Averaging of nuclear modulation artefacts in RIDME experiments

Katharina Keller, Andrin Doll, Mian Qi, Adelheid Godt, Gunnar Jeschke, Maxim Yulikov

Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany

Abstract

The presence of artefacts due to Electron Spin Echo Envelope Modulation (ESEEM) complicates the analysis of dipolar evolution data in Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiments. Here we demonstrate that averaging over the two delay times in the refocused RIDME experiment allows for nearly quantitative removal of the ESEEM artefacts, resulting in potentially much better performance than the so far used methods. The analytical equations are presented and analyzed for the case of electron and nuclear spins $S = 1/2$, $I = 1/2$. The presented analysis is also relevant for Double Electron Electron Resonance (DEER) and Chirp-Induced Dipolar Modulation Enhancement (CIDME) techniques. The applicability of the ESEEM averaging approach is demonstrated on a Gd(III)-Gd(III) rigid ruler compound in deuterated frozen solution at Q band (35 GHz).

Keywords: RIDME, Q Band, electron spin envelope modulation suppression, EPR, paramagnetic metal ions, gadolinium

Site-specific distance measurements based on different types of pulse experiments in electron paramagnetic resonance (EPR) attract increasing interest in structural biology studies. [1–7] Pulse EPR provides the possibility of measuring long-distance constraints in the range between 2 and 10 nm, a range which is difficult to access by most other techniques. The approach that uses nitroxide radicals as spin labels and double electron-electron resonance (DEER) as the spectroscopic technique is currently the most popular one. [1, 3, 4, 7–10] However, a lot of effort has recently been invested to develop spin labels based on metal complexes, as well as trilateration approaches to determine positions of native transition metal centres in metallo-proteins. [6, 11–21] In this context metal ions, such as Fe(III), Cu(II), Co(II), Mn(II), or Gd(III), attract attention. Paramagnetic metal ion-based spin labels have spectroscopic properties significantly different from those of nitroxides and other organic radicals, which makes them useful in orthogonal labeling approaches. [21] Furthermore, they may be able to withstand the reducing cell environment as proven for Gd(III). [22, 23]

Most metal centres exhibit broad EPR spectra, which in combination with the limited bandwidths of EPR microwave pulses give rise to low modulation depths in DEER experiments, thus decreasing the sensitivity. The two main approaches solving this problem are based on increasing the bandwidth for flipping the second spin in the dipolarly coupled spin pair. In the first approach this is achieved by applying a broad-band pump pulse, generated by an ultrafast arbitrary waveform generator. [14, 24, 25] The second approach, which offers nearly infinite effective bandwidth of the coupling partner, utilizes the longitudinal Relaxation Induced Dipolar Modulation Enhancement (RIDME) technique. [26–33] Being a single frequency technique, RIDME imposes low requirements on the resonator profile and measurement setup. On the downside, the RIDME time traces have typically faster decaying intermolecular background, as compared to DEER, and, for high-spin metal centres, also contain contributions of dipolar frequency overtones. Importantly, and unfortunately for measurement of dipole-dipole interactions, the RIDME technique is even more prone than DEER to unwanted Electron Spin Echo Envelope Modulation (ESEEM) effects, which introduce hyperfine frequencies to the dipolar evolution traces and thus interfere with distance measurements. This problem is less important at W band (94 GHz) or yet higher measurement frequencies, since at those conditions ESEEM contributions are usually weak and can be neglected in the majority of cases. However, at X and Q band (9.5 and 35 GHz) the ESEEM contributions from protons or deuterons (in deuterated solvents, or for deuterated biomolecules) make RIDME measurements significantly more difficult. The currently used approaches to avoid ESEEM arte-
facts at these measurement frequencies lead to a loss of signal-to-noise ratio (SNR), since they are either based on the use of very soft microwave pulses or require trace by trace division. [27, 29, 30] The latter approach reduces signal-to-noise ratio by at least a factor of two, with a factor $\sqrt{2}$ coming from the requirement of measuring a reference trace that does not add to the dipolar modulation and another factor of $\sqrt{2}$ at the signal maximum and more at later time from dividing two noisy traces.

In this communication we describe an ESEEM averaging approach conceptually analogous to the one used in DEER spectroscopy, which allows using hard broadband pulses in RIDME measurements and does not require division of the RIDME trace by a reference. Importantly, the ESEEM averaging does not produce any distortions in the dipolar evolution traces, and does not significantly change the shape of the intermolecular background decay. Such an approach is of particular importance for measuring deuterated samples. Sample deuteration leads to much slower (flatter) intermolecular background decays in RIDME measurements and is recommended whenever possible to improve the quality of distance distribution curves. However, the amplitude of deuterium ESEEM is typically large in X-band and Q-band measurements, which made sample deuteration not very popular in RIDME-based studies to date.

We demonstrate our approach on frozen solutions in D$_2$O/glycerol-d_6 of mono-Gd(III) compound Gd-PyMTA and the Gd-ruler (3.4 nm), a d$_{15}$-Gd(III) compound with a most probable Gd-Gd distance of about 3.4 nm and a very narrow distance distribution, [34] shown in Figure 1. The pulse sequence of the dead time free RIDME experiment [27] is shown in Figure 1(a) and the echo detected (ED) EPR spectrum of the Gd(III)-PyMTA complex is shown in Figure 1(b) with the RIDME detection position marked by an arrow. Detailed experimental setting and sample preparation descriptions can be found in the Supporting Information.

Considering the formation of the RIDME echo, it is convenient to distinguish between A-spins, which are the spins excited by the microwave pulses, and B-spins, which are all other spins, in particular those, dipolar coupled to the A-spins within the same molecule. Using this terminology, the evolution of non-equilibrium magnetization in the RIDME pulse sequence (Figure 1(a)) can be described as follows. First, transverse magnetization is created for the A-spins by the $\pi/2$ pulse and evolves for the time d_{1}, gets refocused by the π pulse and forms a spin echo at the time point $2d_{1}$. Next, the A-spins transverse magnetization starts to defocus again and at the time point $2d_{1} + d_{12}$ half of it is transferred to the z-direction by the first $\pi/2$ pulse of the mixing block, thus forming a non-equilibrium polarization grid for A-spins along the direction of the external magnetic field. This grid is stored for the mixing time T_{mix} to allow for spontaneous flips of the B-spins, resulting in a change of the dipole-dipole interaction, and thus shifting the resonance frequencies of the A-spins. After that the second $\pi/2$ pulse of the mixing block transfers the A-spins polarization back to the transverse plane. The resulting transverse magnetization evolves for the time $d_{2} - d_{12}$, is refocused by the last π pulse and forms the RIDME echo at time d_{2} after the last π pulse. The time d_{12} is incremented, and the amplitude of the RIDME echo is recorded as a function of d_{12}.

The ESEEM effect appears as a modulation of the intensity of the electron spin echo due to the interaction of the electron spin with surrounding nuclei. [35] In a real experiment, in addition to the just described ideal pathway, each microwave pulse in the RIDME pulse sequence (Figure 1(a)) transfers electron coherence or polarization to electron-nuclear or pure nuclear coherence and polarization. As a result, the RIDME echo has contributions that oscillate with nuclear frequencies and combinations thereof by varying any delay time used in the experiment. An analytical computation of the propagation of coherence through the RIDME pulse sequence is provided in the Supporting Information. This computation was performed for an effective spin $S = 1/2$, which implies that we neglect any level crossing effects of the $S = 7/2$ spin of Gd(III). As long as this approximation is valid, our analysis of ESEEM averaging should be rather general and applicable to any paramagnetic centre, including low-spin and high-spin metal centres.

There are two time points in the RIDME sequence where all contributions to the detected RIDME echo (refocused virtual echo in [27]) assume a rather simple dependence on the
electron spin operators. First, at the primary echo time point
2π/d all terms that later form the RIDME echo refocus
along the γ-direction. The RIDME signal has, therefore, the
well known two-pulse ESEEM formula as a pre-factor \(k \), which
is shown analytically in equation 5 in the SI. This two pulse
ESEEM contribution in the RIDME signal has identical phase
for any position of the mixing block, and, in principle, does not
affect the dipolar evolution signal. The first refocusing \(\pi \)
pulse in the refocused RIDME sequence [27] only serves as a
tool for avoiding temporal overlap of the mixing block with
excitation pulses and the dipolar evolution time. Therefore the
nuclear modulation contribution of this block can be fully re-
moved by averaging the RIDME echo signal over a range of
\(d_1 \) times. The second time point, important for the formation
of the RIDME signal, is the time right after the first \(\pi/2 \) pulse
of the mixing block (third pulse in the refocused RIDME pulse
sequence in Figure 1(a)). At this point the part of the transverse
magnetization that is later detected as RIDME echo is turned
into \(\gamma \)-direction, creating electron polarization, electron-nuclear
two-spin order \((S_f S_i) \), and nuclear coherence and polarization,
while all terms that are proportional to the \(S_z \) and \(S_y \) operators
in the \((xy)\) plane would nearly completely decay during the mixing
time, which should be thus set at least 2-3 times longer than the
electron phase memory time \(T_{\text{mem}} \). The \(S_z \) and \(S_y \) terms are
also suppressed by phase cycling. The polarization terms are
constants of motion during the mixing time, while the phase of
nuclear coherence evolves. All this terms are transferred back
to the electron coherences by the second \(\pi/2 \) pulse of the mix-
ing block, and participate in formation of the RIDME signal.
Thus, there would be another factor in the RIDME signal that
is essentially the same as the part of the three-pulse ESEEM
formula that depends on the mixing time \(T_{\text{mix}} \) (see equations
(6) and (7) in the SI). [35] At typical RIDME setup conditions,
however, the mixing time is rather long and the terms that con-
tain nuclear coherences, dephase or irreversibly decay over this
period of time. Thus, in the majority of cases, the ESEEM os-
cillations during the mixing time do not affect the RIDME mea-
surement and can be dropped in analytical computations. In the
Supporting Information these terms are still considered for the
sake of completeness.

The remaining evolution periods from the primary echo until
the beginning of the mixing block, from the end of the mixing
block until the last, refocusing \(\pi \) pulse, and from this last pulse
until the position of the RIDME echo, produce further oscilla-
tory terms with the properties of the transverse evolution part
of the three-pulse ESEEM experiment, additionally refocused,
as well as the ones of another two-pulse ESEEM block. In the
equations given in the Supporting Information one can recog-
nize that the majority of the terms either depend on the time
\(d_2 \) (time delay between the last \(\pi \)-pulse and the RIDME echo,
see Fig. 1(a)), or on the sum or difference of the time \(d_{12} \) (the
time between the primary echo and the beginning of the mixing
block, Fig. 1(a)) and the time \(d_2 \). All these terms are aver-
egaged out by varying the second static delay \(d_2 \) in the RIDME
experiment. There are still two terms \((\cos(d_1 \omega_0) + \cos(d_1 \omega_1)) \),
see Supporting Information) left after such averaging that de-
pend solely on the \(d_{12} \) time and are thus not averaged out. The
overall pre-factor for these terms is \(k/(8-6k) \) times smaller
than the constant term, which is a rather small number for most
values of \(k \). Here \(k = \frac{B_{hf}}{\omega_{\text{ff}} A_{\text{ff}}} \) is the modulation depth param-
eter, \(B \) the pseudo-secular hyperfine coupling, \(\omega_0 \) the nuclear
Zeeman frequency and \(\omega_{\text{ff}}, \omega_{\text{hf}} \) the nuclear frequencies in the
spin-manifolds \(\alpha, \beta \). [35]

If we consider the 'worst' cases with \(k \approx 1 \), which can appear
at X-band for \(^2D \) ESEEM, the remaining non-averaged
ESEEM oscillations have an amplitude of about 50% of the to-
tal echo intensity. At Q band, where for deuterons the value of
\(k \) is typically less than 0.1 these remaining ESEEM con-
tributions have an amplitude of about 1.3% or less and do not
affect the dipolar measurements to a significant extent in most
applications, except for cases with very low spin labeling ef-
ciciencies when the RIDME modulation depth decreases to a
level of 1-2% of the total echo intensity. Note that at typical
lengths of \(d_2 \) of RIDME traces of one to several microseconds,
the ESEEM modulation depths are actually smaller than the
mentioned maximum values, so that a stronger suppression of
the ESEEM artefacts due to the \(d_2 \) averaging would be expected
even at X band.

Note further that the RIDME mixing block can be consid-
ered as a composite \(\pi \)-pulse. Such a \(\pi \)-pulse is, of course, ap-
plied at the same frequency as the detection pulses, but it pro-
duces ESEEM artefacts in a similar way as the pump pulse in
the DEER experiment, which is applied at a different frequency
but typically still slightly overlaps with the detection pulses in
the frequency domain. This bandwidth overlap in DEER can be
controlled by the pump-detection frequency offset and the pulse
power settings. The main difference between the DEER pump
and 'RIDME' composite pulse is thus the much stronger band-
width overlap between the 'composite \(\pi \)-pulse' and the detec-
tion pulses of RIDME in comparison to the bandwidth overlap
in DEER. This overlap makes ESEEM artefacts stronger in the
RIDME case. The effect of spontaneous spin flips is analogous
to the effect of a chirp pulse applied during the mixing block of
the Chirp-Induced Dipolar Modulation Enhancement (CIDME)
experiment. [36] Our analytical treatment of the ESEEM aver-
gaging would be thus relevant also for DEER and CIDME tech-
niques.

We have experimentally tested the performance of the ESE-
EEM averaging scheme based on the above analysis. Consider-
the structure of the compound (Figure 1), solvent, and chosen
microwave frequency (35 GHz), mainly nuclear modulation
from \(^2D \) nuclei of about 7.8 MHz (at 1200 mT) is expected and
can be identified in the primary data in figure 2 (top, purple
line). The following time steps and durations of the averaging
period, thus, directly apply to the deuterium nuclear modula-
tions at Q band, and should be adjusted accordingly for other
nuclei and detection frequencies. Note also that in cases of ESE-
EEM oscillations originating from two or more types of nuclei,
more extended ESEEM averaging schemes might appear nec-
necessary.

The principle of the averaging scheme is sketched in figure
1. It can be considered as two two-pulse ESEEM like blocks
consisting of the characteristic \(\pi/2-\pi \) pulses and interpulse de-
lay d_1, d_2, respectively. In this framework, both building blocks will introduce nuclear modulations in the primary data. To suppress the generated nuclear modulations, the RIDME traces are acquired for several d_1, d_2 pairs, starting from the initial values and increasing the delays in steps of Δd_1 and Δd_2. Eventually all traces are summed up. Averaging of the first interpulse delay $d_1 (\Delta d_2 = 0)$ already results in a drastic decrease of the deuterium ESEEM modulations (blue, second top line). Nevertheless, small ESEEM oscillations can be observed towards the end of the trace. These can be suppressed by averaging the second interpulse delay $d_2 (\Delta d_1 = 0)$ (third top, cyan line), yet strong deuterium oscillations remain at the beginning of the traces. Averaging of both interpulse delays ($\Delta d_1 = \Delta d_2$) suppresses the deuterium ESEEM effect to a level below the noise if the averaging period exceeds 128 ns (bottom, yellow line). It should be noted that for very short mixing times $T_{\text{mix}} < T_m$ an additional oscillating term, dependent on T_{mix} plays a role as shown in Figure S.1 in the Supporting Information. This term, however, becomes unimportant at longer mixing times ($\sim 2T_m$) due to nuclear coherence decay.

Importantly, the averaging approach does not change the primary RIDME signal or the RIDME form factor. Tikhonov regularization thus results in alike distance distributions. Small differences are observed in the artefact peaks. Especially incomplete averaging of the fast oscillations in the beginning of the trace induces a short distance artefact, while incomplete averaging towards the end of the trace introduces some small changes in the long-range artefact level around 5 nm.

The mean signal intensity of the RIDME background traces is shown for Gd(III)-PyMTA as a function of Δd_1 with $\Delta d_1 = \Delta d_2$ in Figure 3(a). It exhibits the typical cos-like amplitude oscillation [35] of nuclear modulation, while the contribution of the unmodulated part remains constant with increasing interpulse delay (in practice, slowly decays, mainly due to the spectral diffusion). As estimated from the 2D Larmor frequency, a full period of oscillation is approximately 128 ns. We found (figure 3(b)) that by averaging of the RIDME time traces by increasing d_1, d_2 pairs, only the unmodulated part of the signal decay remains, while its shape is not distorted. These experiments on a mono-gadolinium compound show no change in the RIDME background upon application of such ESEEM averaging procedures.

![Figure 2: Q-Band RIDME spectra for the Gd-ruler (3.4 nm) at 20 K showing different averaging schemes. From left to right: primary data, form factor and distance distribution.](image)

![Figure 3: Q-Band RIDME data for Gd-PyMTA ligand acquired at 20K. a) Mean intensity of the primary RIDME traces as a function of Δd_1 with $\Delta d_1 = \Delta d_2$. b) Comparison of unprocessed primary data to a summation of all traces. c) Averaging of traces with increasing step size from top to bottom for a period of 128 ns. d) Averaging of traces with increasing step size from top to bottom for a period of 64 ns.](image)
noise ratio, since all traces contribute the full dipolar modulation. A larger number of steps merely increases the minimum duration of the experiment. Some signal loss occurs since the average d_1 and d_2 intervals are larger than would be required without nuclear modulation averaging. With a total averaging interval of 256 ns in deuterated samples this loss is moderate for the typical transverse relaxation times, where RIDME can be measured.

To summarize, we have demonstrated that introduction of an ESEEM averaging loop in the RIDME measurement protocol sufficiently removes the electron-nuclear interaction artefacts and allows obtaining clean dipolar time traces at Q band. Importantly, the averaging on two delay times (d_1 and d_2) as well as varying of the delay times by at least one full period of ESEEM oscillations is crucial for obtaining clean data. The proposed averaging procedure does not reveal any detectable changes in the RIDME form factor and background decay, thus leading to no influence on the distance analysis. Important advantages of the described procedure are that no reference measurement is required and that microwave pulses of arbitrary bandwidths can be used. Therefore signal-to-noise ratio is generally improved as compared to the previously suggested ESEEM removal procedures. [27, 29, 30] While the experiments presented here were performed at Q band, the approach is expected to work with a similar efficiency at any other relevant microwave band for comparable depths of ESEEM oscillations. However, due to the incomplete nuclear modulation averaging, the performance of the proposed approach is expected to be worse for particularly strong ESEEM modulation depths, which are typical for low detection frequencies and for strongly coupled nuclei. We believe that such an ESEEM averaging procedure will simplify the use of the RIDME technique for the distance measurements in biomacromolecules.

Acknowledgements

Authors acknowledge financial support of the Swiss National Science Foundation (Grants No. SNF 200020_14441 and 200020_157034/1) and the Deutsche Forschungsgemeinschaft (SPP1601, Go 555/1.

References

[27] S. Milikansyants, F. Scarpelli, M. G. Finiguerra, M. Ubbink, M. Huber, A pulsed EPR method to determine distances between paramagnetic centers with strong spectral anisotropy and radicals. The dead-time free RIDME

