Two-pulse orientation dynamics and high-harmonic spectroscopy of strongly-oriented molecules

Author(s): Kraus, Peter M.; Baykusheva, Denitsa; Wörner, Hans Jakob

Publication Date: 2014-06-28

Permanent Link: https://doi.org/10.3929/ethz-a-010779526

Rights / License: In Copyright - Non-Commercial Use Permitted
Two-pulse orientation dynamics and high-harmonic spectroscopy of strongly-oriented molecules

P M Kraus, D Baykusheva and H J Wörner
Laboratorium für Physikalische Chemie, ETH Zürich,
Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
E-mail: woerner@phys.chem.ethz.ch

Abstract. We present the detailed analysis of a new two-pulse orientation scheme that achieves macroscopic field-free orientation at the high particle densities required for attosecond and high-harmonic spectroscopies [P. M. Kraus et al., arxiv:1311.3923]. Carbon monoxide (CO) molecules are oriented by combining a one-color and a delayed two-color non-resonant femtosecond laser pulses. High-harmonic generation is used to probe the oriented wave-packet dynamics and reveals that a very high degree of orientation ($N_{up}/N_{total} = 0.82$) is achieved. We further extend this approach to orienting carbonyl sulfide (OCS) molecules. We show that the present two-pulse scheme selectively enhances orientation created by the hyperpolarizability interaction whereas the ionization-depletion mechanism plays no role. We further control and optimize orientation through the delay between the one- and two-color pump pulses. Finally, we demonstrate a complementary encoding of electronic structure features, such as shape resonances, in the even- and odd-harmonic spectrum. The achieved progress makes two-pulse field-free orientation an attractive tool for a broad class of time-resolved measurements.
1. Introduction

A central goal of attosecond spectroscopy is the observation of electronic motion in the molecular frame [1]. The last decade has witnessed fundamental progress in the observation of electronic motion in atoms [2–4] and small molecules [5, 6]. We foresee an increasing focus of attosecond science on polar molecules which offer some of the most intriguing effects. These include charge migration [7–9] and the study of field-induced effects on electronic structure and dynamics because the coupling of the laser field with the permanent dipole moment of a polar molecule occurs in first order. Finally, the extension of attosecond streaking [10, 11], RABITT (reconstruction of attosecond bursts by two-photon transitions) [12, 13] and tunneling techniques [14, 15] to polar molecules could reveal fundamentally new physical insights into molecular-frame photoemission or tunneling delays. All of the above-mentioned applications will only be possible if the molecules can be strongly oriented.

Other time-resolved techniques have already greatly benefited from aligning molecules in space [16]: Measurements of photoelectron angular distributions of fixed-in-space CS₂ molecules revealed new insights into their vibronic dynamics [17]. Electron rescattering from aligned molecules provided information on the geometric structure of the investigated system [18, 19] and high-harmonic spectroscopy (HHS) of aligned molecules allowed the retrieval of electronic-structure information [20–23] and multi-electron effects [24–29] from the measured spectra. Recently, the measurement of valence-shell electronic wave packets in aligned molecules has been demonstrated [9]. Applying these techniques to the general case of polar molecules will greatly enhance the scope of these methods. However, molecular orientation has remained a much greater challenge than molecular alignment. Early brute-force approaches of molecular orientation relied on the interaction of a dc field with a permanent molecular dipole moment [30] and were restricted to molecules with a large dipole moment. Subsequently, combinations of electrostatic fields and pulsed non-resonant fields were developed [31]. Further pertinent studies of molecular orientation include laser-field-free molecular orientation through the combination of a rapidly turned-off laser field and an electrostatic field [32]. The highest degrees of orientation reached so far have been achieved by aligning quantum-state selected molecules in combination with a weak dc field, either by adiabatic [33, 34] or impulsive [36] techniques. The use of non-resonant two-color laser fields [35, 37, 38] showed a further promising route to molecular orientation, as it can be implemented in an all-optical setup without the need for additional electric fields or lossy state-selection stages. Nevertheless, the presence of an electric field in the form of a nanosecond laser pulse was a limitation, until the two-color scheme could be successfully applied in an impulsive orientation experiment without the need of any additional fields [39]. The major limitation in the latter approach was the low degree of orientation. Nevertheless, as neither state-selection nor external electric fields were necessary, two-color orientation enabled the first HHS-studies of oriented molecules [40, 41]. A recent analysis showed that impulsive two-color orientation follows...
an ionization-depletion mechanism [42] resulting from the angular asymmetry of the strong-field ionization rates of polar molecules - very much like “Lochfrass”-induced vibrational dynamics [43] - rather than an interaction of the laser electric field with the molecular hyperpolarizability [31].

The requirements for making molecular orientation broadly applicable to attosecond and high-harmonic spectroscopies can be summarized as follows: i) high target densities are needed (typically \(\geq 10^{15} \) cm\(^{-3} \)) owing to the weakness of attosecond pulses or the low efficiency of high-harmonic generation, respectively, ii) external fields are undesirable because of their effect on the dynamics of the system or on the angular distributions of emitted photoelectrons and iii) ionization of a large fraction of the sample (as in [40, 41]) is incompatible with the detection of charged particles and negatively impacts phase matching of the high-harmonic radiation. These three conditions were (to our knowledge) not met by any technique of molecular orientation reported prior to Ref. [44].

Here, we provide further details on this new scheme for molecular orientation [44] and extend it to OCS molecules. Our approach relies on the interaction of a one-color and a delayed two-color non-resonant femtosecond laser pulses with the molecular sample. This technique fulfills all three conditions listed above and improves the highest previously obtained degrees of field-free orientation by a factor of 3-4, reaching the level achievable by state-selection techniques. We implement the approach proposed in [45, 46] and optimize molecular orientation through quantum control of the odd- and even-\(J \) (rotational angular momentum quantum number) contributions to the rotational dynamics. We show through calculations that the present scheme creates orientation solely through the hyperpolarizability interaction as opposed to an ionization-depletion mechanism [42]. We probe the oriented rotational wave-packet dynamics by HHS which allows us to quantify the degree of orientation. Finally, we show how the high-harmonic spectra of oriented molecules can be simulated and used to retrieve electronic structure information, preparing the ground for the reconstruction of attosecond charge migration in polar molecules [7–9]. The progress in orientation and the subsequent analysis allow us to identify a shape resonance in the even-harmonic spectrum of CO and to reveal the influence of a sub-cycle Stark effect, which is a general phenomenon of polar molecules in strong laser fields.

This article is organized as follows: Section 2 gives a detailed description of the experimental setup for two-pulse orientation. In section 3 we describe the theoretical model for both calculating the oriented rotational wave packet dynamics and for modelling the high-harmonic spectra. Section 4 presents the results on the orientation of carbon monoxide and carbonyl sulfide and section 5 contains the conclusions of this article.
2. Experimental Setup

Experimentally, the investigated molecules are first exposed to a non-resonant 800 nm laser pulse, subsequently oriented by a two-color 800 nm + 400 nm laser pulse and finally probed by HHG as depicted in Fig. 1. We refer to the maximum of the one-color pump-pulse envelope as \(t_{p1} \), that of the two-color pump pulse as \(t_{p2} \) and that of the high-harmonic-generation probe pulse as \(t_{HHG} \). We call the delay between the two pump pulses \(\Delta t_1 = t_{p2} - t_{p1} \), the delay between the two-color pump pulse and the probe pulse \(\Delta t_2 = t_{HHG} - t_{p2} \) and the delay between the one-color pump pulse and the probe pulse \(\Delta t_{tot} = t_{HHG} - t_{p1} \). We use an amplified femtosecond titanium:sapphire laser system providing pulses centered at 800 nm with 8 mJ energy, 30 fs pulse duration and 1 kHz repetition rate. The two-color laser pulse is generated in a 300 \(\mu \)m BBO crystal for frequency doubling tuned to a conversion efficiency of 25% in intensity, subsequently sent through two pieces of calcite (0.6 mm and 0.75 mm) for compensating the group and phase delays between the two colors and finally through a zero-order half-wave plate at 800 nm (acting as full-wave plate at 400 nm), which rotates the polarization of the 800 nm field into the polarization plane of the 400 nm field. The group and phase delay between the fundamental frequency and the second harmonic of the two-color field are controlled by rotating one of the two calcite plates with a motorized rotation mount. The beam from which the one- and the two-color pump pulses are generated propagates over a motorized and computer-controlled translation stage before being divided by a 50/50 beam splitter. We thus control both the one-color-pump-to-probe delay \(\Delta t_{tot} \) and the two-color-pump-to-probe delay \(\Delta t_2 \) with a single translation stage while leaving the delay \(\Delta t_1 \) between the two pump pulses constant. After the beam splitter the one-color alignment pulse propagates along another motorized and computer-controlled translation stage, which allows control over the delay \(\Delta t_1 \) between the two pump pulses. The three beams are aligned parallel to each other and are non-collinearly focused into a gas target by a spherical mirror (f=50 cm) with the two pump beams being vertically displaced by ±7 mm relative to the HHG beam.

The gas target is a molecular beam generated by expansion of the CO (neat) or OCS (10%, diluted in He) through a 500 \(\mu \)m diameter conical nozzle operated at 100
Hz with a backing pressure of 10 bar. The gas jet is intersected by the laser beams approximately 10 mm downstream of the nozzle to achieve the best possible cooling while at the same time preserving a sufficiently high particle density ($\sim 10^{17}$cm$^{-3}$) for high-harmonic generation and preventing the molecules from clustering. The peak intensities of the three pulses at their common focal point are estimated to be $5 \pm 1 \times 10^{13}$ W/cm2 for the one-color pump pulse, $6 \pm 1 \times 10^{13}$ W/cm2 for the two-color pump pulse and $2.2 \pm 0.1 \times 10^{14}$ W/cm2 for the HHG probe pulse in the case of CO. For OCS lower intensities were chosen due to the lower ionization potential: $2 \pm 1 \times 10^{13}$ W/cm2 for the one-color pump pulse, $4 \pm 1 \times 10^{13}$ W/cm2 for the two-color pump pulse and $1.3 \pm 0.1 \times 10^{14}$ W/cm2 for the HHG probe pulse. The high harmonics generated by the probe beam are spectrally dispersed in an XUV spectrometer consisting of a 250 μm wide entrance slit, a concave aberration-corrected grating (Shimadzu, 30-002) and a micro-channel-plate detector backed with a phosphor screen. A charge-coupled device camera records the spectral images and transfers them to a computer for further data processing.

3. Theory

3.1. Oriented rotational wave packets

We calculate the rotational wave-packet dynamics by solving the time-dependent Schrödinger equation (TDSE). The total Hamiltonian is separable into a time-independent part \hat{H}_0, which is approximated by the kinetic-energy operator of a rigid rotor, and a time-dependent part describing the cycle-averaged interaction of the laser fields with the molecule. The laser fields of the prealignment pulse $\varepsilon_1(t)$ and the two-color orientation pulse $\varepsilon_2(t)$ are (atomic units are used throughout this section):

$$\varepsilon_1(t) = G_1(t) \cos(\omega t)$$
$$\varepsilon_2(t) = G_2(t)(\cos(\omega t) + \gamma \cos(2\omega t)),$$

where $G_i(t)$ are the envelopes of the pulses centered at $t = 0$ and $t = \Delta t_1$ respectively, ω is the angular frequency of the fundamental laser field and γ is the ratio of the field strengths of the ω- and 2ω-components of the two-color field. The cycle-averaged coupling of the electric field to the polarizability anisotropy $\Delta \alpha$ of a linear molecule is expressed by the potential term

$$\hat{V}_{pol}(t) = -\frac{1}{4} G^2(t)(\Delta \alpha \cos^2 \theta + \alpha_\perp),$$

where the action of the one-color pump pulse $G_1(t)$ and the two-color pulse $G_2(t)$ are evaluated sequentially. α_\perp is the component of the polarizability tensor perpendicular to the molecular axis and θ is the angle between the molecular axis and the polarization axis of the laser field.

The effect of the asymmetry of the laser field is incorporated in the cycle-averaged hyperpolarizability interaction (contributing to orientation), which represents
Two-pulse orientation probed by high-harmonic spectroscopy

the coupling of the laser field to the hyperpolarizability tensor β:

$$\hat{V}_{\text{hyp}}(t) = -\frac{1}{8}\gamma G_2^3(t)[(\beta_{zzz} - 3\beta_{xxz}) \cos^3 \theta + 3\beta_{xxz} \cos \theta],$$

(3)

where β_{zzz} and β_{xxz} are components of the hyperpolarizability tensor. The ionization-depletion interaction is incorporated as a loss channel by means of an imaginary potential term [42]

$$\hat{V}_{\text{ion}}(t) = -\frac{i}{2} \Gamma(\theta, t),$$

(4)

which is approximately separable into an angle- and a time-dependent part

$$\Gamma(\theta, t) = \Gamma(\theta) K(t).$$

(5)

$\Gamma(\theta)$ denotes the angular variation of the ionization rate. $K(t)$ denotes the time-dependence of the ionization rate, which is

$$K(t) = \exp\left(\frac{2}{3}(2I_p)^{3/2}(|\varepsilon(t)|^{-1} - |E_{\text{ref}}|^{-1})\right),$$

(6)

where the effect of $\varepsilon_1(t)$ and $\varepsilon_2(t)$ is again evaluated sequentially. E_{ref} denotes the electric-field strength at which $\Gamma(\theta)$ was calculated. The wave function $\Phi_{J_0M_0}(t)$ prepared by the interaction of the laser pulse with the molecule in a pure initial state corresponding to the rotational angular momentum quantum number J_0 and its projection quantum number M_0 on a space-fixed axis defined by the polarization of the laser field can be expanded in the linear rigid rotor basis

$$|\Phi_{J_0M_0}(t)\rangle = \sum_J C_{J_0M_0J}(t) |JM\rangle.$$

(7)

The rigid rotor basis $\langle \theta, \phi|JM \rangle = Y^M_J(\theta, \phi)$ is represented by spherical harmonics with θ and ϕ being the spherical-angle coordinates describing the spatial orientation of the molecular axis. Averaging over the thermal ensemble is performed by writing the density matrix of the system as a sum over the pure states evolved from the initially populated levels

$$\rho(t) = \sum_{J_0M_0} p_{J_0} |\Phi_{J_0M_0}(t)\rangle \langle \Phi_{J_0M_0}(t)|,$$

(8)

where the factor $p_{J_0} = (2J_0 + 1) \exp\left(-\frac{E_{J_0}}{k_B T}\right)/Q$ accounts for the initial thermal population, $E_{J_0} = BJ_0(J_0 + 1)$ are the eigenenergies of the system, T is the temperature, Q the rotational partition function and k_B the Boltzmann constant. The resulting TDSE consists of a system of coupled ordinary differential equations and is solved for each value of $C_{J_0M_0}$ in a J-basis up to J=24 employing a fourth order Runge-Kutta method. Subsequently, thermal averaging is performed over all significantly populated states (we chose all states which contribute 0.01% or more to the total population).

The calculations on CO used the strong-field-ionization rate given in [42], which was calculated with the time-dependent mixed orbital and grid method [47] in the single-channel approximation. For OCS the strong-field-ionization rate was obtained within
the weak-field asymptotic theory (WFAT) [48, 49] and taken from [50]. Within the WFAT, the ionization rate is decomposed into a sum of weighted structure factors $G^{n\epsilon m}$ representing ionization channels with different parabolic quantum numbers n_{ϵ} and m. We used the structure factors G^{00} and G^{01} as given in Ref. [50].

Table 1. Molecular parameters for CO

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_p</td>
<td>14.014 eV</td>
<td>β_{xx}</td>
<td>7.96 a.u. [52]</td>
</tr>
<tr>
<td>B</td>
<td>1.93128 cm$^{-1}$</td>
<td>β_{zz}</td>
<td>28.91 a.u. [52]</td>
</tr>
<tr>
<td>$\Delta\alpha$</td>
<td>3.594 a.u. [52]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Molecular parameters for OCS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_p</td>
<td>11.185 eV</td>
<td>β_{xx}</td>
<td>-59.1 a.u.[54]</td>
</tr>
<tr>
<td>B</td>
<td>0.203 cm$^{-1}$</td>
<td>β_{zz}</td>
<td>-45.0 a.u. [54]</td>
</tr>
<tr>
<td>$\Delta\alpha$</td>
<td>27.15 a.u. [54]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2. High-harmonic generation from oriented molecules

We calculate the high-harmonic spectra of linear molecules by factorizing the high-harmonic emission dipole in the frequency domain into the contributions from strong-field ionization with the rate $I_{\text{ion}}(\theta)$, propagation with the amplitude a_{prop}, and the photorecombination dipole $d_{\text{rec}}(\Omega, \theta)$. This product is coherently averaged over the molecular axis distribution $A(\theta)$:

$$d(\Omega) \propto \int_{\theta=0}^{\pi} A(\theta) \sqrt{I_{\text{ion}}(\theta)} a_{\text{prop}}(\Omega, \theta) d_{\text{rec}}(\Omega, \theta) \sin \theta d\theta.$$ (9)

The strong-field ionization rate $I_{\text{ion}}(\theta)$ is taken from the literature as discussed in the previous section. Ω is the angular frequency of the emitted high-harmonic radiation. The contribution from the propagation step a_{prop} is calculated in the strong-field approximation [55] with an additional, alignment-dependent phase factor arising from the Stark effect [56, 57]

$$\phi_{\text{Stark}}(\theta) = \mu \frac{E_0}{\omega} \cos \theta (\sin(\omega t_r) - \sin(\omega t_i)),$$ (10)

where t_r and t_i are the recombination and ionization times of the continuum electron at a given photon energy, which can be calculated within the three-step model [58] and μ is the permanent dipole moment of the ionized orbital. In evaluating Eq. (10), care must be taken to define μ and the coordinates of the electron in a consistent coordinate system. The photorecombination dipole moments for CO were calculated
Two-pulse orientation probed by high-harmonic spectroscopy

with epolyscat [59, 60] from single-hole configurations of the neutral molecule for the experimental bond length with a correlation-consistent polarized valence-triple-zeta (cc-pVTZ) basis set.

We now describe the calculation of high-harmonic spectra of an oriented sample, as it was first done in Ref. [40], and start by investigating the generation mechanism of the even and odd harmonic orders. Orientation breaks the inversion symmetry of the investigated molecular ensemble and therefore increases the periodicity of the high-harmonic generation process from half an optical cycle to a full cycle. In two consecutive half cycles of the laser field, different high-harmonic emissions therefore occur and interfere, giving rise to both even and odd harmonics, as illustrated in Fig. 2(a). The electric field $E(\Omega)$ of the emission from two adjacent half cycles, normalized to one half cycle, is

$$E(\Omega) = \frac{1}{2} (d_1(\Omega) - d_2(\Omega) \exp(-i\Omega T/2)),$$

where the minus sign is a consequence of the odd symmetry of the dipole operator and the phase factor $\exp(-i\Omega T/2)$ accounts for the emission delay of half a period ($T = 2\pi/\omega$) at a given photon angular frequency $\Omega = q\omega$ for the harmonic order q. For the odd and even harmonics we thus obtain

$$E_{\text{odd}}(\Omega) = \frac{1}{2} (d_1(\Omega) + d_2(\Omega))$$

$$E_{\text{even}}(\Omega) = \frac{1}{2} (d_1(\Omega) - d_2(\Omega)).$$

The odd harmonics thus correspond to the sum of electric fields emitted in adjacent half cycles, while the even harmonics correspond to their difference [40, 41, 61].

This mechanism was experimentally demonstrated in [40] by varying the delay between the ω- and 2ω-components of the two-color orientation pulse, thus modifying the asymmetry of the laser electric field which is responsible for the orientation. The integrated harmonic intensity was measured as function of the two-color delay for a pump-probe delay corresponding to maximal orientation. The even-harmonic emission was found to be perfectly controlled through the two-color delay (Fig. 2(c)), meaning that no even harmonic emission is observed for a symmetric electric field while it is maximized for a maximal asymmetry of the field. In contrast, the intensity of the odd harmonics (shown for harmonic 9, panel (b)) remains unchanged when the two-color delay is varied. Hence an oriented system constitutes a molecular interferometer for the harmonic emission of the two different sides of the electron recombination and thus provides side-sensitivity to HHS. This description holds for multi-cycle fields, but naturally breaks down for few- to single-cycle fields, where the harmonic structure of the spectrum is lost. In this case, spectra for recombination from a single side of the molecule could be obtained, provided the molecule is strongly oriented. The present work opens such perspectives.

Transferring this information to a partially aligned and oriented sample, we conclude that the emission from those half cycles where the electron excursion takes
Figure 2. Illustration of high-harmonic generation from oriented molecules. (a) Harmonic emission in adjacent half cycles from oriented molecules leads to the emission of different electric fields due to the different recollision sides. (b) Absence of modulation of the 9th harmonic order as function of the two-color delay (c) Modulation of the 10th harmonic order as function of the two-color delay. The data in (b) and (c) is taken from Ref. [40]. (d) Schematic representation of the electric field of the two-color pump pulse for three exemplary two-color delays assuming $\gamma = 1$. (e) Definition of the axis system, the reference axis being either the polarization of the orientation pulse or that of the HHG pulse.

A simple change of variables ($\theta' = \pi - \theta$) in Eq. (15) leads to

$$d_2(\Omega) \propto \int_{\theta' = 0}^{\pi} A(\pi - \theta') \sqrt{I_{\text{ion}}(\theta')} a_{\text{prop}}(\Omega, \theta') d_{\text{rec}}(\Omega, \theta') \sin \theta' \, d\theta'.$$

(16)
As a consequence, the odd-harmonic emission (Eq. (12)) is predicted by using Eq. (9) with a symmetrized axis distribution

\[A_{\text{odd}}(\theta) = \frac{1}{2} (A(\theta) + A(\pi - \theta)) , \]

whereas the even-harmonic emission (Eq. (13)) is calculated accordingly with an anti-symmetrized axis distribution

\[A_{\text{even}}(\theta) = \frac{1}{2} (A(\theta) - A(\pi - \theta)) . \]

We note that \(A_{\text{even}} \) can adopt negative values which account for the negative sign appearing in Eq. (13).

Accurate calculations of oriented axis distributions \(A(\theta) = A_{\text{ori}}(\theta) \) currently represent a significant challenge, because orientation is in general the result of a complex interplay of ionization-depletion [42] and hyperpolarizability [31] interactions. The contribution of the ionization-depletion mechanism is particularly challenging to model because the calculation of strong-field ionization rates of polar molecules is an active field of research with results that differ qualitatively, e.g. for CO molecules [42, 49, 62, 63].

In the present article, as in Ref. [40], we therefore only rely on calculating aligned axis distributions \(A_{\text{ali}} \) and circumvent the necessity of calculating \(A_{\text{ori}} \) in the following way. We solve the TDSE including only the polarizability interaction (Eq. (2)) and extract an aligned axis distribution \(A_{\text{ali}}(\theta) \) that we parameterize as follows [64]

\[A_{\text{ali}}(\theta) = N \left(1 + a / \sqrt{\cos^2 \theta + b^2 \sin^2 \theta} \right) , \]

where \(a \) and \(b \) are parameters that are adjusted to reproduce the calculated axis distribution and \(N \) is a normalization constant. The axis distributions that we use to calculate even and odd harmonic spectra within this simplified framework are thus

\[A_{\text{even}}(\theta) = A_{\text{ali}}(\theta) \eta \text{sgn}(\pi/2 - \theta) , \]
\[A_{\text{odd}}(\theta) = A_{\text{ali}}(\theta) , \]

where the degree of orientation \(\eta \) is determined by comparing the measured and calculated high-harmonic spectra in a single parameter fit, as was done in Ref. [40]. The degree of orientation obtained in this way is defined as \(\eta = (N_{\text{up}} - N_{\text{down}}) / (N_{\text{up}} + N_{\text{down}}) \) \((N_{\text{up}} \text{ and } N_{\text{down}} \text{ denote the number of molecules pointing up or down along the pump-pulse polarization, respectively)}\). Another commonly used measure for the degree of orientation (see e.g. Ref. [33]) is \(\zeta = N_{\text{up}} / (N_{\text{up}} + N_{\text{down}}) \). The relation between the two is \(\zeta = (\eta + 1) / 2 \).

4. Results

4.1. Oriented wave-packet dynamics

Figure 3 compares high-harmonic spectra of oriented CO molecules obtained either by the two-pulse scheme described in Section 2 (panel a) or by a one-pulse scheme
Figure 3. High-harmonic spectra of oriented CO molecules. (a) Spectrum of CO oriented with the two-pulse scheme. (b) Spectrum of CO obtained with the one-pulse orientation scheme. The even harmonic emission is weaker by a factor of ~ 9 compared to panel a. (c) Calculated time evolution of $\langle \cos \theta \rangle$ (upper panel) and $\langle \cos \theta \rangle^2$ (lower panel) for the two-pulse scheme. (d) Measured integrated intensity of the 18th harmonic order as function of the two-color-pump-to-probe delay Δt_2 for the two-pulse scheme. The figure is adapted from Ref. [44].

in which the prealignment pulse was omitted (panel b). Besides the appearance of the commonly-observed odd harmonic orders, even harmonic emission is observed in both spectra because the molecular orientation breaks the inversion symmetry of the molecular ensemble. The even-harmonic orders emitted after orientation with the two-pulse scheme are significantly enhanced (approximately by a factor of 9) compared to the one-pulse scheme. Thus, the molecular orientation in the two-pulse scheme is dramatically enhanced as compared to the one-pulse scheme. In the two-pulse scheme the delay Δt_1 between the one- and two-color pump pulses was set to 2.25 ps (corresponding to $0.26 T_{\text{rot}}$) and the high-harmonic spectrum was recorded with a delay of $\Delta t_2 = 3.90$ ps (corresponding to $0.45 T_{\text{rot}}$) [44]. In the one-pulse scheme the orientation was probed at a delay of 8.85 ps (corresponding to $1.03 T_{\text{rot}}$). Apart from the
Figure 4. Illustration of the concepts of two-pulse orientation by calculated values of alignment and orientation parameters for CO. (a) Calculated evolution of the odd- and even-J contributions to the oriented wave packet dynamics and their sum measured by $\langle \cos \theta \rangle$. Although no net orientation is obtained, the odd- and even-J contributions show the strongest orientation at the rotational half revival (around 4.3 ps). (b) Calculated time evolution for the odd- and even-J contributions to the aligned wave packet dynamics and their sum measured by $\langle \cos^2 \theta \rangle$. The odd-J contributions align at the rotational quarter revival (2.15 ps) and can thus be oriented more strongly than the even-J contributions when the two-color pump pulse is delayed by $T_{rot}/4$ with respect to the one-color pump, resulting in enhanced net orientation. The figure is adapted from Ref. [44].

different delays, the remaining experimental parameters were the same for the spectra shown in Figs. 3(a) and 3(b), i.e. they were recorded using the same intensities for the two-color pump and probe pulses and for the same backing pressures and further settings determining the cooling of the sample. The weak features observed between the even and odd harmonics arise from the second order of the spectrometer grating (e.g. the two small peaks symmetrically arranged around H11 in panel b) or a background caused by the non-collinear pump pulses although care was taken to minimize this contribution.

We now turn to the evolution of the even-harmonic intensities as function of Δt_2 for the two-pulse scheme. The calculated expectation values of $\langle \cos \theta \rangle$ and $\langle \cos^2 \theta \rangle$ are shown in the upper and lower panels of Fig. 3(c), respectively. The measured time evolution of the integrated intensity of the 18th harmonic order (27.9 eV) normalized to the next higher odd harmonic order (harmonic 19, 29.4 eV) is shown in Fig. 3(d). The normalized intensity reaches a value close to 0.9, reflecting the fact that H18 is nearly as intense as H19. The temporal evolution of H18 reveals two main maxima separated by approximately 1 ps. These two maxima arise from a global maximum and
Two-pulse orientation probed by high-harmonic spectroscopy

a global minimum in the time evolution of $\langle \cos \theta \rangle$ (see upper panel of Fig. 3(c)) and thus correspond to the two possible orientations of the molecule. This property makes the present two-pulse scheme for molecular orientation attractive for all molecular-side-resolved experiments, as both possible orientations of the molecule are available within a simple delay scan without the need for rotating the polarization of the pump or the probe pulse. The time evolution of the even harmonic emission is well represented by $\langle \cos \theta \rangle^2$ (lower panel of Fig. 3(c)). Besides the relative strength and separation of the two main maxima, the calculation even reproduces the appearance of a small maximum around 4.4 ps, to which we return below. The maximal degree of orientation predicted by the calculation shown in Fig. 3(c) amounts to $\langle \cos \theta \rangle = 0.38$ ($\zeta = 0.73$). We point out that the analysis of the high-harmonic spectra in Section 4.3 yields a slightly higher value of the orientation parameter ($\zeta = 0.82$).

The unusual property that orientation can be obtained at the rotational half revival rather than at the full revival can be understood by analyzing the contributions from odd and even rotational states to the observed wave packet dynamics, which is illustrated in Fig. 4. The interaction of a two-color laser pulse with a molecule creates a rotational wave packet that shows net orientation (measured by $\langle \cos \theta \rangle$) only at the full rotational revival (Fig. 4(a)). Nevertheless, the isolated contributions from the odd- and even-J (rotational quantum number) contributions to the wave-packet dynamics show the most pronounced orientation at the rotational half revival, but modulate out of phase and thus give rise to zero net orientation. Thus enhanced orientation can be obtained by suppressing the one of the two contributions at the half revival. This is achieved by a one-color pulse, which precedes the two-color pulse by a quarter of a rotational period. The one-color laser pulse causes the odd- and even-J contributions to $\langle \cos^2 \theta \rangle$ to modulate out of phase at the rotational quarter revival. The application of a two-color pulse at this delay mainly orients the prealigned odd contributions to the wave packet dynamics and thus creates enhanced net orientation at the rotational half revivals [45, 46]. By slightly detuning Δt_1 from $T_{\text{rot}}/4$, it is possible to modify the odd- and even-J contributions to $\langle \cos \theta \rangle$, which can further enhance the net orientation. This aspect is experimentally investigated in the next paragraphs.

We study the observed revival structures as function of the two delays Δt_1 and Δt_{tot}. Figure 5 summarizes the results in terms of both the alignment dynamics probed by an odd harmonic order (harmonic 9, 13.9 eV, Fig. 5(a)) and the orientation dynamics probed by an even harmonic order (harmonic 16, 24.8 eV, Fig. 5(b)). We first discuss the alignment dynamics (Fig. 5(a)). The signal modulation as function of Δt_{tot} shows a maximum followed by a minimum for all Δt_1 and thus qualitatively follows the modulation of $\langle \cos^2 \theta \rangle$ at the rotational half revival, where alignment precedes anti-alignment. The maximum and minimum of harmonic emission shift linearly on the Δt_{tot} axis with increasing Δt_1. This behavior shows that the observed alignment is dominated by the two-color pump pulse and thus occurs for constant Δt_2.

We now discuss the orientation dynamics (Fig. 5(b)). Two main maxima are observed in the even harmonic emission as a function of Δt_{tot}. The two maxima approach
Figure 5. Three dimensional revival maps as function of the delay between the two pump pulses \(\Delta t_1 \) and as function of the delay between the one-color pump pulse and the probe pulse \(\Delta t_{tot} \). (a) Revival map of the 9th harmonic order reflecting the alignment dynamics. (b) Revival map of the 16th harmonic order reflecting the orientation dynamics. (c)-(e) calculations of the orientation dynamics decomposed into the odd- and even-\(J \) contributions and their sum (upper panels) and plots of \(\langle \cos \theta \rangle^2 \) (lower panels) for three different delays \(\Delta t_1 \) between the two pump pulses. The delays \(\Delta t_1 \) for which calculations were carried out in panels (d) and (e) are marked by white dashed lines in panel (b).

Each other for decreasing delays \(\Delta t_1 \). The separation of the two maxima decreases from \(> 1 \) ps separation at \(\Delta t_1 = 2.25 \) ps to \(0.5 \) ps separation at \(\Delta t_1 = 2.0 \) ps. For \(\Delta t_1 = 2.0 \) ps and less a third local maximum in the even harmonic emission at earlier \(\Delta t_{tot} \) arises. The strongest even harmonic emission as function of \(\Delta t_{tot} \) is observed for \(\Delta t_1 = 2.255 \) ps.

These features can be explained by analyzing the contributions from even and odd rotational levels to the observed wave-packet dynamics at different delays \(\Delta t_1 \) as shown in Fig. 5(c) - (e). Generally, the present two-pulse scheme tends to suppress the even-\(J \) contributions to the oriented wave-packet dynamics because these contributions are anti-aligned around the quarter revival (see also Fig. 4(b)). However, the residual orientation of the even-\(J \) contributions to the wave-packet dynamics still interferes destructively with the enhanced odd-\(J \) contributions. By precisely tuning \(\Delta t_1 \), we can control the magnitude of the even-\(J \) contributions to \(\langle \cos \theta \rangle \), tune their timing and thus control the interference between odd- and even-\(J \) contributions. The analysis for \(\Delta t_1 = 1.86 \) ps \(< T_{rot}/4 \) is shown in the upper panel of Fig. 5(c) decomposed in the odd-\(J \) (green dotted-dashed line) and even-\(J \) contributions (red dashed line) and their sum (solid blue line). The even-\(J \) contributions are only weakly suppressed and thus still interfere destructively with the odd-\(J \) contributions. However, the odd-\(J \)
Two-pulse orientation probed by high-harmonic spectroscopy

Dynamics, which interfere destructively with the odd-J contributions to the oriented wave-packet pre- and post-orientation revivals of the odd-J contributions are strongly suppressed which results in strong orientation close to the delays where the even- and odd-J contributions have their global maxima and minima, respectively. Therefore, the two maxima of the even-harmonic emission are much closer in time (lower panel of Fig. 5(d)). For $\Delta t_1 > T_{rot}/4$ (Fig. 5(e), $\Delta t_1 = 2.25$ ps) the odd- and even-J contributions have again similar weights, but the pre- and post-orientation revivals of the odd-J contributions can interfere constructively with the falling and rising flanks of the even-J contributions, respectively. This gives rise to the strongest net orientation for the present parameters which were not optimized with respect to the degree of orientation. Similarly as for small Δt_1, the emission maxima are separated by a longer delay (approximately 1.3 ps) compared to $\Delta t_1 \approx T_{rot}/4$ because the maximum net orientation is obtained before and after the global extrema of the isolated odd- and even-J contributions to the orientation dynamics. This simulation also correctly predicts the small local maximum around $\Delta t_{tot} = 6.65$ ps (corresponding to $\Delta t_2 = 4.4$ ps), which was observed experimentally in Fig. 3(d). This maximum arises from the global maximum of the even-J contributions to the oriented wave-packet dynamics, which interfere destructively with the odd-J contributions. The major part of the net orientation is thus extinguished and only a small fraction survives, giving rise to the weak even-harmonic emission between the two main maxima.

![Graphs](image-url)
Two-pulse orientation probed by high-harmonic spectroscopy

Figure 7. Mechanisms of field-free molecular orientation illustrated for OCS with a delay Δt_1 between the two pump pulses of 20.68 ps. (a) Time-evolution of $\langle \cos \theta \rangle^2$ for both mechanisms active and for the hyperpolarizability interaction only. (b) Time-evolution of $\langle \cos \theta \rangle^2$ for both mechanisms active and for the ionization-depletion mechanism only. It is clearly recognizable that the hyperpolarizability interaction is almost exclusively responsible for orientation with the two-pulse scheme.

We now turn to the high-harmonic spectroscopy of OCS oriented with the two-pulse scheme. The rotational revival structures for the even harmonics at different pump delays Δt_1 are shown in Figs. 6(b) - (c) and a representative revival structure for an odd harmonic order is displayed in Fig. 6(a). The corresponding calculations of $\langle \cos^2 \theta \rangle$ and $\langle \cos \theta \rangle^2$ are shown in Figs. 6(d) - (f).

The revival of the odd harmonic order (harmonic 9, 13.9 eV) modulates in opposition to $\langle \cos^2 \theta \rangle$. This is a consequence of the π-symmetry of the HOMO (highest occupied molecular orbital), which causes the photorecombination dipole moment to maximize around an alignment angle of 100° [40] causing the signal to maximize when the molecules are anti-aligned. The even-harmonic modulations follow a similar pattern as for CO. For $\Delta t_1 = 21.01$ ps (Figs. 6(c) and (f)), we again find two clearly separated maxima, which correspond to the two possible orientations of OCS as previously discussed and shown in Fig. 3(c). The separation of the maxima amounts to 2.8 ps which is reproduced by the calculations (Fig. 6(f)). For shorter delays ($\Delta t_1 = 20.68$ ps) the maxima in the even harmonic intensity approach each other (Fig. 6(b)). This trend is adequately reproduced by the calculations of $\langle \cos \theta \rangle^2$ in the panel e) for $\Delta t_1 = 20.68$ ps. However, the experimental data do not show the additional local maxima around delays Δt_2 of 39 ps, 42.8 ps and 43.7 ps that are predicted by the calculations shown in panel e). As in the case of the two-pulse orientation studies as function of Δt_1 and Δt_{tot} for CO (Fig. 5), the time evolution of $\langle \cos \theta \rangle^2$, which determines the even-harmonic emission, is controlled and can be rationalized by the interference of odd and even J-contributions which can be manipulated by tuning Δt_1.
4.2. Mechanism of two-pulse orientation

We now analyze which mechanism is dominant in creating orientation by the two-pulse scheme: An interaction of the laser electric field with the hyperpolarizability of the molecule [31] or an ionization-depletion mechanism [42]. As described above, we model the evolution of $\langle \cos \theta \rangle^2$ by solving the TDSE for the coefficients $C_{J_0 M_0}$ and selectively include a potential term in the interaction Hamiltonian describing the hyperpolarizability interaction of the molecule with the laser field (Eq. (3)), the interaction term accounting for the ionization depletion of the sample (Eq. (4)), or both. This allows us to identify the mechanism which is mainly responsible for orientation in the two-pulse scheme. Previous investigations of the one-pulse scheme led to the conclusion that one-pulse two-color orientation mainly creates orientation via ionization depletion of molecules in the neutral ground state [41, 42]. In Fig. 7 the calculations of the two-pulse orientation of OCS for $\Delta t_1 = 20.68$ ps (Fig. 6(h)) are decomposed into the contributions from the hyperpolarizability (dashed-dotted green line, panel a)) and the ionization depletion (dashed ocher line, panel b)) mechanism to the total orientation (solid violet line). Fig. 7(a) clearly shows that practically all orientation obtained at the rotational half-revival is due to the hyperpolarizability mechanism of orientation, whereas the ionization-depletion mechanism (Fig. 7(b)) has a negligible contribution. The same conclusion was reached in the case of CO as described in Ref. [44].

The reason that the ionization-depletion mechanism cannot be enhanced at the rotational half revival is that the contributions of the odd and even J-levels to the total rotational dynamics exhibit practically no orientation at the rotational half revival, which makes it impossible to obtain enhanced net orientation at the rotational half revival by the ionization depletion mechanism with the present two-pulse scheme.

Thus the present two-pulse scheme for field-free molecular orientation is the only presently known completely field-free technique, which creates macroscopic degrees of orientation without ionizing major parts of the sample. This makes it an ideal technique for all detection schemes which suffer from substantial ionization. Although the intensities used in the present study ionized a small fraction of the sample, the hyperpolarizability interaction scales with $\gamma E^3(t)$ in contrast to the exponential dependence of the ionization-depletion mechanism, which means that higher degrees of orientation can be reached with the hyperpolarizability mechanism at lower non-ionizing intensities. This is a crucial point whenever high particle densities are required, as it is the case for high-harmonic and attosecond spectroscopies, but also for coincidence techniques and other probing schemes which suffer from space-charge limitations.

4.3. High-harmonic spectroscopy of electronic structure

This section outlines a general approach to obtaining electronic-structure information and the degree of orientation from high-harmonic spectra of polar molecules. We start by calculating the odd-harmonic spectrum of an oriented ensemble of molecules according to Eq. (9) using the symmetrized axis distribution, according to Eq. (17). Subsequently,
the even-harmonic spectrum is predicted with an anti-symmetrized axis distribution
(Eq. (18)) that vanishes in the absence of orientation. The only unknown parameter in
this simplified approach is the degree of orientation \(\eta \) (or \(\zeta \)) as defined in section 3.2.

In this section, we focus on the high-harmonic spectra of CO (Fig. 3(a)). We
determine the degree of orientation in a first step. We then provide an explanation for
an observed intensity maximum in the even harmonic emission, which reflects a shape
resonance of the continuum electron encoded in the photorecombination dipole moment.

A first very rough estimate of the degree of orientation can be obtained from the
ratio of the even-harmonic intensities to the mean intensity of the two adjacent odd
harmonic orders [41]. When all molecule-specific quantities, such as ionization rates,
recombination dipole moments etc. are ignored, this ratio is proportional to the squared
degree of orientation \(\eta^2 \). In 2-pulse orientation experiments on CO, we obtain an average
value of \(I_{\text{even}}/I_{\text{odd}} = 0.44 \) for the harmonic orders 12-24 (18.6 eV - 37.2 eV), which gives
an estimate of \(\eta = 0.66 \), i.e. \(\zeta = 0.83 \). This improves the degree of field-free orientation
compared to its first demonstration [39] by a factor of \(\sim 15 \) and compared to previous
high-harmonic studies of oriented molecules [40, 65] by a factor of \(> 3 \).

A more reliable method to estimate the degree of orientation consists in simulating
the odd-harmonic spectrum according to Eq. (9) for an aligned axis distribution with
\(\langle \cos^2 \theta \rangle = 0.44 \). The resulting even-harmonic spectrum for \(\eta = 0.65 \) (i.e. \(\zeta = 0.82 \))
is shown in Fig. 8(a), which gives the best agreement with the observed experimental
intensities. We thus find a probably fortuitous agreement between the two methods in
the present case.

We now take a closer look at the spectral intensity profile of the emitted harmonics.
A maximum at harmonic 18 (27.9 eV) is visible in the even-harmonic emission. The
envelope of the odd harmonic spectrum does however not display any such feature and
monotonically decreases until the cutoff. To explain these spectral features, we first
consider the photorecombination dipole amplitudes shown in Fig. 8(b), which indeed
show a strong maximum between the 17th and 20th harmonic order. This maximum
reflects a shape resonance, which has been observed in partial photoionization cross
sections corresponding to the \(\chi \ 2\Sigma^+ \) state of CO\(^+\) at 23.6 eV [66].

The crucial question which now arises is why this maximum is only visible in the
even-harmonic emission, but not in the odd-harmonic spectrum. In order to answer
this question, it is important to realize that in contrast to photoelectron spectroscopy,
high-harmonic spectra are sensitive to the coherent average of emissions from molecules
aligned under different angles. This means that the angle-dependent dipole phases
arising from the angular anisotropy of the photorecombination dipole moment and the
contribution from the Stark effect play a crucial role.

The phase of the photorecombination dipole moment is displayed in Fig. 8(c) and
the Stark phase is shown in Fig. 8(d). An analytical expression for the Stark phase in the
frequency domain was given in Eq. (10) [57]. The Stark phase depends on the molecular
orientation with respect to the polarization of the laser field, the ionization potential and
the difference between the permanent dipole moments of the molecule in the relevant
Figure 8. Calculation of the high-harmonic spectra of oriented CO molecules. (a) Experimental and simulated intensity envelopes of the odd harmonic orders and of the even-to-odd ratio. The experimental error bars lie within the width of the markers. (b) Calculated amplitude of the photorecombination matrix elements as function of the alignment angle θ and harmonic order for an electron recombining from the positive side of the z axis shown in Fig. 2e. (c) Calculated phase of the photorecombination matrix elements. (d) Phase contribution from the Stark effect. (e) Sum of the phase contributions from the photorecombination matrix element and the Stark effect (Eq. (10)). (f) Phase difference between recombination from opposite sides of the molecule (0 and π rad) with and without the Stark-phase contribution. (g) Simulated even-to-odd ratio with and without the Stark phase contribution shown together with the experimental ratio. The error bars represent a 95% confidence interval with standard deviations estimated from the signal fluctuations of the isotropic sample.
Two-pulse orientation probed by high-harmonic spectroscopy

ionic and neutral states (i.e. the permanent dipole moment of the ionized orbital in the single-active-electron approximation). We plot the Stark phase as a function of the alignment angle and harmonic order in Fig. 8(d) for an intensity of 2.2×10^{14} W/cm2, a center wavelength of 800 nm and for a dipole moment of 1.1287 a.u. [56] of the HOMO (measured from the carbon to the oxygen end of the molecule). For the two possible parallel orientations of the molecule, the Stark phase varies by 1.5 rad in total magnitude as a function of the harmonic order. For intermediate angles, the phase variation is smaller. This additional phase contribution is added to the phase of the recombination dipole moment. The resulting total phase is shown in Fig. 8(e). The Stark phase visibly modifies the phase profile of the photorecombination matrix elements (Fig. 8(c)). Most importantly, the Stark phase contribution decreases the asymmetry of the phase of the photorecombination dipole moment. This aspect is illustrated in panel (f), where the difference between the phase of emission for recombination from the oxygen- vs. the carbon-side of the molecule is displayed. We show calculations including the Stark phase contribution (solid black line) and neglecting it (dashed-dotted magenta line). The phase difference between the two recollision sides is almost exactly π for harmonic orders 16 - 22 when the Stark phase is taken into account, whereas it sharply increases from π towards 2π over the same range when the Stark phase is neglected. We recall that a phase difference of π causes the even harmonics to interfere constructively according to Eq. (13), while the odd harmonics interfere destructively (Eq. (12)). This is precisely the reason, why the intensity envelope of the even harmonics reflects the shape resonance while that of the odd orders does not.

For the sake of comparison, the experimental even-to-odd ratio is shown in Fig. 8(g) together with the calculations including (solid red line) or neglecting (dashed-dotted green line) the Stark-phase contribution. While the calculation with the Stark-phase contribution adequately captures the position of the emission maximum and the general shape of the even-to-odd ratio, the calculation without the Stark phase predicts a maximum at too low photon energies (around harmonic 14 - 16) and shows a generally worse agreement with the experiment. The maximum occurs at too low photon energies without the Stark phase because the total phase difference already crosses π around harmonic 12 and thus causes a constructive interference at lower photon energies than experimentally observed. A more sophisticated model taking into account contributions from higher-lying excited states of the cation to the high-harmonic emission provides a more quantitative agreement between theory and experiment and will be published elsewhere.

These results show that high-harmonic spectra of polar molecules reveal additional details of electronic-structure information compared to non-polar molecules. The position where shape resonances or Cooper-type minima [21, 22, 27, 44, 67] appear in high-harmonic spectra of polar molecules are additionally affected by the Stark phase. Moreover, the resonances or minima may appear in the even-harmonic spectra, the odd-harmonic spectra or both and the position in the two types of spectra may in general differ. Consequently, by comparing such observables in HHS and photoionization...
Two-pulse orientation probed by high-harmonic spectroscopy

spectroscopies, new insights can be obtained into both phase and amplitude asymmetries in photoionization and photorecombination or additional laser-field-induced effects.

5. Conclusion

In this article, two-pulse orientation was established as a powerful method for orienting molecules at high densities in the absence of external fields. Two-pulse orientation provides the highest degrees of completely field-free orientation (82% of CO molecules pointing in the same direction) reported so far. We have explored the mechanisms creating orientation by this scheme and found that two-pulse orientation offers macroscopic degrees of field-free molecular orientation without ionizing major parts of the sample. We rationalized the oriented wave-packet dynamics by investigating the odd- and even-J contributions to the orientation dynamics and demonstrated control over the orientation dynamics by tuning the delay between the one-color alignment and the two-color orientation pulses. Finally, we demonstrated how the measured high-harmonic spectra can be simulated from first principles and how the degree of orientation can be estimated from the spectra. The calculations of the high-harmonic spectra of CO allowed us to relate an observed intensity maximum in the even-harmonic emission to a shape resonance which is absent from the odd-harmonic spectrum as a result of a sub-cycle Stark effect, generic in polar molecules.

Acknowledgments

We gratefully acknowledge funding from the Swiss National Science Foundation (PP00P2_128274) and ETH Zürich (ETH-33 10-3).
Two-pulse orientation probed by high-harmonic spectroscopy

References

Two-pulse orientation probed by high-harmonic spectroscopy

Two-pulse orientation probed by high-harmonic spectroscopy

