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Abstract. The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy
and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insuf�cient understand-
ing of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role
of the land surface in exacerbating summer heat waves in midlatitude regions has been identi�ed empirically
for high-impact heat waves, but individual climate models differ widely in their respective representation of
land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based tempera-
ture (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences ofT anomalies with
ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures.
First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercom-
parison Project (CMIP5) archive produces systematically too frequent coincidences of highT anomalies with
negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round.
These coincidences (highT, low ET) are closely related to the representation of temperature variability and ex-
tremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the
T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour
that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more real-
istic temperature extremes of reduced magnitude in present climate in regions where models show substantial
spread inT–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simu-
lations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On
the other hand, the differences between projected and present-day climate extremes are affected to a lesser extent
by the applied constraint, i.e. projected changes are reduced locally by around 0.5 to 1� C – but this remains a
local effect in regions that are highly sensitive to land–atmosphere coupling. In summary, our approach offers
a physically consistent, diagnostic-based avenue to evaluate multi-model ensembles and subsequently reduce
model biases in simulated and projected extreme temperatures.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The exchange of matter and energy between the land sur-
face and the atmosphere is a crucial feature of the Earth's cli-
mate (Seneviratne et al., 2010b; Bonan, 2015; van den Hurk
et al., 2016). On one hand, the atmosphere exerts a key in�u-
ence on land surface processes such as vegetation growth by
supplying light, water, and carbon dioxide (Köppen, 1900).
On the other hand, the land surface feeds back to the atmo-
sphere, for example through the partitioning of energy into
latent and sensible heat �uxes or by modifying land surface
properties, thus implying a direct link to near-surface climate
(Koster et al., 2004; Seneviratne et al., 2010b). Conceptu-
ally, coupling between the atmosphere and the land surface
is often classi�ed into two qualitatively different regimes, a
“energy-limited” and a “water-limited” regime (Seneviratne
et al., 2010b): in the wet (energy-limited) regime, the land
surface is largely controlled by the atmosphere through radi-
ation (see conceptual Fig. 1a and b), implying a positive asso-
ciation between near-surface temperature (T) and evapotran-
spiration (ET). In contrast, in a dry, water-limited state, land
controls near-surface climate through a lack of soil mois-
ture, and a corresponding reduction in evapotranspiration and
latent cooling (see conceptual Fig. 1a and b) with a nega-
tive association betweenT and ET. Therefore, the state of
the land surface and land–atmosphere feedbacks modulate
and amplify climatic extreme events such as heat waves in
midlatitude regions (Seneviratne et al., 2006; Fischer et al.,
2007; Hirschi et al., 2011; Whan et al., 2015; Hauser et al.,
2016). An understanding of these feedbacks might yield im-
proved seasonal predictability of extremes (Quesada et al.,
2012) and could help to constrain and better predict model-
simulated present and future climate variability in these re-
gions (Seneviratne et al., 2006, 2013; Lorenz et al., 2012;
Dirmeyer et al., 2013; van den Hurk et al., 2016; Davin et al.,
2016).

However, at present large uncertainties and methodolog-
ical inconsistencies prevail in both understanding and quan-
ti�cation of land–atmosphere coupling on various spatial and
temporal scales, which relate to

i. scarcity of accurate observational products of soil
moisture or evapotranspiration on large spatiotempo-
ral scales and relatively short observational periods
(Seneviratne et al., 2010b),

ii. the metrics and variables used to quantify land–
atmosphere coupling differ widely in the variables they
address (Seneviratne et al., 2010b) and in emphasizing
either the whole distribution (Dirmeyer, 2011; Lorenz
et al., 2012; Miralles et al., 2012) or the tails of relevant
variables (Zscheischler et al., 2015).

As a consequence, uncertainties and methodological incon-
sistencies contribute to a greatly diverging representation of
land–atmosphere coupling in state-of-the-art climate models

(Koster et al., 2004; Boé and Terray, 2008; see also Fig. 1a
and b for a simple conceptual example), and further con-
tribute to uncertainties related to projected increases in sum-
mer temperature variability in the 21st century in midlati-
tude regions (Seneviratne et al., 2006; Dirmeyer et al., 2013).
In this context, it has been noted that accurate simulations
of temperature variability and extremes require a realistic
representation of land–atmosphere interactions (Seneviratne
et al., 2006; Fischer et al., 2012; Bellprat et al., 2013). In
other words, biases in temperature variability and extremes
might in part stem from an unrealistic representation of land–
atmosphere interactions (Fischer et al., 2012; Lorenz et al.,
2012; Davin et al., 2016), likely leading to temperature-
dependent biases in multi-model ensembles (Boberg and
Christensen, 2012; Bellprat et al., 2013).

A model evaluation focus on interpretable land–
atmosphere coupling diagnostics might serve as a comple-
mentary strategy to traditional model validation and testing
(Seneviratne et al., 2010a; Santanello et al., 2010; Mueller
et al., 2011b; Mueller and Seneviratne, 2014). Hence, this
approach is intended towards testing and understanding the
spread and physical consistency in simulated relationships
in state-of-the-art multi-model ensembles (e.g. the Coupled
Model Intercomparison Project, CMIP5; Taylor et al., 2012)
against available observations-based datasets. For example,
in the context of land–atmosphere coupling, earlier stud-
ies used bivariate correlation- or regression-based metrics to
test and evaluate coupling behaviour (Hirschi et al., 2011;
Lorenz et al., 2012). Conceptually, the notion of “diagnostic-
based model evaluation” as discussed here is consistent with
“pattern-oriented model evaluation” (Grimm and Railsback,
2012; Reichstein et al., 2011) – the latter being applied in
the context of evaluating simulated and observed patterns on
multiple scales in a data-driven way (e.g. in the context of
ecosystem carbon turnover times; Carvalhais et al., 2014).

In the context of extracting credible and relevant informa-
tion from large (multi-)model ensembles, weighting or se-
lecting models based on observations-based constraints has
become increasingly popular recently (Tebaldi and Knutti,
2007; Knutti, 2010), as a priori model ensembles might be
seen as a somewhat arbitrary collection of model runs (or
“ensembles of opportunity”). For example, empirical and/or
physics-based criteria have been used to constrain snow–
albedo feedbacks (Hall and Qu, 2006), constrain carbon cy-
cle projections (Cox et al., 2013; Wenzel et al., 2014; Mys-
takidis et al., 2016), or in the context of re�ning precipitation
projections (Orth et al., 2016). Moreover, empirical diagnos-
tics are applied to select models for event attribution analyses
(Perkins et al., 2007; King et al., 2016; Otto et al., 2015) and
analyses of drought projections based on model performance
(Van Huijgevoort et al., 2014) or to resample large initial-
condition ensembles to alleviate biases without distorting the
multivariate structure of climate model output (Sippel et al.,
2016b). In the context of land–atmosphere coupling, Fischer
et al. (2012) and Stegehuis et al. (2013) have constrained a re-
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Figure 1. Illustration of qualitatively contrasting warm season temperature–evapotranspiration (T–ET) coupling in global climate models.
(a, b) Conceptual illustration ofT–ET coupling in(a) wet and(b) dry and transitional regimes. In wet regimesT and ET are positively
associated (atmosphere impacts land), while in dry and transitional regimesT and ET are negatively associated due to soil moisture feedbacks
(i.e. land impacts atmosphere via reduced ET and concurrent increases in sensible heat andT). (c)–(f) Different CMIP5 models show
contrastingT–ET coupling behaviour in a midlatitude region in summer (central Europe, spatial average, JJA, 1989–2005):(c, e)NorESM1-
M produces predominantly wet regimes, i.e. a positiveT–ET coupling, while(d, f) ACCESS1-3 produces predominantly dry regimes
(negativeT–ET coupling), illustrated as time series(c, d) and in theT–ET plane(e, f). Dark red lines in(c)–(f) indicate upper threshold
(thupper) for T andET ; dark blue lines indicate lower threshold (thT

lower) (70th and 30th percentile in each individual time series).

www.earth-syst-dynam.net/8/387/2017/ Earth Syst. Dynam., 8, 387–403, 2017
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gional model ensemble over Europe using present-day inter-
annual variability in summer temperature, and observations-
based estimates of summer sensible heat �uxes. However,
these studies came to somewhat con�icting results with re-
spect to the obtained change in warming projections, which
was probably due to the underlying choices of datasets to ob-
tain the constraints (Stegehuis et al., 2013). Hence, care is
needed in that these practices might not necessarily translate
into improved future climate projections or reduced uncer-
tainties. That is because the selection of relevant metrics is
clearly not trivial but subjective and because good model per-
formance with regard to any given metric does not translate
directly into (more) reliable projections (Knutti, 2008).

Therefore, the starting point for the present analysis – in
the sense of being necessary, but not suf�cient to ensure the
reliability of future climate projections – is that physically
motivated, observations-based diagnostics might offer

1. a link to identify and interpret relevant processes across
multiple models (i.e. model evaluation) and

2. to reduce biases by focusing the interpretation of multi-
model ensembles on models that are “right for the right
reasons”. Most notably climate impacts, including ex-
tremes, typically depend on the multivariate structure
of climate variables, where simple univariate statistical
bias correction methods are prone to failure (Ehret et al.,
2012; Cannon, 2016).

In this study, we �rst evaluate land–atmosphere coupling
in state-of-the-art global climate models from the CMIP5
archive and a large ensemble of observations-based ET
datasets (Mueller et al., 2013) that has been compiled to ad-
dress the aforementioned uncertainties in land–atmosphere
coupling. In our analyses a land–atmosphere coupling metric
that is based on coincidences of temperature and evapotran-
spiration anomalies is applied. The idea behind a coincidence
metric as opposed to a traditional univariate evaluation of
model-simulated ET �uxes or temperature is that it is insen-
sitive to biases in the simulated means or variances and thus
focusses only on an abstract property of the data, namely the
bivariate dependence structure ofT and ET. Secondly, we
derive a model constraint based on the physically motivated
land-coupling diagnostic and the ensemble of benchmarking
datasets in order to explore the implications of a reduced en-
semble but with land–atmosphere coupling that iswithin the
rangeof the benchmarking datasets.

2 Data and methods

2.1 Datasets for T–ET coupling analysis and model
evaluation

2.1.1 Global temperature and evapotranspiration
datasets

In order to evaluateT–ET coupling in global climate mod-
els, an ensemble of 18 gridded ET estimates, taken from
the LandFlux-EVAL multi-dataset synthesis project (Mueller
et al., 2013), are combined with three different observations-
based and reanalysis-driven temperature datasets, yielding in
total 54 T–ET combinations (see Table 1).T–ET coinci-
dence rates are calculated from each of those 54 combina-
tions to evaluate and constrain the multi-model ensemble of
global climate models (Sect. 3). The ensemble of ET refer-
ence datasets has been generated by combining a wide range
of different ET estimates, consisting of �ve diagnostic (based
on remote-sensing or in situ observations) products, �ve land
surface models driven by observed climate forcing, and four
reanalysis products (Mueller et al., 2013). The three tempera-
ture datasets are based on one observational product (Climate
Research Unit dataset, Harris et al., 2014) and two reanalysis
products (ERA-Interim reanalysis (ERAI; Dee et al., 2011),
and Climate Forecast System Reanalysis (CFSR; Saha et al.,
2010); see Table 1 for details). The large number ofT–ET
dataset combinations is used in order to take uncertainties in
bothT and ET datasets into account. We have tested that the
spread between individual ET datasets is substantially larger
than the spread between individualT datasets (not shown).
This indicates that the largest source of uncertainty stems
from the choice of ET dataset, and therefore we consider only
three differentT datasets. Each of the 54T–ET dataset com-
binations (denoted as “T–ET coupling benchmarks” in the
remainder of the paper) is consistently derived from obser-
vations and thus can be expected to represent relevant fea-
tures inT–ET coupling under different assumptions that un-
derlie diagnostic datasets, reanalyses, and land surface mod-
els. Therefore, these datasets represent a very large spread
of plausibleT–ET coupling estimates, and the spread can be
considered as a conservative benchmark for model evaluation
(including observational noise, i.e. allowing a wide range of
T–ET coupling in models). However, it should be empha-
sized that the datasets are not independent realizations. Thus,
we only use the spread of theT–ET coupling benchmarks,
but we do not interpret the probability distribution of dataset
combinations.

For the analysis of historical and future simulations of
the monthly maximum value of daily maximum tempera-
tures (TXx) in Sect. 3.2 we use ERA-Interim (Dee et al.,
2011) as a reference dataset.

Earth Syst. Dynam., 8, 387–403, 2017 www.earth-syst-dynam.net/8/387/2017/
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Table 1. Datasets used for model evaluation. LSM: land surface model.

Name of dataset Variable Type/group Provider and reference

LandFlux-EVALa ET Ensemble median Mueller et al. (2013)
LandFlux-EVALa ET Median of reanalyses Mueller et al. (2013)
LandFlux-EVALa ET Median of LSMs Mueller et al. (2013)
LandFlux-EVALa ET Median of diagnostic datasets Mueller et al. (2013)
PRUNIa;b ET Diagnostic Shef�eld et al. (2006, 2010)
MPIBGCa;b ET Diagnostic Jung et al. (2011)
CSIROa;b ET Diagnostic Zhang et al. (2010)
GLEAMa;b, V. 1A ET Diagnostic Miralles et al. (2011a, b)
AWBa;b ET Diagnostic Mueller et al. (2011a)
EI-ORCHIDEEa;b ET LSM Krinner et al. (2005)
CRU-ORCHIDEEa;b ET LSM Krinner et al. (2005)
VICa;b ET LSM Shef�eld et al. (2006), Shef�eld and Wood (2007)
GL-NOAH-PFa;b ET LSM Rodell et al. (2004), Rui and Beaudoing (2016)
MERRA-LANDa;b ET LSM Reichle et al. (2011)
ERA-Interima;b ET Reanalysis Dee et al. (2011)
CFSRa;b ET Reanalysis Saha et al. (2010)
JRA-25a;b ET Reanalysis Onogi et al. (2007)
MERRAa;b ET Reanalysis Bosilovich (2008)
CRU-TS3.2a T Observations Harris et al. (2014)
ERA-Interim reanalysisa T Reanalysis Dee et al. (2011)
CFSR reanalysisa T Reanalysis Saha et al. (2010)

a All T–ET combinations of marked datasets have been used to derive the ET–T constraint.b Original individual datasets that contributed to the LandFlux-EVAL
synthesis project (Mueller et al., 2013).

2.1.2 Multi-model ensemble simulations

The Climate Model Intercomparison Project (CMIP5) has
been designed to allow for multi-model comparison and
evaluation studies (Taylor et al., 2012). Although a large
model spread, biases, and uncertainties remain in the en-
semble projections (Knutti and Sedlá�cek, 2013), for example
with respect to extremes (Sillmann et al., 2013a), the water
(Mueller et al., 2011b; Mueller and Seneviratne, 2014), and
land carbon cycle (Anav et al., 2013), the archive of stan-
dardized scenario-driven model experiments provides one of
the main avenues to study climate variability and change
(e.g. Stocker et al., 2013), including present and future cli-
mate extremes (Sillmann et al., 2013b; Seneviratne et al.,
2016). We use one ensemble member from 37 individual
models or model variants (Table S1 in the Supplement) to
avoid unequal sample sizes in the multi-model ensembles.
Furthermore, this choice is made to assess variability in land–
atmosphere couplingacrossmodels because individual en-
semble members from the same model show a comparably
small spread in land–atmosphere coupling and present-day
and future land–atmosphere coupling are highly correlated
(Fig. S1 in the Supplement; metric and de�nition is pro-
vided below). This indicates that the large spread between
models is dominated by variabilityacrossmodels, and thus
land–atmosphere coupling is a model-inherent feature on cli-
matological timescales (Figs. S1 and S2; see further discus-
sion below). On shorter (e.g. annual or seasonal) timescales,

models do indeed show substantial variability in their land–
atmosphere coupling (Sippel et al., 2016b), which could be
used as a constraint in large single-model ensembles, but this
is beyond the scope of the present study.

2.1.3 Data processing and analysis

All datasets were remapped to a common 2.5� � 2.5� spatial
resolution for analysis and before computingT–ET coinci-
dences. For model evaluation (Sect. 3.1), all computations
and analyses are performed on a monthly temporal resolution
and are restricted to the time period 1989–2005 due to data
availability constraints of the ET reference datasets (Mueller
et al., 2013). Thus, the reference period for model evaluation
corresponds to the last 17 years of the “historical” scenario
in CMIP5 models.T–ET coincidences are computed based
on monthly deseasonalized and linearly detrended time series
of T and ET, and coincidence rates are calculated separately
for each individual season. Only land pixels outside of desert
regions following the Köppen–Geiger climate classi�cation
are considered (Kottek et al., 2006). The model evaluation
is conducted based on all individual pixels and additionally
on area averages for IPCC-SREX (Special Report on Man-
aging the Risks of Extreme Events and Disasters to Advance
Climate Change Adaptation) regions (IPCC, 2012).

www.earth-syst-dynam.net/8/387/2017/ Earth Syst. Dynam., 8, 387–403, 2017
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2.2 Diagnostic-based model evaluation using T–ET
coupling

2.2.1 The T–ET link and the Vegetation–Atmosphere
Coupling (VAC) index

An adequate characterization of the coupling between soil
moisture and temperature is key to model evaluation us-
ing observations-based datasets. This coupling is often diag-
nosed by correlation-based metrics such as for example be-
tweenT and ET,� (T ;ET) (Seneviratne et al., 2006; Lorenz
et al., 2012), or the difference in the covariability in tempera-
ture and sensible heat, where the latter is calculated with and
without accounting for soil moisture de�cits (Miralles et al.,
2012). Here, we aim to exploit theT–ET coupling by using
a natural extension of� (T ;ET) that focusses on the tails ofT–
ET dependencies. Deseasonalized and detrended time series
of ET (xET

i ) and T (xT
i ; i denotes the time step) are par-

titioned into �ve distinct classes of Vegetation–Atmosphere
Coupling (VAC) following Zscheischler et al. (2015), result-
ing in a time series of discrete eventsxVAC

i :

xVAC
i D

8
>>>><

>>>>:

a; if xT
i < thT

lower and xET
i < thET

lower;
b; if xT

i > thT
upper and xET

i > thET
upper;

c; if xT
i > thT

upper and xET
i < thET

lower;
d; if xT

i < thT
lower and xET

i > thET
upper;

0 otherwise

:

Event thresholds thlower and thuppermight be chosen relative
to the variability in each time series by �xing the probabil-
ity p to exceed or fall below a threshold through the choice
of an appropriate quantile:

Pr
�
X > thupper

�
D Pr[X < thlower] D p: (1)

Taking time series length restrictions into account, we
choose the 30th and 70th percentile as lower and
upper thresholds in all time series (i.e. such that
Pr[X < thlower] D Pr[X > thupper] D 0.3). Here, we focus on
coincidences ofwarm temperature anomalies(“T events”:
xT

i > thT
upper) with anomalies in ET (“ET events”, i.e. either

xET
i > thET

upperfor VACb or xET
i < thET

lower for VACc); we derive
coincidence ratesrVACb by counting the number of VACb
events (see Quiroga et al., 2002, and Donges et al., 2016,
for earlier formulations of event coincidence analysis and,
e.g., Rammig et al., 2015, and Siegmund et al., 2016, for ap-
plications in an ecological context):

rVACb D
1

N0

NX

i D1

1TbU

�
xVAC

i

�
: (2)

Here, 1A(x) is the indicator function, de�ned as 1A(x) D 1 if
x�A and 1A(x) D 0 otherwise;N denotes the length of the
time series. Hence, we simply count coincidences ofT and
ET in a given category (e.g. positiveT and positive ET for
VACb) to get the average coincidence rate (rVACb). N0 acts as
a normalization constant and is chosen in our study such that

0 � rVACb � 1, i.e. we normalize with the total number ofT

events,N0 D
NP

i D1
1TxT > thT

upperU
(xT

i ). Hence, if all (or none) of

theT events in the time series coincided with ET events, then
the average coincidence rates would be given byrVACb D 1
(or rVACb D 0). For independent time series, i.e. no coupling,
rVACb would approximate the occurrence rate of ET events
in the time series (de�ned for VACb) that is governed by

the chosen threshold, i.e.rVACb D 1
N

NP

i D1
1TxET

i > thET
upperU

(xET
i )

(hence,rVACb � 0.3 in our case). Coincidence ratesrVACc fol-
low equivalently by replacing VACb with VACc in Eq. (2).
We computerVACb and rVACc for all seasons but with an
emphasis on the warmest season of the year. In this study,
signi�cance of coincidence rates is established by randomly
permuting one time series with respect to the other 100 times.
Hence, VAC rates from models or observations-based bench-
marks that fall outside the 5th to 95th percentile range of the
VAC rates obtained from randomly permuted time series are
signi�cantly different from independent data at the 0.1 level.

In other words,rVACb gives the fraction of the highest 30 %
of temperatures that coincide with the highest 30 % of ET
(i.e. occurrence rate of energy-limited regimes), whilerVACc

denotes the fraction of the highest 30 % temperatures that
correspond with the lowest 30 % ET (i.e. occurrence rate of
water-limited regimes). Figure 1c and d show a simple ex-
ample of monthly time series ofT and ET simulated from
two CMIP5 models and occurrences of VACb and VACc are
highlighted, and Fig. 1e and f show the correlation ofT
and ET. Note that for the same region (area average over
central Europe, CEU) and time of the year (monthly data
for June, July, and August), one model produces predom-
inantly energy-limited regimes (VACb; Fig. 1c and e and
compare to conceptual illustration in Fig. 1a), whereas the
other model produces predominantly water-limited regimes
(VACc; Fig. 1d and f and concept in Fig. 1b).

We abbreviate the average occurrence ratesrVACb and
rVACc as VACb and VACc for convenience in the remain-
der of the paper. In comparison to more traditional cou-
pling metrics, such as e.g.� (T ;ET), VAC might be expected
to yield similar results on very long timescales, whereas on
shorter timescales the VAC index picks up non-linearities
in the tails (e.g. during warm temperature anomalies). On
the monthly timescale (as used in this study), VACb and
VACc detect distinct non-linearities in models and observa-
tions in summerT–ET coupling, e.g. in CEU: Fig. S3 shows
that, by correlating VACb with VACc derived from individ-
ual models, observations-based benchmarks, and from a two-
dimensional Gaussian distribution, VACb and VACc rates
in models and observations-based benchmarks exceed those
that would be expected in random data. This deviation indi-
cates that the warm tail is indeed different from the remain-
der of the distribution (we observe no such deviation for the
cold tail; Fig. S3), and hence an evaluation metric that fo-
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cuses on the tail such as the VAC index is indeed useful for
our present purpose. In addition to the main text, the model
evaluation is presented for� (T ;ET) to demonstrate robustness
to the chosen methodological approach (Fig. S4) and for the
VAC index using a 90th percentile threshold (Fig. S4). Both
alternatives show qualitatively similar results (see Sect. 3).

2.2.2 A constraint on T–ET coupling in multi-model
ensembles

In general, a constraint links an observations-based diagnos-
tic with a key model output variable across multiple mod-
els (Cox et al., 2013) and thus can be used to reduce model
uncertainties and spread. Here, we derive aT–ET coupling
constraint as the uncertainty range from the 54 combina-
tions of T–ET benchmarking datasets. A Gaussian kernel
with reliable data-based bandwidth selection (Sheather and
Jones, 1991) is �tted over all 54 1989–2005 coincidence
rates (rVACc) for each meteorological season and pixel (and
each SREX region average). Throughout this paper, the 5th to
95th percentile range of the �tted Gaussian kernels is taken
as the plausible range of observations, and the reduced (con-
strained) ensemble of CMIP5 simulations is obtained by re-
taining only those CMIP5 models that simulateT–ET coinci-
dences that fall within this range of observational uncertainty.

3 Results and discussion

In this section, we �rst evaluate land coupling in CMIP5
models explicitly against an observations-based ensemble of
T–ET combinations and explore the link to temperature vari-
ability and extremes (Sect. 3.1). All model evaluation re-
sults are presented globally and exemplarily for central Eu-
rope (CEU) as a region where global models and observa-
tions differ widely. Subsequently, we constrain the ensem-
ble of CMIP5 models using each model's land coupling as
diagnosed through the VACc index and discuss implications
for biases in simulated present-day temperature extremes and
warming projections (Sect. 3.2).

3.1 Evaluation of land–atmosphere coupling in CMIP5
models and the link to temperature variability and
extremes

3.1.1 Evaluation of T–ET coupling in CMIP5 models

Models and observations-based datasets show a relatively
large spread in their representation ofT–ET coupling, as ex-
pressed exemplarily in CEU through both VACb and VACc
across various seasons (Fig. 2a and b) or diagnosed through
more traditional coupling metrics such as� (T ;ET) (Fig. S4).
Individual models indicate pronounced qualitative differ-
ences in the warm season, where some models point to
energy-limited conditions, whereas others indicate predomi-
nantly water-limited ones (Figs. 2a and b and 1, for an illus-

trative example). Observations-basedT–ET datasets agree
qualitatively, i.e. indicating energy-limited to neutral condi-
tions in the CEU example, thus implying an overestimation
of water-limited regimes in CEU in roughly 50 % of CMIP5
models (Fig. 2).

This pattern holds across most regions of the globe, as
many CMIP5 models consistently overestimate occurrences
of VACc regimes (and correspondingly underestimate VACb
occurrences) in the warm season of the year (Fig. 2c and d;
see Fig. S5 for a de�nition of the warm season in each
pixel). In midlatitude and several tropical regions (e.g. cen-
tral North America, central Europe, the Amazon, India, parts
of Africa), more than 25 % and up to 50 % of CMIP5 models
lie outside the observational range (Fig. 2d). These discrep-
ancies hold also if metrics that emphasize the whole distri-
bution (� (T ;ET)) or more extreme parts of the tail (VAC based
on a 90th percentile threshold) are used for model evalua-
tion (Fig. S4; results for individual seasons are presented for
VACc and VACb in Figs. S6 and S7, respectively). Moreover,
the spread between the individual models' representation
of land–atmosphere coupling strongly exceeds the spread
in observational datasets, although different diagnostic, re-
analyses, and land surface model datasets are included in
the observations-based ensemble (Fig. 2e for CMIP5 model
spread and Fig. 2f for spread in observations-based bench-
mark datasets).

Furthermore, the models' land–atmosphere coupling, as
diagnosed here through the VAC index, is a highly model-
inherent feature, as different model variants or ensemble
members from the same model generally lie relatively close
to each other (Figs. S1 and S2). However, model-speci�c
signatures of model output are not unusual, as diagnosed
before for spatial patterns of temperature and precipitation
(Knutti et al., 2013) or the statistical information content in
carbon �uxes (Sippel et al., 2016a). Furthermore, present-
day land–atmosphere coupling is strongly related to future
land–atmosphere coupling in the individual models (Fig. S1).
A detailed overview of VACc coupling in individual models
and ensemble members relative to the benchmark datasets
for central Europe and central North America is presented in
Figs. S1 and S2. Despite regionally pronounced qualitative
discrepancies, it should be noted that on a global scale, the
distribution of water-limited and energy-limited patterns in
models and observations agrees qualitatively (Fig. S8). Like-
wise, the �ndings of climatologically too pronounced water-
limited regimes in individual models with regard to obser-
vations does not exclude the possibility of future changes
in the coupling strength in transitional regions (Seneviratne
et al., 2006) or of strong water limitations during extreme
events in the real world (Miralles et al., 2012; Whan et al.,
2015). To this end, an evaluation of the year-to-year vari-
ability in the coupling behaviour in larger ensembles of in-
dividual models, including very rare events, could consti-
tute a topic for further study, as this study was restricted
to relatively moderate events in a 16-year period (70th per-

www.earth-syst-dynam.net/8/387/2017/ Earth Syst. Dynam., 8, 387–403, 2017



394 S. Sippel et al.: Model evaluation using land–atmosphere coupling diagnostics

Figure 2. Evaluation ofT–ET coupling in global climate models.(a, b) VACb and VACc coupling in the CMIP5 climate model ensemble
and observations-based benchmarking datasets in central Europe (CEU, 1989–2005, area average) with systematic warm season differences
(circles, diamonds, and triangles indicate diagnostic, land surface models, and reanalyses reference datasets, respectively). Randomness
indicates the 5th to 95th percentile range obtained by randomly permutating both time series with respect to the other (N D 100 times) to
obtain independent data.(c) Difference in the VACc median of the CMIP5 ensemble and benchmarking datasets.(d) Fraction of CMIP5
models that are inside the 5th-95th percentile spread of the benchmarking datasets.(e, f) Range of VACc occurrences (5th to 95th percentile
range) in CMIP5 models(e)and in the ensemble of observations(f).
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Figure 3. (a, b) Relationship between model-speci�cT–ET coupling (expressed through VACc) and model-simulated variability in monthly
temperature anomalies (JJA) in central Europe(a) and globally(b). (c, d) Relationship betweeen VACc coupling and mean(c) and standard
deviation(d) of simulated monthly maximum value of daily maximum temperature (TXx) in summer (JJA).

centile threshold for the computation of the VAC index) and
one ensemble member per model. Moreover, we also note
that observations-based benchmark datasets show system-
atic (albeit smaller) differences in the representation of land–
atmosphere coupling: diagnostic datasets indicate more fre-
quent energy-limited regimes (see, e.g., Fig. 2) and thus dif-
fer consistently to generally drier land surface models and re-
analysis products, consistent with earlier �ndings (Santanello
et al., 2015).

3.1.2 T–ET coincidences and the link to temperature
variability and extremes

The representation ofT–ET coupling as diagnosed through
the VAC index largely determines the variability in tem-
peratures on monthly and interannual timescales across the
CMIP5 multi-model ensemble in CEU (Fig. 3a) and in
most regions of the globe except in some subarctic climates
(Fig. 3b). Therefore, this relationship is indicative of the
strong in�uence of land–atmosphere coupling on surface cli-
mate. This is consistent with previous �ndings in Europe

in models with and without land–atmosphere interactions
(Seneviratne et al., 2006; Fischer and Schär, 2009; Fischer
et al., 2012). An important result is that models that pro-
duce VACc indices within the range of benchmark datasets
also produce a realistic near-surface temperature variability,
whereas models that fall too frequently into water-limited
regimes also overestimate summer temperature variability
(Fig. 3a). Moreover, in midlatitude and tropical regions,
the state of the land surface is strongly associated with the
mean and variability in temperature extremes on the daily
timescale in the warmest season (TXx; Fig. 3c and d). The
link between the representation of land–atmosphere coupling
and simulated temperature extremes and variability in global
climate models is consistent with earlier studies, which has
been demonstrated for Europe in individual models (Senevi-
ratne et al., 2006; Lorenz et al., 2012; Davin et al., 2016) and
in ensembles of regional models (Fischer et al., 2012; Bell-
prat et al., 2013). Therefore, the relationship betweenT–ET
coincidence rates and temperature extremes might offer an
avenue to derive an explicit land–atmosphere coupling con-
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straint (the likely root cause of biases) to alleviate biases
in temperature variability and extremes in the multi-model
CMIP5 ensemble.

3.2 Analysis of constrained multi-model ensemble and
implications for future climate projections

3.2.1 A constraint on land–atmosphere coupling in the
CMIP5 ensemble

The association betweenT and ET in the constrained ensem-
ble resembles the observations-based benchmarking datasets
in T–ET coupling very well (shown as a bivariate density
estimate in Fig. 4a and b for CEU and CNA (central North
America), respectively), whereas the unconstrained CMIP5
ensemble produces too many occurrences of VACc condi-
tions in both CEU and CNA. Due to the intimate link be-
tween land–atmosphere coupling and temperature variabil-
ity and extremes (see previous section), we expect that the
improvement in the representation of land–atmosphere cou-
pling in the constrained ensembles yields a corresponding
improvement in the representation of temperature extremes
on the daily timescale in coupling-sensitive regions.

Coupling-sensitive regions are prone to warm season bi-
ases in climate models (Christensen and Boberg, 2012; Bell-
prat et al., 2013). In the present analysis, high biases in tem-
perature extremes are indeed prevalent in the original (uncon-
strained) CMIP5 ensemble in these regions (Fig. 4c and e).
For example, the ensemble mean warm season TXx is over-
estimated by up to 5� C, and higher biases are detected in
the 90th percentile of TXx in CNA, CEU, and the Ama-
zon (all biases in daily variables relative to ERA-Interim;
see Fig. 4c and e). In a CMIP5 ensemble constrained by
the land–atmosphere coupling metric VACc, the representa-
tion of temperature extremes is improved in regions prone to
coupling-induced biases (Fig. 4d and f); i.e. both mean TXx
and the 90th percentile of TXx are signi�cantly reduced. The
ensemble mean of present-day temperature extremes in other
regions remains unchanged. Moreover, projected future tem-
perature extremes are reduced in the constrained ensemble
(Fig. 5), similarly to present-day reductions in regions prone
to present-day biases in land–atmosphere coupling. This is
illustrated in Fig. 5a for TXx (monthly area averages in sum-
mer) in CEU, where the hot end of the original model ensem-
ble is in fact never realized in observed temperatures. The
application of the constraint thus not only affects mean TXx
but also reduces the spread of the model ensemble (Fig. 5a
and b). The reduction in ensemble mean and ensemble spread
is retained for the entire 21st century (Fig. 5a and b). Hence,
this result reinforces that coupling-related biases are model-
inherent features, i.e. models that simulate too many VACc
occurrences today (and associated high biases in extreme
temperatures) are very likely to do so in the future. How-
ever, one should keep in mind that the reduction in ensemble
mean and spread is con�ned to coupling-sensitive regions

in CEU, CNA, and to some degree in the Amazon region
(Fig. 5c and d).

Our results imply that an accurate representation of land
surface processes is crucially relevant for a correct simula-
tion of temperature extremes and more generally for simu-
lated near-surface climate variability. Land–atmosphere cou-
pling is thus an important source of bias in state-of-the-art
global climate model simulations. By using an observations-
based land–atmosphere coupling diagnostic to constrain the
multi-model CMIP5 ensemble, we have shown that biases in
extremes in the large ensemble can be alleviated to a cer-
tain degree. As bias correction methodologies that take the
physical causes of biases into account are still widely lack-
ing (Ehret et al., 2012; Bellprat et al., 2013) and multivari-
ate bias correction methods are currently in development
(Cannon, 2016), the identi�cation of models with aphys-
ically plausible representation of near-surface climate and
land–atmosphere interactions on the regional scale might be
crucial to extract accurate and relevant information about
climate extremes in the context of climatic changes in the
21st century (Mitchell et al., 2016b; Schleussner et al., 2016;
Seneviratne et al., 2016). For example, model selection for
event attribution studies or a quanti�cation of changes in uni-
variate climate extremes is often based on a statistical perfor-
mance criterion (Perkins et al., 2007; King et al., 2016; Otto
et al., 2015). Our results indicate that these procedures could
be further re�ned through incorporating observations-based
diagnostics or constraints in order to analyse model simula-
tions that are indeed right for the right reasons (at least given
physics-guided and observations-based relationships). More-
over, the impacts of climate and its extremes, e.g. on human
health or ecosystems (Mitchell et al., 2016a; Frank et al.,
2015), are often inherently related to multiple climate vari-
ables (Ehret et al., 2012; Leonard et al., 2014). Therefore,
simple constraints as suggested for instance in the present
study might complement more conventional bias correction
procedures (e.g. Hempel et al., 2013) to derive physically
consistent estimates of climate impacts. This approach ap-
pears promising because biases within climate models (i.e. in
different variables) and across climate model ensembles are
often correlated (e.g. Knutti, 2010; Mueller and Seneviratne,
2014; Sippel et al., 2016b). Hence, beyond soil moisture con-
trol on simulated temperature extremes as the present study's
focus, related biases in other variables such as warm season
precipitation or ET might be similarly relevant in this con-
text. For example, VACc occurrences across the CMIP5 en-
semble are negatively associated with precipitation and ET
in the warm season in midlatitude regions (Fig. S9) – both
crucial variables in the water cycle that show pronounced
summer low biases in CMIP5 models (Mueller and Senevi-
ratne, 2014). Therefore, a constrained model ensemble with
improved land–atmosphere coupling, a likely root cause of
biases (Lorenz et al., 2012), might not only improve temper-
ature extremes and variability but additionally might reduce
biases in associated variables such as ET or precipitation.
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Figure 4. (a, b) Contour lines of bivariate kernel density estimates ofT–ET relationship in the benchmarking datasets and the original and
constraint CMIP5 ensemble for(a) central Europe and(b) central North America (1989–2005, area average).(c, e)Biases in warm season
(c) TXx mean and(e) 90th percentile of TXx in the original CMIP5 ensemble and(d, f) reduction in(d) TXx mean and(f) 90th percentile
TXx through the application of the land-coupling constraint. Regions with a signi�cant reduction in(d) TXx mean and(f) the across-model
average in the 90th percentile of TXx according to a permutation signi�cance test are stippled.
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Figure 5. Application of land-coupling constraint to CMIP5 ensemble.(a, b) Ensemble prediction of original and constrained multi-model
ensemble for(a) future absolute TXx and(b) range of TXx anomalies relative to global mean temperature anomalies in each model, following
Seneviratne et al. (2016). Envelopes indicate 5th to 95th percentile.(c, d) Global maps of projected changes in simulated(c) mean TXx and
(d) 90th percentile of TXx in the VACc-constrained CMIP5 ensemble.

3.2.2 Is there a link between present-day
land–atmosphere coupling and warming
projections?

We investigate whether the representation of land–
atmosphere coupling in climate models affects the magnitude
of 21st-century warming (e.g. Fischer et al., 2012; Stegehuis
et al., 2013). We �rst note that regions sensitive to land–
atmosphere coupling in the CMIP5 model ensemble also
show relatively strong warming in daily-scale temperature
extremes (TXx), for example central America or southern
and central Europe (Fig. 6a and b). More importantly,
however, models that produce frequent VACc occurrences
(water-limited regimes) tend to be associated with larger
rates of warming in TXx, although it should be emphasized
that this relationship is not simple or linear (Fig. 6c and d;
see also Fischer et al., 2012). Conversely, this pattern
reverses in boreal regions, where strongly energy-limited
models (i.e. very few VACc occurrences) tend to produce

larger warming. However, in boreal regions this apparent
relationship likely stems from a spurious correlation with the
individual models' background warming (i.e. warming in
annual averages), as the correlation in fact disappears if the
background warming is subtracted from summer warming
(Fig. S10). In contrast, in midlatitude regions warm season
warming that exceeds annual average warming remains
con�ned to the warm season. A multi-model projection con-
strained by a plausible representation of land–atmosphere
coupling reduces differences in TXx estimates in a future
climate relative to the present in coupling-sensitive regions
such as central Europe and central North America locally by
around 0.5 to 1� C, but this remains a regional effect (Fig. 6e
and f). These results are consistent with earlier studies that
used an ensemble of regional models over Europe that
used the standard deviation of temperatures as a constraint
(Fischer et al., 2012).
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Figure 6. (a, b)Projected warming in warm season(a) mean temperature and(b) TXx across the CMIP5 ensemble (RCP8.5 scenario, 2071–
2100 relative to 1981–2010).(c, d) Correlation between VACc in the warm season and the projected warming in(c) mean temperature and
(d) TXx. Stippling indicates signi�cant correlations.(e, f) Relative change in(e)mean warming and(f) TXx warming due to the application
of the land–atmosphere coupling constraint; warming de�ned as 2071–2100 relative to 1981–2100.

4 Conclusions

In the present study, we have evaluated land–atmosphere
coupling in state-of-the-art climate models with an ensem-
ble of observations using a diagnostic based on coincidences
of T and ET anomalies (the VAC index). While observa-

tions and models broadly agree on spatial patterns of land–
atmosphere coupling, our results reveal that models differ
widely in coupling-sensitive regions in the midlatitudes and
the tropics. Several models exhibit systematically too fre-
quent coincidences of high temperature anomalies with neg-
ative ET anomalies (water-limited regimes) in midlatitude
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regions in the warm season and in several tropical regions
year-round.

Across the multi-model ensemble, we found a strong as-
sociation of land–atmosphere coupling with simulated tem-
perature variability and extremes. The spread between mod-
els largely explains differences in simulated monthly tem-
perature variability and daily extremes. We applied a land–
atmosphere coupling constraint to the multi-model ensem-
ble, which considerably improves the representation of land–
atmosphere coupling in the ensemble and reduces biases in
temperature variability and extremes in present-day simula-
tions in a physically consistent manner (Fig. 4). Furthermore,
the constraint leads to reduced variability and lower extreme
temperatures in future projections. However, the overall pro-
jected changes in temperature extremes are not as strongly
affected (reduction by around 0.5–1.0� C locally in regions
that are sensitive to land–atmosphere coupling) because the
models with overestimated land–atmosphere coupling dis-
play similar anomalies from the multi-ensemble mean in the
present and future. In conclusion, we selected models with
a physically plausiblerepresentation of land surface pro-
cesses (and near-surface climate) using observations-based
constraints that are guided by physical considerations. This
approach complements more traditional bias correction ap-
proaches and offers new avenues to obtain improved esti-
mates of future climate impacts.

Data availability. CMIP5 model simulations are publicly avail-
able and can be downloaded through the CMIP5 data portal
accessible through https://esgf-node.llnl.gov/projects/esgf-llnl/.
All CMIP5 data used are listed in Table S1. Tem-
perature (observations-based): CRU: http://catalogue.
ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d;
ERA-Interim: http://apps.ecmwf.int/datasets/; CFSR:
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