Conference Paper

Experimental investigation of the seismic response of a column rocking and rolling on a concave base

Author(s):
Bachmann, Jonas A.; Blöchlinger, Patrick; Wellauer, Matthias; Vassiliou, Michalis F.; Stojadinovic, Bozidar

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010870868

Rights / License:
In Copyright - Non-Commercial Use Permitted
EXPERIMENTAL INVESTIGATION OF THE SEISMIC RESPONSE OF A COLUMN ROCKING AND ROLLING ON A CONCAVE BASE

Jonas A. Bachmann¹, Patrick Blöchlinger², Matthias Wellauer², Michalis F. Vassiliou, and Božidar Stojadinović

¹Swiss Federal Institute of Technology (ETH) Zürich
Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland
e-mail: bachmann@ibk.baug.ethz.ch
{patricbl, wellauem}@student.ethz.ch
{vassiliou, stojadinovic}@ibk.baug.ethz.ch

Keywords: Rocking structures, Earthquake Engineering, Experimental Testing, Uplifting Structures

Abstract. Rocking modifies the seismic response of structures, because uplifting works as a mechanical fuse and limits the forces transmitted to the structure. However, the engineering community is in general reluctant to let a structure uplift because it can overturn, and, more important, an unanchored structure has no redundancy against this failure mode. Using a safety factor for the design of a flat rocking foundation (i.e. designing it larger than minimum required to prevent overturning) goes against the essence of the rocking seismic isolation method, as the structure would end up behaving as fixed to the ground. To protect against overturning but preserve the ability to uplift we propose to extend the flat rocking foundation using curved wedges at its ends. This paper presents the results of dynamic tests of small bodies rocking on curved foundations. The results compare relatively well with the analytical solutions, but they are shown to be very sensitive to the coefficient of restitution.
1 INTRODUCTION

Since Housner published his seminal paper [1] on rocking of rigid blocks, a plethora of studies on uplifting structures has been published [2-60]. The remarkable property of rocking blocks is that, for a given height to base slenderness ratio, they become more stable as their size increases. There are even cases when out of two columns with the same base, the taller one survived an earthquake while the shorter one did not [60]. It has also been proven that the presence of a cap beam atop of rocking columns, like in the case of the ancient Greek and Roman temples, increases the stability of the system [12, 38, 46]. These results have led researchers to propose rocking as a seismic isolation technique, as the uplift works as a mechanical fuse and limits the forces transmitted to the structures. However, even though some rocking structures have been built in New Zealand [2, 5], the former Soviet Union and Russia [63] and Greece [64], practicing engineers are generally reluctant to apply this method. One reason for that is the lack of codes and simplified methods of analysis. However, this reluctance also stems on the inherent fear of engineers to design unanchored structures that may overturn. Engineers are used to the safety factors, where all the material, geometric, modelling and loading uncertainties are “hidden”.

Figure 1. Top: Rigid block with curved wedges - resting position [65]
Bottom: Rigid block with curved wedges - Phase I (rolling) and Phase II (rocking)
In the case of rocking foundations, when it comes to overturning “resistance”, the application of a safety factor would simply mean that the foundation should become larger. This goes against the essence of the rocking seismic isolation method, as the structure would end up behaving as fixed to the ground. To protect against overturning but preserve the ability to uplift we propose to extend the flat rocking foundation using curved wedges at its ends [65] (Figure 1). This paper presents the results of dynamic tests of small bodies rocking on curved foundations. The tests were performed in the ETH Zurich within the semester project of the second and third author. The results compare relatively well with the analytical solutions, but they are shown to be very sensitive to the coefficient of restitution.

2 REVIEW OF THE ROCKING RESPONSE OF A RIGID BLOCK.

With reference to Figure 2 and assuming that the coefficient of friction is large enough so that there is no sliding, the equation of motion of a rocking block with size $R = \sqrt{h^2 + b^2}$ and slenderness $\alpha = \arctan(b/h)$ for rotation around O and O’ respectively is (Yim et al. [3], Makris and Roussos [9], Zhang and Makris [10] among others)

$$I_o \ddot{\theta}(t) + mgR \sin[-\alpha - \theta(t)] = -m \ddot{u}_g(t) R \cos[-\alpha - \theta(t)], \quad \theta(t) < 0$$

$$I_o \ddot{\theta}(t) + mgR \sin[\alpha - \theta(t)] = -m \ddot{u}_g(t) R \cos[\alpha - \theta(t)], \quad \theta(t) > 0$$

Where I_o is the moment of inertia of the block around the pivot point.

For rectangular blocks, $I_o = (4/3) mR^2$, and the above equations can be expressed in the compact form

$$\ddot{\theta}(t) = -p^2 \left\{ \sin[\alpha \text{sgn}(\theta(t)) - \theta(t)] + \frac{\ddot{u}_g}{g} \cos[\alpha \text{sgn}(\theta(t)) - \theta(t)] \right\}$$

The oscillation frequency of a rigid block under free vibration is not constant, because it strongly depends on the vibration amplitude (Housner [1]). Nevertheless, the quantity

![Figure 2. Geometric characteristics of the rocking body model](image-url)
\[p = \sqrt{\frac{3g}{4R}} \] is a measure of the dynamic characteristics of the block. For the 2.0m×0.5m block shown in Figure 2 (e.g. a modern refrigerator), \(p = 2.67 \text{ rad/s} \), while \(p \approx 8 \text{ rad/s} \) for a typical clay masonry brick. When the angle of rotation reverses, it is assumed that the rotation continues smoothly from points \(O \) to \(O' \) and that the impact force is concentrated at the new pivot point, \(O' \). The ratio of angular velocity after and before the impact is \(e = \dot{\theta}_2 / \dot{\theta}_1 \). Assuming (a) that the impact is instantaneous and (b) that all the impact forces are concentrated at the new pivot point, one can apply conservation of angular momentum about the new pivot point (Housner, [1]). This gives the following coefficient of restitution

\[e = 1 - \frac{3}{2} \sin^2 \alpha \] \hspace{1cm} (4)

Figure 3 Response of blocks with different wedge curvature. Top: Lateral force – base rotation pushover response curves; Bottom: Base moment – base rotation pushover response curves.
Under the action of a horizontal force F is applied at the center of mass of the block a rigid block does not displace until the force reaches the uplift equilibrium value. The force – rotation pushover response curve of a rigid block is

$$F = mg \tan(\alpha - \theta)$$

(5)

It is plotted in Figure 3 (top – dashed line).

The base moment – rotation relationship is given by equation (6)

$$M_{base} = mgR \sin a \cos \theta$$

(6)

and is plotted in Figure 3 (bottom – dashed line).

It is evident that the block has negative post-uplift stiffness while the base moment stays almost constant. An extensive discussion on the significance of the negative post-uplift stiffness is offered in Makris and Vassiliou [47] and Vassiliou and Makris [58]

3 ROLLING AND ROCKING RESPONSE OF A BLOCK ON A BASE WITH CURVED ENDS

This section presents the model of a rigid block rocking and rolling on an extended curved base [65] (Figure 3) and briefly discusses its properties. An extended presentation of the above model and the numerical study of its properties under seismic excitation is a subject of ongoing research and lies beyond the scope of this paper.

The geometric properties of the block are shown on Figure 1. The added wedges are characterized by their radius of curvature r and by their angle β. The curved wedges are assumed to be massless. When a horizontal force is applied to the center of mass of the block, the block stays initially at rest until the load reaches the critical value of $mg \tan(\alpha)$. Next, the block rolls on the curved surface (Phase I) until the tilt angle reaches the value β. Phase II follows where the block rocks, i.e. rotates around the edge of the curved base. The force deformation relationships for the different cases are given in equations (7) and (8) (for positive θ):

Phase I – Rolling:

$$F = mg \frac{\sin(\alpha - \theta) + 2 \rho \cos \alpha \sin \theta}{\cos(\alpha - \theta) + 2 \rho \cos \alpha (1 - \cos \theta)}, \quad \theta < \beta$$

(7)

Phase II – Rocking:

$$F = mg \frac{\sin(\alpha - \theta) + 2 \rho \cos \alpha (\sin(\beta - \theta) + \sin \theta)}{\cos(\alpha - \theta) + 2 \rho \cos \alpha (\cos(\beta - \theta) - \cos \theta)}, \quad \theta > \beta$$

(8)

where ρ is the normalized wedge radius of curvature:

$$\rho = \frac{r}{2H}$$

(9)

Linearization of the above equations gives:

Phase I – Rolling:

$$F = mg (\alpha + (2 \rho - 1) \theta), \quad \theta < \beta$$

(10)

Phase II – Rocking:

$$F = mg (\alpha + 2 \rho \beta - \theta), \quad \theta > \beta$$

(11)
Therefore, the post-uplift stiffness of the rolling phase is positive, if $\rho > 0.5$, and negative, if $\rho < 0.5$.

The base moment is equal to

Phase I – Rolling:

$$\frac{M_{\text{base}}}{mgR\sin \alpha} = \cos \theta + 2\rho \cot \alpha \sin \theta, \quad \theta < \beta$$ \(12\)

Phase II – Rocking:

$$\frac{M_{\text{base}}}{mgR\sin \alpha} = \cos \theta + 2\rho \cot \alpha \left(\sin (\beta - \theta) + \sin \theta \right), \quad \theta > \beta$$ \(13\)

Linearization of the above equations gives:

Phase I – Rolling:

$$M_{\text{base}} = mg \left(B + r\theta \right), \quad \theta < \beta$$ \(14\)

Phase II – Rocking:

$$M_{\text{base}} = mg \left(B + B_{\text{curved}} \right), \quad \theta > \beta$$ \(15\)

The $F-\theta$ and the $M_{\text{base}}-\theta$ pushover response curves are shown in Figure 3. The post-uplift stiffness in Phase I depends on the curvature of the curved part of the base and can lie anywhere from negative to positive, resembling the behavior of the restrained rocking column presented in [58]. Overturning can occur either in the rocking phase, or in the rolling phase (when the wedge curvature is relatively large, e.g. case $\rho=0.25$ in Figure 3).

The equation of motion for the Phase I is:

$$\dot{\theta} = \left\{ \begin{array}{l} -\frac{3}{4} \rho \cos \alpha \theta^2 \left(\sin (\pm \alpha - \theta) + 2\rho \cos \alpha \sin \theta \right) - \\ - \frac{1}{4mR^2} 6\rho^2 \cos^2 \alpha (1-\cos \theta) + 3\rho \cos \alpha \left(\cos (\pm \alpha - \theta) - \cos \alpha \right) \end{array} \right\}$$ \(16\)

and for the phase II it is:

$$\dot{\theta} = -p^2 \left\{ \begin{array}{l} \sin (\pm \alpha - \theta) + 2\rho \cos \alpha \left(\sin (\pm \beta - \theta) + \sin \theta \right) + \\ + \frac{\ddot{u}_c}{g} \left(\cos (\pm \alpha - \theta) + 2\rho \cos \alpha \left(\cos (\pm \beta - \theta) - \cos \theta \right) \right) \end{array} \right\}$$ \(17\)

where p is defined as in the case of a rectangular rocking block:
\[p = \sqrt{\frac{3g}{4R}} \] \hspace{1cm} (18)

\(\rho \) is the normalized radius of curvature:

\[\rho = \frac{r}{2H} \] \hspace{1cm} (19)

\(I_c \) is the moment of inertia of the system around its center of mass. In order to take into account the mass of the wedges, they need to be accounted for in the computation of \(I_c \).

Following Housner, it is assumed that at each impact is instantaneous and that all the impact forces are concentrated at the new pivot point (i.e. at a distance \(B \) from the axis of symmetry), the coefficient of restitution is:

\[\varepsilon = \frac{\dot{\theta}_{\text{post-impact}}}{\dot{\theta}_{\text{pre-impact}}} = 1 - \frac{2mR^2}{mR^2 + I_c} \sin^2 \alpha \] \hspace{1cm} (20)

If the wedges are assumed massless the coefficient of restitution is given by the well known Housner coefficient:

\[\varepsilon = \frac{\dot{\theta}_{\text{post-impact}}}{\dot{\theta}_{\text{pre-impact}}} = 1 - \frac{3}{2} \sin^2 \alpha \] \hspace{1cm} (21)

It is evident that according to the above assumptions the coefficient of restitution, and hence the damping, are controlled only by the slederness ratio, \(\alpha \), and are not influenced by the wedges.

4 FREE VIBRATION TESTS OF A RIGID COLUMN WITH CURVED WEDGES

4.1 Specimens and test setup

A specimen consists of two columns (C), two link plates (L) and four changeable feet (F), all made of aluminium (Figures 4, 5 and 6). Two linked columns (instead of one) were used to avoid out-of-plane motion. The top feet were used because the specimens will be used in the future to test the response of a rocking frame on columns with curved end. For the tests presented herein, the top feet are obsolete and only result to the center of gravity being at column mid-height.

The total height of all the specimens is \(2H = 500 \text{mm} \). The horizontal projection of the curved feet \((2 \times (B_{\text{curved}} + B) \)) is identical in all specimens and equal to 150mm, giving \(\tan(\alpha') = 150/500 = 0.3 \). Two groups of specimens are examined: One with a flat base equal to \(2B = 50 \text{mm} \) (\(\tan(\alpha) = 0.1 \)) and one with a flat base equal to \(2B = 75 \text{mm} \) (\(\tan(\alpha) = 0.15 \)). In each group, 4 different curvatures of the curved part are tested: \(\text{flat}, r = \{ 500 \text{mm}, 250 \text{mm}, 125 \text{mm} \} \). For the curved specimens \(\rho = r/2H = \{ 1, 0.5, 0.25 \} \). These curvatures correspond to a positive, zero and negative post-uplift stiffness. These geometrical properties of the specimens are sketched in Figure 7 and are summarized (together with the specimen masses) in Table 1.
Figure 4. Sketch of a specimen and its components

Figure 5. Position of infrared markers

Figure 6. Flat foot (left) and curved foot (right)

<table>
<thead>
<tr>
<th></th>
<th>2H [mm]</th>
<th>2B + 2B_{curved} [mm]</th>
<th>2B [mm]</th>
<th>B_{curved} [mm]</th>
<th>tanα' [-]</th>
<th>tanα [-]</th>
<th>r [mm]</th>
<th>ρ [kg]</th>
<th>β [mm]</th>
<th>m_c [kg]</th>
<th>I_c [kg mm^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>150</td>
<td>50</td>
<td>–</td>
<td>0.3</td>
<td>0.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5.717</td>
<td>229'662</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>150</td>
<td>50</td>
<td>50</td>
<td>0.3</td>
<td>0.1</td>
<td>500</td>
<td>1</td>
<td>0.100</td>
<td>6.331</td>
<td>266'897</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>150</td>
<td>50</td>
<td>50</td>
<td>0.3</td>
<td>0.1</td>
<td>250</td>
<td>0.5</td>
<td>0.201</td>
<td>6.255</td>
<td>262'445</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>150</td>
<td>50</td>
<td>50</td>
<td>0.3</td>
<td>0.1</td>
<td>125</td>
<td>0.25</td>
<td>0.412</td>
<td>6.391</td>
<td>270'442</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>150</td>
<td>75</td>
<td>–</td>
<td>0.3</td>
<td>0.15</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5.737</td>
<td>230'171</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>150</td>
<td>75</td>
<td>37.5</td>
<td>0.3</td>
<td>0.15</td>
<td>500</td>
<td>1</td>
<td>0.075</td>
<td>6.328</td>
<td>267'254</td>
</tr>
<tr>
<td>7</td>
<td>500</td>
<td>150</td>
<td>75</td>
<td>37.5</td>
<td>0.3</td>
<td>0.15</td>
<td>250</td>
<td>0.5</td>
<td>0.151</td>
<td>6.287</td>
<td>265'393</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>150</td>
<td>75</td>
<td>37.5</td>
<td>0.3</td>
<td>0.15</td>
<td>125</td>
<td>0.25</td>
<td>0.305</td>
<td>5.717</td>
<td>261'459</td>
</tr>
</tbody>
</table>

Table 1: Geometric characteristics of the specimens
Figure 7. Geometric characteristics of the specimens.

4.2 Test Method

The specimens were tested on a flat, horizontal aluminium plate. They were tilted to an initial tilting angle and were let to move freely. The entire response time history was recorded, but in order to avoid experimental error due to potential unintended initial velocity, the time history was post processed and only the part after the maximum following the first impact was kept and later compared with the numerical solution.

4.3 Data Acquisition System

An Optotrak Certus System, manufactured by Northern Digital Inc., was used to track the position of the specimens during the tests. This system uses active infrared-emitting diodes as markers and a trinocular camera system to determine the position of the markers. In order to measure the tilt angle $\theta(t)$ and a potential slip on impact, four light-emitting diodes (LED) were used: two of them were placed on the rigid plate the structure was rocking on, a third one is positioned at the base, and the fourth one on top of the column (Figure 5). The NDI camera was able to compute the 3D angle between the LED 1-2 line and the LED 3-4 line as
well as the relative displacement between LED 1 and 3. The experimental design is shown in Figure 8.

Figure 8. Experimental design

The accuracy of the system was determined by measuring the position of a marker at rest over a long period of time. In the x- and y-directions in the plane where rocking motion takes place, the accuracy was about 0.02 mm. In the z-direction, perpendicular to the plane of motion, the accuracy was about 0.10 mm. The position sampling frequency was 500 Hz.

4.4 Results and comparison with numerical solution

The objective of the experimental campaign was to validate the analytical model presented in the previous section. Each specimen was tested three times: 24 tests were performed. Figures 9-16 plot the time histories of the normalized tilt angle, \(\theta/\alpha \). Three time histories are plotted in each plot: (a) the experiment results, (b) the numerical solution with the theoretical (Housner) coefficient of restitution, and (c) the numerical solution with an empirical coefficient of restitution. The empirical coefficient of restitution was obtained from the first 10 motion cycles assuming that energy dissipation takes place only at impact.

One can observe:

1) Housner assumptions give a good estimate of the coefficient of restitution. For example, in Setup 1 the experimental value is \(\varepsilon_{\text{emp}}=0.990 \) while Housner assumptions would give \(\varepsilon_{\text{th}}=0.988 \). In terms of normalized energy loss per impact, the empirical coefficient would give \(1-\varepsilon^2_{\text{emp}}=1.99\% \) while Housner would give \(1-\varepsilon^2_{\text{th}}=2.39\% \). Considering the complicated nature of impact and damping, an accuracy of 20% is a good approximation.

2) Housner-like coefficients of restitution slightly overestimate energy dissipation for the specimens without curved wedges (Specimens 1 and 5). In an effort to explore the source of this deviation, one has to explore Housner assumptions: (a) the impact is instantaneous, and (b) all the impact forces are concentrated on the new pivot point. Assumption (a) allows for the typical assumption that the non-impact forces (in this case the weight) can be neglected during the application of the impulse-momentum theorem. Assumption (b) leads to the Conservation of Angular Momentum Theorem (CAMT) applied about the new pivot point. Else, the CAMT should be applied about the point where the resultant of the impact forces is acting. Since
the bodies are rigid, the impact is expected to be instantaneous (and the weight is
eXpected to be much smaller than the impact forces), at least for relatively large ve-
locity impacts. On the other hand back-calculations for Specimen 1 show that the
slight difference between the experimentally observed and the Hounser coefficient
of restitution means that the point of action of the force should be 0.2mm away from
the new pivot point. Missing the point of application of the resultant of the impact
forces by only 0.2mm (which corresponds to 0.4% of the base) shows that Housner
assumptions are valid and reasonable.

3) The addition of the curved wedges reverses the situation: Hounser assumptions
underestimate the energy loss consistently (with the exception of Specimen 6). It
seems that the addition of the wedges shifts the point of action of the impact forces
away from the axis of symmetry, hence increasing the energy dissipation. However,
apart from stating that qualitative result, it is impossible to quantify the increase.

4) In general, the coefficient of restitution decreases (implying a larger damping ratio)
for low velocity impacts. This explains why a rocking block does not need infinite
number of impacts to stop, as Hounser assumptions would predict [66] and is con-
sistent with the results presented in [23]. Evidently, for smaller velocity impacts, the
weight of the specimen is not negligible when compared to the impact forces and
Hounser assumption (a) does not hold: The weight contributes to the impulse-
momentum equation and slows down the motion.

5) Even though the coefficient of restitution is predicted relatively well, in many cases
the numerical solutions diverge from the experiment data (e.g. become out of phase
with the experiment data). Unlike elastic viscously-damped systems (where the pe-
riod and the damping are only loosely related – \(\omega = \omega_0 \sqrt{1-\zeta^2} \)) the „period“ or a
rocking column (i.e. twice the time interval between two impacts) strongly depends
on damping. This is attributed to the dependence of the period on the amplitude of
vibration (hence on the coefficient of restitution). The above observation explains
the difficulties in predicting the seismic response of a rigid block to a specific time
history [56] and urges for a stochastic treatment of the rocking problem. It is evident
that if deviations of 0.2mm in the prediction of the location of the impact point lead
to different time history results, an error or 0.4% of the flat part of the foundation,
then the deterministic treatment of the rocking problem is impossible.

5 CONCLUSIONS

Curved wedges are added to the flat base of a rocking rigid column in order to increase its
overturning stability without significantly increasing the base moment. The equations of mo-
tion were derived and validated against free-vibration tests. It is shown that the theoretical
values for the coefficient of restitution are numerically close to the experimentally obtained
values. However, the response of the block is so sensitive to the exact coefficient of restitution
value that a deterministic calculation of the response to a ground motion becomes practically
impossible.
Figure 9. Normalized tilt angle, θ/α, time history for Specimen 1.
Figure 10. Normalized tilt angle, θ/α, time history for Specimen 2.
Figure 11. Normalized tilt angle, θ/α, time history for Specimen 3
Figure 12. Normalized tilt angle, θ/α, time history for Specimen 4
Figure 13. Normalized tilt angle, θ/α, time history for Specimen 5
Figure 14. Normalized tilt angle, θ/α, time history for Specimen 6
Figure 15. Normalized tilt angle, θ/α, time history for Specimen 7
Figure 16. Normalized tilt angle, θ/α, time history for Specimen 8
REFERENCES

[64] Papadopoulos C, DOMOS Engineers, Athens, Greece, personal communication, September 19, 2014
