structure function, as employed—also as a series
expansion—in coherence tomography [27].

In the following it will be assumed that the BK term in Equation (12) is negligible, i.e., that the phase
contribution due to different elevations is much smaller than π, k0BKR

´1δ0 ! 1. We also assume that
range spectral filtering [26] has been applied so that the range wavenumber vanishes. These assumptions
are made because the data used in this study were acquired from the same track. In this case the
exponential term in Equation (3) reduces to 2i

´

k1b,m ´ k1
‹

b,n

¯

¨ ẑz1 where ẑ is a unit vector in the vertical
direction; this is the same functional form as in De Zan et al. [10]. The integration in the horizontal
direction (which should include the antenna pattern) can be absorbed into the normalization constant
W 1, as it cancels when the coherence Equation (14) is formed. Owing to the lack of spatial correlation
of Q as parameterized by apz1q in Equation (16), one of the integrals in Equation (3) drops out

rCmnsv “
1

W 1
rTmns

8
ż

z1“0

apz1q exp
”

´2i
´

k1b,m ´ k1
‹

b,n

¯

¨ ẑz1
ı

dz1 (17)
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For A “ 0 the integral in Equation (17) yields

rCmnsv “
ia0

2W 1
rTmns

´

k1b,m ¨ ẑ ´ k1
‹

b,n ¨ ẑ
¯´1

(18)

whereas A “ 1 gives

rCmnsv “
1

4W 1
rTmns

´

2ipa0 ` a1q

´

k1b,m ¨ ẑ ´ k1
‹

b,n ¨ ẑ
¯

` a1

¯´

k1b,m ¨ ẑ ´ k1
‹

b,n ¨ ẑ
¯´2

(19)

The terms a0 and a1 capture not only the spatial variability of the dielectric fluctuations but also their
absolute size. This size is usually not known in practice, and also presumably difficult to determine
in-situ, which is discussed in more detail in Section 5.3. Similarly, the absolute value of the surface
contribution depends on the roughness properties, which are generally not known a-priori. For practical
reasons, we thus introduce a weighting parameter, the volume-to-surface ratio f . It expresses the relative
importance of the two contributions (the absolute values are not necessary if only the coherence is looked
at) at a reference moisture value:

rCmns “
f

f0,v

rCmnsv `
1

f0,s

rCmnss (20)

where f0,s and f0,v are normalization magnitudes, corresponding to the element of rCmmss or rCmmsv
at a reference moisture state in a specified polarization. As the scaling of rCmns is immaterial for the
evaluation of γ, a0 will be set to one. The case of A “ 0 and f Ñ 8 (pure volume) corresponds to the
scenario studied by De Zan et al. [10]: its coherence is independent of frequency (and thus the free space
wavelength) for frequency-independent ε as the half space has no intrinsic length scale.

The simulated impact of a varying volume-to-surface contribution f on the coherences is illustrated
in Figure 3a. For a fixed change in soil moisture of ∆mv = 0.1 m3 ¨ m´3, an increase in f makes
the absolute values |γ| decrease (i.e., the soil decorrelates more) and the magnitude of the phases
grow. This increase in sensitivity is due to the fact that the sensitivity of the phase to soil moisture
changes is much smaller (and of opposite sign) for the surface term than for the bulk volume. A similar
difference in sensitivity is present for |γ|, which is predicted to be equal to one for the surface, which also
implies vanishing phase triplets. The volume term, by contrast, leads to decorrelation: |γ| is predicted in
Figure 3b to decrease monotonically as the absolute change in soil moisture |∆mv| increases, whereas
the magnitude of the interferometric phase is expected to increase. This relation is non-linear: the phase
φ saturates as ∆mv increases, and it is not a function of ∆mv alone but depends on both values of mv.
This is illustrated for two different dielectric mixing models in Figure 3c,d, whereas Figure 3e,f shows
the impact of varying a1 (A “ 1).
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45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.20.40.60.81

1
101000

(a)
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45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.20.40.60.81

0.1
0.2

0.3

(b)

Figure 3. Cont.
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Figure 3. Model predictions for different observables (HH polarization) using the Peplinski
mixing model Pep [16] or the Hallikainen [15] model Hal. In panel a) the volume-to-ground
ratio f varies, in the remaining ones the soil moisture varies. (a) Coherence values (Pep,
A “ 0) for mm

v = 0.2 (0.3) m3 ¨ m´3 for the master (slave) and varying f ; (b) Coherence
values (Pep, A “ 0) for f = 100, a master mm

v of 0.2 m3 ¨ m´3 and varying slave mn
v ;

(c) Interferometric phases φmn (A “ 0) for f = 25 and different mm
v and slave mn

v “ mm
v `

∆mv; (d) Interferometric phase triplets (A “ 0) Ξmno for f = 25 and mm
v = 0.3 m3 ¨ m´3

and different mn
v and mo

v; (e) Interferometric phases φmn (Hal model) for volume-only and
different mm

v and slave mn
v , using A “ 0 (solid line) and A “ 1 (a1 “ ´0.7, dashed line);

(f) Interferometric phase triplets (Hal) Ξmno for f = 25 and mm
v = 0.3 m3 ¨m´3 and different

mn
v and mo

v, using A “ 0 (solid line) and A “ 1 (a1 “ ´0.7, dashed line).

3. Calibration and Model Assessment

In order to assess the accuracy and validity of the model, we compare its predictions of the radar
observables to airborne radar observations. These model predictions are based on the soil moisture that
was measured in-situ at the time of the radar acquisitions. As the model contains unknown parameters,
these will be estimated in a calibration step. The calibrated model can subsequently be directly compared
to the radar measurements.
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3.1. Study Site and Data

3.1.1. Study Site

The available data were acquired within the Canadian Experiment for Soil Moisture in 2010 [32]
and cover the time period from 2–14 June 2010. The test site near Kenaston, Saskatchewan, Canada
(51˝301 N, 106˝181W) covers an area of around 270 km2. Rainfed agricultural fields, pastures and
grassland predominate, but at least 1.5% of the area is covered with open water surfaces. This percentage
is likely to have been even larger due to the wet conditions before and during the campaign [33].
The majority of the agricultural fields had been tilled prior to the measurements and several were covered
with crop residues to varying degrees [32].

3.1.2. Soil Moisture Data

Environment Canada operates a network of permanent stations where soil moisture is recorded by
Stevens Hydra Probe II sensors at different depths [33], from which we use the data measured by those
installed vertically at 0–5 cm depth. Due to battery failure, the presence of standing water in some fields
and limited image extent, only the data of ten fields are available, of which we use the same seven as
in Zwieback et al. [7]; the remainder are put aside for future inversion studies. The sensor outputs are
converted to values of volumetric soil moisture mv (m3 ¨ m´3) using a calibration procedure based on
soil texture.

The mv time series of these sensors show similar temporal patterns, but both the mean values and
dynamic ranges differ, the latter by about a factor of 10. An illustration of this diversity is given in
Figure 4 for two different fields.

3.1.3. Radar Data and Processing

The fully polarimetric (quadpol) UAVSAR data (L-band: λ “ 0.24 m) have a resolution of 1.7 m
(0.8 m) in range (azimuth) [34]. They were acquired in irregular intervals between one and three days
with a nominal baseline of 0 m and from a height of 13 km. The incidence angle ranges between 22˝

and 66˝ from the near to the far range of the image [33].
Using all possible combinations of the six SLC images, 15 interferograms were formed. As in

Zwieback et al. [7], a rectangle (extent: 50 m in range, 100 m in azimuth) was manually delineated in the
immediate surroundings of the location of each probe; it was chosen so as to maximize the homogeneity
within this region of interest (ROI) and avoid pools of water. At each of the four corners of these
rectangles, the interferograms were averaged (number of looks L = 172, area: 20 m2) to estimate the
coherence. These subROIs are denoted by the field number (three digits) and a letter a-d for each of the
corners. For each of the fields, we reference the phase with respect to the closest stable scatterer as in
Zwieback et al. [7], where it was observed for the same data that the results are not sensitive (less than
10% change on average) to the choice of reference target.

As the flight tracks during the acquisition deviated from the nominal ones—the UAVSAR team aims at
a track accuracy of 10 m and achieved one of 5 m in this campaign—the interferometric phase depends
on the height, thus introducing an additional source of uncertainty. In the worst case scenario for an
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incidence angle of θ = 30˝, the height of ambiguity Ha « 190 m (the height corresponding to a phase
difference of one cycle). For a height difference between the field and the phase reference of 5 m, we thus
expect a maximum phase error of 10˝, which is about one order of magnitude smaller than the maximum
phase differences expected from the model or observed in the data. An example of these observed phases
is shown in Figure 4: as the soil becomes more moist between 6 and 9 June, the measured phases with
respect to a drier acquisition on 5 June take on values of around 70˝ or 3π

8
rad. They subsequently decline,

and so does the soil moisture, whereas the absolute coherences increase again. The radar observations in
field 206 (Figure 4b) exhibit similar temporal behaviour, but the magnitude is smaller by a factor of 2.
The soil moisture observations also display a smaller dynamic range (by about 75%).
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Figure 4. Time series of measured phases φ and absolute coherences |γ| in two fields,
where the master acquisition m is 5 June. The soil moisture values mv measured in the
respective field are shown in the second panel; their dynamic ranges differ by about one
order of magnitude. (a) ROI 307a; (b) ROI 206d.

3.2. Rationale

In order to assess the validity of the proposed model of Equation (20), we compare its predictions
with these L-band measurements. The predictions are governed by two parameters that are not known
a priori: f and a1. Assuming the model can capture all the influences on the coherence–thus neglecting
phenomena such as vegetation dynamics–we estimate these via minimization of misfit functions: these
measure the difference between the predicted observables (based on prescribed soil moisture) and the
measured ones. This estimation is done for each subROI separately. The overall aim of the calibration is
to first estimate the parameters, and then assess the quality of fit.

3.3. Minimization of Misfit

We focus on the two normalized observables of Section 2.4, i.e., γ and Γ, and separate the magnitude
and argument of these complex quantities. For the coherence we propose to minimize a generalized
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root mean square (RMS) deviation µγpζq, where ζ weights the relative importance of magnitude
and argument:

µ2
γpζq “

ÿ

nąm

”

p1´ ζqwφmnp1´ cospφ̂mn ´ φmnqq ` ζw
|γ|
mnp|γ̂mn| ´ |γmn|q

2
ı

(21)

where the weights wφmn are the reciprocals of the estimated variances (based on the Cramer-Rao bound
of the Gaussian speckle model, see Bamler and Hartl [1]) and are normalized such that

ř

wmn “ 1.
This normalization condition is also enforced for the uniform weights w|γ|mn. The predicted values are
denoted by hats and depend on the parameters f and a1, as well as on the prescribed soil moisture
values. Note that the cos dependence of the phase misfit is not susceptible to phase wrapping and
that the metaparameter ζ weights the influence of φ and γ, with ζ “ 0.5 corresponding to a roughly
equal importance.

The bicoherence misfit function

µ2
Γpζq “

ÿ

oąn

”

p1´ ζqwΞ
m0,n,o

p1´ cospΞ̂m0,n,o ´ Ξm0,n,oqq ` ζw
Γ
m0,n,o

p|Γ̂m0,n,o| ´ |Γm0,n,o|q
2
ı

(22)

is structured along the same lines; the weights wΞ
m0,n,o

are obtained assuming that the deviations of
the phases φmn are uncorrelated for different acquisitions, and the wΓ

m0,n,o
are again uniform. The first

acquisition m0 in the bicoherence is held fixed as otherwise redundancy would be introduced [28].

3.4. Evaluation

In order to assess the impact of different parameterizations, such as the dependence on the dielectric
mixing models, we employ bootstrap resampling: Bias Corrected and accelerated (BCa) confidence
intervals are derived using case resampling [35]. These quantities are estimated by taking random
subsamples from the data, with which one can then approximate the distribution of the quantity of
interest. These are the difference of the estimates of a parameter (e.g., the volume-to-ground ratio f )
between two parameterizations.

For any parameterization of the model, the minimized value of the misfit function µ is an indicator
of the discrepancy between model and observations. Apart from this value, the quality of fit will also be
assessed by the correlation ρ and the sensitivity ratio s. ρ is the Pearson’s correlation coefficient between
predictions and measurements, whereas the sensitivity ratio spζq is given by the ratio of the standard
deviation of the predictions to that of the data. A value s >1 thus corresponds a larger spread of the
predicted values than the observed ones, whereas s <1 indicates a comparatively larger scatter in the
data. This can be due to a larger mv sensitivity of the observations than predicted by the model, but also
due to influences not represented by the model. In particular, it is expected that a poor model fit will lead
to small values of s upon calibration.

4. Results

4.1. Examples

Such differences between the measured DInSAR observables and their predictions are found in the
data, e.g., in the examples shown in Figure 5. Panel (a) shows the predicted φV V of both a volume-only
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(f Ñ 8) and the calibrated version (f estimated to yield f̂ using ζ “ 0). For both versions, there is an
approximately linear relation between predictions and observations of the correct sign but the observed
values are greater in magnitude than the predictions (s “ 0.56). These simulated values of the two
parameterizations cannot be distinguished as f̂ " 1. Such a difference does occur for φHH in Figure 5b,
where the sensitivity ratio s “ 2.93 is reduced, upon calibration, to 0.76. Similar variations in the
sensitivity are also found for the phase triplets Ξ, e.g., in Figure 5c,d).
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Figure 5. Comparison of predicted and measured phases or phase triplets: the volume-only
predictions (in red) are contrasted with those of the calibrated model (A “ 0, ζ “ 0;
in blue). The descriptions give the subROI, the observable, and the mixing model used
in the predictions. (a) 206b, φV V , Hal; (b) 109a, φHH , Pep; (c) 109a, ΞV V , Pep; (d) 326d,
ΞV V , Hal.
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4.2. Coherence

4.2.1. Calibration with A “ 0

The calibration results of all the fields for the simple case of A “ 0—i.e., the fluctuation term Q is
independent of depth—are summarized for the HH polarization in Taylor plots in Figure 6. The location
of each point encodes the correlation ρ via its angle and the relevant misfit µ via its distance from the
origin; the colour depends on the field according to the topmost legend and the sensitivity ratio s is
represented by the symbol as indicated by the legend underneath. The three panels (a) to (c) show
the evaluation results for the phase φ, i.e., the correlation and sensitivity ratio between predicted and
measured φ as well as the phase misfit µγp0q. The evaluation measures of the same models but applied
to the coherence magnitude |γ| are displayed underneath.
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Figure 6. Taylor plots for HH polarization: the colour (symbol) encodes the field (sensitivity
ratio) according to the legends on top. The angle gives the correlation ρ, the magnitude
(distance from the origin) the misfit µ. Instances with negative correlations are not shown
but listed in the grey box. The top panels give the relevant quantities for the phase φ (using
different mixing models and ζ), the bottom ones do the same for the coherence magnitude.
(a) φHH , ζ “ 0, Pep; (b) φHH , ζ “ 0.5, Pep; (c) φHH , ζ “ 0, Hal; (d) |γHH |, ζ “ 0, Pep;
(e) |γHH |, ζ “ 0.5, Pep; (f) |γHH |, ζ “ 0, Hal.
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In panel (a) the Peplinski-based model was calibrated on phase data alone, i.e., ζ “ 0. The subROIs
results tend to cluster with respect to the field, achieving a median correlation ρ of 0.71. Typical misfits
µp0q vary between 0.1 and 0.25, with only field 201 (light blue) showing worse fits. For this field,
the model cannot replicate the interferometric observables based on the measured soil moisture data.
This is even more evident for the coherence |γ| in panel (d), as negative correlations are obtained. This
field shows considerably larger variations in the interferometric observables than the model can predict:
even in the pure volume case, the sensitivity ratio s ă 1. Such low values of s for the volume-only case
are not observed in the other fields. The exceptional properties of this field 201 are also reflected in the
results obtained using ζ “ 0.5 (roughly equal weight on φ and |γ|). As seen in Figure 6b, the overall fits
and correlations are similar to the phase-only case using ζ “ 0.
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Figure 7. The first two columns contain scatter plots of the phase correlation and misfit for
HH and VV between volume-only and calibrated versions of the model. The third column
shows a comparison between HV and HH fit using the Hallikainen mixing model. The
colours of the symbols represent the agricultural fields as in Figure 6. (a) Phase slope HH:
Peplinski model; (b) Phase slope VV: Peplinski model; (c) Correlation φ: HH and HV
(volume-only); (d) Phase slope HH: Hallikainen model; (e) Phase slope VV: Hallikainen
model; (f) Misfit φ: HH and HV (volume-only).

The phase-only calibration ζ “ 0 using the Hallikainen mixing model contrasts with the Peplinski
model in two important aspects. Firstly, according to Figure 7d the model cannot reproduce the
magnitude of the observed phases, i.e., s ă 1. Secondly, the median correlation of the phase increases
to 0.77, and the one of the coherence magnitude from 0.5 to 0.58. There is no clear trend in the
misfits µγp0q. They are significantly different between the two mixing models (at a significance level
α “ 0.05) in 45 %, as shown in Figure 8a. Non-significant differences occur e.g., for fields 109 and 136,
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corresponding to confidence intervals that overlap with µγp0qPep ´ µγp0qHal “ 0, i.e., equal misfit of the
two mixing models.
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Figure 8. Bootstrap confidence intervals of differences in µγ or f between two
parameterizations. For each quantity and each ROI, the estimated difference is shown by the
symbol (a diamond if it is significantly different from zero at α “ 0.05, a circle otherwise),
along with the 95% confidence intervals. (a) HH, A “ 0, ζ “ 0; (b) VV, A “ 0, ζ “ 0;
(c) Hal, A “ 0, ζ “ 0.

The Taylor plots for the VV phase-only calibration (i.e., ζ “ 0) in Figure 9 reveal similar patterns
for the Pep and Hal mixing model: more than 90 % of the correlations are between 0.3 and 0.95
(for φ: median 0.78 and 0.70 with Hal and Pep, respectively). The two versions of the model cannot
always reproduce the observed magnitudes of the interferometric observables. As seen in Figure 7b,e,
this occurs for the same fields as in the HH polarizations. The misfits µγp0q ă 0.4, except for field
201, with significant differences between Pep and Hal occurring in 36% of the cases (Figure 8b).
The volume-to-ground ratios f estimated independently for HH and VV phases do not show a consistent
offset in Figure 8c.
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Figure 9. Taylor plots for the phase φ and the coherence γ at VV polarization; cf. Figure 6
for a description of these plots. (a) φV V , ζ “ 0, PEP; (b) φV V , ζ “ 0, HAL; (c) |γV V |,
ζ “ 0, HAL.
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The model of Equation (20) predicts zero contribution in the cross-pol channel from both the surface
and the volume term. As the observed signals are similar to the ones found in HH and VV [7], we study
them using a volume-only model. In this approach the surface contribution is not considered (f Ñ 8),
and the volume model of Equation (17) is adopted (using the appropriate Fresnel terms). Its correlations
(median: 0.73) and misfits for the HV phase are plotted against those of the calibrated HH model applied
to φHH in Figure 7c,f. The correlations tend to be larger for the HH channel—however more than 85%
exceed 0.5 in the HV channel—and the misfits µp0q smaller.

4.2.2. Calibration with A “ 1

The inclusion of an additional term in the expansion of the dielectric fluctuations, i.e., letting
A “ 1, always reduces the misfit of the best-fitting model in both HH (Figure 10a) and VV (Figure 10b)
channels. This reduction is less than 5% for all samples except two. Note that the misfit cannot increase
as the A “ 1 model includes the A “ 0 model as a special case. The correlations ρ increase for more
than 90% of the samples (see Figure 10c,d).
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Figure 10. Comparison of phase correlation and misfit for HH and VV between A “ 0

and A “ 1, using the Hal mixing model. The median values of the estimated a1 are 0.12
(HH) and –0.06 (VV). Refer to Figure 6 for the colour code. (a) Misfit φHH ; (b) Misfit φV V ;
(c) Correlation φHH ; (d) Correlation φV V .

4.3. Bicoherence

The calibration procedure based on the bicoherence is achieved by minimizing the misfit µΓ of
Equation (22); the relevant Taylor plots for HH are shown in Figure 11. The subfigures (a) and (b)
reveal that for A “ 0, the correlations ρ are typically between 0.3 and 0.75, with median values of 0.56
and 0.58 for the Hal and Pep mixing model, respectively. The correlations and also the misfits display
as much intra-field as inter-field variability. Panel (c) reveals that when a1 is estimated as well (A “ 1),
the correlations tend to increase (median: 0.56) along with the sensitivity ratios. The great majority of
these sensitivity ratios s are less than one, even if the volume-to-surface ratio f Ñ 8, in which case only
22% exceed 1 for the Hallikainen model.

The correlations obtained at VV (see Figure 12) are comparable, with a median value of 0.59 for both
mixing models. The misfits, by contrast, are smaller by around 30%.
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Figure 11. Taylor plots for bicoherence calibration based on HH phase triplets: ζ “ 0;
cf. Figure 6 for a description of these plots. The value of the estimated a1 in (c) is –0.65.
(a) ΞHH , A “ 0, Hal; (b) ΞHH , A “ 0, Pep; (c) ΞHH , A “ 1, HAL.
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Figure 12. Taylor plots for bicoherence calibration based on VV phase triplets: ζ “ 0; cf.
Figure 6 for a description of these plots. (a) ΞV V ,A “ 0, Hal; (b) ΞV V ,A “ 0, Pep; (c) ΞV V ,
A “ 1, Hal.

5. Discussion

The comparison of the measured observables with the measured soil moisture changes and the
model predictions has revealed certain agreements and inconsistencies. These will subsequently be
discussed and assessed with respect to the uncertainties of the radar observations and the soil moisture
measurements. The differences between the polarizations will be analysed first, followed by the impact
of different parameterizations of the model and possible extensions or generalizations.

5.1. Polarimetry

In the proposed model, both the term due to the dielectric heterogeneities Equation (3) and the one
due to the surface scattering Equation (5) predict zero backscattering in the cross-pol channel HV.
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This prediction, which is a general feature of such first-order expansions of dielectrically isotropic
scattering scenarios [23], is known to fail in practice, and has thus led to the introduction of both
more sophisticated analytical and simpler semi-empirical models [36,37]. The discrepancy between
predictions and observations is found to also apply to the interferometric coherence: soil moisture
changes impact the DInSAR signals at HV [7]. The measured phases and their observed dependence
on soil moisture changes cannot be explained by noise or the uncertainty due to the phase referencing.
Rather, they can also be described by the volume scattering of Equation (3) provided that the HV channel
is treated like the co-polar ones. The correlations ρ between predicted and observed phases obtained
in this way (see Figure 7) are of comparable size to the ones in the co-polar channels. This similarity
suggests that it is the changing propagation within the soil that is crucial [10] rather than the more local
properties that give rise to scattering. For many practical purposes it might not be necessary to introduce
more complex models (such as higher-order expansions); rather, this semi-empirical extension of treating
the HV like the HH channel might suffice.

These values of the phase correlations ρ at HH and VV indicate that the model can capture the most
salient features of the observed phases. These are thus considered to be larger than decorrelation noise
and the uncertainties due to phase referencing (see Section 3.1) and their sign and general dependence
on moisture changes can be described by the model. However, these ρ values do not reveal the mismatch
between the sensitivities to soil moisture changes of the model and the data. For four fields the observed
ones tend to exceed the maximum sensitivities obtainable using the Hal mixing model: these are achieved
with the volume-only version as f Ñ 8, see Figure 3a. Such a case is displayed in Figure 5a: as the
sensitivity cannot be further increased and f is the only parameter that can be adapted, the optimized and
the volume-only model coincide. The tendency of a reduction of sensitivity with decreasing f becomes
evident in one of the counterexamples, shown in Figure 5b.

Such a discrepancy in the magnitude between the modelled and the observed impact of soil moisture
can be caused by inconsistent definitions and calibrations of the input data (e.g., the soil moisture), or
by deficiencies in the model itself, cf. Section 5.2. In particular in this data set, the dynamic ranges
of the measured soil moisture time series differ by about one order of magnitude despite similar soil
textures and the absence of vegetation [32]. Manual soil moisture sampling on some of the days
indicated a smaller inter-field variability of the soil moisture dynamics than the observations by the
permanent probes used in this study. The interferometric observables show a smaller variability in
magnitude than the in-situ measurements, cf. Figure 4 and Zwieback et al. [7]. More generally, such
discrepancies are not uncommon in backscatter-based estimation of soil moisture: this is why the
correlation coefficient remains one of the most popular accuracy metrics [38], and the differences in
both mean and dynamic range have to be considered when comparing and merging these data, as well as
for model integration [39,40].

For many practical purposes, the link between soil moisture and the phase will be more important
than the one with the coherence |γ|, not least because there are many processes that lead to decorrelation
over time [41,42]. The data set used in this study is characterized by a repeat period of 1–3 days,
which is smaller than that of most satellite missions. The impact of the soil moisture on the coherence
is evident in the timeseries of Figure 4, where the coherences increase again after a rain event has
temporarily led to wet conditions and decorrelation. Except for field 201, for which negative correlations
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ρ between predicted and modelled |γ| are obtained, the ρ are similar to those observed for the phase φ,
see Figures 6 and 9. The sensitivity of these predictions to soil moisture is, like for φ, smaller than
expected (s ă 1) in certain cases.

Such a small sensitivity is also observed for the phase triplets. As for the comparison with φ, the
correlations with the observations vary typically between 0.3 and 0.9. These larger sensitivities observed
in the data correspond to negligible surface contributions (as in Figure 5d), as the surface term leads to
zero closure phases for all values of mv, resulting in identical predictions for the volume-only and the
calibrated models.

5.2. Parameterization and Uncertainties of Soil Moisture Dependence

The dependence on the parameterization is particularly pronounced for the link between the dielectric
constant and mv, i.e., the mixing model and the calibration of the soil moisture data. The difference
between the Hal and the Pep mixing model is also evidenced by the internal sensitivity analysis of
Figure 3: compared to the Hal model, the Pep model predicts (i) a higher sensitivity of φ to ∆mv;
(ii) increased decorrelation for fixed |∆mv|; and (iii) in general larger magnitudes of the phase triplets
Ξ. The main difference between these two models is the loss tangent, and thus the absorption, both of
which are smaller for the Pep model [16]. For a fixed value of mv, the wave penetrates deeper into a soil
whose dielectric properties are governed by the Pep model. There is consequently a proportionally larger
amount of scattering from heterogeneities deeper in the soil; whenmv changes, these heterogeneities add
contributions with a larger change in propagation phase than the ones closer to the surface. This leads to
(i) larger changes in the interferometric phase φ (as the deeper parts have a larger contribution); (ii) lower
values of |γ| (due to the larger effective diversity in propagation phases); and (iii) larger phase triplets
(as they vanish for surface-scattering and increase in magnitude with decreasing loss tangent).

The overall similarity in the results despite the difference in the sensitivities can be partially explained
by the compensating effect of a varying f . A relative increase in volume scattering acts similarly to a
decrease in absorption: it also leads to larger phase sensitivities, more decorrelation and larger phase
triplets. Empirically, the calibrated f̂ are consistently larger for the Hal model than for Pep. However,
the compensation of the difference in the loss tangent is not perfect, as more than 40% of the samples
show significant—at α “ 0.05—differences in the misfit (Figure 8a,b), i.e., the differences are larger
than the uncertainties. There is no clear tendency towards any of the two, but the majority of fields can
be modelled more accurately by the Hal model, which on average also achieves higher correlations. This
points towards more complex disparities between the two mixing models and the predictions obtained
with them. The deviations in the latter, such as the nonlinear components, are seen in Figure 3c,d to
increase with differences in soil moisture. The latter figure indicates the differences in the predictions
for Ξ, the impact of which on the misfit is seen to be similar to the one of φ in Figures 11 and 12.

The small impact of extending the expansion of the fluctuations to A “ 1 on the quality of fit and the
correlations is also consistent with such a balancing effect of f . A negative a1 corresponds to an increase
in the fluctuations Qmnpz

1q with depth. Deeper parts of the soil thus exert a relatively larger influence on
the scattering—similar to the Pep model compared to the Hal mixing model, or to an increase in f . The
corresponding predictions of Figure 3e,f for φ and Ξ, respectively, reflect this similarity: the sensitivity
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to changes in soil moisture tends to increase when a1 <1. Upon extension of the expansion of the
fluctuations, the empirically determined misfits µγp0q always decrease. This decrease is always below
5%, and the size of the misfits remains stratified according the field.

5.3. Extensions and Underdetermination

The parameterization of the scattering contribution as a function of depth—in the present model
it is encoded in Equation (16)—thus holds potential for improving the model fit. An analogous depth
variation appears conceivable for the mean dielectric constant [10], but without direct observation
(e.g., using tomographic techniques), there is little physical basis for either. Rather, it would presumably
lead to an overparameterization, given the typically available data and the compensating effects
mentioned above.

Arguably more critical issues from the point of view of structure of the model—as they concern barely
justified assumptions implicit in Equation (16)—are (i) the postulated invariance of the permittivity
fluctuations with the acquisition; and (ii) their lack of spatial correlation. Both were dictated mostly
by practical reasoning: in particular (i) could—if relaxed—easily explain any interferometric phase φ as
Qmnpzq would be represented by an arbitrary complex number for m ‰ n; similar observations apply to
|γ| if m “ n is also taken into account separately. The inclusion of spatial correlations (ii) would, in the
isotropic case, mainly impact the overall backscatter from these fluctuations rather than their polarimetric
properties (see [17], chapter 6.2.3). Anisotropic correlations, on the other hand, could possibly affect the
latter, especially the HV component. As these fluctuations are somewhat germane to the model (they are
not amenable to direct measurements except perhaps at the pore scale) and the relaxation of assumptions
greatly increases the possible set of measurements explainable by the model, such an extension would
suffer from underdetermination that could not easily by resolved.

Similar reasoning applies to the use of more general surface and volume scattering models.
For instance, the use of discrete particles embedded in the soil as opposed to spatially varying
dielectric properties, could yield similar results. Such discrete particles form the core of the model by
De Zan et al. [10], but their properties (and thus e.g., the polarimetric characteristics of the scattered
fields) were not specified. More general models would also permit a relaxation of certain limitations
such as the lack of energy conservation, the small RMS roughness height or the lack of correlation
between surface and volume scattering. The latter might be particularly critical when the expansions
are extended to include more terms. Such higher-order models could also introduce multiple scattering,
e.g., within the subsurface or of the surface [43]. These higher-order contributions could also give rise
to soil moisture effects in the interferometric returns from the soil. For instance, the double bounce
between e.g., a vegetation stalk and a subsurface heterogeneity involves the same propagation phase
within the soil as the direct return from the heterogeneity. It will thus introduce a similar dependence on
soil moisture.

6. Conclusions

We introduced a fully polarimetric model that describes the impact of soil moisture changes on the
measurements obtained using radar interferometry. It incorporates both volume scattering effects due to
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heterogeneities and a surface contribution in a first-order Born approximation of Maxwell’s equations.
This combination is intended to make the model capable of accounting for varying contributions of
these two sources, which have previously only been studied separately. The volume contributions are
found to be dominant in an airborne L-band data set, when the model is calibrated using the Hallikainen
mixing model to estimate their relative importance. The estimation of the relative size of the volume
contributions was hampered by uncertainties due to the calibration of the soil moisture probes. Regarding
the temporal dynamics, the uncertainties in the interferometric phase were considered to be an order of
magnitude smaller than the observed soil moisture signals. The predominantly positive correlations
between these observations and predictions of the calibrated model indicate that the model can capture
some of the most salient features of the impact of soil moisture changes on the coherence |γ| (median
correlation at HH: 0.50), the phase φ (0.77), and the phase triplets Ξ (0.56). However, the presence of
these effects in the HV channel cannot be reconciled with the model. The description of these effects
at HV is thus an open question for which the inclusion of anistropic heterogeneities or higher order
expansions seem promising.

At all polarizations the model predictions depend on the parameterization of the depth-dependence of
the volume scattering and the soil moisture-dependence of the dielectric constant of the soil, in particular
the absorptive properties. The variation of these parameters impacts the predictions in a way similar to
a change of the relative importance of volume and surface scattering. This parameter can thus partially
compensate these differences, and similar qualities of fit can be achieved. These findings indicate that
even though the model predictions are sensitive to these parameterizations, data-driven calibration of the
model might render it robust enough to be used in future studies. Possible future accuracy assessments
might elucidate the impact of the radar frequency and the soil properties on the validity of the model.

The qualitative agreement, as expressed by the correlations, points towards the possible use of such a
model to estimate soil moisture. It might also be instrumental in accounting for changes in soil moisture
in the estimation of deformations—a task for which the phase triplets are most promising, as they are
insensitive to movements. They can thus potentially be used to remove the soil moisture effects from the
estimated deformations due to, for instance, volcanic activity or groundwater-related subsidence.
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