A study of the interaction between coolant jet nozzle flow and the airflow around a grinding wheel in cylindrical grinding

Conference Paper

Author(s):
Baumgart, Christoph; Radziwill, Julian J.; Kuster, Friedrich; Wegener, Konrad

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-b-000190457

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in:
Procedia CIRP 58, https://doi.org/10.1016/j.procir.2017.03.261
A study of the interaction between coolant jet nozzle flow and the airflow around a grinding wheel in cylindrical grinding

Christoph Baumgarta*, Julian J. Radziwilla, Friedrich Kustera, Konrad Wegenera

aInstitute of Machine Tools and Manufacturing (IWF), ETH Zürich, 8092 Zürich, Switzerland

*Corresponding author. Tel.: +41 44 632 8981; Fax: +41 44 632 1125. E-mail address: baumgart@iwf.mavt.ethz.ch

Abstract

A grinding wheel rotating at high circumferential speed induces a boundary-layer airflow which possibly can detain the coolant from submerging into the grinding zone, in order to prevent thermal damage. To study the profile of the airflow, general laws of fluid dynamics are applied and the analytical results compared with results from CFD simulations. These are used to investigate the interaction of the coolant with the grinding wheel under the influence of the airflow with different coolant nozzle types and parameters. For validation high speed imaging is employed. The conclusions may help for a general understanding of the interaction between wheel-airflow-coolant.

1. Introduction

A suitable coolant delivery remains crucial in conventional and energy intense grinding processes. Malkin and Anderson described the high thermal flux into the workpiece by plowing and sliding of the grinding grains and possible thermal damage due to high surface temperatures [1,2]. However an inefficient usage of coolant can contribute largely to the total energy balance of the machine and thus the production costs to a remarkable share [3]. The flood cooling method, which is still widely used in industry, generally delivers huge amounts of coolant at low pressures and undefined direction onto the grinding wheel and grinding zone, where typically a large amount of the fluid is neither used for cooling nor lubrication in the grinding zone. An experimental investigation counted only 4-30% of the coolant flow passing through the grinding zone [4]. The velocity ratio between coolant and tangential speed of the grinding wheel, the alignment of the coolant nozzles as well as their shape have been identified as the most significant factors for an efficient coolant delivery [5,6]. Much research has been done on jet nozzles to reduce the amount of fluid required and thus significantly lower the energy consumption by evaluating different nozzle designs in flat [7] as well as cylindrical grinding [8,9], where round nozzles allowed substantial lower coolant volume flows. Research and experience in industry clearly show that the coolant can be inhibited from entering into the grinding zone by the air boundary layer around the rotating grinding wheel. This phenomenon is also known as the air barrier [9]. Thus for the optimal design of fluid supply intense knowledge about the airflow is essential.

In literature many investigations about the boundary layer flow of grinding wheels can be found, most of them dealing with face grinding. Starting with schlieren imaging of the airflow [10], measurements with intrusive methods like hot-wire-anemometers [11] and the non-intrusive laser Doppler anemometry [12] have been used to investigate the flow conditions for cylindrical grinding wheels in radial and axial dimensions. Different velocity
distributions in outer and central regions of the grinding wheel surface have been detected. In recent years computational fluid dynamics (CFD) became a powerful and feasible tool for investigating various parameters including the influence of the surface roughness, porosity of the grinding wheel and the effect of air scrapers on the wheel boundary flow [13,14].

This work aims to contribute for the understanding of the interaction of the coolant jet of different nozzle types with the grinding wheel considering the airflow. As stated in [15] the Rouse shape nozzle is considered in literature as being optimal concerning jet flow quality in terms of coherence and disturbances. But the distribution of the coolant across the width of the grinding wheel (axial direction) for wider wheels as well as the interaction with the airflow is often neglected. First the general velocity distribution for a cylindrical shaped grinding wheel is shown. In a second part the interaction between coolant jets and the airflow field is investigated whereas the effect on the grinding process of the nozzles is known [8,9]. Full 3D-CFD simulations were performed and compared to high-speed images of an experimental set-up.

2. Analytical Equations

A complete analytical solution of the airflow around a rotating grinding wheel does not exist, but general remarks can be given. The grinding wheel is modeled by a rotating disk with basically two outer flow regions, the flow over the faces and the lateral flow respectively. When considering the porosity of a grinding wheel an inner flow through the tool can influence both regions.

Air as a viscous medium sticks on the walls of the rotating disk and is accelerated up to the surface velocity at the wall. The radial velocity profile away from the wall is defined by the inner friction. For several boundary layer flows exist empirical values related by the Reynolds number of the flow. For example the flow profile on the side faces can be modeled as a rotating disk, where an analytical solution is given by Schlichting [16]. Driven by velocity gradients the air is flowing to the lateral area of the wheel. To solve the Navier-Stokes equations analytically for the circumferential area of a disk, a general solution cannot be presented. Simplifying these equations leads to a velocity profile, which does not match with measurements or simulations as a result of the side and radial flow from the inner wheel. Analyzing various velocity profiles from simulations and measurements a function (1) is found describing the velocity profile in peripheral direction in the middle of the disc, where the peripheral velocity $u(r)$ reaches its maximum, by construction of the known dependencies:

$$u(r) = \frac{c_1}{\left(1 + \frac{c_4}{1000}r \right)^{c_2}} \quad (1)$$

with r as the radius, greater as the wheel Radius R. The constants c_1 to c_4 are depending on the viscosity, wall velocity, surface topology and geometrical parameters.

Figure 1 shows a fit of the trial function with a measured velocity profile from [12] and with a simulation of the airflow of a rotating grinding wheel in the center of the peripheral areas (boundary conditions explained in the next chapter, no workpiece).

![Fig. 1. Measured airflow velocities for two different grinding wheels for measurement and simulation each compared with the trial function.](image)

Setting the assumptions static, rotational symmetric, incompressible, no volume forces, very long cylinder and the boundary condition no airflow through the wall of the disc, the continuity results in $u_r=0$. The simplified Navier-Stokes equations in r-direction are

$$-\frac{u_r^2}{r} \rho = -\frac{\partial p}{\partial r} \quad (2)$$

as considering $u_r(r=R)=aR$ and $u_r(r=0)=0$, leads to the simplified Navier-Stokes equations in ϕ-direction:

$$u_\phi(r) = \frac{aR^2}{r} \quad (3)$$

Combining equation 2 and 3 and assume $p(r=\phi)=p_0$, the resulting pressure profile $p(r)$ in radial direction in cylinder coordinates is

$$p(r) = p_0 - \frac{1}{2} \frac{v^2}{r^2} \cdot R^2 \cdot \rho \quad (4)$$
and enables to make plausible conclusions, with \(v_c \) the tangential velocity at the wheel surface, \(p_a \) the ambient pressure and \(\rho \) the density of the air. The pressure close to the surface is lower than the pressure in the distant ambient and increases square hyperbolic in radial direction until the second term disappears in infinity. This pressure profile does not match with measurements of commonly used grinding wheels due to the wide cylinder approach. Nevertheless, the principle of pressure decrease appears in both situations. The lower pressure sucks the air from the side areas towards the circumferential area center, which is shown in more detail in the following simulations.

3. Numerical Analysis and Validation

3.1. Boundary conditions and flow field

In this section a full 3D steady state fluid simulation using ANSYS CFX 17.0 is presented. Following a mesh study a cylindrical ambient is chosen. In the set up a gap between the grinding wheel (solid, rotating) and the workpiece (solid, non-rotating) is left. The coolant is modeled using water data, as viscosity and density are measured the same as water. For all walls inflation layers are applied on the mesh in order to calculate wall functions resolving the boundary layer accurately. Residuals below \(10^{-4} \) for convergence of momentum and pressure are achieved. Detailed information is given in Table 1.

Table 1. Experimental conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grinding Wheel (Ø 500 x 63)</td>
<td>54A 120 H15 VPMF604W</td>
</tr>
<tr>
<td>Cutting speed (v_c)</td>
<td>50 [m/s]</td>
</tr>
<tr>
<td>Rotational speed (n_w)</td>
<td>1910 [1/min]</td>
</tr>
<tr>
<td>Gap Grinding Wheel-Workpiece</td>
<td>10 [µm]</td>
</tr>
<tr>
<td>Workpiece (Ø 60 x 60)</td>
<td>90MnCrV8, 62 HRC</td>
</tr>
<tr>
<td>Coolant</td>
<td>Water emulsion (4% in water)</td>
</tr>
<tr>
<td>Volume Flow (Q)</td>
<td>6-30 [l/min]</td>
</tr>
<tr>
<td>Flow rate per width (q)</td>
<td>0.1-0.5 [l/(min mm)]</td>
</tr>
<tr>
<td>Nozzles Position</td>
<td></td>
</tr>
<tr>
<td>Height over grinding zone (H_{noz})</td>
<td>70 [mm]</td>
</tr>
<tr>
<td>Orientation Tangential into grinding arc</td>
<td></td>
</tr>
<tr>
<td>Round Jet Nozzle</td>
<td></td>
</tr>
<tr>
<td>Inner Diameter (D_{in})</td>
<td>1.5 [mm]</td>
</tr>
<tr>
<td>Channels (N)</td>
<td>4 [-]</td>
</tr>
<tr>
<td>Flat Nozzle</td>
<td></td>
</tr>
<tr>
<td>Width (B_{flat})</td>
<td>63 [mm]</td>
</tr>
<tr>
<td>Opening thickness (D_{pol})</td>
<td>1.5 [mm]</td>
</tr>
<tr>
<td>Turbulence Model</td>
<td>Shear Stress Transport</td>
</tr>
<tr>
<td>Surface Tension Coeff. (\gamma)</td>
<td>0.072 [N/m]</td>
</tr>
<tr>
<td>Drag Coefficient (c_D)</td>
<td>0.44 [-]</td>
</tr>
<tr>
<td>Buoyancy model activated, isothermal, no heat model applied</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 shows the velocity vectors on the grinding wheel. As assumed the airflow on the wheel faces is sucked into the center line from the lateral area and due to centrifugal forces directed away from the wheel (radial velocity > 0). It can be noted that for wider wheels this inhomogeneity becomes more important.

In Figure 3 isosurfaces of the air velocity for the grinding wheel are shown. On the left figure it can be seen that in the middle, as well as close to the sides maxima exist. On the right figure the influence of a workpiece onto the airflow is shown.

Li and Han [17] proposed a boundary line for a suitable direction of the cooling flow in flat grinding. If the coolant is directed in an angle within the boundary line and the grinding wheel, the peripheral airflow of the
grinding wheel supports the coolant reaching the grinding zone. It is specified by velocity vectors without component pointing into the grinding gap. A similar pattern is observed in cylindrical grinding as shown in Figure 4. Furthermore the air flows around the workpiece and is driven back to the grinding wheel by a lower pressure field behind the workpiece, which works similar as an air scraper and has to be treated in respect to the workpiece size as shown in Figure 3, right side.

3.2. Comparison with high-speed imaging

High speed (HS) imaging is a versatile tool to qualitatively determine the interaction of grinding wheel airflow and coolant jet. The adherence of the coolant to the grinding wheel, which is necessary to reach the grinding zone and lubricate the cutting process, can be visualized as shown in Figure 5. In this case the exit velocity of the coolant is too low (about 20% of the tangential velocity of the grinding wheel) and the jet is deflected from the grinding wheel. The flow regime of the jet itself is strongly non-linear and interacts with the airflow around the grinding wheel. It varies from a coherent jet to a break-up into a spray. HS imaging is a helpful tool to validate simulations for the used flow model. In Figure 6 the flow direction of the coolant is changed into the centerline and away from the lateral face of the grinding wheel by the radial airflow from the wheel, as it is described in the former sections. The coolant (red) seems to disappear below but instead the volume fraction becomes lower and thus is not shown.

Also a characteristic of these steady state simulations can be observed. The blue and red jet streams in the simulation plots in Figures 3 and 5-8 are the isosurfaces for a specified coolant volume fraction of about 0.02. This value appears quite low, but comparing to the high speed camera images give rather a probability distribution of coolant in a volume and thus also the mixing with air, which has negative influence on the cooling in the grinding arc. The breakup in droplets or sprays cannot be resolved by steady state simulation and turbulence models and appears in rather wide distribution and dilution of the coolant stream.

Fig. 4. Boundary line as specified in [17] for cylindrical grinding, Ø 500 x 63mm grinding wheel and Ø 60 x 60mm workpiece yz-plane.

Fig. 5. One round nozzle, exit velocity about 20% of \(v_c = 50\text{m/s}\)

a) simulation (coolant volume fraction 2%), b) HS-imaging

Fig. 6. Four round nozzles, exit velocity about 20% of \(v_c = 50\text{m/s}\)

a) simulation (coolant volume fraction 0.5%), b) HS-imaging.

3.3. Interaction of airflow with coolant jet

Figures 7 and 8 are showing the isosurfaces of the coolant volume fraction at 2% for the two investigated nozzle types. The round nozzles apparently deliver the coolant much more precise into the grinding zone with less flooding of coolant over the workpiece. The airflow seems to have much higher influence on the coolant flow out of the flat nozzle type, because contrary to the needle nozzles it is hindered by the flat nozzles to flow out in radial direction.
The results of the simulations can help to understand the results of the grinding studies presented in [8,9], where different nozzle types are compared by their coolant volume flow rates for achieving the same surface properties on the workpiece. In this investigation the coolant volume flows of 6 l/min for the round nozzles and 30 l/min for the flat nozzle respectively are necessary to obtain the same roughness distributions. The following investigations refer to the properties on the grinding wheel in the grinding zone.

Figure 9 shows the volume fractions of the coolant in the grinding zone at the wheel side. Whereas the four single round nozzles could fill the grinding zone evenly with a total volume flow of 6 l/min, which is equivalent to a specific volume flow of 0.1 l/(min mm) over the grinding wheel, the flat nozzle fails to do so even using at least three times as much coolant. Even a small volume fraction of air can impair the cooling conditions essentially. The reason clearly is found in the much higher (18.5 m/s vs. 4.5 m/s) exit velocity of the coolant due much lower exit area (7 mm² vs. 95 mm²) of the flat nozzle, that can break through the momentum of the airflow.

Table 2. Mean values in grinding zone

<table>
<thead>
<tr>
<th>Type</th>
<th>Q [l/min]</th>
<th>Volume Fraction [-]</th>
<th>Velocity [m/s]</th>
<th>Pressure [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four Round Nozzles</td>
<td>2</td>
<td>0.155</td>
<td>18.5</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.995</td>
<td>41.4</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.995</td>
<td>41.5</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.995</td>
<td>42.8</td>
<td>7.4</td>
</tr>
<tr>
<td>Flat Nozzle</td>
<td>12</td>
<td>0.348</td>
<td>17.9</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.991</td>
<td>39.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.994</td>
<td>43.6</td>
<td>7.7</td>
</tr>
</tbody>
</table>
4. Conclusions and outlook

A detailed and general analytical solution for the airflow of rotating grinding wheels is only possible with strong simplifications. The general profile and its dependencies are shown in the second chapter. Considering geometric constraints like non-cylindrical wheel geometry, one sided clamping and the protective casting of the grinding wheel CFD simulations become a possibility to investigate the flow profiles. In this work the effect of the air boundary layer of a rotating grinding wheel on coolant jets is investigated by using CFD simulations for two different nozzle designs. The set-up is chosen in accordance with real grinding tests and compared to the measured performance.

Numerical simulations of the jet flow interaction with the rotating grinding wheel are proving to be a utile tool for the design and optimization of nozzles regarding the minimization of the required volume flow of coolant. A uniform filling of the grinding gap with coolant is achieved by employing a nozzle with an exit orifice width of less than 10% of the grinding zone width and an exit velocity of the coolant of about 37% of the cutting speed. This demonstrates high possible savings and enhanced useful flow with optimized nozzle design.

Based on these studies further nozzle designs as well as nozzle positions (angle and distance) can be investigated and optimized. Parameter studies are proposed to estimate the maximum possible distance without quality reduction between two round nozzles along the grinding wheel profile in order to minimize the coolant volume flow and thus the energy consumption of the machine by employing a minimum number of real grinding tests.

Acknowledgements

The authors gratefully acknowledge the financial contribution of the Swiss Commission for Technology and Innovation (No. 13963.2 PFIIW-IW) and Fritz Studer AG as well as Blaser Swisslube for providing machine, tools and coolant respectively. The authors thank also Jean-Paul Kunsch for valuable discussions.

References