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1 Introduction

The AdS3/CFT2 duality provides some unique insights into the AdS/CFT correspondence,

mainly because of the powerful CFT techniques that are available in two dimensions.

Indeed, the CFT dual of string theory on AdS3×S3×M4, whereM4 is a 4D hyper-Kähler

manifold (i.e. T4 or K3), is one of the first explicitly known AdS/CFT dualities constructed

from string theory. On the gravity side, the background arises from the near horizon limit

of Q1 D1 branes smeared in Q5 coincident D5 branes that wrap M. The dual CFT is

then realized as the decoupling limit of the world-volume theory of the D1-D5 system, i.e.

as a sigma model on the moduli space of Q1 instantons in the U(Q5) gauge theory living

on M4.

As a consequence, the dual CFT lies on the same moduli space as the Q1Q5-fold

symmetric orbifold of M4, which is essentially a free theory (at least for the case of T4).

Together with the large amount of supersymmetry (described by the small N = 4 super-

conformal algebra) this allows many aspects of the duality to be checked and matched

explicitly, see e.g. [1] for a review. In particular, the BPS spectrum on both sides agrees, as

do the three-point functions [2, 3]. Finally, for the case of K3, the matching of the elliptic

genus provides further non-trivial evidence [4].

For both T4 and K3, the dual CFT has small N = 4 superconformal symmetry.

Replacing the hyperkähler manifold M4 by S3 × S1 (which is the smallest “hyperkähler

manifold with torsion”), one obtains a close cousin to the above setup, i.e. string theory

on AdS3 × S3 × S3 × S1. The dual CFT dual is then expected to have large N = 4

superconformal symmetry [5–7].

Despite its apparent similarity to the familiar T4 or K3 case, the CFT dual of string

theory on AdS3 × S3 × S3 × S1 has proven much more difficult to find. This might be

surprising at first sight, given that this background has slightly larger symmetry than the

small N = 4 algebra supported by the T4 or K3 case. For example, the CFT dual of

the N = 4 Vasiliev higher-spin theory was actually first identified for the AdS3 × S3 ×
S3 × S1 background and shown to be a relatively simple (Wolf) coset CFT [8], while the

identification for the T4 or K3 case was only subsequently found as a limiting case [9, 10].

One reason why finding the stringy CFT dual of AdS3 × S3 × S3 × S1 has turned

out to be difficult, is that the corresponding brane constructions are rather non-trivial.

A simple D1-D5 system suffices for the T4 or K3 case, and the large U-duality symmetry

of the system allows one to show that the CFT dual can only depend on the product

– 1 –
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N = Q1Q5 [11]. For the AdS3×S3×S3×S1 case, on the other hand, there are, in addition

to the Q1 quantum number, two different Q±5 quantum numbers (corresponding to the

sizes of the two S3’s). We then either need two different kinds of D5 branes, or we must

realize one set of charges in terms of some non-trivial flux. In either case, the description

of the moduli space of instantons is much more complicated. Furthermore, the U-duality

group is much smaller in this case, as was emphasized already in [7]; in particular, one

should therefore not expect the answer to depend just on some simple combinations of the

different brane charges.

The other main difficulty for finding the CFT dual had to do with the structure of the

BPS bounds for the large N = 4 superconformal algebra Aγ , and its relation to the BPS

bound of the corresponding supergravity algebra D(2, 1|α). In particular, as was stressed

in [6, 7], the BPS bound for Aγ is in general stronger than that for D(2, 1|α), with the bound

only coinciding for those BPS states whose spins with respect to the two su(2) algebras

(corresponding to the two S3’s) agree. Compounding the problem, it was long believed [6]

that the supergravity theory had lots of BPS states, including many states whose spins

with respect to the two su(2) algebra do not agree — and that need to acquire a magical

amount of quantum correction in order to just satisfy the Aγ BPS bound. Furthermore,

none of proposed CFT duals had a corresponding BPS spectrum, even for some special

choice of charges [7].

Recently, this problem was revisited in [12], where it was found that there are no

troublesome BPS states (i.e. states whose su(2)-spins do not agree) in supergravity. In-

deed, motivated by the suggestive results of a world-sheet analysis, we performed a first

principle supergravity calculation [12], and found that the only BPS states that appear in

supergravity have the property that their su(2) spins agree — in the old analysis of [6], the

BPS spectrum of supergravity had only been guessed based on group theoretical methods.

Furthermore, all the states of supergravity satisfy also the Aγ BPS bound — in fact, this

is also true for the non-BPS states in supergravity whose spins differ — and hence there is

no need for any miraculous quantum correction.

With this roadblock removed, we return in this paper to the search for the CFT dual

of string theory on AdS3 × S3 × S3 × S1. The dual CFT will be motivated by largely

the same methods as those used for the small N = 4 case, i.e. we start with a D-brane

construction and invoke open/closed duality. (Proposals of this form were already discussed

before, in particular in [7], see also [5], but they were discarded because of their failure

to reproduce the ‘old’ BPS spectrum of supergravity as incorrectly predicted in [6].) The

most promising brane construction appears to be the one where we consider Q+
5 D5 branes

wrapping S3×S1, where S3 is the special Lagrangian sub-manifold, supported by Q−5 units

of flux, that is wrapped by the Q+
5 D5-branes — this is the “third” construction proposed

by [7]. In addition, we add an arbitrary number of Q1 branes smeared on the D5 brane. We

argue that the dual CFT is then the symmetric orbifold of S3×S1, where the flux through

the S3 turns out to be (Q−5 /Q
+
5 ) − 1. This can be fairly directly understood for the case

when Q+
5 = 1 since we can then give a direct description of the instanton moduli space; the

result for Q+
5 > 1 is somewhat more conjectural. Since the flux has to be quantized, the

proposal only makes sense if Q+
5 is a factor of Q−5 . We also give a microscopic argument

– 2 –
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(based on anomaly considerations, following [13]) for where this condition may come from.

We then subject this proposal to some consistency checks. In particular, we show that

the BPS spectra match from both sides. This requires us to determine the BPS spectrum

of the symmetric orbifold of Sκ in detail, completing the analysis of [7]. We also compute

the full perturbative BPS spectrum from the worldsheet perspective; in particular, we work

out the contribution from the spectrally flowed sectors, extending the analysis of [12] where

only the unflowed sector was analysed. As it turns out, this analysis is quite intricate and

the resulting BPS spectrum has the same qualitative structure (including some gaps, see

the discussion in [11]) as for the familiar case of T4 and K3.

This paper is organized as follows. In section 2 we discuss various brane scenarios and

discuss their implications on the dual CFT. For the case where only one class of D5-branes

is present, we can read off an explicit realization of the dual CFT from this picture as the

symmetric orbifold of the Sκ [7, 14] theory. This is only directly possible for Q+
5 = 1, but

we also speculate how the construction should be generalized to Q+
5 > 1 in section 2.4.

Finally, appendix C is then devoted to reviewing this theory.

Section 3 contains the calculation of the BPS spectrum of the proposed dual — the

symmetric orbifold of Sκ. This is done carefully and in detail, since there are a number

of subtleties (depending on whether the twist of the twisted sector is even or odd, see

sections 3.3.2 and 3.3.1, respectively) that have to be taken into account. Some of the

more technical arguments are explained in appendix D, but the main result is simple and

spelled out in (3.2).

The next section is concerned with explaining the BPS spectrum of string theory and

supergravity on the background AdS3× S3× S3× S1. Section 4.1 reviews the supergravity

calculation of [12], section 4.2 the corresponding worldsheet calculation. Section 4.3 clarifies

some issues relating to the missing chiral primaries in the case of T4, while section 4.4 finally

discusses the full perturbative BPS spectrum of string theory, described by (4.31). (Some

technical derivations are described in appendix E.)

Section 5 makes some comparisons between the two sides of the duality. First and

foremost, we concentrate on the BPS spectrum (section 5.1), but we offer also some further

tests by employing the chiral ring (section 5.2) of an N = 2 subalgebra of the large N = 4

algebra. We also explain how our proposal leads to the symmetric orbifold of T4 in the

infinite radius limit of one of the two three-spheres. Finally, we conclude in section 6. For

the convenience of the reader we have also reviewed some of the algebras that appear in

appendices A and B. Furthermore, we have included the derivation of a non-renormalization

theorem we have used in the main text in appendix F.

2 Strings on AdS3 × S3 × S3 × S1

In this section we discuss a brane configuration whose near horizon limit gives rise to

AdS3 × S3 × S3 × S1. Since it is engineered from string theory, we can read off from it

various aspects of the holographic dual. It also guarantees that the duality is consistent

non-perturbatively.

– 3 –
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2.1 D5+ brane with D5− flux

For generic values of the background charges, [7] proposed two brane configurations which

reproduce different aspects of the geometry. In the following we shall concentrate on the

one that is more similar to the cases involving T4 or K3, and that gives rise to a natural

proposal for the dual CFT. To preserve the right amount of supersymmetry, we consider Q+
5

D5-branes wrapping S3× S1, where the S3 is a special Lagrangian sub-manifold of the six-

dimensional D5 world-volume, which is supported by the flux Q−5 . This construction breaks

explicitly the symmetry between Q+
5 and Q−5 . We will adopt the convention that the S3 is

located in the directions 678, the S1 in the direction 9, i.e. that the brane configuration is

0 1 2 3 4 5 6 7 8 9

Q+
5 D5 branes × × × × × ×

Q1 D1 branes × × ∼ ∼ ∼ ∼
Q−5 D5 fluxes ◦ ◦ ◦

(2.1)

where × denotes the directions in which the brane extends, ∼ the directions along which

the brane is smeared, and ◦ denotes fluxes. The corresponding supergravity was analysed

in [15–18]. In particular, the brane configuration gives the near-horizon geometry AdS3 ×
S3 × S3 × S1.1

The resulting gauge theory on the D5 world-volume has N = 2 supersymmetry, and

the three-dimensional low-energy limit is an N = 2 Chern-Simons theory with level Q−5
living on the directions 059. The bosonic level is however shifted by integrating out the

fermions; because of N = 2 SUSY, this shift is twice as large as the one given in [13], so

we get a Chern-Simons theory with gauge group U(Q+
5 ) and level Q−5 −Q

+
5 , see also [7]. It

was also argued in [13] that supersymmetry is broken for Q+
5 > Q−5 , thus we restrict in the

following to the case Q+
5 ≤ Q

−
5 ; the opposite case can be treated similarly by interchanging

the roles of Q+
5 and Q−5 .2

Before we proceed further we should stress that there is one crucial difference of our

setup relative to the case of T4. For T4 we can use four T-dualities in the directions 6789

to arrive again at the same brane configuration, but with the D5-brane charge Q5 and the

D1-brane charge Q1 interchanged. This implies that the dual CFT should be symmetric

under interchange of Q1 and Q5, a constraint which is obviously satisfied by the Q1Q5-fold

symmetric product of T4. Importantly, this T-duality is no longer available for S3×S1 and

so the dual CFT should not be expected to be symmetric in any permutation of Q1, Q+
5

and Q−5 . In fact, the dual CFT is expected to have large N = 4 superconformal symmetry

1The other proposed brane configuration consists of two orthogonal stacks of D5-branes plus D1-branes

along their intersection, whose near horizon geometry is AdS3 × S3 × S3 ×R [19–21]. However, we will not

consider it in this paper since intersecting five-branes are poorly understood. In particular, it is very hard

to determine the infrared fixed point of this theory since the dual CFT does not have any interpretation as

the moduli space of instantons.
2According to [18], in order for the near horizon limit not to produce singularities for Q+

5 6= Q−5 , we must

include additional sources in form of additional five-branes wrapping also the other S3 in the geometry. We

will however in the following largely ignore this point, since then we run again into the same problems as

for the other brane construction of [7]. Furthermore, since this was argued with the help of supergravity, it

seems plausible that the full string theory may resolve these singularities.

– 4 –
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with levels (Q1Q
+
5 , Q1Q

−
5 ) [5–7] — for a brief review of this superconformal algebra see

appendix A — and central charge

c = 6Q1
Q+

5 Q
−
5

Q+
5 +Q−5

. (2.2)

In particular, this formula does not exhibit any permutation symmetry (except for the

obvious Q+
5 ↔ Q−5 exchange symmetry).

2.2 The instanton moduli space

Given that the brane construction of the previous section gives rise to a gauge theory living

on the D5 world-volume, we can now follow the usual logic of the AdS/CFT correspon-

dence [22], and identify the dual CFT with the 1 + 1-dimensional low-energy theory living

on the intersection of the D1- and D5-brane. In particular, the D1-branes can be viewed as

instantons in the D5-brane theory [23], living on the transverse direction of the D1-branes

in the D5-branes, i.e. on S3 × S1. Low energy fluctuations are described by fluctuations in

this moduli space, and thus we can formally identify the dual CFT with the supersymmet-

ric σ-model on the moduli spaceMQ1,Q
+
5 ,Q

−
5

of Q1 instantons of SU(Q+
5 ) on S3

Q−5 −Q
+
5

×S1.

Here, we have decoupled the overall U(1) as usual. The dimension of this moduli space is

dim(MQ1,Q
+
5 ,Q

−
5

) = 4Q1Q
+
5 , (2.3)

as follows from essentially the same argument as for T4 or K3. Indeed, the dimension

can be written as twice the absolute value of the index of a Dirac fermion in the adjoint

representation. We can then use the Atiyah-Singer Index theorem

dim(MQ1,Q
+
5 ,Q

−
5

) = 2
∣∣ind( /∇adj)

∣∣ = 2

∣∣∣∣∫
S3×S1

tradj(e
iF )Â(R)

∣∣∣∣ , (2.4)

where F is the field strength and R the Riemann curvature of an arbitrary metric on

S3× S1, while Â(R) is the corresponding Dirac genus. The main point now is that S3× S1

is a Lie group: as a consequence, its tangent bundle is parallelizable, and all characteristic

classes of the tangent bundle vanish, from which we deduce that Â(R) = 1 in cohomology.

Thus the expression reduces to the usual one

dim(MQ1,Q
+
5 ,Q

−
5

) = 2

∣∣∣∣∫
S3×S1

tradj(e
iF )

∣∣∣∣ = 2
∣∣p1(Fadj)[S

3 × S1]
∣∣ (2.5)

= 4Q+
5

∣∣p1(Ff )[S
3 × S1]

∣∣ = 4 |Q1|Q+
5 , (2.6)

where we have used the fact that the Dynkin index of the adjoint representation is Q+
5 ,

whereas in the fundamental representation it reads 1
2 . Moreover, we have inserted the defini-

tion of the instanton number as the first Pontyagin class in the fundamental representation.

In the following we shall always assume Q1 ≥ 0, i.e. that there are no anti-instantons. We

should also mention that since the first Pontryagin class of the tangent bundle of S3 × S1

vanishes, the D5-branes do not induce an effective D1-charge [24]. Thus the identifications

of Q1 and Q+
5 made above do not receive corrections.

– 5 –
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This moduli space was considered before in the special case Q+
5 = 2 by mathemati-

cians [25]. It inherits many nice geometric properties from the underlying manifold S3×S1.

Indeed, the Hopf surface S3 × S1 is a hypercomplex manifold, with Hodge diamond

1

0 1

0 0 0

1 0

1

. (2.7)

It is moreover “hyperkähler with torsion” (HKT), and supports a (4, 4)-structure as de-

scribed in [26]. As a consequence, the moduli space also supports a HKT and a (4, 4)-

structure.3 According to [6], see also [27], this is the geometric requirement that the

σ-model admits classically a large N = 4 superconformal symmetry. This gives a consis-

tency check of the identification of the dual CFT with the supersymmetric σ-model on

MQ1,Q
+
5 ,Q

−
5

. Furthermore, the Hopf surface S3 × S1 along with its secondary versions,

which are discrete quotients of it, are the only four-dimensional HKT manifolds.

2.3 The case Q+
5 = 1

Let us first focus on the case Q+
5 = 1, for which an explicit description of the moduli space

is available. To start with we consider the special case where in addition Q1 = 1. Then

the moduli space is four dimensional, and since every moduli space of instantons contains

the base-manifold as a factor (describing the position of the instanton), and since this has

already the right dimension from (2.3), we conclude that in this case

M1,1,Q−5
∼= S3

Q−5 −1
× S1 . (2.8)

For general Q1, the moduli space contains the position of all Q1 instantons and hence is

naturally identified with the symmetric orbifold [28]

MQ1,1,Q
−
5

∼= SymQ1(S3
Q−5 −1

× S1) , (2.9)

where SymN (M) ≡ M⊗N/SN . Since both S3 and S1 are group manifolds, the relevant

conformal field theory should simply be the WZW model associated to

Sκ : su(2)
(1)
κ+2 ⊕ u(1)(1) , (2.10)

where the superscripts “(1)” indicate that these are the N = 1 superconformal affine

algebras, and κ is to be identified with κ = Q−5 − 1. (As explained in appendix B, the

decoupled bosonic su(2) algebra of su(2)
(1)
κ+2 has level κ, and this should be identified with

the flux Q−5 − 1.) This CFT, which was denoted by Sκ in [7], will play an important role

for the rest of the paper, and we have therefore reviewed its salient features in appendix C.

3Note, however, that the terminology is slightly confusing since a HKT manifold is in general not

hyperkähler.

– 6 –
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In particular, the Sκ theory supports a large N = 4 algebra with levels (Q+
5 , Q

−
5 ) =

(1, Q−5 ) [14, 29].

By the same arguments as for the familiar T4 (or K3) case, these considerations then

suggest that the CFT dual of string theory on AdS3 × S3 × S3 × S1 with Q+
5 = 1 is on the

moduli space of the symmetric orbifold

SymQ1(Sκ) , with κ = Q−5 − 1. (2.11)

This symmetric orbifold has a large N = 4 superconformal symmetry with levels

(Q1, Q1Q
−
5 ), in agreement with the expectations from supergravity, see the discussion

around eq. (2.2).

2.4 The case Q+
5 > 1

For Q+
5 > 1 the identification of the moduli space of instantons is more complicated, and

thus the following is somewhat more speculative. In addition, there is a potential subtlety

with the world-volume theory. Recall that the low energy effective action of the world-

volume theory on the D5-branes includes a Chern-Simons theory with gauge group U(Q+
5 )

and level Q−5 −Q
+
5 . When going to the near-horizon limit of the geometry, the overall U(1)

is decoupled. There is then the very subtle issue of whether we end up with a SU(Q+
5 )

or a SU(Q+
5 )/ZQ+

5
gauge theory in the end. In the case of AdS5 × S5, it was shown that

the center of the group can be spontaneously broken [30]. It thus seems natural that also

SU(Q+
5 )/ZQ+

5
Chern-Simons theory with level Q−5 −Q

+
5 should be consistent.

On the other hand, it was argued in [13] that this theory is anomalous unless Q+
5

divides Q−5 . (Again, one has to make a careful translation of conventions to this paper,

since it is formulated in N = 1 language.) We are thus led to conclude that the brane

scenario we have engineered is only consistent if Q+
5 divides Q−5 and thus yields also only a

prediction on the dual CFT in this case.4 This requirement was of course trivially satisfied

for Q+
5 = 1.

Obviously, the moduli space of instantons becomes very complicated in the general

case, but it still tells us that the dual CFT should be a supersymmetric σ-model on a

4Q1Q
+
5 -dimensional HKT space. There is one very natural candidate, which fulfills all the

requirements, namely the symmetric orbifold

SymQ1Q
+
5 (S3

Q−5 /Q
+
5 −1
× S1) = SymQ1Q

+
5 (Sκ) with κ =

Q−5
Q+

5

− 1 . (2.12)

This CFT is only unitary if Q−5 is divisible by Q+
5 , since otherwise the WZW-level would

not be an integer. This condition is in accordance with the above argument of the brane

picture being anomalous.

We hence propose that (2.12) lies on the same moduli space as string theory on AdS3×
S3 × S3 × S1 with Q−5 /Q

+
5 ∈ Z. This proposal generalizes (2.11), to which it reduces for

Q+
5 = 1. The opposite case Q+

5 /Q
−
5 ∈ Z can again be treated by interchanging the roles of

4Intuitively, this condition seems to amount to the condition that the flux can be equally divided among

the Q+
5 branes.

– 7 –
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Q+
5 and Q−5 . Since Sκ supports the large N = 4 algebra with levels (1, κ), see appendix C,

the symmetric orbifold (2.12) has levels (Q1Q
+
5 , Q1Q

−
5 ), and central charge, see eq. (C.4),

c = 6Q1Q
+
5

Q−5
Q+

5

1
Q−5
Q+

5

+ 1
=

6Q1Q
+
5 Q
−
5

Q+
5 +Q−5

, (2.13)

in agreement with the supergravity expectation [7], see eq. (2.2).

We should also mention that this proposal generalizes the one given in [5, 31] for the

case of Q+
5 = Q−5 , where it was argued that the dual CFT lies on the same moduli space as

the symmetric orbifold of S0. Note that in this case the condition Q+
5 /Q

−
5 ∈ Z is automatic.

We should also mention that the proposal only depends on the products Q1Q
+
5 and Q1Q

−
5 .

This is not directly in conflict with the missing T-duality of the theory, since the theory is

not symmetric in any permutation of the three D-brane charges. However, it implies that

there should be some not yet uncovered duality of the bulk theory which acts by rescaling

(Q1, Q
+
5 , Q

−
5 )→ (mQ1, Q

+
5 /m,Q

−
5 /m). It would be very interesting to see this directly.

Finally, there is yet another consistency condition: for Q−5 → ∞, the size of the S3

in S3 × S1 tends to infinity, and as in [9], one should expect to make contact with the

CFT dual of string theory on AdS3 × S3 × T4. (Strictly speaking, this should only hold

for the zero-momentum sector, but this includes in particular the chiral algebra.) Since Sκ
becomes T4, i.e. the theory of 4 free bosons and fermions, for κ→∞, it follows that

SymQ1Q
+
5 (S3

Q−5 /Q
+
5 −1
× S1)

Q−5 →∞−→ SymQ1Q
+
5 (T4) . (2.14)

This provides a very non-trivial test of the proposal; in fact, this requirement seems hard

to satisfy with any other candidate.

Since the brane scenario only works for Q−5 a multiple of Q+
5 , this indicates that the

dual CFT will be much more complicated in the other cases and not simply given by a

symmetric product orbifold. It remains open whether anything more concrete can be said

about the dual theories in this case.

3 BPS spectrum of symmetric orbifold of Sκ

As a first check of our proposal we should compare the BPS spectrum of the two theories.

In this section, we compute the BPS spectrum of the CFT dual, the N -fold symmetric

orbifold of Sκ, where

N = Q1Q
+
5 and κ =

Q−5
Q+

5

− 1 . (3.1)

This was already partially done in [7], but we shall be more explicit below, and, as will

become apparent, the situation is somewhat more complicated than outlined there. We

shall only concentrate on the BPS spectrum from the single-cycle twist sectors of the

symmetric orbifold — these correspond to the single-particle states in AdS.

This spectrum is to be compared with the predictions coming from the worldsheet

theory in string theory (with pure NS-NS flux), as well as supergravity, using the results
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of [12]. For this comparison only the low-lying BPS states (whose conformal dimension

does not scale with N = Q1Q
+
5 ) play a role, and we shall therefore also concentrate on

these BPS states in our analysis of the symmetric orbifold.

While the detailed analysis is quite complicated — it will be described in the rest of

this section — the result is simple: the low-lying single-cycle BPS states of the symmetric

orbifold are given by
c
12⊕
j=0

[j, j, u = 0]S ⊗ [j, j, u = 0]S , (3.2)

where c is the total central charge of the symmetric orbifold. Here and in the following

[j+, j−, u]S denotes a BPS representation of the large N = 4 algebra with su(2)-spins j+

and j− and u(1)-charge u, see [12] and appendix A.1 for our conventions.

3.1 BPS spectrum of Sκ
First, we summarize the BPS spectrum of a single Sκ theory. Representations of the N = 4

algebra are labelled by (h, j+, j−, u), see e.g. [8, 29]. The BPS bound for the large N = 4

algebra of such a representation is given by, see eq. (A.13)

hBPS(j+, j−, u) =
k+j− + k−j+ + (j+ − j−)2 + u2

k+ + k−
, (3.3)

where k+ and k− are the levels of the algebra. Importantly, the last two terms in the

numerator are suppressed for k± large, so they are invisible in the limit in which both levels

become large — recall that for the symmetric orbifold, the relevant levels are k± = Q1Q
±
5 ,

and hence this will be the case for large Q1.

In the case of Sκ, the representations are labelled by j− = 0, 1
2 , . . . ,

1
2κ and j+ = 0,

and hence satisfy the unitarity bound for representations of the large N = 4 algebra [29].

Furthermore, u can take any value, and the conformal weight of the corresponding repre-

sentation is

h =
j−(j− + 1)

κ+ 2
+

u2

κ+ 2
= hBPS(0, j−, u) . (3.4)

Here we have normalized the u(1)-current in the canonical manner of the large N = 4

algebra, see (A.1); depending on the radius of the free boson, the values for u are then

quantized in suitable units. Since (3.4) saturates the BPS bound, all representations of Sκ
are in fact BPS. We should note that the conformal weight of BPS representations with

u 6= 0 is not protected under deformations of the theory, since we can continuously change

the compactification radius of the boson and hence the conformal dimension.

3.2 Untwisted sector

BPS states from the untwisted sector are simple to determine (even if we drop the constraint

that they should be ‘low-lying’). Since j+ = 0 for all representations of Sκ, clearly also any

symmetric combination will have j+ = 0. To pick out the representations which result in

BPS states, we note that the BPS bound is convex in the sense that

λhBPS(0, j−1 , u1)+(1−λ)hBPS(0, j−2 , u2) ≥ hBPS(0, λj−1 +(1−λ)j−2 , λu1 +(1−λ)u2) , (3.5)
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where λ ∈ (0, 1), and we have equality only if j−1 = j−2 and u1 = u2. Thus only states that

arise upon choosing the same representation in all factors can be BPS. Thus, the untwisted

BPS spectrum consists simply of the BPS states of Sκ, except that all quantum numbers

have been multiplied by N . Since the conformal weight of these states scales with N , they

are not ‘low-lying’ states — they have the interpretation of different vacua in the bulk,

e.g. black hole geometries.

There are further BPS states which are constructed by the action of the fermions ψ++
−1/2

on the ground states of the representations. They fill in the gaps between the above BPS

states, since there are N such fermions, one for each copy. Symmetrization introduces

however multiple traces (except for the excitation involving a single fermion, which is part

of the N = 4 multiplet, see the comment after eq. (A.15)), and thus these states should

not be interpreted as being single-particle states in the bulk. We should mention that this

spectrum is precisely the BPS spectrum which was inferred from the index in [7, 48]. This

suggests that the index is not very powerful in our context since it can be accounted for

purely in terms of untwisted sector states (as well as states from the maximally twisted

sector) that are not relevant for the comparison with supergravity. This is somewhat similar

to the situation encountered in [32], where for the case of T4, the index could be obtained

just from the groundstate.

3.3 Twisted sectors

Next we consider the BPS states from the single-cycle twisted sectors; in order to simplify

the analysis, we shall concentrate from now on the low-lying BPS states. They have

necessarily the property that j+ = j− and u = 0. For, if this is not the case, then replacing

N by MN the last two terms in the BPS bound (3.3) decrease by a factor M , and hence

the given state does not saturate the BPS bound any longer. Because of this fact, we will

restrict from now on to the zero-charge sector (u = 0) of the Sκ-theory.

3.3.1 Odd twist

The detailed analysis of the twisted sectors depends on whether the twist is odd or even;

in this subsection we first deal with the case that the twist n = 2m+ 1 is odd — the even

twist case will be discussed in the following subsection. Let us recall that a state of weight

h0 and charge R (here we collect all possible charges into one index) gives rise to a state

in the n-twisted sector with charge R and weight

hn =
h0

n
+
c(n2 − 1)

24n
. (3.6)

For a derivation of this fact from the character point of view, see appendix D. To obtain

minimal conformal weight for a given set of charges, we first need to know the minimal

conformal weight at which a given spin of the decoupled su(2)κ algebra appears. This

is quite intricate and interesting in its own right due to the appearance of null-vectors

in the Verma module. The situation is depicted in figure 1 for κ = 3, which we have

extracted directly from the affine su(2)-character. Clearly, the minimal conformal weight

can come potentially from all representations. One convenient way to parametrize the
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Figure 1. Minimal conformal weight for a given spin.

minimal conformal weight is as in [7]: we introduce a spectral flow of su(2)κ, which reshuffles

states. Then the conformal weight and su(2)-spin is given by

h0(j−b ) =
j(j + 1)

κ+ 2
+ jw +

w2κ

4
, j−b = j +

1

2
wκ . (3.7)

This state exists for j = 0, 1
2 , . . . ,

κ−1
2 and w ∈ Z≥0. Here, we excluded j = κ

2 to avoid

overcounting, since, e.g. j = κ
2 , w = 0 and j = 0, w = 1 are the same state.

On top of this state we can apply fractionally moded fermion modes in order to bring

the state closer to the BPS bound. In terms of the original untwisted state with conformal

weight h0 we should apply the lowest m = n−1
2 ψ++ modes since all of them have conformal

weight smaller than n
2 ; thus upon dividing by n as in (3.6), the spin increases more than the

conformal weight. (Applying m + 1 of these fermions is also possible — this just reflects

the fact that each BPS multiplet of the large N = 4 superconformal algebra contains

two BPS states that are obtained from one another by the action of the free fermions of

the algebra, see the comment after eq. (A.15).) The m ψ++ fermions contribute to the

conformal weight 1
2m

2. We can furthermore also use p fermions of the type ψ+− — here we

adopt the notation that a negative p means −p fermions of the type ψ−+ — but it is easy

to see that no other modes can bring one closer to the BPS bound. Again, the contribution

of these p ψ+− (or ψ−+) fermions to the conformal weight is 1
2p

2. We then have

j+ =
1

2
p+

1

2
m, j− = j−b −

1

2
p+

1

2
m. (3.8)
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Using (3.6) with (C.4), the difference to the BPS bound (3.3) is then

∆h =
κ+ 1

κ+ 2

m(m+ 1)

2m+ 1
+
m2 + p2 + 2h0(j−b )

2(2m+ 1)

−
(κ+ 1)N(p+m) +N(2j−b − p+m) + 2(j−b − p)

2

2N(κ+ 2)
. (3.9)

We have searched systematically for states saturating this bound, and we have found that

for all such states p = j−b and thus j+ = j−, as expected, see the discussion at the beginning

of this subsection. Then for each w and j, there are two solutions of the quadratic equation

∆h = 0 in m, which are given by

m = j +
w(κ+ 2)

2
, m = j +

w(κ+ 2)

2
+

4j

κ
. (3.10)

Clearly, the second solution is almost always not an integer. There is one exception,

however, where we need both solutions, namely for j = κ
2 (which can be identified with a

state with j = 0 and different w). A convenient way to get both solutions is to relax the

above condition that j ≤ κ−1
2 to j ≤ κ

2 , and only keep the first solution.

We should note that the result has a slightly irregular structure. The associated spin

quantum numbers are

j+ = j− = j +
1

2
(κ+ 1)w . (3.11)

Thus, if 0 < j < κ−1
2 , the solutions are always integer-spaced. However, when changing

the spectral flow index w, there is one solution which is only half-integer spaced or three-

half-integer spaced, depending on whether κ is even or odd. As an example, we explicitly

list the BPS spectrum for the example κ = 5:

[0, 0]S , [1, 1]S , [2, 2]S ,

[
7

2
,
7

2

]
S

,

[
9

2
,

9

2

]
S

,

[
11

2
,
11

2

]
S

, [6, 6]S , . . . (3.12)

This irregularity does not occur for κ = 0, since then all representations are half integer

spaced. In fact, the second solution of (3.10) is absent in this case.

3.3.2 Even twist

Let us now analyse the BPS states that appear in the even twisted sectors, i.e. for n = 2m.

As explained in appendix D, (3.6) is modified in this case to

hn =
h0

n
+
cn

24
+

1

4n(κ+ 2)
=
h0

n
+

c

24

n2 − 1

n
+

1

4n
. (3.13)

In addition, there are fermionic zero modes which generate the representation (2,1)⊕(1,2),

see appendix D. (The additional term 1
4n can be interpreted as coming from the ground

state energy of the Ramond fermions [33].) Obviously to achieve a BPS state, j+ will be

shifted by +1
2 . Furthermore, we can continue to use the parametrization (3.7), and it is

now advantageous to use m − 1 fermions of the type ψ++, and p fermions of type ψ+−.
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Because of the different moding, they now contribute 1
2m(m − 1) and 1

2p(p − 1) to the

conformal weight, respectively. Then (3.9) becomes in this case

∆h =
κ+ 1

κ+ 2

m

2
+

1

8m(κ+ 2)
+
m(m− 1) + p(p− 1) + 2h(j−b )

4m

−
(κ+ 1)N(p+m) +N(2j−b − p+m− 1) + 2(j−b − p−

1
2)2

2N(κ+ 2)
. (3.14)

Again, an extensive search shows that only states with p = j−b −
1
2 and hence j+ = j−

can satisfy the bound. There is one exception to this rule, however, namely when N is

even: then there are also BPS states in the N -twisted sector which do not satisfy j+ = j−.

But these are high-lying BPS states — they have to be, given our general argument from

the beginning of section 3.3.1 — and thus we will not consider them any further for the

moment; we will come back to them briefly in section 5. Similarly, for each given j and w,

there are two solutions to this equation

m = j +
w(κ+ 2)

2
+

1

2
, m = j +

w(κ+ 2)

2
+

4j

κ
− 1

2
. (3.15)

We again relax the restriction j ≤ κ−1
2 to j ≤ κ

2 in order to accommodate the cases

where the second solution is integer. Luckily, because the terms ±1
2 are now present, these

conspire in such a way that here the half-integer steps occur where previously for odd twists

we had three-half-integer steps and vice versa.

Thus, taking together the contributions from the even- and odd-twisted sectors, we

obtain a regular BPS spectrum. We illustrate this again for the case κ = 5:

twist 1 2 3 4 5 6 8 9

odd [0, 0]S [1, 1]S [2, 2]S [7
2 ,

7
2 ]S

even [1
2 ,

1
2 ]S [3

2 ,
3
2 ]S [5

2 ,
5
2 ]S [3, 3]S

twist 10 11 12 13 15 16 17 18 · · ·
odd [9

2 ,
9
2 ]S [11

2 ,
11
2 ]S [6, 6]S [7, 7]S · · ·

even [4, 4]S [5, 5]S [13
2 ,

13
2 ]S [15

2 ,
15
2 ]S · · ·

(3.16)

This pattern continues in a similar fashion for generic twists. One can see from this

numerical example that there are no BPS states in the twisted sectors of twist n = q(κ+2),

where q ∈ Z>0; we will argue below, see comment (i) in the following subsection, that this

holds in general.

3.4 Recasting and summary of the spectrum

The above method to obtain the BPS spectrum looks quite complicated, and one may be

tempted to suspect that there is a simpler description of the resulting BPS states. Such

a formulation can indeed be given by looking at the supersymmetric su(2)1 ⊕ su(2)κ+1-

current algebra of Sκ. From this perspective, the twisted BPS states arise from the Sκ
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states corresponding to (0, j) upon applying the spectral flow by (2j + w(κ + 1), w) with

respect to su(2)1 ⊕ su(2)κ+1. Several comments are in order.

(i) From (3.10) and (3.15), the corresponding twist is given by n = 2j + 1 + w(κ + 2).

As promised, we see that n does not attain multiples of κ+ 2 and thus these twisted

sectors do not contribute BPS states.

(ii) We see that j and w can be reinterpreted as spins and spectral flow numbers of the

su(2)κ+1-algebra, instead of the bosonic algebra su(2)κ. This explains why including

the case j = κ
2 in the above parametrization accounted precisely for all states. Here,

this property is natural and manifest.

(iii) Spectral flow by one unit in one of the su(2)’s changes the moding of the fermions

from NS-moding to R-moding and vice versa. Thus the above construction leads to

NS-fermions precisely when the sum of both spectral flow parameters is even. But

from (i) we see that the sum equals precisely the cycle length minus one. Thus for

odd cycle length NS-fermions occur, while for even cycle length R-fermions occur.

(iv) The formula for the spectral flow already incorporates the ground state energy of the

Ramond fermions as in (3.13). Thus, we should continue to use (3.6) as the ground

state energy of the twisted sector.

(v) Given (ii), (iii) and (iv) above, it is now easy to calculate the conformal weights and

spins of the given state to confirm that they are indeed the BPS states we found

above. However, it is not very transparent from this perspective why these are the

only BPS states — this is why we presented the more pedestrian argument first.

The BPS spectrum reproduces the one of [7]. However, at least on the face of it, the details

are a bit different, e.g. in [7] the first formulation was used but even and odd twists were

treated uniformly. We have also shown that all low-lying BPS states have j+ = j− and

u = 0, whereas [7] only analysed such BPS states (without showing that these are the

only ones).

Let us finally comment on the cutoff of the spectrum. It is given by

j+
max = j−max =

N(κ+ 1)

2(κ+ 2)
=

c

12
, (3.17)

where c is the central charge of the complete theory. In order to see this we note that there

are no gaps in the spin spectrum, and that each twisted sector contributes one BPS state,

except that there are none for twist n = q(κ + 2). Thus the total number of single-cycle

twisted sectors (N) needs to multiplied by κ+1
κ+2 , leading to (3.17). The cutoff is of course

understood to be the half-integer part of c
12 , i.e. 1

2b
c
6c. In the extreme cases of κ = 0 or

κ→∞, we get 1
4N and 1

2N , respectively. The cutoff 1
2N is indeed familiar from the torus

T4 [34], which on the level of the vacuum sector can be viewed as the limit of S3× S1 with

infinite radius, see [9]. This completes our derivation of eq. (3.2).

– 14 –



J
H
E
P
0
8
(
2
0
1
7
)
1
1
1

4 BPS spectrum in string theory and supergravity

In this section we derive the corresponding BPS spectrum in supergravity and in the explicit

WZW world-sheet description of the background.

4.1 Supergravity

The BPS spectrum of supergravity on AdS3×S3×S3×S1 was analysed from first principles

in [12], correcting the old analysis of [6]. It was found there that only states with equal

spins with respect to the two su(2)’s are BPS, and that the whole BPS spectrum organizes

itself into representations of the large N = 4 superconformal algebra as

∞⊕
j∈ 1

2
Z≥0

[j, j, u = 0]S ⊗ [j, j, u = 0]S . (4.1)

As before, here [j, j, u = 0]S labels the BPS representation of the Aγ algebra, see ap-

pendix A.1 for our conventions. In supergravity, only the wedge-modes of the Aγ algebra

are visible, and thus (4.1) should be read in the sense of (A.15).

4.2 World-sheet analysis

In the same paper, the BPS spectrum was also determined using the explicit worldsheet

description of the background with pure NS-NS flux in terms of WZW models [35–37],

see also [38] and references therein for a description of the supersymmetric setting. Since

we were only interested in the supergravity limit there, it was sufficient to study only the

unflowed representations, for which the spectrum turned out to be the same as (4.1), but

with an upper bound for the spin j — this is a consequence of the unitarity bound of [39],

see also [40],

j ≤ 1

2

⌊
Q+

5 Q
−
5

Q+
5 +Q−5

− 1

⌋
. (4.2)

Since Q1 is to be identified with an upper bound on the spectrally flowed sectors (w ≤
Q1 − 1), we need to include in general also the spectrally flowed sectors (whose relevance

for AdS3 was first recognised in [41]). The analysis of the BPS spectrum for the spectrally

flowed sectors is surprisingly complicated, and since there are misleading statements in

the literature about it, we shall be fairly explicit in the following. The reader who is not

interested in these details, may jump directly to section 5 where the comparison to the Sκ
theories is discussed.

In order to explain the spectrally flowed representations in detail, we need to introduce

a bit of notation beyond that introduced already in [12]. The worldsheet theory is described

in terms of supersymmetric affine theories associated to sl(2,R)k and su(2)k± . For the

spectrally flowed representations, we consider the vector space of the unflowed sl(2,R)k
representations, but define on it the action of sl(2,R)k (and the Virasoro algebra) by the

hatted modes that are related by the spectral flow automorphism to the original modes, see

eq. (B.3) in appendix B. With respect to the hatted modes the representation is then not a

conventional (Virasoro) highest weight representation. However, provided that w > 0, the
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representation (with respect to the hatted modes) consists of lowest weight representations

of the global sl(2,R) algebra — this is the case one is interested in, since then the spectrum

of the dual CFT will be bounded from below. In order to describe the resulting spectrum,

it is convenient to spectrally flow also in the su(2)k± algebra, although this does not lead

to new representations; the relevant spectral flow is also described in eq. (B.3).

4.3 Review: full perturbative BPS spectrum for AdS3 × S3 × T4

Let us begin by reviewing the more familiar case of AdS3 × S3 × T4. In this case the

worldsheet theory consists of an sl(2,R)k WZW model together with a single su(2)k′ WZW

model as well as 4 free bosons and fermions. The requirement that the string theory is

critical leads to the condition that k′ = k, where k = k′ = Q5 in the brane description.

Let us first review the BPS states that come from the unflowed sector. In the NS-sector

(the analysis for the R-sector is similar) the BPS states arise from the representation with

j0 = j′0−1 where j0 and j′0 are the spins of the sl(2,R) and su(2) ground state representation,

respecitvely. In each such sector, there are two types of BPS states, W corresponding to

j = j0 − 1 and Y corresponding to j = j0, see e.g. [31]. The ground state spins in the

unflowed sector are constrained by the Maldacena-Ooguri bound, which requires that the

sl(2,R)-spin of the ground state has to satisfy

1

2
< j0 <

k + 1

2
. (4.3)

(Incorporating the continuous representations of sl(2,R) amounts to taking the upper

bound to be less or equal, so in the following, continuous representations are automatically

taken care of.) In addition to (4.3), there is also the familiar unitarity bound associated to

the bosonic su(2) algebra at level k − 2, which requires that

0 ≤ j′0 ≤
k − 2

2
. (4.4)

Thus from the unflowed sector we get W- and Y-type BPS states for

W : j = 0, . . . ,
k − 2

2

Y : j = 1, . . . ,
k

2
.

(4.5)

In order to describe the BPS states in the spectrally flowed sector, we now consider a BPS

state in the unflowed sector, and let it flow simultaneously by the same w in both the

sl(2,R) and su(2) algebra.

L
sl(2,R)
0 7→ L̂

sl(2,R)
0 = L

sl(2,R)
0 − wJ 3

0 −
k

4
w2

L
su(2)
0 7→ L̂

su(2)
0 = L

su(2)
0 + wK3

0 +
k

4
w2 .

(4.6)

Evaluated on the original BPS state for which the eigenvalues of J 3
0 and K3

0 agree, the

total L0 then remains unchanged,

L0 = L
sl(2,R)
0 + L

su(2)
0 7→ L̂0 = L0 . (4.7)
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Thus the flowed state is again on-shell and passes also all the other requirements for being

physical. Furthermore, since the J 3
0 and K3

0 eigenvalues are shifted by the same amount

(namely k
2w), the new state is again BPS, but with a spin that is now

j 7→ j +
k

2
w . (4.8)

Spectrally flowing thus allows us to obtain BPS states whose spins go beyond the

finite range described by (4.5). However, the resulting spectrum still has gaps [31, 42]. In

particular, the W-type BPS states with j = −1
2 + k

2Z>0 do not arise, and for the Y-type

those with j = 1
2 + k

2Z>0 are missing. Combining this with the analysis in the R-sector and

putting left- and right-movers together then leads to the BPS spectrum of the worldsheet

theory for T4, given by

⊕
j∈ 1

2
Z≥0\ k2Z>0

([
j − 1

2

]
S

⊕ 2 [j]S ⊕
[
j +

1

2

]
S

)
⊗

([
j − 1

2

]
S

⊕ 2[j]S ⊕
[
j +

1

2

]
S

)
. (4.9)

Here [j]S denotes the short representation of the small N = 4 algebra, see, e.g. [43].

The missing chiral primaries, i.e. the missing terms j ∈ k
2Z break explicitly the T-

duality the theory is supposed to have, since the expression is no longer symmetric in Q1

and Q5 = k, see the discussion at the end of section 2.1. However, this is believed to

be a special feature of the pure NS-NS background, and these missing chiral primaries

are expected to be hidden at the instanton singularity [11]. The corrected BPS spectrum

thus reads

c
12⊕

j∈ 1
2
Z≥0

([
j − 1

2

]
S

⊕ 2 [j]S ⊕
[
j +

1

2

]
S

)
⊗

([
j − 1

2

]
S

⊕ 2[j]S ⊕
[
j +

1

2

]
S

)
. (4.10)

Finally, in order to understand the upper bound of (4.10), we note that Q1 should be

identified with the maximal winding number as

Q1 = |w|+ 1 (4.11)

since w + 1 corresponds to the number of fundamental strings (one short, and a long one,

winding w times around AdS3). Thus the upper bound for j is

j ≤ 1

2
k Q1 =

1

2
Q1Q5 =

c

12
. (4.12)

4.4 The full perturbative BPS spectrum for AdS3 × S3 × S3 × S1

For the case of AdS3 × S3 × S3 × S1, the situation is much more complicated because the

BPS states in the spectrally flowed sectors do not directly originate from BPS states in the

unflowed sector. We begin with the technically easier case of the R-sector on the worldsheet.
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4.4.1 R-sector

In the R-sector, the BPS states in the spectrally flowed sectors always originate from ground

states before spectral flow. Recall from [12] that the L0 eigenvalues of the ground states

in the unflowed sector are

L
sl(2,R)
0 = −j0(j0 − 1)

k
and L

su(2)±

0 =
j±0 (j±0 + 1)

k
, (4.13)

where j0 and j±0 denote the sl(2,R)k+2, su(2)k±−2 decoupled bosonic spins of the ground

state. Flowing by w, w+ and w− in sl(2,R)k, su(2)k+ and su(2)k− , respectively, the L0

eigenvalues are shifted by

L
sl(2,R)
0 7→ L̂

sl(2,R)
0 = L

sl(2,R)
0 − w

(
j0 −

1

2

)
− k

4
w2

L
su(2)±

0 7→ L̂
su(2)±

0 = L
su(2)±

0 + w±
(
j±0 +

1

2

)
+
k

4
(w±)2 .

(4.14)

Note that shift by ±1
2 in the terms proportional to w and w±, respectively, comes from

the fact that the spectral flow is performed with respect to the full (coupled) algebra, and

the spin with respect to the coupled algebra is shifted by ±1
2 , see e.g. [38] for a detailed

discussion. (In order to move closer to the BPS bound, we choose the shift so as to lower

the sl(2,R)-spin, but to increase the su(2)-spins.) After spectral flow, the resulting spins

are then equal to

j = j0 +
kw

2
− 1

2
and j± = j±0 +

k±w±

2
+

1

2
. (4.15)

The mass shell condition in the spectrally flowed sector is thus

− j0(j0 − 1)

k
− w

(
j0 −

1

2

)
− k

4
w2 +

j+
0 (j+

0 + 1)

k+
+ w+

(
j+
0 +

1

2

)
+
k+

4
(w+)2

+
j−0 (j−0 + 1)

k−
+ w−

(
j−0 +

1

2

)
+
k−

4
(w−)2 = 0 . (4.16)

The crucial observation is now that (4.16) can be rewritten in terms of j and j± as

−
j2 − 1

4

k
+

(j+)2 − 1
4

k+
+

(j−)2 − 1
4

k−
= −j

2

k
+

(j+)2

k+
+

(j−)2

k−
= 0 . (4.17)

This gives a relation for j in terms of j+ and j−. Combining with the Aγ BPS bound, one

can easily see that there are no BPS states with j+ 6= j− whose unflowed spin j0 satisfies

the Maldacena-Ooguri bound — this follows by a similar argument as for the unflowed NS

sector in [12]. On the other hand, setting

j = j+ = j− (4.18)

clearly solves equation (4.17) since the levels of the coupled algebras must satisfy

1

k
=

1

k+
+

1

k−
, (4.19)
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as follows from criticality, see e.g. [12] for more details. In addition, the corresponding

state is BPS. Furthermore, by choosing w suitably, any half-integer j can be written in the

form (4.15) where j0 satisfies the Maldacena-Ooguri bound (4.3). Thus, we conclude that

there is a BPS state for each half-integer value of j = j+ = j−.

There is however one subtlety. Since the spin j±0 of the ground state of the bosonic

su(2)k±−2 algebra must be of the form j±0 = 0, 1
2 , . . . ,

k±−2
2 , we can never obtain

j+ 6∈ k
+

2
Z>0 and j− 6∈ k

−

2
Z>0 . (4.20)

Thus it follows from (4.18) that

j 6∈ k
+

2
Z>0 ∪

k−

2
Z>0 . (4.21)

We therefore conclude that BPS states that arise from the R-sector are of the form⊕
j∈ 1

2
Z>0\

(
k+

2
Z>0∪ k

−
2

Z>0

)(j, j, u = 0)S . (4.22)

Here, round brackets refer to BPS states, not to complete BPS multiplet.

Recall from the representation theory of the large N = 4 superconformal algebra that

a BPS multiplet always contains two BPS states, the latter being obtained by acting with

the fermion Q++
−1/2 on the highest weight state. From the space-time viewpoint, the action

of Q++
−1/2 maps an NS-sector worldsheet state to a R-sector state and vice versa. Thus

the above states will need to combined with suitable NS-sector states to form full large

N = 4 multiplets.

4.4.2 NS sector

The analysis for the spectrally flowed NS sector is similar, except that in the NS-sector

the states before spectral flow are not ground states, but involve also −1
2 fermion modes.

As it turns out, we only need at most one fermionic mode in each of the three algebras,

and we can hence parametrize the unflowed state in terms of δ, δ± ∈ {0, 1}, where δ = 0, 1

means that a sl(2,R) mode has or has not been applied, and similarly for the two su(2)k±

algebras. (The relevant mode must again decrease the sl(2,R) spin, and increase the su(2)

spins in order to bring the state closer to the BPS bound.) After spectral flow, the massshell

condition then reads

− j0(j0 − 1)

k
− w(j0 − δ)−

k

4
w2 +

j+
0 (j+

0 + 1)

k+
+ w+(j+

0 + δ+) +
k+

4
(w+)2

+
j−0 (j−0 + 1)

k−
+ w−(j−0 + δ−) +

k−

4
(w−)2 +

1

2
δ +

1

2
δ+ +

1

2
δ− =

1

2
. (4.23)

The true spins j, j+ and j− are given by

j = j0 +
kw

2
− δ , j± = j±0 +

k±w±

2
+ δ± . (4.24)
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It is not entirely trivial to find the solutions that saturate the BPS bound, and the detailed

construction is described in appendix E. It follows from the analysis there that the NS-

sector BPS spectrum equals5 ⊕
j∈ 1

2
Z≥0\( 1

2
bkZ≥0c\ 12 lcm(k+,k−)Z≥0 ∪ ( 1

2
bkZ≥0c+ 1

2)\( 1
2

lcm(k+,k−)Z≥0+ 1
2))

(j, j, u = 0)S

⊕
⊕

j∈ k+
2

Z>0∪ k
−
2

Z>0

(j, j, u = 0)S ,
(4.25)

where as in R sector the round brackets refer to BPS states rather than to complete

BPS multiplets. Here k is the level of the supersymmetric sl(2,R) WZW model, defined

via (4.19). bkZ>0c denotes the elementwise floor of this set — this is necessary since k

is not an integer in the generic case, which complicates the analysis significantly. The

Maldacena-Ooguri bound (4.3) still applies, and it implies that the states 1
2bkZ>0c are

located at the boundary between two successive spectrally flowed sectors, exactly as in the

case of T4, see (4.9).

4.4.3 Full perturbative BPS spectrum

Combining the BPS states in the R-sector (4.22) with those in the NS-sector (4.25),

we obtain ⊕
j∈ 1

2
Z≥0\( 1

2
bkZ≥0c\ 12 lcm(k+,k−)Z≥0)

(j, j, u = 0)S ⊕
(
j +

1

2
, j +

1

2
, u = 0

)
S

. (4.26)

Again, the round brackets refer to BPS states instead of the complete BPS multiplets. It

is very reassuring that (4.26) fits into BPS multiplets (as it has to), i.e. that the terms in

the sum are just the BPS states of the multiplet

[j, j, u = 0]S = (j, j, u = 0)S ⊕
(
j +

1

2
, j +

1

2
, u = 0

)
S

(4.27)

(that contains two BPS states). The above discussion explains also when the R-sector state

is the highest weight state of the BPS multiplet and when the NS-sector state is. The full

spectrum (including right-movers) is then obtained by tensoring the BPS representations

[j, j, u = 0]S (for a given j) for left- and right-movers; this then leads to

c
12⊕

j∈ 1
2
Z≥0\( 1

2
bkZ≥0c\ 12 lcm(k+,k−)Z≥0)

[j, j, u = 0]S ⊗ [j, j, u = 0]S . (4.28)

A few comments are in order. First of all, we note that

1

2
Z≥0 ∩

1

2
kZ≥0 =

1

2
lcm(k+, k−)Z≥0 , (4.29)

5Strictly speaking, this formula is only true for k ≥ 2, see the comment below eq. (E.6).

– 20 –



J
H
E
P
0
8
(
2
0
1
7
)
1
1
1

so the states j, with j divisible by k+

2 and k−

2 appear in the sum. Secondly, taking the limit

of k− → ∞ in (4.28) indeed gives back (4.9). Finally, the cutoff c
12 arises in exactly same

manner as it did for T4, i.e. imposing a maximum spectral flow w for sl(2,R) by (4.11)

imposes an upper limit on j.

Some of the BPS states can be obtained by spectrally flowing the BPS states of the

unflowed sector, as was possible for the case of T4 above. However, in order for this proce-

dure to map BPS states to BPS states, we must now choose the spectral flow parameters

of the two su(2)’s as a function of the spectral flow parameter w of sl(2,R) as

w+ =
k−w

k+ + k−
, w− =

k+w

k+ + k−
. (4.30)

On the other hand, w± ∈ Z must be integers, and hence this is not always possible, but

only when w is a multiple of (k+ +k−)/gcd(k+, k−). Hence this accounts only for a fraction

of the BPS states. These special states were already identified in [31] in the particular case

of k+ = k−, but the other BPS states were overlooked.

Now again by the general logic of [11], we expect this BPS spectrum to be corrected to
c
12⊕

j∈ 1
2
Z≥0

[j, j, u = 0]S ⊗ [j, j, u = 0]S . (4.31)

This spectrum then agrees with the supergravity spectrum (4.1) in the limit c → ∞, and

this is the spectrum with which we should compare the BPS spectrum of the dual CFT.

5 Comparison between symmetric orbifold and world-sheet

After these preparations, it is now straightforward to compare the BPS spectra of the

different descriptions. We shall also make a few additional comments in support of our pro-

posal.

5.1 BPS spectrum

The low-lying single-particle BPS spectrum of the symmetric orbifold of Sκ was calcu-

lated in eq. (3.2), and this agrees exactly with the BPS of string theory as determined in

eq. (4.31). Apart from the fact that there is a single BPS multiplet for each half-integer

spin, also the upper cutoff matches exactly. This is quite non-trivial, since this upper

bound arises in quit different ways in the two descriptions.

The CFT has three types of additional BPS states, which we now discuss in turn.

1. Multi-particle states: since the single-particle BPS spectrum agrees on the two sides,

and since the states are constructed in exactly the same manner in the CFT and in

supergravity or the world-sheet theory, the multi-particle states must also agree.

2. There are further BPS states arising from the untwisted sector, as discussed in sub-

section 3.2.6 At conformal weight

h =
c

24
<

c

12
(5.1)

6This phenomenon occurs also for T4 and K3, and it was discussed in detail in [4] for the case of K3.
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the Ramond ground state appears, which corresponds to a black hole in supergravity,

so we expect, a priori, only agreement of the BPS spectrum up to c
24 . However, as

for T4 and K3, the agreement continues actually up to c
12 . The additional BPS

states from the untwisted sector should correspond to BPS states in the geometry

BTZ× S3× S3× S1. The cutoff c
12 seems to be a generic feature of string holography

on AdS3-backgrounds.

3. Finally, the symmetric orbifold of Sκ possesses additional BPS states in the maximally

twisted sector, provided that the number of copies is even. This corresponds to a

deeply stringy effect and hence cannot be seen in supergravity, nor in the worldsheet

description, where the emergence of Q1 is somewhat hidden. The relevant states all

have spins j+ 6= j−, and therefore do not give rise to N = 2 chiral primaries, as will

be discussed in the following subsection.

5.2 The chiral ring

The large N = 4 superconformal algebra contains an N = 2 superconformal algebra as a

subalgebra [7, 29], see appendix A.2 for a short review. It is not difficult to see that the

only BPS states of the large N = 4 superconformal algebra that are also BPS with respect

to this N = 2 subalgebra are those with j+ = j− and u = 0. Indeed, the BPS bound of

the N = 2 algebra agrees with the one of D(2, 1|α) (A.14), as one can see from (A.16).

This implies that the only N = 2 chiral primaries have j+ = j− and u = 0, since otherwise

the state would violate the N = 4 BPS bound. The highest weight state with respect to

the two su(2)-algebras is a chiral primary state, while the lowest weight state describes an

anti-chiral primary. This explains also why the BPS bound (3.3) has such a simple form

in this case.

It is very intriguing that the only BPS multiplets of supergravity are of this form,

i.e. contain N = 2 chiral (or anti-chiral) primary states. In particular, it is known that the

spectrum of N = 2 chiral primaries is invariant under deformations,7 and thus we should

find the same chiral primary spectrum at all points in moduli space. This is nicely borne

out by our analysis: the only additional BPS states of the symmetric orbifold of Sκ (that

appear in the maximally twisted sector provided that the number of copies is even) always

have different spins j+ 6= j−, and hence do not give rise to (stable) N = 2 chiral primary

states. It also ties in nicely with the conclusions reached in [47] where using integrability

arguments it was argued that the BPS spectrum is the same everwhere in moduli space

(and that it only consists of BPS states with j+ = j−).

We should also stress that the moduli correspond to special BPS states of this kind:

they are described by the states with j+ = j− = 1
2 . In particular, our dual CFT has

therefore the same number of moduli (namely one complex modulus) as supergravity or

the world-sheet description.

Finally, one might wonder whether one can compare the elliptic genus for this N = 2

subalgebra as this would also explore the 1/4 BPS spectrum. However, as remarked in [48],

7For the benefit of the reader, we have recalled the argument building upon [44–46] in appendix F

showing that these primaries are stable to all orders of conformal perturbation theory.
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the elliptic genus for this subalgebra always vanishes, as it did in the case of T4.8 It is

possible to modify the index so that it does not vanish [48]. (This is the natural analogue

of the construction of [32] for the case of T4.) However, in either case, the resulting

index does not give rise to interesting constraints. For example, in our context only the

untwisted sector contributes to the low-lying spectrum, while the contributions from the

twisted sectors cancel out.

5.3 An effective T2 description

The form of the chiral primary spectrum is formally the same as that of the symmetric

orbifold of T2. In order to see this, recall that a large N = 4 BPS multiplet always contains

two N = 2 chiral primaries: in addition to the highest weight, the state that is obtained

by the action of the free fermion Q++
−1/2 is also chiral primary. Thus the chiral primary

spectrum is given by c
6 overlapping diamonds of the form

1

1 1

1

(5.2)

Since (5.2) is the Hodge diamond of T2, the BPS spectrum has the same form as the

symmetric orbifold of T2. This also has a neat microscopic interpretation, at least for

κ = 0: the algebra S0 consists of 4 free fermions and one boson — the su(2)κ theory

disappears at κ = 0. Two fermions of the four are uncharged w.r.t. the u(1)-current (ψ+−

and ψ−+). These two fermions only appear together as a bilinear combination in the

generators of the N = 2 subalgebra, as one can see from (C.2) and (A.16). We can thus

bosonize the two uncharged fermions and write down the N = 2 algebra without the use of

vertex operators. We thus obtain a torus theory, where the N = 2 algebra agrees with the

canonical N = 2 structure on T2. Among other things, this allows us to copy well-known

results for the chiral ring of the σ-model on T2 for S0. In particular the chiral ring of

the Q1-fold symmetric orbifold of S0 can be identified with the Dolbeault cohomology ring

of (T2)Q1/SQ1 . It is well-known that this cohomology ring has the structure of a Fock

space of free particles [28, 45, 49, 50], one particle for every cohomology element of T2.

Furthermore, the cohomology of the Q1-fold symmetric product corresponds to the subset

in this Fock space with conformal weight Q1.

In particular, it is easy to write down a generating function for the Poincaré polynomial

of the symmetric product [43, eq. (5.4)], see also [51] for a mathematical treatment for the

case of K3

∞∑
Q1=0

pQ1Pt,t̄
(
SymQ1 (S0)

)
=
∞∏
m=1

(
1+pmt

1
2

(m+1)t̄
1
2

(m−1)
)(

1+pmt
1
2

(m−1)t̄
1
2

(m+1)
)

(
1−pmt

1
2

(m−1)t̄
1
2

(m−1)
)(

1−pmt
1
2

(m+1)t̄
1
2

(m+1)
) . (5.3)

8One might ask whether we could orbifold S3×S1 to obtain another 4D HKT manifold that has non-

vanishing index, as is the case for T4 that leads to K3 upon taking a Z2 orbifold. However this is not

possible, since there are no other 4d HKT spaces.

– 23 –



J
H
E
P
0
8
(
2
0
1
7
)
1
1
1

Here, the variable m parametrizes the length of the cycle, and to extract the contribution

from a single-twist cycle of length n, we take one term coming from m = n, with all the

other terms coming from the vacuum contribution m = 1 and the term (1 − p)−1. More

specifically, the single-twist contribution from the n-twisted sector turns out to be

∞∑
Q1=n

pQ1Pn−twist
t,t̄

(
SymQ1 (S0)

)
=
pnt

1
2
nt̄

1
2
n

1− p

(
t
1
2 t̄

1
2 + t

1
2 t̄−

1
2 + t−

1
2 t̄

1
2 + t−

1
2 t̄−

1
2

)
(5.4)

and in particular does not change when increasing Q1 beyond n. We see that the exponents

of t and t̄ are only integers when n is odd. Hence only those states can lift to BPS

representations [j, j, u = 0]S of the large N = 4 algebra, since these states always have

half-integer charges, i.e. integer exponents of t and t̄. The contribution is then simply given

by a diamond at height 1
2(n− 1), and since n ≤ Q1, the maximal achievable exponent of t

(or t̄) is 1
2Q1. This then reproduces precisely the chiral primary spectrum of eq. (3.2) with

the correct cutoff.

6 Discussion and outlook

In this paper we have identified the CFT dual of string theory on AdS3 × S3 × S3 × S1 for

the case that the larger of the two Q±5 quantum numbers is a multiple of the smaller one:

for the case that Q−5 ≥ Q
+
5 , the relevant CFT is the symmetric orbifold

SymQ1Q
+
5 (Sκ) with κ =

Q−5
Q+

5

− 1 . (6.1)

This proposal was motived by considering a brane construction, from which the CFT dual

could be read off; this argument is fairly clean provided that Q+
5 = 1, while for Q+

5 > 1 our

proposal is more of an educated guess. In either case, however, we have managed to give

convincing evidence for this proposal. In particular, we have shown that the BPS spectra

of the dual CFT reproduces exactly that of supergravity or the world-sheet description. In

fact, the agreement is as good as for the familiar case of T4. As a consequence the moduli

also match. Finally, our proposal also has the right behaviour in the limit in which the

radius of the S3 goes to infinity: the chiral algebra of the dual CFT then becomes that of

the symmetric orbifold of T4, as expected, see also [9].

It would be very interesting to perform further tests on the proposal; for example, it

would be very interesting to compare 3-point functions as in [2, 3]. It would also be very

interesting to understand to which extent our proposal fits together with the UV description

suggested in [52], and how it relates to the large N = 4 superconformal higher spin — CFT

duality of [8]. We hope to come back to some of these questions in the near future.
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A The large N = 4 algebra and its BPS bound

In bi-spinor notation, the large N = 4 superconformal algebra Aγ is generated by

[Um, Un] =
k+ + k−

2
mδm,−n (A.1)

[A+,i
m , Qµνr ] =

1

2
(σi) µ

ρ Qρνm+r (A.2)

[A−,im , Qµνr ] =
1

2
(σi) ν

ρ Qµρm+r (A.3)

{Qµνr , Qρτs } = (k+ + k−) εµρεντ δr,−s (A.4)

[A±,im , A±,jn ] =
k±

2
mδij δm,−n + i εijlA±,lm+n (A.5)

[Um, G
µν
r ] = imQµνm+r (A.6)

[A+,i
m , Gµνr ] =

1

2
(σi) µ

ρ Gρνm+r + (1− γ)m (σi) µ
ρ Qρνm+r (A.7)

[A−,im , Gµνr ] =
1

2
(σi) ν

ρ Gµρm+r − γ m (σi) ν
ρ Qµρm+r (A.8)

{Qµνr , Gρτs } = 2 εµπ(σi)
ρ
π ε

ντ A+,i
r+s − 2ενπ(σi)

τ
π εµρA−,ir+s + 2i εµρεντ Ur+s (A.9)

{Gµνr , Gρτs } = −2c

3
εµρεντ

(
r2 − 1

4

)
δr,−s − 4εµρεντ Lr+s

+ 4 (r − s)
(
γ εµπ(σi) ρ

π ε
ντ A+,i

r+s + (1− γ) ενπ(σi) τ
π εµρA−,ir+s

)
. (A.10)

In terms of the levels of the two su(2) algebras, we have

γ =
k−

k+ + k−
, c =

6k+k−

k+ + k−
. (A.11)

Here, greek indices µ, ν, . . . indices are spinor indices and get as usual raised and lowered

by the epsilon symbol εµν , which we have indicated explicitly. Indices i, j, . . . are adjoint

indices of su(2). Finally, σi denotes the Pauli matrices, i.e. the two-dimensional spinor

representation of su(2).

A.1 The BPS bound

The highest weight representations of the large superconformal N = 4 algebra Aγ are

characterized by (h, j±, u), where h is the conformal dimension of the highest weight states,

while j± are the spins of the two affine su(2) algebras, and u denotes the u(1)-charge, i.e.
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the eigenvalue under U0. Unitarity implies that j± ≤ k±

2 . However, as explained in [29],

unitarity actually requires that

j± ≤ k± − 1

2
. (A.12)

The BPS bound takes the form [29, 53, 54]

h ≥ 1

k+ + k−

[
k+j− + k−j+ + u2 + (j+ − j−)2

]
. (A.13)

Note that this bound differs from the corresponding BPS bound of the wedge algebra

D(2, 1|α), whose BPS bound is [6, 7]

h ≥
[

1

1 + α
j− +

α

1 + α
j+

]
. (A.14)

Indeed, apart from the additional u2 term there is in particular also the (j+ − j−)2 term.

If we denote the corresponding representation by [j+, j−, u] then it only satisfies the BPS

bound of D(2, 1|α) if u = 0 and j+ = j−. On the other hand, if this is the case, the BPS

representation [j+, j−, u] of the linear Aγ algebra contains actually two BPS representations

of D(2, 1|α)

[j, j, u = 0]S = [j, j]s ⊕ [j +
1

2
, j ⊕ 1

2
]s ⊕ non-BPS reps of D(2, 1|α) . (A.15)

This is basically a consequence of the fact that in addition to the four supercharges (that

also appear in D(2, 1|α)), Aγ also contains four free fermions. In particular, every BPS

representation of Aγ contains always two BPS states whose spins differ by j±
′
= j± + 1

2 .

A.2 The N = 2 subalgebra

The large superconformal N = 4 algebra contains a superconformal N = 2 algebra [7]. Set

J = 2i(γA+,3 + (1− γ)A−,3) , (A.16)

this constitutes together with G++, G−− and the energy-momentum tensor an N = 2

algebra. Chiral primaries of this N = 2 algebra correspond to BPS states of the large

N = 4 algebra of the form (j, j, u = 0)S . Moreover, by (A.15), every short representation

of the form [j, j, u = 0]S of the large N = 4 algebra contains two chiral primaries of the

N = 2 subalgebra.

B Superconformal affine algebras

In this appendix we review briefly the structure of superconformal affine algebras. We will

only be interested in two examples, the algebra sl(2,R)
(1)
k and the algebra su(2)

(1)
k′ . For the

former we choose a basis as[
J +
m ,J −n

]
= − 2J 3

m+n + kmδm,−n
[
J 3
m,J ±n

]
= ± J ±m+n

[
J 3
m,J 3

n

]
= − k

2
mδm,−n[

J ±m , ψ3
r

]
= ∓ ψ±m+r

[
J 3
m, ψ

±
r

]
= ± ψ±m+r

[
J ±m , ψ∓r

]
= ∓ 2ψ3

m+r{
ψ+
r , ψ

−
s

}
= kδr,−s

{
ψ3
r , ψ

3
s

}
= − k

2
δr,−s . (B.1)
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On the other hand, the affine su(2)
(1)
k′ generators satisfy

[
K+
m,K−n

]
= 2K3

m+n + k′mδm,−n
[
K3
m,K±n

]
= ±K±m+n

[
K3
m,K3

n

]
=
k′

2
mδm,−n[

K±m, χ3
r

]
= ∓ χ±m+r

[
K3
m, χ

±
r

]
= ± χ±m+r

[
K±m, χ

∓
r

]
= ± 2χ3

m+r{
χ+
r , χ

−
s

}
= k′δr,−s

{
χ3
r , χ

3
s

}
=
k′

2
δr,−s . (B.2)

In each case it is possible to decouple the fermions from the bosons, i.e. to redefine the

bosonic generators by bilinears in the fermions so that they commute with the fermions.

For sl(2,R)
(1)
k , the resulting decoupled bosonic algebra then has level k+2, while for su(2)

(1)
k′

the level of the decoupled bosonic algebra is k′ − 2.

B.1 Spectral flow automorphism

For the description of the spectrally flowed representations the existence of a family of

automorphisms is important. For any w ∈ Z, we define new generators as

Ĵ ±n = J ±n∓w K̂±n = K±n±w

Ĵ 3
n = J 3

n +
k

2
wδn,0 K̂3

n = K3
n +

k′

2
wδn,0

L̂sl
n = Lsl

n − wJ 3
n −

k

4
w2δn,0 L̂su

n = Lsu
n + wK3

n +
k′

4
w2δn,0

ψ̂3
r = ψ3

r χ̂3
r = χ3

r

ψ̂±r = ψ±r∓w χ̂±r = χ±r±w .

(B.3)

One verifies easily that these new generators also satisfy the commutation relations of the

superconformal affine algebra, i.e. eqs. (B.1) and (B.2) above. In addition, they satisfy

the relations

[Lsl
m,J an ] = −nJ am+n , [Lsu

m,Kan] = −nKam+n , (B.4)

and similarly for the fermions,[
Lsl
m, ψ

a
n

]
=
(
−m

2
− n

)
ψam+n , [Lsu

m, χ
a
n] =

(
−m

2
− n

)
χam+n . (B.5)

C Sκ theory and its chiral algebra

Since the Sκ algebra, i.e. the chiral algebra of the Sκ theory, will play a central role for the

remainder of the paper, we shall briefly review its structure here. The superconformal affine

algebra su(2)
(1)
κ+2 is generated by bosonic generators (that define an affine su(2) algebra at

level κ+2), as well as free fermions in the adjoint representation of su(2), see appendix B for

an explicit description. As is also mentioned there, it is possible to decouple the fermions

from the bosons, and the resulting (decoupled) generators (that we shall denote by J i with

i = 1, 2, 3) then have level κ. The u(1)(1) algebra, on the other hand, consists of a single

free boson that we shall denote by ∂φ, as well as a single free fermion. (For u(1), there is no

need to decouple the fermion since the commutators in the adjoint representation vanish

anyway.) Together with the three fermions from su(2)(1) we therefore have altogether four
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decoupled free fermions that we denote by ψµν with µ, ν = 1, 2 being bispinor indices as

explained in appendix A. The commutation relations of the associated modes are then

[J in, J
j
m] = εijlJ

l
m+n + κmδij δm,−n

[αm, αn] = mδm,−n

{ψµνr , ψρτs } = εµρεντδr,−s ,

(C.1)

where we have denoted the modes of the free boson ∂φ by αm. The bilinears in the fermions

generate the current algebra so(4)1
∼= su(2)1⊕su(2)1, with respect to which they transform

in the representation 4 = (2,2). The Sκ algebra contains the large N = 4 superconformal

algebra (whose definition we spell out, for the convenience of the reader, in appendix A),

where the associated fields are defined as [14]

Lm =
1

2
(αα)m +

(J iJ i)m
κ+ 2

− 1

4
εµρεντ (ψµν∂ψρτ )m

A+,i
m =

1

8
εντ (σi) π

µ επρ(ψ
µνψρτ )m

A−,im =
1

8
εµρ(σ

i) π
ν επτ (ψµνψρτ )m + J im

Gµνr = i (αψµν)r −
1

3

√
2

κ+ 2
(σi)

µ
ρ (A+,iψρν)r +

2

3

√
2

κ+ 2
(σi)

ν
ρ (J iψµρ)r

− 1

3

√
2

κ+ 2
(σi)

ν
ρ (A−,iψµρ)r

Um =

√
κ+ 2

2
αm

Qµνr =

√
κ+ 2

2
ψµνr .

(C.2)

In this realization, the two affine su(2) algebras appear at level

Q+
5 = k+ = 1 and Q−5 = k− = κ+ 1 . (C.3)

The central charge of the Sκ theory is then

c(Sκ) =
3κ

κ+ 2
+ 3 = 6

κ+ 1

κ+ 2
. (C.4)

It is obvious that the symmetric orbifold (2.12) inherits the largeN = 4 superconformal

symmetry from its seed theory, and that its levels are (Q1Q
+
5 , Q1Q

−
5 ). It therefore has the

correct charges to match the expectations from [5, 7].

D Character derivation of the twisted sector spectrum

In this appendix, we derive the claims made about twist sectors of the symmetric product

orbifold of Sκ in the main text. The partition function of a single Sκ-theory reads

Z (q, y, z) = Zbos (q)Zsu(2)κ
(q, z)

∣∣∣q− 1
12

∞∏
m=1

(
1 + y

1
2 z

1
2 qm−

1
2

)(
1 + y−

1
2 z

1
2 qm−

1
2

)
×
(

1 + y
1
2 z−

1
2 qm−

1
2

)(
1 + y−

1
2 z−

1
2 qm−

1
2

) ∣∣∣2 (D.1)
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= Zbos (q)Zsu(2)κ
(q, z)

∣∣∣∣∣ϑ3

(
1
2 (ξ + ζ) ; τ

)
ϑ3

(
1
2 (ξ − ζ) ; τ

)
η (τ)2

∣∣∣∣∣
2

. (D.2)

Here, Zbos(q) and Zsu(2)κ are the partition functions of the free boson and of su(2)κ, respec-

tively. We shall not need their precise forms, only the fact that they are modular invariant.

Finally, y = e2πiξ and z = e2πiζ are the chemical potentials for the two su(2)’s.

D.1 Odd twist

Consider an odd cyclic twist of length n. Then

1�
(1···n)

= Z(qn, yn, zn)
(
Z(q, y, z)

)N−n
. (D.3)

We now perform an S-modular transformation to relate this to the sector where the bound-

ary conditions along the two cycles of the torus are interchanged. Omitting phase factors

obtained from the Jacobi form transformations, this leads to

(1 · · ·n)�
1

= Z(q
1
n , y, z)

(
Z(q, y, z)

)N−n
, (D.4)

where we have used the modular properties of the theta functions. Thus, we can interpret

the states as generated by the usual operators, but fractionally moded. Furthermore, in

order to determine the ground state energy we note that the leading term is q−
c

24n
− c

24
(N−n),

where c is the central charge of Sκ. Since the total central charge of the symmetric orbifold

is cN , the ground state energy relative to the vacuum is

h =
c

24n
(n2 − 1) . (D.5)

Furthermore, since in (D.4), q
1
n instead of q appears, the conformal weights are divided by

a factor n. This then yields eq. (3.6).

D.2 Even twist

For even twist the story is more subtle. Combining an even number of fermions changes

the statistics [33], so the character has an additional (−1)F inserted. Thus, in this case

1�
(1···n)

= Zbos(q
n)Zsu(2)κ(qn, zn)

∣∣∣∣ϑ4(n2 (ξ + ζ);nτ)ϑ4(n2 (ξ − ζ);nτ)

η(nτ)2

∣∣∣∣2 (Z(q, y, z)
)N−n

,

(D.6)

where now different theta functions appear. Under a modular S-transformation, ϑ4 trans-

forms into ϑ2, and we obtain

(1 · · ·n)�
1

= Zbos

(
q

1
n

)
Zsu(2)κ

(
q

1
n , z
)
|y

1
2 + y−

1
2 + z

1
2 + z−

1
2 |2 (qq̄)

1
6n

×
∣∣∣ ∞∏
m=1

(
1 + y

1
2 z

1
2 q

m
n

)(
1 + y

1
2 z−

1
2 q

m
n

)(
1 + y−

1
2 z

1
2 q

m
n

)(
1 + y−

1
2 z−

1
2 q

m
n

) ∣∣∣2
× (Z (q, y, z))N−n . (D.7)

– 29 –



J
H
E
P
0
8
(
2
0
1
7
)
1
1
1

Thus, again the operators are fractionally moded. For the bosons, the analysis is unchanged

relative to odd twist, whereas for the fermions, instead of the q−
1

12n we now have q
1
6n . Thus

the ground state energy is in this case

h =
cn

24
+

1

24n

[
4− 1− 3κ

κ+ 2

]
=
cn

24
+

1

4n (κ+ 2)
. (D.8)

Note that the last term is positive and goes away in the limit κ → ∞, as is well-known

for the case of T4. Since ϑ2 appears in the twisted sector, the relevant representation has

fermionic zero modes, and the ground states transform as (2,1)⊕ (1,2), i.e. as the spinor

representation of so(4). The orbifold projection eliminates some of the ground states since

the fermionic zero-modes are odd under the orbifold action. Combining left- and right-

movers, the surviving states are then
[
(1,2)⊗ (1,2)

]
⊕
[
(2,1)⊗ (2,1)

]
. (Since the orbifold

acts symmetrically on left- and right-movers, the same should be the case for the orbifold

projection in the twisted sectors.)

E BPS states in the spectrally flowed NS sectors

In this appendix we will construct the BPS states, solving (4.23). As we explained above,

the BPS states must come in pairs, i.e. to each BPS state in the R-sector, there must be

a corresponding BPS state in the NS sector with spins shifted by ±1
2 . Starting from a

R-sector BPS state of subsection 4.4.1 characterized by jR, jR±, j0, j±0 , w and w±, we can

write down two canonical candidates for BPS states in the NS-sector, one with the spins

shifted up by 1
2 , the other with the spins shifted down by 1

2 :

(i) The following state has the spins shifted down by 1
2 :

jNS = jR − 1

2
, jNS± = jR± − 1

2
. (E.1)

We can achieve this by setting j0, j±0 , w and w± to the same values as in the R-sector.

Furthermore, we set δ = 1, δ+ = δ− = 0. The state has then the required quantum

numbers. The mass shell condition (4.23) is satisfied, provided that

w = w+ + w− . (E.2)

Since we (implicitly) apply w + w+ + w− = 2w fermions due to spectral flow and

since δ = 1, δ± = 0, we have an odd number of fermions altogether (as required by

the GSO projection).

(ii) Similarly, we construct a state with spins shifted up by 1
2 :

jNS = jR +
1

2
, jNS± = jR± +

1

2
. (E.3)

Again, j0, j±0 , w and w± take the same values as in the R-sector, but in this case we

set δ = 0, δ+ = δ− = 1. Then the mass shell condition is satisfied provided that

w = w+ + w− + 1 . (E.4)
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Figure 2. Distribution of states in the intervals (E.5) for the case of k+ = 5, k− = 3. Solid

markers indicate the boundary of an interval, dotted markers are multiples of 1
2k

+, dashed markers

are multiples of 1
2k

−. One can clearly see that there is precisely one point where all markers meet

and the following solid interval does not contain any other marker. Apart from this exception, every

two solid markers enclose exactly one dotted or dashed marker. Hence either no marker meets or

all three markers meet at one point.

Again, the total number of fermions is odd (as must be the case in order to satisfy

the GSO projection): there is an odd number of fermions because of the spectral flow

(w + w+ + w− is odd), whereas now δ + δ+ + δ− = 2.

We will explain below that for each R-sector BPS state either w = w+ + w− or w =

w+ + w− + 1 holds. As a consequence there is precisely one corresponding BPS state in

the NS-sector to each BPS state in the R-sector. Depending on the arithmetic properties

of the BPS state in the R-sector, (E.2) or (E.4) applies, which determines whether the

R-sector BPS state is the highest weight state in the multiplet or the descendant.

We have performed an extensive search on the computer to confirm that there are no

other BPS states in the NS-sector than those we have constructed in this manner. (This is,

of course, required by supersymmetry.) However, in doing this analysis one has to be very

careful since our description above is redundant. While the spectral flow in the sl(2,R)

algebra leads to genuinely new representations, spectral flow in the two su(2) algebras is

just a convenient method to describe descendant states, and there are identifications. For

example, the state (j+
0 = k+

2 −1, δ+ = 1, w+ = 0) is equivalent to (j+
0 = 0, δ+ = 0, w+ = 1),

and similarly for j−0 . We can fix this ambiguity by choosing the δ variables to be either

(δ, δ+, δ−) = (1, 0, 0) or (δ, δ+, δ−) = (0, 1, 1).

To determine whether the corresponding NS-sector state has the spin shifted up or

down by 1
2 , we make the following observation for the R-sector BPS states. Consider the

following intervals for j (
1

2
k, k

]
,

(
k,

3

2
k

]
,

(
3

2
k, 2k

]
, . . . (E.5)

corresponding to w = 1, 2, 3, . . . . Then each interval contains precisely one element of

the set k+

2 Z>0 ∪ k−

2 Z>0 — with one exception. If the corresponding state in the set lies on

the right edge of the interval, then the successive interval contains no state of the set. The

exceptional case occurs if the spin is a multiple of 1
2 lcm(k+, k−), i.e. if it is a multiple of

both k+

2 and k−

2 . This is illustrated in figure 2 for the case of k+ = 5, k− = 3.

In each fixed interval (E.5), to the left of the dotted or dashed marker we have w =

w+ +w−+1, while to the right of it we have w = w+ +w− — this just follows from the fact

that the markers indicate exactly where w+ (dotted), w− (dashed) or w (solid) changes.

So in between two solid markers, the spins in the NS-sector are shifted up by 1
2 below the

point where the dotted or dashed marker occurs, while above that point they are shifted
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down. Furthermore, at the position of the dotted or dashed marker itself, both solutions

exist, so the states whose j is a multiple of k+

2 or k−

2 occur twice in the NS-sector. The

only exception occurs if a dotted or dasher marker coincides with a solid one — then the

two solutions have different values for j.

Similarly, below a solid marker, the spins are shifted down, above they are shifted up.

So when a solid marker occurs, there are two BPS states missing in the NS-sector. Finally

consider the case when all three markers coincide. Below this triple point, spins are shifted

up, above they are shifted down, since all of w, w+ and w− change by one unit. Hence

in this case there are two NS-sector BPS states sitting at this triple point, and there is

no gap occurring as at the other solid markers. In summary, the NS-sector BPS spectrum

therefore reads ⊕
j∈ 1

2
Z≥0\( 1

2
bkZ≥0c\ 12 lcm(k+,k−)Z≥0 ∪ ( 1

2
bkZ≥0c+ 1

2)\( 1
2

lcm(k+,k−)Z≥0+ 1
2))

(j, j, u = 0)S

⊕
⊕

j∈ k+
2

Z>0∪ k
−
2

Z>0

(j, j, u = 0)S . (E.6)

Strictly speaking, this formula is only true for k ≥ 2; for small values of k± there are some

subtleties in the notation since then the intersection

1

2
bkZ≥0c \

1

2
lcm(k+, k−)Z≥0 ∩

(
1

2
bkZ≥0c+

1

2

)
\
(

1

2
lcm(k+, k−)Z≥0 +

1

2

)
(E.7)

may be non-empty and we have to remove these states. Morally speaking, they are then

removed twice from the set of the first direct sum in (E.6).

F Non-renormalization of the chiral ring

In this appendix, we show that the conformal weights of N = 2 chiral primaries is stable

under deformations of the theory. This is probably well-known, but we could not find a

good reference in the literature and therefore include a short proof (in the spirit of [44–

46]) for the convenience of the reader. In order to determine the change of conformal

dimension, we need to calculate the two-point function of a chiral primary Φ+
i and an

anti-chiral primary Φ−j
〈Φ+

i (z1)Φ−j (z2)〉 (F.1)

in conformal perturbation theory.9 These are the only relevant two-point functions, since

the two-point function of two chiral primaries vanishes by conservation of the u(1)-charge.

By the (anti-)chirality condition, Φ+
i and Φ−j must have equal conformal weights. First

order conformal perturbation theory involves the correlation functions

〈(G+
−1/2 · Φ

−
1/2)(z)Φ+

i (z1)Φ−j (z2)〉 , (F.2)

where Φ−1/2 is chiral primary with conformal weight 1
2 (the index 1

2 is not a mode number).

Similarly, also terms with + and − interchanged are involved. However symmetry in chiral

9Here we have suppressed the anti-holomorphic part from our notation.
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and anti-chiral components lets us restrict to this case. We now show that (F.2) vanishes.

Writing

(G+
−1/2 · Φ

−
1/2)(z) =

∮
w=z

dw

2πi

w − z2

z − z2
G+(w)Φ−(z) (F.3)

and inserting this into the correlator (F.2), we can deform the contour such that it encir-

cles z1, z2 and potentially infinity (with the opposite orientation). Since G+(w)Φ+
i (z1) is

regular, the contour integral around z1 vanishes. Furthermore, we chose the factor in the

integrand of (F.3) in such a way that the single pole at z2 exactly cancels. Finally, there

is no contribution from infinity since∮
w=z

dw

2πi

w − z2

z − z2
G+(w) =

∮
w=z

dw

2πi

w − z2

z − z2

∑
r

G+
r w
−r−3/2 (F.4)

=
1

z − z2
G+

1/2 −
z2

z − z2
G+
−1/2 , (F.5)

and hence, inside (F.2), all the modes of G+
−1/2 annihilate the in-vacuum 〈0| at infinity.

Thus, (F.2) vanishes.

This shows that the derivative of (F.1) vanishes at every smooth point in the moduli

space and thus the conformal weights of the chiral primaries are protected throughout the

moduli space.
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