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This paper reports on the control of longitudinal wave propagation, in the kHz frequency range,

using local and interconnected LC (inductance-capacitance) shunts distributed periodically along a

rod. The LC shunts are connected to piezoelectric inserts and tuned to engender narrow or broad-

band pass-bands in the forbidden band frequency range. The Bragg-scattering bandgaps are the

result of the periodic mechanical mismatch between PMMA (polymethyl-methacrylate) of the rod

and PZT (lead-zirconate-titanate). The narrow pass-bands correspond to the local configuration,

where an equivalence between the mechanical impedance of the PMMA and PZT occurs around

the shunt resonance frequency. Conversely, the interconnected shunts give a way to an electrical

medium through which energy can propagate parallel to its mechanical counterpart, leading to

broad pass-bands. This paper presents analytical models for calculating the dispersion and displace-

ments of the 1D medium with interconnected LC shunts. An analytical formulation is also intro-

duced to expediently identify the location of bandgaps and pass-bands in the medium comprised of

local LC shunts. Moreover, analytical investigations are carried out to elucidate different physical

phenomena giving rise to these pass-bands. The findings are experimentally validated using a finite

periodic rod. The ability to tune the dispersion properties of the medium to control the width or

depth of the bandgap, by utilizing local or interconnected shunts, offers a new and powerful appli-

cation for piezoelectric shunts. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4994779]

The community of researchers working on phononic

crystals is infusing extensive efforts in controlling the propa-

gation of elastic waves using arrays of shunted piezoelectric

elements. Many of the past studies have aimed at reducing

structural vibrations through locally shunted piezoelectric

elements,1–3 and to a lesser extent with interconnected piezo-

electric shunts.4,5 This paper reports on a class of 1D pho-

nonic crystals, which incorporates local or interconnected

arrays of piezoelectric shunts to control longitudinal Bragg-

scattering bandgaps by introducing tunable pass-bands. The

piezoelectric shunts change the mechanical characteristics of

the system, thus allowing for longitudinal waves to propa-

gate in the otherwise forbidden frequency range. This work

draws similarity to other investigations, such as the one pre-

sented by Thorp et al.6 where piezoelectric patches placed

periodically along a rod are tuned to control the location, and

width of stop-bands. There is a parallelism with Ruzzene and

Baz7 where a composite rod features periodic inclusions of

shape memory alloy (SMA), creating an impedance mis-

match for controlling the longitudinal wave transmission.

Likewise, there is resemblance to the work by Mansoura

et al.8 where the band structure of a piezoelectric phononic

crystal is tuned using negative capacitance. Bergamini et al.
exploited local inductance-capacitance (LC) shunts to intro-

duce a pass-band within a bandgap for transverse mechanical

waves.9 Khelif et al.10 also reported on two-dimensional

phononic crystal where a tunable narrow pass-band is cre-

ated in a bandgap by varying the geometry of cylindrical

inclusions.

In phononic crystals, bandgaps result from discontinu-

ities caused by the periodic mismatch in mechanical imped-

ance, which in turn leads to destructive interference as the

incident, reflected, and transmitted waves interact with one

another. Due to such interactions, wave propagation is

strongly inhibited along a structure11,12 for wavelengths on

the order of the unit-cell size. In metamaterials, on the other

hand, the inclusion of suitably designed locally resonating

units allows for sub-wavelength modification of the disper-

sive properties of a medium, as reported among others by

Liu in the mechanical domain.13 While periodicity is not

strictly necessary to achieve wave propagation control in

correspondence with the tuning frequency of the resonator,14

it is often assumed to allow for calculating the dispersion

properties.

The effect of interconnecting the piezoelectric elements

on the dynamic behavior of a structure has been mainly

explored by dell’Isola et al.5,15 to control multi-modal vibra-

tion damping. In the work by Andreaus et al.,16 a circuit, con-

necting the piezoelectric elements bonded to the structure, is

synthesized analog to the Timoshenko beam. dell’Isola et al.5

optimized an R and LR network to attenuate specific modes,

showing that the optimal inductance decreases with thea)andrea.bergamini@ethz.ch
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increasing number of piezoelectric elements. Similar to the lat-

ter work, Bergamini et al.17 implemented a network using vir-

tual inductances to attenuate transverse waves in a 1D

phononic crystal. Maurini et al.18 performed a more theoretical

analysis by comparing the performance of several intricate net-

work topologies acting as vibration absorbers on a beam.

Contrary to the previous papers, this contribution focuses on

rods as opposed to beams, and the interconnected piezoelectric

shunts are aimed at promoting, not attenuating, wave propaga-

tion. Furthermore, the PEM (piezoelectromechanical) struc-

tures studied in the previous works do not exploit Bragg-

scattering bandgaps, as they target frequency vibrations with

much longer wavelengths than the unit-cell size.

For the displacement and dispersion studies of both the

interconnected and local LC shunt configurations, the rod

was made of polymethyl-methacrylate (PMMA) with peri-

odic piezoelectric inserts. PMMA is a viscoelastic material

with a complex modulus which varies with frequency and

temperature. The complex modulus is almost constant below

the glass transition temperature (110 �C).19 Since the experi-

ments were conducted at room temperature, far below the

glass transition temperature, the imaginary/damping compo-

nent of the modulus was neglected, and a constant Young’s

modulus, Es¼ 3.3 GPa, given by the material provider was

assumed. The PMMA had a density of qs¼ 1190 kg/m3, and

each PMMA section had a thickness of ls ¼ 20 mm and a

cross-section of As¼ 50 mm� 30 mm. The piezoelectric

material was PIC255, with an open circuit Young’s Modulus

of ED
p ¼ 96 GPa, a density of qp ¼ 7800 kg/m3, a compliance

constant of sE
33 ¼ 2:07� 10�11 m2=N, a permittivity in the

polarization direction of �T
33=�0¼1750, a coupling coefficient

of k33 ¼ 0:75, and a piezoelectric stiffness coefficient of

g ¼ k33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED

p =ð�T
33=�0Þð1� k2

33Þ
q

. Each piezoelectric element

had a thickness of lp ¼ 10 mm, a cross-section Ap ¼ As, and

a stress-free capacitance of Cr
p ¼ 2:4 nF. The subscript s

refers to the rod substrate, while the subscript p refers to the

insert of the piezoelectric material. The analytical model

does not account for material damping. From experimental

measurements, each local LC shunt had a resistance of R

¼ 11X, while the whole interconnected line had R ¼ 102X.

The dispersion curves of the phononic crystal are calcu-

lated using the transfer matrix method.20 For both cases, the

unit-cell is divided into two continuous regions: PMMA and

shunted piezoelectric material (LC local or interconnected)

as shown in Figs. 1(a) and 1(b), respectively. For calculating

the displacement output at the end of the crystal, uf, we con-

sider a finite rod made of 9 unit-cells, with a total length of

LT ¼ 270 mm. The system was mechanically excited by a

unit force applied at one end, and the steady state response at

the other end was calculated over the frequency range of

interest. For both configurations, the analytical displacement

output was extracted from the global displacement vector U,

calculated from the global stiffness matrix Kglobal, and global

force vector Fglobal.

The transfer and dynamic stiffness matrices for the

locally shunted unit cell, Eqs. (1), (2), (4), and (5), were

obtained from the work by Thorp et al.6 The displacement for

this configuration was calculated using the dynamic stiffness

matrices of the two regions of the unit-cell, given by Eqs. (1)

and (2), respectively. It is paramount to note that the analytical

Bragg-scattering bandgap, Figs. 2(b), 3, and 4(c), begins

around 14 kHz, while the experimental one shown in Figs.

2(d) and 4(d) starts around 16 kHz. This discrepancy can be

explained by the fact that the analytical models hereby pre-

sented (local, interconnected, and the modified characteristic

equation for identifying bandgaps) account for purely longitu-

dinal and not transverse deformations.

KsðxÞ ¼
EsAsks

sin ðkslsÞ
cos ðkslsÞ �1

�1 cos ðkslsÞ

� �
; (1)

FIG. 1. (a) Unit-cell composed of PMMA and locally shunted piezoelectric

element (dotted lines). (b) Unit-cell composed of PMMA, defined as non-

interconnected (ni), and piezoelectric element with interconnected LC

shunts, defined as interconnected (in) (dotted lines).

FIG. 2. Gray shading and blue shading correspond to bandgap and pass-

band frequency regions, respectively. (a) Dispersion of the locally shunted

configuration. (b) Analytical displacement output for the locally shunted

configuration (blue) and for the purely mechanical system (red). (c)

Mechanical impedance of PMMA (blue) and frequency dependent mechani-

cal impedance of shunted PZT (red). (d) Experimental displacement output

for the locally shunted configuration (blue) and for the purely mechanical

system (red).
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where the substrate wavenumber is ksðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
qs=Es

p
, with

x being the angular frequency.

KpðxÞ ¼
EpApkp

sin ðkplpÞ
cos ðkplpÞ �1

�1 cos ðkplpÞ

� �
; (2)

where the lead-zirconate-titanate (PZT) wavenumber is

kpðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qp=EpðxÞ

q
and the complex Young’s modulus is

as follows:21

EpðxÞ ¼
ixR� x2Lþ 1=Cr

p

ðS33 � d2
33=�33ÞðixR� x2LÞ þ S33=Cr

p

: (3)

Note that Eq. (3), a formulation for the equivalent Young’s

modulus of the piezoelectric material, is only valid when

considering a sufficiently large wavelength compared to the

size of the piezoelectric insert.22 In this work, the condition

satisfied because as we restrain the analysis to the first

bandgap, i.e., half a wavelength of the unit-cell.

The transfer matrices for the two regions of the unit-cell

are given by Eqs. (4) and (5). The complete unit-cell transfer

matrix is assembled according to Eq. (6).

TsðxÞ ¼
cos ðkslsÞ � sin ðkslsÞ

zsx
zsx sin ðkslsÞ cos ðkslsÞ

2
64

3
75; (4)

where the substrate mechanical impedance is zs ¼ As
ffiffiffiffiffiffiffiffiffi
Esqs

p

TpðxÞ ¼
cos ðkplpÞ � sin ðkplpÞ

zpx

zpx sin ðkplpÞ cos ðkplpÞ

2
64

3
75; (5)

where the PZT mechanical impedance is zpðxÞ ¼ Apffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpðxÞqp

q
TcellðxÞ ¼ TpTs: (6)

In the work on periodic composite rods by Ruzzene and

Baz,7 an analytical formulation, Eq. (7), was derived to iden-

tify the bandgap frequency ranges in periodically inhomoge-

neous rods.

cos ðldÞ ¼ cos ðkslsÞ cos ðkplpÞ

� 1

2

zs

zp
þ zp

zs

� �
sin ðkslsÞ sin ðkplpÞ: (7)

Modifying this formulation to account for the local LC

shunts, the location of the bandgaps and pass-bands can be

expediently determined. In Eq. (7), the wavenumber and

mechanical impedance are given by ki¼x
ffiffiffiffiffiffiffiffiffiffiffi
qi=Ei

p
and

zi ¼ kiEi with i¼ s; pf g; where d ¼ ls þ lp is the unit-cell

length and l is the propagation constant that quantifies the

nature of the wave traveling along the rod. In the case under

study, the locally shunted piezoelectric material is character-

ized by a frequency dependent Young’s modulus, EpðxÞ.
According to Eq. (7), bandgaps correspond to the frequencies

where j cos ðldÞj > 1, i.e., l is complex, while the pass-band

regions are defined by j cos ðldÞj � 1, i.e., l is real. This can

be seen in Fig. 3, where the curve of j cos ðldÞj goes above

one over the expected bandgap range, except at the coinci-

dence frequency, fc ¼ 1= 2p
ffiffiffiffiffiffiffiffi
LCr

p

p� �
, where the curve drops

below one, indicating the presence of a pass-band.

As seen in the dispersion curves of Fig. 2(a), the zero-

group velocity mode characteristic of the local LC shunts

can be seen within the bandgap. The displacement curves in

Fig. 2(b) show that the local LC shunts engender a narrow

pass-band within the mechanical Bragg-scattering bandgap.

This pass-band can be explained by the occurrence of homo-

geneous mechanical impedance along the length of the rod at

fc, where the variation in the Young’s modulus of piezoelec-

tric element yields an equivalence in the mechanical imped-

ance of the two materials, as shown in Fig. 2(c).

The experimental setup, seen in Fig. 5, did not change

for both configurations. PMMA and PZT were glued

together using low viscosity super-glue, while conducting

copper tape was placed between each section to facilitate

connecting to the electrodes. Inductances were placed on a

breadboard to facilitate switching between the two configu-

rations; L ¼ 30 mH was used for the local configuration,

while L ¼ 15 mH was used for the interconnected. The

FIG. 4. Blue shading corresponding to the pass-band frequency region. (a)

Dispersion of the interconnected configuration [coupled modes (blue)] and

dispersion of the purely electrical mode [LC transmission line (green)] and

purely mechanical system (red). (b) Imaginary dispersion of the intercon-

nected configuration [coupled modes (blue)] and imaginary dispersion of the

purely mechanical system (red). (c) Analytical displacement output for the

interconnected configuration (blue) and for the purely mechanical system

(red). (d) Experimental displacement output for the interconnected configu-

ration (blue) and for the purely mechanical system (red).

FIG. 3. Analytical bandgap and pass-band indicator for the local LC shunted

configuration, where the dotted line represents the right hand side of Eq. (7).

Gray shading and blue shading correspond to bandgap and pass-band fre-

quency regions, respectively.

111902-3 Flores Parra et al. Appl. Phys. Lett. 111, 111902 (2017)



sample was excited using the first piezoelectric element,

powered by a high voltage amplifier from 10 kHz to 40 kHz.

This experimental frequency range was chosen based on the

limits of the amplifier and the location of the bandgap. A

laser vibrometer measured the output displacement on the

opposite end of the sample.

The transfer and dynamic stiffness matrices for the inter-

connected unit-cell presented in this section were derived

following the procedure described by Belloni et al.23 The

dynamic stiffness matrix of the interconnected region is

given by

KinðxÞ ¼
A½ � B½ �

B½ � A½ �

" #
; (8)

where the components of the symmetric Kin matrix are

A ¼
EDApkp

cos ðkplpÞ
sin ðkplpÞ

�g

�g
1� x2ðL=2ÞC�

p þ ixRC�
p

C�
p

2
66664

3
77775;

B ¼
�EDApkp

1

sin ðkplpÞ
g

g � 1

C�
p

2
6664

3
7775:

The transfer matrix of the interconnected region of the unit-

cell can be obtained from the below equation:

TinðxÞ ¼
�B�1A B�1

AB�1A� B �AB�1

" #
: (9)

The transfer matrix for the non-interconnected region of the

unit-cell is given by

TniðxÞ ¼

cos ðkslsÞ 0 � sin ðkslsÞ
EsAsks

0

0 1 0 0

EsAsks sin ðkslsÞ 0 cos ðkslsÞ 0

0 0 0 1

2
6666664

3
7777775
: (10)

The last step is the assembly of the complete unit-cell trans-

fer matrix.

TcellðxÞ ¼
T11 T12

T21 T22

" #
¼ TinTni: (11)

The dynamic stiffness matrix of the interconnected unit-cell

can be obtained from the below equation:

KcellðxÞ ¼
�T�1

12 T11 T�1
12

T22T�1
12 T11 � T21 �T22T�1

12

" #
: (12)

The interconnections form a discrete transmission line,

an electrical medium through which energy can propagate

parallel to the mechanical medium. It is paramount to note

that the modes of the coupled electrical and mechanical

media can no longer be considered purely electrical nor

mechanical but rather electromechanical. As seen in Fig.

4(a), the shape of the coupled electromechanical modes is

similar to that of their uncoupled counterparts, and thus, we

will refer to them as “pseudo” modes. Figure 4(a) shows the

dispersion curves of this configuration, where the pseudo-

electrical mode is tuned to cross into the frequency range of

the mechanical bandgap. As a result, energy can propagate

along the electrical medium and back into the mechanical

over the forbidden frequency range, thus “disabling” the

bandgap. The latter is illustrated in Fig. 4(c), with the analyt-

ical velocity over force transmittance curves of the purely

mechanical system compared to the coupled system. The

analytical results are experimentally validated in Fig. 4(d),

where a finite sample was tested with and without the inter-

connected shunts. The mechanism that allows mechanical

waves to propagate in the region of the bandgap is further

elucidated by Fig. 4(b), which shows the imaginary disper-

sion curves for the purely mechanical system (red) and the

coupled system (blue). Wavenumbers can be real, imaginary,

or complex, representing propagating, evanescent, and atten-

uating oscillatory waves, respectively.24 Figure 4(b) illus-

trates that for the purely mechanical system, there exists a

true bandgap wave when Im kmechf g 6¼ 0. However, in the

case of the coupled system, there are two imaginary electro-

mechanical modes over the frequency range corresponding

to the purely mechanical bandgap. These two modes are

characterized by the following imaginary wavenumbers: Im

kpseudomechf g 6¼ 0 and Im kpseudoelec;f g ¼ 0. These results sug-

gest the existence of attenuating and propagating waves,

which results in “disabling” of the purely mechanical Bragg-

scattering bandgap of Figs. 4(c) and 4(d).

We have shown that local and interconnected LC piezo-

electric shunts can be tuned to give a way to pass-bands of

varying frequency ranges. The frequency dependent Young’s

modulus of local LC shunts can be exploited to transform the

phononic crystal, of periodic mismatching mechanical impe-

dances, into a homogeneous medium for wave propagation.

This variation in the Young’s modulus occurs close to the

LC resonance frequency, and thus, the impedance match

between the two periodic materials occurs over a narrow fre-

quency range. Conversely, the interconnected configuration

utilizes a different mechanism, whereby the LC shunts form

a discrete electrical transmission line through which waves

can propagate parallel to the mechanical medium, effectively

“disabling” the Bragg-scattering bandgap. The mechanism

FIG. 5. Experimental setup for local and interconnected shunts.
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for the interconnected configuration can be explained by

studying the imaginary dispersion curves. The coupled

mechanical and electrical media give a way to electrome-

chanical modes which exhibit a combination of propagating

and attenuating waves.

This research was funded by the Swiss National Science

Foundation (Grant No. 200021 157060) and the Mexican

National Science Foundation.
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