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Abstract

It is an exciting time to do database research. Two movements dominated the

field for the last few years: Big Data and NoSQL. Both movements arose out of

necessity, as cloud computing imposes new requirements on database systems.

Cloud computing makes scalability and elasticity more important than ever. A

user does not want to pay for computing and storage resources she does not use,

but she expects to be able to get these resources as soon as they are needed.

Traditional database management systems, however, are not able to meet these

requirements.

Early NoSQL systems provided elasticity and scalability by massively simplifying

the provided consistency guarantees and the underlying data model. Most notably

key value stores can scale to thousands of machines and allow resizing their

cluster at runtime. However, their simplicity is also their greatest weakness: The

lack of transactions makes it difficult to reason about concurrency, and the simple

data model makes them difficult to use. Key value stores push most of their

complexity into the application. As a result, more recent solutions try not only to

add transactions, but they also implement complex operations in a layer above the

underlying NoSQL storage. This layering is often referred to as SQL over NoSQL.

Big Data, on the other hand, is about the analytical processing of massive

amounts of data in the cloud. The Hadoop ecosystem and, more recently, Spark

are the most prominent systems that play in this field. These systems allow for

massive parallelization of complex analytical queries and are elastic and scalable.

They achieve this by implementing a shared data architecture which decouples

computing resources from storage resources.

However, these Big Data platforms still have a problem: bringing the data from

the online NoSQL (or SQL) database into Hadoop is a complex issue. Traditionally,

this is solved like traditional data warehousing which is a heavy weight solution.
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A system like Spark also can not simply use a key value store for its underlying

storage, because current key value stores perform poorly when they have to deliver

high volumes of data.

This thesis introduces Tell, a distributed shared-data database management

system that fills the gap between NoSQL and Big Data. Tell implements the SQL

over NoSQL design principle: it performs transaction processing on top of a high-

performance key-value store. At the same time, its key value store is heavily

optimized for scan queries, allowing data processing engines to fetch their data

directly from the online database.



Zusammenfassung

Big Data und NoSQL waren und sind Bewegungen die die Datenbankwelt in

den letzten Jahren stark geprägt haben. Beide Bewegungen entstanden aus der

Notwendigkeit neuen Anforderungen, die vor allem Cloud Computing an moderne

Datenbanksysteme stellt, zu genügen.

Die wichtigste Eigenschaft die ein System innerhalb der Cloud haben muss ist

Elastizität. Ein Kunde will nicht für Ressourcen bezahlen die er nicht nutzt. Der

Anbieter muss jedoch in der Lage sein, zusätzliche Ressourcen zur Verfügung zu

stellen sobald sich die Anforderungen der Kunden ändern.

Elastizität und Skalierbarkeit wurden von NoSQL Systemen zu beginn erreicht

indem die Konsistenzgarantien und das unterstützte Datenmodel stark vereinfacht

wurden. Dank diesen Vereinfachungen können, zum Beispiel, Key-Value Stores

auf tausende von Maschinen skalieren und zur Laufzeit Machinen aus dem Cluster

entfernen oder zum Cluster hinzufügen.

Leider ist jedoch diese Vereinfachung sowohl eine Stärke als auch eine Schwäche:

Die fehlenden Transaktionen und das stark vereinfachte Datenmodel erschweren

die Benutzung dieser Systeme, da die Komplexität von der Datenbank in die App-

likation verlagert wird. Aus diesen Gründen versuchen neuere Systeme Transak-

tionen und komplexe Operationen eine Schicht oberhalb eines NoSQL storages

zu implementieren. Dieser Ansatz wird häufig als SQL over NoSQL bezeichnet.

Big Data ist ein anderer Trend der letzten Jahre. Wir produzieren immer mehr

Daten und wollen mit analytischen Abfragen Informationen aus diesen Daten

gewinnen. Hadoop, und seit ein paar wenigen Jahren Spark, sind die bekan-

ntesten Produkte die aus diesem Trend hervor gingen. Diese Systeme erlauben

mit massiver Parallelisierung komplexe Anfragen über grosse Datenmengen zu

beantworten. Beide Systeme skalieren und sind elastisch. Dies wird erreicht indem

die Recheneinheiten vom Storage getrennt werden.
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Leider haben diese Systeme einen grossen Nachteil: die Daten die verarbeitet

werden sollen befinden sich meistens in einem Datenbanksystem, entweder einer

NoSQL oder einer traditionellen SQL Datenbank. Die Daten müssen dann kopiert

werden damit sie von Spark oder Hadoop gelesen werden können. Leider können

Spark und Hadoop die Daten nicht direkt aus dem Online-System lesen, da Key-

Value Stores nicht optimiert sind um grosse Datenmengen zu lesen.

Diese Dissertation stellt Tell vor, eine verteilte shared-data Datenbanklösung

die die Kluft zwischen NoSQL und Big Data füllt. Tell arbeitet nach dem SQL

over NoSQL Prinzip: es implementiert Transaktionen eine Schicht oberhalb eines

schnellen Key-Value Stores. Der Key-Value Store ist zusätzlich in der Lage grosse

Datenmengen direkt an analytische Systeme zu liefern. Dies erlaubt sowohl

Echtzeit-Transaktionsverarbeitung und analytische Anfragen auf den selben Daten.
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Introduction

Der Starke ist am mächtigsten allein.1

(Friedrich Schiller, Willhelm Tell)

Verbunden werden auch die Schwachen mächtig.2

(Friedrich Schiller, Willhelm Tell)

1.1 Background and Motivation
For a lot of emerging applications, data warehousing is reaching its limits. With

the rise of cloud computing and the drop of storage prices, it gets easier to collect

data. However, analyzing this data is still a huge challenge.

Data warehousing brings high costs for hardware and maintenance. Within a

cloud, one would like to have an elastic system so that these costs only need to

be paid for while the warehouse is used. This, however, is not achievable without

an elastic system.

Another problem arises when real-time analytics becomes a requirement. The

data within a classical warehouse does not hold the current data, but it gets updated

periodically.

Updating the data warehouse is usually done with ETL (Extract, Transform,

Load): the data is extracted from a parallel running online transaction system,

1The strong man is strongest when alone.
2Even the weak men are strong when united.
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transformed in a read-optimized schema, and then loaded into the data ware-

house. This process, however, is non-trivial and requires a lot of engineering and

maintenance to work correctly.

All in all, data warehousing is a very heavy-weight solution.

To solve some of these problems, new database systems emerged from industry

and research that can run mixed workloads on a single machine. Examples are

HyPer [KN11] and AIM [Bra+15]. Single machine solutions, however, are not the

answer to all these problems.

For a cloud solution, elasticity is a hard requirement. Without elasticity, multi-

tenancy is virtually impossible to achieve. Furthermore, as scaling the system

while it is running is not possible, a user has to overprovision resources to get

the desired response time and throughput. This increases the cost per operation

significantly compared to a system that can scale down during times when the

load is low.

Another problem with single machines solutions is that scaling a system up

is expensive. Also, with new hardware trends, single machine systems face

similar challenges than distributed systems: CPU speed is not improving signif-

icantly. Instead, hardware vendors put more CPUs into a single box. As the

number of CPUs within a system increases, memory communication and inter-

CPU communication becomes challenging. A design that works around these

problems is NUMA (Non-uniform memory access): the memory is split between

the processors and access time depends on the memory location relative to the

processor. These systems can still be programmed as if it would be a multi-core

system with uniform memory. This will, however, result in reduced performance

compared to a system that is NUMA-aware. As a consequence, a single machine

has to be programmed the same way as a distributed system: each CPU has its

own memory region and communication between these regions is more expensive

than local memory access. As the CPU count increases, this effect can be expected

to get even higher. At the same time, network latencies are still declining. Current

Infiniband networks provide network latencies which are only around one order of

magnitude slower than memory latencies between two NUMA units.

Distributed solutions, however, mostly optimize for a particular workload. Sys-

tems like VoltDB/H-Store [Kal+08] or MySQL Cluster optimize for online transac-

tions and systems like Hadoop, Spark, and Presto optimize for analytical workloads.
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1.2 Problem statement

We want to have a system that can handle mixed workloads on one logical copy of

the data. We only want to copy data for durability and availability. As this system

is designed to run in a cloud environment, it has to be elastic and scalable.

We want to be able to separate storage resources from computing resources.

In such a system, it has to be possible to add computing resources at run time for

lower response times of analytical queries, to improve the transaction throughput

for online transactions or both. At the same time this has to work on the other layer

as well: if the data shrinks, it has to be possible to remove storage resources from

the storage layer or add more storage if the database grows in size. Optimally this

should be doable without adding cost for additional computing resources if these

resources are not needed. A system with these properties is what we call elastic.

Optimally, on a scalable system, the cost per transaction stays constant in-

dependent of the load. The throughput has to increase linearly on a scalable

system. For analytical queries, the response time should decrease linearly as

more computing resources are added to the system.

1.3 Contributions

Analytical and transactional workloads impose different requirements on an un-

derlying storage system and on the processing engine. For online transactions,

we want to optimize for a high transaction throughput, many point queries, small

range queries, and many small updates. However, analytical workloads usually

require a high data throughput.

The first and largest contribution of this thesis is TellStore, a key value store

specifically designed to support mixed workloads. As part of the work on TellStore

we explored the design space for a storage engine which can sustain a high get

and put load while providing low response times for concurrent full table scans. We

were able to show that it is possible to build a storage engine that can achieve high

scan performance with making only minor sacrifices to its get and put performance.

To support secondary indexes, we designed and built a distributed, lock-free

B-tree, called Bd-tree. This data structure is based on the Bw-tree presented in

[LLS13].

We adopted the distributed shared-data architecture for mixed workloads on a

single copy of data and provide a comprehensive performance evaluation over the

explored design space.

We invested a lot of engineering effort and published a working system called
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Tell as Open Source on github3. Tell is an elastic and scalable database manage-

ment system that can run mixed workloads.

Tell is designed for RDMA. We designed an implemented Infinio which is a

threading runtime and network layer designed to work over RDMA networks with

a minimal computing overhead. Infinio reduces the CPU overhead significantly

compared to all other comparable libraries which are known to us. We achieved that

without making compromises for ease of use: a user can program with Infinio as if it

is a blocking socket interface. Infinio achieves its high throughput by implementing

aggressive batching of requests between user-level threads.

1.4 Overview of the thesis
The first chapter of this thesis defines the architecture and give a high level overview

of the system. The rest of the thesis is divided into three parts:

1. The first part of this thesis describes the storage. We specify the requirements

of a storage engine for a storage that can be used to implement transactions

and can handle scans for analytical transactions. Furthermore, the design

space for such a storage is explored and all design decisions explained. We

implemented three different storage engines, each covering a different part

of the design space. The last chapter of this part shows experimental results

where we compared the different approaches with each other.

2. The second part of this thesis explains how indexing and transactions are

implemented on top of the storage engines described in the first part.

3. The last part brings together the components from the first two parts and

demonstrates how they can be used to run mixed workloads on Tell.

The thesis finishes with an overview of possible future work and conclusion.

3https://github.com/tellproject/tell
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The Shared Data Architecture

2.1 Introduction

2.1.1 Finding the Right Architecture for the Right Job

As for any system, choosing the right architecture is not only the first step, it might

be one of the most important ones. For a distributed database, it is inherently hard

to get right and each architecture seen implemented so far seems to have distinct

benefits and drawbacks.

Who should have ownership of which part of the data? Where should computa-

tion happen? How is consistency guaranteed? How are machine failures handled?

How can the system scale? How can it be made elastic? While the architecture by

itself might not answer these questions, it restricts the set of possible solutions.

2.1.2 Requirements

A database management system designed for the cloud has to scale and has to be

elastic. A database system designed for mixed workloads has to be able to handle

complex analytical queries as well as simple, short-running, localized queries and

updates. Furthermore, we want to achieve these goals without relying on copies of

the data. So whatever architecture we chose for such a system needs to provide

us with enough flexibility so that we can find a solution to all problems dictated by

these requirements.
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Figure 2.1: Shared-nothing (left) and shared-disk (right) architecture

2.1.3 Contributions

This chapter introduces the shared-data architecture which is a mix of two well-

established architectures used in many database management systems. I will

argue that by choosing the right heuristics for storage and compute distribution,

it is possible to design a system that can satisfy the requirements outlined in

section 2.1.2. This architecture simplifies the design and implementation of a

distributed database system for mixed workloads and will guide all work presented

in the following chapters.

2.2 Shared Nothing vs Shared Disk
The twomost common architectures for distributed database systems are illustrated

in fig. 2.1. In a shared-nothing database, each machine owns a partition of the

data which is stored locally (on a disk or in-memory). A system implementing the

shared-disk architecture stores all data in a shared disk which is then accessible

to all machines that are executing transactions. The following paragraphs give

a brief overview how such systems are usually implemented and discuss their

advantages and disadvantages. The differences between these two architectures

are summarized in table 2.1.

2.2.1 Shared Nothing

The shared-nothing architecture was most famously introduced by Micheal Stone-

braker in [Sto86] and is probably the most popular architecture for OLTP systems.
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The main idea is to use one full-featured database management system per

machine or, as in [Kal+08], even one per core. Each instance has ownership over

one partition of the data. The partitioning of the data is chosen in a way that most

(or ideally all) transactions only need to read and write from one partition. If that

is the case, a transaction can run in complete isolation on one partition - i.e. one

machine or even one core.

In other words, there is no separation between compute and storage, or most

complexity is pushed to the storage layer. Shared nothing databases are usually

optimized for a high transaction throughput and low latency. Furthermore, shared-

nothing database systems often allow a high write load, as single-partition read-

write transactions can be executed without inter-partition communication.

Shared nothing works great as long as it is possible to find a good partitioning

for a given workload. But as soon as some transactions need to write data from

several partitions, some form of inter-machine communication needs to be done.

Usually, this is solved by introducing an additional federation layer. This layer will

send the queries of an inter-partition transaction to each machine involved in the

execution of the transaction and aggregate the results. In order to serialize such

a transaction, a consensus protocol is needed (e.g. two phase commit [LS79] or

Paxos [Lam78]).

This architecture is mostly used for Online Transaction Processing (OLTP), as

these workloads require low latency and high transaction throughout. Furthermore,

OLTP workloads often allow fine grained partitioning of data. But this partitioning

requirement is also the biggest weakness of the architecture. Sometimes it is not

possible to find a suitable partitioning for a given workload which will result in a

performance degradation. Especially analytical queries usually need to read more

than one partition of the data.

The next big drawback of the shared nothing architecture is the lack of elasticity.

Adding and removing storage nodes is non-trivial since the data needs to be

repartitioned. Repartitioning might not even be possible at a certain point since

the workload might not allow a fine-grained enough partitioning. Even if it does, it

might not be possible to partition the data evenly over the storage nodes.

Comparing these strengths and weaknesses of the architecture with the re-

quirements listed in section 2.1.2 shows that it will either impossible or very hard

to design a shared-nothing system that can fulfill all requirements. It can run

OLTP-style workloads and it can scale out well. However, elasticity will be hard to

implement and concurrent long-running queries with a high data throughput might

be problematic for such a design.
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2.2.2 Shared Disk

On a shared disk (or sometimes called shared everything) system, every database

node has a global view of all data. The data is then stored on a (potentially

distributed) disk that is accessible over the network. Examples of such systems

are Oracle RAC [Smi03] (which uses a shared SCSI, SAN, or NAS device to

store the data), Googles MapReduce [DG08] (which uses the Google File System

[GGL03] as a storage), Hadoop [Shv+10] (which is essentially an open source

implementation of Googles MapReduce and the Google File System), and Apache

Spark [Zah+10].

While shared nothing systems push all complexity to the storage layer, shared

disk systems try to keep the storage as simple as possible. A storage node does

not execute transactions, but it can just be used to read and write simple blocks of

data. The transaction processing is then implemented in a higher layer which we

call the processing layer. It can consist of several machines and each transaction

is executed by one or many machines. Each machine within the processing layer

has a global view of all data; this means that each processing node can potentially

read and modify all data in the system, and no machine has explicit ownership

over a partition of data.

These systems are usually optimized for high data throughput. An arbitrary

number of processing nodes can process all data concurrently. This makes this

architecture attractive for analytical workloads: several machines can execute one

query and work on a partition of the data. But the partitioning of the data does not

need to be made beforehand. Each processing node can just read its partition

from the disk and produce a result and send this back to some master node for

the final aggregation.

Shared disk databases are, unlike shared nothing systems, elastic. Adding and

removing processing nodes is trivial, as they typically are mostly stateless. Adding

and removing storage nodes gets much easier as well: since the processing layer

is oblivious to how data is partitioned across storage instances, repartitioning can

always be done without any user interaction and independent of the workload. For

the same reason, scaling becomes easier as well. These features make a shared

disk database system attractive for analytical workloads.

In practice, shared disk systems suffer from higher latencies than shared

nothing systems. This is mostly because the data is physically further away from

the CPU that is processing a query. Concurrency control gets harder as well, as

locking needs to be done either in the storage (by taking locks in the file system)

or a central locking service needs to be in place. The next problem is caching:
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Shared Nothing Shared Disk

Complexity in storage layer Complexity in processing layer

Optimized for partitioned workload Optimized for worst-case

Low latency Higher latency

High transaction throughput High data throughput

Most popular for OLTP Most popular for OLAP

Table 2.1: Comparison of shared nothing and shared disk

while a processor in a shared nothing database can cache virtually the whole

database without problems (the only bottleneck is the physical size of the cache),

a shared disk system can never be sure that its cache was not invalidated by

another processing node. Therefore it often needs to reread data from disk to

ensure data freshness. These drawbacks make the shared disk unattractive for

OLTP workloads.

To conclude, a shared-disk system can easily satisfy some requirements of the

ones listed in section 2.1.2: it can scale, it is elastic and it can handle complex

analytical workloads. But most shared-disk systems run into issues when it comes

to OLTP-style workloads.

2.2.3 Copying data

As argued in [SÇ05], it is hard to build systems that perform well for different kind

of workloads. Because of this, companies today are often using two database

management systems: one optimized for OLTP and another one optimized to run

analytical workloads. The OLTP system contains the live data which is then copied

to the OLAP system. This copying can be done either with every write operation or

in one batch at certain time intervals. In that case, for example, every day or every

week, all data is extracted from the OLTP system, then potentially transformed into

a read-optimized schema and finally loaded into the OLAP system. This process

is, therefore, usually called ”Extract, Transform, Load” (ETL).

As stated in section 1.2, the goal of this work is to provide a system that can

run mixed workloads without relying on copies of data. ETL has its drawbacks;

the most important one is data freshness. Analytical queries will only see data

that is as old as the snapshot that was copied into the analytical database system.

One solution to this could be to copy the data of each transaction at commit time.

While this approach is valid, it still has the drawback that one needs twice as much
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Figure 2.2: The Shared Data architecture

memory to run mixed workloads and making a copy of the data during each commit

is hard by itself. Therefore, running all queries on the same data is not just a design

decision, it is a feature.

One might argue that we usually want to replicate data anyway (for availability

and higher read throughout). Therefore, we could just replicate the database state

into another storage format which is better suited to answer analytical queries than

the OLTP system. But it is not clear how to achieve that. First of all, having a copy

in different data formats is not equivalent to copies in the same data format: if an

OLTP copy crashes, the analytical system would not be able to handle OLTP load

and vice versa. Another observation is that copying data in real time while bringing

it into a different format is by no means trivial and still needs research. Some open

questions are: how do we handle analytical transactions that are not read-only - or

do we simply not support this? How do we make sure that all OLAP replicas are in

a consistent state so that analytical transactions are executed in serial with OLTP

transactions?

2.3 Shared Data

This thesis argues that shared data is the right architecture to handle mixed

workloads. But before doing that, shared data needs to be defined. The architecture

is illustrated in fig. 2.2. On first sight, this architecture looks very similar to the

shared disk architecture. The main difference between shared data and shared disk
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Shared disk Shared data Shared nothing

Time complexity O(1)

For get/put:

• O(1) average (hash)

• O(log(n)) (tree)

For scan:

• O(n)

Unbounded

Space complexity O(1) O(1) Unbounded

Table 2.2: Complexity comparison of storage layers

is that some functionality is implemented in the storage layer. Instead of serving

files (or disk blocks), the storage is serving tuples indexed by a key. Shared data

is a compromise between shared disk and shared nothing.

This idea is not new and is often also referred to as “SQL over NoSQL”. NoSQL

systems often implement a shared-nothing architecture. SQL over NoSQL does,

however, imply that the SQL-process has a global view on data. Usually, the

underlying storage system is a key value store, but according to our definition, it

can be arbitrarily more complex than a disk. E.g. Hyder [BRD11] uses a shared

log instead of a key value store to store data. One has to be careful though: if

too many features are pushed into the storage layer, we might end up with a

shared nothing architecture again (where the processing nodes have the role of

a simple federation layer). So the boundary between shared data and shared

nothing needs to be defined. Throughout this thesis, shared data is defined as

stated in definition 2.1.

Definition 2.1 A distributed database system implements the shared data archi-

tecture if all operations supported by the storage back end can be executed in

O(n), where n is the number of tuples stored in the database, while the space

overhead of each operation is constant.

Therefore, shared data is just a generalization of the shared disk architecture.

On a disk, each operation can be executed in constant or, in case of a seek, in

linear time. A shared nothing architecture is not a shared data architecture since

the storage is a full-featured database system by itself where each operation can

be unbounded in complexity. As an example, sorting cannot be executed in linear

time. But the storage of a shared data system can be more feature rich than a

simple disk: it can evaluate predicates at scan time, do simple aggregations, and

projections. To illustrate the differences between shared data, shared disk, and
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Disk Shared-Data Store Relational Database

Transaction support

Selection Push Down

Projection Push Down

Aggregation Push Down

Join & Group By

Secondary Indexes

Table 2.3: Feature comparison of storage layers

shared nothing table 2.3 lists the features of a disk, a relational database system,

and a shared data storage system, an implementation of which will be presented

later in this thesis.

Definition 2.1 means that any shared-nothing system could be used as the

underlying storage as long as only features that execute within linear time are

used by the processing layer. The crucial aspect of shared-data is decoupling of

storage and compute as only cheap computational operations are executed within

the storage.

This limitation simplifies scalability and elasticity on both layers. On the com-

pute layer because each machine has tiny state. On the storage layer because

dependencies between data and operations are limited and the overall architecture

is simplified.

2.4 Potential Bottlenecks in a Shared Data System

No matter how well a system is designed and implemented, at one point, it will run

out of resources. In the best case, this will result in reaching peak throughput and

increasing response time. In the worst case, the system throughput will stall, as all

processes will fight for the available resources.

Systems do not run out of all resources simultaneously, but one or few resources

will limit the system’s ability to handle the load it is experiencing. This resource

is called the bottleneck. As a countermeasure, the system administrator can add

resources (in the form of additional or faster hardware) to the system. To do so,

one needs first to understand the bottleneck - it will not be helpful to add more

machines if a network switch can not keep up with the network load and replacing

the CPUs with faster models will not bring improvements if the memory controller
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reached its limits.

In this section, I will outline the bottlenecks a shared data system might hit:

• Network

• CPU

• Memory controller

Another reason why the system might stall is resource contention: If a lot of

transactions try to read or write the same data, the system will not be able to use

concurrency to answer requests. Read operations will all hit the same machines,

degrading the performance while the other machines have plenty free resources.

This can be solved by replicating the data or by using a caching layer, for example,

memcached.

If a lot of concurrent transactions try to update the same data, the system has to

serialize these updates. If the system implements a form of optimistic concurrency,

it will abort a lot of these transactions which will result in low throughput. If the

system implements a form of pessimistic concurrency control (for example latches),

the system will serialize these transactions resulting in a higher response time.

Write contention can not generally be solved. But the problem can be reduced if

we can reduce the response time for transactions. It could be done by using CPUs

with a higher single core performance (but uni-core speed will at best increase

modestly in the foreseeable future) or with intra-transaction concurrency. Short

transactions, however, do not experience speed-up with more concurrency, they

typically become even slower because of the concurrency overhead.

2.4.1 Network bottleneck

Tell was designed for RDMA and built to use Infiniband which is a popular network

technology that implements RDMA. On Infiniband, there are mainly two limiting

quantities: the throughput and the message rate.

The throughput is usually not a problem for an OLTP workload: e.g. with TPC-

C, Tell generates only a few hundred megabytes of network throughout when it

reaches 1 million TpmC. Of course, this story will change for analytical workloads,

therefore we try to minimize the utilized throughput as well as possible. The best

way to reduce throughput is to make sure that only data that needs to be sent over

the network gets sent. As most other record-management layers do, TellStore

supports projections and selections. Therefore we can execute full table scans

mostly on the storage layer, and the storage will only send data over the network
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that is needed to execute the query. This is the main feature that distinguishes

TellStore from most other key value stores.

Another popular way to reduce network throughput is caching. Caching often

also has the desired side-effect that it decreases latency since data can be read

from local memory. TellDB does caching on the transaction level: whenever a

transaction reads a tuple from the key value store, it saves it locally. The updates

are then only applied locally and written back at commit time. Therefore updates

are only written once, and tuples are only read once per transaction. However,

as shown in [Loe15], inter-transaction caching hurts the overall performance.

Therefore, each transaction maintains its own cache, even if other transactions

are executed on the same machine.

The message rate is a much more prevalent bottleneck for OLTP workloads.

Infiniband can handle a few million messages per second (the exact number

depends on the Infiniband hardware and the network stack implementation). We

spent a lot of time in optimizing this with Tell 2.0 (this will be explained in more

detail in chapter 8). Our main counter measure is to pack messages together so

that we can send as big messages as possible (message batching).

We also only use lock-free data structures, since global locks will introduce new

messages that need to be sent through the network. In contrast to locks, lock-free

data structures help us to reduce the message rate to a minimum. If no conflict

occurs, a message needs to be sent only once. Only if a conflict is detected, more

messages are needed as the algorithm needs to either retry or roll back. The

problem here is, however, that with a high load, the number of atomic operations

that fail increases. For transactions, we will just abort and roll back as soon as

a conflict is detected, for other operations, we have no other choice than to retry

until the operation succeeds.

Our only countermeasure for retries of atomic operations is to try to engineer

the implementation of the algorithms as efficient as possible. We spent a lot of

time to optimize the code paths between successful atomic operations.

2.4.2 CPU

To discuss CPUs as a potential bottleneck we need to differentiate between CPUs

within storage machines and CPUs within processing machines.

Adding CPU power to a system can be done by either using faster CPUs

or adding more CPUs. The first is not possible, as CPUs do not get (much)

faster anymore. Adding more CPUs is only helpful if the work can be done in

parallel. Tell is designed to be highly scalable, so adding CPUs should bring a
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linear performance benefit up to a certain point. This is also an important reason

why distributed systems are becoming so important: the more CPUs we add, the

more the system starts to look like a distributed system. It does not matter whether

the CPU cores are within the same box. Eventually, communication between

CPUs slows down due to the increasing physical distance between them. Todays

NUMA technology started this trend, as communication between NUMA units is

significantly more expensive than between CPU cores within the same unit. A low

latency network like Infiniband is just another layer of indirection to communicate

between CPUs within the system. Tell is built to scale to rack size (or may be a

few racks - but we do not have the resources to test the scaling limits of Tell).

On the processing level, TellDB runs each transaction in its own thread. One

could, therefore, allocate one CPU core per transaction. For short running transac-

tions which do not involve a lot of computation (as it is usually the case for OLTP

workloads), this degree of parallelism is more than enough. Furthermore, OLTP

transactions are mostly IO bound. For analytical queries, this assumption does

not hold. To use inter-query parallelism, Tell provides a connector to Spark and a

Presto plugin. Tell does not provide its own distributed execution engine and this

is considered to be out of scope for this thesis.

The storage machines usually do not need to execute complex computations

for OLTP workloads as in that case, the storage is only answering to simple get and

put requests. In the processing layer, one can just add more CPUs or machines.

The story changes however for analytical queries. Analytical queries are often

very CPU intensive. Tell implements two counter measures: The heuristic shown

in table 2.2 help control the CPU load on the storage. Furthermore, we try to do

as many computations as possible with each CPU cycle. To do that, TellStore

compiles every scan query to highly optimized code. In the processing layer, every

query can be run on several machines which allows scaling out CPUs. Furthermore,

one can add more CPUs to the storage to speed up scans, as TellStore can scale

linearly with the number of CPU cores it can use for scans.

2.4.3 Memory Controller

For OLTP workloads, the memory controller is usually not a bottleneck, as only

small amounts of data are read for each transaction.

For analytical workloads, however, scans will put a high load on the memory

controller. While evaluating a scan, we need to ship a lot of data from main memory

to the CPU which will then evaluate predicates and materializes the result. If the

evaluation of the predicates is expensive, the CPU will become the main bottleneck.
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To minimize the load on the memory controller, TellStore implements a columnar

layout. This means that it does not need read all data but only the columns a query

is interested in. As another countermeasure, TellStore implements shared scans.

Shared scans trade response time for better caching behavior: one column might

be needed to calculate several query predicates. If that is the case, we need to

fetch the data only once into the CPU and can evaluate all of them at once.
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Designing a Storage for Mixed Workloads

3.1 Introduction

In this chapter, I discuss the general requirements for storage for a shared-data

database. These requirements did dictate the implementation of TellStore. But

any storage layer to be used for mixed workloads in the cloud has to fulfill these

requirements.

Formulating requirements has to be done cautiously. If the chosen requirements

are too weak, the system might not work correctly. If the requirements are too

strong, the implementation might become too complicated and slow.

This chapter does not by itself present new ideas. The function of this chapter

is to outline the characteristics that any storage layer for a shared data database

should have. This analysis guided us in the creation of TellStore - which will be

presented in detail in later chapters. The content of this chapter is currently under

review for publication.

3.2 Requirements

The idea to use a distributed NoSQL database as a storage for a SQL database

is not new and often referred to as SQL over NoSQL. Examples of such systems

are Presto [Fac16] and the SQL layer for FoundationDB [Fou13] (which was

discontinued after the company got bought by Apple).

However, most of these systems got developed bottom-up: a NoSQL store
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was designed independently and a SQL layer was added later. As a result, these

systems are optimized for a particular set of workloads and the SQL layer have to

be adopted to the storage layer.

In contrast, we designed the system top-down: we started with a processing-

layer (which is described in [Loe+15]) and with that knowledge designed a storage

that could execute all workloads well. We learned that it is important to design

both layers of the system simultaneously.

This section describes the requirements for such a NoSQL-layer. While the

underlying layer can be used without the SQL layer, it is designed to perform well

if used with a complex processing layer.

GET/PUT

This is probably the most obvious feature and the main functionality of any key

value store as well. The storage must provide the possibility that the client can

define some form of immutable key which points to a chunk of data (in the traditional

relational database world, we would define a table with some primary key and a

BLOB). This means that the storage must provide an index on the primary key.

The get operation is then used to fetch the associated value of a given primary

key value, and put is used to write a new value for a given key.

Most existing key value store can use arbitrary keys (e.g. strings or byte arrays).

This is, however, not a requirement. The only strong requirement is, that the key is

wide enough to allow storage of enough data. Therefore a mapping from integer to

a byte array is enough to implement a SQL store above it, but the integer should

be eight bytes wide to allow storing more than four billion key-value pairs.

Atomic Operations

While some key-value stores provide support for ACID-transactions, there are

benefits in implementing these on a higher level. Implementing transactions in the

processing layer has some advantages: it simplifies the storage layer drastically

and non-transactional operations do not need to be implemented separately. For

example, a secondary index implemented within the processing layer does not

need transactional operations.

However, the get/put operations must be atomic. This is a much more relaxed

requirement than transactional support, but it is still stricter than other consistency

guarantees seen in some key-value stores (e.g. eventual consistency is too weak).

Whenever a write request arrives at a storage node, it will either fail or succeed

(all or nothing), if it succeeds, all subsequent read requests see the updated version

of the tuple. The ordering of the requests is done at the storage, no ordering of
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requests from separate clients needs to be enforced. This means that if two writers

issue a write request for the same tuple simultaneously, the storage can decide on

the ordering. This has implications for replication. If replication is used, the system

needs to make sure that all clients always read the newest version of a tuple.

Additionally, the processing layer also needs to be able to write data under the

condition that the tuple did not change after it was read. In this work, I will refer to

this feature as compare and swap (CAS).

However, compare-and-swap is just the softest requirement for a storage to

be used within a transactional system. Another, stronger form, of an atomic

operation, is load-link/store-conditional (LL/SC). LL/SC gives stronger guarantees,

as it prevents the ABA problem: an atomic compare and swap might successfully

execute if the value changed several times in between.

In a distributed environment it is easier and more efficient to implement LL/SC

than CAS: for CAS the old value has to be shipped to the storage together with the

write request so that the storage can make a comparison. For LL/SC, something

potentially smaller can be used, like a sequence number to identify the previous

state of the value.

Scan Operator

Unlike a typical OLTP workload, analytical queries usually need to fetch a lot of

data from the storage. It is possible to use a secondary index to fetch whole tables.

However, this is inefficient for two reasons: the storage node has to issue one

random read operation per tuple and applying a predicate while scanning on the

server side is not possible - this further increases the load on the network.

Therefore, an efficient system needs a scan operator on the storage level. As

described in section 2.3, such a scan operator can execute selections and simple

aggregations.

Durability and Availability

The D in ACID stands for durability. This means that all write operations within a

successfully committed transactions will be readable after a crash or power failure.

Usually, this is done by writing to a disk.

A lot of key-value stores write to disk asynchronously to speed up write op-

erations. An ACID system, however, needs to execute all write operations of a

transaction before it commits.
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Scalability and Elasticity

Due to its simplicity, almost every key value store is scalable and elastic. With

scalability we mean that adding more hardware resources will translate to more

performance (for example higher throughput or lower response time). Elasticity

means that adding and removing hardware resources during operations is possible.

As mentioned in section 2.1.2, a system for the Cloud has to be designed to

scale and for elasticity. This requirement is the main motivation why we want to

eliminate as much complexity from the storage layer as possible.

Versioning

As shown in [Loe15], snapshot isolation is the most efficient algorithm for transac-

tion execution within a shared-data architecture. Furthermore, it has the advantage

that write-operations do not block long-running read-operations. Because of these

two reasons, a system designed for mixed workloads has to implement snapshot

isolation for concurrency control.

Multi-version concurrency control (MVCC) is a popular way to implement snap-

shot isolation. While it is possible to implement MVCC in the processing layer (as

shown in [Loe+15]) it is preferable to push some of this functionality to the storage.

Otherwise, all versions of each tuple need to be sent to the client on each

request, which will increase load on the network. Our storage has to implement

MVCC and the processing layer will implement the other parts needed for transac-

tion execution. Or in other words: the storage implements versioning to speed up

snapshot isolation.

Versioning is a broad term. What we mean by versioning is that the storage

organizes key-value pairs as follows:

• For each key, the storage keeps a set of version-value pairs.

• Whenever a client wants to read data, it needs to send the set of versions

(called read set) it wants to read from. The storage will then send back the

value with the highest version that is in the read set.

• For write operations, the client sends a key-value pair it wants to write, the

version the new tuple should have, and a read set. The storage will then look

for the key and only apply the update, if for the given key, there either does

not exist such a tuple or the newest version of the tuple is also contained in

the read set delivered by the client.

• There is a garbage collector that cleans old versions from the storage. How
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the storage decides which versions to clean can be configured (this is de-

scribed in more detail below).

Versioning can also be used to implement a compare and swap feature within

the storage. Therefore, if the system implements versioning, we can drop the

requirement for atomic operations. One example of a key-value store that uses

versioning to implement atomic operations is RAMCloud. However, the garbage

collection mechanism has to know which versions it can erase, which would not

be the case if only atomic operations were to be supported.

3.3 Why is this difficult?
The big problem of these requirements is that they are in conflict. That is why most

key value stores today (with the notable exception of Kudu) have been designed

to support get/put requests only (e.g., Cassandra and HBase), possibly with

versioning (e.g., RAMCloud) and sometimes with asynchronous communication.

All these features are best supported with sparse data structures: To read a specific

version of a record as part of a get operation, it is not important that this record

is clustered and stored compactly with other records. Scans, however, require a

high degree of data locality and a compact representation of all data so that each

storage access returns as many relevant records as possible. Specifically, adding

scans creates the following locality conflicts:

• scan vs. get/put: Most analytical systems use a columnar storage layout to in-

crease locality. KVS, in contrast, typically favor a row-oriented layout in order

to process get/put requests without the need to materialize records [Sto+05].

• scan vs. versioning: Irrelevant versions of records slow down scans as they

reduce locality. Furthermore, checking the relevance of a version of a record

as part of a scan is prohibitively expensive.

• scan vs. batching: It is not advantageous to batch scans with get/put requests.

OLTP workloads require constant and predictable response times for get/put

requests. In contrast, scans can incur highly variable latencies depending

on selectivities of predicates and the number of columns that are needed to

process a complex query.

Fortunately, as we will see, these conflicts are not fundamental and can be

resolved with reasonable compromises. The goal of the next chapter is to study

the design space of key-value store and lay out compromises.
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TellStore

Tell uses a key value store for storing and retrieving data. Key-value stores (KV

stores) are getting more and more popular. Unlike traditional database systems,

they promise elasticity, scalability, and are easy to set up and maintain. Further-

more, the performance characteristics of a KV store are easy to understand which

facilitates reasoning about and understanding performance numbers of systems

that rely on a KV store. In essence, the first and foremost advantage of KV stores

is their simplicity.

The goal of Tell was always to run mixed workloads on the same data. Currently,

systems usually achieve this by copying data from an OLTP optimized database

systems to an analytical system doing Extract, Load, Transform (ELT) - copying

the data. Tell, however, can run analytical workloads on OLTP data without making

a copy of it.

Key Value Store Scan Time

Kudu 27 s

RAMCloud 196 s

HBase + Spark 316 s

HBase 23 min

Cassandra > 2 hours (time out)

TellStore - log 391 ms

TellStore - row layout 466 ms

TellStore - columnar layout 82 ms

Table 4.1: Simple scan on popular key value stores
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To illustrate that current state-of-the-art KV stores are not properly optimized

for scans, we developed a simple micro-benchmark: We first populated a KV store

with 120 million tuples. Each tuple was 1kB in size and contained a small random

number. We then took three state-of-the-art KV stores that provided a scan-like

interface and let them calculate the sum of all these random numbers. We used

four machines to run the KV store. The results are shown in table 4.1.

While Cassandra was not able to answer this query within two hours, HBase

took 23 minutes to process it. Since HBase stores its data in HDFS, we then took

Spark to speed up the scan. This brought the response time down to 316s which

is still prohibitively high. RAMCloud was the fastest of the tested (pure) KV stores

with a response time of less than 200 seconds.

Kudu is a special case here: it tries to solve the same problem as TellStore:

providing high scan performance while retaining high get/put throughput and low

response time for point queries and updates.

Having fast scans is essential to provide support for fast analytical queries.

As shown in table 4.1 it does not seem to be trivial to implement a system that

provides fast get and put access and fast scans.

In this chapter, I will explain how we developed three key value stores that

provide a scan feature. We analyzed the design space of key value stores and

came up with these three implementations to better understand the dichotomy of

point queries/updates and scans. As it turned out: this dichotomy is much smaller

then we expected. The main reason current key value stores perform so badly

with scan queries is probably that they were designed without taking scans into

consideration. This indicates that a lot of key value stores either added scans

late during the development or don’t provide a scan feature at all. From our three

implementations the clear winner was a key value store that used a columnar data

layout to store the data. It is not surprising that a column layout is beneficial for

scan performance, but we were able to show that such storage can also provide a

competitive get/put performance.

The work presented in this chapter is currently under submission for publication.

4.1 Features

Tell’s architecture imposes certain requirements on our storage layer. To process

the indexes, we need singe-tuple compare-and-swap operations. As latency is a

crucial factor, TellStore is specifically designed for Infiniband networks and RDMA.

The other requirements are outlined in the following paragraphs.
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4.1.1 In-Memory

TellStore is an in-memory storage system. In-memory systems deliver higher

throughput and lower latency at the cost of more expensive memory hardware and

higher energy costs. For durability and availability, the data is then replicated and

stored in non-volatile memory. How to do this is out of the scope of this work, but

very well covered in existing work, for e.g. [Geo11; LM10; RKO14].

4.1.2 Shared Scans

As described in[Unt+09], shared scans can help to keep our operations behaving

in a predictable manner. Without a shared scan, the number of threads executing

scan requests can get out of hand - slowing down concurrent get/put operations.

The main drawback of sharing is that slow queries will slow down everybody. By

implementing shared scans, we are trading throughput and predictability for a

higher response time.

4.1.3 Predictability

What makes KV stores so useful is that they provide predictable response time.

Each request, get or put, finishes in constant time and consumes a small, constant

amount of resources - i.e. main memory on the storage machine, CPU cycles, and

network bandwidth.

This is also true for more complex systems, like relational database manage-

ment systems, if only get and put requests are executed. However, the simplicity

of KV stores allow to better optimize only this functionality. More complex sys-

tems might introduce additional overhead to these operations (like SQL parsing,

transaction execution etc). This often makes them less efficient for simple get/put

workloads and in general harder to handle.

In TellStore, get/put requests run in constant time and consume constant space

on the storage side. Scans, however, must run in linear time and constant space.

This implies that we can do simple aggregations, selections, and projections

directly in TellStore, but more complex operators, join and group by, have to be

implemented in the processing layer.

4.1.4 Lock- And Latch-Freeness

To allow efficient concurrent accesses, it is prohibitive to use locking in any place.

Neither the processing nodes nor the storage nodes should take any locks, and

no locking must take place between machines. This requirement makes the imple-

mentation of some potential KV store designs very difficult or virtually impossible.
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The absence of locks is important to guarantee scalability on multicore machines.

The existence of a scan makes lock-freeness even more important as we need to

reduce the fight for resources between get/put operations and concurrent scans to

a minimum.

4.1.5 Consistency

For a shared-data database, one has to carefully select which features run in

the storage layer and which are implemented in the processing layer. Secondary

indexes and transactional processing are implemented in the processing layer

(this is described in detail in [Loe+15] and later in this thesis). The storage layer,

however, must provide some basic consistency and synchronization features to

allow for an efficient implementation of these features in the processing layer. Tell

is a complete ACID database system and TellStore is one important component

of this system. To allow transaction processing, TellStore must provide strong

consistency guarantees. For synchronization, the storage needs a feature to allow

for conflict detection when writing back data.

4.1.6 Durability

Tell currently does not support durability. We recognize that this is a major draw-

back of the current implementation. Instead, section 4.7 will sketch one possible

implementation of this feature. The reason for not providing this feature is that we

see this as an engineering task.

4.1.7 Versioning

Scans might slow down get/put requests. We take several countermeasures to

minimize these effects. One is shared scans, and the other is versioning. It is

difficult to synchronize put requests with running scans. Furthermore, we want

to be able to scan a consistent snapshot of the data. Since our processing layer

implements snapshot isolation, we can push the versioning feature into the scan.

This makes the implementation of the processing layer simpler while allowing

lock-free scans in the storage layer.

4.1.8 Resource Provisioning

A big difficulty with mixed workloads is that a high OLTP load might slow down

analytical queries or analytical queries could lower the OLTP throughput. We,

therefore, try to provision the available resources for certain workloads. This can
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not be done perfectly. We don’t have direct control over how system resources

like L3 cache and memory bus are shared between processes.

The overall architecture is illustrated in fig. 4.1. Each thread is pinned to one

execution thread. There are three different kinds of threads: get/put threads, scan

threads, and one garbage collection thread. Whenever a client opens a connection,

one of the get/put threads accepts the connection. This thread is from that point

on the only thread listening to that particular connection. Whenever it receives

a get or a put request, it will execute the operation on the storage and send the

answer to the client. Scan queries are simply put on a queue (scan queue).

Figure 4.1: General Overview of the key value store architecture

One of the scan threads has the role of the scan coordinator. This scan thread

polls the scan queue. If this queue is non-empty it batches all scan queries up to a

configurable threshold into one query and notifies all the other scan threads. Then

all scan threads, including the coordinator, partition the storage into equal parts

and scan their parts.

This threading model allows for independent provisioning of resources for

get/put and scans. The threading model for scans is illustrated in fig. 4.2.

4.1.9 Operation Push Down

To speed up analytical queries, our scan interface allows defining selections,

projections, and simple aggregations. The scan threads will execute batches of

scan queries during each cycle. We require all selections to be in the conjunctive



44 Chapter 4. TellStore

Figure 4.2: Shared Scans on multiple partitions

normal form (CNF). All the queries are then compiled into one big query plan

(we were inspired by this [GAK12] work). To speed up the scan, we generate a

function with LLVM that evaluates all the queries. Compiling queries into LLVM

is not a new idea and is described for example in [Neu11] and [Klo+14]. To our

knowledge, however, this was not done before for shared scans. LLVM gives

us some optimizations for free. For example, if two queries share a predicate

x < 4 we generate code that executes this predicate twice. LLVM will remove this

duplicate for us. The generated LLVM code produces a byte matrix, where each

row corresponds to a tuple in the page and each column to a conjunct. This matrix

is initialized with all values set to 0. Whenever a predicate evaluates to true, it will

set the corresponding entry in the byte matrix to 1. When we are done, we test

for each query on each row whether all its conjuncts are set to 1. For each query

and each tuple where this is the case we materialize the result and write it into a

local buffer. This buffer will be sent to the client as soon as it is full (or the scan

finished) and a new buffer will be acquired. The scan will be discussed in detail in

section 4.6.

4.2 Design Space
There are a lot of ways how one can build a key value store with a scan. We

visualized the most important decisions in fig. 4.3. The red edges mark the ap-

proaches we implemented and benchmarked. In the following part of the section
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we highlight the most important design decisions and discuss their implications.

For most design decisions there is a potential trade off between get/put and scan

performance.

4.2.1 Where do we put Updates?

This is one of themost important design questions. The threemost popular answers

to this question are: update in place, delta-main, and log-structured. We sketch all

three approaches shortly.

The most obvious way to store data is to update wherever it is stored in memory.

This has the main benefit that updates do not fragment the data, if the update

does not change the size of the tuple too much. This advantage will diminish

drastically in a system that supports versioning: every update will increase the

size of the tuple, since the tuple cannot be rewritten but a new version needs to

added. Therefore, update in place is good for scans but bad for get/put. The next

problem of update in place is that it is difficult to implement it without using locks:

updating a tuple can’t be made with a simple atomic operation. Current hardware

only support atomic operations on a few bytes - typically 16. Traditionally, one

would take a lock on the page, when the tuple is being updated.

Organizing data in a log was introduced in [RO92] as a way to implement

a write-optimized file system. This idea is also used by key value stores (e.g.

[Ous+11]). A variation sometimes used are log-structured merge-trees [ONe+96]

(for example LevelDB and RocksDB). Using a log brings several benefits: a log can

sustain high update loads as new data just needs to be appended to the log and,

as shown in [RKO14], a log imposes low memory overhead. This all makes it very

attractive to use for a key value store. The drawback of a log is that scanning a log

is not straightforward. One cannot simply iterate through the log, as invalid records

don’t get invalidated or deleted. By just looking at a record it is usually not clear

whether an entry is still valid and, as a result, the main index needs to be consulted.

The next potential problem is that if the system experiences a high write load,

there might be a lot of garbage that needs to be scanned. As a consequence the

memory controller might become a bottleneck. Therefore, log-structured storage

good for get/put but bad for scans.

Instead of updating data in place, one can write into a write-optimized data

structure and merge it from time to time into a read-optimized one. We call this

approach delta-main. The good thing about this is that it allows to store data

very densely and still provide high write throughput. This idea was presented

in [Sto+05]. SAP HANA [Fär+12] is a commercial implementation that uses the
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delta-main approach.

4.2.2 Record Layout

This is probably the hardest question to answer. We can either store each tuple as

one block of data or we can break it down into fields and store several fields of

different tuples continuously in blocks. The second approach, a columnar data-

layout or column-store, has proven to work well for analytical workloads. The first,

a row-store, is very popular for storage systems that specialize for OLTP workloads.

Also, most key value stores store their data row-wise. The intuitive conclusion is

that a column layout hurts get/put performance and is good for scans while a row

layout favors get/put requests at the cost of scan performance.

Column versus row layout has been studies extensively before (e.g. [Hal+06],

[AMH08], [ABH09], [Sto+05], [BMK99], and [Bon+06]).

The main advantage of a columnar layout is scan speed. If a query asks for

only a few columns, we do not need to scan all data but only the columns the query

is interested in. Furthermore, we can also process data more efficiently, e.g. by

using vectorization (described in [ZR02] and [Wil+09]).

The main advantage of a row-based layout is that get and put requests are

simple to process. While we need to collect every column from a different memory

location in a columnar layout, we just have to copy one memory block if the row is

stored. Some previous work (e.g. [Ail+01]) proposes to store data column-wise

only within a page. This improves get performance while it still preserves the

advantages of column-stores.

4.2.3 How should we pack Tuples together?

This is an important question, as the answer will highly influence the locality of

the data. The denser data is packed together, the faster the scan will be while

the put request will potentially become slower as it needs to make sure that the

data stays compact. Therefore, a dense data layout is good for scans but bad

for get/put. In an extreme case, one would just put all data into a single block

of memory. While this makes scanning very easy, maintaining such a memory

layout is virtually impossible. The other extreme is to just use the global heap to

allocate space for each tuple. But this will hurt scans, put requests, and garbage

collection as well, scans because it will need to scan the hash table and do pointer

chasing, put because each request needs to do an allocation on the global heap,

and garbage collection because it needs to free a lot of small memory blocks.

Furthermore, such a system would not behave predictably because neither malloc
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nor free execute in constant time. The traditional compromise (see [GR93]) is to

pack data into fixed-sized memory blocks usually called pages. With paging a

scan operation can load whole blocks of data into cache instead of single tuples

and therefore can improve scan times drastically. Furthermore, it is much easier

to write a fast allocator/deallocator for fixed size pages. Paging is usually done to

trade memory for disk accesses [GP87]. Our main concern, however, is how we

can trade get/put performance for scan speed. The bigger the page, the higher

the scan performance, but the more work needs to be done to manage a single

page during a put and in the garbage collector.

4.2.4 How do we handle versions?

As described in section 4.1.7, we want to support versioning of tuples. This means

that we need to potentially store several versions per key. There are mostly two

ways to do that: store them at different locations and link them together or try to

keep all versions for one key in one memory block. Building a linked list of versions

has the advantage that writing a new version is much cheaper, as we never need

to move the old versions to another place in storage. As a drawback, we will need

to iterate through this linked-list for each get (and potentially put) request in order

to find the version we are interested in.

4.2.5 When should we do Garbage Collection?

As we support versioning, having some form of garbage collection is inevitable.

Versions are only readable as long as there are transactions which don’t have a

newer version in its read-set. Here we can chose between two strategies: either

we run a dedicated garbage collector from time to time, or we collect garbage

whenever we execute a scan. If the scan threads have to do garbage collection,

scan time will increase. But this strategy has still a strong advantage: cleaned

data is cheaper to scan (since scanning garbage is not free) and doing garbage

collection while scanning makes sure that tables are scanned often are garbage

collected often as well. But even more importantly: a dedicated garbage collection

thread will fight for resources with the scan threads.

4.2.6 Conclusions

There are more decisions to make than the ones we listed in this section, but we

tried to focus on the fundamental ones. It is not the case that we can combine any

strategy with any other. For example, it does not make much sense to design a

log-structured column store. Furthermore, there are some dichotomies between
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particular design decisions and the features we want to implement. Most impor-

tantly, update in place is very hard to implement in a lock-free manner. Therefore

we did not implement a storage that uses this strategy. Storing the tuples in the

global heap will not allow to get a predictable response time for scans and probably

not even for get/put requests.

We therefore decided to implement three combinations of the strategies outlined

above. The first is log-structured storage. There we link versions together, since

packing them together would mean that we would have to copy old versions to

the head of the log on each update. Since get/put operations do not profit at all

from a cleaned log, we run the garbage collection at scan time. This ensures

tables that are scanned often are also cleaned more often while tables are never

scanned will only be cleaned when we start to run out of memory. The second

and third implementations both use a delta-main strategy to process updates. For

delta-main, garbage collection is more expensive as we need to rewrite a lot of

pages under high write load. We use log-structured storage to store deltas. The

main difference between the second and third implementation is the record-layout:

the second implementation stores tuples row-wise, the third uses a columnar

representation. We call these three implementations ”TellStore log”, ”TellStore

row”, and ”TellStore column”.

4.3 Log Structured

Figure 4.4: Log-Structured storage
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Our first approach was to take a fast key value store and add a scan feature

to it. Tell 1.0 used RAMCloud which proves to be very efficient for get and put

operations. However, as shown in table 4.1, RAMCloud does not perform well for

scan queries. The basic idea of the log-structured storage is to have a hash table

serving as the primary index where the value of the hash table points to an entry

inside the log. For each update and delete operation, a new entry is appended

to the log and the hash index is updated. Simply replacing an existing entry in

the log is not an option because, by definition, the contents of a log is immutable.

The hash table serves as point of synchronization: concurrent updates append an

entry to the log and try to atomically update the hash table. Appending to the log

will never fail unless we run out of memory. The atomic update on the hash table,

however, will fail if another update on the same key executed first. In this case the

storage will report a conflict error to the client.

There are two obvious ways to scan through a log-structured storage: scan

through the index or scan through the log directly. The second way of scanning

looks favorable at first since it does not introduce a random memory lookup for

each tuple. However, implementing such a scan is not as straightforward as it may

seem: as a new entry is appended to the log for each update or delete, only log

entries that are referred by a pointer in the hash table are valid. As a consequence,

a log scan needs to perform a hash table lookup for each log entry to verify that

the entry is still valid. If we assume that the hash table is larger than only a few

megabytes (which is the case for all the workloads in our experiments), it does not

fit into cache. Therefore, hash table lookups are essentially also random memory

lookups which means that we cannot efficiently scan the log unless we change its

structure.

A log normally supports only two operations: read and append. We could

get rid of this restriction and allow for write operations. However, this would

make replication and durability either very expensive or virtually impossible as

log-shipping cannot be achieved in a consistent manner if the log segments keeps

changing. Nevertheless, we can soften this restriction, if we make sure that

changes in the log do not need to be replicated but can be recovered by replaying

the log.

In our implementation every entry in the log corresponds to one version of a

tuple. The versions are linked together. Each version entry stores its key, the tuple

itself, and two version numbers. The first version number, valid-from is equal to the

version of the transaction that inserted the tuple, the second version, valid-to, is

initially set to infinity, but is adapted once a new version of this tuple is appended.



4.3 Log Structured 51

4.3.1 Log-Append

Appending to the log can be done atomically. The log maintains three pointers:

a head, a tail and a sealed-pointer. A call to append will atomically increase the

head pointer by a given number of bytes and return the old pointer to the caller.

This region is now private to the caller: this means that the calling thread can write

to it. After the caller is done writing to the log, it will set a bit at the beginning of the

entry that marks the entry as either valid or invalid (this allows to abort an append

if it runs into a conflict - as described later in section 4.3.3). Then it will mark

the entry as sealed by setting another byte in the meta-data section of the entry.

At this point the entry is read-only. Finally, we try to update the sealed-pointer

by incrementing it over log-entries until either we reached the head of the log or

a non-sealed log-entry. The sealed-pointer is used for scans: without it a scan

might read a log segment while another thread is writing it. Our implementation

guarantees that all segments before the sealed-pointer have been successfully

written.

4.3.2 Get

Get operations are straight-forward: we first check the hash table and if the key

exists there, we follow the pointer to the corresponding entry. If the valid-from

field of the entry is in the read set of our transaction, we know we found the

tuple and can read its data. Otherwise, we have to follow its previous pointer

(potentially recursively) until we find a version where valid-from is in our read-set.

If we encounter previous pointer set to null, this indicates that there is no readable

tuple for this key and we can stop and report an error to the client.

4.3.3 Put

For a put request, we again first try to find an existing tuple in the hash table. The

hash table is our point of synchronization therefore we remember the pointer, if it

already exists. We then check whether the newest version is in the read-set of the

caller - if it is not we can return and report a conflict to the client. Otherwise we

append a new entry to the log with the updated version. The previous pointer is set

to null if this put does not update an existing entry, otherwise we store a pointer to

the previous entry. The valid-to field is set to infinity. We finally try to replace the

old value in the hash table or insert a new one if it does not exist anymore. The

result of this compare and swap will be reported to the client, as failing this last

step means that we got a conflict. If this put updates an existing tuple, we write

the version of the caller into the valid-to meta data field of the previous log entry.
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After that the appended block is set to valid/invalid (depending on the result) and

then sealed. While setting the valid-to field of the previous log-entry is not atomic,

it is nonetheless correct: while put is running, we know that the new entry will not

be readable by any other transaction.

4.3.4 Scan and Garbage Collection

Our log-structured storage will do garbage collection whenever a scan gets exe-

cuted. One drawback of this technique is that a table might never get scanned

and as a result garbage collection never gets executed on that table. To prevent

this from happening, we use a timeout that will trigger a scan execution on tables

that did not get scanned for a long time. While this works it might not be optimal: a

table that does not get scanned does not need to be garbage collected as long as

there is enough memory. One could definitely come up with better heuristics how

to call garbage collection in these cases.

Each page contains a 4-byte integer at the beginning storing how many bytes

within the page are garbage. For scanning we walk through the log from head

to tail page by page. If the garbage counter is set to a value bigger than some

user-configurable threshold (by default half the size of a page), we scan the page

in collection mode: each scan process has a reference to a non-empty page and

fills up this page with valid entries from the page we are collecting and scanning.

For each entry we copy into the new page, we check whether valid-to is set to

infinity. If not, we look up the key in the hash table and follow the linked-list of

updates until we reach an entry that has a pointer to our current entry. Such a

pointer has to exist, otherwise the entry we are copying would not exist. This

pointer is then set to the new address in the new page. As soon as the page is full,

it will be appended in one operation to the log. For each valid entry we also need

to execute the scan operation: we simply evaluate all scan predicates from all

queries against the entry and send it to all clients that are interested in the result.

One drawback of this technique is that it takes two full iterations until any

garbage is collected. The alternative would be to scan each page twice. This

would, however, slow down the scan.

4.4 Row Store

The main idea behind our delta-main implementation is to keep the main mostly

read-only while writing changes into a delta. Each table holds four data structures:

a list of pages hold the data in the main, a hash index for the main, a log that
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Figure 4.5: Data structures used in delta-main

stores the delta, and a list of hash tables index the delta - the overall architecture

is visualized in fig. 4.5.

The data within the main is compactly organized as a collection of fixed-sized

pages. The delta consists of two logs and a linked list of hash tables. The first,

called insert log is used to store newly arrived inserts while the second log stores

updates and deletes. Entries in the main keep pointers to the newest version of

a record in the update log if such a record exists. So do entries in the insert log.

Update log entries, on the other hand, keep backward-pointers to the previous

version in the update log. However, in order to prevent cycles, there are no

such previous-pointers back into the main or insert log. This design facilitates

the construction of the delta index because it is sufficient to index the insert log.

Update log entries are always reachable by following the newest-pointers in the

main or delta index.

4.4.1 Main Index

We use cuckoo hashing [PR04] to index the main. Cuckoo hashing has the benefit

of guaranteeing O(1) lookup time. As the main is only read or constructed our

cuckoo hash table implementation does not need to be thread safe. The garbage

collection thread will not modify the main hash table but rewrite it.

It is important to realize that a record key always appears either in the main or

in the insert log, but never in both. If two concurrent updates hit the same key, they
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are both redirected to the corresponding entry, either in a main page or in the insert

log which then serves as the point of synchronization. This reduces contention as

conflicts can only occur at record and not at page level.

The drawback of cuckoo hashing is that each look-up can involve several cache

misses. The reason for this is, that the data is stored in several tables (usually

two or three) and in a worst case each table has to be checked. The cuckoo hash

index does not perform as well as the large single-table the log structured storage

uses. We suspect that a more efficient variant to cuckoo hashing exist but we did

not explore this area as the cuckoo hashing implementation we used proved to be

fast enough for our benchmarks.

Insert Log Index

Unlike the main index, the data structure that indexes the insert log needs to allow

for concurrent write access because several threads could try to insert records at

the same time. This is why we use a simple open addressing hash table with linear

probing and atomic insertion operations. As resizing a hash table is an expensive

operation, we never resize, but instead create a new hash table whenever the

current one is full. After creation, we link it to its predecessor and finally atomically

register it as the new delta index pointer of the table. This hash table is simple, as

it does not need to support deletions. The garbage collector will simply append a

new empty hash table when it starts and remove the old hash tables atomically

when garbage collection is done.

Get

A get operation first performs a key lookup in the main index and then, if it cannot

find the key, in the delta. If the key does not exist in both of them, it reports this

to the client. The only difference between a block in the main table and one in

the delta is that the one in the delta only contains one version, while the one in

the main might contain several versions (the delta itself can, of course, contain

several versions which will be linked together. But each log-segment within the

delta will contain exactly one version of a tuple). Both of them might point to a

newer version in the delta. It then first checks whether the newest version in the

block is readable. If it is, it needs to follow the newest pointer if the pointer is not

null, otherwise it searches for the newest readable version within that block or

reports an error to the client if it is reading from the insert log. This works because

all versions reachable from the newest pointer are at most as old as the newest

version in the main entry. If it needs to follow the newest-pointer, it reads the entry

in the delta it is pointing to - the newest version in the storage. If this version is in
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the callers read set, it reads it, otherwise it follows the previous-pointer. It does

this recursively until it either finds a readable entry, reaches a version that is also

contained in the main entry, or until it reaches the end of this linked list. At this

point, we know where the newest readable version is and return it to the client.

Put

Put operations are slightly more involved as they also have to deal with concurrency.

Like a get operation, a put operation first checks for the existence of the key in the

main and then, if necessary, in the delta index. Then we first check for conflict.

A conflict occurs if the newest version of a tuple is not in the readers read set.

The newest-pointer (be it in a main or in a insert log entry) serves as a point of

synchronization, we remember its value before appending an initially invalid entry

in the update log. Once this entry is created, we compare and swap its address

with the remembered value. If we fail, we can simply abort the operation and report

a conflict. This means that a concurrent update succeeded and we know for sure

that the version of a concurrently running transaction is not in the read-set of the

caller. If the compare and swap succeeds, we can set the valid-bit to true and

return. In case of an insert, we also have to check whether the delta index pointer

has changed in the meantime and if so, add a reference to our log record to this

new delta index hash map.

Scan

Before a scan starts the coordination thread retrieves the list of all pages in the

main and the current head and tail of the insert log. No inserts done after a scan

starts are readable for any client that issued a scan request. The main pages and

the pages from the insert log are then distributed to all scan threads - this helps us

to nearly linearly speed up scans. The scan threads will then simply iterate through

all tuples stored in the pages. For each entry they check the newest-pointer (i.e. it

is not null). If it is set they also need to follow this pointer and check the referenced

updates. For each tuple we then check all predicates from all queries. Then we

check the version against the read set in the matching queries. If all matches, we

copy the result into a result page. As soon as a result page is full, it is sent to the

client.

Garbage Collection

A natural question is when and how to merge the data in the delta (update and

insert log) into the main. In our case, we do this as part of the garbage collection

which is also in charge of reclaiming space of no-longer used and invalid tuple
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data. The strategy used in our case is delta-main rewrite which means that instead

of updating main entries in place, we rewrite them completely in each garbage

collection step. Obviously, this makes garbage collection an expensive operation.

On the other hand, it allows packing tuple versions tightly together which speeds

up get, put, and scan operations.

At the start of a garbage collection pass, the collector retrieves the head point-

ers of the logs, and the page list which is simply a array of all main pages. It then

rewrites main pages lazily: It first checks whether a main page needs any modifica-

tions at all and if not, leaves it unchanged. It creates new main pages by merging

existing records with their never versions in the update log and removes old tuple

versions no longer used. A new main index is created as we proceed. This index

is divided into several pages as well, and only affected pages are rewritten.

To prevent losing updates, we change the newest-pointer of each tuple in a

garbage collected page. This pointer will show up in the main table but not in the

update log. Therefore the new point of synchronization for concurrent updates

will be inside the new main page. We use the same strategy to collect the insert

log. During a garbage collection phase, we therefore introduce a new level of

indirection for get and put operations: if such an operation sees the newest-pointer

set to another main page, it will follow this pointer and continue from there the

same way as described above.

4.4.2 Row-Layout

As the name already says, the row storage organizes tuples row-wise. We organize

the data within two levels of granularity: each page contains a list of multi-version

records, each multi-version record contains all versions of a tuple with a given key

plus its key. The multi-version record’s data layout is illustrated in fig. 4.6. The

row-layout was highly influenced by PostgreSQL.

The multi-version record stores its size, the key of the tuple(s), an array of

versions, an array of offsets, and the tuples themselves. The size field contains

a compound number: the size in bytes of the multi-version record itself and the

number of versions it stores. The first number is used by the scan so that it can

skip the whole multi-value record if it can decide by looking at the key that no query

is interested in the tuple. The newest-pointer is the only field in the multi-version

record that is not read-only by get/put threads. It points, as described previously,

into the delta, or is NULL if the newest version is in the main. The version-array

stores the versions of the tuples: this is the version of the transaction that wrote

the tuple. These versions are ordered in descending order. This allows to easily
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Figure 4.6: Organization of data within a multi-version record

calculate the valid-from and valid-to values of each tuple. valid-from is equal to

the version at this index position, valid-to is equal to the previous entry or infinity

if it is the first entry in this array and the newest-pointer is NULL. Note that the

previous version might not be in the multi-version record but is reachable via the

newest-pointer. The offset array stores offsets from the beginning of the multi-

version record to the begin of the tuple (in bytes). Thanks to this data layout we

can get a specific version of a tuple and its size without scanning through the data

of all versions.

The layout of the tuple itself is quite straight-forward: we first store a bitmap

which contains one bit per column. This bit is set to 1 if the value is NULL, 0

otherwise. If all columns have a NOT NULL integrity constraint, this bitmap is

omitted. After that, we store all fixed-sized fields sorted by size, so that we only

lose minimal space to the alignment. The last part is the variable-sized fields: each

field is first a 4-byte integer which contains the size of the field followed by a byte

array.

4.5 Column Map Layout
ColumnMap is a data structure first described in [Bra+15]. The idea, following

the Partition Attributes Across Paradigm [Ail+01], is to first group records into

contiguous chunks of memory (pages) and within such a chunk organize them in

such a way that values corresponding to the same column are grouped together
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which is also often referred to as column major order in the literature. Columnar

designs favor analytical scans because such scans are typically interested in only

a small fraction of all columns, so only these have to be processed. Moreover,

using vector instructions several values belonging to the same column can be

processed at once. Typically, this good scan performance comes at the cost of

decreased get performance as a tuple has to be gathered from several different

locations in the page. In order to fetch a tuple, one must know the page offset of

the first tuple value and then compute the offsets of the remaining values from the

length (record count) and width (data type size) of each column.

Figure 4.7: Column Map Page Layout

However, if values can have arbitrary sizes (as for example var chars), this

simple computation falls apart and get/put operations become horribly slow. This

is why state-of-the-art systems avoid variable-sized values, either by simply disal-

lowing them (as in [Bra+15]), allocating them on a global heap and storing pointers

(as in MonetDB [Bon+06] and HyPer [Neu11]), or using a dictionary and store

fixed-sized dictionary code words (as e.g. in SAP/HANA [Fär12] and DB2/BLU

[Ram+13]). For our design, global allocation does not work because it makes

lock-free garbage collection virtually impossible and dictionary encoding would

slow down get operations dramatically. Therefore, we settled for a novel colum-

nar storage layout that improves ColumnMap as shown in fig. 4.7. In addition to

variable-sized values, our Column Map Page Layout also supports versioning.



4.5 Column Map Layout 59

4.5.1 Column Map Page Layout

Each page starts with a field that stores the tuple count. Next, there is a column

that stores key-version-newest triples. Versions belonging to the same key are

grouped together in descending key order and newest points to an update log entry

if newer versions of that tuple exist. Thus scanning this first column is sufficient to

check whether a page needs garbage collection. A page does not contain garbage

if one of the following is true:

• Each key within this triple is unique.

• The oldest version of each non-unique key within the triple is still active. This

means that the oldest in-flight transaction is newer than this version.

The next column keeps the serialized length for each tuple. These numbers

could be computed from other meta information, but are very handy for get or scan

operations because they provide a shortcut to find out how much space tuples will

need in a result buffer.

These meta data columns are followed by the fixed sized columns and the

var-sized meta columns which, for every value on the var-sized heap, store a

(4-byte) page offset to point to that value as well as its (4-byte) prefix. This has two

advantages: first, by computing the difference of two consequent offsets, we can

also compute the size of a heap value, and second, we get a speedup on prefix

scan queries because we can identify a set of candidate tuples without having to

look at the heap.

Last, but not least, there is a heap for variable-sized values. We make sure

that entries belonging to the same tuple are sequentially stored which speeds up

get operations because delivering the var-sized fields is basically a lookup to the

tuple size and the first meta column, followed by a memory copy. With this design,

column map offers good scan performance while still providing reasonably fast get

operations.

4.5.2 Materialization

According to common wisdom, the main drawback of a columnar data layout is

that the materialization of single record is expensive. The reason is that the offset

to each column of the record needs to be calculated and fetched. For every copied

field there will be up to one cache miss.

As an illustration, fig. 4.8 shows pseudo-code for a naive implementation of the

materialize function. As soon as a record gets located within a page, it needs to
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void materialize(char* result,
const char* page,
int tupleCount,
int idx)

{
// make sure offset points to first column within page
int offset = pageMetadataSize;
for (auto& field : schema.fields()) {

// copy field from this column to result buffer
memcpy(result, page + fields.size() * idx, fields.size());
// calculate offset to begin of next column
offset += field.size() * tupleCount;

}
}

Figure 4.8: Naive materialization function

be copied into a buffer in row-layout. Copying the tuple is done by a materialize

function. The materialize function will simply loop over all columns within the table

and copy them into a buffer. The result will then contain the tuple in row-format.

This function is, as explained before, expensive. The first obvious cost is the

iteration over the fields within the schema - but we can optimize this by inlining

the function. The next problem is the memcopy: if this data has to be read from

memory, we have to wait here for hundreds of CPU cycles. This will potentially

happen for every field. It will be faster if the CPU loads the whole page into a

cache - but it will still cost around 10 cycles if it can be found in L2 and more than

70 cycles if it has to be fetched from L3. A last problem with the function is the

calculation of the next offset: this offset is recalculated within the loop, making it

difficult for the CPU to recompute.

Luckily, we can get rid of these problems with a very simple, yet effective trick.

We know the schema already at compile time and we write the materialize-function

as in fig. 4.9. Of course, we want to be able to create and modify table schemas at

runtime, but the expectation is that this does not happen very often. Therefore we

can afford to pay 100 milliseconds to recompile this function. Whenever a table is

created or its schema changes, we take the schema and generate LLVM-code for

the materialize function and register it on the table. Therefore each table will have

its own materialize function which will simply execute a number of memory copy

operations.

This will speed up the materialization of tuples drastically. On first sight, one

might think that we did nothing more than loop unrolling. But this is only part of the

story. Since we got rid of the loop and we compiled the schema information into

the materialize function, the CPU can perfectly pipeline the offset computations
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void materialize(char* result,
const char* page,
int tupleCount,
int idx)

{
// pageMetadataSize is known at compile time
memcpy(result, page + pageMetadataSize + 8*idx, 8);
memcpy(result, page + pageMetadataSize + 8*tupleCount

+ 8*idx, 8);
memcpy(result, page + pageMetadataSize + 8*tupleCount

+ 8*tupleCount
+ 4*idx, 4);

memcpy(result, page + pageMetadataSize + 8*tupleCount
+ 8*tupleCount
+ 4*tupleCount
+ 2*idx, 2);

}

Figure 4.9: Compiled materialization function - Example with a schema with 4

columns

(there are no dependencies between offsets). Furthermore, the memory prefetcher

will request all fields from memory at once. For the row based layout, we will to

pay hundreds of CPU cycles to get the row as well, with the columnar layout, we

will need to pay for the cache miss but we will wait for all cache misses only once

in best case. This materialize function can therefore make efficient use of single

core parallelism.

4.6 High-Performance Scans

4.6.1 Using one-sided RDMA to write the results

As stated in section 4.1.9, we are compiling batches of scan queries into one big

query to LLVM. This becomes even more efficient when using a columnar layout as

we only need to scan columns of interest. Furthermore, LLVM helps us vectorizing

the code to use even more parallelism.

The scan within TellStore uses one-sided RDMA to ship the data and two-sided

RDMA to initiate and finish the scan. The way the scan works is illustrated in

fig. 4.10. Before the client initiates a scan, it needs to allocate a large enough

block of memory to hold the result (fig. 4.10a). It will then send the query to all

storage nodes (fig. 4.10b). Each storage will then execute the scan independently:

they will first enqueue the query and as soon as a new scan phase start, it will

be dequeued and all waiting queries will be compiled to LLVM (described below).

During the scan, the scan threads will evaluate all selection predicates and for
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(a) First, the client allocates

a buffer of memory for the

result

(b) The client sends the

query to all storage in-

stances

(c)While scanning, the stor-

age nodes write the result

directly into the main mem-

ory of the client

(d) When done, the storage

nodes sends an event to

the client

Figure 4.10: Overview how the scan works - viewed from the client side

each matching tuple, they will materialize the tuple (potentially only partly, if the

query contains a projection) and write it, using one-sided RDMA, right into the

main memory of the corresponding client machine (fig. 4.10c). As soon as the

scan finishes, the storage node will send a notification message using two-sided

RDMA to all clients, informing them that the result of their scan is in their memory.

Using one-sided RDMA to deliver the query result to the client has the big

advantage that the client CPU is not used at all during the scan phase. While

a scan is running, a client can therefore do other work. Alternatively, it can also

periodically poll its memory, to check whether new data was written by a storage

node and start computation on the result.

The main drawback of the current implementation is that the client needs to

allocate a big enough block to hold the whole result within one block of memory

before it starts the scan. This, however, is often very difficult or even impossible in

practice. Therefore the clients have to over provision the size of the scan memory

which limits the number of concurrent scan requests they can issue, as the main

memory becomes a limiting factor very quickly.

This, however, is not a problem of our design but a mere limitation of the

implementation. Instead of having big single blocks of main memory the storage

writes the result to, a better solution would be to do the memory management

within the storage.

A sketch for how to solve this problem is presented in fig. 4.11. The algorithm

for doing memory management on the client is quite simple and makes use of the
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(a) One storage reaches

the end of the current mem-

ory block

(b) It gets a new block from

the pool using RDMA

(c) It appends the new

block to its private linked

list

(d) It continues writing re-

sults into the new ap-

pended block

Figure 4.11: Remote memory management

fact that Infiniband cards can execute atomic operations within remote memory.

Since these operations are passive (they do not involve the client CPU), a slow

client won’t slow down the execution of the scan - except for a slow NIC. Instead

of allocating a big block of main memory for each storage node it sends a scan

request to, the client would allocate a large memory pool of small blocks of memory

(probably a few megabytes each). It would register all blocks at the Infiniband card.

Out of these blocks, the client would build a large, singly linked list.

Each storage node would now build a singly linked list of memory blocks which

will form the result. Whenever a memory block is full (fig. 4.11a), it will execute a

compare and swap operation within the client pool to set the head of this linked

list to the next block (fig. 4.11b). If this compare and swap operation fails, it will

retry. On success, the old head is privately held by the current storage node. It

will then append the new block to its private linked list (fig. 4.11c) and continue

working (fig. 4.11d).

The client on the other hand, while consuming, could just remove consumed

blocks from this linked list and append it to the linked list within the pool. It just

needs to make sure that it does not remove the last block from the list until it gets

notified by the server that the scan finished.

This server-side memory management would, of course, not solve all problems.

It might still happen that the client runs out of memory. It does, however, take away

from the user (or query engine) the duty to know an upper bound of memory for

each scan used.
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4.6.2 Query Compilation

Compiling queries to machine code is an important and popular way to speed up

query execution. Within the storage nodes, we do that to speed up the scan times.

TellStore, however, does not compile each query separately but it compiles all

queries at once used for the shared scan. The query compilation works differently

on each underlying data storage (row, log, or column map). I will only explain how

query compilation works on TellStore using the column map. As the column map

comes out as clear winner, the other data storages will get deprecated in the near

future. Furthermore, compiling the query plan for the column map is the most

complex one - the other just in time compilers just have less functionality.

Compiling query batches instead of single queries has one important draw-back:

since the mix of queries arriving at the cluster will usually change for each scan

phase, the compiled queries can not be cached. Instead, the query plan needs

to be built, optimized and compiled on every run. This leads to a optimization

trade-off which is often seen in systems that do some form of ad-hoc execution: if

we spend too much time optimizing the query plan, the whole execution time will

go down as the optimization might become a bottleneck, if we don’t do enough

optimizations, scans will be too slow. In this section I will first explain how the

optimization and compilation works in general. Our first implementation used often

more time doing query optimization than scanning. Then, I will explain how we

dealt with this trade-off.

Whenever a scan phase starts, the main scan thread will fetch all waiting queries

from the scan queue. Each query is written in the conjunctive normal form (this is

a hard requirement). A TellStore query is defined as a triple qi =< πi, σi, αi >. πi

is a set of columns - the projection of the query. The selection, σi, is required to be

in the conjunctive normal form - therefore we can write:

σi = (pi,0,0∨pi,0,1∨ ...∨pi,0,l)∧(pi,1,0∨pi,1,1∨ ...∨pi,1,m)∧ ...∧(pi,k,0∨pi,k,1∨ ...∨pi,k,n)

In this notation, pi,j,k is the kth predicate within the jth conjunct of the ith query.

The last element of the triple, αi, is a set of pairs of an aggregation function identifier

and a column. The currently supported aggregation functions are:

• sum

• min

• max
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• count

In theory, support can be added for all linear aggregation functions. A function

f is linear iff f(λ ·x+µ · y) = λ · f(x)+µ · f(y). One important function that can not
be pushed down is average. In order to calculate an average, the user needs to

push down two aggregations (sum and count) and calculate the final average on

the client side. The reason only linear functions are supported is that each storage

node will do the requested aggregation only on the data it holds. Therefore the

client will need to aggregate all results from all storage nodes in the end.

If αi 6= ∅, the storage node will assume that πi = ∅ is true. Here, it is important

to remember that the storage does not support grouping which means that an

aggregation on one column and a projection on another is not defined. TellStore

will always ignore the projection and ship back all aggregation results.

TellStore will generate two new functions on each scan phase: a selection

function and a materialization function. The selection function takes a page as

input and returns a matrix R. Within R, rij = 1 iff the selection of query i evaluated

to true on record j within the page. The materialization function will then take the

page and the matrix R as input and materializes the result. It will, for each record

within the page and each query, either write all requested fields via RDMA to the

client (if αi = ∅) or it will update an internal query state (otherwise). This means
that we have to iterate over each page twice, once to evaluate all predicates and

then again to materialize the result. Due to the columnar layout of the page, this

does not mean, however, that we always iterate over all data within a page.

Figure 4.12 shows pseudo-code of such a generated function. Of course it

does not show all details: We do not really make two heap allocations for each call

to that function, we don’t generate C++ code - instead we generate an intermediate

representation for LLVM, we do not show here how the version handling is done or

the lookup in the delta... But it should illustrate the main idea. The function basically

generates an array of booleans where each boolean represents a conjunct for one

record. For each column that appears in one predicate, we generate a loop that

iterates over the column and evaluates all the predicates for that specific column.

It then sets the conjuncts of the predicates to true iff the predicate evaluated to

true. In a last step, the result is generated in another loop that sets all entries to

true for which all predicates evaluated to true.

LLVM can optimize this code surprisingly well. It will unroll the loops and add

vectorization code for the predicate evaluation. The materialize function will not be

explained in detail here - as this function is much less interesting.
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// An example of a generated selection function for two queries:
// - column1 < 8 && column1 >= 0
// - (column1 = 4 || column4 == 7) && column1 > 0
bool** selection(const char* page) {

// toSizeOffset is a constant known at compile time
int numRecords = * ((const int*) page + toSizeOffset);
// we have 4 conjuncts in total
auto conjuncts = new bool[numRecords][4];
// metadataOffset is a constant known at compile time
const char* column1 = page + metadataOffset;
for (int i = 0; i < numRecords; ++i) {

conjuncts[i][0] ||= *((const int64_t*) column1 + i*8) < 8;
conjuncts[i][1] ||= *((const int64_t*) column1 + i*8) >= 0;
conjuncts[i][2] ||= *((const int64_t*) column1 + i*8) == 4;
conjuncts[i][3] ||= *((const int64_t*) column1 + i*8) > 0;

}
// column1Size, column2Size, etc. are known at compile time
const char* column4 = page + numRecords*column1Size

+ numRecords*column2Size
+ numRecords*column3Size;

for (int i = 0; i < numRecords; ++i) {
conjuncts[i][2] ||= *((const int32_t*) column4 + i*4) == 7;

}
// The last step is to and together all conjuncts
auto result = new bool[numRecords][2];
for (int i = 0; i < numRecords; ++i) {

result[i][0] = conjuncts[i][0] && conjunct[i][1];
result[i][1] = conjuncts[i][2] && conjunct[i][3];

}
return result;

}

Figure 4.12: Example of a generated selection function
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4.6.3 Compile Time Optimizations

The columnar version of TellStore ran pretty early into the problem that compile

time overhead was dominating run time. Compilation could easily take twice as

long as the actual scan - even for large tables. Compilation would take several

hundred milliseconds while the scan itself would finish in less than 100 milliseconds.

To make matters even worse, the compilation time grew linearly with the number

of queries provided. We implemented several counter-measures to speed up

compilation and optimization time.

The first, and most important, optimization was to do the vectorization manually.

So instead of producing simple code and let LLVM figure out where vectorization

can be introduced, our code generator unrolls the loops and adds LLVM vectoriza-

tion instructions. LLVM will then emit vectorization instructions for the underlying

CPU. This brought down LLVM compilation time drastically.

The LLVM compilation is done by the main scan thread - the other scan threads

are not doing anything while this step is executed. Parallelizing compilation is a hard

problem and it is not supported by LLVM. Instead we compile the materialization

and the selection function in parallel. This simple optimization reduces compilation

time by another 20− 30%

While profiling LLVM, we saw that it spends around 40% of its time in the Loop

Strength Reduction Pass. The following loop illustrates how this algorithm works:

for (int i = 0; i < j; ++i) {

auto value = array[i];

// do something with value here

}

A non-optimizing compiler would generate assembly code that would roughly

translate to this:

int i = 0;

if (i >= j) goto END;

do {

// This multiplication here is only done in assembly as machine

// code is not type aware - but this would be wrong c++ as the

// compiler would introduce another multiplication here

auto value = array + i * sizeof(*array);

// do something with value

++i;

} while (i < j);

END: // continue here

This code needs to execute a multiplication for each operation and introduces
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dependencies between array and i which is bad for pipelining and branch pre-

diction. LLVM will therefore rewrite this loop like this:

int i = 0;

if (i >= j) goto END;

auto iter = array;

do {

auto value = *iter;

// do something with value

++i;

++iter;

} while (i < j);

END: // continue here

This means that loop strength reduction just eliminates a multiplication. Since

we generate quite a lot of loops that look like the above example, LLVM will execute

this loop strength reduction pass very often - slowing down compilation time quite

drastically. But as soon as one is aware of this problem, it is very easy to fix: we

just emit already optimized code, bringing down LLVM optimization time by nearly

40%!

We did a few more minor optimization, but the ones outlined here were the

most beneficial ones with respect to compilation time. With these optimizations,

compilation time went down to less than 10ms. But more importantly, the compile

time now increases very slowly. We never observed compilation times higher than

20ms - even for large query batches.

4.7 Durability

TellStore is not durable. While we believe that implementing durability within

TellStore is simply an engineering effort, we recognize that this is probably the

most important of the lacking features.

There are a lot of ways, how durability can be implemented. The simplest one

is by just mapping all in-memory pages into main memory. However, this approach

does not guarantee, that committed data does not get lost in case of machine

failures as the operating system will decide when to write back dirty pages.

The following subsections sketch a simple algorithm to safely write back com-

mitted data to disk for each storage approach.
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4.7.1 Log Structured

Writing a log to disk by itself is trivial: whenever a segment is written into memory,

it is appended to a file on disk. This has to happen before the write operation is

acknowledged to the client.

TellDB batches several write requests into large multi-write requests. Therefore,

we probably will have to pay for the additional write latency only once per transaction.

Furthermore, all write operations are send to all storage machines in parallel -

which means that a lot of write requests will be executed in parallel on several

disks.

The biggest difficulty for this approach is that garbage collection currently

happens within the log as we softened the traditional append-only design of a log

storage. [RKO14] describes a similar scheme of a log where in-memory garbage

collection happens without appending cleaned segments to the end of the log to

prevent write amplification.

The basic idea of this paper is simple: Instead of using one garbage collector

a separate garbage collector will periodically clean the disk log. This garbage

collector will write clean segments to the head of the log allowing to free memory

on disk. As the disk is usually much larger than main memory and because

scan threads only process the main memory log, disk-based garbage collection

executions are much rarer than in-memory execution.

4.7.2 Row Store and Column Map

Making the other storage engines durable is even easier to implement. The insert

and update log are append only and write operation are just synchronously written

to disk as described above in section 4.7.1. There is a single log for all operations

from all tables, instead of a log-file for each in-memory log.

In order to truncate the log occasionally the main pages need to be written back

regularly. This process is usually called snapshoting. The main of our delta-main

approach is mostly read-only and the writable part does not need to be made

durable, as this information can be recovered by replaying the log. This makes

snapshoting conceptually simple.

Each page will have an additional flag which indicates whether the page is dirty.

Newly allocated pages are always dirty as they are not written to disk. Writing a

snapshot can be done in a few simple steps:

1. Mark the current head of the log on disk. This will be the new head after the

snapshot was written.
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2. Iterate through all pages and write those marked as dirty back to disk. A

concurrent garbage collection process will not interfere with this process.

3. Truncate the log on disk.

To do recovery, the latest snapshot of main is first copied into main memory

and all newest-pointers are nulled. Then the log is replayed - which will generate

new a new insert and a new update log for each table.
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Experimental Results

5.1 Introduction

In order to compare our three KV stores with each other we designed a synthetic

benchmark and ran a number of experiments.

We chose Kudu as a baseline because Kudu is the only KV store known to us

that has the same goals as TellStore.

The first goal of the experiments was to examine how well the TellStore variants

perform as a simple KV store with a get/put load. We expect a row-based model

to win but we also want to know how well the columnar storage performs on this

kind of workload.

To measure get/put performance we present three experiments: one measuring

get-only performance, one measuring insert-only performance and one measuring

get/put performance. We don’t expect the columnar storage to perform much

worse for write-only workloads than the row storage variants. Write operations are

written into a log in a row-format on all approaches. For the get-only and get/put

workload, we chose to compare to other popular KV stores as well. This will prove

that TellStore is a competitive KV store - even if used without its scan feature.

We do, however, expect to see differences for get requests. The columnar

storage has to materialize a tuple from several columns scattered over a page in

memory for each get request that reads from the main part of the table.

Furthermore we want to quantify the effect of batching of network requests.

For that we configured TellDB with different sizes of request buffers to batch fewer
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or more requests into a single batch. We expect to see some speedup due to

batching.

The main feature that sets TellStore apart from other KV stores is the scan. We

want to know:

• Which approach provides the lowest response time for scans? We expect

the columnar storage to win.

• How does TellStore compare to Kudu - another KV store that claims to provide

fast scans?

• How much do concurrent get and put requests interfere with scans and scans

with get and put requests? We hope that the effects are minimal but some

interference is expected as scans will put a high load on the shared memory

controller of the CPU cores.

This chapter is structured into seven parts. First, the machine and software

configuration is described. The next section specifies the workload we use for the

benchmarks. The last five sections present the results of the experiments.

5.2 Configurations and Methodology
We ran all our experiments on a small cluster of 12 machines. Each machine is

equipped with two quad core Intel Xeon E5-2609 2.4 GHz processors, 128 GB

DDR3-RAM and a 256 GB Samsung Pro SSD. Each machine has two NUMA

units with one NUMA processor and half of the main memory. Furthermore the

machines are equipped with a 10 Gb Ethernet adapter and a Mellanox Connect

X-3 Infiniband card, installed at NUMA region 0.

The KV stores we benchmarked in this section are all NUMA-unaware which has

implications on performance. In order to have consistent numbers, we decided to

run every process on only one NUMA unit. Therefore, throughput this section, the

term instance refers to a NUMA unit which can use half of a machine’s resources.

Storage instances always run on NUMA region 0 such that they have fast access

to the Infiniband card, while processing instances can run on both regions.

The system under test for all experiments is a KV store. Whenever we compare

TellStore to other KV stores, we use the ColumnMap implementation, referred

to as TellStore-Col(umnar). If we compare different TellStore implementations to

each other, we also use Kudu as a baseline. We use Kudu because it is the only

KV store that can provide a reasonable scan performance (see table 4.1).
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To make sure that the load generation does not become a bottleneck, our

experiment setting always uses three times as many processing instances as

storage instances. For all our measurements, we first populated the data and

than ran the experiment for seven minutes. We ignored the numbers from the

first and the last minute to factor out the warm-up and cool-down time. If a query

ran for more than seven minutes, as was the case for some of the experiments in

table 4.1, we waited until it finished.

We did a considerable effort to benchmark all KV stores at their best configu-

ration. In order to achieve a fair comparison to the in-memory systems, we put

Cassandra’s and HBase’ data on a RAM disk. For Kudu, we used the SSD and

configured its block cache such that it would use all the available memory. Accord-

ing to the Kudu developers, this is the preferred setting for Kudu because, after

the warm-up time, all data should reside in memory. The benchmarks for HBase

and Cassandra were implemented in Java using the corresponding client libraries

[16a; 16b]. For RAMCloud and Kudu, we implemented the benchmarks in C++

using their native libraries [16c; 16d]. We used multi-put and multi-get operations

in RAMCloud whenever possible and projection and selection push-down in Kudu.

TellStore was benchmarked with TellDB, a shared library that incorporates the

native TellStore client library and allows to execute get, put, and scan requests

in a transactional context as well as manage secondary indexes. TellDB will be

described in more detail in the next few chapters. For TellDB and Kudu, we batched

several get/put request into one single transaction1. For TellStore, a batch size

of 200 proved to be useful, while a good batch size for Kudu sessions is 50. We

turned off replication for all KV stores, except for HBase where this is not possible

which is why we used three storage instances (HDFS data nodes) instead of only

one for that particular case.

The main result of our experiments is that TellStore is a very competitive

KV store because it can deliver a high throughput for get and put requests. It

also provides an order of magnitude higher scan performance than all other KV

stores we tested against, both in terms of latency and throughput. Furthermore,

TellStore’s scan performance does not significantly deteriorate when a moderately-

sized get/put workload of 35,000 events per second is executed in parallel. It is not

surprising that the TellStore variant with the columnar layout provides the lowest

scan latencies. However, somehow counter-intuitively, it is also able to sustain

a very high get/put load which hence makes it the preferred implementation for

1Kudu actually uses the notion of a session which has weaker transactional semantics than a

ACID transaction in TellDB, but is still a useful concept.
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Figure 5.1: different KV stores, scaling from 1 to 4 storages instances with a

transactional workload

mixed workloads.

5.3 YCSB#
5.3.1 Benchmark description

The Yahoo! Cloud Serving Benchmark (YCSB) [Coo+10] is a popular benchmark

for KV stores and cloud service providers. YCSB, however, does not include

selection, projection, or aggregation queries. This is why we slightly extended the

benchmark in order to test these additional features. This new benchmark, called

YCSB#, makes the following modifications: First, it changes the schema so that it

includes variable-sized columns and second, it introduces three new queries that

inspect big portions of the data.

The new schema consists of an 8-byte key, named P , and tuples that consist of
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eight fixed-sized values, named A to H. We used the following data types: 2-byte,

4-byte, and 8-byte integers as well as 8-byte double-precision float. Each of these

types appears twice. The two variable-sized fields, I and J , are short strings of a

variable length between 12 and 16 characters. The three queries are:

• Query 1 a simple aggregation on the first floating point column to calculate

the maximum value:

SELECT max(B) FROM main_table

• Query 2 does the same aggregation as query 1, but additionally selects only

values in the second floating point column which between 0 and 0.5 which is

true for approximately half of the values:

SELECT max(B) FROM main_table

WHERE H > 0 and H < 0.5

• Query 3 retrieves all records where the first 2-byte integer column is between

0 and 26 which results in retrieving approximately 10% of the entire dataset.

SELECT * FROM main_table

WHERE F > 0 and F < 26

The benchmark also defines a scaling factor that, similarly to TPCH [Cou16],

dictates the number of tuples in the database. Throughout our experiments, we

used a scaling factor 50 which corresponds to a test set of 50 million tuples. We

found this to be a useful size to compare all the considered KV stores, even the

ones not particularly good in analytics, e.g. Cassandra.

5.4 Get/Put workload
In the first experiment, we ran YCSB# in a setting very similar to the original YCSB

that does not execute any scan queries. We tested two different configurations:

get/put and get-only. While the get-only workload only consists of get requests,

the get/put workload additionally has 50% put requests of which one third are

inserts, one third updates, and one third deletes. This ensures that the size of the

stored data stays constant which is not important for this experiment, but becomes

essential as soon as we add scan queries whose latency is heavily influenced by

the overall data size.

First, we measured the operation throughput (number of gets and puts per

second) of TellStore-Col against all other considered KV stores as presented in

fig. 5.1. It becomes immediately clear that TellStore is indeed very competitive for
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Figure 5.2: TellStore approaches and Kudu, scaling from 1 to 4 storages instances

with a transactional workload

this typical KV store workload. In fact, only RAMCloud’s performance is on par

with TellStore. This can be attributed to two factors: RAMCloud and TellStore are

both in-memory and can make efficient use of the Infiniband network. RAMCloud

outperforms TellStore for get-only workloads. This is mostly due to the fact that

TellStore reserves three CPU cores for scans and garbage collection (and only one

for get/put requests), while RAMCloud can use all four cores to process operations.

For the get/put configuration, however, TellStore and RAMCloud perform equally

well.

Figure 5.2 compares the three TellStore approaches against each other and

shows Kudu as a baseline. While the two row-based storages (TellStore-Log and

TellStore-Row) outperform TellStore-Col, this difference is not as large as one

might expect. As a put operation writes into a row-oriented log in all approaches,

its performance is likely to be the same. For get operations, however, TellStore-Col
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needs to assemble the records from different memory locations which comes at

slightly bigger cost. This is also why the gap between TellStore-Col and the other

approaches is slightly bigger in case of the get-only configuration. Compared to

Kudu, this experiment confirms the results already shown in fig. 5.1: TellStore’s

throughput is nearly two orders of magnitude higher than the one of Kudu.

5.5 Insert-only
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Figure 5.3: TellStore variants, transaction response time variation for 2 storage

instances and insert-only workload

Our approaches not only differ in the way the data is organized but also in the

hash table implementation. TellStore-Log wastes memory because it allocates a

hash table big enough such that it never has to be re-sized. We cannot afford,

however, to do that for the delta index of TellStore-Row and TellStore-Col as we

recreate this index on each garbage collection step. Instead, we use a linked list

of fixed-sized hash tables. Whenever an insert operation finds the current hash

table to be full, it allocates a new one and links it to its predecessor. Allocation of

a new hash table (even if small) is relatively costly compared to the other costs

involved with an insert. This means that the latency of insert requests varies greatly

between the ones that did and the ones that did not have to allocate a new hash

table.

This effect is confirmed by the experiment shown in fig. 5.3 where we measured

the response time of transactions (consisting of 200 insert operations each) in a

setting with two storage instances. As one can see, the delta-main shows a bigger

variation in the latency of these transactions. In fact, the presented box-plot shows
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the 1, 5, 50, and 95, and 99 percentile and not the minimum and maximum. This

is because the maximum value is so far apart that the rest of the plot would not

be visible. A small number of transactions needed more than half a second to

complete.
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storage instances

5.6 Batching

As will be explained in more detail in section 8.1.1, the processing layer of Tell 2.0

uses batching to get a significant throughput improvement at the cost of slightly

increased latency. Whenever a transaction issues a request, this request gets

buffered within Infinio and sent to TellStore whenever the buffer is full. While

a transaction is waiting for a result, the Infinio runtime system schedules other

transactions that can then help fill up the buffer.

Batching is important, as get/put messages are often very small and the mes-

sage rate is limited on Infiniband. Therefore, in fig. 5.4, we show the throughput

of the get/put workload for various batch sizes, using two storage instances. It is

not surprising that all storage implementations benefit equally well from batching.

Furthermore, we can see that a batch size of 16 seems to be a good default value.
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Figure 5.5: TellStore variants and Kudu, response time of two different YCSB#

queries running in isolation, scaling from 1 to 4 storages instances
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5.7 Scans
In order to demonstrate the raw scan performance, we first ran the YCSB# queries

in isolation (without concurrent get/put load). Figure 5.5 shows such results. We

do not show the response time of query 2 as it is nearly identical to query 1.

As one would expect, TellStore-Col has the lowest response time for query 1

and query 2 (not shown). For query 3 however, the TellStore-Log is slightly faster.

This is due to the fact that query 3 does not do projection and hence TellStore

is required to fully materialize the records. This has the same consequence as

already described in section 5.4, namely that TellStore-Col has to fetch values

from different locations and therefore performs slightly worse.

The surprising result, however, is that the log-based implementation performs

so well. The reason is that it does garbage collection while it scans which leaves it

with one additional core (three instead of two) for scanning.

5.8 Mixed Workload
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Figure 5.6: YCSB# Query 1 response time from TellStore variants and Kudu for

different concurrent transactional workloads with 4 storage instances

To see how well a scan performs while the system also needs to execute get

and put requests, we ran the YCSB# queries with the two different configurations

shown in section 5.4 and compared these numbers to the results obtained in

section 5.7. However, in order to make all systems comparable, we fixed the

get/put request rate to 35,000 operations per second, 35,000 being the highest

get/put load that Kudu could sustain. In fig. 5.6, we show the response time for
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query 1 and four storage instances. For the other queries and with a different

number of storage instances, the results look similar. Comparing the different

scenarios, we can see no notable difference for TellStore. Kudu, on the other hand,

does experience a significant increase in its query response time for concurrent

puts. This clearly demonstrates TellStore’s robustness under mixed workloads.
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6

The Bd-Tree

6.1 Introduction

6.1.1 Problem Statement

Indexing is a very important feature to process OLTP workloads. The key value

store only indexes an 8-byte wide primary key. Therefore, for some relations, not

even the primary key can be stored as the key in the key value store. While queries

could be answered by using whole table scans, this is often slower than using

indexes (in OLTP, most queries do point lookups or small range lookups).

It is possible to implement secondary indexes in the storage layer. We did not

do that for several reasons:

• Redistribution of key-value pairs would bemore difficult, as each storage node

would need to maintain secondary indexes for the tuples it holds. Migrating

one tuple from one storage to another can be done in constant time in average,

if there is only one hash table indexing the primary key. Migrating a tuple and

its secondary indexes, however, is in O(log(n)), as each secondary index

needs to be updated.

• For an index query, the client will have no knowledge about the location of

the key value pair. Therefore, all storage machines will have to execute an

index lookup. As the number of storage nodes increases, index lookups

become more expensive. This will make the key value store less scalable.
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• Index lookups on indexes that support range queries typically execute in

O(log(n)). This means that a lookup gets more expensive the bigger the table

grows. Range queries typically have a complexity of O(k · log(n)), where
k is the size of the range. This means that the costs for operations on the

storage layer become less predictable.

Elasticity, scalability, and predictability are some of the best properties of key-

value stores. To retain these properties, we need to keep the key value store as

simple as possible.

The alternative to implementing indexing in the key value store is to implement

the indexing in the processing layer. The index still needs to be stored in the

storage layer, but as far as the storage layer is concerned, the indexes are nothing

more than a set of key-value pairs. This will get rid of the problems discussed

above (if done efficiently):

6.1.2 Requirements

The first requirement we have for an index is that it has to be able to execute range

queries. This means that we probably will need some for of tree-like index.

To be able to store an index in a key value store it has to be possible to break

the index into several pieces and assign a unique key to each piece. This is usually

possible for trees, but much harder for other structures like log-structured merge

trees [ONe+96]. Furthermore, we want to minimize the number of network round

trips. Therefore the number of get requests to storage for index lookups and the

number of put requests for index modifications should be minimal.

As we want our system to be scalable, the index has to be able to execute

concurrent operations executed on different processes. Latches are hard to imple-

ment in a scalable way. Therefore we want this index to be lock free. Lock-free

algorithms can guarantee throughput as each successful CAS or LL/SC opera-

tion will result in global progress. Therefore, we are looking for a lock-free data

structure.

6.1.3 Solution

This chapter presents the Bd-tree. Bd-tree is a new data structure designed to be

used as a distributed index. Bd-tree is heavily influenced by the Bw-tree [LLS13].

Both data structures are lock-free and optimized for scalability.

In a first section, we justify the decision for a B-tree.

The next two sections of this chapter present a scheme for storing a B-tree in

a key value store. In the next section, we explain how the Bd-tree is cached in
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a correct way on storage. This caching scheme allows execution of most index

lookups with a single get operation and most modifications with a single write

operation as soon as the cache is warmed up.

In the following sections, we present the algorithms for the supported operations.

We describe how split and merge operations can be done without the use of latches.

Instead, we completely rely on the storage to provide some form of CAS or LL/SC.

The last section defines a contract which a storage has to fulfill to be usable

with the Bd-tree. Furthermore, the invariants and the contracts of the Bd-tree and

its operations are presented.

We finish the chapter by presenting a proof for liveliness of the data structure.

6.2 Which data structure should be used?

Indexing is done on client side only. While the index is stored in the storage, it

is processed by TellDB. There are a lot of data structures which can be used to

index data, and we invested a lot of time to find one that suits our requirements.

Since we want to support range searches on indexes, we can not use unordered

indexes likes hash tables.

Tell 1.0 implemented a hash table as well. It turned out that sacrificing the

ordering of some indexes did not give us the desired speed-up and we did not

port this index to Tell 2.0. Skip list variants are popular to index data, as they are

relatively easy to implement.

But skip lists have a huge space overhead (O(n · log(n))) which makes them
unattractive for Tell. Having a small space overhead is important for several

reasons: TellStore stores all data in main memory, therefore space overhead is

expensive in term of cost and energy. Since the index needs to be processed in

TellDB, the entries need to be shipped over the network which increases the network

load. One network request has to be made per element within a range which

increases the packet rate within the network.As discussed in section 2.4, network

throughout and message rate are potential bottlenecks. The same arguments are

true for balanced binary trees (like AVL tress or Red Black trees).

The data structure that suits our needs best is the B-tree. B-trees work well for

indexes on disks. While Tell is an in-memory system, there is still a significant cost

in fetching tree nodes. Instead of fetching them from a disk, we are fetching over

a network. A big benefit over disk is, however, that it is much easier to have tree

nodes of different sizes. This means that a half-empty tree node will only use up

half as much memory as a full tree node. A B-tree stores arrays of elements within
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Figure 6.1: Storing the index in storage and process it in upper layer

each node, decreasing the memory overhead and the network load. For range

queries, each node that gets fetched will contain several keys and not just one

which will reduce the number of network requests made to the storage. To optimize

range queries even further, we decided to implement a variant of a B+-tree. While

B-trees store key value pairs within each node, a B+-tree stores the values only in

its leaf nodes and the leaf nodes form a linked list. This simplifies range lookups,

as one needs to just follow a linked list of leaf nodes after the smallest key within

the range has been found.

6.3 Sharing the Bd-Tree between Processes
The Bd-Tree stores all data in two tables in the underlying key value store. It uses

one table to store the tree nodes, called the node table, and one to store logical

ids called the pointer table. The node table stores key-value pairs where the value

is a serialized tree node and the key is a key identifier. It does not matter how this

identifier is generated. In Tell it is generated by incrementing a global counter, but

it could be some UUID or a random value as well. This scheme is illustrated in

fig. 6.1. The pointer table is used as the central point of synchronization. Fetching

a tree node from the storage requires two network requests. First, we look up the

physical pointer in the pointer table. Then we get the serialized node from the

node table. The whole process is explained in more detail in section 6.6.

The Bd-tree is organized like a linked-tree: each node, leaf nodes as well as
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Figure 6.2: Structure of the nodes in the Bd-Tree

inner nodes, store the logical id of its right sibling. The tree, as well as the contents

of nodes is illustrated in fig. 6.2. Each node holds a list of key-value pairs, sorted

by key. The only difference between an inner node and a leaf node lies in the type

of the value: A leaf stores a tuple id for each key, where the key in the tuple is

equal to the one in the tree node. For inner nodes, the value is a logical id which

points to a subtree where all keys are smaller or equal to the associated key. Each

node also stores a lowest key and a highest key. These keys define the range of

keys that are stored in the subtree with itself as the root.

This chapter described the Bd-tree in detail. Furthermore, chapter A lists

C++-like pseudo-code of an actual implementation.

6.3.1 Concurrency

To allow for fast concurrent transaction execution, the B-tree needs to be syn-

chronized, as we want several threads of execution, probably running on different

machines, to be able to read and modify the B-tree concurrently. Reading is not

very problematic: unlike a B-tree hold in local memory, looking up a tree node

is not dangerous. For an in-memory B-tree, looking up a node that was deleted

by another concurrent thread might result in a segmentation fault. One way to

solve this problem would be by using hazard pointers ([Mic04]) or a form of epoch

([KL80]). If the nodes are stored in a key value store, this problem vanishes, as we

will just get an error from the storage layer from which we can recover by rereading
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the parent node.

Unfortunately, writing is a bigger challenge. Updating a single node can be

done by using the compare and swap functionality of the underlying key value

store, but this is not sufficient as we also need to be able to execute split and merge

operations. A naïve approach would be to use CAS for simple node updates and

a global lock for split and merge. However, this will be problematic as it would

not allow for several threads to shrink and grow the tree concurrently. To make

concurrency better, one can use locking at the node level instead of the tree level.

Our first B+-tree implementation was, therefore, a B-linked-tree, as described

in [LY81]. This B-tree allows concurrent updates while holding at most three locks

at a time. But to do that, one needs to have one mutex per tree node. In Tell,

we can not simply use std :: mutex, as this would only lock the tree node on one

machine. But our lock needs to be globally visible, i.e. other machines processing

transactions must be aware of the locks and respect them (i.e. wait on them).

To do that we implemented a locking service that did fair locking. But locking

does not work well in distributed environments. With locks, every split or merge

operation issues three additional network requests to the lock service, in the best

case. The locking service also introduces new complexity to the system. With

a locking service, we need to handle failures of the locking service and in case

of contention the locking service might experience a high load. But the biggest

problem with locks is that they increase latency as several additional network hops

are needed to update the tree.

To get rid of these problems, we implemented a lock-free B+-tree variant within

Tell. This B+-tree was highly inspired by the Bw-tree [LLS13], a lock-free Bw-tree

published by Microsoft Research which is used within Hekaton [Dia+13]. We call

this variant of the Bw-tree a Bd-tree (d stands for distributed).

6.4 Generating Ids

The two tables in which the Bd-tree is stored uses globally unique ids to identify

pointers and tree nodes. To generate these identifiers we use simple counters.

TellDB creates a global table which stores all counters. In TellStore and RAMCloud,

tables are identified with a 64-bit unsigned integer. In the counter table, we create

one entry per index table, where the key is equal to the corresponding table id. This

entry is added when an index is created and initialized with 1. Whenever a new id

needs to be generated, we atomically increment the value for the corresponding

index table which will give us a new, unique identifier (another 64-bit integer).
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An atomic increment can either be supported by the storage engine as a small

optimization (as it is the case for RAMCloud, but not for TellStore), or we can use

the compare and swap operation to implement the increment operation within the

processing layer.

In Tell, the identifiers are not recycled. This will become a problem as soon as

an overflow happens. We argue, however, that this will never be the case, as 64

bit is sufficiently large: with a rate of one update per microsecond, it will take 600

thousand years until an overflow occurs.

6.5 Cache

B+-trees are very shallow. The number of records indexed by a B+-tree of order b

and height h is bound by:

nmax = bh − bh−1 (6.1)

nmin = 2 · (
⌈
b

2

⌉h−1

−
⌈
b

2

⌉h−2

) (6.2)

In a B+-tree of order b, every inner node can have up to b children and a leaf

node can index up to b− 1 records. Therefore, a completely full B+-tree indexes

bh−1 · (b− 1) = bh− bh−1 records. Calculating the minimal number of records is only

slightly more complicated: the root node of a B+-tree has at least 2 children, all

other inner nodes at least
⌈
b
2

⌉
. A leaf node indexes at least

⌈
b
2

⌉
− 1 records. The

root node has two children which themselves are B+-trees of height h− 1. Each of

these trees indexes at least (
⌈
b
2

⌉
− 1) ·

⌈
b
2

⌉h−2
records.

In Tell, a B+-tree will typically have an order between 500 and 2000 (depending

on the data type that is indexed). Therefore a tree of height four can index at least

up to 63 billion records, one of height five more than 30 quadrillions. In practice,

we can, therefore, assume that an index lookup needs at most 5 get operations to

TellStore. 5 get operations on TellStore can be executed in less than 100µs. To put

this number into perspective: 100µs is roughly the seek time of a solid state disk.

It still is beneficial to do some caching for the indexes. The obvious reason is

that walking down the tree increases the packet rate and the load on the network.

But there is another reason: fetching the tree nodes is a serial process. The

identifier of a tree node is only known after its parent was processed. This makes

message batching on a transaction level impossible.

Caching is difficult because a machine can not know whether a cached tree
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node was updated by another machine since it was read from cache without asking

the storage. But we can make use of an important observation: the higher up a

node is in the tree, the less frequently it is updated and most updates only hit the

leaf nodes. We make use of this property by only caching inner nodes. A tree

node therefore only needs to be fetched if one of the following is true:

(a) The tree node is not cached.

(b) The tree node is a leaf node.

(c) It is detected that the cached version of the tree node is outdated.

Detecting whether a tree node is outdated works as follows: Each tree node

stores its upper bound (the highest key which could potentially be stored within

the current subtree) as a meta information. This upper bound changes whenever

a split and a merge happened. Whenever we fetch a tree node from the storage

layer, we check whether its upper bound is equal to the key we followed. If this is

not the case, we know that the parent is outdated and we evict the parent from the

cache and fetch it again. We continue recursively until we either fetched a node

where the upper bound is equal to the parent key or until we reach the root node

of the tree. Thanks to this caching mechanism, most index lookups only need to

issue one get request to the key value store.

The cache is implemented as a hash table that indexes nodes. As a key for

the cache we could either use the physical id (the id within the node table) or the

logical id (the id within the pointer table). Caching by logical id is preferable for two

reasons: (a) since the inner nodes store only logical ids, we would still need to look

up the physical id in the pointer table and (b) logical ids typically live much longer

than physical ids (the reason will be clear after we discuss the write operations).

Our cache is as four-way associative. It is implemented as a hash table with

four entries per hash index - the size of the table can be configured by the user.

Whenever we fetch a tree node by its logical pointer, we first check, whether the

logical id is stored in the cache. If it is, we fetch it from there, if not we first fetch

the physical id from the storage, then the tree node. We then store this tuple in

the cache. If one of the four spots is empty, we put it there. Otherwise, we evict

randomly one of the entries from the cache. This simple eviction strategy ensures

that maintaining the cache is cheap. Updates are then executed in-place within

the cache and then written back to the storage.

In the following, fetching from the storage always means that the cache is in

between. Therefore fetching a tree node from the storage might not issue any

network requests at all.
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6.6 Search operation

Before the search starts, it initializes an empty stack where it stores the nodes it

reads during the operation. This is needed in case of failure. A node could get

deleted or updated, while the search operation is running. Instead of restarting at

the root node, it will try to recursively reread at the lower levels until it has a proper

state.

The root node has the logical id 0. Therefore it will first fetch this node. It will

then do a binary search on the key array to find the smallest key that is bigger than

the one it is looking for. It will then follow the logical pointer associated with the

found key and push the parent node onto the stack. It will do so until it finds the

leaf node with the key it is looking for or it will fail due to concurrent write operations

on the index. The operation can detect three types of failures:

1. The logical id it is looking for does not exist. This can happen if a concurrent

operation merged the node it is looking for and deleted the node and its

logical id from the storage.

2. The physical id it is looking for does not exist. This can happen during a

concurrent merge as well. But in this case, the logical pointer did not yet get

removed.

3. The key is not in the range of the subtree of the node the parent was pointing

to. This happens if a concurrent split operation finished since we last read

the parent node.

If one of these failures occur, it will pop the parent from the stack, evict it from

the cache and restart from the grandparent. It will do so until it either reaches the

root node or until the key is within the subtree again. Because of the caching, it

might happen that several split and merge operations occur before it is detected

on a certain machine. But this is fine since leaf nodes are never cached and we

can, therefore, be sure to always read a valid state from the storage.

The number of network requests for a search operation is 2 in the best case

(reading the logical id from the lowest inner node followed by a get to get the leaf

node) and 2 · log2(n) in the best case if the cache is cold. It might theoretically
happen that the search operation starves if a split or merge operation or split

operation finishes whenever a node gets read from the storage. But since merge

and split operations typically happen rarely and since updates, in general, are

slower than search operations; this is not an issue in practice.
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6.7 Updates

On an update, we first need to issue a search to find the leaf node that needs to

be updated. For insert and delete operations, we first check whether the node

will need to be split or merged after applying the operation. If this is the case,

the split/merge is executed before the update is applied. This is important since

otherwise a leaf node might grow unbounded or shrink to an empty size, if a lot of

concurrent transactions execute insert or delete operations within the same range.

Afterward, the update is applied to the leaf node locally (i.e. in the local memory

of the processing node executing the transaction). The client then generates a

new physical id and writes the new leaf with the new physical id to the node table

in the storage. Afterward, a compare and swap operation is executed to change

the value of the logical id to the new physical identifier. If this compare and swap

operation succeeds, it will delete the old leaf node from the node table. Otherwise,

it will delete the new leaf node and retry the update.

An update operation issues at least as many requests to the storage as a search

operation plus three additional requests: An increment to get a new physical id, a

put request to write the new leaf node, and one operation to update the logical

pointer of the leaf node.

It might happen that an update process starves if several concurrent transac-

tions execute updates on the same leaf node. This would be particularly bad, as it

would create a lot of load to the storage, since writing the new leaf node will always

succeed. In our experiments, however, we never observed this problem.

6.8 Split

If a node grows to a certain size, it needs to be split into two nodes. Unlike updates,

splits can’t be executed with a single compare and swap operation, as split needs

to write two new nodes and then insert these two new nodes into the parent node.

Potentially, this will result in another split of the parent node which might again lead

to a split in its parent — cascading up to the root node in worst case. Only inserts

will lead to a split of a leaf node and only splits will lead to a split of an inner node.

The split function is illustrated in fig. 6.3. Whenever a process decides that a

node P needs to be split, it will first create two new nodes: a split node S and a new

node Q. S stores the physical id P and the logical id of Q. Q contains all key-value

pairs from P that are within its range, generated by using the middle entry from P

as a new lower key and P ’s upper key for Q. Its next pointer is the physical id of

the right sibling of P . This first step does not need any synchronization, as only
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(a) Node P needs to be split (b) Insert of new node
(c) CAS from parent to split

node

(d) Update parent node (e) Consolidate split node

Figure 6.3: Split. Dashed arrows represent logical id links, solid arrows represent

physical id links.

new nodes are written to the storage, and these are not visible to other threads

(see fig. 6.3b).

In the next step, the split thread tries to update the logical id of node P in

the logical id table with a compare and swap operation. This compare and swap

operation might fail for three reasons: (a) another thread updated a key-value

pair within node P , (b) another thread removed a key value pair from P , or (c)

another thread started a split operation. For (a), the split first updates Q without

synchronization, as it can simply rewrite Q, if necessary, and tries to execute the

compare and swap again. If (b) happened, the split might not be needed anymore

and the thread removes S and Q from storage and return. Whenever (c) happens,

the thread deletes nodes Q and S and helps the other thread finish the split. Any

combination of the above scenarios can happen during the creation of Q and S. In

that case the thread just removes Q and S and retries the operation it was doing

before it started the split operation. If the compare and swap operation succeeds,

all other processes might potentially observe the new split node S. If they do, they

try to complete the split. This is important, as the process that started the split

operation might have crashed during the split operation.

As shown in fig. 6.3d, the parent node now needs to be updated. Since the

key within an inner node is always the lower bound of its corresponding child this

pointer does not need to be updated. The only thing that needs to be done is an

insert for the new childQ. This insert will let the parent grow and as a consequence,

the parent node might need to be split as well. As soon as the parent node was

updated, node P needs to be consolidated. Consolidation in this context means

that the split node can be deleted as it is not needed anymore. But simply removing
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(a) Node Q is smaller than

a given threshold
(b) Insert delete node (c) Insert merge node

(d) Update parent node (e) Consolidate split node

Figure 6.4: Merge. Dashed arrows represent logical id links, solid arrows represent

physical id links.

the split node will create an invalid state - node P still contains keys which are also

stored in Q. Therefore, node P is rewritten and the pointer from the parent to S is

atomically reset to the new node P . This last step is shown in fig. 6.3e.

Root split

A special case of the split is the root node split. If the root node needs to be split,

we have a small problem: the logical id of the root node is fixed to the logical value

0. Furthermore, there is no parent node to update. Therefore we change the split

algorithm slightly for the root node. Instead of creating a split node and the sibling,

we simply create two new nodes (which represent the truncated root node and its

right sibling) and a new root node with two entries. The already consolidated old

root node and the new right sibling get new logical identifiers. Then we execute a

compare and swap operation to let the logical identifier of the root node point to

the newly created node with two entries.

6.9 Merge

While splitting is done to the right, merging is done to the left. That means that

whenever a process encounters a node that needs to be merged, it will merge it

with its left sibling. Like split, merge is a multi-step process. The merge operation

is illustrated in fig. 6.4.

A merge starts when a node becomes smaller than some predefined threshold.

A merge is always executed after the corresponding delete operation succeeded.

In a first step (fig. 6.4b), the process creates a deletion node and prepends it to
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the node that should get merged. This is done by first creating a deletion node

and then executing a compare and swap operation on its logical identifier. If this

compare and swap operation fails, the process just deletes the deletion node and

returns without retrying. The reasoning behind that is that the logical identifier now

points to a different node which will be either bigger, because a concurrent update

operation executed an insert, or another process started the merge process.

Next, the process will find the left sibling of the node to merge. This can be

done by looking at the parent node (if the node is the left-most child of the parent

we handle the case specially, as described below). It will then create a special

merge node which will save the physical id of both nodes that should be merged

(node P and Q in the example from fig. 6.4). It will then change the value of the

logical id of the left sibling to the merge node with a compare and swap operation.

This can fail for several reasons:

1. The node got updated after the last read. In this case, we will simply retry.

2. Another process already successfully executed this step. In this case, we

will just continue with the next merge step.

3. Another process tries to merge the left sibling of the node we tried to merge

and we, therefore, find a deletion node. Whenever this happens, the left

merge needs to be completed first. This is a recursive process: we merge

the left nodes until we can merge the current nodes.

After that, the merge has mostly succeeded. Next, we update the parent node

(still assuming that node P and node Q have the same parent). This is done by

simply removing the key value pair for node Q. Since the key in the parent is equal

to the lower bound of the corresponding node, the key for node P does not need

to be updated. Finally, a new node containing all key-value pairs from nodes P

and Q is created and the parent is updated. These to last steps are done with one

compare and swap operation which lowers the synchronization overhead.

Root node
The root node is a special node within the Bd-tree. Within the tree, all nodes are

allowed to shrink down to a given threshold. For the root this is not true anymore:

a root node is allowed to be empty (if it is a leaf node) or to shrink down to have

two children. If a root node has only one child, it gets deleted. This is a very simple

process: first, a compare and swap is executed on the logical id so that the root id

now points to its child. If this compare and swap succeeds, the old root node is

deleted.
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(a) Merging P and Q would

result in a too large node

(b) A new split node is cre-

ated

(c) The new split node is in-

stalled

(d) The split is executed

Figure 6.5: A merge with a concurrent split. Dashed lines represent logical ids,

solid lines physical ids.

Special case: merged nodes are too big

Another corner case can come up when merging nodes: it can happen that a

merge would produce a tree node that would be too large. Whenever this happens,

a merge is immediately followed by a split operation. As an optimization and to

make sure that no storage nodes bigger than allowed are written to the storage,

the split is executed before the merge is consolidated. After the merge node is

installed and the parent node is updated, all processes that visit the node will try to

finish the merge. They will first read the two nodes to be merged and will encounter

the situation in fig. 6.5a. As no updates are allowed to be executed on the nodes

P and Q, all concurrent processes will reach the same conclusion whether a split

is needed or not.

The trick here is simple: a merge node with two child nodes can be treated like

one tree node. The split algorithm can be executed like there would be only one

node. The process will load node P and Q into its local memory and generate a

new node S containing half of the elements from nodes P and Q. Then it writes

back these nodes to the storage (fig. 6.5b). Finally, it will try to install the split node

with a compare and swap operation (fig. 6.5c). If this fails, another split node has

been installed by another process. The split is then executed like a normal split

(as illustrated in fig. 6.3).

Special case: different parents

The Bd-tree is highly inspired by the Bw-tree [LLS13]. During our implementation

work we found a bug in the paper and our Bd-tree design: If two nodes are merged

that do not share a common parent, an important invariant is violated. If the
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(a) Node Q is smaller than

a given threshold
(b) Insert delete node (c) Insert merge node

(d) Merge and update par-

ent nodes
(e) Consolidate split node

Figure 6.6: Merge with two parents. Dashed arrows represent logical id links, solid

arrows represent physical id links.

situation from fig. 6.6c occurs, node Q would get deleted from the right parent

node. But the new node which is created from merging node P and Q will contain

keys that are bigger than the upper bound of the new parent. This means that

future tree operations won’t be able to find these keys, as they will search for them

in the wrong sub tree. To fix this, both parent nodes need to be updated atomically.

The simple trick of having logical and physical identifiers, however, only helps us

to update one tree node atomically.

To solve this problem, we use a simple trick: we just merge the parents. This is

illustrated in fig. 6.6. While merging the right parent, the parents key to node Q is

already removed in the first step. This has to be done to prevent another corner

case: it might happen that the merging will result in an immediate split and the split

will re-establish the initial position. While executing a merge (and potentially an

immediate split) might be overkill, this happens very rarely in practice. Furthermore,

compacting nodes more often will be beneficial for search operations.

6.10 Error recovery

A challenge for distributed systems, in general, is that every machine in the network

can potentially fail at any point in time. This could happen due to software bugs

(and since TellDB is a shared library, we can not control the level of robustness of a

processing node), due to hardware failures or due to a power outage. Operations

on the Bd-tree involve several operations on the key value store. Therefore it

is important that a failing node can not leave the tree in a state that can not be
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recovered from by other machines.

A Bd-tree is always in a consistent state. If a machine crashes while doing a

split/merge operation, another process will eventually finish the work. Updates

are atomic: either they succeed, or they fail. Therefore, a failing update is not

problematic for correctness. It is important to point out that removing invalid

updates due to failing machines while they are executing a commit is done by the

transaction processing logic.

The only problem with failing machines is that they might generate garbage in

the storage. Every operation will first generate a tree node (or a delta node) and

then execute a compare and swap operation to install the change. If a machine

crashes before this compare and swap operation succeeds, the written data will

not get deleted. Our current implementation does not account for this problem, as

error recovery is out of scope for this work.

6.11 Correctness
In this section we present the invariants (section 6.11.2) of the Bd-tree and a proof

of liveliness.

To simplify this proof, we will assume a slightly simpler a variant of the Bd-tree:

• We assume that caching is turned off.

• The presented Bd-tree does not support concurrently merging and splitting

two nodes. This operation is executed if a merge of two nodes would oth-

erwise result in one node that is larger as the fill factor. Instead, we allow

growing of nodes to up to twice the size of its fill factor.

• We assume, that the index key is of fixed size.

6.11.1 Storage Contract

The storage interface has to provide three function: get, put, and erase. We

assume that the storage providing this interface is bug-free, i.e. no operation will

ever violate its contract. We define the storage mathematically as a set:

Definition 6.1 A storage state Si is a set of 4-tuples 〈t, k, v, V 〉. t, k, and v are

natural numbers in the range 0 to 264 − 1 and V is a word over the alphabet 0, 1.

We call t a table within the storage, k key, v version, and V value.
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Invariant 6.1 For any tuple 〈ti, ki and any storage state Si the expression the

statement |{∀〈t, k, v, V 〉 ∈ S : t = ti ∧ k = ki}| ∈ 0, 1 is true.

Invariant 6.1 simply states that any t and v pair define at most one tuple within

any storage state. With that we can now define the storage itself and a helper

function gets.

Definition 6.2 The storage ς = {S1, S2, ...} is a totally ordered set of storage

states.

Furthermore, we define the versioning of tuples:

Definition 6.3 ∀〈Si, Sj〉 ∈ ς : i < j =⇒ ∀〈ti, ki, vi, Vi〉 ∈ Si : ( ∀〈tj, kj, vj, Vj ∈
Sj : ti = tj ∧ ki = kj =⇒ vi < vj)

Definition 6.4 gets(T ) → Si is a function that returns the storage state Si at time

T where T is a natural number representing time. For two different point in times

Ti and Tj, where Ti < Tk ∧ gets(Ti) = Sk ∧ gets(Tj) = Sl it applies that k ≤ l.

With these definitions, we can define the storage operations get, put, and erase.

get either returns the empty set or a set that contains one pair of version and value.

Definition 6.5 get(T, t, k) → {〈v, V 〉 ∈ {∀〈ti, ki, vi, Vi〉 ∈ gets(T ) : ti = t ∧ ki =

k}}

Definition 6.6 put(T, t, k, v, V ) → {0, 1}will return 1 iff for vi in 〈vi, Vi〉 = get(T, t, k)

it applies that vi = v. Otherwise, put returns 0.

Definition 6.7 erase(T, t, k, v) → {0, 1} will return 1 if for vi in 〈vi, Vi〉 = get(T, t, k)

it applies that vi = v or if get(T, t, k) = ∅. Otherwise, erase returns 0.

Now that we defined when put and erase have to succeed (return 0) we can

define a contract for them to define what they have to do:

Contract 6.1 put(T, t, k, v, V ) = 1 =⇒ get(T + 1, t, k) = 〈v + 1, V 〉

Contract 6.2 erase(T, t, k, v) = 1 =⇒ get(T + 1, t, k) = ∅

We want to prove later that the Bd-tree is lock-free. To do so, we assume that

put operations never fail with false-positives:

Contract 6.3 put(T, t, k, v, V ) = 0 =⇒ v 6= vi with 〈vi, Vi〉 ∈ get(T, t, k)

This last contract guarantees that for concurrent put operations exactly one will

succeed. On hardware CAS and LL/SC operations, this is often not guaranteed.

However, a system could easily meet this contract by reading after a fail and

automatic retry.
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Term Definition

Physical pointer An 8 byte wide unsigned integer used to index tree

nodes.

Logical pointer An 8 byte wide unsigned integer used to index physical

pointers.

Pointer table A table within storage that maps logical pointers to

physical pointers.

Row pointer An 8 byte wide unsigned integer. The mapped type of

any Bd-tree.

Key The key type within the Bd-tree.

Order N The order of the Bd-tree.

Height H The height of the Bd-tree is the number of inner nodes

on the shortest path between the root node and a leaf

node.

Indexed keys K The set of keys that are stored within the Bd-tree. The

set K changes over time.

Pointer table A table within the storage that maps logical pointers to

physical pointers.

Node table A table within the storage that maps physical pointers

to tree nodes.

Table 6.1: Definitions of Bd-tree terms

Storage is an implementation of a class which provides functions get, put, and

erase which behave like the functions get, put, and erase. The time variable T is

defined as the timestamp at the time when the request is executed. This means

that we can not control T, but it is implicitly given instead.

6.11.2 Bd-Tree Invariants
Definitions
The terms used for formulating the invariants and the proofs are defined in table 6.1.

Within a Bd-Tree, every node has a type which is either inner, leaf, deletion,

merge, or split.

A leaf and an inner node store a logical pointer called logicalNextPointer and

two keys called smallestKey and largestKey. Furthermore, they all contain an

array called pointers of pairs of key and pointer - row pointers for leaf nodes and

logical pointers for inner nodes.

Invariants on Tree Nodes

Invariant 6.2 — Ordering within Nodes. For any inner or leaf node n each key in
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the pointer array is unique and the pointer array is ordered by key:

∀i ∈ [1, sizeof(pointers)− 1] : pointers[i].key > pointers[i− 1].key

Invariant 6.3 — Key Range within Nodes. Each key in the pointer array of an

inner or leaf node is strictly greater than smallestKey and smaller or equal than

largestKey:

∀p ∈ pointers : p.key > smallestKey ∧ p.key ≤ largestKey

Invariant 6.4 — Tree Order. In a Bd-tree of order N , the size of any array within

each inner and each leaf node has fewer than 2 ·N + 1 and at most N
3
entries:

sizeof(pointers) ≤ 2 ·N ∧ sizeof(pointers) ≥ N

3

In the actual implementation, the minimal and maximal size of this array is a

compile time constant and expressed in bytes instead of entries.

Invariants on Structure

Invariant 6.5 — Children of Delta Nodes. We call split,merge, and deletion nodes

delta nodes as they signal an intended change to the tree and not a change by

itself.

All children of all delta nodes are either leaf or inner nodes.

Invariant 6.6 — Balanced tree. For any leaf node L, the shortest path H from

the root node to the leaf node contains the same number of inner nodes.

Invariant 6.7 — Global Order. On a Bd-trees storing the set of keysK, the pointer

of each key/pointer pair at array index i within any inner node either points to a

split, merge, or deletion node or to a Bd-tree that contains

• the keys {k ∈ K : k ≤ pointers[i] ∧ k > pointers[i− 1]} or

• the keys {k ∈ K : kleqpointers[i] ∧ k > smallestKey} if i = 0.

If the pointer does not point to an inner or leaf node this invariant applies to the

key and

• all keys within the Bd-tree that is the left child of the split node if it points

to a split node, or
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• all keys within the Bd-tree that is the right child of the deletion node if it

points to a deletion node, or

• all keys within the Bd-tree that is the left child of the merge node if it points

to a merge node.

Invariants of Operations

Invariant 6.8 — Complexity. All operations within the Bd-tree have a complexity
of O(log(|K|)).

The distinguished property of the Bd-tree is lock-freedom. We define lock-

freedeom accordingly to [TP14]:

Definition 6.8 — Lock-Freedom. An algorithm or data structure is lock-free if for

a finite but unbounded number of concurrent processes there will be at least

one process that will finish its operation in a finite number of steps.

Contracts
Below are the contracts for the operations. They are said to start at ti and finish at

tj. Unlike cohesive operations, a simple operation can never starve.

Definition 6.9 — NodeValue. We define a NodeValue as

struct NodeValue {

// A node which can be of any node type

Node node;

// The version of the logical pointer

// pointing to this node at the time it

// was fetched or nothing if it was fetched

// from a physical pointer.

optional<Version> ptrVersion;

// The logical pointer that was pointing to

// this node at the time it was fetched or

// nothing if it was fetched from a physical

// pointer.

optional<logical_ptr> lptr;

// The logical pointer that was pointing to

// this node at the time it was fetched

physical_ptr pptr;

};

Contract 6.4 — Fetch Node. We define two functions to fetch a node:

optional<NodeValue> fetch(physical_ptr ptr);
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It satisfies the following contract:

Ensure: ptrV ersion = nothing

Ensure: lptr = nothing

Ensure: return nothing if ptr never existed in the node table while this function

was running.

Ensure: return aNodeV alue with node set to one value of the entry in the node

table if this entry existed before the function started and never was deleted

before it returned.

Ensure: return NodeV alue.pptr = ptr.

Ensure: If the node did exist for some time during the time this function ran, it

either returns a value that existed during this time period or it returns nothing.

The other function fetches from a logical pointer:

optional<NodeValue> fetch(logical_ptr ptr);

Its contract is functionally equivalent. However, all optional values will also be

set. The function might fail if the logical pointer is changed while it is running

and the old entry in the node table got removed.

Below are the contracts for the operations over the Bd-tree. They are said to

start at time ti and either starve and never return or return at time tj.

Invariant 6.9 — Success of Operations. We define P (k) = k ∈ K∀tx ∈ [ti, tj] and

Q(k) = k 6∈ K∀tx ∈ [ti, tj]. An insert or update on key K will succeed if P (k). It

will fail if Q(k). Otherwise, its result is undefined.

An erase on key K will succeed if Q(k). It will fail if P (k). Otherwise, its result

is undefined.

Contract 6.5 — Find. The find operation has the following signature:

optional<RowPointer> find(Key k);

If it succeeds, it will return a RowPointer that was at one point in time stored

within the B-tree in a tuple with k.

Contract 6.6 — Insert. The insert function has the following signature:

bool insert(Key k, RowPointer p);

If it succeeds, all subsequent find operations called with k will find p unless an

erase or update succeeded in between.

Contract 6.7 — Update. The update function has the following signature:

bool update(Key k, RowPointer p);
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If it succeeds, all subsequent find operations called with k will find p unless an

erase or update succeeded in between.

Contract 6.8 — Erase. The erase function has the following signature:

bool erase(Key k, RowPointer p);

If it succeeds, all subsequent find operations called with k will fail unless an

insert or update succeeded in between.

6.11.3 Lock-Freedom Proof

In this section, we are proving that the Bd-tree is a lock-free data structure. For

this, we prove the following theorem:

Theorem 6.11.1 — Lock-Free Bd-Tree. The Bd-tree is a lock-free data structure -

as defined in definition 6.8.

This means two things:

1. Liveliness: Any single process might starve. As it tries to make progress it

might need to help other processes with split and merge operations forever

and will never be able to complete its operations. However, there will always

be at least one process that does not starve.

2. Guaranteed Throughput : As there will always be a process that will succeed

after a finite number of operations a minimal throughput is guaranteed.

The Bd-tree is lock-free but not wait-free. Wait-free is usually defined as

an algorithm where each operation finishes after a finite number of operations.

Therefore, for wait-free algorithms, no process will ever starve. Achieving wait-

freedom is much harder and wait-free algorithms are usually much slower than

lock-free counterparts (see [TP14]).

The first observation we use is that all operations eventually try to read from or

write to a leaf node. Lock-freedom can be proven by contradiction: we assume

that there is a situation where all processes are starving.

The only situation that a process can starve is if it never succeeds to either

reach the leaf node it wants to execute its operation on or if it never succeeds to

rewrite the leaf node.

Because split and merge operations always start at the bottom of the tree we

know that there are processes that did walk down to the leaf node they want to

change.
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If a read operation reaches the leaf node it is done. This contradicts with the

assumption that all processes are starving. Therefore we assume that either no

process is executing a read operation or all read operation are helping to execute

split and merge operations and therefore never reach a leaf node.

A write operation will fail to rewrite the leaf node if it either has to initiate a new

split or merge operation or if the conditional write fails. A conditional write of a leaf

node can fail for two reasons: (1) Another operation updated the tree node or (2)

another operation initiated a split or merge operation. (1) can not happen as this

would mean that a process would have succeeded in executing its operation.

Therefore we know that on each leaf node that was already reached by a

process one process succeeded to initiate a split or merge process.

The next observation is that split and merge operations always finish within

a finite number of steps. For each step within a split and merge a conditional

store will only fail if another thread either succeeded to continue to the next step

or rewrote a leaf node (which cannot happen as this would again mean, that this

processes successfully finished an operation).

Therefore it has to be the case, that merge and split operations are fluctuating

and there will never be an actual operation that can change the content of the tree.

For a split to happen, the number of keys stored in a node has to be ≥ N and

for a merge the number of keys has to be = N
3
. Therefore, for all leaf nodes that

are reached by write operation we know that the number of keys |k| stored in that
leaf is N

3
= |k| ∨ |k| ≥ N .

Because of invariant 6.4 we know that |k| < N
3
∨ |k| > 2 ·N is never never true.

Therefore after a split, each resulting node will have |k| ≤ N keys. Another

operation might merge the resulting left leaf node with its left sibling resulting in

another leaf node with |k| ≥ N keys. However, this can only continue until the left

most leaf node is split. The right sibling might only be split as the condition for

merging does not hold.

For merging a similar analysis can be made. After O(|K|), where K is the set

of all keys stored in the Bd-tree, merge and split operations on the leaf level, for

each leaf that is of interest for a write process it will be true that |k| > N
3
∧ |k| < N .

A write process will then reach the leaf node it wants to update. The only way

it can fail at this point is if another process writes a new leaf node. However, this

means that another process succeeded with its operation and this is a contradiction.





7

Transaction Processing

Transaction processing is done at the processing layer. The storage does not need

any knowledge about transactions. Tell implements a special form of snapshot

isolation. Earlier versions of Tell also implemented locking and timestamp-based

concurrency control, but those proved to be significantly slower on all tested

benchmarks. Please consult [Loe15] to get more details on these implementations.

The most important aspect of Tell is that the transaction process happens nearly

entirely within the processing layer. For Tell 1.0, the storage did not have any

knowledge about transactions. In Tell 2.0, versioning is pushed down to the storage

layer. This chapter will first describe how snapshot isolation is implemented in Tell

1.0. This is also described in more detail in [Loe15]. The last section describes

changes which were done in Tell 2.0.

In this chapter I will assume that every transaction is executed by one single

process in the processing layer. Currently, Tell only supports intra-transaction

parallelism for read-only transactions. But since OLTP transactions are typically

computationally cheap, intra-transaction parallelism is usually not beneficial.

This chapter covers transaction processing within TellDB. Chapter B provides

the curious reader with a pseudo-code implementation of the transaction life-cycle

within a TellDB instance.
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7.1 Introduction
7.1.1 Problem Statement

A key value store that provides versioning is very useful by itself. In the previous

chapter we presented a solution an index data structure so that we can support

range queries.

However, we want to have stronger consistency guarantees. Optimally we

want to have serializabilty guarantees or something that is only slightly weaker.

7.1.2 Requirements

The transaction implementation should at least provide snapshot isolation or re-

peatable read guarantees. These are still simple enough to reason about.

Snapshot isolation allows for write-skew. However, this can be solved, if

necessary, by the user. One way to do that is by materializing the conflict which

will generate a write-write conflict.

Repeatable read allows for phantom reads. A lot of workloads are, however,

not sensible to phantoms and if they are they can be changes to account for this

problem as well.

There are a lot of algorithms to support transactions that can be used for

distributed systems. However, as we want to be able to run mixed workloads, some

algorithms, mostly algorithms that rely on locking, won’t work well. The problem

with locks is, that they can block a concurrent read. In fact, most serializable

concurrency control algorithms have this problem.

7.1.3 Contributions

This chapter is mostly here to provide a complete picture on Tell and does, by itself,

not make a lot of contributions.

Most of the work described in this chapter has been presented before in

[Loe+15], [Loe15], and [Loe+13].

The main contribution of this chapter is a solution how we can run long-running

analytical transactions without slowing down parallel short-running OLTP transac-

tions.

7.2 Architecture
Tell implements the shared data architecture and is therefore very modular orga-

nized. While Tell was built with the whole system in mind, nearly every component

can be used in isolation. Tells architecture and its components are shown in
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Figure 7.1: Components from Tell for elastic OLTP

fig. 7.1. Transactions are executed within a client library called TellDB. TellDB

implements most transactional functionality as well as secondary indexes. The

commit manager is a central service ordering the transactions. TellDB gets a new

version id and a snapshot descriptor (described in chapter 7) at the start of a new

transaction. When the transaction finished, it will inform the commit manager. The

commit manager does not need to know, whether the transaction succeeded or

not. TellStore is Tells default storage layer (for Tell 1.0 we used RAMCloud) and

is oblivious with respect to transactions and secondary indexes. It is important

to note here that the B-tree nodes for all indexes are stored as serialized objects

within the storage. The underlying key value store implements a simple get/put

interface. There is no communication between TellDB nodes. The two points of

synchronization are the commit manager and the storage layer.

An application that uses Tell as a databasemanagement systemwould therefore

link against TellDB instead of a database driver (like JDBC or ODBC). This implies

that most database functionality will run in the middle-ware layer. This layer is

usually easier to scale than the storage layer as it is ideally stateless (or at least

has very little state). TellDB has very little state as well or no state at all if no

transaction is running. This implies that TellDB is elastic and scalable. Adding

machines is as trivial as removing machines from the cluster.
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Each TellDB instance has read and write access to all data, as the data is simply

stored in a key value store. The key value store partitions the data independent

of the workload, in case of TellStore just by hashing the keys and distributing the

key value pairs to the TellStore instances. While shared nothing databases try to

limit data access from each transaction, every transaction within Tell will potentially

read and write from and to all storage instances. This works well because the

TellStore instances do not need to do any synchronization between them.

7.3 Transaction Life Cycle
The transaction life cycle is quite simple: whenever a TellDB node wants to start a

transaction, it first requests a new snapshot descriptor from the commit manager. A

snapshot descriptor basically describes a set of versions which belong to committed

transactions and a version number for the new transaction.

Then it executes the transaction locally: that means it only reads from the

underlying storage and cache all updates locally. During this time it might already

detect conflicts if a tuple should be updated where the newest version is not in its

read set. It aborts if such a conflict is detected.

For error recovery, specifically if a processing node dies, we write an undo-log.

This is not literally a log but a set of entries within a private table on the storage

which contains the changes it is going to make.

After writing this log it tries to commit: It writes back the updates, utilizing the

compare and swap operation provided by the storage engine. If this succeeds, it

informs the commit manager and then deletes the transaction log. Otherwise it

rolls back all written updates, deletes the transaction log and informs the commit

manager.

7.4 Commit Manager and Snapshot Descriptor
The commit manager is a special service which exposes two simple operations:

start transaction and end transaction. The commit manager does not need to

know whether a transaction succeeded or failed. The only state it has is the set of

currently running transactions. The commit manager has a simple job: keeping

track of all running transactions and constructing snapshot descriptors whenever

a new transaction starts.

Whenever a process wants to start a transaction, it issues the start transaction

command to the commit manager. The commit manager will then create a new

version by incrementing a local counter, create a new snapshot descriptor, and
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send the snapshot descriptor to the client. The snapshot descriptor is conceptually

simple: it consists of the version of the newly started transaction and a read set.

The read set is just the set of all versions of all transactions that have committed

before the transaction started. Obviously, this version set is constantly growing as

new transactions start. Sending this set over the wire would very soon become a

bottleneck. To compress the snapshot descriptor we use a simple scheme. We

encode the snapshot descriptor as two eight byte numbers, the version itself and

a base version, and a bitmap the size
⌈
version−baseV ersion

8

⌉
bytes. The version is the

version of the transaction that owns the snapshot descriptor. The base version is

the highest version up to which all previous transactions finished at the time the

snapshot descriptor got created (this idea was presented before, e.g. [BG81]).

The commit manager always keeps the newest snapshot descriptor in memory.

Whenever a processing node starts a transaction, it will just increment the version

number and send a copy of the snapshot descriptor to the processing node. If

a processing node finishes a transaction it will send its version number back

to the commit manager. The commit manager will then set the bit at position

version− baseV ersion− 1 to 1 within the bitmap of its local state bitmap and then

it will increment the base version as long as the first bit within the bitmap is set to

1 and truncate the bitmap to the first bit that is set to 0.

Furthermore, the commit manager keeps track of the lowest active version: this

is simply the lowest base version of all currently active transactions. This number

is used for garbage collection: if the version of a tuple is lower than the lowest

active version, it can be deleted unless there is no newer version of this tuple.

These two operations the commit manager provides are inherently serial. By

default the commit manager is single threaded. This was never an issue, during

our benchmarks: a single commit manager can only be saturated with 200’000

transactions per second and we could not produce this load with the hardware

available to us. Nonetheless, we described in [Loe+15] and [Loe15] how to run

several instances of a commit manager.

7.5 Snapshot Isolation

Tell implements Snapshot Isolation. This means that we allow for write-skew.

While Snapshot Isolation is good enough as a concurrency guarantee for a lot of

workloads, the occurrence of write-skews might be a problem for some applications.

In this case, a user would need to work around this problem for example by

materializing the potential conflicts. It might be possible to implement serializable
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snapshot isolation [CRF08] on Tell, but this is a subject of future work.

Our snapshot isolation algorithm is designed to be simple and to keep the

network communication needed for synchronization minimal. A TellDB instance

starts a transaction by getting a snapshot descriptor from the commit manager.

From that point on, the TellDB instance will work in read-only mode: it will read

from the storage and keep updates locally. Therefore, whenever a conflict is

detected before the transaction tries to commit, the transaction does not need to

be rolled back as we can just discard the local memory containing the updates of

the transaction. For performance reasons and to be able to detect conflicts earlier,

we also cache all reads locally.

When TellDB fetches a tuple from storage, it will send the snapshot descriptor

of the transaction together with the request to TellStore. TellStore will then give

back the newest readable tuple together with a boolean which is true if the tuple is

writable for this transaction and false otherwise. Writable in this context means

that there is no newer version than the one TellStore returned. This boolean is

stored in the cache together with the read tuple.

Tell does conflict detection twice: first when it writes to the cache, and then

again at commit time. If a transaction tries to update a tuple that was not read

before, TellDB will first fetch the tuple into cache. TellDB will then check whether

the tuple was writable for the transaction at the time it was read. If this was not the

case, it will immediately abort.

The main drawback of our snapshot isolation implementation are unneces-

sary aborts: a transaction immediately aborts when it detects a potential conflict.

However, it might be possible, that the conflicting tuple will be rolled back later.

Traditional single-thread resolution and two-phase locking do not have this problem.

This is the price we pay for higher concurrency. In our experiments we observed

very few unnecessary aborts.

7.6 Long running Transactions

TellDB will send its snapshot descriptor to TellStore for each get, put, and scan

requests. This works well as long as the snapshot descriptor does not grow too

large.

Even with a high load the snapshot descriptor will be sufficiently small as the

bitmap will mostly include in-flight transaction. However, as soon as long and short

running transactions are mixed together into the same workload the snapshot

descriptor might become large.



7.6 Long running Transactions 115

As described in section 7.4, each transaction fetches a snapshot descriptor

from the commit manager when it starts. This snapshot descriptor consists of the

base version, the lowest active version, the version of the transaction itself as well

as a bitmap of the size transactionId− baseV ersion. This snapshot descriptor will

then be sent to each storage node on each request.

While this works fine for OLTP workloads as well as for analytical workloads, it

significantly slows down the execution of mixed workloads. The reason is that the

bitmap within the snapshot descriptor will grow very large: if the OLTP system is

generating a load of 10, 000 transactions per second (a load Tell can easily sustain),

and one analytical transaction takes 1 minute to complete, the bitmap will grow to

75KB. Sending 75KB of data to each storage node for each request is, however, a

huge overhead and the network throughput will become a bottleneck much earlier.

Furthermore this will increase the latency if get and put requests significantly.

There are several countermeasures we could implement for this problem. Our

first approach was to compress the snapshot descriptor. This works pretty well

in general, since we can assume that most transactions will be short-running.

Therefore, within that bitmap, most bits will be set to 1. This makes it simple

to do efficient compression. However, it will also slow down query processing.

Storage nodes will need to decompress the snapshot descriptor for each request.

Therefore, the current implementation does not use compression for snapshot

descriptors.

Another possible solution is to cache the snapshot descriptors on each storage

node instead of sending it with each request. While this does not decrease the

size of the snapshot descriptors, it lowers network load. But it will increase the

load on the storage nodes, as they will need to keep track of the active snapshot

descriptors. A processing node would need to send the snapshot descriptor to

each storage node it wants to get data from and then inform the storage nodes,

when the snapshot descriptor can be evicted again. Apart from this additional

overhead, there is another major drawback: failure recovery. If a processing node

crashes while executing a transaction, its snapshot descriptor would never be

deleted. Therefore the current error recovering protocol needed to be changed.

Instead of these solutions, we implemented two additional transaction types:

read-only transactions and analytical transactions. While the introduction of these

transaction classes does not solve the problem of long-running transactions in

general, it does solve it for a lot of use-cases. In the future, Tell should imple-

ment snapshot descriptor compression after a certain threshold for the size of the

descriptor is reached. Thanks to read-only and analytical transactions, snapshot
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descriptors never reached a problematic size during our experiments. Compression

was implemented within Tell 1.0 and can be ported to Tell 2.0 as soon as it is needed.

7.6.1 Read-Only Transactions

Read-only transactions optimize transactions that guarantee not to write to the

storage. A read-only transaction will, like read-write transactions, fetch a base

version, a bitmap, and its version from the commit manager when it starts. The only

difference is that the commit manager will immediately mark this new transaction

as readable for all other transactions. This allows growing the base version beyond

the versions of all read-only transactions. Therefore, read-only transactions will

never contribute to growth of the snapshot descriptor.

The commit manager will still need to keep track of read-only transactions,

as it is not allowed to increase the lowest active version as long as read-only

transactions could potentially read this version. Therefore, the commit manager

needs to keep two distinct bitmaps: one for the read-write transactions and one

for the read-only transactions.

Adding the version of an uncommitted read-only transaction to the read set of

another transaction is not problematic: since the read-only transaction will never

write anything to the storage, other transactions will never read anything written by

a read-only transaction. It is important to note that the processing node needs to

make sure that the transaction does not write to the storage. This mechanism is

implemented in TellDB: it will throw an exception as soon as the user tries to write

with a read-only transaction.

7.6.2 Analytical Transactions

Whenever a transaction sends a scan request to a storage node, it will also send

its snapshot descriptor. The shared scan will then first evaluate all selection

predicates. If all selection predicates are satisfied by a tuple, the scan process

needs to check whether the tuple is within the read set of the transaction that

issued the query. For a tuple, the storage knows two numbers: validFrom and

validTo. validFrom is the version of the transaction that wrote this version of the

tuple, validTo the version of the transaction that either deleted the tuple or wrote

a new version of it. Such a tuple is in the read-set of a transaction iff validFrom

is readable for the transaction and validTo is not readable (validTo = ∞ for the

newest version). The code for this check is drafted in fig. 7.2.

The code to check the snapshot descriptor can be optimized better than what

is presented in fig. 7.2 as the snapshot descriptor is known during compilation time
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bool isReadable(const Snapshot& sd,
uint64_t validFrom,
uint64_t validTo)

{
if (validTo < sd.baseVersion()) {

return false;
}
// check the bitmap
if (sd.versionMap[validTo - sd.baseVersion()] == 1) {

return false;
}
// validTo is not in the read-set of the transaction:
// at this point, we know that the tuple is valid iff validFrom
// is in the read set of the transaction.
if (validFrom < sd.baseVersion()) {

return true;
}
return sd.versionMap[validFrom - sd.baseVersion()] == 1;

}

Figure 7.2: Checking whether a tuple is readable for a transaction

and this code is compiled to machine code at run time with LLVM. Nevertheless:

checking the version of a tuple is a significant overhead for the scan threads.

To reduce this overhead we introduced the notion of analytical transactions.

Analytical transactions are, within Tell, read-only transactions that do not require

the absolute newest version of the data. The only difference between an analytical

transaction and a read-only transaction is that the analytical transaction does

not get a version bitmap from the commit manager. That means it will only read

data written by transactions before the base version at the point the analytical

transaction started. This is a legal optimization, as it just reorder these transactions

bool isReadable(const Snapshot& sd,
uint64_t validFrom,
uint64_t validTo)

{
if (validTo < sd.baseVersion()) {

return false;
}
if (validFrom >= sd.baseVersion()) {

return false;
}
return true;

}

Figure 7.3: Checking whether a tuple is readable for an analytical transaction
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- it does therefore not violate any serializability guarantees.

With only a base version to check against, the readable-check within the scan

gets significantly easier. This code is illustrated in fig. 7.3.

7.7 Commit Protocol

While a transaction is running, it is not writing to storage. At commit time, all

updates are cached an need to be written back to storage. Commit is a four step

process.

1. Write back the undo-log.

2. Write back the updates.

3. Write back the index changes.

4. Inform the commit manager that the transaction completed.

5. Delete the transaction log.

TellDB also needs to write back a transaction log for error recovery. It writes

back a very simple and compact undo-log. This is necessary, as the machine

executing the transaction might crash at commit time. Therefore another node

needs to roll back this transaction. Each client machine creates a table within

TellStore for its undo-logs when it starts up and deletes it when it shuts down

gracefully. Within that table, there is one tuple per transaction where the undo-log

is stored. This undo-log is just a list of tuple it is going to write. So if the machine

crashes, another machine can scan this table and revert all changes that it wrote.

Additionally, the undo-log contains all index updates that the transaction will try to

execute. This is not strictly needed but it makes error recovery simpler and less

expensive.

As soon as this undo-log is written, TellDB tries to write back all updates. Tell-

Store will do a conflict detection on every write: TellDB will send its snapshot

descriptor with every request. If TellStore detects a conflict on one of the updates,

TellDB will roll back and abort. Therefore, TellDB implements a first writer wins

protocol. The drawback of first writer wins is there might be cyclic dependencies

between two more concurrent transactions, resulting in unnecessary aborts. For

example: if transaction A is writing tuple x and then tuple y while transaction B is

writing tuple y and then tuple x, both transactions will detect a conflict and both
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transactions will abort. However, first writer wins allows committing several trans-

actions concurrently without any direct communication between the processing

nodes. The storage is the only point of synchronization.

As soon as writing back the updates succeeds, the transaction succeeded. But

the updates are still not readable for new transactions. In the next step, the index

updates are executed. The reason we wait until this point to write back the index

is that rolling back index operations is potentially expensive. But index changes

usually don’t fail unless there is a uniqueness constraint violation.

The last step during a commit is to inform the commit manager that the trans-

action finished. The commit manager will then mark the version of the transaction

as readable for newly started transaction.

Our commit protocol therefore works in two simple phases: the processing

node is the master asking all slaves (the storage nodes) whether they can commit

(have conflicts) and then commits or aborts.

The reason we do not need a more complex protocol like Paxos or two-phase

commit is because of the shared undo-log. If a processing node fails, another

machine can read its undo-table and revert all in-flight transactions.

If the storage does not implement the versioning protocol described in chapter 3,

the above protocol does not work. Tell 1.0 therefore implemented a slightly different

protocol. But conceptually not that much changed. The main difference is that

for each key, the storage (RAMCloud) stored a serialized array of version-tuple

pairs. Whenever a tuple got read, the processing node received all versions of that

tuple and it wrote back a new array of version-tuple pairs. To do conflict detection,

the compare and swap feature from RAMCloud was used. Garbage collection

of old versions was done lazily on the processing node: it would just not write

back versions which are not readable by any active transactions. Obviously, this

resulted in a higher network load and more memory consumption on the storage -

but for pure OLTP workloads, the network load was usually not the bottleneck of

the system.

7.7.1 Recovery

If a processing node fails, it might have partially written some transaction to storage.

This prevents any other transaction from writing to tuples that have been written

by this machine until another machine rolls back these transactions.

To do so, the commit manager will periodically ping hosts with open transactions.

If a host does not answer for some amount of time, it will be declared dead and its

identifier will be sent to a processing node.
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To prevent undefined behavior during network partitions, each processing node

pings the commit manager regularly. If it can not reach the commit manager it will

crash.

All undo-logs are stored within a table on storage. Its name can be computed

with the process ID. This process ID has to be globally unique. For a rollback a

processing node will read this table and execute all undo-logs.

Executing an undo-log is trivial: it contains the version of the transaction and a

list of all keys that should have been written during the transaction. The processing

node will send these keys and the version of the transaction to the storage. The

storage supports a roll-back function that just removes the newest version of the

key if it has the version from the log. Executing an undo on a key that was not yet

written therefore does not have an effect, as the newest version on storage will be

either larger or smaller than the one of the aborting transaction.

To roll back the Bd-Tree, the log will also contain a list of all Bd-Tree identifiers

and the corresponding changes it intended to execute. The rollback process will

walk all Bd-Trees and delete the key/version pair within that tree if it exists.

The undo-log entry of each transaction will be deleted after the rollback did

successfully finish. At this point the commit manager is also informed, that the

transaction did finish. Therefore, even if the processing node executing the rollback

fails, another processing node can continue with the rollback. When the undo-table

is empty, the table will get deleted.

7.8 Bd-Tree

Our Bd-Tree implementation can only handle unique keys. This is a problem, if we

want to index a column which does not have a uniqueness constraint. Furthermore,

we can not delete keys from the Bd-Tree at the point we update or delete a tuple.

The reason is that the Bd-Tree is not aware of the snapshot isolation mechanism.

Therefore, older transactions might still need to read a tuple after it got deleted

and if we would delete the tuple immediately from the index, older transactions

would not be able to find the tuples by using the Bd-Tree.

We solve both these problems by constructing a composite key. For indexes with

uniqueness constraints the constructed key will have the form< key, validTo > and

indexes without uniqueness constraints we construct the tuple< key, value, validTo >.

The value will always be an 8 byte number: either the id of a child node within the

Bd-Tree, or the id of a tuple. validTo is an eight byte unsigned integer as well.

validTo is the version up to which the entry is valid. Therefore a transaction can
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simply check whether validTo is within its read-set (which will be always false for

264 − 1) - if it is, it means that the transaction can see the update operation that

resulted in the deletion of the key from the index, and it can therefore safely ignore

the index entry. If a transaction wants to delete from the index, it just sets the

validTo field to its own version number.

This simple version handling within the Bd-Tree, while fast and easy to im-

plement, has some minor drawbacks. First of all, the Bd-Tree can not detect all

uniqueness constraint violations, as it might happen that a deleted key is still read-

able for the updating transaction. Therefore TellDB has to check the uniqueness

constraint with an index operation before it can update the index. It does however

prevent uniqueness constraint violations produced by concurrently committing

transactions.

The second drawback is that the Bd-Tree needs to be garbage collected. This

can not be done within the storage layer, as storage is oblivious to the fact that it is

storing index nodes. TellDB does garbage collection lazily whenever it reads a leaf

node: if the validTo field is smaller than the lowest active version, the entry will

get deleted. As a consequence, an index entry might never get deleted, if the leaf

node it is stored in never gets read from a processing node. But this could be easily

solved by running a distinguished garbage collection process on a processing

node.

7.9 Query Execution

Analytical queries are usually computationally more expensive than online transac-

tions. TellStore provides the client with an interface to read large amounts of data.

It provides a high data throughput as opposed to the high operation throughput of

the get/put functions. But TellStore, by design, does not support the execution of

complex computations (see section 2.3 for a description of the reasons). Therefore,

after receiving the data, the processing node has to execute these computations.

The way this would work is illustrated in fig. 7.4. In that case TellDB is used to

start a transaction and issue scan requests to the storage nodes. In that case, all

computation is implemented in C++ by the user (as TellDB does not yet implement

all SQL operators).

The main benefit and the main drawback of this approach is simplicity. For

queries that can push down selections with a strong selectivity for each scan query

they issue, this execution model works well. In that case most of the processing

(the filtering) is done in parallel by all storage nodes and the query executor only
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Figure 7.4: Executing analytical queries like online transactions

needs to process a small amount of data.

There are two scenarios where this execution model reaches its limits: if CPU

time is the limiting factor, as only the CPUs from the machine that executed the

query can be used, or if intermediate results are larger than the main memory of

the machine. It could very well be that both CPU time and main memory become

a bottleneck. If CPU time is the bottleneck, the user has no other choice than to

wait for the result. If main memory becomes a bottleneck, the process can write

intermediate results to some secondary storage (for example local disk or a private

non-transactional table on TellStore). This, however, will slow down the execution

significantly.

7.9.1 Distributed Query Execution

For more complex workloads, distributed query execution engines get more attrac-

tive. Instead of one machine per query, a distributed query engine can execute

one query with several machines (intra-query parallelism).

The basic idea here is illustrated in fig. 7.5. This idea is not new and there

are several distributed query engines on the market. The basic idea here is that

one machine, called the master node, starts a transaction and generates a query

plan. It will then split the work into several tasks and send them (together with the

snapshot descriptor) to other nodes in the cluster (slave nodes, or workers). Each

worker will then process a partition of the data and send back its results to the
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Figure 7.5: Using existing analytical query engines

master node. The master node will then aggregate the results and send the final

result back to its client.

Building an analytical query engine for Tell is out of scope for this work. We

did, however, implement a Spark [Zah+10] layer and a Presto [Fac16] plugin for

TellStore. Spark and Presto are two popular distributed query engines which

support several storage engines.

Distributed systems like Spark and Presto usually try to partition the data in

order to be able to process only parts of it. The shared-data architecture on the

other hand tries to give each processing node a complete view over all data. This

looks at first like a fundamental conflict. The important tool here is selection push-

down: by pushing down a selection, each node can create its own partition. This

partition is completely independent of the physical storage location of the data.

The query engine could, therefore, use knowledge about the distribution of the

data, to generate an optimal partitioning over its data. If the query processor, for

example, knows that the keys are uniformly distributed, it could push down the

selection key ≡48 12 to read the twelfth partition out of 48 partitions. If it does not

have any knowledge about the data, we could introduce a random field that just

contains a uniformly distributed random number and use that for partitioning.

Our benchmarks with Spark, which are not included in this thesis, show that

Spark is unable to saturate TellStore with scan requests. We implemented and ran

TPC-H on Spark, but we measured that only a minor fraction of the processing time
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Figure 7.6: TPC-C scale out with total number of cores

was used for fetching the data - this made the results useless for us as it did not

help us to compare different storage implementations with Spark. These results

are coherent with the results published in [CO15]. Spark had similar problems.

We therefore used another workload to benchmark the storage which executes

each query on a single node and is heavy on scans with predicate push down and

projections.

7.10 Experimental Results

As the experimental results with Tell 1.0 are presented in detail in [Loe15], this

section will only present the most important result from the work. In chapter 8 I will

compare these results with the new results we got after optimizing Tell. Previous

work focused more on different concurrency control algorithms (snapshot isolation,

locking, and timestamp ordering). As snapshot isolation was the clear winner in

all our benchmarks, we abandoned the implementation of the other concurrency

control algorithms in favor of a cleaner and simpler design.

To test elastic OLTP we ran, apart from some micro benchmarks which are

not presented in this work, the synthetic TPC-C workload. TPC-C simulates a

transactional order-entry system. The results are presented in fig. 7.6.

As one can see, Tell can scale out well with more resources. The reason VoltDB

is doing much worse (VoltDB gets slower when more resources are added) is due

to the way it partitions data. VoltDB creates one partition per CPU core. Each
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transaction is then executed single-threaded on one core. This works great, as

long as no transaction is accessing more than one partition. This has some rather

big advantages: no concurrency control is needed (which speeds up the execution

of transactions) and VoltDB performs well if there is high data contention (the

worst-case with high data contention is that there will be no concurrency anyway,

as all transactions need to be serialized). However, as soon as more than one

partition is read or written to, VoltDB needs to lock these partitions and execute the

transaction on both partitions in parallel. Within TPC-C though, not all transactions

can be executed within the context of a single partition.

Unfortunately, we do not know howmanymachines Tell can scale to. The cluster

which was available to us to run benchmarks consisted of twelve machines. Most

probably though, the first bottlenecks we would reach would be either the message

rate within the network or the commit manager. But according to some micro

benchmarks, the commit manager can easily handle up to 200,000 transactions

per second - which would roughly translate to six million TpmC. But as shown in

previous work, the commit manager can be distributed as well.
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Tell 2.0

The main reason leading to Tell 2.0 was that we were unable to perform analytical

workloads on Tell. This was not due to a fundamental flaw of Tell, but due to the

inability of RAMCloud to execute fast scans over data within storage.

Nevertheless, Tell 1.0 suffered from major problems which we wanted to get

rid of during the rewrite and redesign.

The first main issue was its inflexibility: Tells API consisted of a set of C++

templates and a set of concepts which had to be implemented by the user. The

schema was described by some classes and the workload was described by a

domain specific language. The workload was then compiled to machine code by

the C++ compiler. The main benefit of this approach was, of course, its speed, as

the workload specific code could be analyzed and optimized by the C++ compiler.

But for every new workload Tell had to be completely recompiled. This also meant

that ad-hoc queries were impossible and adding a SQL-engine would be virtually

impossible.

The next major problem was that Tell 1.0 was using a synchronous execution

model. But a synchronous execution model does not work well together with

Infiniband. Infiniband gets its low latency partly because it bypasses the operating

system kernel when sending and receiving data. Therefore, a thread can not

block within the kernel while it waits for a response. Tell did, however, simulate

a socket interface on top of the Infiniband verbs library. It did that by using one

open connection to storage and one dedicated thread, polling on this connection.

For each transaction, there would be a heavy-weight OS thread that puts requests



128 Chapter 8. Tell 2.0

onto a queue which will then be sent by the poll thread to the storage. Whenever

an answer was received, the poll thread would put the answer into a predefined

data structure and set a boolean which is polled on by the caller. The transaction

thread would then observe this boolean and call yield within a loop. This design

was a quite horrible hack. Profiling showed that around 70 percent of the overall

CPU time was spent within the kernel - more specifically within the yield system

call and to execute context switches.

With Tell 2.0 a lot of effort was spent to design a system that would get rid

of these limitations. This section describes how storage was designed and the

execution model looks like. I will not, however, describe how data is organized

within the storage as this was covered in part I.

8.1 Tell Components
Tell has a very modular design. This was a necessity, as we implemented three

different key value stores and wanted to reuse as much code as possible. Tell 2.0

is rewrite except for the Bd-tree. In the following sections I outline the components

of the system. All these components can be used independently from each other.

All components can be downloaded as independent projects1. Our build-system,

however, supports the whole system to be built within one project 2.

Crossbow
Crossbow is a utility library. The reason it is called Crossbow will be obvious to a

Swiss reader: Willhelm Tell, after whom the system was named, was a hunter who

used a Crossbow to shoot an apple from his son’s head. Later in the story he also

shot Gessler, the local despot, using the same Crossbow.

Crossbow is a collection of C++ libraries exposing general purpose functionality.

These libraries are used by all other components of the system. Crossbow contains

the following libraries:

• string: a std::string compatible string class that allocates small strings (<= 31

bytes) on the stack.

• singleton: A general purpose, thread safe implementation of a singleton,

allowing to control the lifetime of the held object. The design of this singleton

was heavily influenced by Andrei Alexandrescus Loki library3.

1https://github.com/tellproject
2https://github.com/tellproject/tell
3http://loki-lib.sourceforge.net/
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• single consumer queue: A lock-free queue which allows multiple producers

but only one consumer. The main advantage over other implementations is

that the consumer can atomically get all elements off the queue.

• program_options: A small header-only library to parse command line argu-

ments. The design was influenced by Boosts program_options library4, but

Crossbows version of the library is simpler and does not have any link time

dependencies.

• allocator : The allocator library implements two special allocators: (1) a chunk

allocator and (2) an epoch implementation. The chunk allocator is a very

simple allocator that can only be used to allocate memory, but not to free it.

Instead all memory is freed when the allocator is destroyed. This helps to

optimize processes that have a clear begin and a clear end of execution (for

example a parser that needs to allocate a lot of small objects but will at the

end of its lifetime not need them anymore)

The epoch allocator is an implementation of the epoch garbage collector

[KL80]. This is heavily used to manage the memory for lock-free data struc-

tures. The main problem of lock-free data structures is that when an object is

removed from the data structure, it can not be immediately freed, as another

concurrent thread might still have a pointer to the given memory. Epoch

works by tracking threads that enter and leave critical sections, making sure

to free the memory only after all threads that were active when free was

called on the object have left and therefore do not hold any references to the

given element.

• logger : A very simple logging library, existing solutions were too heavy for

our needs.

• infinio: This is the most sophisticated library within Crossbow and implements

an Infiniband library on top of the low-level Verbs library5. It implements the

whole execution model using user-level threads. This library is documented

in more detail in section 8.1.1.

Commit Manager
The commit manager as described in section 7.4. The commit manager uses

Crossbows infinio for communication and is completely independent of the other

4http://www.boost.org/doc/libs/1_60_0/doc/html/program_options.html
5http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Program-

ming_user_manual.pdf
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components of the system. In future though, we are planning to use this component

as a coordinator for the cluster. But this is future work.

TellDB
TellDB is one of the main components of Tell and basically resembles the function-

ality of Tell 1.0. TellDB is not a program, but a dynamic library which is supposed

to be used by a middleware server. It exposes an API to the user that allows

starting transactions, create tables and issue queries. TellDB is currently tightly

glued to TellStore, so using another key-value store would be a major engineering

investment. This was done mostly because of the unique execution model and

creating a general API of the storage is nontrivial. In the end, it was mostly a time

issue and running on top of another storage was not a feature we anticipated.

TellDB, while it does not support SQL, does provide a complete abstraction

layer to the user. The user does not need to create indexes or care about the

caching - all this is done by TellDB. One of the main differences to Tell 1.0 (apart

from the execution model which is implemented in the context of Crossbow infinio)

is that the interface is completely dynamic. This will help us in the future to interpret

SQL without the need to recompile Tell. Furthermore, it is now much simpler to

provide interfaces to other programming languages

Bd-Tree
This is the implementation of the Bd-Tree described in section 7.8. This Bd-Tree

implementation allows to implement a simple API for any storage layer that supports

atomic compare and swap operations. This implementation is used within TellDB

to construct secondary indexes.

TellStore
TellStore is our key value store. Unlike most other key value stores, TellStore

exposes a scan functionality: a user can scan tables and push down simple ag-

gregations, selections, and projections. TellStore by itself is actually very modular,

but this will be described in more detail in the next chapter.

TellJava
TellJava is a slim layer around TellDB that exposes the scan functionality of TellStore

and the transaction capabilities of TellDB to Java. TellJava is very limited in terms

of functionality and only exposes an interface for read-only access to the underlying

storage. Also, we currently only allow for scans in Java programs to read data

from the storage (i.e. get requests can not be issued from Java).

This was a design decision. The execution model of TellDB is asynchronous in
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nature and TellJava provides a blocking interface on top of that. As a consequence,

we are losing a lot of efficiency in the process. For scans this is a small overhead

as response times are generally high. For get/put workloads though, this blocking

interface would very soon become a bottleneck. Nonetheless, this functionality is

still very useful to run analytical workloads.

TellSpark
TellSpark is written in Scala and uses TellJava to implement Sparks DataFrame

API. TellSpark allows the use of SparkSQL to run analytical workloads on data that

is stored within TellStore.

TellPresto
TellPresto is a plugin for the Presto SQL engine. Our plugin does not support

updates, although these could be added later. It depends on TellJava to execute

scans on partitions of data.

8.1.1 The execution model

The execution model is implemented as a part of Crossbow infinio. From a high

level perspective, we implemented a simple event queue. The design of infinio was

heavily influenced by Boost asio. A first design planned to implement an infiniband

layer for Boost asio but it turned out that Boost asio is not well suited for RDMA,

as its design is mostly tailored towards asynchronous socket programming.

Infinio runs several poll threads. It can be configured by the user how many

threads it should start, but it should be no more than one per CPU core. The

poll thread behaves differently on the server than on the client, therefore both are

briefly discussed here.

On the server side, each poll thread maintains a set of connections. The

Infiniband Verbs library does not provide any API calls to establish a connection

to another host. We use the RDMA communications manager (rmda_cm)6 which

was implemented by OpenFabrics, to do that. At startup, the poll thread registers

a set of memory blocks at the NIC and starts polling for new requests. Incoming

connections are assigned to poll threads using round robin. Since the event queue

is stored in the main memory of the process, we do not need to call into the kernel

to read arriving events. Therefore the poll thread will busy-wait for new events

for a certain amount of time. Busy-waiting has the advantage that it lowers the

response time but it also produces a lot of CPU load without doing any work if

there are no incoming requests. Therefore, after a few thousand poll iterations,

6http://linux.die.net/man/7/rdma_cm
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we use call epoll_wait7. This is a system call that instructs the kernel to wait for

new events and wake up the process as soon it receives an interrupt from the NIC.

This behavior gives us the best of both worlds: short response times when the

system is under high load and minimal resource wastage under low load.

A network request consists of a set of commands to be executed from the

storage. This batching is done to improve network throughput (more on batching

will be described later when I talk about the client side). The poll thread will then

execute all commands synchronously. This works fine, as these commands are

inexpensive to execute. More than one thread can be used to poll the event queue

and all polling threads can execute incoming requests in parallel. While executing

the commands, the poll thread writes the answers back to preallocated memory

blocks and puts them on the send queue. It is important to note that this two-sided

protocol is only used for get and put operations. Scan operations use one-sided

RDMA, this will be described in the next chapter.

This execution model on the server side is very simple and fast, as no context

switches are done and no callback functionality is used. On the client side though,

things get a bit more complicated. The client needs to be able to run many tasks in

parallel and we can not afford to have one thread per task. There are two common

solutions to this problem: use callback functions for asynchronous operations or

use user-level threads. We decided to implement user level threads (we call them

fibers), as it simplifies the usage of the library.

On the client side, the user can configure the number of operating system

threads to use. In practice, no more than one per CPU core should be started

to minimize scheduling overhead. Each of these threads will open a connection

to each storage node. This is affordable with Infiniband, as the maintenance of

connections is much cheaper than with a TPC/IP stack. It will then run a very

simple loop:

1. Poll from the task queue for new fibers.

2. Call into each fiber by making a context switch. The fiber will execute without

getting preempted. Whenever it makes a request, it will just put the request

into a block of memory. Within the user code that runs in a fiber, every

function which involve communication to storage returns a future object. If

the network buffer is full, the fiber will flush it to the NIC and get a new one.

A fiber can decide to wait for a result at any point in time. To do so, it will call

into the main loop.

7http://man7.org/linux/man-pages/man2/epoll_wait.2.html
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3. Themain loop will then put all requests to the send queue of the corresponding

Infiniband connection.

4. It will then check whether there are new messages on the receive queue. If

there are, it will set the future objects from the corresponding fibers to point

to the request within the received block and call back into the fibers, one after

another (again, by doing a context switch).

5. Go back to step item 1.

This execution model has several advantages. It is very easy to use, as a

user can program tasks in the same way that he would program single threaded

executions of task. The only difference is that calls the storage are not blocking but

return a future object. Calling get or wait on this future object will potentially block.

The biggest advantage is that the client can now do efficient batching of requests.

For every connection, the client will keep one network buffer it tries to fill up with

requests before it sends the requests to storage. As a consequence, batching

happens at two levels: each task can issue several requests without sending

anything over the network which results in task batching (or transaction batching

in case of TellDB) and several parallel tasks batch requests automatically together.

Therefore, more concurrency will result in better batching behavior. Without this

batching, it would not be possible to saturate the network throughput with simple

get and put requests.

Please keep in mind that this RPC mechanism is only used for get and put,

scans use this RPC facility only at start and end. One-sided RDMA is used to

ship scan results. For Simple get/put operations, one-sided communication is not

beneficial, as only small amounts of data are shipped for each request.

Due to its execution model, a TellDB client can potentially run into these bottle-

necks:

• CPU load : Depending on the calculations a transaction needs to do, it

could run into a CPU bottleneck. By adding more cores to this layer, more

transactions can be executed in parallel, but the transactions won’t finish

earlier. The user however, is free to provision CPU cores to execute parts of

a transaction in parallel. In practice, OLTP workloads to issue transactions

that are not CPU heavy, therefore this should not be a big issue.

• Network Throughput : We did micro benchmarks that showed that we can

saturate the network throughput if all packets sent over the network are

larger than 4 kilobytes. With our batching mechanism, this packet size
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should always be reached. Reaching the network throughput with an OLTP

workload will happen only for extremely high loads: with 1 Million TpmC in the

TPC-C workload, we sent around 400MB of data over the network. Therefore,

in all our experiments, the network throughput was never a bottleneck.

In practice, the bottleneck is usually the CPU - either in storage or in the

processing layer. This can be solved by adding more CPUs (which in our case

meant adding more machines). It is expected that at one point either the commit

manager or the network will become a bottleneck. The commit manager can

scale as well and for the network it would be possible to add an additional NIC to

each machine. Since our cluster is pretty small (12 machines), we could not run

experiments to find these limits. We would expect Tell to scale well to one or two

racks of machines. After this point, the network load might become too high for

the network switches to handle.

8.2 Experimental Results
There are two main differences between Tell 1.0 and Tell 2.0: we use a new storage

layer (TellStore instead of RAMCloud) and we implemented a new execution model

based on user level threads and asynchronous execution.

TellStore is not significantly faster than RAMCloud for get and put operations

(and get/put are the only operations we issue while executing an OLTP workload).

Nonetheless, when running Tell on top of the key value store, TellStore performs

significantly better than RAMCloud. With six RAMCloud storage nodes, Tell 1.0

reaches a maximal throughput of slightly more than 1.1 million TpmC (New Order

Transactions per Minute). With six TellStore servers however, Tell 2.0 reaches

more than 1.7 million TpmC. This is an improvement by more than a factor of 1.5.

Furthermore, the abort rate of New Order transactions decreases from 3 percent

for Tell 1.0 on RAMCloud to 1.1 percent on Tell 2.0 on TellStore. 1% of New

Order transactions have to be aborted according to the benchmark specification.

Therefore, around 2% of the New Order transactions abort on Tell 1.0, and around

0.1% abort on Tell 2.0 are due to conflicts.

There are several reasons for these improvements. Probably themost important

ones are our execution model, native multi version concurrency control within the

storage, and the way we do batching.

While RAMCloud supports batching, it can only batch together certain types of

requests. For example, atomic operations can not be batched with read requests.

Therefore there are still some requests that need to be executed one by one. This
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Figure 8.1: Response on maximum load with 6 storage nodes for the TPC-C

queries (in milliseconds)

means that when a transaction tries to commit, it needs to send all its write requests

to storage and wait for an acknowledgment. This slows down commit time.

Furthermore, TellStore provides native support for versioning. While with RAM-

Cloud, TellDB always has to fetch all valid versions of a record (and it even has

to do garbage collection which is now done within TellStore), TellStore will only

deliver the newest version of the record that is in the read set of the transaction.

But the biggest difference comes from our new execution model. As described

before, due to our blocking interface on top of a non-blocking API, a huge amount

of time is spent within the OS kernel. While Tell 2.0 still has some overhead for

transaction scheduling, the overhead is much smaller (a context switch is done in

less than 100 cycles - but of course there is usually some time needed to rewarm

the caches). The main effect of this is that the response times under high load got

significantly lower. This is illustrated in fig. 8.1. The response times for Tell 1.0 on

RAMCloud are, depending on the transaction, between a factor of 2 and 4 higher

than for Tell 2.0 on TellStore. The lower response time also explains the lower

abort rate: since transactions run for a shorter amount of time, there are fewer

transactions that might read and write the same data.

It is important to note here that this is not a comparison between RAMCloud

and TellStore. Most of the optimizations we did within Tell 2.0 would be possible to

do within Tell 1.0 as well. Therefore, the conclusion of this experiment is not that

TellStore outperforms RAMCloud but Tell 1.0 outperforms Tell 2.0.
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Mixed Workloads

While it was already shown that Tell can execute OLTP workloads, I did not yet

show, how the different key value stores perform under different workloads. It

is expected that the row store and the log structured storage will perform well

for OLTP workloads while the column map storage engine will perform well for

analytical queries.

This section will therefore mostly compare our three key value store against

each other. As a baseline, we use Kudu [Lip+15], a key value store from Cloudera

that tries to bring fast scans to key value stores.

9.1 Experimental Setup

To run our experiments, we used a cluster of 12 machines with the following

specification:

• Two Intel Xeon E5-2609 CPUs. Each of the CPUs has four cores and runs

at 2.4GHz.

• Each machines has 128GB of main memory, divided into two NUMA regions

(64GB each).

• One Infiniband card, Mellanox ConnectX-3, installed at NUMA region 0.

• 250GB SSD.
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Figure 9.1: Maximal Throughput in TpmC, scaling number of storage nodes

As our system under test was the storage, we always use the number of storage

nodes as a basis. Since the process for a storage is always pinned to one NUMA-

node (as this achieves higher performance), there are at most two storage nodes

running on one machine.

9.2 OLTP Workload
In order to test how well the different storage engines perform under an OLTP

workload, we ran the TPC-C benchmark. The throughput result is presented in

fig. 9.1.

As the system under test is the storage, and not like before TellDB, we are

now scaling the number of storage nodes (again: one node is one NUMA node

which means that for two storage nodes, one machine is needed). The setup is

the following: there is one client process running on a dedicated machine that

generates load and measures response time and throughput. Then, there are a

number of middleware processes which link against TellDB (or the Kudu client

library). These middleware servers execute the transactions. We made sure that

the middleware servers never become a bottleneck. In this experiment, we always

have twice as many middleware nodes than storage nodes (the middleware is

pinned to one NUMA region as well). For example: for the experiment with six

storage nodes, we use three machines to run TellStore and six machines to run
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2 storage nodes 4 storage nodes 6 storage nodes

Kudu 20’686 40’556 61’179

Logstructured 619’037 1’199’167 1’743’504

Rowstore 625’478 1’194’296 1’722’880

Column Map 617’280 1’183’379 1’720’880

Table 9.1: Throughput numbers for TPC-C (in TpmC)

the middleware service (TellDB), one machine for the client and one machine

to run the commit manager (11 machines in total). With Kudu, we implemented

the transactions in a similar way. Kudu, however, does not support transactions

But this benefits Kudu so we just accepted that Kudu might commit conflicting

transactions.

There are several things we can observe from fig. 9.1: all systems scale linearly.

One can also see immediately that all TellStore variants outperform Kudu. This

has sever reasons:

• While TellStore is an in-memory storage, Kudu writes to disk. In this bench-

mark, we made sure that Kudu can hold all data in it’s cache, but it will still

need to write to disk. This makes the comparison to Kudu a bit unfair.

• Kudu does not provide an Infiniband interface. Therefore, it sends all mes-

sages over 10G Ethernet, while TellStore can utilize the Infiniband NIC.

• Kudu can only efficiently batch write request within one transaction. TellStore

on the other hand, makes inter-processing batching.

• Tells execution model allows for more parallelism: Tell performs best with 8

concurrent transaction per CPU core - for Kudu we got the best results with

two concurrent transactions per core.

The more interesting part, however, is the comparison between the different

TellStore variants. The interesting results here is that there is virtually no difference

between the TellStore variants. The differences between the variants are more

readable in table 9.1. The column map performs surprisingly well. This has two

reasons: whenever a client is writing, the update will be written into the write-

optimized delta. For reading, our optimized materialization makes sure that the

whole tuple can be efficiently read from the main (if one reads from the delta, the

data is in row-format anyway).
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9.3 Mixed Workload
9.3.1 The Huawei-AIM benchmark

The Huawei-AIM benchmark is a benchmark developed within our group in collabo-

ration with Huawei. The benchmark models a use-case from the telecommunication

industry. It is described in [Bra+15].

This benchmark operates on a single wide table with a large number of attributes

(more than 500). Each record within this table holds the information for one

customer. Storage needs to handle 20’000 customers per machine - this means

that we store 10’000 customers per storage node (as there are two storage nodes

per machine).

These customers will generate 10’000 events per second - an event is typically

a phone call or a network interaction. For each event, the system needs to read

this record, update a few attributes and write it back to storage. Therefore, within

Tell, each event corresponds to one get and one put request to storage. The events

will access the tuples randomly.

Query 1

SELECT AVG (a_25)

FROM wide_table

WHERE a_35 > [ALPHA]

Query 2

SELECT MAX (a_24)

FROM wide_table

WHERE a_28 > [BETA]

Query 3

SELECT (SUM (a_22)) / (SUM (a_25)) as cost_ratio

FROM wide_table

GROUP BY a_28

Query 4

SELECT city_zip, AVG(a_35), SUM(a_32)

FROM wide_table

WHERE a_35 > [GAMMA] AND a_32 > [DELTA]

GROUP BY city_zip

Query 5

SELECT region_id, SUM(a_29), SUM(a_36)

FROM wide_table

WHERE subscription_type_id = [T] AND category_id = [CAT]

GROUP BY region_id

Query 6
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(

SELECT entity_id

FROM wide_table

WHERE a_34 = (

SELECT MAX(a_34) FROM wide_table WHERE country_id=[CTY]

)

LIMIT 1

)

UNION

(

SELECT entity_id

FROM wide_table

WHERE a_41 = (

SELECT MAX(a_41) FROM wide_table WHERE country_id=[CTY]

)

LIMIT 1

)

UNION

(

SELECT entity_id

FROM wide_table

WHERE a_13 = (

SELECT MAX(a_13) FROM wide_table WHERE country_id=[CTY]

)

LIMIT 1

)

UNION

(

SELECT entity_id

FROM wide_table

WHERE a_20 = (

SELECT MAX(a_20) FROM wide_table WHERE country_id=[CTY]

)

LIMIT 1

)

Query 7

SELECT MAX(a_22 / a_25)

FROM wide_table

WHERE value_type_id=[V]

Table 9.2: Analytical queries from the Huawey-AIM benchmark

While these events are processed, another system will issue analytical queries

to the system (for example to generate advertisements or give some benefits to
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ALPHA uniform in [0,2]

BETA uniform in [2,5]

GAMMA uniform in [2,10]

DELTA uniform in [20,150]

T uniform in [0,3]

CAT uniform in [0,2]

CTY uniform in [0,3]

V uniform in [0,3]

Table 9.3: Parameter generation for the queries in the Huawei-AIM benchmark

users). The benchmark defines seven queries which have to be run. The system

will randomly (using a uniform distribution) select one query and execute it. The

queries can be found in table 9.2. The parameters are defined in table 9.3.

9.3.2 Experiment Setup

There are some important differences between the AIM system (for which this

benchmark was originally designed) and Tell. The AIM system can execute updates

directly on storage, while Tell has a simple get/put interface. This means that to

process an event in Tell, the client needs to first fetch the record and then write it

back to storage, while in AIM the request can be sent directly to the corresponding

storage node. The same is true for the queries: TellStore can only execute scans.

Within the AIM system, these queries are implemented in C++ within the storage.

This means that AIM is only able to execute exactly this workload (unless the

storage layer is changed) while Tell can execute all kind of workloads.

To implement this workload, we implemented the components illustrated in

fig. 9.2. For all experiments, we run four storage nodes. These storage nodes

hold 40’000 records in total. We then have two different kinds of middleware

servers: event processors and query processors. There are always as many event

processors as storage nodes, but we scale the number of query processors. Query

processors answer queries - each query processor can execute up to two queries

in parallel (this is not a sharp limitation, but as our system under test is the storage

layer, we wanted to make sure that the middleware does not become a bottleneck).

The query processor issues scan requests to all storage nodes and uses the result

to execute the query (doing the joins, group by etc). For each query, the query

processor will issue up to eleven scan requests to each storage nodes. To make



9.3 Mixed Workload 143

Figure 9.2: The setup for the Huawei-AIM benchmark

efficient use of sharing within the scans, all scan requests are issued in parallel.

On the top layer, there are two clients: an event producer and a query producer.

The event producer generates 20’000 events per second and sends them to the

event processors. The query producer generates queries and waits for the answer

from the query processor.

9.3.3 Metrics

For this benchmark, we measure throughput and response time of the queries. For

the events we either issue 20’000 events per second (as the benchmark required),

or none. We do this to see the influence event processing has on the query

response time and throughput. We measure at the client side, this means that the

query response time is not the same as the scan time. We don’t show any results

for the event processing, as all storage variants can process the given number of

events without any problems.

9.3.4 Results

Running with a single client

To analyze the response times, we need to run the system with one query client.

Due to sharing within the scan, queries will start to slow down each other, as one

heavy query will issue scan requests at the same time as a concurrently running

light query.
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Figure 9.3: Response times for all approaches with one query at a time (in mil-

liseconds)

TP without events TP with events Slowdown

Column Map 11.57 10.02 13.4%

Log 2.22 2.08 6.3%

Row 1.58 1.39 12.4%

Table 9.4: Query throughput with one client

For one query client, we measured the response time for each query. The

results for this experiments can be found in fig. 9.3. As one can easily see, the

column map wins against the other variants by nearly one order of magnitude. This

is not very surprising, as the columnar layout helps to speed up scans. However,

it might surprise the reader that the log structured storage outperforms the row

store in this experiment. This is because the log structured storage does not

have a dedicated garbage collection thread but it does garbage collection while

scanning. Since this workload is read-only, the scan does not need to do any

garbage collection. This gives storage the advantage of having one core more at

disposal to execute scans. Therefore each scan thread has to scan less data. We

also ran the benchmark on Kudu, but we did not include the results in fig. 9.3. The

Kudu response times are so high that the figure would become unreadable. Kudu

needs between 1.8 (query 2) and 9.6 (query 6) seconds for each query. This is

surprising as Kudu is a column store and it should cache all tuples (according to

the authors, Kudu tries to use all available memory to cache the data).

By looking at the throughput we can see that the column map is significantly
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Figure 9.4: Query Throughput scaled with the number of clients)

faster than the other variants. Again, this is an expected result. In table 9.4 we

show the throughput numbers for the queries with concurrent updates (with the

event producer running) and without concurrent updates (read-only mode). As

one can see, TellStore experiences a slow down of roughly 10% when it is run

with concurrent updates. We consider this to be acceptable. The log structured

variant experiences a smaller slow down than the two delta main variants. This is

an expected result, as the delta main approaches have to follow newest-pointers

from the main to into the delta whenever the scan reads a tuple that was updated

but not yet merged into the main table by the garbage collector.

Scale-Out

In another experiment, we scaled the number of clients issuing query requests.

We executed this experiment only for the column map, as it is clear that the other

variants will not perform well on this benchmark. We did execute the benchmark for

Kudu, but the numbers are not presented here (Kudu can not reach a throughput

of 0.5 queries per second). These results can be found in fig. 9.4. There are two

main observations from this experiments: the storage can scale very well for up to

two clients and the slow down gets smaller as we scale out.

The scaling for two clients shows the effects of the shared scan. From one to

two clients, the throughput nearly doubles. As the storage needs to execute up

to 22 queries in parallel for two clients (as each client issues up to 11 concurrent

scan requests), this result shows that query sharing works quite well. For more

than 2 two clients, TellStore does still scale, but not so fast anymore. The reason

is that at this point the predicate evaluation is becoming a bottleneck - that means
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that we are now CPU bound.
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Future Work

Tell is quite a big project and there is still a lot to do.

On the storage side replication, durability, and elasticity are the most important

missing features. These features, however, should not be too difficult to implement

as there is enough existing work on how to solve. The next big issue is the scan

memory manager which should do remote memory management.

An interesting question would be, what the correct way is to do query processing

on a shared-data system for analytical workloads. As every processing node has

a full view over all data, it could freely decide how to partition the data. Currently,

data is always partitioned by primary key - but this might not always be the most

efficient solution.

Furthermore it might be interesting to evaluate, whether it would be possible

and beneficial to do query indexing for the shared scans. This could potentially

make scan sharing even more efficient.

TellDB ships without a SQL processor. It is not clear how a SQL optimizer

for Tell should work. Tell does not produce histograms and automatically decide

whether to use table scan or index scan is non-trivial.

Intuitively, TellStore would be a great candidate to run on non-volatile memory.

But NVRAM is currently not on the market and the hardware architecture is not yet

defined. Nonetheless, NVRAM will bring new, exciting challenges and processing

data on future hardware is an interesting field.

The fact that Tell uses snapshot isolation makes it a good candidate as a

temporal database system. Supporting time-travel should be trivial and it should
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also be possible to do temporal aggregations on data stored in TellStore. [Pil+16]

describes ParTime, a parallel temporal aggregation algorithm that would be straight

forward to implement on top of Tell.

As Tell decouples storage and computation it could be an interesting candidate

for multi tenancy. With the rise of cloud computing I expect that multi tenancy will

get more attention from industry and research.
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Conclusions

This dissertation presented Tell - a distributed system that can execute mixed

workloads. Tell is scalable, elastic and efficient.

Any distributed system has a well-defined architecture. Choosing the right

architecture for the job is not only difficult, the decision for a certain architecture

has consequences to each part of the design.

Storing and retrieving data has to be efficient in any database management

system. A system that optimizes for mixed workloads has to be able to deliver

large amounts of data quickly. Additionally, queries on small ranges and point

queries have to execute fast in order to be able to execute OLTP workloads. While

most existing storage solution can either provide a high data throughput or a high

query throughput, a storage for Tell has to deliver both.

Most interesting OLTP workloads contain queries on small ranges. In order to

execute these queries efficiently some form of index is needed. Indexing data in a

distributed is difficult. The user should be able to decide which dimension of the

data should be indexed.

One of the hardest problems in computer science is concurrency. Probably one

of the most successful solutions which helps users to reason about concurrency is

transactional processing. Transactions give some guarantees, that some form of

data races do not happen. However, transactions just push this complexity down

to the database layer. For a distributed database we have to find an efficient way

to implement transactions.

Each problem imposed some requirements:
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The chosen architecture has to scale well and be elastic. In order to be suitable

for mixed workloads we have to separate compute and storage. Otherwise, con-

current queries will heavily fight for resources. The architecture has to be flexible

so that a system administrator can react adequately to new workload requirements

and resource contention.

The storage system has to provide get, put, and scan functionality. To minimize

slowdown of concurrent operations on the same data, it needs to provide a feature

to version data. Simple operations have to be executed directly on storage. This

helps us to minimize network load. Furthermore, the storage has to be elastic and

it has to scale well.

An index over data distributed to several machines imposes several require-

ments. It has to be able to execute range queries, therefore it has to be a ordered

index. To store the index on a distributed storage it has to be easy to break it into

small pieces and store those pieces on several storage instances. At the same

time, the overhead to access and modify an index should be minimal. In particular,

we want to minimize network traffic due to index processing.

Short-running and long-running transactions should impact each other only

minimally. Therefore we need a concurrency control algorithm where read and

write operations do not block each other. Furthermore, the system has to be

able to handle a lot of short-running as well as a small number of long-running

transactions.

This thesis presents a definition for the shared-data architecture. This architec-

ture separates storage and compute which greatly simplifies elasticity and scales

well on computer and storage. We found that this architecture is well suited for

mixed workloads.

We explored the design space for distributed key value stores supporting a

scan operation and version. As a result we built three variants for such a storage

and conducted experiments with different kind of workloads.

This thesis also presents the Bd-tree. This data structure executes all oper-

ations lock-free, utilizing the LL/SC functionality of its underlying storage. The

proposed caching scheme allows to minimize network traffic. Furthermore we

provide invariants and contracts for all operations and presented a sketch of a

proof.

For transaction processing, TellDB uses a variant of snapshot isolation. By

defining three classes of transactions, TellDB can scale to thousands of concurrently

short-running transactions several several long-running transactions.

All these ideas have been successfully integrated into Tell. Tell is a collection of
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programs and software libraries. Tell’s complete source code has been published

to github under a liberal open source license.

Our experiments have shown that Tell can run a variety of workloads. It performs

exceptionally well on pure OLTP workloads, on analytical workloads, and on mixed

workloads.
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Bd-Tree Pseudo-Code

This chapter presents C++-like pseudo-code for a Bd-tree implementation. The

original implementation can be found on 1.

The real code of the Bd-tree consists of several thousand lines of code. This

pseudo-code leaves out certain details of the original implementation and can only

be used to better understand the workings of the data structure.

One important feature of the Bd-Tree implementation omitted in this pseudo

code is range queries. The actual implementation uses an iterator model to execute

range queries on an index.

For simplicity, this Bd-Tree does not use the cache described in section 6.5.

However, adding the cache to a working Bd-tree should be trivial.

Furthermore, this Bd-Tree does not support a concurrent split and merge

operation. This operation would be used if the resulting node from a merge would

be larger than the max size of a tree node. Instead, this Bd-Tree allows for each

tree node to grow twice the maximal defined size.

A.1 Storage Interface
The Bd-tree stores its data in a storage which has to provide get/put functionality

as well as a Load-Link/Store-Conditional (LL/SC) function. The following defines

such an interface. For simplicity, this interface assumes blocking operations to

storage.

1https://github.com/tellproject/bdtree
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using table_t = uint64_t;

using key_t = uint64_t;

using version_t = uint64_t;

constexpr version_t infinity = std::numeric_limits<uint64_t>::max();

struct Value {

std::unique_ptr<char[]> buffer = nullptr;

size_t size = 0;

// The version is used for the put command.

// The following semantic is used:

// - If version == infinity, only write the

// value if the tuple does not exist

// - Otherwise: only write the value if

// remote(version) == version

version_t version = infinity;

};

struct Storage {

// Reads the value of (t, k) into

// value. It also writes the version

// of the tuple into value, which can later

// be used to do an LL/SC operation on this

// key

bool get(table_t t, key_t k, Value& value);

// Write the value to storage if the version

// does not conflict (see above). Basically,

// get and put provide an LL/SC interface.

// As a side-effect, put will write the current

// version into value.

bool put(table_t t, key_t k, Value& value);

void erase(table_t t, key_t k);

};

// For simplicity, we assume that the storage interface

// is accessible over a global variable.

Storage storage;

A.2 Data Structures

The Bd-tree uses several data structures which is stores in-memory. These are

defined here.

// Serialization methods not shown. We assume
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// the appropriate specializations exist.

template<class T>

void serialize(const T&, Value&);

template<class T>

void deserialize(T&, const Value&);

using logical_ptr = uint64_t;

using physical_ptr = uint64_t;

constexpr uint64_t invalid = std::numeric_limits<uint64_t>::max();

struct IndexKey {

static const IndexKey& max();

static const IndexKey& min();

bool operator< (const IndexKey& rhs) const;

bool operator> (const IndexKey& rhs) const;

bool operator<= (const IndexKey& rhs) const;

bool operator>= (const IndexKey& rhs) const;

bool operator== (const IndexKey& rhs) const;

bool operator!= (const IndexKey& rhs) const;

//...

IndexKey() {}

template<class T>

IndexKey(T v) {

// ...

}

};

struct TreeNode {

// the largestKey is equal to the largest

// key stored within this tree node

IndexKey largestKey;

// The lowest key is smaller than the smallest

// key stored within this tree node. It is equal

// to the largest key of its left sibling.

// Therefore all keys within the range

// (lowestKey, largestKey] are stored in the

// subtree with this tree node as root.

IndexKey smallestKey;

uint64_t logicalNextPointer;

};

struct InnerNode : TreeNode {

using ContainerType = std::vector<std::pair<IndexKey, logical_ptr>>;
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ContainerType pointers;

};

struct LeafNode : TreeNode {

using ContainerType = std::vector<std::pair<IndexKey, key_t>>;

ContainerType pointers;

};

// We want to be able to use std::lower_bound

template<class T>

bool operator< (const std::pair<IndexKey, T>& rhs,

const IndexKey& lhs) {

return lhs < rhs.first;

}

template<class T>

bool operator< (const IndexKey& lhs,

const std::pair<IndexKey, T>& rhs) {

return lhs < rhs.first;

}

template<class T>

bool operator< (const std::pair<IndexKey, T>& lhs,

const std::pair<IndexKey, T>& rhs) {

return lhs.first < rhs.first;

}

namespace std {

template<class T>

struct less<std::pair<IndexKey, T>>

{

using type = std::pair<IndexKey, T>;

bool operator() (const type& lhs, const type& rhs) const {

return lhs.first < rhs.first;

}

};

}

struct SplitNode {

physical_ptr left;

logical_ptr right;

};

struct DeletionNode {

physical_ptr toDelete;
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};

struct MergeNode {

physical_ptr left;

physical_ptr right;

};

using Node = boost::variant<InnerNode,

LeafNode,

SplitNode,

DeletionNode,

MergeNode>;

struct BdTree {

// These values have to be

// initialized by the user

const table_t pointerTable;

const table_t nodeTable;

const table_t counterTable;

// The storage must allow to write

// maxNodeSize*2 value sizes. The

// reason is: we want to be able to

// merge full nodes in case of a

// merge of two nodes with different

// parents.

const size_t maxNodeSize;

// We merge a node with its sibling

// if #keys <= fillFactor*maxNodeSize

// 0 <= fillFactor < 1

const double fillFactor;

};

A.3 Helper Functions
We use some helper functions for repetitive tasks. These are listed here.

// error codes

constexpr int SUCCESS = 0;

constexpr int LOGICAL_PTR_DOESNT_EXIST = 1;

constexpr int EMPTY_TREE = 2;

constexpr int KEY_NOT_FOUND = 3;

constexpr int KEY_EXISTS = 4;

constexpr int CONFLICT = 5;

// A helper struct that basically holds
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// the deserialized node and its versions

struct NodeValue {

Node node;

version_t ptrVersion;

version_t nodeVersion;

logical_ptr lptr;

physical_ptr pptr;

};

// Get the tree node associated

// with the provided logical_ptr

int getNode(const BdTree& tree,

NodeValue& result)

{

// This function can starve. Lock-freeness does

// not guarantee that all processes make progress.

for (;;) {

Value v;

if (!storage.get(tree.pointerTable, result.lptr,

v)) {

return LOGICAL_PTR_DOESNT_EXIST;

}

deserialize(result.pptr, v);

result.ptrVersion = v.version;

// the next get will not always succeed. It can

// happen that another process rewrote the node

// with an LL/SC operation and we read the old

// physical pointer. This race is resolved by

// simply reading the pointer again.

if (storage.get(tree.nodeTable, result.pptr, v)) {

deserialize(result.node, v);

result.nodeVersion = v.version;

return SUCCESS;

}

}

}

// Walks up the tree until the top node in the

// stack reflects the correct ranges from the

// parent and the key is in keyRange

//

// In the actual implementation this function (and

// code that calls into this function) is significantly

// more complex. The presented function will often fetch

// one node from storage unnecessarily which is
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// inefficient. This is better optimized in the

// actual code.

void fixStack(const BdTree& tree,

std::stack<NodeValue>& stack,

std::pair<IndexKey, IndexKey> keyRange,

const IndexKey& key)

{

while (!stack.empty()) {

// we fetch again the current node. A call to

// fixStack indicates, that something is out

// of date.

auto& top = stack.top();

NodeValue curr;

curr.lptr = top.lptr;

stack.pop();

if (getNode(tree, curr) == SUCCESS) {

if (auto leaf = boost::get<LeafNode>(&curr.node)) {

if (leaf->smallestKey < key && key < leaf->largestKey) {

stack.push(std::move(curr));

// stack is clean (enough)

keyRange.first = leaf->smallestKey;

keyRange.second = leaf->largestKey;

return;

}

} else if (auto inner = boost::get<InnerNode>(&curr.node)) {

if (inner->smallestKey < key && key < inner->largestKey) {

stack.push(std::move(curr));

// stack is clean (enough)

keyRange.first = inner->smallestKey;

keyRange.second = inner->largestKey;

return;

}

}

}

}

// we poped everything from the stack or fixStack

// was called with an empty stack. In this case we

// fetch the root of the tree

NodeValue root;

root.lptr = 0;

auto r = getNode(tree, root);

if (r != SUCCESS) {

return;

}

// We need to handle a corner case here:
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// It might happen that a root node split crashed

// before it could write the new root node. In that

// case we will finish it here

if (auto p = boost::get<InnerNode>(&root.node)) {

if (p->pointers.size() == 1) {

// We need to finish a root node split here

for (;;) {

Value v;

v.version = root.ptrVersion;

serialize(root.pptr, v);

if (storage.put(tree.pointerTable,

key_t(0), v)) {

// SUCCESS

storage.erase(tree.pointerTable,

key_t(root.pptr));

// fetch root again

getNode(tree, root);

break;

} else {

// we'll retry

if (getNode(tree, root) != SUCCESS) {

assert(false);

}

}

}

}

}

stack.push(std::move(root));

// The ranges in the root node might be wrong,

// we therefore ignore them

keyRange.first = IndexKey::min();

keyRange.second = IndexKey::max();

}

// Walks up the tree until key is in the key

// range

void fixKeyRange(const BdTree& tree,

std::stack<NodeValue>& stack,

std::pair<IndexKey, IndexKey>& keyRange,

const IndexKey& key)

{

for (;;) {

if (stack.empty()) {

fixStack(tree, stack, keyRange, key);

break;
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}

auto& node = stack.top();

if (auto* inner = boost::get<InnerNode>(&node.node)) {

if (inner->smallestKey < key || inner->largestKey >= key) {

keyRange.first = inner->smallestKey;

keyRange.second = inner->largestKey;

break;

}

stack.pop();

} else if (auto* leaf = boost::get<LeafNode>(&node.node)) {

if (leaf->smallestKey < key || leaf->largestKey >= key) {

keyRange.first = leaf->smallestKey;

keyRange.second = leaf->largestKey;

break;

}

stack.pop();

} else {

stack.pop();

}

}

}

A.4 ID Generation

// we use the same function to generate physical

// and logical pointers. The reason for this is,

// that the IDs do not need to strictly increment,

// they only need to be unique

template<class T> // either physical_ptr or logical_ptr

T createId(const BdTree& tree) {

key_t counter_key = (key_t) tree.nodeTable;

Value lastId;

serialize(uint64_t(1), lastId);

auto get = [&]() {

return storage.get(tree.counterTable, counter_key, lastId);

};

// on the first call, it might be that the counter does not

// exist.

while (!get()) {

if (storage.put(tree.counterTable,

counter_key, lastId)) {

break;

}

}
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T res;

deserialize(res, lastId);

for (;;) {

serialize(res + 1, lastId);

if (storage.put(tree.counterTable, counter_key, lastId)) {

break;

}

get();

}

return res;

}

A.5 Find

// lower_bound returns the value where its

// key is the largest key in the tree that

// is not smaller than the given key

//

// This function fills the provided stack with

// the path to a tree node which does contain

// the key-value pair if it exists (checking

// whether it does is the responsibility of

// the caller). This is usefull as we can use

// this function for other operations as well.

//

// The top element in stack will always be a

// LeafNode if lower_bound returns with SUCCESS

int lower_bound(const BdTree& tree,

const IndexKey& key,

std::stack<NodeValue>& stack)

{

std::pair<IndexKey, IndexKey> keyRange(IndexKey::min(),

IndexKey::max());

if (stack.empty()) {

// In a first step we get the root node.

// fixStack either returns with something

// in the stack or the tree itself is empty;

fixStack(tree, stack, keyRange, key);

if (stack.empty()) return EMPTY_TREE;

} else {

// we continue from a non-empty stack. Therefore we first need

// to find the current keyRange

// we do this by poping nodes from the stack until we find either

// an inner or a leaf node. This is not very efficient but simple

// and correct.

for (;;) {
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auto& node = stack.top().node;

if (auto* inner = boost::get<InnerNode>(&node)) {

keyRange.first = inner->smallestKey;

keyRange.second = inner->largestKey;

} else if (auto* leaf = boost::get<LeafNode>(&node)) {

keyRange.first = leaf->smallestKey;

keyRange.second = leaf->largestKey;

} else {

stack.pop();

continue;

}

break;

}

}

for (;;) {

auto& node = stack.top();

if (auto* inner = boost::get<InnerNode>(&node.node)) {

// we first check the range of the keys in this node.

// If this range is not what we expect it to be, we will

// retry

// If this inner-node, however, is the root node, we expect

// the range to be min -> max

if (stack.size() == 1) {

keyRange.first = IndexKey::min();

keyRange.first = IndexKey::max();

} else if (key < inner->smallestKey ||

keyRange.second != inner->largestKey) {

fixStack(tree, stack, keyRange, key);

continue;

}

keyRange.first = inner->smallestKey;

// we hit an inner node

auto iter = std::lower_bound(inner->pointers.begin(),

inner->pointers.end(),

key);

// we know that this iterator will be valid, as it is in

// the range of the node (we checked for this above)

NodeValue next;

next.lptr = iter->second;

getNode(tree, next);

stack.push(std::move(next));

// the highest key in the new node has to be equal to

// the key we found. Otherwise we will detect the race later

keyRange.second = iter->first;

} else if (auto* leaf = boost::get<LeafNode>(&node.node)) {
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if (stack.size() == 1) {

keyRange.first = IndexKey::min();

keyRange.first = IndexKey::max();

} else if (key < inner->smallestKey ||

keyRange.second != inner->largestKey) {

fixStack(tree, stack, keyRange, key);

continue;

}

keyRange.first = inner->smallestKey;

return SUCCESS;

} else if (boost::get<SplitNode>(&node.node)) {

stack.push(std::move(node));

split(tree, stack);

fixKeyRange(tree, stack, keyRange, key);

} else if (boost::get<DeletionNode>(&node.node)) {

stack.push(std::move(node));

merge(tree, stack);

fixKeyRange(tree, stack, keyRange, key);

} else if (boost::get<MergeNode>(&node.node)) {

stack.push(std::move(node));

merge(tree, stack);

fixKeyRange(tree, stack, keyRange, key);

}

}

}

int lower_bound(const BdTree& tree,

const IndexKey& key,

key_t& result)

{

std::stack<NodeValue> stack;

auto res = lower_bound(tree, key, stack);

if (res != SUCCESS) return res;

auto& leaf = boost::get<LeafNode>(stack.top().node);

auto iter = std::lower_bound(leaf.pointers.begin(),

leaf.pointers.end(),

key);

if (iter == leaf.pointers.end()) {

return KEY_NOT_FOUND;

} else {

result = iter->second;

return SUCCESS;

}

}
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A.6 Insert, Update and Delete

enum class Operation {

INSERT, UPDATE, DELETE

};

// Executes a write operation on the Bd-Tree.

// For Operation::DELETE, value will be ignored

int write(const BdTree& tree,

const IndexKey& key,

std::stack<NodeValue>& stack,

Operation op,

key_t value)

{

int res;

for (;;) {

res = lower_bound(tree, key, stack);

if (res != SUCCESS) return res;

// we copy the leaf to create a new one which we

// can safely modify

auto n = stack.top();

auto leaf = boost::get<LeafNode>(n.node);

switch (op) {

case Operation::INSERT:

if (leaf.pointers.size() >= tree.maxNodeSize) {

// We can not insert into this node

split(tree, stack);

continue;

}

case Operation::DELETE:

if (stack.size() > 1 &&

leaf.pointers.size() <=

tree.fillFactor * tree.maxNodeSize) {

// We can not erase from this node, as it would

// violate the size invariant

merge(tree, stack);

continue;

}

case Operation::UPDATE:

// we don't need to do anything in this case

break;

}

// find position for operation

auto iter = std::lower_bound(leaf.pointers.begin(),

leaf.pointers.end(),
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key);

if (iter == leaf.pointers.end()) {

switch (op) {

case Operation::INSERT:

// This key is smaller than the smallest key in the

// nodes array. Therefore we will it as the first

// element in the array

leaf.pointers.emplace(leaf.pointers.begin(), key, value);

break;

case Operation::DELETE:

return KEY_NOT_FOUND;

case Operation::UPDATE:

return KEY_NOT_FOUND;

}

} else if (iter->first == key) {

switch (op) {

case Operation::INSERT:

return KEY_EXISTS;

case Operation::DELETE:

leaf.pointers.erase(iter);

break;

case Operation::UPDATE:

iter->second = value;

}

} else {

switch (op) {

case Operation::INSERT:

// std::vector::emplace inserts the element before

// the iterator

++iter;

leaf.pointers.emplace(iter, key, value);

case Operation::DELETE:

return KEY_NOT_FOUND;

case Operation::UPDATE:

return KEY_NOT_FOUND;

}

}

// try to write back the new node

// we plan to remove the current leaf

stack.pop();

// in a first step, we write the new leaf node

// to storage. This will never fail

Value val;

serialize(Node(std::move(leaf)), val);
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auto pptr = createId<physical_ptr>(tree);

// val.version is already infinity

// this put operation cannot fail, as the

// generated Id is guarnteed to be unique.

storage.put(tree.nodeTable,

key_t(pptr),

val);

// now we do the SC part of the LL/SC operation

// if this fails, the tree changed and we retry

serialize(pptr, val);

val.version = n.ptrVersion;

if (storage.put(tree.pointerTable,

key_t(n.lptr),

val)) {

// we can now safely erase the old node from storage

storage.erase(tree.nodeTable, key_t(n.pptr));

return SUCCESS;

}

// we pickup our trash before we continue

storage.erase(tree.nodeTable, key_t(pptr));

}

}

int insert(const BdTree& tree,

const IndexKey& key,

key_t value)

{

std::stack<NodeValue> stack;

return write(tree, key, stack,

Operation::INSERT, value);

}

int update(const BdTree& tree,

const IndexKey& key,

key_t value)

{

std::stack<NodeValue> stack;

return write(tree, key, stack,

Operation::UPDATE, value);

}

int erase(const BdTree& tree,

const IndexKey& key)

{

std::stack<NodeValue> stack;
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// the value will be ignored, therefore we can pass

// anything we want

return write(tree, key, stack,

Operation::DELETE, key_t(0));

}

A.7 Split

// We use a visitor that executes the

// first step of the split operation:

// - if the node is a leaf or an inner

// node, it will create the split node

// and node Q

// - Otherwise, it will fetch P and Q

struct GenericSplitter : boost::static_visitor<>

{

const BdTree& tree;

std::stack<NodeValue>& stack;

NodeValue initial;

NodeValue P;

NodeValue Q;

NodeValue splitNode;

GenericSplitter(const BdTree& tree,

std::stack<NodeValue>& stack,

const NodeValue& initial)

: tree(tree)

, stack(stack)

, initial(initial)

{}

template<class T>

void startSplit(T& node) {

// step 1: insert new node

// This step will never fail

P = initial;

// we create a split node and node Q

T qN;

auto iter = node.pointers.begin();

std::advance(iter, node.pointers.size() / 2);

qN.largestKey = node.largestKey;

qN.smallestKey = iter->first;

std::advance(iter, 1);

// Now we fill the new Node

std::copy(iter, node.pointers.end(),
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std::back_insert_iterator<typename T::ContainerType>(

qN.pointers));

qN.logicalNextPointer = node.logicalNextPointer;

Q.node = qN;

Q.pptr = createId<logical_ptr>(tree);

Value v;

serialize(Q.node, v);

// we don't need to check the result of this put, as

// we know that this will succeed.

storage.put(tree.nodeTable, key_t(Q.pptr), v);

Q.nodeVersion = v.version;

Q.lptr = createId<logical_ptr>(tree);

v.version = infinity;

serialize(Q.pptr, v);

storage.put(tree.pointerTable, key_t(Q.lptr), v);

Q.ptrVersion = v.version;

// now, the split node needs to be created

SplitNode split;

split.left = P.pptr;

split.right = Q.lptr;

splitNode.node = split;

splitNode.pptr = createId<physical_ptr>(tree);

v.version = infinity;

serialize(split, v);

storage.put(tree.nodeTable, key_t(splitNode.pptr), v);

splitNode.ptrVersion = v.version;

// now, all nodes are created and written to storage

if (!cas()) {

// if the CAS operation fails, we will just pick

// up the trash and exit. The caller will retry if

// necessary

storage.erase(tree.nodeTable, key_t(Q.pptr));

storage.erase(tree.pointerTable, key_t(Q.lptr));

storage.erase(tree.nodeTable, key_t(splitNode.pptr));

return;

}

// From here on, the split is guaranteed to finish eventually

if (!updateParent()) {

return;

}

consolidateP();

}

const IndexKey& qMin() {
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if (auto q = boost::get<InnerNode>(&Q.node)) {

return q->smallestKey;

}

return boost::get<LeafNode>(Q.node).smallestKey;

}

const IndexKey& qMax() {

if (auto q = boost::get<InnerNode>(&Q.node)) {

return q->largestKey;

}

return boost::get<LeafNode>(Q.node).largestKey;

}

// in the real implementation, this function does some

// complicated dancing through the tree to minimize

// retries. This function is much more optimistic:

// if anything fails, it will just fail.

// The calling operation will then retry its operation

// again and, possibly, retry to do a split.

bool cas() {

auto parentN = stack.top();

auto parent = boost::get<InnerNode>(&parentN.node);

if (parent == nullptr) {

// there already is a split or merge operation

return false;

}

const auto& splitKey = qMax();

auto iter = std::lower_bound(parent->pointers.begin(),

parent->pointers.end(),

splitKey);

if (iter == parent->pointers.end() ||

iter->first != splitKey) {

// in this case something is horribly out

// of date - so we abort and let the client

// retry

// before we do so, we make sure that the top

// of our stack is up to date

fixStack(tree, stack,

std::make_pair(parent->smallestKey,

parent->largestKey),

splitKey);

return false;

}

// now we do the compare and swap

// this is actually a compare and swap



A.7 Split 175

// but we do not have the ABA problem,

// as each Id is generated at most once.

Value v;

if (!storage.get(tree.pointerTable,

iter->second,

v)) {

// again, something is out of date

return false;

}

physical_ptr currPtr;

deserialize(currPtr, v);

if (currPtr == splitNode.pptr) {

// The split was done already...

// This function can be called from

// within several stages.

return true;

}

if (currPtr != P.pptr) {

// CONFLICT

return false;

}

serialize(splitNode.pptr, v);

if (!storage.put(tree.pointerTable,

iter->second,

v)) {

// CONFLICT

return false;

}

return true;

}

bool updateParent() {

// we know that the parent is an inner node

// this statement copies it

auto oldParent = stack.top();

stack.pop();

auto inner = boost::get<InnerNode>(oldParent.node);

auto q = qMax();

auto iter = std::lower_bound(

inner.pointers.begin(),

inner.pointers.end(),

q);

// we used this node to walk to P, therefore

// this entry has to exist

assert(iter == inner.pointers.end());
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assert(iter->first != q);

iter->second = Q.lptr;

// now we insert the new P

auto p = qMin(); // qMin() == pMax()

// we insert the new P before Q

inner.pointers.insert(

iter,

std::make_pair(

p, splitNode.lptr));

NodeValue newParent;

newParent.lptr = oldParent.lptr;

newParent.pptr = createId<physical_ptr>(tree);

newParent.node = std::move(inner);

// write node to storage

Value v;

serialize(inner, v);

storage.put(tree.nodeTable,

key_t(newParent.pptr), v);

// do the conditional write

v.version = oldParent.ptrVersion;

serialize(newParent.pptr, v);

if (storage.put(

tree.pointerTable,

key_t(newParent.lptr), v)) {

// SUCCESS

// remove old parent

storage.erase(tree.nodeTable,

key_t(oldParent.pptr));

return true;

} else {

// conflict

storage.erase(tree.nodeTable,

key_t(newParent.pptr));

return false;

}

}

template<class T>

void consolidatePT(T node) { // node is a copy

// first, we write a new version of P

// delete all entries which belong to Q

node.largestKey = boost::get<T>(Q.node).smallestKey;

node.pointers.erase(
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std::upper_bound(

node.pointers.begin(),

node.pointers.end(),

node.largestKey),

node.pointers.end());

node.logicalNextPointer = Q.lptr;

auto pptr = createId<physical_ptr>(tree);

Value v;

serialize(node, v);

// this can never fail

storage.put(tree.nodeTable,

key_t(pptr), v);

// then we try to install this update

v.version = P.ptrVersion;

serialize(pptr, v);

if (!storage.put(tree.pointerTable,

key_t(P.lptr),

v)) {

// take the trash and leave

// someone will retry

storage.erase(tree.nodeTable, key_t(pptr));

} else {

// success, now we need to delete the old delta

// and the old P node

storage.erase(tree.nodeTable, key_t(splitNode.pptr));

storage.erase(tree.nodeTable, key_t(P.pptr));

}

}

// if this method fails, it usually means that

// another process already did the consolidation.

// In the rarer case (usually concurrent update

// operations) we pay the cost to restore the

// state and retry

void consolidateP() {

if (auto node = boost::get<InnerNode>(&P.node)) {

consolidatePT(*node);

} else {

consolidatePT(boost::get<LeafNode>(P.node));

}

}

void operator() (LeafNode& leaf) {

startSplit(leaf);

}
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void operator() (InnerNode& inner) {

startSplit(inner);

}

void operator() (SplitNode& split) {

splitNode = initial;

Q.lptr = split.right;

int res = getNode(tree, Q);

if (res != SUCCESS) {

// something changed already

stack.pop();

return;

}

auto parent = boost::get<InnerNode>(&stack.top().node);

if (!parent) {

// we hold old state

return;

}

auto iter = std::lower_bound(

parent->pointers.begin(),

parent->pointers.end(),

qMin());

if (iter->first == qMin()) {

// someone already installed

// the split and the Q

P.lptr = iter->second;

getNode(tree, P);

consolidateP();

} else {

P.lptr = iter->second;

getNode(tree, P);

if (updateParent()) consolidateP();

}

}

void operator() (DeletionNode&) {

// must never happen

assert(false);

}

void operator() (MergeNode&) {

// must never happen

assert(false);

}
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};

// Splits two nodes (either inner)

// or outer and writes the results

// to left and right.

template<class T>

void execSplit(const T& toSplit,

NodeValue& left,

NodeValue& right,

InnerNode& root)

{

T l;

T r;

auto iter = toSplit.pointers.begin();

std::advance(iter, toSplit.pointers.size() / 2 + 1);

std::copy(

toSplit.pointers.begin(),

iter,

std::back_insert_iterator<typename T::ContainerType>(l.pointers));

std::copy(

iter,

toSplit.pointers.end(),

std::back_insert_iterator<typename T::ContainerType>(l.pointers));

// The ranges in a root key are allowed to be wrong.

// We ignore them

l.smallestKey = IndexKey::min();

l.largestKey = l.pointers.rbegin()->first;

r.smallestKey = l.largestKey;

r.largestKey = IndexKey::max();

l.logicalNextPointer = right.lptr;

r.logicalNextPointer = invalid;

root.pointers.push_back(

std::make_pair(l.largestKey, left.lptr));

root.pointers.push_back(

std::make_pair(r.largestKey, right.lptr));

left.node = std::move(l);

right.node = std::move(r);

}

// here we handle the special case of a root

// node split. Instead of creating a split

// node, we just replace the current root

// with the finished tree.
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void rootSplit(const BdTree& tree,

std::stack<NodeValue>& stack)

{

assert(stack.size() == 1);

// First step: Create new root node

// and the two children

auto& oldRoot = stack.top();

stack.pop();

NodeValue newRoot;

newRoot.lptr = 0;

newRoot.pptr = createId<physical_ptr>(tree);

InnerNode root;

NodeValue leftChild;

NodeValue rightChild;

leftChild.pptr = createId<physical_ptr>(tree);

leftChild.lptr = createId<logical_ptr>(tree);

rightChild.pptr = createId<physical_ptr>(tree);

rightChild.lptr = createId<logical_ptr>(tree);

if (auto leaf = boost::get<LeafNode>(&oldRoot.node)) {

execSplit(*leaf, leftChild, rightChild, root);

} else if (auto inner = boost::get<InnerNode>(&oldRoot.node)) {

execSplit(*inner, leftChild, rightChild, root);

}

newRoot.node = root;

// Second step: write back new tree

// write nodes

Value v;

serialize(leftChild.node, v);

storage.put(tree.nodeTable,

key_t(leftChild.pptr),

v);

v.version = infinity;

serialize(rightChild.node, v);

storage.put(tree.nodeTable,

key_t(rightChild.pptr),

v);

v.version = infinity;

serialize(newRoot.node, v);

storage.put(tree.nodeTable,

key_t(newRoot.pptr),

v);



A.7 Split 181

v.version = infinity;

serialize(leftChild.pptr, v);

storage.put(tree.pointerTable,

key_t(leftChild.lptr),

v);

v.version = infinity;

serialize(rightChild.pptr, v);

storage.put(tree.pointerTable,

key_t(rightChild.lptr),

v);

v.version = infinity;

// last step: do the compare and swap

serialize(newRoot.pptr, v);

v.version = oldRoot.ptrVersion;

if (storage.put(tree.pointerTable,

key_t(newRoot.lptr),

v)) {

// Split succeeded

newRoot.ptrVersion = v.version;

stack.push(newRoot);

} else {

// Split failed. Collect garbage

storage.erase(tree.nodeTable,

key_t(leftChild.pptr));

storage.erase(tree.nodeTable,

key_t(rightChild.pptr));

storage.erase(tree.nodeTable,

key_t(newRoot.pptr));

storage.erase(tree.pointerTable,

key_t(leftChild.lptr));

storage.erase(tree.pointerTable,

key_t(rightChild.lptr));

}

}

// Tries to execute a split on the top node

// of the stack. This function will fail

// silently, as the caller will automatically

// retry if something fails and the node was

// not splitted by another process.

//
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// To help the reader, we are using the same

// names for nodes as in the textual description:

// - P is the node that should be splitted

// - R is the initial right sibling of P

// - Q is the newly inserted node

void split(const BdTree& tree,

std::stack<NodeValue>& stack)

{

// this function can be called with a

// split node, with a inner node, or

// with a leaf node...

if (stack.size() == 1) {

rootSplit(tree, stack);

return;

}

GenericSplitter splitter(tree, stack, stack.top());

stack.pop();

boost::apply_visitor(splitter, splitter.initial.node);

}

A.8 Merge

struct GenericMerger : boost::static_visitor<>

{

const BdTree& tree;

std::stack<NodeValue> stack;

NodeValue initial, P, Q, delNode, mergeNode, parent;

GenericMerger(const BdTree& tree,

std::stack<NodeValue>& stack,

const NodeValue& initial)

: tree(tree)

, stack(stack)

, initial(initial)

{ assert(stack.size() > 1); }

bool installDelNode() {

DeletionNode node;

node.toDelete = Q.pptr;

delNode.lptr = Q.lptr;

delNode.pptr = createId<physical_ptr>(tree);

// write the deletion node

Value v;



A.8 Merge 183

serialize(node, v);

delNode.node = std::move(node);

storage.put(tree.nodeTable,

key_t(delNode.pptr), v);

// Try to install the deletion node

v.version = Q.ptrVersion;

serialize(delNode.pptr, v);

if (storage.put(

tree.pointerTable,

key_t(Q.lptr),

v)) {

delNode.ptrVersion = v.version;

return true;

}

// The conditional store failed.

// Collect garbage

storage.erase(tree.nodeTable,

key_t(delNode.pptr));

storage.erase(tree.pointerTable,

key_t(Q.lptr));

return false;

}

bool getLeftSibling(NodeValue& result,

const NodeValue& of,

const NodeValue& parent) {

IndexKey index;

if (auto node = boost::get<InnerNode>(&of.node)) {

index = node->largestKey;

} else {

index = boost::get<InnerNode>(of.node).largestKey;

}

const InnerNode& p = boost::get<InnerNode>(parent.node);

auto iter = std::lower_bound(p.pointers.begin(),

p.pointers.end(), index);

// iter now points to the value containing "of"

if (iter == p.pointers.begin()) {

// nodes to merge point to different

// parents. We first merge them and then retry

merge(tree, stack);

return false;

}

--iter;

return getNode(tree, result) == SUCCESS;
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}

// get a node with only its physical

// pointer defined.

bool getNodeP(NodeValue& result) {

Value v;

return storage.get(tree.nodeTable,

key_t(result.pptr), v);

}

bool installMergeNode() {

stack.pop();

parent = stack.top();

NodeValue l;

if (!getLeftSibling(l, Q, parent)) {

// parent node is out of date

stack.pop();

return false;

}

if (auto m = boost::get<MergeNode>(&l.node)) {

// someone else already installed the

// merge node

if (m->right != Q.pptr) {

// Something is out of date

return false;

}

mergeNode = l;

P.pptr = m->left;

return getNodeP(P);

}

MergeNode n;

n.left = P.pptr;

n.right = Q.pptr;

mergeNode.pptr = createId<physical_ptr>(tree);

// write mergeNode to storage

Value v;

serialize(n, v);

storage.put(tree.nodeTable,

key_t(mergeNode.pptr), v);

mergeNode.node = std::move(n);

mergeNode.lptr = P.lptr;

// Conditional write

serialize(mergeNode.pptr, v);

v.version = P.ptrVersion;
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if (storage.put(

tree.pointerTable,

key_t(mergeNode.lptr), v)) {

mergeNode.ptrVersion = v.version;

return true;

}

// CONFLICT

storage.erase(tree.nodeTable,

key_t(mergeNode.pptr));

return false;

}

template<class T>

bool getNodeAt(NodeValue res,

const T& node,

const IndexKey& idx) {

}

template<class AssertedType, class T>

bool getNextNode(NodeValue& result,

const T& node) {

result.lptr = node.logicalNextPointer;

if (getNode(tree, result) == SUCCESS) {

if (boost::get<AssertedType>(&result.node))

return true;

}

return true;

}

bool findDelNode() {

// we set the parent

stack.pop();

parent = stack.top();

// We can not be sure that the parent still

// points to the deletion node (it might be

// that the parent was already updated).

// Therefore we walk to it through P.

if (auto p = boost::get<LeafNode>(&P.node)) {

return getNextNode<DeletionNode>(delNode, *p);

} else {

return getNextNode<DeletionNode>(

delNode,

boost::get<InnerNode>(P.node));

}

}
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bool updateParent() {

// when we reach this step, we know that

// all previous step succeeded and that

// P, Q, delNode, mergeNode, and parent

// are all set.

IndexKey qIdx;

if (auto q = boost::get<LeafNode>(&Q.node)) {

qIdx = q->largestKey;

} else {

qIdx = boost::get<LeafNode>(Q.node).largestKey;

}

auto p = boost::get<InnerNode>(parent.node);

auto iter = std::lower_bound(

p.pointers.begin(),

p.pointers.end(), qIdx);

if (iter == p.pointers.end() ||

iter->first != qIdx) {

// This step was already executed

return true;

}

// we know that the current parent will be out of

// date when this function returns

stack.pop();

p.pointers.erase(iter);

NodeValue newParent;

newParent.lptr = parent.lptr;

newParent.pptr = createId<physical_ptr>(tree);

newParent.node = std::move(p);

// write back node

Value v;

serialize(newParent.node, v);

storage.put(tree.nodeTable,

key_t(newParent.pptr),

v);

// conditional write

v.version = parent.ptrVersion;

serialize(newParent.pptr, v);

if (storage.put(

tree.pointerTable,

key_t(newParent.lptr), v)) {

stack.push(newParent);

parent = std::move(newParent);

return true;
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}

// collect garbage

storage.erase(tree.nodeTable,

key_t(newParent.pptr));

return false;

}

template<class T>

void mergeNodes(NodeValue& res,

const T& left,

const T& right) {

T r;

std::copy(

left.pointers.begin(),

left.pointers.end(),

std::back_insert_iterator<typename T::ContainerType>(

r.pointers));

std::copy(

left.pointers.begin(),

left.pointers.end(),

std::back_insert_iterator<typename T::ContainerType>(

r.pointers));

r.smallestKey = left.smallestKey;

r.largestKey = right.largestKey;

r.logicalNextPointer = right.logicalNextPointer;

res.node = r;

}

bool isRootMerge() {

if (stack.size() != 1) return false;

auto p = boost::get<InnerNode>(parent.node);

if (p.pointers.size() > 1) return false;

return true;

}

void consolidate() {

// now we can write the new P

NodeValue newP;

if (auto p = boost::get<LeafNode>(&P.node)) {

mergeNodes(newP, *p, boost::get<LeafNode>(Q.node));

} else {

mergeNodes(newP,

boost::get<InnerNode>(P.node),

boost::get<InnerNode>(Q.node));

}
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newP.pptr = createId<physical_ptr>(tree);

newP.lptr = P.lptr;

// write back consolidated node

Value v;

serialize(newP.node, v);

storage.put(tree.nodeTable,

key_t(newP.pptr), v);

// conditional write

v.version = P.ptrVersion;

serialize(newP.pptr, v);

if (!storage.put(tree.pointerTable,

key_t(newP.lptr),

v)) {

// we had a conflict

storage.erase(tree.nodeTable,

key_t(newP.pptr));

}

P = newP;

if (isRootMerge()) {

// in this case, we can now try to replace the

// old root with P

v.version = parent.ptrVersion;

serialize(P.pptr, v);

bool s = storage.put(

tree.pointerTable,

key_t(0), v);

if (s) {

storage.erase(

tree.pointerTable, key_t(P.lptr));

stack.pop();

}

}

// The split did successfully complete

stack.push(P);

}

void operator() (LeafNode& leaf) {

Q = initial;

if (!installDelNode()) {

stack.pop();

return;

}

if (!installMergeNode()) {

stack.pop();

return;
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}

if (!updateParent()) return;

consolidate();

}

void operator() (InnerNode& inner) {

Q = initial;

if (!installDelNode()) {

stack.pop();

return;

}

if (!installMergeNode()) {

stack.pop();

return;

}

if (!updateParent()) return;

consolidate();

}

void operator() (DeletionNode& del) {

delNode = initial;

// get Node Q

Q.pptr = del.toDelete;

if (!getNodeP(Q)) {

// something is out of date

// remove current node and

// parent to force re-read

// from storage

stack.pop();

stack.pop();

return;

}

if (!installMergeNode()) {

return;

}

if (!updateParent()) return;

consolidate();

}

void operator() (MergeNode& m) {

mergeNode = initial;

P.pptr = m.left;

Q.pptr = m.right;

if (!getNodeP(Q)) {

stack.pop();
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stack.pop();

return;

}

if (!getNodeP(P)) {

stack.pop();

stack.pop();

return;

}

if (!findDelNode()) {

stack.pop();

return;

}

if (!updateParent()) return;

consolidate();

}

void operator() (SplitNode&) {

assert(false);

}

};

void merge(const BdTree& tree,

std::stack<NodeValue>& stack)

{

GenericMerger merger(tree, stack, stack.top());

stack.pop();

boost::apply_visitor(merger, merger.initial.node);

}
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Transaction Processing

This chapter lists a simple transaction class in C++-like pseudo code. While it is a

strong simplification of the one in TellDB it is still useful as a reference.

The pseudo-code shows a simpler (and, unlike the original, blocking) interface

for storage and commit manager. It then presents a transaction class that can be

used by clients to run transactions against TellStore.

The main components missing from this code are range queries and scans.

Range queries and scan both need a log of code which has to do bookkeeping of

data from the cache and data fetched from storage. However, this code is not very

interesting and writing it should be an easy exercise.

#include <unordered_map>

#include <cstdint>

#include <memory>

#include <boost/functional/hash.hpp>

namespace telldb {

// This class defines an interface of the Snapshot Descriptor

// defined in the thesis. The interface itself is not shown

// here, as the client will be oblivious to the actual

// interface.

class Snapshot {

public:

uint64_t version();

// rest not shown
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};

// The three transaction classes supported by Tell

enum class TransactionMode { READ_WRITE, READ_ONLY, ANALYTICAL };

class CommitManager {

public:

Snapshot getNewSnapshot(TransactionMode mode);

void finishTransaction(Snapshot &snapshot);

// The commit manager assignes an undo table to each

// processing node. This table is passed to another

// processing node in case of failures and can be used

// to rollback all in-flight transactions.

uint64_t getMachineId() const;

};

// TellStore can hold a schema. The implementation

// of such a row is not shown here, to keep the code

// simple

class RowType {};

// TellStore only allows uint64_t as primary keys. All

// other indexes are implemented via Bd-tree (not shown

// here)

using table_t = uint64_t;

using key_t = uint64_t;

class Conflict : std::exception {};

class KeyDoesNotExist : std::exception {};

// The interface to TellStore. The actual interface is

// more complex than this one.

struct TellStore {

bool get(Snapshot, table_t, key_t, RowType &, bool &isNewest);

bool put(Snapshot, table_t, key_t, const RowType &);

bool put(Snapshot, table_t, key_t, const char*, size_t);

bool erase(Snapshot, table_t, key_t);

// Reverts the operation executed by the transaction with the

// given version. This can also be safely called if the transaction

// did not write anything to the provided key.

// Returns true if something was reverted

bool revert(uint64_t version, table_t, key_t);

};

// serializes data into a buffer. resizes buffer if it is too small and
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// resets the size.

template<class T>

void serialize(const T& value, std::unique_ptr<char[]>& buffer, size_t&

size);

class Transaction {

enum class Operation { READ, UPDATE, INSERT, DELETE };

struct CacheEntry {

RowType row;

// indicates whether this tuple was the newest version

// at the time it was read from storage

bool isNewest = true;

Operation op = Operation::READ;

};

CommitManager &commitManager;

TellStore &storage;

TransactionMode mode;

Snapshot snapshot;

bool finished = false;

// The transaction cache.

// The actual implementation also caches updated index entries

using global_key = std::pair<table_t, key_t>;

using hash = boost::hash<global_key>;

std::unordered_map<global_key, CacheEntry, hash> cache;

public:

Transaction(CommitManager &commitManager, TellStore &storage,

TransactionMode mode = TransactionMode::READ_WRITE)

: commitManager(commitManager), storage(storage), mode(mode),

snapshot(commitManager.getNewSnapshot(mode)) {}

~Transaction() {

// We simply abort a transaction that gets destroyed

// before it was commited or aborted by the user.

if (!finished) {

abort();

}

}

void abort() {

// aborting is as simple as giving the snapshot

// back to the commit manager. When this method

// is called, no writes to storage were executed

commitManager.finishTransaction(snapshot);
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finished = true;

}

void commit() {

// In a first step, we serialize the undo log

std::unique_ptr<char[]> buf;

size_t sz = 0;

// we write the key of each tuple we are planning

// to touch into the undo log. This together with

// the version of the transaction is enough to

// roll back a transaction

for (auto& p : cache) {

if (p.second.op == Operation::READ) continue;

serialize(p.first, buf, sz);

}

// Next we would write all Bd-Tree updates into the

// undo log. However, this part is omitted for

// brevity.

//

// Then we simply write it into the table with the

// same id as our process node id

storage.put(snapshot,

table_t(commitManager.getMachineId()),

key_t(snapshot.version()),

buf.get(), sz);

// Now we can try to commit

bool conflict = false;

for (auto& p : cache) {

switch (p.second.op) {

case Operation::READ:

continue;

case Operation::DELETE:

conflict = storage.erase(

snapshot,

p.first.first, p.first.second);

break;

case Operation::UPDATE:

case Operation::INSERT:

conflict = storage.put(

snapshot, p.first.first, p.first.second, p.second.row);

break;

}

if (conflict) {

// TellStore reported a conflict. We need to roll back

break;
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}

}

if (!conflict) return;

// rollback

for (auto& p : cache) {

if (p.second.op == Operation::READ) continue;

if (!storage.revert(snapshot.version(),

p.first.first, p.first.second)) {

// The order of the unordered_map does not change

// if nothing is written to it. Therefore we can simply

// rollback changes in the same order which we used to

// apply them. As soon as a revert fails, we know that the

// corresponding tuple was not written by this transaction.

// Therefore no other tuple was written.

break;

}

}

// Next we would roll back the Bd-tree changes

throw Conflict();

}

const RowType &read(table_t table, key_t key) {

global_key k = {table, key};

auto iter = cache.find(k);

if (iter != cache.end()) {

if (iter->second.op == Operation::DELETE)

throw KeyDoesNotExist();

return iter->second.row;

}

CacheEntry c;

if (!storage.get(snapshot, table, key, c.row, c.isNewest)) {

throw KeyDoesNotExist();

}

CacheEntry &res = cache[k];

res = std::move(c);

return res.row;

}

void write(table_t table, key_t key, const RowType &row) {

global_key k = {table, key};

// we first make sure that the row is in cache if

// it exists on storage

try {

read(table, key);

} catch (KeyDoesNotExist&) {}
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auto p = cache.emplace(k, CacheEntry());

auto iter = p.first;

if (!iter->second.isNewest)

throw Conflict();

if (p.second || iter->second.op == Operation::INSERT) {

// this is an insert operation

iter->second.op = Operation::INSERT;

} else {

iter->second.op = Operation::UPDATE;

}

iter->second.row = row;

}

void erase(table_t table, key_t key) {

global_key k = {table, key};

auto iter = cache.find(k);

if (iter == cache.end()) {

read(table, key);

iter = cache.find(k);

}

if (!iter->second.isNewest) throw Conflict();

switch (iter->second.op) {

case Operation::INSERT:

cache.erase(iter);

break;

case Operation::READ:

case Operation::UPDATE:

iter->second.op = Operation::DELETE;

break;

case Operation::DELETE:

throw KeyDoesNotExist();

}

}

};

}
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