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Abstract

This thesis is concerned with Bayesian phylogenetic inference of clock rates for viral epidemics.
In this and other areas of application of phylogenetics it has been observed that the inferred
rate decreases with an increase in the sampling period. Purifying selection is a likely biological
factor that contributes to this phenomenon since it purges slightly deleterious mutations from
a population over time thus decreasing the overall genetic diversity that is observed per unit
time. However, other factors such as methodological biases also play a role and make a
biological interpretation of results difficult. We aim to contribute towards disentangling these
different influences. With a simulation study we demonstrate that a misspecified tree prior can
upwardly bias the inferred clock rate and that the interplay of the different models involved
in the inference can be complex and non-intuitive. We also show that the choice of tree prior
can influence the inference of clock rate on a real world Ebola dataset from Sierra Leone, but
fail to see such influence for a larger dataset from Guinea. Furthermore, we detect signs of
purifying selection in the Guinea dataset by comparing rate estimates on internal and pendant
branches.
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Chapter 1

Introduction

Determining the depth to cover in the intro-
duction to a Master’s thesis is probably always
a difficult task. The supervisor should not re-
quire any introduction to understand the con-
tent, whereas including enough information so
that the “general audience” can follow would
mean writing a couple of text books. As my
target audience I chose an ETH Master’s stu-
dent from a field other than Computational
Biology and Bioinformatics with some back-
ground in mathematics and statistics. 1 do
not cover much of biology and hope that any
reader is roughly familiar with DNA, Darwin
and diseases in general. While the results
in this thesis are in some sense quite techni-
cal and constrained to a narrow field, I hope
that the introduction also conveys some of the
beauty of the foundations that this work is
built upon. Since everything in this thesis
has to do with Bayesian phylogenetic infer-
ence I start by describing phylogenetics (sec-
tion 1.1) and Bayesian inference (section 1.2)
separately before discussing their conjunction
(section 1.3).

The second purpose of this chapter is to out-
line the problems that are addressed in the re-
mainder of the thesis. To this end, section 1.4
introduces the clock rate which is the main pa-
rameter we are interested in and section 1.5
briefly describes our contributions.

1.1 Phylogenetics

Yang and Rannala [1] recently published an ex-
cellent introduction to phylogenetic methods
including the ones that are based on sequence
distances or parsimony alone which I do not
cover here. For even more details, Yang’s book
[2] is a valuable resource.

History Phylogenetic trees as we know and
use them today originated with Darwin’s con-
cept of random variation and natural selection
(see Fig. 1.1 (a) for a draft in his original note-
book). These trees represent the evolutionary
relationships between species (or, more gener-
ally, organisms) and are based on their differ-
ence in heritable traits. For a long time, scien-
tists used expert knowledge and morphological
characters to construct them. Usually, by us-
ing a parsimony argument stating that the best
tree is the one that requires the least number
of changes throughout the tree.

With the advances in sequencing technology it
has now for some decades been possible to con-
struct phylogenetic trees based on DNA and
RNA sequence data. These are potentially
much more accurate since evolution is actually
happening on the nucleotide level. The data
also suit themselves for a stringent mathemati-
cal analysis because, instead of having to weigh
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differences between having four and six legs or
being herbivore or carnivore, algorithms can
operate on a sequence of letters. In this sec-
tion I will describe the framework used for such
analyses.

Models of evolution and the Felsenstein like-
lihood We assume that as data we are given
a multiple sequence alignment, i.e. a set of
sequences in which the positions of the nu-
cleotides are thought to correspond to one
another such that differences can be inter-
preted as mutations in the past. Our goal
is to compute the likelihood, P(D|T, M), of
the data, D, given an unrooted phylogenetic
tree, T, that describes the evolutionary rela-
tionships between the species whose sequences
we are comparing and a substitution model,
M, which describes the dynamics of nucleotide
changes. The tree consists of a topology and
a set of branch lengths given in evolutionary
distance, i.e. units of expected number of sub-
stitutions per site. An example is shown in
Fig. 1.1 (b). The concept of a substitution will
be explained further below. Any reader, who
is not familiar with them, can for now think
of mutations instead. Multiple substitution
models with varying degrees of complexity and
number of parameters exist, but they all essen-
tially provide us with a transition probability
matrix, P(d). Its entries, p; j(d), describe the
probability that nucleotide ¢ is substituted by
nucleotide j over a distance d.

Let us start by stating explicitly some of the
assumptions that we make:

1. Independence: Sites (i.e. different posi-
tions) in the alignment evolve indepen-
dently of each other.

2. Memorylessness: Nucleotide substitutions
at one site happen independently from the
history at that site.

3. Neutrality: Nucleotide substitutions do
not cause a change in fitness.

4. Reversibility: After correcting for varying
nucleotide frequencies, substitutions hap-
pen at the same rate in both directions
between any two nucleotides.

The first assumption allows us to compute the
likelihood for each site separately and then
multiply the outcomes to obtain the final re-
sult. The second assumption allows us to treat
model evolution at each site as a Markov chain.
The third assumption allows us to treat all sub-
stitutions from one nucleotide to another the
same. This makes the Markov chain time ho-
mogeneous. The final assumptions makes the
Markov chain reversible.

D provides us with the nucleotides at the tips
of the tree. If we, for a moment, assume that
we also know all nucleotides on internal nodes,
we can compute the likelihood (for a single
site in the alignment) by simply multiplying
Dix.jr (dk), where k enumerates all branches in
the tree. Note that it does not matter which
end of the branch is ¢ and which one is j be-
cause of the reversibility assumption. The chal-
lenge is to enumerate all possible assignments
of internal nodes and then multiply the likeli-
hoods for each one. This can be done efficiently
using Felsenstein’s pruning algorithm [3].

Clock models So far we were concerned with
a tree in which branch lengths were given in
expected number of substitutions. Usually it
is more interesting to have branch lengths in
units of real time. For this we introduce the
clock rate, r, a model parameter which scales
the (temporal) branch length to give us ex-
pected number of substitutions again. Math-
ematically we have d = ti - r, where tj is the
branch length given in units of time and dy
is the distance used to compute the likelihood
across branch k.
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(a) Draft of a phylogenetic tree on page 36 in
Darwin’s notebook (obtained from http://darwin-
online.org.uk/).

Chimpanzee

Human
Bonobo
Gorilla
Bornean orangutan
Sumatran orangutan
Gibbon

(b) A tree representing the evolutionary relation-
ship between human and apes (taken from [1], Box
3, bootstrap values removed).

Figure 1.1: Two examples of unrooted phylogenetic trees.

Theoretically, each branch could have its own
substitution rate but this would result in too
many parameters. The molecular clock as-
sumptions states that the rate is constant
across the tree. Still, the parameter r is uniden-
tifiable as illustrated by a simple example: A
distance of 5 expected substitutions can be ex-
plained by a temporal branch length of 5 years
and a substitution rate of 1 substitution/year
or by 1 year and a substitution rate of 5 sub-
stitutions/year. To fix this, we have to add
some form of absolute temporal calibration.
For macro-evolution, researchers often use fos-
sils to determine the absolute time of internal
nodes. For fast evolving pathogens, it can be
sufficient to get samples over a time-span of
months or years so that enough genetic change
is captured to calibrate the clock.

A strict molecular clock is the most restrictive
clock model and often the assumption of hav-
ing an equal clock rate across all branches is
violated by the data. Therefore, relazed clock

models have been developed, which allow the
rate to vary across branches either in a corre-
lated or in an uncorrelated way [4].

1.2 Bayesian inference

History If we want to learn about the world
in a scientific way, we need a method to draw
general conclusions from available data. Since
deductive reasoning, i.e. drawing conclusions
that are certain, is often impossible, science
has largely adopted an inductive process, as e.g.
described by Popper. In this framework, a hy-
pothesis can never be proven true. It can only
become more plausible as it defeats repeated
attempts to falsify it.

Although he lived long before Popper, Rev-
erend Thomas Bayes was concerned with as-
signing probabilities to unobserved events (or
hypotheses) given some observed events (or
data). In his famous “Essay towards Solv-
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ing a Problem in the Doctrine of Chances” [5]
that was published after his death, he consid-
ered the following thought experiment: Sup-
pose you are blindfolded and sit in front of a
table. The table is such that if a ball is thrown
on it, it has equal chance to land anywhere on
it. Your assistant throws a ball and it is your
task to guess where on the table it landed. To
achieve this you can ask your assistant to throw
another ball and tell you whether it landed to
the right or left of the original ball. If it landed
to the right, it is more likely that the original
ball was on the left half of the table and vice
versa. By repeating this procedure, you can
become increasingly certain about the position
of the original ball.

Bayes’ formula can be used to formalize this
process of accumulating knowledge. Today, it
is usually stated in the following form:

P(B|A)P(A)
P(B)

where A and B are some events and P(B) # 0.
Though he never stated it explicitly, Bayes did
prove a special case of it and “the way to the
formula is apparent in several instances of the
Essay” [6]. The theorem was also discovered
by Laplace who put it to use in the fields of
astronomy and made substantial contribution
to the mathematical framework surrounding it.

P(A|B) = (1.1)

Today, Bayes’ formula can be derived in one
line using the definition of conditional probabil-
ities following Kolmogorov axioms, though it is
much older than those axioms and Bayes him-
self did not have a notion of random variables.
Much more excitingly, though, it can also be
derived thoroughly as an extension of boolean
logic and a set of axioms that try to capture
our human “common sense”. This was formally
done by Cox [7] and together with the works
by Polya [8] it leads to a deep foundation of
Bayesian inference as stated in the preface of

Jaynes book “Probability Theory: The Logic
of Science” [9]:

[W]hen one added Polya’s qualitative
conditions to [the consistency theo-
rems of R. T. Cox| the result was
a proof that, if degrees of plausibil-
ity are represented by real numbers,
then there is a uniquely determined
set of quantitative rules for conduct-
ing inference. That is, any other rules
whose results conflict with them will
necessarily violate an elementary —
and nearly inescapable — desideratum
of rationality or consistency.

It is fascinating that these rules agree with
the general theorems of probability derived by
Bernoulli and Laplace. However, in their new
interpretation they are a result of logic and do
not require inherent randomness in nature. As
such, they ultimately follow a different defini-
tion of probability as a degree of believe for an
event rather than the frequency at which that
event happens in an infinite number of (ran-
dom) experiments.

Bayes’ formula in science We can rewrite
Bayes’ formula with different symbols to high-
light it’s application in science:

P(DIH)P(H)

P(HID) = =5,

(1.2)

where
e 7 is some hypothesis,
e D are some data,

e P(H|D), the posterior, is the probability
that our hypothesis is true, given the ob-
served data (and our prior knowledge and
some model),
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o P(D|H), the likelihood, is the probability
that the observed data is generated under
the hypothesis,

e P(H), the prior, is our prior believe that
the hypothesis is true,

e P(D), the marginal likelihood, is the over-
all probability that we observe the data
under any hypothesis. For a discrete set
of hypotheses, H, we can rewrite it as
P(D) = > g+cu P(D|H*). For a contin-
uous hypothesis space — e.g. a continuous
range of parameters — we use an integral
instead of a sum.

The posterior is often the quantity that is of
direct interest in science as it gives a measure
of support for a given hypothesis. The prior,
however, was and continues to be a cause for
debates. Especially during the 20th century,
there was a discussion on an almost religious
level, whether Bayesian inference should be
used in science and industry. Most famously,
this debate was held between Jeffreys on the
side of the Bayesians and Fisher on the side of
the frequentists. While Bayesians believe that
the prior allows to incorporate previous knowl-
edge in a meaningful and robust way, the other
side insists on letting the data speak for itself.
Books have been written about the underly-
ing philosophical differences and their techni-
cal implications (e.g. [10]), but by now many
examples of successful use of Bayesian infer-
ence in the real world have been documented
[11]. Jaynes therefore concludes:

We are now in possession of proven
theorems and masses of worked-out
numerical examples. As a result, the
superiority of Bayesian methods is
now a thoroughly demonstrated fact
in a hundred different areas.

Markoc Chain Monte Carlo methods On
top of the philosophic difficulties, Bayesian in-

ference could for a long time not be used on a
large scale, because the computational burden
in computing the posterior was too high. This
is mainly caused by the difficulty in computing
the marginal likelihood which is potentially a
large sum or integral. This changed with the in-
troduction of modern computers and a class of
algorithms named Markov Chain Monte Carlo
(MCMC) algorithms. The original algorithm
was introduced in 1953 [12] and has had a huge
impact on many scientific fields over the years.

This algorithm can be used to draw samples
from any given distribution, P(x). In fact,
it suffices to provide a function, f(z), that is
proportional to the desired target distribution.
The algorithm starts at some initial point, xg,
and then proposes a new point, x1, nearby.
Then the ratio r = f(x1)/f(xo) is computed
(and possibly corrected with a Hastings ratio
[13]) and the new point is accepted with prob-
ability max(1,7). This can be repeated until
a sufficient number of samples are drawn. By
viewing this process as a Markov chain, one
can show that — under some reasonable assump-
tions — it produces samples from the desired dis-
tribution in the limit of infinitely many steps.
Since we only require f to be proportional to
P, we can disregard the marginal likelihood
when sampling from the posterior. Another
advantage of MCMC algorithms is that they
also provide us with estimated marginal pos-
terior densities of the model parameters. In
fact, all we have to do is take the samples for
that parameter while disregarding the others
to get a marginal estimate of the parameter’s
distribution that incorporates all remaining un-
certainty.

1.3 Bayesian phylogenetic infer-
ence

Using Bayesian methods for phylogenetic infer-
ence brings along advantages such as seamless
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integration of complicated models and prior
knowledge. As discussed above, the latter can
also be seen as a weakness depending on a
philosophical standpoint or on the amount of
available information. This introduction to
Bayesian phylogenetic inference is very brief.
While I leave out many mathematical details,
I hope that the reader will understand in prin-
ciple how we can address various biological
questions — phrased in the form of inference
of model parameters — using nothing but se-
quence data and a bit of calibration as our
data.

The posterior We can write the posterior
very closely related to the way we wrote Bayes’
theorem in eq. 1.2:

P(D|T,0)P(T,0)
P(D) ’

P(T,0|D) = (1.3)

where we expanded the hypothesis, H, to the
tree, 7, and a parameter vector, . What ex-
actly is contained in # depends on the chosen
models, but the computation of the priors is
straightforward since they are usually specified
using one of the standard probability distribu-
tions. How to design a prior for 7 is described
below. The likelihood P(D|T,#) can be com-
puted by the pruning algorithm as explained
above and the marginal likelihood, P(D), does
not have to be computed when we are using an
MCMC algorithm. Different implementations
of such a phylogenetic MCMC algorithm exist
in a form that makes them easy to use by indi-
vidual researchers (e.g. [14-16]).

Tree priors We still need to specify a prior
over tree space, i.e. we need a way to assign a
probability to a topology and branch lengths.
Generally, this is done by designing a model
that generates a tree and then determining
how likely a given a tree is under that model.

Two different approaches exist for this. The
first one is the coalescent which is a theoreti-
cal result for a Wright-Fisher process with a
large population [17]. A Wright-Fisher pro-
cess describes an idealized population with syn-
chronous change of generations in which each
individual “picks” one parent at random (see
e.g. [18]). Given the population size, the coa-
lescent allows us to compute the probability of
a tree. The second approach is the so-called
birth death process. While the coalescent is
a “backward-in-time” model that starts at the
tips of the tree, the birth death process is a
“forward-in-time” model that starts out with
a single ancestor and then models branching
events according to a set of population param-
eters. Various extensions exist for both mod-
els, including non-contemporary tip dates or
changes in the parameter values over time.

1.4 Clock rate, substitution rate
and mutation rate

In this thesis, I will talk a lot about inferring
rates of evolution which are measured in evolu-
tionary change/site/time. It is useful to distin-
guish between three different such rates:

e Clock rate: a model parameter that is
needed to compute the likelihood for se-
quence evolution along a branch in a tem-
poral phylogenetic tree

e Mutation rate: the rate at which errors
happen in the DNA or RNA duplication
process of a cell / virus; mainly a biochem-
ical “parameter” of the polymerase

e Substitution rate: the rate at which sub-
stitutions (i.e. fixed mutations) occur in a
population

It is worth to state some details about the defi-
nition of the substitution rate. Fization means
that within one population a mutation com-
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pletely replaces the original nucleotide — either
because it is advantageous or by random ge-
netic drift. We therefore require a concept of
a population. In the beginning of phylogenet-
ics, when macro-evolution was the main sub-
ject of interest, populations were simply the
different species. Generally, however, what is
considered a population depends on the scale
of the analysis. Overall, the substitution rate
is a complex measure that is influenced by the
mutation rate but also by generation time, pop-
ulation size and fitness [19].

When the clock rate is estimated from genetic
data, it usually falls somewhere between the
mutation and the substitution rate. For short
time frames it is closer to the former, for long
time frames closer to the latter. This is because
on short time scales, when the most common
ancestor of the samples is not too far in the
past, we still observe many slightly deleterious
mutations. Those mutations produce a viable
organism but result in a slight decrease in fit-
ness. Over longer time frames, these mutations
will be purged from the population again by
a process called purifying selection. At that
point, most of the observed genetic diversity
stems from actual substitutions. A more de-
tailed example is presented in [20].

For viruses, the primary organisms of interest
in this thesis, defining a substitution rate is
difficult. Firstly, there are many options when
defining populations. A population could e.g.
contain all the viruses in one patient, one city
or one country. On top of that, it is “intrin-
sically contradictory” [21] to talk about fixa-
tion within any viral population given their
quasi-species nature. They mutate so rapidly
that they are in a constant transient state with
many mutations occurring concurrently at any
time.

We can, of course, infer the clock rate from
viral datasets, e.g. by sampling the viral se-

quences in different patients during an out-
break of a viral disease. But interpretation of
that parameter should be done with care — es-
pecially when comparing it across time-scales
or populations. Still one of the first studies for
the 2013-16 outbreak of Ebola in West Africa
stated the following about their inferred clock
rate [22]:

The observed substitution rate is
roughly twice as high within the
2014 outbreak as between outbreaks.
Mutations are also more frequently
nonsynonymous during the outbreak.
Similar findings have been seen previ-
ously and are consistent with expec-
tations from incomplete purifying se-
lection.

With the last sentence, the authors tried to
put their findings into context. Yet, their pa-
per triggered the headline “Ebola virus mutat-
ing rapidly as it spreads” [23] in the Nature
news section and caused concerns among scien-
tists and public health officials. Further stud-
ies [24,25] later on revealed that the longer
term “substitution” rate of the virus within
that epidemic proved to be the same as the
estimate between outbreaks. This shows the
need for careful interpretation of these param-
eters which can only happen when we properly
understand the underlying models and their in-
teraction.

1.5 Motivation

The decline in inferred clock rate with in-
creasing sampling period caused some debate
in the recent years [20,26-28]. While it is
widely acknowledged that purifying selection
contributes to this phenomenon, the degree to
which other factors like sampling biases and
model misspecifications play a role is less clear.
The thesis aims to contribute to this under-
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standing.

In chapter 2 we use a simulation study to inves-
tigate the influence of the tree prior on clock
rate inference and show that it can lead to in-
flated estimates. With sufficient data, this bias
can be overcome and therefore a misspecified
tree prior may contribute to the observed de-
cline in rate. We also demonstrate that the
choice of tree prior can influence clock rate in-
ference on an empirical dataset. In chapter 3
we find some evidence for purifying selection
in an Ebola dataset and introduce a modified
relaxed clock model that may be helpful for
researchers in the future.



Chapter 2

The interplay of tree prior and clock rate
estimation

2.1 Introduction

Bayesian inference is a powerful tool for the
study of phylodynamics. It allows seamless in-
tegration of complicated models with various
parameters along with varying degrees of uncer-
tainty. Using nothing but nucleotide sequences
and temporal calibration, one can answer ques-
tions about past speciation times, past migra-
tion events of species or pathogens infecting
host populations and temporal changes in pop-
ulation parameters such as speciation or trans-
mission rates. Rather than point estimates,
we can compute marginal posteriors of our pa-
rameters of interest which provide full distri-
butions, incorporating the overall uncertainty
in the model provided the model fits the data.
In this chapter we will focus on the inference
of the clock rate parameter that determines
how quickly nucleotide changes happen along
branches in the tree.

While the Bayesian phylogenetic framework as
a whole is conceptually straightforward, carry-
ing out an analysis can be very complex and
thus dedicated software tools have been devel-
oped [14-16]. Sequence data alone allows us to
infer genealogies in which branch lengths corre-
spond to the expected number of substitutions
along that branch. External calibration is re-

quired to compute the length in temporal units.
For studies of macro-evolution, fossils [29] or
ancient DNA (aDNA) [30] are frequently used,
whereas for fast-evolving pathogens, like RNA
viruses, serially sampled data can be sufficient
when evolution happens on the time scale that
was sampled [31,32].

Applying phylodynamic tools to pathogens
allows insights into different aspects of the
pathogen’s evolutionary and transmission dy-
namics. We can infer the effective reproductive
number (R.), the time of origin or the substi-
tution rate. All of them can be of interest to
public health officials who need to decide where
and how to react to an epidemic. While R, and
the time of origin are straightforward to define,
the concept of a substitution rate for viruses
is less clear. Usually, the substitution rate is
defined as the rate at which mutations become
fixed in a population [19]. This however re-
quires to define populations and fixations, both
of which are problematic terms when talking
about an ongoing epidemic [21, 33].

As a model parameter, the clock rate is well
defined and together with the branch length
determines the expected amount of nucleotide
change along that branch. However, many
models and analyses acknowledge the fact that
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there are multiple different rates varying be-
tween branches and sites. Comparison of clock
rates should therefore be done very carefully
and only where applicable. Nevertheless it was
shown for many different real datasets stem-
ming from viral outbreaks that the clock rate
decreases as the sampling period is increased
[34]. This was also observed in real time
during the 2013-16 Ebola epidemic in West
Africa. One early study [22] caused great con-
cern among scientist and public health officials
who were afraid of an Ebola virus that was
accumulating substitutions much more rapidly
than previously observed and would thus evade
screenings and render vaccines and medication
useless [23]. Further data collection, however,
made it evident that substitutions were occur-
ring at the same speed as long term observa-
tions suggested [24, 25, 35].

The fact that the clock rate estimate depends
on the time scale that is used for calibration
does not only hold for viruses and has first been
observed and publicized more than ten years
ago [36]. In that paper, Ho et al. suggest that
the most likely cause is incomplete purifying se-
lection: On shorter time scales slightly deleteri-
ous mutations are still observed in the data and
artificially inflate the clock rate. Over a longer
timeframe these mutations are purged due to
purifying selection (see [20] for an illustrative
example). It was quickly shown, though, that
purifying selection alone cannot explain the
observed decline [37]. Multiple other factors
such as calibration errors, model misspecifica-
tion and sequencing errors can all contribute
to inflated clock rate estimates as well (see [20]
for a review). The debate about which of these
factors contribute to which degree is still very
much ongoing, in particular with regard to the
question how big of a role purifying selection
plays [26-28]. To understand the complex in-
terplay, simulation studies and analyses of real
datasets are both important.

For a phylogenetic analysis in a Bayesian frame-
work we need to specify at least a clock model,
a substitution model and a tree prior. All these
components interact in a way that is sometimes
non-intuitive. There have been efforts to make
it easy for researchers to select the best clock
and substitution model [38-43] but less so with
respect to the right tree prior. However, even
if we are only interested in the clock rate and
integrate out the uncertainty in tree space, the
tree prior can have an impact on the posterior
distribution. Even though the models for the
clock and the tree are independent components
of the analysis, the tree length (i.e. the sum of
all branch lengths) and clock rate are highly
negatively correlated as their product needs to
explain the overall diversity that is observed
in the data. While we put an explicit prior
directly on the clock rate this is not true for
the tree length. Rather, the tree length ob-
tains a prior indirectly from the specified tree
prior. This influence has not been studied in
detail, except for some analytical results for a
coalescent model with contemporary tips [44].
Results for serially sampled tips or for birth
death processes are to our knowledge not avail-
able.

With this chapter we wish to contribute to the
current debate about clock rate inference in
Bayesian phylogenetics. To this end we point
out some non-trivial conceptual issues using
a simulation study. New models for tree pri-
ors are regularly investigated using simulation
studies in which the model itself or more simple
models are used to generate the data [45-47].
While this is a valuable contribution to show
that the model can recover true values under
ideal circumstances, it offers no information
about the robustness of the inference to vio-
lations of the underlying model assumptions.
In our simulation study, we use an empirical
rather than a simulated tree and simulate se-
quence evolution on that tree. This allows us
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to assess the robustness of the inference of the
(known) mutation rate from the simulated se-
quences when the tree prior potentially poorly
models the underlying tree. We obtained the
tree from an analysis of sequences from Guinea
during the latest Ebola outbreak. We then
analyse this dataset as well one of the earli-
est datasets of the outbreak [22] using different
tree priors and show that for the latter a much
lower estimate of the clock rate is obtained
when using a model accounting for structure
within the population.

2.2 Methods

2.2.1 Simulation study

We simulated sequence evolution along a fixed
tree using very simple clock and substitution
models and subsequently analysed the result-
ing alignment using the same models and a
constant population size coalescent tree prior.
To obtain the tree, we used the coding part
of 236 whole genome sequences of the Ebola
virus from patients in Guinea sampled during
a period of 10 months. These data have previ-
ously been described in [48,49]. We removed 3
Guinea sequences with unknown district from
[49]. For the analysis in BEAST2 we used a se-
rially sampled birth death skyline model with
3 intervals for RO and the sampling proportion
along with an HKY substitution model and a
lognormal relaxed clock. We ran the chain for
100 million steps and discarded 10% of burn-in.
We used treeannotator which is included in
BEAST2 to create the maximum clade credibil-
ity tree which is shown in Fig. 2.1.

We then used the sequence simulator included
in BEAST2 and a Jukes-Cantor model (JC69)
[50] with a fixed clock rate of 0.1 substitu-
tions/site/year (s/s/y) to simulate sequences
of length 100, 500, 1000 and 15000 base pairs.
We used the alignment obtained from the sim-

ulations as input to a BEAST2 analysis in
which we also employed a strict clock and JC69
model. We chose a normal distribution with
standard deviation of 0.02 around the true
value of 0.1 as a prior for the clock rate and
a lognormal distribution with M = 0 and
S = 0.5 for the population size of a constant
size coalescent. We also used different coales-
cent and birth-death priors to check the robust-
ness of our findings. The specific settings are
highlighted in the respective figure captions.
For each sequence length we did 10 indepen-
dent simulations. The parameters in the setup
of this simulation are not meant to be directly
biologically relevant but rather an illustrative
example. Chains were run for 10® steps, except
for the alignment of length 15000 for which
they were run for 6 x 107 steps. We used R
[51] and the coda package [52] to analyse pos-
terior samples of the clock rate, tree height,
tree length and total divergence (product of
clock rate and tree length) after discarding
10% of burn-in and verifying that the effective
sample size was above 200 for all parameters.
Plots were also created in R using the package
ggplot2 [53].

2.2.2 Inference under different tree pri-

ors

We investigated the dependence of clock rate
inference on the chosen tree prior on two Ebola
datasets. The first one is the same as the
one used to generate the tree for the simu-
lation study and we will refer to it as the
Guinea dataset. For the analysis under a struc-
tured coalescent model, we assigned the tips to
four clades based on their location in the tree
that was used for the simulation. The second
dataset comes from an early publication of the
Ebola epidemic in West Africa in 2014 which
concluded that the substitution rate for the
virus was about twice as high during that out-
break as between outbreaks [22]. It contains
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Figure 2.1: The tree that was used for the simulation
study.

whole genome data (i.e. almost 20 k sites) of
81 sequences sampled during three months. 78
of the sequences were sampled in Sierra Leone
by [22] and 3 had been sampled previously
in Guinea [54]. For the structured coalescent
analysis, the sequences were assigned to three
clades based on the location (one for Guinea
and two for Sierra Leone). We will refer to
this dataset as the Sierra Leone dataset.

For the analysis in BEAST2 we used a strict
clock and an HKY substitution model [55]
without site heterogeneity. For the Sierra
Leone dataset this follows the analysis that
was carried out in the original publication. We
used six different tree priors: Constant rate
birth death, birth death skyline [45], constant
population size coalescent, exponential growth
coalescent, coalescent skyline [47] and struc-
tured coalescent [56]. The distributions and
parameters for the priors are listed in the sup-

plementary material (Table A.1). We ran all
chains for 10® steps, except for the structured
coalescent analysis of the Guinea dataset which
was run for 5 x 10® steps. We always discarded
10% burn-in and verified that the effective sam-
ple size for all parameters was above 190.

We subsequently used path sampling [57] to
assess the relative goodness of fit of the differ-
ent models. We used the implementation in
BEAST2 with 16 steps, a = 0.3, a chain length
of 5 x 107 steps and a burn-in of 20%.

2.3 Results

2.3.1 Simulation study

The median estimate and 95% HPD intervals
for clock rate, tree height, tree length and to-
tal divergence for each replicate of the simula-
tion study are shown in Fig. 2.2. The dashed
lines in each panel indicate the true values.
The HPD intervals for tree height and total di-
vergence almost always include the true value
and become smaller with increasing sequence
length. The estimates for clock rate and tree
length, however, are biased upwards and down-
wards, respectively. The bias and the variance
decreases as the sequence length increases, but
the true value is only covered by the HPD in-
tervals of some runs for sequence length 15000.
Without any sequence data, the inferred values
are close to the truth (see Fig. A.1).

For the first out of ten replicates, Fig. 2.3 shows
the posterior distribution of topologies using
the treescape tool [58] after down-sampling
to 101 trees per sequence length and discard-
ing 10% of burn-in. treescape turns topolo-
gies of a set of labelled trees into a real valued
vector representation, computes the pairwise
Fuclidean distance between all these vectors
and then does a principal component analysis
to visualize the distances in two dimensions.
For this plot we also included data from a sim-
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Figure 2.2: Median values and 95% HPD intervals for
some parameters in the simulation study. The dashed
lines indicate the true values. Clock rate is given in substi-
tutions/site/year, tree height and tree length in years and
total divergence (product of clock rate and tree length) in
substitutions/site.

ulation without sequence data (i.e. sequence
length is 0). The points representing topolo-
gies obtained with sequence data form a clus-
ter around the true topology (shown with a
red cross) while the topologies coming from the
analysis without sequence data are clearly sep-
arated.

The results from the simulation study are ro-
bust towards changing the tree prior. As dis-
played in Fig. A.3, changing the coalescent pop-
ulation size prior to either very fast or very slow
exponential growth does not alter the clock
rate estimates. Further, using a birth-death
prior with either a very high or very low basic
reproductive number (i.e. fast or slow growth)
does not change the observed pattern either
(Fig. A.4).

alignments in a maximum likelihood frame-
work using the tools RAXxML [60] and least-
squares dating [61]. For sequences of length
500 and more, the true value is within one stan-
dard deviation of the inferred mean.

2.3.2 Inference under different tree pri-

ors

Fig. 2.4 shows the results for the two Ebola
datasets. For the Guinea dataset the birth
death model leads to the highest clock rate
with a median of roughly 1.3 x 1073 s/s/y. Un-
der all the other models the inferred rate is
slightly below 1.2 x 1072 s/s/y. The HPD in-
tervals, however, are largely overlapping. The
inferred tree length shows the opposite trend
with the birth death model leading to a median
estimate of 17 years whereas the other models
result in an estimate between 18 and 19 years.
For the tree height the large HPD intervals for
the constant and structured coalescent stand
out. These two also have the highest median
of around 1.1 years, while the lowest estimate
of slightly below 1 year is obtained under the
birth death model. For total divergence there
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is no noticeable difference between any of the
models.

For Sierra Leone all of the unstructured models
lead to a median estimate of the clock rate of
about 2 x 1073 s/s/y which is a lot higher than
the long term rate during that epidemic (ap-
proximately 1.25 x 1072 s/s/y [24]). The struc-
tured coalescent model results in a median rate
of 1.3 x 1072 s/s/y. The opposite trend is ob-
served for the tree length. While the unstruc-
tured models result in estimates of around 1.5
years, the structured coalescent leads to a me-
dian value of 2.3 years. For the tree height the
medians for the unstructured models is around
0.3 years but the birth death models result in
much narrower HPD intervals than the coales-
cent models. Using the structured coalescent
we obtain even more variance around a median
of 0.4 years. Again we find no noticeable dif-
ference for total divergence.

Fig. 2.5 shows the results of the model compar-
ison. For Guinea the structured coalescent is
clearly the best model, with a Bayes factor be-
tween 60 and 70 compared to all the other mod-
els. We checked the robustness of this finding
by running path sampling with a varying num-
ber of steps (Fig A.6). While the structured co-
alescent always presents the best fit, the rank-
ing of the other models varies. For the Sierra
Leone dataset we find that the birth death
and the skyline coalescent models present the
worst and best fit, respectively. However, the
log Bayes factor of the birth death model is
only around —1.5 and for a different number
of steps, the structured coalescent model was
sometimes estimated to be the worst (Fig. A.6).
The skyline coalescent and the birth death sky-
line, on the other hand, yield consistently high
performances.

We also analysed an influenza dataset contain-
ing 273 sequences sampled during only one
month [62] and find little difference in the in-

ferred clock rate but some variation in the es-
timated tree height. Details are presented in

the supplementary material (Section A.1 and
Fig. A.7).

2.4 Discussion and conclusion

The simulation study shows that when simulat-
ing along a tree that is based on real data it
can be surprisingly difficult to recover the true
clock rate, even when very simple clock and
substitution models are used. This, despite the
fact that our prior on the clock rate is correct.
The problem arises from a misspecification of
the tree prior (see Fig. 2.3 and A.1) which will
be difficult to detect in real datasets where the
truth is unknown. The tree prior implies an in-
direct prior for the tree length which then leads
to a bias in the clock rate estimate. Matters
are complicated further by the fact that, in this
particular case, the tree prior seems appropri-
ate when looking at the tree length as an aggre-
gate statistic, since the bias disappears when
sampling without sequence data (Fig. A.1).

These results may initially seem counter-
intuitive. To explain them, we will briefly
review the Bayesian phylogenetic framework.
Let the clock rate be denoted by u, the tree
by 7T, the remaining parameters by 6, the tip
dates by 7 and the data (a multiple sequence
alignment) by D. In a simple form, the poste-
rior is given by

P, T,0|D,7) o< P(Dlp, T,G)f(TIT)f(M)(f(@)-
2.1

Here, we chose to condition the tree prior on
the tip dates rather than to include them in
the likelihood. Without any sequence data, we
have P(D|u,T,0) = 1 and therefore, when
sampling from the posterior, 7 and p can
change independently. Adding only a little bit
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Figure 2.4: Median and 95% HPD intervals for clock rate, tree height, tree length and total divergence inferred from
the two datasets under different tree priors. For units refer to the caption of Fig. 2.2.
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of sequence data can make a large difference
in the inference as it links the tree and the
clock rate via P(D|u,T,0). If the tree prior
causes the tree length to be underestimated,
the model will compensate for this by increas-
ing the clock rate to explain the overall diver-
sity in the data.

The prior distribution on the tree space,
f(T,7), is a distribution over topologies and
branch lengths. This indirectly gives rise to
the prior on the tree length which is depicted
in Fig. A.1. treescape allows computation
of a median tree from a set of trees which
can be used as a representative tree similar to
the maximum clade credibility tree. The me-
dian tree without sequence data is depicted in
Fig. A.2 and looks very different from the origi-
nal tree (Fig. 2.1), despite the tree length being
almost the same. Upon adding sequence data
the topologies that before had a high prior sup-
port become very unlikely (Fig. 2.3) and under
this constrained topological space, the indirect
prior on the tree length is altered as well. It is
the change in the likelihood of topologies that
causes the downward bias in tree length for
sequence lengths 100, 500 and 1000 which in
turn causes the clock rate to be overestimated.
This bias can be overcome if sufficient data are
added.

We see that the tree height can be esti-
mated much more reliably than the tree length
(Figs. 2.2 and A.3). This is because informa-
tion coming from all sequences can be used for
its estimation. Like the total diversity, it is in
that sense a global parameter and little data is
already informative about it. There are, how-
ever, many trees of the same height but with
different lengths (see e.g. Fig. 2.6) and infer-
ring the length correctly is a much harder prob-
lem and thus more susceptible to biases from
the tree prior. The same holds true for the
topology. Fig. 2.3 shows that the tree prior
alone produces topologies that are very differ-

¢ 4 .

no sequence data with sequence data

Figure 2.6: A toy example of how the sequence data can
influence the branch length via changing the topology.

ent from the true topology. It also shows, how-
ever, that for short sequences, there is still a
lot of uncertainty in the topology and while
we do move away from the prior towards the
truth, the tree prior still causes a bias. This is
important to keep in mind in studies with lit-
tle data where the tree topology is treated as a
nuisance parameter since bias in topology can
result in biased inference of other parameters
as well. Our simulation indicates that none
of the non-structured tree priors can overcome
the problem (Fig 2.2, A.3, A.4) — even with
very different priors for the dynamics in the un-
derlying non-structured population, too much
weight is given to certain tree topologies.

The influence of sequence data on the topolog-
ical space and on the tree length can be illus-
trated with a toy example (Fig. 2.6): Consider
a tree with two contemporary and one past
sample. For a small population size a coales-
cent tree prior would give high probability to
the tree topology in which the two contempo-
rary tips form a cherry. When sequence data
are added, it may become obvious though, that
the cherry should be be formed between one
of the contemporary tips and the sample from
the past. This effectively puts a lower bound
on the tree length.

The practical problem for researchers is that
they obviously do not know the true value
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for clock rate and tree length. The usual ap-
proach is to sample from the posterior without
sequence data and compare the resulting distri-
bution for the parameters of interest with the
one obtained including sequence data. This ap-
proach would fail for the clock rate and the tree
length on the simulated datasets for sequence
lengths smaller than 15000 which would result
in false confidence in wrong estimates. To
make things worse, comparing the prior against
the posterior for short sequences shows an in-
crease in the clock rate. Thus, bearing in mind
that we only have little data, one would typi-
cally conclude that more data would lead to an
even higher clock rate.

These observations are similar to recent publi-
cations that point out the complexity of defin-
ing a correctly calibrated prior for divergence
time estimation [63—-65]. In that case the con-
volution happens between the calibration of in-
ternal nodes and the tree prior which can lead
to an unexpected realization of the prior and
result in biased estimates and too narrow con-
fidence intervals. In our example the convo-
lution only happens when sequence data are
added that contain a strong signal about the
topological space which in turn leads to an
unexpected constrain on the tree length. We
also showed that a maximum likelihood anal-
ysis which does not employ an (explicit) tree
prior did not suffer from the bias reinforcing
our interpretation that it is the tree prior that
causes the problem.

The analysis of the two empirical datasets also
confirms that the tree prior can influence the
inferred clock rate: For Sierra Leone we see
that the choice of tree prior can heavily influ-
ence the estimated clock rate. If a structured
model had been used in the original analysis,
then the difference between the short and long
term estimates would have disappeared. Sim-
ulation studies in the context of aDNA have
shown that complex population structure in

the past can lead to biased estimates of clock
rate if the data is analysed under a model that
is too simple [66]. We do not claim that the es-
timates using the structured model are correct
in this case. Even though the sequence data
came from two different countries and a struc-
tured model therefore represents a reasonable
choice, the model comparison suggests that it
has a rather poor fit compared to the other
models. Instead, the data seem to demand a
model which allows a change of the parameter
values over time. However, correct estimation
of marginal likelihood is a difficult and com-
putationally demanding task and the results
should therefore be taken with a grain of salt.
Also, marginal likelihoods and Bayes factors
say nothing about the absolute goodness of fit
[67]. This can only be done with computation-
ally even more demanding methods like pos-
terior predictive simulations [68]. Regardless,
our results show the importance of carefully
choosing a tree prior and that this choice can
strongly influence the clock rate estimates.

For the Guinea dataset the median under each
model is contained in the HPD intervals of all
others, but the birth death model still leads to
a markedly higher estimate. This, despite the
fact that the data cover a span of 10 months
and should therefore suffer less from short term
biases. Also for the inference of tree height the
choice of tree prior would have played a big
role. While this is a more obvious conclusion,
it underlines the need to check the influence
of the tree prior on the inference and to check
overall goodness of fit of the model. We should
further note that the assignment to clades was
not so clear a-priori. Even though the data
suggests that the structured model already fits
the data the best, it may therefore be fruit-
ful, to additionally apply a structured model
that does not rely on classified tips (e.g. [69] or
[Barido-Sottani & Stadler, in prep.]).

In this chapter we pointed out some concep-
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tual problems in the inference of the clock rate
when using Bayesian phylogenetic tools. The
interaction between tree prior and clock rate
estimation can be complex and non-intuitive.
We used a simulation study to demonstrate
that deviation of the posterior clock rate dis-
tribution from the prior does not necessarily
imply a signal in the data and can be a mere
artefact of the chosen tree prior. The reanaly-
sis of an Ebola data from Sierra Leone showed
that the high mutation rate that was reported
originally could be wrong and that the inferred
rate under a different tree prior comes very
close to the long term estimate. Overall this
stresses the need to choose the tree prior care-
fully even if the parameter of interest is the
clock rate and demands further investigations
on how overall model fit in Bayesian phyloge-
netic analyses can be assessed.



Chapter 3

Purifying selection during the Ebola epidemic
in Guinea

3.1 Introduction

One of the key biological factors that is often
called upon to explain a decrease in inferred
clock rates with increasing sampling period is
purifying selection (see [20] for an excellent re-
view of this and other possible factors). The
reasoning is that most (non-lethal) mutations
that occur in a population are slightly delete-
rious (i.e. they lead to a decrease in fitness)
and will therefore be removed again by purify-
ing selection. On a short time-scale, we still
observe more of those mutations and thus in-
fer a higher rate than over a longer period of
time. By the same reasoning, we expect to find
more slightly deleterious mutations and thus a
higher clock rate on pendant branches of a phy-
logenetic tree.

We wanted to test if we can detect purify-
ing selection in a dataset from the 2013-16
Ebola epidemic in West Africa. To this end,
we used a relaxed clock model and analysed
the estimated clock rate on internal and pen-
dant branches. Since purifying selection will
only act on non-synonymous mutations, we es-
timated the clock rate parameters for codon
position 1, 2 and position 3 separately. This is
not perfect, as some mutations on position 1,
2 can be synonymous and others on position 3

can be non-synonymous, but it is methodolog-
ically convenient and a good approximation.
We also employed a constrained relaxed clock
model, in which only two different clock rates
are used throughout the tree, hoping to am-
plify the difference between internal and pen-
dant branches.

3.2 Data

We used the coding part of the viral genome
sampled from 236 patients in Guinea over the
span of ten months starting from March 27,
2014. This is the same data that was used
for the simulation study in chapter 2. The se-
quences were divided into six intervals which
are temporally equally spaced, each contain-
ing between 19 and 94 sequences (see table 3.1
for details). We then analysed the cumulative
dataset, mimicking how one would analyse an
on-going epidemic as more and more data be-
come available. For this dataset, an overall de-
crease in clock rate estimation with increasing
sampling period has been observed [70].
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Table 3.1: The table shows the latest date for each interval as well as the number of new sequences added during
that interval and the total number of sequences. The first sequence was sampled on 2014-03-27.

Interval Last date No. of new sequences Total no. of sequences
1 2014-05-14 31 31
2 2014-06-25 19 50
3 2014-08-28 33 83
4 2014-10-19 94 177
5 2014-12-09 33 210
6 2015-01-31 26 236
3.3 Analysis using a relaxed captureshow much genetic change happens per

clock

The analysis was done in BEASTZ using a
birth death skyline model [45] with i 4+ 1 inter-
vals for RO and the sampling proportion when
analysing data up to interval i. We used an
HKY substitution model and a relaxed lognor-
mal clock and estimated the parameters for
those models separately for codon position 1, 2
and codon position 3. Details about the prior
distributions of the parameters are listed in ta-
ble 3.2. We ran the chains for 50 million steps
and discarded 10% of burn-in. Except for the
full dataset (i.e. interval 6) the ESS for all pa-
rameters were larger than 200.

Instead of reporting either the relaxed clock
mean or the mean rate across all branches, we
analysed the rates for internal and pendant
branches separately. To this end, we extracted
the weighted average of the clock rate on inter-
nal and pendant branches based on their length
for each posterior tree sample. Formally, for
each set of branches, B, we computed an ag-
gregated clock rate with

rB =3"nty) >t

beB beB

(3.1)

where 7, and t; are the rate and length of
branch b, respectively (see eq. (8) in [4]). This

time across all branches of the respective type.

Median clock rate estimates in substitution-
s/site/year (s/s/y) and 95% HPD intervals are
shown in Fig. 3.1. We can see for the inter-
nal branches on position 1, 2 and both branch
types on position 3 that the clock rate de-
creases with increasing sampling period. In
those three cases, the final median is barely
contained in the first HPD interval. The re-
sults for internal and pendant branches are
nearly indistinguishable for position 3 but show
some difference on position 1, 2 with pendant
branches having a higher median clock rate
than internal branches for intervals 2 through 6.
Since changes on codon position 1, 2 are much
more likely to cause a non-synonymous change
in the protein, this agrees with our expecta-
tions and indicates that, indeed, purifying se-
lection acts mainly on the internal branches.

It should also be noted that the absolute rates
are quite different on position 1, 2 and posi-
tion 3. For the first interval, they are around
1.1 x 1073 and 3.6 x 1072 s/s/y, respectively,
for both branch types. On position 1, 2 the
rate on the internal and pendant branches de-
crease to 0.6 x 1073 and 0.9 x 1073 s/s/y, re-
spectively. On position 3, the final rate for
both branches is around 1.9 x 1073 s/s/y.
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Table 3.2: Priors used for the serial birth death skyline analysis.

Parameter

Prior distribution

Clock rate mean

Clock rate standard deviation

Kappa
RO
Become uninfectious rate
Sampling proportion
Origin

LogNormal(-6.6, 2)
LogNormal(0.05, 1.2)
LogNormal(1, 1.25)
LogNormal(0, 1.25)
Gamma(19.734, 1.36)
Beta(2, 10)
Uniform(0, oo)

Branches internal + pendant
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Figure 3.1: Median clock rate estimates in substitution-
s/site/year and 95% HPD intervals for increasing number
of sequences. Separate relaxed clock models were used
for codon position 1, 2 and codon position 3. The rate
estimates were then extracted from the branches of the
posterior tree sample (see eq. 3.1) and are presented sepa-
rately for internal (red) and pendant (turquoise) branches.

3.4 Analysis using a constrained
relaxed clock

We applied a variation of the relaxed clock
model which only allowed two different rates
across the tree to the same data. We were hop-
ing to amplify the signal for the difference be-
tween internal and pendant branches or be able
to generally detect certain types of branches

that would be fast or slow. A clock model
that explicitly models two different rates is not
available. However, we show that when using a
relaxed lognormal clock restricted to two rate
categories, BEAST2 effectively allows indepen-
dent choice of the two rates (see Appendix D).

For this analysis we used an exponential
growth coalescent, an HKY substitution model
and the constrained relaxed lognormal clock.
We again estimated the parameters for codon
position 1, 2 and position 3 separately. The
prior distributions of the parameters are listed
in table 3.3. We ran the chains for 50 million
steps and discarded 10% of burn-in. Almost
all parameters had an ESS of above 200.

Fig. 3.2 shows the clock rate estimates for the
fast and slow rate on position 1, 2 and posi-
tion 3. The decrease is clearly visible for the
slow rate at position 1, 2 and the fast rate at
position 3, whereas the other two only show a
slight decline. As expected, HPD intervals be-
come smaller with increasing data. We can see
that the third interval appears to be an outlier
from the general trend. This will be investi-
gated further below.

We can now also directly compare how often
pendant and internal branches are assigned the
two different rates. The relative frequencies are
shown in Fig. 3.3. Overall the distribution is
quite balanced with around half the internal
and half the pendant branches using the slow
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Table 3.3: Priors used for the exponential growth coalescent.

Parameter

Prior distribution

Clock rate mean

LogNormal(-6.6, 2)

Clock rate standard deviation LogNormal(0.05, 1.2)

Population size
Growth rate

One on
Laplace(0.001, 2.246)

and fast rate. However, it is noticeable that
there is a tendency for the internal branches on
position 1, 2 to be slow which is in agreement
with the findings in the previous section and
again indicates purifying selection.

To understand why the estimates from the
third interval do not follow the general trend,
we looked at the maximum clade credibility
trees for intervals 2, 3 and 4. These were plot-
ted with ape [71] in R and are shown in Fig. 3.4.
The tips are coloured according to the interval
they belong to. We can see that most of the
sequences that are added in the third interval
form a new clade. This changes the overall
shape of the tree which now appears to have
more structure. The clade at the bottom of the
tree represents a burst-like event which is prob-
ably not captured well under the exponential
growth coalescent (cf. chapter 2). While the
fourth interval adds another burst, most of the
sequences are added to the clade that was cre-
ated in the third interval. This is interesting,
because we can think of the tree in interval 3
to represent two separate outbreaks for which
we do not have much data. In that case we find
a strong signal for a fast clock rate. Interval
4 then adds more data and the rate decreases
again.

We have also analysed an Ebola dataset that
was prepared in a slightly different way and
contained non-coding sequences. For details
and results refer to Appendix B.

3.5 Conclusion and further work

Using a relaxed clock model, we found some
small differences between clock rate estimates
on internal and pendant branches on codon po-
sition 1, 2. This difference indicates that pu-
rifying selection is taking place during the epi-
demic which has also been confirmed by other
studies using more data and a different method
[24]. We found similar differences when using
a constrained relaxed clock model that only al-
lowed two different rates across the tree.

It may be interesting to reanalyse some data
in light of the results described in chapter 2.
Overall, how well does the tree prior we use fit
the data in each interval? In particular, can we
see for the third interval, which adds a burst-
like event, that the prior fits worse than for the
second interval? Using a codon model that ac-
curately models non-synonymous and synony-
mous changes could also provide a stronger sig-
nal than our approximation that only splits the
alignment based on codon position. Maybe af-
ter removing methodological biases, the slight
signal we find for internal branches having a
slower rate than external branches (especially
in coding regions on codon position 1, 2), will
In that case, a
model that explicitly estimates two different
clock rates on internal and pendant branches
may prove useful.

become more pronounced.

Overall, for further work on this project a care-
ful definition of the goal will be vital. A de-
crease in the inferred rate over time is not a
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Figure 3.2: Clock rate estimates (s/s/y) using an expo-
nential growth coalescent and a constrained lognormal re-
laxed clock with two rate categories.

problem in itself. Further model development
is only part of any solution and needs to be ac-
companied by a solid interpretation of the esti-
mated parameters. Thus it may be helpful to
make some of our assumptions about the under-
lying biological processes (in particular about
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Figure 3.3: Relative frequency with which internal

and pendant branches “choose” the slow (red) and fast
(turquoise) rate. The dotted line marks 0.5.

purifying selection) more explicit. Either with
a simulation study or a more stringent mathe-
matical framework which allows us to formalise
hypotheses and which may guide the thinking
process. It seems intuitive to say that “purify-
ing selection should lead to an increased rate
on pendant compared to internal branches”,
but what are the underlying assumptions that
make this true? How do we expect the rate
of a pendant branch to behave as its length
changes? What happens to the rate of inter-
nal branches, when the tree becomes deeper
(increase of tree height) or longer (increase of
tree length)? These and many more questions
will be difficult to answer with intuition alone.
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Figure 3.4: Maximum clade credibility (MCC) trees for interval 2, 3 and 4. Tips are coloured according to the interval
they belong to: 1 and 2 in red, 3 in green and 4 in blue.
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Chapter 4

Discussion

In the discussion about the decline of estimated
clock rate with increasing sampling period it is
important to distinguish two things: method-
ological errors and biological causes. For the
former we should strive to find solutions, for
the latter we should offer explanations. From
a biological point of view, we expect to see a de-
crease in the estimated rate as we increase the
sampling time since the estimate shifts from
something close to the spontaneous mutation
rate to the long term evolutionary substitu-
tion rate. The current debate [20,26-28] is
more about understanding how much of the
observed decline is caused by the biology and
how much of it stems from problems in the
methods. Methodological errors in the form of
biases may be more pronounced for small time
scales — either because of their nature or be-
cause on small time scales we usually have less
data — and can therefore contribute to the ob-
served decline. We need to disentangle these
different factors to be able to draw conclusions
from real world data.

In chapter 2 we explored potential biases in
the clock rate estimate stemming from the tree
prior. We talk about biases when we system-
atically over- or underestimate the value of a
parameter. Thus, it is difficult to detect bi-
ases in real world datasets where the truth is
unknown. Using a simulation study, we high-

lighted the non-intuitive interactions between
the data, the tree prior and the clock model.
We demonstrated that misspecifications of the
tree prior can lead to inflated clock rate es-
timates if not enough data are available and
showed that this may have been a problem in
an early analysis of the Ebola outbreak. To
what extent this finding contributes to the var-
ious cases in which a decline of rate have been
observed is unclear. This should rather be in-
vestigated for each case individually, for exam-
ple by performing a goodness-of-fit test of the
applied model.

In chapter 3 we tried to detect and quantify
purifying selection in an Ebola dataset. Puri-
fying selection is the most prominent biological
phenomenon that is offered as an explanation
for decrease in rate estimation over time. Un-
der purifying selection, the clock rate on inter-
nal branches should be higher than on pendant
branches, because the latter are more likely to
still contain slightly deleterious mutations. We
found small evidence for this and also showed
that the decrease of rate is more pronounced
for the internal branches which may reflect an
increasing contribution of purifying selection
over time.

Generally, interpreting the clock rate should be
done with great care. First and foremost, the
clock rate is a model parameter, needed to com-
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pute the Felsenstein likelihood. Biologically
it can correspond to very different things, de-
pending on what type of data and what models
are used. For the same set of samples, one can
estimate clock rates for coding, non-coding or
for whole genome sequences — those estimates
will in almost all cases be very different. Go-
ing from clock rate to substitution rate is con-
ceptually difficult. Already defining the term
substitution rate is not straightforward and is
depending on the dataset at hand. It is thus al-
most meaningless to compare such rates across
datasets or timescales.



Appendix A

Supplementary material to chapter 2

27



A. SUPPLEMENTARY MATERIAL TO CHAPTER 2
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Figure A.1: Similar to Fig. 2.2 in the main text. This also includes results for sequences of length 0 (i.e. analyses that
did not use any sequence data but only tip dates and the prior). For those analyses, the chain length was increased
to 6 x 10° steps.
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—

Figure A.2: Median tree (computed with treescape) for the first run of the simulation study without any sequence
data.
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Figure A.3: This is equivalent to the results shown in Fig. 2.2 but for analyses using an exponential growth coalescent
model with the growth rate fixed to two different values: 0.001 and 4.0 for the slow and fast growth rate, respectively.
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Figure A.4: This is equivalent to the results shown in Fig. 2.2 but for analyses using a serially sampled birth death
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also include an analysis without any sequence data and show that in that case the estimate for the tree length are
very different under the two models. However, little sequence data is enough to overcome this prior and lead to an
underestimation of tree length and therefore an overestimation of the clock rate.
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Figure A.5: Results of estimating the clock rate using RAXML and LSD. For this analysis we created 100 alignments
per sequence length and inferred the maximum likelihood tree with RAXML which we then fed into LSD to infer the
clock rate.
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A.1 Analysis of influenza dataset

We also analysed an influenza dataset from 2009/10 that was used in [62] to show that the
inferred substitution rate decreases with an increasing sampling period under the same six tree
priors. For this dataset, we used sequences for the neuraminidase gene (1407 sites) from the
first month only (273 sequences). We assigned these sequences to two clades using a simple
k-means clustering algorithm (k£ = 2) on a distance matrix based on the Hamming distance of
the sequence data. We used 4 x 10® for all but the structured coalescent model for which we
used 3 x 108 steps. For the path sampling analysis we increased the chain length to 108 steps.

Results are shown in Fig. A.1. All six models lead to a similar estimate of the clock rate with a
median between 16 and 19 x 1072 s/s/y and largely overlapping HPD intervals. The long term
rate for this dataset is around 5 x 1073 s/s/y [62], but none of the HPD intervals include this
value. The estimates for the tree length are very similar as well under all models with medians
ranging from 3.2 years for the birth death model to 4 years for the structured coalescent and
largely overlapping HPD intervals. There are, however, clear differences in the estimated tree
height, ranging from a median of 0.1 years for the birth death models to a median of 0.2 years
for the structured coalescent model. Also, the HPD intervals for the structured coalescent
model are much wider than for the unstructured coalescent models which in turn are much
wider than those for the birth death models. Again, we find no noticeable difference for the
total divergence between any of the models.
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Figure A.7: Results for an influenza dataset analysed under different tree priors.
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Appendix B

Supplementary material to chapter 3

This analysis follows the one presented in section 3.4 for a slightly different dataset. We used
the sequences from the first four intervals of the original analysis and split them into 15 intervals,
each containing 11 or 12 sequences (see table B.1 for details). Additionally, we also included
the non-coding parts of the genome for those sequences. In the results, we exclude the first two
intervals because they only contained 11 and 22 sequences, respectively, which was too little
for proper inference. Figs. B.1 and B.2 are analogous to Figs. 3.2 and 3.3, respectively. While
not many new conclusions can be drawn from these results, they now also present data for
non-coding regions of the genome which may be interesting at a future point.

Table B.1: This table shows for each interval the date of the last sequence as well as the total number of sequences
at that point and how many days they spanned. The first sequence was sampled on 2014-03-27.

Interval Last date  Total no. of days spanned Total no. of sequences

1 2014-03-31 4 11
2 2014-04-18 22 22
3 2014-05-21 95 33
4 2014-06-09 74 45
5 2014-07-24 119 o7
6 2014-08-14 140 69
7 2014-08-27 153 81
8 2014-09-04 161 93
9 2014-09-19 176 105
10 2014-09-25 182 117
11 2014-10-01 188 129
12 2014-10-05 192 141
13 2014-10-09 196 153
14 2014-10-14 201 165
15 2014-10-19 206 177
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Appendix C

Analytic results for the tree length under a
serially sampled constant size coalescent model

I made some progress in deriving the indirect prior distribution of the tree length that is
created by a serially sampled constant population size coalescent model. Let’s first establish
some notation:

e n: number of tips
o z={z,...,2,}: times of tips (0 is present), sorted in increasing order

e x ={x1,...,xp—1}: times of internal nodes, sorted in increasing order

t = {t1,...,tap—1}: union of all z and z, sorted in increasing order

p: (effective and scaled) population size (corresponding to the popSize parameter in
BEAST2 and 6 in [72])

For given p and z we would like to compute the expected tree length by integrating over all
possible timings of internal nodes x. Given x it is straightforward to calculate the tree length,
T:

n—1 n
T(x,2) = zp-1+ Z T — Z 2. (C.1)
i=1 i=1

Also, Drummond et. al derived a formula for the probability density of a tree under the constant
size coalescent process [72]:

2n—1
LT e [tk — 1)/20) (1 — ti1)]. (C.2)
1=2

t7k7p7n =
I )=

where k = {ka, ..., kon—1} and k; denotes the number of lineages in time interval ¢;,_; and ¢;.
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This is the probability density for one specific tree. To account for all trees that have the same
timings of internal nodes, we need to apply a factor m(k) =[], (k;) for all 7 that correspond to
coalescent events.

Thus the expected tree length is given by

E[T|z,p,n] = /xm(k)f(t,k,p, n)T (x,z)dx (C.3)

Note that we can clearly compute t from z and x so here I use each term when it is more
convenient.

What remains to be done is to find the integration boundaries for all the z;. Let’s start from
the root. The upper bound for the root is clearly infinity and the lower bound is given by the
oldest tip. Similarly, for the next node, the lower bound is given by the next tip while the upper
bound is given by the root. And so on. Formally, the integration domain for x; is [z;41, Tit1]
fori=1,....,n—2 and [z41,00] for i =n —1 (i.e. the root).

Putting all this into Mathematica allows us to find the expected value for a tree of a fixed n
while leaving all other parameters (z and p) unspecified:
o E[T|z,p,3] =3p— 21+ 23

22723

o E[T|z,p,4] =4p—ipe 7 —z1+ 2

22723 1 22724 1 23724

o E[T|z,p,5] =5p—gpe ? —gpe » —3zpe 7 —z1+2;

For n = 6 the equation becomes quite long and looses the structure it had before:

1 _ z3+2z4+25 z9+23+24+25 z9+23+224 z9+323
E[T\z,p,6] = ~goPe P e P +5e 7 +e v
z9+2z4+25 2z3+2z4+25 z3+2z4+25 2(23+24) z3+3z4
+ 20e P + 20e P — 360e P +10e » +20e »r — 21+ 2g

I also computed the result for n = 7 but it does little good to display it here. It took roughly
4 hours using 24 kernels on the Euler cluster.

We can also compute the variance analytically, but this is even more computationally expensive
so I have only done it for n = 3:

V(T|z,p, 3] = 5p*

In a next step it would be useful to compute the distribution or just the expected value of T' for
a given topology. To this end, one would have to change eq. C.3 to integrate only over those
x that are consistent with that topology. For the case of n = 3 and two contemporary tips, I
have such results for the two different topologies. Let tip A be the sample from time ¢4 in the



past. For the topology ((A, B), C), we get an expected tree length of 3p 4 2t 4 with a variance

of 5p%. For (A, (B, C)) we get 3p+ta + —=4_— and 5p? — S have checked all the
Jn s s g D A 9_30tA/P D (273675‘4/?)2-

above results against simulation in BEAST2 and found no deviations.
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Appendix D

Implementation of relaxed clock in Beast2

Usually, an uncorrelated relaxed clock model is thought of as allowing each branch to have
its own rate that is drawn independently from some prior distribution (e.g. a lognormal or
exponential). The probability for the rate vector can then be included in the computation of
the posterior. Internally, however, BEAST2 discretizes the prior distribution into a number of
categories and then assigns branches to those categories. This means that (i) branches can only
be assigned a finite number of discrete values and (ii) those values can generally not be changed
independently. However, we show that in the case of two rate categories and a lognormal prior
distribution, the distribution can be adjusted by changing the two parameters p and o such
that the two rates can in effect be chosen arbitrarily.

The p quantile of a lognormal distribution with mean g and standard deviation ¢ in real space
is given by

F(p) = exp [p+ 09 (p)] (D.1)

where ~1(p) is the quantile function of the standard normal distribution.

For two rate categories, the two quantiles that determine the rates in BEAST2 are at p; = 0.25
and ps = 0.75. Let the corresponding rates be denoted by 1 = F~1(p;) and ro = F~1(ps). We
can then solve for p and o explicitly and get

_ T -1 -1\ _ 1 -1
o = log TQ/(cpl 0y ) = log T2/(2<p1 ) (D.2)
and
1 r 1
p=logry — 5 log (é) =5 log(ry - r2), (D.3)

where o' = 07 (p1) = —0.67 ~ —p ! (ps) = ¢, . Thus we can choose y and ¢ to accommo-
date any choice of rates (provided they are supported by their respective prior).



BEAST2 reports the parameters ucld.mean = exp(u + 02/2) and ucld.stdev = ¢ and I have
verified that these computations are correct by comparing them to some posterior samples.
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Appendix E

Reproducibility

There has been substantial debate in recent years about the “replication crisis” in the sciences
(see e.g. [73-75]). While replication means that an entire experiment should be repeated from
scratch, reproducibility is a weaker goal, simply stating that the data analysis should be re-
producible by other researchers. For computational sciences, all findings should in theory be
reproducible by making code and data available. I was for example able to download all neces-
sary material to reproduce the relevant results of the Ebola [22] and influenza [62] study. The
latter, however, took considerable effort since there was no clear separation of data and scripts
and no description of how to use the code.

In this chapter I want to describe the system that I put in place when I began working on my
thesis. Hopefully this will not only allow people who are interested in my work to understand
what I did and how I did it, but also enable them to reproduce and build upon my results. I
was certainly inspired by Sandve et al’s “Ten Simple Rules for Reproducible Computational
Research” [76] and Noble’s article on how to organize Computational Biology projects [77].

Wiki For wet lab scientists it is a standard requirement to use a lab journal to record protocols
and results. Some computational scientists also use this method, but I find it more natural to
keep track of things in an electronic form. Thus I chose Tidd1lyWiki to document my work in
a personal wiki. This allows linking different entries, including figures and full text search. I
used it to document meetings, thoughts about the project, the literature review, analyses setup,
bugs and results with their interpretation.

Generally, I tried to split my work into different analyses that are identified (i.e. named) by
the date I started them. Each analysis should correspond roughly to one project or idea. It
happens that the findings of chapter 2 correspond to analyses 2014-04-20 (simulation study)
and 2014-08-18 (data analysis), whereas those of chapter 3 correspond to 2014-03-13. Each
such analysis has its own directory as well as page in the wiki. For small analyses the wiki
entry contains some description of what I was trying to achieve. For larger analyses, i.e. those
that took more time, it is just a collection of further wiki pages that are tagged with the title
(i.e. date) of that analysis. This is because, over time, the analyses usually diverged from the
initial plan so it was difficult to write a general statement. For each result, I create a new wiki
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tests

Figure E.1: The directory structure of my thesis directory. ltalics indicate that the term should be replaced by a
value.

page that is tagged with the name of the original analysis and titled as: “date: commit hash -
real title”. I use the hash key of the git commits to structure my results as this should enable
me or others to go back to exactly the code that was used to produce them. Since all results
are tagged with the original analysis, a list of all those pages is included automatically at the
bottom of the main analysis page in chronological order. I include plots in the wiki so that they
are version controlled and backed up, even though the raw results are not.

Directory structure Fig. E.1 shows the directory structure I used during the work on my
thesis. In reality, there are more folders than displayed, but the figure explains the general
structure and should suffice to find the things that ended up working. I hope that many
things are self explanatory but it may be helpful to state some additional information: Each
subdirectory of data contains a README explaining where the data came from. docs contains
any form of documentation like the original project description, the wiki and the thesis. paper
contains copies of all data and scripts necessary to produce the results in chapter 2 along with
a manuscript for submission to a journal. prev_analysis contains the data and scripts from
the two studies that were reanalysed (i.e. for the most part just the downloaded supplementary
material). The global scripts folder contains scripts that are used by multiple analyses. Most
of them do quite high level, generic things like filling an analysis xml template with sequence
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data from a fasta file. Raw results and the corresponding figures are usually contained in the
same results folder.

I used git as version control for everything but the results. The entire content (including the
repository history) is contained in a zip archive.

Thoughts on this system I generally think that my organization of the project worked quite
well and could also scale to larger projects. Using version control, a wiki and the commit hashs
to identify what version produced which results is in my opinion a great framework. Two things
come to my mind that could be improved:

Firstly, the separation into different analyses felt at times somewhat artificial. Sometimes,
what started out as a seemingly new idea ended up converging with something I had already
done and other times analyses moved away from their original intention. It may be better to
simply separate data, scripts and results. Additionally, the scripts directory could then be
divided into plotting and analysis. Still one would eventually end up with a messy collection
of scripts and sometimes scripts require only slight modifications to deal with data from different
analyses leading to either manual interventions or duplicated code. I noticed, though, that the
scripts that I put into the global scripts folder tended to become more robust over time as I
used them for various things.

The second point is rather small: T used a single file as my TiddlyWiki. This is convenient but
does not scale well. Luckily, TiddlyWiki also provides ways to split a wiki into multiple files
so this should not be a problem.
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