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Abstract

The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-

trajectory simulations and experimental measurements. A one-dimensional model of the phase

stability in multistage Stark deceleration (Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)) has

been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional

particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times

of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead

to a considerable reduction of the phase-space acceptance at low values of the phase angle and an

enhancement at high values. The optimal combinations of phase angles and currents with which a

preset amount of kinetic energy can be removed from deuterium atoms in a pulsed supersonic beam

using a 24-stage decelerator are determined by simulation. Quantitative analysis of the phase-space

acceptance within a given volume reveals that for our decelerator (8 µs switch-off time) optimal

conditions are achieved for values of the phase angle between 45◦ and 55◦. This conclusion is ex-

amined and confirmed by experimental measurements. Alternative approaches to generate optimal

deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of

higher-order modes of the decelerator, are discussed.

PACS numbers: 37.10.Mn, 32.60.+i
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I. INTRODUCTION

Over the last decade, substantial progress has been made in the development of techniques

to produce cold samples of neutral atoms and molecules that cannot be laser cooled [1–4].

The need for such techniques is motivated by a wide range of applications in physics and

chemistry such as precision measurements of fundamental frequency intervals [5], the study

of collisions at very low temperatures [6] or exploiting a high degree of control over the

kinetic energies of the colliding particles [7], the search for an electric dipole moment of the

electron [8], or even measurements of the mass of the neutrino [9].

Several methods currently used to produce cold stationary samples of atoms and molecules

are based on the deceleration of pulsed supersonic beams using time-dependent inhomoge-

neous electric (multistage Stark deceleration [10, 11] and Rydberg-Stark deceleration [12–

15]) or magnetic (multistage Zeeman deceleration [16–19]) fields. Since these deceleration

procedures rely on conservative forces, the achievable phase-space densities are limited by

the phase-space characteristics of the sample prior to deceleration. Samples formed in pulsed

supersonic expansions provide an attractive starting point for deceleration techniques thanks

to their narrow longitudinal and transverse velocity spreads (corresponding to temperatures

of ∼ 1 K or less) combined with a high density of particles and a low internal (rovibrational)

temperature. Optimal conditions can be achieved by lowering the initial longitudinal velocity

of these beams using different carrier gases and cooling the gas sample prior to expansion.

The initial phase-space distribution of the sample can be preserved throughout the decel-

eration process by operating the decelerator in a so-called phase-stable manner. The concept

of phase stability was first developed in the context of charged-particle acceleration [20, 21],

but it also applies to the deceleration of neutral polar molecules in multistage Stark deceler-

ators, as first demonstrated experimentally in the deceleration of CO molecules by Bethlem

et al. [22] and, as explained in this article, to multistage Zeeman deceleration. Careful stud-

ies of the transverse phase-space stability in a Stark decelerator were essential to achieve

efficient deceleration and simultaneously preserve a high phase-space density [23]. In par-

ticular, the conclusion was reached that the acceptance in phase space can be increased by

exploiting higher-order modes of operation [24, 25]. An even larger phase-space acceptance

can be reached using travelling electric potential wells, as first exploited in Rydberg-Stark

deceleration [13, 14] and now also successfully used in the Stark deceleration of ground-state
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molecules [26, 27].

In a recent work on the magnetic trapping of deuterium atoms after Zeeman decelera-

tion, we found that consideration of the transverse motion is essential for the generation of

dense, low-velocity samples in a multistage Zeeman decelerator [28]. Even though Zeeman

decelerators share many common aspects with Stark decelerators, important differences ex-

ist in the mode of operation. These differences may prevent a direct transfer of the concepts

developed and the knowledge gained in studies of phase stability in multistage Stark de-

celerators [23, 24, 29, 30] and justify a separate treatment of phase stability in multistage

Zeeman decelerators.

Figure 1 schematically compares the standard modes of operation of Stark and Zeeman

decelerators and reveals the main differences between the two types of decelerators. Firstly,

Zeeman decelerators have a cylindrical symmetry along the beam axis, whereas the successive

deceleration stages of Stark decelerators have their electrodes pointing alternatively along

the x and the y axes of the decelerator. Quantitative differences may thus be expected in

the transverse motion of the particles in the decelerator. Secondly, the Zeeman decelerator

is operated by switching the current in the solenoids one after the other, whereas, in most

Stark decelerators, the electric field configuration is switched between two configurations

with interleaved sets of electrodes to which pulses of high and low potential are applied

alternatively. The two different modes of operation result in a traveling effective saddle-

shaped potential in a Zeeman decelerator and in a traveling array of effective potential wells

in a Stark decelerator, so that differences are also expected for the longitudinal motion.

Finally, the different time scales of the rise and fall times of the high current pulses applied

to the solenoids of a Zeeman decelerator (typically 5−10 µs) compared to those of the pulsed

electric potentials applied to the electrodes of a Stark decelerator (typically 10 − 100 ns)

require a different treatment of phase angles.

In this article, we present a general analysis of the longitudinal and transverse motions

in a multistage Zeeman decelerator, following the procedure established in Refs. [23, 29] for

Stark deceleration. Although we present results on deuterium as illustration, this analysis

is applicable to any paramagnetic atom or molecule. After presenting a one-dimensional

model for the longitudinal phase-space stability, we then incorporate all relevant experimen-

tal constraints to establish, by simulation, a procedure to identify the optimal phase angle

for efficient deceleration. The simulation results are then compared to experimental mea-

3



surements in which the phase angles and currents applied to the decelerator solenoids are

systematically varied. We also discuss alternative approaches to the design of efficient pulse

sequences in multistage Zeeman decelerators, making comparison with similar approaches

developed in Stark-deceleration experiments [24, 31].

II. LONGITUDINAL MOTION AND TRANSVERSE EFFECTS IN A MULTI-

STAGE ZEEMAN DECELERATOR

A. A model for longitudinal phase stability

To develop a model describing the longitudinal phase stability in a multistage Zeeman

decelerator we follow the ideas introduced for charged-particle accelerators [20, 21] and their

adaptation to multistage Stark deceleration of polar molecules [22]. A multistage Zeeman

decelerator consists of an array of solenoids along the axis of which a supersonic beam of

paramagnetic species propagates (see Fig. 1). Each solenoid can be individually pulsed

with a high current, resulting in a saddle-shaped potential for particles in low-field-seeking

(lfs) quantum states (see bottom panel of Fig. 1). A particle in a lfs state decelerates as

it moves into the solenoid because it gains potential energy. The deceleration process can

be repeated stage by stage by rapidly switching off the current in the solenoid before the

particle reaches the point of maximal magnetic field and switching on the current in the

next solenoid. The amount of kinetic energy lost by a particle in a given deceleration stage

depends on its position along the beam axis when the magnetic field is switched off. Because

of the periodicity of the deceleration process, this position is given as a phase angle φ rather

than a spatial coordinate. A phase angle of 0◦ corresponds to the middle point between two

adjacent solenoids, and a phase angle of 90◦ to the center of the active solenoid where the

magnetic field strength is maximal.

The calculation of a deceleration pulse sequence is carried out by defining an equilibrium

phase angle φ0 with respect to a synchronous particle moving along the decelerator axis

with a given initial longitudinal velocity v0. Each solenoid is switched off as soon as the syn-

chronous particle reaches the equilibrium phase angle φ0. Because of the spatial periodicity

of the decelerator, the synchronous particle will always travel the same distance L, and thus

lose the same amount of kinetic energy, during the time intervals separating the switch-off
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FIG. 1. Schematic comparison of the geometry and the standard mode of operation of multistage

Stark (left-hand side) and multistage Zeeman (right-hand side) decelerators. The direction of

propagation (z) of the supersonic beam is indicated by the arrows. The two panels (I, II) for each

decelerator depict two subsequent configurations of a deceleration sequence. In a Stark decelerator,

every second pair of electrodes are set to a high electric potential, leading to the sinusoidal form

of the Stark energy W (z) on axis of a polar molecule, as plotted below the set of electrodes. In

a Zeeman decelerator, only one solenoid is switched on at a time, giving rise to a single-peaked

Zeeman energy W (z). The bottom panels display the relevant field distributions. The electric field

distribution is depicted for a Stark decelerator with its electodes pulsed as in configuration I. The

contours of constant electric (magnetic) field strength are drawn in steps of 5 kV/cm (0.1 T).
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times of adjacent solenoids, assuming that the currents are identical and can be switched on

and off instantaneously. A particle initially at the same position as the synchronous parti-

cle, but having a slightly higher (lower) velocity, will have moved further (less far) into the

solenoid than the synchronous particle by the time the current is switched off, resulting in a

higher (lower) phase angle φ and more (less) deceleration. Over several deceleration stages

this particle will gain (lose) phase angle relative to the synchronous particle until its velocity

is reduced (increased) to v0. After this time, the particle starts losing (gaining) phase angle

and velocity relative to the synchronous particle until it reaches the same phase angle but

with a negative (positive) relative velocity. An oscillatory motion around the synchronous

particle results.

To quantitatively model this behavior, we first assume an instantaneous switch on and

switch off of the current in the solenoids. The influence of the finite switch-on and -off

times that are unavoidable in multistage Zeeman deceleration will then be analyzed by

comparison of the model predictions with the results of particle-trajectory simulations. The

kinetic energy ∆T (φ0) that is lost by the synchronous particle per stage is equal to the

potential energy difference W (φ0) − W (φ0 − π). In contrast to a Stark decelerator, where

W (φ) can be expressed to first approximation by a sinusoidal function, only one solenoid is

active at a given time in a Zeeman decelerator generating a single-peaked potential-energy

function (see Fig. 1). For values of the equilibrium phase angle φ0 − π smaller than 0,

the potential energy can be neglected to good approximation, so that ∆T (φ0) ≈ W (φ0).

Assuming that the velocity change per deceleration stage is small compared to v0, the loss

in kinetic energy can be regarded as originating from a continuously acting average force,

F̄ = −W (φ0) /L.

Nonsynchronous particles can be described by their instantaneous relative phase, ∆φ (t) =

φ (t) − φ0, and velocity ∆v (t) = v (t) − v0, with respect to the synchronous particle. As

long as ∆v ≪ v0, the average force acting on a nonsynchronous particle is F̄ (φ0 + ∆φ) ≈

−W (φ0 + ∆φ) /L, so that its motion relative to the synchronous particle is described to

good approximation by:

mL

π

d2∆φ

dt2
+

1

L
(W (φ0 + ∆φ) − W (φ0)) = 0, (1)

where m is the mass of the particle. In the remainder of this article, we present results for

deuterium atoms, for simulations as well as for experimental investigations. However, the
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general conclusions are equally well applicable to any other paramagnetic species by making

the corresponding adjustments of m and W in Eq. (1).

To find the longitudinal phase-space acceptance of the Zeeman decelerator, Eq. (1) is

integrated numerically assuming that the Zeeman energy W (φ) of a deuterium atom in the

field of a solenoid is well approximated by a Gaussian function

W (z) = ae−
(z−b)2

2c2 . (2)

The parameter values a = 1 cm−1, b = 5.50 mm and c = 3.76 mm accurately describe

W (z) for the solenoids of our decelerator (inner diameter 7 mm; 64 windings; 4 layers;

wire diameter 400 µm; current 300 A; distance between the centers of adjacent solenoids

L = 11 mm, see Ref. [28]). Numerical integration leads to the set of phase-space diagrams

obtained for equilibrium phase angles φ0 varying in the range from 0 to π/3 depicted in

Fig. 2. The bold line in each plot, called separatrix, represents the boundary between the

region in phase space where the particles undergo stable phase-space rotations around the

synchronous particle and the region where the trajectories are unstable. The phase-space

area inside the separatrix decreases with increasing value of φ0 because of the decrease

of the potential energy difference W (π/2) − W (φ0). The energy loss per stage, however,

increases with increasing φ0, resulting in a trade off between large acceptance and efficient

deceleration.

The phase-space diagrams presented in Fig. 2 are similar in form and size to those ob-

tained for Stark decelerators in Ref. [29]. The only evident differences, which originate from

the nonperiodic shape of W (z) (compare the plots of Stark and Zeeman potential energy

in Fig. 1), are (i) that the φ0 = 0 separatrix is not symmetric with respect to the inversion

through the point (φ0, ∆v0 = 0) as in a Stark decelerator, and (ii) that there is only one

area of phase stability in the case of a Zeeman decelerator but an array of such areas in the

case of a Stark decelerator.

B. Particle-trajectory simulations and transverse phase stability in multistage

Zeeman deceleration

The one-dimensional model presented in the previous subsection offers a useful starting

point to estimate the deceleration pulse sequences and to discuss the general aspects of
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FIG. 2. Phase-space diagram for different values of the equilibrium phase angle φ0 (denoted in the

inset of each graph) plotted as a function of the phase angle φ and the relative velocity ∆vz with

respect to the synchronous particle. The curves result from numerical integration of Eq. (1) using

different initial conditions and parameters as described in the text. In each graph, the separatrix

marking the boundary between the stable and the unstable regions in phase space is drawn as bold

line.

the deceleration behavior. Its approximate nature and the assumptions on which it relies,

however, limit its predictive power. Particle-trajectory simulations, though computationally

much more demanding, are necessary to assess its limitations and to gain a quantitatively

satisfactory understanding of the operational characteristics of a multistage Zeeman de-

celerator. A three-step procedure was followed to quantify the phase-space acceptance of

our multistage Zeeman decelerator by particle-trajectory simulations. In a first step, one-
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dimensional particle-trajectory simulations were carried out to investigate the effects of the

finite length of the decelerator and to go beyond the approximation of neglecting the condi-

tion of constant velocity upon which Eq. (1) is based. In the second step, three-dimensional

particle-trajectory simulations were performed to quantify the effects of the transverse mo-

tion on the phase-space acceptance of the decelerator, assuming idealized magnetic field

pulses of infinitely short rise and fall times. In the last step, the effects of the finite rise time

of the magnetic field pulses (∼ 8 µs in our current decelerator [28]), which are significant in

multistage Zeeman deceleration (the rise times of electric field pulses in Stark decelerators

are much shorter (typically less than 100 ns), and their effects can be neglected [10]), were

investigated by three-dimensional particle-trajectory simulations.

The computations relied on the use of the magnetic field distributions corresponding to

the solenoids employed in our recent experiments [28]. Initial sets of particles uniformly

distributed in a phase-space volume larger than the anticipated acceptance volume of the

decelerator were used, and the phase-space acceptance of the decelerator was determined for

specific values of equilibrium phase angle, number of stages and current by drawing points in

the phase-space diagrams corresponding to the final positions and velocities of all particles

having undergone deceleration. For the sake of comparison of the results of the different

simulations, the length of the decelerator and the initial velocity of the synchronous particle

were chosen such that, in all cases, its final velocity was 300 m/s and the time taken for the

deceleration process was ∼ 1.5 ms.

Each of the three steps outlined above provides specific insights, and the results of the

corresponding simulations, presented in the three columns of Fig. 3, are now discussed in

turn.

1. One-dimensional particle-trajectory simulations

The results of the one-dimensional particle-trajectory simulations are depicted in the

left column of Fig. 3. For each simulation, the trajectories of 2.5 · 105 deuterium atoms,

uniformly distributed in phase space, were computed, and for each trajectory the position

(phase angle) and velocity of the particles were sampled immediately after the switch off of

the last solenoid and plotted in relative coordinates with respect to the synchronous particle.

Simulations were performed for four equilibrium phase angles φ0 = 0, π/6, π/4, π/3, and,
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FIG. 3. Comparison of the one-dimensional phase-stability model with particle-trajectory simula-

tions for selected values of φ0 (increasing from top to bottom). Left and middle columns: one- and

three-dimensional particle-trajectory simulations assuming instantaneous switch off of the current

(i.e., ts = 0), respectively. Right column: Three-dimensional particle-trajectory simulations taking

into account the ts = 8 µs switch-off time of the currents. The bold line in each graph shows the

separatrix derived using Eq. (1).

for comparison, the separatrices obtained from Eq. (1) are also drawn in the phase-space

diagrams. The corresponding number of stages decreases from 80 (vin = 660 m/s) for

φ0 = 0 to 56 (vin = 820 m/s) for φ0 = π/3 to account for the fact that the deceleration

achieved per stage increases with the value of the equilibrium phase angle. In a multistage

Stark decelerator, an equilibrium phase angle of φ0 = 0 results in no deceleration, but only

guiding of the beam, because of the spatial periodicity of the Stark energy (see Fig. 1). In

a multistage Zeeman decelerator, the Zeeman energy and its gradient are nonzero at the

position φ0 = 0, so that a weak deceleration results.

The following conclusions can be drawn from the phase-space diagrams:
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(i) The separatrix calculated from Eq. (1) corresponds almost exactly to the boundary of

the phase-space distribution of the particles transmitted (and decelerated) by the Zeeman de-

celerator for all four equilibrium phase angles. Moreover, the bunch of transmitted particles

forms a homogeneous (structureless) distribution inside the separatrix. Eq. (1), therefore,

represents an adequate description of the one-dimensional particle-trajectory simulations.

(ii) A small group of transmitted atoms lies outside the area enclosed by the separatrix and

forms a band extending toward the high-velocity and high-phase-angle corner of the phase-

space diagrams. The thickness of this band and the number of particle trajectories that

contribute to it increase with increasing value of φ0, and decreasing number of deceleration

stages. This deviation from the behavior predicted by Eq. (1) was found to be a consequence

of the finite length of the decelerator by carrying out simulations for decelerators of different

lengths. This aspect is discussed further in Subsection IIB 3.

(iii) The phase-space distribution of the transmitted particles is characterized by a slight

counter-clockwise rotation with respect to the separatrix. Analysis of the trajectories enables

one to attribute this effect to the fact that the energy removed by each deceleration stage is

not entirely negligible compared to the kinetic energy, as was assumed in the derivation of

Eq. (1).

Whereas the agreement between the longitudinal phase-space acceptance model and the

results of one-dimensional particle-trajectory simulations can be regarded as excellent, it is

nevertheless important, for the following discussion of three-dimensional particle-trajectory

simulations, to remember that the sources of deviations mentioned under points (ii) and (iii)

above are purely longitudinal effects and cannot be attributed to the transverse motion.

2. Three-dimensional particle-trajectory simulations and transverse motion in a multistage

Zeeman decelerator

To obtain the results of the three-dimensional particle-trajectory simulations depicted in

the middle column of Fig. 3, the initial distribution of the particles was modified to account

for the transverse dimensions (x,y). The longitudinal components were distributed as in the

one-dimensional simulations. Uniform initial transverse position and velocity distributions

were chosen, and the size of the phase-space volume was increased until the number of

particles transmitted by the decelerator had converged ( |vx| , |vy| ≤ 30 m/s; |x| , |y| ≤
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2.5 mm). The particle-trajectory simulations were performed with exactly the same pulse

sequences as in the one-dimensional case, but with an increased number of particles (106).

Comparing the results of the one- and three-dimensional particle-trajectory simulations

enables one to quantify changes in the longitudinal phase-space acceptance resulting from

transverse forces. At low values of φ0, no stable particle trajectories are observed in a circular

phase-space area centered around the synchronous particle and in an almost closed ring

immediately inside the separatrix. Transverse effects thus significantly reduce the phase-

space acceptance of the decelerator. However, the size of the nonaccepted areas rapidly

decreases at increasing values of the phase angle. The simulations also reveal that the

separatrix obtained from the one-dimensional model (Eq.( 1)) still represents an approximate

boundary of the longitudinal phase-space acceptance of the decelerator. At values of the

equilibrium phase angle φ0 beyond π/4, the longitudinal acceptance area of the decelerator

even becomes larger than the area enclosed by the separatrix.

The area in the middle of the separatrix that is not accepted by the decelerator and

its decrease in size with increasing equilibrium phase angle φ0 was found, by analyzing

the trajectories of the nonaccepted particles, to be a result of the convex shape of the

transverse magnetic field distribution outside the solenoid (see Fig. 1), which results in a

transverse defocusing force. For the particles to remain within the physical boundaries of the

decelerator, this defocusing force needs to be compensated, over a full period of oscillation

around the position of the synchronous particle, by the (stronger) focusing forces which

result from the concave magnetic field distribution inside the active solenoid. At low values

of the equilibrium phase-angle φ0, the particles moving off-axis and located in longitudinal

phase space close to the synchronous particle will hardly experience any focusing forces.

At φ0 = 0, for instance, a particle with the same longitudinal velocity as the synchronous

particle, but additional off-axis velocity components, needs a relative difference in phase

angle of ∼ π/2 to experience enough focusing forces to be accepted by the decelerator (see

top panel of the middle row of Fig. 3). The synchronous particle moves further into the

solenoid with increasing equilibrium phase angle φ0. Consequently, the minimal phase-angle

difference a particle must have with respect to the synchronous particle to balance the

transverse forces decreases, resulting in a smaller size of the longitudinal phase-space area

around the synchronous particle that is not accepted by the decelerator. At phase angles

beyond π/4, the nonaccepted area inside the separatrix completely vanishes, and all particles
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close to the synchronous particle are accepted by the decelerator.

In Stark decelerators, one also observes a reduced acceptance around the synchronous

particle at low equilibrium phase angles (see Fig. 3 of Ref. [23]), because the transverse

forces are insufficient to confine the transverse motion of the particles with phase angles

similar to that of the synchronous particle and significant transverse velocities. This reduc-

tion, however, is not as large as for Zeeman decelerators, because of the reduced effects of

transverse defocusing forces in Stark decelerators (see bottom panels of Fig. 1).

At low equilibrium phase angles, the phase-space acceptance is not only reduced in the

center of the phase-space diagrams (see Fig. 3), but also close to the separatrix. The simu-

lations reveal that particles in these regions oscillate around the synchronous particles with

a high-phase-angle turning point close to the center of the active solenoid, where the trans-

verse forces are strongest. The resulting gain in transverse velocity is so large that it cannot

be compensated any more. The simulations show that these particles eventually collide with

the walls of the glass tube around which the solenoids are wound.

In Stark decelerators, unstable regions close to the separatrix, often referred to as ha-

los [23] because of their ring structure, are observed as well. The depletion of these regions

is caused by parametric amplification of the transverse oscillations of particles having phase-

space coordinates such that the transverse and the longitudinal oscillation frequencies are

similar. The strong coupling of the transverse and longitudinal motion in Stark decelera-

tion arises because the transverse focusing forces, after decreasing from φ = π/2 to φ = 0,

increase again from φ = 0 to φ = −π/2 as a result of the periodicity of the Stark energy

W (φ).

In the three-dimensional particle-trajectory simulations depicted in Fig. 3, stable trajec-

tories are observed again for particles with even larger differences in phase angle to the syn-

chronous particle than the unstable trajectories discussed above. These trajectories belong

to particles which, during their longitudinal oscillations around the synchronous particle,

reach phase angles close to the exit of the active solenoid. The overall effect is a compensa-

tion of the focusing force during an oscillation period that is such that these particles enter

the regions of low transverse forces with a moderate displacement from the beam axis and

vanishing transverse velocity components, leading to stable trajectories.

At values of the equilibrium phase angle higher than π/4, the separatrix covers a region

of phase angles where the transverse field distributions in Stark decelerators, in the direction
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perpendicular to the plane spanned by the active rods, and in Zeeman decelerators are qual-

itatively similar, so that the nonperiodicity of the Zeeman energy does not play a significant

role. The enhanced phase-space acceptance of Zeeman decelerators observed at these values

of the equilibrium phase angle (see middle column Fig. 3) is therefore analogous to that

observed in Stark decelerators (see Ref. [23]): Because of the convex (concave) magnetic

field curvature outside (inside) the solenoid, particles with off-axis velocity components and

positions experience a larger change in Zeeman energy between two successive switch-off

times of the solenoids than the synchronous particle. The pulse sequence calculated for

the (on-axis) synchronous particle is therefore optimal for off-axis particles having a lower

equilibrium phase angle, which results in a higher overall longitudinal acceptance.

3. Effects of the finite rise and fall times of the currents in the solenoids

The right column of Fig. 3 shows the results of three-dimensional particle-trajectory

simulations including a finite switch-off (switch-on) time ts = 8 µs of the current in the

solenoids. To be consistent with earlier publications [17, 28, 32], we define the (nominal)

phase angle φ0 as the position of the synchronous particle at the time the current switch-off

process is initiated. The pulse sequences for the same initial and the same final velocities of

the synchronous particle as used in the subsections IIB 1 and IIB 2 had to be modified to

account for the fact that the particles continue to experience a magnetic field gradient, and

decelerate during the current switch-off process. This effect causes the particle to experience

a higher (effective) phase angle φeff and to loose more kinetic energy. Consequently, fewer

stages are needed to remove the same amount of kinetic energy for a given equilibrium phase

angle φ0, resulting in a shorter time spent by the particles in the decelerator. Comparing the

simulations including the finite switch-off times with those that neglect it (middle column

in Fig. 3) leads to the following conclusions: (i) The band of particles outside the separa-

trix extending to the high-velocity, high-phase-angle corner of the diagrams is thicker. As

explained in subsection IIB 1, this feature depends on the time the particles spend in the

decelerator and can therefore be attributed to the reduced number of deceleration stages

compared to the simulations with ts = 0 µs. (ii) The decelerated particles are confined in

a smaller area than that given by the separatrix (at least for the three lower phase angles),

and (iii) the area corresponding to particles with transversely unstable trajectories near the
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center of the phase-space diagram is smaller, or has even vanished. The second and third

features arise from the finite switch-off time: The synchronous particle continues moving

into the solenoid while its current is switched off, resulting in a higher effective phase angle

φeff > φ0. Consequently, the phase-stable area determined for φ0 = 0 in simulations includ-

ing finite switch-off times is better described by the separatrix corresponding to φ0 = π/6

than by the one corresponding to φ0 = 0. The higher effective phase angle resulting from

the finite switch-off time also explains the more rapid decrease of the areas corresponding to

unstable trajectories of the decelerated particles. Indeed, a particle that is located outside

the solenoid at the time the solenoid is switched off can still experience a net focusing force in

the transverse direction if it gets far enough into the solenoid during the switch-off process.

From the comparison of the last two columns of Fig. 3, we conclude that an operation of

the decelerator at a value of φ0 between π/6 and π/3 is desirable to reach an optimal com-

promise between efficient deceleration and high phase-space acceptance. In Section III, we

will specify this optimal range of operation more precisely by comparison with experiments

and simulations that model the complete geometry of our own experimental setup.

4. Higher-order modes of operation of a multistage decelerator

In multistage Stark deceleration, the higher-order s = 3 mode of operation was demon-

strated to have a better acceptance than the constant-phase-angle (s = 1) mode of opera-

tion [25]. In the s = 3 mode, the deceleration is achieved by operating only every third stage

as a deceleration stage, the intermediate stages being used to provide additional transverse

focusing forces during the passage of the decelerated bunch, and so increase the phase-space

acceptance. The s = 3 mode of operation of Stark decelerators can be analytically calcu-

lated by taking into account the higher-order Fourier coefficients of the Stark energy W (z)

(see Figure 1) in the model of its longitudinal phase-space acceptance (see Ref. [24] for a

detailed discussion).

Because of the nonperiodicity of the Zeeman energy, an adaptation of the s = 3 mode

of operation to Zeeman deceleration does not appear justified at first sight. Nevertheless,

the concept of the s = 3 mode, which leads to an effective decoupling of the transverse

and the longitudinal motions by performing longitudinal and transverse focusing operations

using distinct stages, might also be implemented in multistage Zeeman decelerators. Two
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possible strategies to mimic, in a Zeeman decelerator, the s = 3 mode of operation of a

Stark decelerator are illustrated in Fig. 4. In the first strategy, the deceleration stages are

divided into sets of three adjacent solenoids, the first and third solenoids of each set being

connected in series and switched off simultaneously when the synchronous particle reaches a

phase-angle φ0 = 0 with respect to the third solenoid. The second solenoid remains inactive

throughout (i.e., it is removed) so that the magnetic field experienced by the synchronous

particle during the deceleration process corresponds to that depicted in the bottom left

panel of the figure. This distribution is almost identical to the corresponding electric field

distribution experienced by the synchronous particle in a Stark decelerator operated in the

s = 3 mode (compare with Fig. 2 of Ref. [25]). The deceleration procedure is carried out by

repeating the deceleration steps involving three solenoids as the particles move through the

decelerator. The second strategy, with which a very similar distribution of Zeeman energy

can be realized for the synchronous particle (see bottom right panel in Fig. 4), consists of

increasing the distance between adjacent solenoids and pulsing only every second solenoid

at φ0 while maintaining the current in the other solenoid on during the passage of the atom

bunch.

Three-dimensional particle-trajectory simulations were carried out to validate these

strategies. In the simulations, a current of 300 A was assumed, and the pulse sequences

were designed to decelerate the D atoms from 660 m/s to 300 m/s using 240 (including the

inactive solenoids) and 164 solenoids for the first and second strategy, respectively. The

resulting phase-space acceptance diagrams are depicted in the upper panels of Fig. 4 and

reveal two of the essential characteristic features of the s = 3 operation mode of Stark decel-

erators: Firstly, phase-stable operation is achieved both in the longitudinal and transverse

dimensions, as indicated by the homogeneous areas of the diagrams around the position

of the synchronous particles. Secondly, the longitudinal phase-space acceptance is reduced

because the homogeneous area is smaller than the area inside the separatrix. Both strategies

achieve the same decoupling of longitudinal and transverse forces in Zeeman deceleration

as the s = 3 mode of Stark decelerators. Their implementation necessitates twice as many

solenoids and larger decelerators, but would offer enhanced flexibility. In the implemen-

tation of these strategies in the particle-trajectory simulations, we used solenoids identical

to those used in the simulations and experiments described in other parts of this article.

For such solenoids, the first strategy leads to a larger phase-space acceptance (compare the
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FIG. 4. Particle-trajectory simulations for the operation of a Zeeman decelerator mimicking the

s = 3 mode of Stark decelerators. The left- and right-hand-side panels show the results for the two

strategies discussed in the text. The top panels depict the results of three-dimensional particle-

trajectory simulations overlaid with the separatrix obtained for the φ0 = 0 equilibrium-phase-

angle mode of operation. The middle panels display the corresponding magnetic field strength

as a function of the longitudinal position of the synchronous particle, displaying only a restricted

number of stages for clarity. The bottom panel schematically depicts the arrangement of the

solenoids.

upper panels of Fig. 4).

One should note that both modes of operation would be better described as being similar

to s = 2 modes of operation. The reason why no s = 2 modes of operation is possible in a

Stark decelerator is because subsequent stages have their electrodes pointing alternatively

in the x and y directions. An s = 2 mode would therefore only refocus the particle bunches

in one of two transverse dimensions. The cylindrical symmetry of Zeeman decelerators,

however, makes s = 2 modes possible.
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III. OPTIMIZED PULSE SEQUENCES IN MULTISTAGE ZEEMAN DECELER-

ATION: COMPARISON WITH EXPERIMENT AND CONCLUSIONS.

In multistage deceleration, be it Stark or Zeeman, samples of cold molecules are deceler-

ated to a given desired final velocity, usually chosen for a given experiment (e.g., magnetic

trapping, electrostatic trapping, collision studies with slow beams of molecules of well-defined

velocity, . . .). The final velocity determines the number of deceleration stages, the length

of the decelerator and the deceleration temporal pulse sequence. In the case of D, velocities

below 90 m/s are useful for trapping experiments, and velocities above 90 m/s are also useful

in collision experiments. In this section, we seek to establish optimal strategies to generate

samples moving at a given final velocity.

The most widespread mode of operation of multistage Stark decelerators is one in which

the electric field pulses are switched on and off at constant phase angles. This mode of

operation enables phase-stable deceleration both in the longitudinal and transverse dimen-

sions [10, 23]. The finite rise and fall times of the magnetic field pulses in multistage Zeeman

decelerators pose problems in the determination and implementation of pulse sequences op-

erated at constant phase angles, because the nominal phase angle, which corresponds to the

switch-off time of the solenoids, differs from the effective phase angle, which itself depends

on the instantaneous velocity of the synchronous particle [28].

In Zeeman deceleration, two limiting operation modes can be envisaged to approximate

the constant-phase-angle operation mode of Stark deceleration: a mode in which the decel-

eration process is carried out at constant nominal phase angle, and one in which the energy

removal per stage is constant. In the former mode of operation, the equilibrium phase an-

gle φ0 is defined at the time when the current switch-off process is initiated, so that the

amount of kinetic energy removed from the synchronous particle decreases from one stage

to the next. In the latter mode of operation, the kinetic energy removed by the deceleration

stages remains constant throughout the deceleration process, and the nominal phase angle

increases from one stage to the next. This mode of constant energy removal per stage for

the synchronous particle corresponds more closely to the standard mode of operation of

deceleration with zero switch-off times. Both modes of operation become identical in the

low-velocity limit, for which the distance travelled by the synchronous particle during the

switch-off process is negligible. In the present section, we first present a characterization
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of these two modes of operation by simulations in the case of the deceleration of D atoms

with our 24-stage decelerator, and then compare the particle-trajectory simulations with

experimental results. Finally, we briefly discuss other operational modes with which cold

dense samples can be generated by multistage Zeeman deceleration.

A. Constant-phase-angle modes of operation

The multistage Zeeman decelerator employed in our studies is modular and consists of

sections of 12 solenoids each, separated by a pumping region equipped with two coaxial

collimation solenoids (see Fig. 1 of Ref. [28]). Current pulses of up to 300 A with rise and

fall times of 8 µs can be applied separately to each solenoid. The collimation solenoids

located between the different sections are connected in series and are held at a current of

240 A during the passage of the atomic beam. The supersonic beam of D atoms has a mean

initial velocity of 475 m/s, with full widths at half maximum of 80 m/s and 4 m/s in the

longitudinal and transverse dimensions, respectively.

To compare the constant-nominal-phase-angle and constant-energy-removal operational

modes of the decelerator, we examined sequences with which the initial velocity is reduced

from 475 m/s to final velocities vf in the range between 90 and 180 m/s. Two sections

(i.e., 24 deceleration solenoids) are sufficient to achieve the corresponding removal of kinetic

energy. The general behavior turned out to be independent of the final velocity, so that only

results for vf = 90 m/s and 150 m/s are presented in detail.

Fig. 5 summarizes the results of a set of simulations of the deceleration of the D atom

beam to 90 m/s using the constant-nominal-phase-angle mode of the decelerator. The

simulations were carried out for several nominal phase angles between 18◦ and 60◦. Because

of the fixed length of the decelerator and the preset initial and final velocities, the current

had to be adapted to the values of the selected nominal phase angle, high (low) currents

being necessary in combination with low (high) phase angles. The left-hand-side panel of

the figure shows the computed time-of-flight (TOF) distributions determined at the exit of

the last solenoid of the decelerator. The different traces were shifted along the vertical axis

for clarity, and the dashed horizontal lines indicate the relevant zero level of the intensity

scale. As explained in Ref. [28], the TOF distributions consist of several sharp peaks at

early times (< 1.5 ms), which arise from atoms that are guided through the decelerator
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FIG. 5. Simulations of the deceleration of deuterium atoms with identical initial phase-space

distribution to a given final velocity of 90 m/s using the constant-nominal-phase-angle operation

mode of a 24-stage Zeeman decelerator. The left-hand-side panel depicts the detected time-of-flight

distribution of the deuterium atoms for several combinations of phase angles φ0 and currents I.

Right-hand side: Phase-space distributions at the end of the decelerator for phase angles φ0 of

24◦, 33◦ and 45◦. The dashed rectangles indicate the areas in longitudinal phase space for which

magnetic trapping has been achieved.

without experiencing significant deceleration. The TOF distributions of these guided atoms

are insensitive to the phase-angle/current combination and remain almost identical for all

traces.

The decelerated bunches of atoms with a final velocity of 90 m/s correspond to the TOF

peaks located just after 2 ms. At high nominal phase angles φ0, this peak is sharp and

it has maximal intensity for the 45◦/235 A combination. At phase angles below 40◦, the

decelerated atoms form a bimodal TOF distribution, and the distance between the two

components increases rapidly with decreasing phase angle. The phase-space distributions

of the decelerated particles presented in the three panels on the right-hand side of the
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figure provide additional information. The dashed frames at the center of these diagrams

highlight the regions of phase space in the immediate vicinity of the synchronous particle and

correspond to regions of the initial phase-space distributions for which magnetic trapping

has been achieved [28]. The phase-space diagram obtained for φ0 = 45◦ reveals a strong

accumulation of particles around the synchronous particle, as expected for an efficient and

phase-stable deceleration process. At phase angles of 33◦ and 24◦, the region closest to the

synchronous particle is depleted, and the diagrams indicate that the deceleration process is

optimal only for two groups of D atoms with initial velocities differing by 5 m/s and 10 m/s,

respectively. The depletion of the phase-space diagram is reminiscent of the discussion, in

section IIB, of transverse losses in the decelerator, which effectively prevent the observation

of particles with longitudinal velocities similar to that of the synchronous particle at low

equilibrium phase angles (see left-hand side of Fig. 3). The overall conclusions derived from

Fig. 3 thus also appear to hold for the relatively short decelerator and the slightly modified

geometry considered here.

Fig. 6 presents particle-trajectory simulations obtained with the constant-energy-removal

mode of the decelerator, for a final velocity of 90 m/s. In the first deceleration stages, the

effective phase angle is significantly larger than the nominal one, so that the value of the

nominal phase angle leading to a preset loss of kinetic energy increases from one solenoid

to the next. This in turn poses a limitation on the current, which cannot be reduced below

250 A. As in the case of Fig. 5, high currents correspond to low phase angles and vice

versa. At high currents, a constant removal of energy implies a very low nominal phase

angle and a low effective phase angle, so that the defocusing effects of the convex regions of

the magnetic field distribution are dominant. The general aspects of the TOF distributions

displayed in the left-hand side of the figure and of the phase-space diagrams presented in its

right-hand side are qualitatively similar to those obtained with the constant-nominal-phase-

angle mode of operation. It thus appears that both modes of operation lead to phase-stable

deceleration both in the longitudinal and transverse dimensions, provided that the phase

angle is large enough. That this would be the case was not obvious to us at the beginning

of this investigation.

The results of all particle-trajectory simulations are summarized in Fig. 7 which displays,

as a function of the current, the normalized phase-space densities obtained with both modes

of operation for four values of the final velocity, the squares and circles corresponding to
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FIG. 6. Simulations of the deceleration of deuterium atoms with identical initial phase-space

distributions to a final velocity of 90 m/s, using the constant-energy-removal operation mode of a

24-stage Zeeman decelerator. The deceleration pulse sequences are generated for different currents

indicated above the TOF traces. Right-hand side: Phase-space distribution at the end of the

decelerator for currents of 290 A, 270 A and 250 A. The dashed rectangles indicate the areas in

longitudinal phase space for which magnetic trapping has been achieved.

the constant-energy-removal and constant-nominal-phase-angle operation mode of the decel-

erator, respectively. Overall, the constant-nominal-phase-angle mode of operation appears

slightly superior and can be used over a wider range of currents for the reasons given above.

The optimal nominal phase angle increases slightly with decreasing velocity because of the

total kinetic energy that must be removed increases. Moreover, the density of slow particles

decreases with increasing currents, because these can only be used with low phase angles,

for which transverse phase instabilities reduce the acceptance. Finally, the range of nomi-

nal phase angles between 45◦ and 55◦ for optimal operation, which was determined in the

previous section, is confirmed.
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FIG. 7. Phase-space acceptance of a multistage Zeeman decelerator obtained in particle-trajectory

simulations carried out for the constant-nominal-phase-angle (circles) and constant-energy-removal

(squares) operation modes. The acceptances are determined in a given volume around the syn-

chronous particle (53 mm3 × 203 m3/s3 · m3

D
) at the end of the decelerator and have been nor-

malized to the maximal acceptance highlighted by the red triangle. The four panels display the

results obtained for four different final velocities between 90 m/s and 180 m/s.

B. Experimental results and comparison with simulations

To verify the overall conclusions drawn from the simulations, experiments were performed

using our multistage Zeeman decelerator. The measurements were carried out for both

operational modes discussed in the previous subsection, and we present here the results

obtained for magnetic-field pulse sequences designed to decelerate deuterium atoms from an

initial velocity of 475 m/s to a final velocity of 150 m/s.

The experimental results are presented in Fig. 8 and Fig. 9 for the constant-nominal-

phase-angle and the constant-energy-removal mode of operation of the Zeeman decelerator,

respectively. In each figure, the results of the corresponding particle-trajectory simulations
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are depicted on the right-hand side for comparison. All simulations were performed with

a unique set of parameters (initial phase-space distributions, solenoid characteristics, and

experimental geometry) already established and discussed in Ref. [28]. The intensity scale

of the simulated traces are identical. To compensate for day-to-day variations of the signal

strength, the intensity scale of the experimental traces was adjusted so that all time-of-

flight spectra had the same intensity for the first strong peak at 1.2 ms corresponding to

the atoms that are guided through the decelerator. This scaling procedure is justified by

the insensitivity of this peak to the different pulse sequences predicted by the simulations

discussed in the previous section.
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FIG. 8. Experimental traces (left panel) and their corresponding simulations (right panel) for

the deceleration of deuterium atoms from an initial velocity of 475 m/s to 150 m/s in a Zeeman

decelerator operated in the constant-nominal-phase-angle mode. The TOF profiles are displayed

in order of increasing values of the phase angle from top to bottom.

The overall agreement between experimental and calculated TOF traces is good. The

main difference concerns the intensity of the third peak at 1.5 ms corresponding to guided

atoms, the intensity of which is underestimated by the calculations. The general trends of

the intensity of the decelerated peak are nicely reproduced by the calculations so that the

general conclusions drawn in subsection IIIA are validated. In particular, the experimen-

tal results confirm that (i) the constant-nominal-phase-angle and constant-energy-removal
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FIG. 9. Experimental (left panel) and simulated (right panel) TOF profiles for the deceleration

of deuterium atoms from 475 m/s to 150 m/s in a Zeeman decelerator using the constant-energy-

removal mode of operation. The traces are displayed in order of decreasing values of the current

from top to bottom.

modes of operation of the decelerator lead to very similar results, the former mode of opera-

tion appearing slightly more favorable at the lowest current (220 A, bottom trace Fig. 8); (ii)

the decelerated atoms form a bimodal distribution at low phase angles and high currents,

an effect that is particularly pronounced in the top trace of Fig. 8 and the top traces of

Fig. 9; and (iii) the acceptance of the decelerator improves with increasing phase angles,

phase angles in the range around 45◦ being optimal.

C. Other approaches for the design of efficient deceleration pulse sequences

Because the phase-space density of a given sample cannot be increased by the deceleration

process, an optimal deceleration pulse sequence may be regarded as one for which the phase-

space acceptance is maximal. Considering only longitudinal effects in the one-dimensional

calculations leads to the conclusion that optimal pulse sequences should have as low a

phase angle as possible (see Fig. 2 and the left column of Fig. 3). The consideration of

the transverse motion and the finite fall times of the magnetic-field pulses, however, leads

25



to the conclusion that higher equilibrium phase angles are more favorable. The results

presented in the previous sections suggest that transverse losses can be avoided in both

the constant-nominal-phase-angle and the constant-energy-removal modes of operation of a

Zeeman decelerator as long as the phase angles are in the range of 45◦ − 55◦.

One may nevertheless wonder whether a larger acceptance might not be reached with dif-

ferent magnetic field pulse sequences, i.e., sequences not restricted to constant nominal phase

angles or energy removal, such as an operation similar to the s = 3 mode in Stark decelera-

tors discussed in subsubsection IIB 4. Alternatively, one may use evolutionary strategies to

search for deceleration pulse sequences with improved phase-space acceptance as proposed

and realized for trap loading at the end of a Stark decelerator [31].

The ability of our particle-trajectory simulation program, demonstrated in the previous

subsection (see also Ref. [28]), to faithfully reproduce experimental results for a wide range

of operation conditions makes it possible to search for pulse sequences offering improved

phase-space acceptance by particle-trajectory simulations. Such sequences, if they exist,

may then be tested experimentally. In this last subsection, we present results obtained

using evolutionary strategies to optimize the pulse sequences.

An optimization technique based on an evolutionary strategy known as Covariance Matrix

Adaptation Evolution Strategy (CMA-ES, see Ref. [33]) was implemented into the particle-

trajectory simulation program. The algorithm was employed to (i) maximize the number

of particles decelerated to the desired velocity, while (ii) minimizing the velocity and posi-

tion spread of these particles, by changing the timing and duration of the pulses, with the

restrictions of a sequential pulsing of the successive solenoids and a minimal pulse duration

of 13 µs dictated by the finite rise and fall times of the current pulses. A (suboptimal)

constant-nominal-phase-angle sequence (11◦) with a current of 300 A was used to initial-

ize the optimization algorithm, and the operational current was fixed at 300 A, providing

maximal flexibility in the choice of phase angles.

The outcome of the optimization for a selected final velocity of 150 m/s is compared with

the initial sequence in Fig. 10. The figure presents in its upper panels the simulated and

experimental TOF distributions obtained with the initializing sequence (left-hand side) and

the optimized sequence (right-hand side). It also shows, in the bottom panel, the magnetic

field strength at the position of the synchronous particle during the deceleration process.

The nominal phase angle of the individual pulses are also indicated in this panel. The phase
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FIG. 10. Upper panels: Experimental and simulated TOF distributions for the deceleration of

deuterium atoms from an initial velocity of 475 m/s to a final velocity of 150 m/s in a 24-stage

Zeeman decelerator using a constant-nominal-phase-angle mode of operation (left-hand side) and

a mode of operation optimized with an evolutionary algorithm (right-hand side). Bottom panel:

Magnetic field strength at the position of the synchronous particle for the constant-nominal-phase-

angle sequence (bottom) and the optimized sequence (top). The phase angle of each pulse is

specified next to the dashed line indicating the center of the active deceleration solenoid. The

broad structures near the center of the graph represent the magnetic field of the two focusing

solenoids in between the deceleration sections.

angles of the optimized pulse sequence were defined with respect to the particle at the center

of the phase-space distribution of the decelerated atoms.

The improved phase-space acceptance of the optimized sequence can be deduced from

the figure, the intensity of the decelerated peak being more than one order of magnitude

stronger than for the initial constant-nominal-phase-angle sequence. The experimental im-

plementation of the optimized sequence reproduces the strong increase of the intensity of the

decelerated atoms. However, this peak is not as sharp as that in the calculation, an effect

we attribute to the instrument function and/or the unavoidable slight deviations between
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the parameters assumed in the simulations from their actual values.

Comparing the intensity of the peaks corresponding to the decelerated atoms with that

of the first strong peak in the TOF distribution suggests that the optimized sequence might

be slightly superior to the best sequence obtained with the constant-nominal-phase-angle

operation mode (45◦, see Fig. 5). Analyzing the results of optimized pulse sequences for a

variety of final velocities and operating currents reveals that these sequences are all charac-

terized by a smooth oscillation of phase angles (for example between −5◦ and 75◦ for the

optimized sequence displayed in Fig. 10) providing an optimal balance between transverse

focusing and defocusing forces during the deceleration process. It is interesting to point out

here that by searching, by trial and error, for optimal pulse sequences by monitoring the

intensity of the decelerated peak on the oscilloscope, a pulse sequence was found that has

similar characteristic features as the one selected by the evolutionary algorithm [28].

From these results we conclude that, while evolutionary strategies can be used to design

deceleration pulse sequences with large phase-space acceptance, constant-nominal-phase-

angle pulse sequences with phase angles in the range 45◦ − 55◦ are close to optimal and

are therefore recommended as easily implemented, efficient pulse sequences for multistage

Zeeman deceleration. This advantage is expected to be essential in the realization of very

long decelerators.
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