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1 Introduction

The higher spin — CFT duality allows one to get a glimpse at the large symmetry algebra

underlying string theory [1–3]. Indeed, the higher spin symmetry of string theory is believed

to appear at the tensionless point in AdS [4–6], where infinitely many fields of spin greater

than two become massless and give rise to a Vasiliev higher spin theory [7]. A concrete

description of this phenomenon was found for the case of AdS3 in [8], and at least for this

specific background, it is now possible to study the large unbroken symmetry algebra of

string theory in detail.
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The tensionless point of string theory on AdS is dual to the free limit of the dual

field theory, at which the integrable structure of the field theory should have an explicit

realization. It is then a natural question how the integrable structure relates to the higher

spin and the stringy symmetries. In this paper we begin to explore this question by studying

the relation between the higher spin (and the stringy) symmetry algebra on AdS3, and

certain Yangian algebras. Yangian algebras appear naturally in spin-chain models and are

a hallmark of integrability. More specifically, we shall explore this question for the original

bosonic version of the higher spin — CFT duality [9].

Some time ago it was noted [10, 11] that the affine Yangian of gl1 (as defined in [10, 12])

is isomorphic toW1+∞[λ], the asymptotic symmetry algebra of the bosonic higher spin the-

ory on AdS3.1 This isomorphism arises as the rational limit of the equivalence between the

quantum-deformed W1+∞ algebra and the quantum toroidal algebra of gl1 [10], generaliz-

ing the construction of [13] to the toroidal case. The toroidal isomorphism was first pointed

out in [14], and the definition of the quantum toroidal algebra (or quantum affinization

of the affine Lie algebra) of gl1 was inspired by [15]; the toroidal isomorphism was also

independently re-derived in a series of papers [16–18]. More recently, the construction of

the quantum toroidal algebras was generalized further to arbitrary quiver diagrams in [19].

In [11] Prochazka proposed a concrete dictionary for how the parameters of the affine

Yangian of gl1 and W1+∞[λ] are related to each other, and gave circumstantial evidence

for this by comparing the structure of some representations. In this paper we confirm his

claim independently by constructing the low-lying W∞[λ] generators explicitly in terms

of the affine Yangian generators. This allows us to determine the two structure constants

that characterize the W∞[λ] algebra [20] — the central charge c and the OPE coefficient

C4
33 describing the coupling of two spin-3 fields to the spin-4 field — and thereby check the

proposed dictionary. We also establish this identification for the two free field cases, the

free fermion case corresponding to λ = 0 (which was already analysed in [11]) as well as

the the free boson construction leading to the algebra with λ = 1.

One of the interesting lessons of our analysis is that in general the modes of the local

fields of the W∞[λ] algebra involve infinite linear combinations of the Yangian generators,

reflecting the inherently non-local structure of the Yangian algebra. Our analysis also

allows us to clarify the way in which the triality symmetry of the W∞[λ] algebra arises in

the affine Yangian description.

The affine Yangian of gl1 is also believed to be isomorphic to the spherical degenerate

double affine Hecke algebra, also called SHc algebra, of [21]. (In fact, the affine Yangian of

gl1 was first constructed (in the RTT formulation) by [22] at around the same time as [21],

in the context of proving the AGT correspondence.) While this relation seems to be known

to the experts, an explicit description of the underlying isomorphism does not seem to exist

in the literature, and we have therefore also included an explicit account of it here. Among

other things this allows us to explain how different natural classes of representations are

related to one another.

1Strictly speaking, the actual symmetry algebra is W∞[λ], and does not contain the spin-one current,

but the spin-one current can be easily decoupled and does not play an important role in the following.
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All of these considerations concern the original higher spin symmetry algebra W∞,

rather than the stringy symmetry algebra, i.e. the Higher Spin Square [23]. This therefore

suggests that the integrable structure should already be visible in terms of the higher spin

theory, and may not require including the stringy degrees of freedom. It would nevertheless

be very interesting to understand how the Higher Spin Square algebra can be brought into

the fold. On the face of it, it also seems to correspond to some Yangian algebra [23], but

this does not seem to be directly related to the Yangian algebras we encounter in this paper.

The paper is organized as follows. In section 2 we briefly review the structure of the

affine Yangian of gl1 and the higher spin algebra W∞[λ]. Section 3 is concerned with

working out the relation between the two structures. We also explain (in sections 3.4

and 3.5) how the triality symmetry is realized, and how the representations can be identi-

fied. Section 4 deals with the two free field realizations that provide specific incarnations

of the general dictionary, and in section 5 we establish the detailed correspondence with

the SHc algebra. Finally, section 6 contains our conclusions. There is one appendix in

which some of the details of the construction of the spin-4 field of W∞[λ] in terms of affine

Yangian generators is explained in some detail.

2 The affine Yangian and W1+∞[λ]

We begin by reviewing the structure of the affine Yangian in section 2.1, and that of

W1+∞[λ] in section 2.2.

2.1 The affine Yangian of gl1

The affine Yangian of gl1 is the associative algebra generated by the generators ej , fj , and

ψj with j = 0, 1, . . ., subject to a set of commutation and anti-commutation relations that

are most easily described in terms of the generating functions [10]

e(z) =

∞∑
j=0

ej
zj+1

, f(z) =

∞∑
j=0

fj
zj+1

, ψ(z) = 1 + σ3

∞∑
j=0

ψj
zj+1

, (2.1)

where z is a ‘spectral’ parameter, and σ3 = h1h2h3. Here (h1, h2, h3) is a triplet of param-

eters whose sum is zero

σ1 ≡ h1 + h2 + h3 = 0 , (2.2)

and we denote their symmetric powers by

σ2 ≡ h1h2 + h2h3 + h1h3 , σ3 ≡ h1h2h3 . (2.3)

In order to describe the relations we introduce the function

ϕ(z) =
(z + h1)(z + h2)(z + h3)

(z − h1)(z − h2)(z − h3)
=
z3 + σ2z + σ3

z3 + σ2z − σ3
, (2.4)

which satisfies the obvious identity

ϕ(z)ϕ(−z) = 1 . (2.5)

– 3 –
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The relations of the affine Yangian are then

e(z) e(w) ∼ ϕ(z − w) e(w) e(z) (2.6)

f(z) f(w) ∼ ϕ(w − z) f(w) f(z) (2.7)

ψ(z) e(w) ∼ ϕ(z − w) e(w)ψ(z) (2.8)

ψ(z) f(w) ∼ ϕ(w − z) f(w)ψ(z) , (2.9)

where ‘∼’ means equality up to terms that are regular at z = 0 or w = 0. (Note that in

eq. (2.1) the generators of the algebra are all associated to singular terms of the spectral

parameter.) In addition we have the identity

e(z) f(w)− f(w) e(z) = − 1

σ3

ψ(z)− ψ(w)

z − w
, (2.10)

as well as the Serre relations∑
π∈S3

(
zπ(1) − 2zπ(2) + zπ(3)

)
e(zπ(1)) e(zπ(2)) e(zπ(3)) = 0 , (2.11)

together with the same identity for f(z). This formulation is particularly suited for describ-

ing the representation theory of the affine Yangian as we will see at the end of this section.

In order to get a feeling for what these relations mean, it is useful to write them out

in terms of modes. For example, multiplying the first equation (2.6) by the denominator

of (2.4) we obtain

σ3

{
e(z), e(w)

}
=
(

(z − w)3 + σ2(z − w)
) [
e(z), e(w)

]
, (2.12)

which upon expanding out in terms of modes leads to the relation

σ3{ej , ek} = [ej+3, ek]− 3[ej+2, ek+1] + 3[ej+1, ek+2]− [ej , ek+3]

+ σ2[ej+1, ek]− σ2[ej , ek+1] . (2.13)

The other cases work similarly, and we find in addition the identities (see also [11])

0 = [ψj , ψk] (2.14)

−σ3{fj , fk} = [fj+3, fk]− 3[fj+2, fk+1] + 3[fj+1, fk+2]− [fj , fk+3]

+ σ2[fj+1, fk]− σ2[fj , fk+1] (2.15)

ψj+k = [ej , fk] (2.16)

σ3{ψj , ek} = [ψj+3, ek]− 3[ψj+2, ek+1] + 3[ψj+1, ek+2]− [ψj , ek+3]

+ σ2[ψj+1, ek]− σ2[ψj , ek+1] (2.17)

−σ3{ψj , fk} = [ψj+3, fk]− 3[ψj+2, fk+1] + 3[ψj+1, fk+2]− [ψj , fk+3]

+ σ2[ψj+1, fk]− σ2[ψj , fk+1] , (2.18)

together with the low order relations

[ψ0, ej ] = 0 , [ψ1, ej ] = 0 , [ψ2, ej ] = 2ej , (2.19)
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and

[ψ0, fj ] = 0 , [ψ1, fj ] = 0 , [ψ2, fj ] = −2fj , (2.20)

as well as the Serre relations

Sym(j1,j2,j3)[ej1 , [ej2 , ej3+1]] = 0 , Sym(j1,j2,j3)[fj1 , [fj2 , fj3+1]] = 0 . (2.21)

It is immediate from the above commutation relations that the affine Yangian con-

tains two central elements, namely ψ0 and ψ1. In a given representation, the algebra is

therefore characterized by four independent parameters: ψ0 and ψ1, together with σ2 and

σ3. However, not all four parameters are independent since the algebra possesses a scaling

symmetry

ψj 7→ αj−2 ψj , ej 7→ αj−1ej , fj 7→ αj−1fj , (2.22)

under which the above relations remain invariant provided we also scale σ2 7→ α2σ2 and

σ3 7→ α3σ3, i.e.

hj 7→ αhj . (2.23)

Thus the algebra actually only depends on three of the four parameters σ2, σ3, ψ0 and ψ1;

in particular, we may consider the scale-invariant combinations

σ2ψ0 , σ2
3 ψ

3
0 , and ψ2

1ψ
−1
0 . (2.24)

There is a very natural class of representations of the affine Yangian of gl1 which are

of interest in the connection to the W∞ algebra.2 These representations are best viewed

in terms of plane partitions, i.e. three-dimensional box stacking configurations.3 They are

special in that they have a finite number of states at every level and thus possess infinitely

many null states; they are discussed in some detail in [11, 25], and we only summarize the

salient aspects which we will draw upon later. A generic plane partition representation

is labelled by three Young tableaux. These Young tableaux correspond to the asymptotic

box configurations (along the three positive axes) of a three dimensional box stacking

configuration. A valid stacking is one in which the number of boxes are non-increasing as

one moves from any site to a neighboring site along any of the three positive directions

(see figure 1).

The highest weight state of a representation (labelled by three Young tableaux) is

the plane partition configuration with the minimum number of boxes consistent with the

specified asymptotics (the blue boxes in figure 1). The other states in the representation are

obtained by the repeated action of the Yangian generators on this representation (given by

the yellow boxes in figure 1). This action is given in terms of adding/removing boxes from

a given valid stacking configuration. To be specific, we have the action of the generating

2Strictly speaking, they define representations of W1+∞, but as explained below, see section 2.2, the

u(1) part can be easily decoupled.
3For a good introduction on combinatorics of plane partitions, see [24].
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vacuum (Ξ, 0) (Ξ+,Ξ−) (Ξ(x),Ξ(y),Ξ(z))

Figure 1. There are four types of plane partition representations, depending on how many of the

three asymptotics are non-trivial.

functions (2.1) [11]

ψ(z)|Λ〉 = ψΛ(z)|Λ〉 , (2.25)

e(z)|Λ〉 =
∑
∈Add(Λ)

[
− 1
σ3

Resw=h( )ψΛ(w)
] 1
2

z − h( )
|Λ + 〉 , (2.26)

f(z)|Λ〉 =
∑
∈Rem(Λ)

[
− 1
σ3

Resw=h( )ψΛ(w)
] 1
2

z − h( )
|Λ− 〉 , (2.27)

where ‘Res’ denotes the residue. Thus ψ(z) acts diagonally on a plane partition configura-

tion Λ with eigenvalue

ψΛ(z) =

(
1 +

ψ0σ3

z

) ∏
∈Λ

ϕ(z − h( )) , (2.28)

where

h( ) = h1x( ) + h2y( ) + h3z( ) (2.29)

with x( ) the x-coordinate of the box, etc. The r.h.s. of the second and third lines indicate

that the action of e(z) and f(z) give rise to configurations with one more (or one less) box.

The sum is over all plane partition configurations of this kind.

In this language, the vacuum representation ofW1+∞ is the plane partition with trivial

asymptotics, i.e., its highest weight configuration has no boxes. The character of this

representation thus counts all finite plane partitions whose generating function is given by

the MacMahon function. The minimal representation is the next simplest case, which has

a single box Young tableau boundary condition in one of the three directions (and trivial

asymptotic behaviour in the other two). We immediately see that triality, which acts by

interchanging the hi and the three axes, gives rise to two other minimal representations,

which have the same character (up to an overall factor involving the conformal dimension

of the highest weight), in agreement with the prediction of [20].

– 6 –
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2.2 The algebra W1+∞[λ]

The algebra W1+∞[λ] is the W algebra that is generated by one independent field for each

spin s = 1, 2, 3, . . .. Since it contains a spin-one field, whose commutator can only contain

a central term and hence define a u(1) algebra,

[Jm, Jn] = mκδm,−n , (2.30)

we can consider the coset of theW1+∞[λ] algebra by this u(1) field, and hence conclude that

W1+∞[λ] ∼= u(1) ⊕ W∞[λ] , (2.31)

see, e.g., the discussion in [26]. Here W∞[λ] is the W algebra generated by one field for

each spin s = 2, 3, . . .; as was shown in [20], this algebra is uniquely characterized by the

value of the central charge c and the OPE coupling constant C4
33 describing the coupling

of two spin-3 fields to the spin-4 field. This OPE coefficient is parametrized in terms of c

and λ as

(C4
33)2 =

64(c+ 2)(λ− 3)
(
c(λ+ 3) + 2(4λ+ 3)(λ− 1)

)
(5c+ 22)(λ− 2)

(
c(λ+ 2) + (3λ+ 2)(λ− 1)

) . (2.32)

Since the numerator and denominator of (2.32) are cubic polynomials in λ, there are

generically three different values of λ (which also depend on c since the coefficients of the

polynomials are functions of c) that lead to the same OPE structure constant C4
33 and

therefore to the same algebra. This is referred to as the ‘triality’ symmetry of the algebra.

In addition to the two parameters (λ, c), the algebra W1+∞[λ] is also characterized by

the central term κ in (2.30), as well as the eigenvalue of the central generator J0. (The

coset construction guarantees that J0 commutes with all generators of W∞[λ].) Obviously,

κ can be rescaled by rescaling the Jm generators, but this would also modify the value of

J0; therefore the (scale) invariant quantity is

(J0)2/κ . (2.33)

Hence the W1+∞[λ] algebra is also characterized by three parameters, which we may take

to be λ, c, and the ratio (2.33).

3 Relating W1+∞[λ] and the affine Yangian of gl1

In this section we explain in detail the relation between W1+∞[λ] and the affine Yangian

of gl1. We start by identifying the spin-one and spin-two generators.

3.1 Identification of generators

3.1.1 The spin-one and spin-two generators

Following [11] we identify the u(1) algebra of W1+∞[λ] inside the affine Yangian by setting

J1 = −f0 , J−1 = e0 , (3.1)

– 7 –
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so that

κ = ψ0 . (3.2)

The higher modes of the u(1) algebra can be obtained recursively by using the commutation

relations

[Lm, Jn] = −nJm+n . (3.3)

(Note that these Lm generators are the full Virasoro generators of the W1+∞[λ] algebra; in

particular, they do not commute with the u(1) generators.) In fact, it is enough to use the

commutation relations with the Möbius generators L±1 (instead of all Virasoro generators

Lm), for which we make the ansatz

L1 = −f1 , L−1 = e1 . (3.4)

Then the scaling operator L0 is

L0 =
1

2
[L1, L−1] =

1

2
ψ2 , (3.5)

from which we deduce that J0 equals

J0 = [L1, J−1] = −[f1, e0] = ψ1 . (3.6)

Note that (3.6) is then also equal to ψ1 = [e1, f0] = −[L−1, J1], as required by consistency.

The scale-invariant combination from (2.24)

ψ2
1ψ
−1
0
∼= (J0)2/κ , (3.7)

matches then precisely with the invariant combination (2.33).

In order to identify the higher Virasoro generators, we need to specify the form of the

generators L±2, for which we make the ansatz, again following [11]

L−2 =
1

2

(
[e2, e0] + σ3ψ0 [e0, e1]

)
, L2 = −1

2

(
[f2, f0] + σ3ψ0 [f0, f1]

)
. (3.8)

Using the commutation relations of the Virasoro algebra, this then determines recursively

all Lm generators (upon taking repeated commutators with L1 and L−1, respectively). The

resulting generators then satisfy — we have only checked this explicitly for the first few

cases —

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm,−n , with c = −σ2ψ0 − σ2

3ψ
3
0 . (3.9)

Note that the parameters that appear in the definition of c are indeed scale-invariant, see

eq. (2.24). In addition, the resulting generators are compatible with eqs. (3.3) and (2.30).

– 8 –
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3.1.2 The spin-three generators

For the wedge modes of the spin-three generator we now make the ansatz

W 3
−2 = −[e1, e2] (3.10)

W 3
−1 = −e2 −

1

2
σ3ψ0 e1 (3.11)

W 3
0 =

1

6
(−2ψ3 − σ3ψ0ψ2) (3.12)

W 3
1 = f2 +

1

2
σ3ψ0 f1 (3.13)

W 3
2 = −[f1, f2] . (3.14)

These modes are constructed so as to have the correct commutation relations with the

Möbius generators

[Lm,W
3
n ] = (2m− n)W 3

m+n for m = 0,±1 . (3.15)

However, the above ansatz cannot be quite correct since, for |n| ≤ 2, the commutators with

the spin-one modes Jm are

[Jm,W
3
n ] = −2mLm+n − sign(m)m

(
m+

n

2

)
σ3ψ0Jm+n , (3.16)

and hence are not of the general form predicted by [27] based on the locality of the fields

— the offending term is the sign(m) term that is proportional to σ3; it necessarily appears

in the above commutators as one can conclude, for example, from

[J−1,W
3
1 ] = 2L0 +

1

2
σ3ψ0 J0 (3.17)

[J1,W
3
2 ] = −2L3 − 2σ3ψ0 J3 . (3.18)

Thus the above W 3
n modes cannot be the modes of a local field. In order to repair this, we

define the (non-local) generators (for n ∈ Z)

W̃n =
1

2

∑
l

|l − n

2
|Θ(l(l − n)) : Jn−lJl : +

1

12
(|n|+ 2)(|n|+ 1) JnJ0 , (3.19)

where Θ(m) is the step function defined by Θ(m) = 0 for m ≤ 0, and Θ(m) = 1 for

m > 0. (Note that the Θ-function term guarantees that the mode numbers of the two

J-modes in the first sum have opposite signs.) The W̃n generators have the property that,

for m = 0,±1

[Lm, W̃n] = (2m− n)W̃m+n . (3.20)

Furthermore, for |n| ≤ 2,

[Jm, W̃n] = sign(m)m
(
m+

n

2

)
ψ0 Jm+n , (3.21)

which follows from the commutation relations (2.30). Thus we can modify the definition

of W 3
n by this non-linear correction term to remove the strange term in (3.16). More

specifically, if we define

V 3
n = W 3

n + σ3 W̃
3
n , (3.22)

– 9 –
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the redefined modes satisfy

[Jm, V
3
n ] = −2mLm+n . (3.23)

This relation in fact remains true for the modes W 3
n with |n| ≥ 3, provided we define the

outside-the-wedge generators appropriately; a choice that works is

W 3
3 = −1

6
[f2, [f0, f2]] +

σ3ψ0

8
[f2, [f0, f1]]− 1

12
(2σ2 + σ2

3ψ
2
0 + σ3ψ1)[f1, [f0, f1]] +

σ3

4
[f1, f

2
0 ] ,

(3.24)

and similarly for W 3
−3, and then determining the remaining outside-the-wedge generators

by recursively considering the commutators with the Möbius generators L±1. Then we can

calculate the commutators with the Jm modes, and find for example

[J−1,W
3
3 ] = 2L2 (3.25)

[J−2,W
3
3 ] = 4L1 (3.26)

[J−3,W
3
3 ] = 6L0 + 5σ3ψ0 J0 (3.27)

[J1,W
3
3 ] = −2L4 −

5

2
σ3ψ0 J4 . (3.28)

One can check that the terms proportional to the J-modes are again cancelled by the

commutator with the correction term W̃ 3
3 , so that (3.23) is indeed true for n = 3 and m =

−1,−2,−3, 1. Since all the other commutators can be recursively determined from these

using the quasi-primary condition, i.e. the fact that the W 3 and W̃ 3 modes satisfy (3.15)

and (3.20), it follows that (3.23) holds for all modes.

The V 3
n modes are the modes of a quasi-primary, but not primary, spin-three field.

Indeed, we find for the commutators with the Virasoro generators

[Lm, V
3
n ] = (2m− n)V 3

m+n +
m(m2 − 1)

6
(σ2 + σ2

3ψ
2
0) Jm+n . (3.29)

While this commutator still contains a correction term proportional to J , the structure

of (3.29) is now compatible with locality [27].

3.1.3 The spin-4 generators and the spin-3 commutators

The analysis for the spin-4 generators is similar. Since the details are somewhat tedious,

we have moved the description of the construction to appendix A. With the definition of

the spin-4 generators at hand, we can then analyse the relevant commutators. First we

determine by direct calculation the commutators of the W 3 modes

[W 3
0 ,W

3
2 ] = −4W 4

2 (3.30)

[W 3
0 ,W

3
1 ] = −2W 4

1 +
1

10
(−σ2

3ψ
2
0 + 4σ3ψ1 − 4σ2)L1 , (3.31)

where the W 4 modes are defined in eqs. (A.2) and (A.3), respectively. Taking into account

the correction terms, one then finds for the commutators of the V 3 modes

[V 3
0 , V

3
2 ] = −4V 4

2 + σ2
3 ψ0

∑
m≤0

(2m− 2)2JmJ2−m (3.32)

[V 3
0 , V

3
1 ] = −2V 4

1 +
1

10
(−σ2

3ψ
2
0 − 4σ2)L1 +

1

2
σ2

3 ψ0

∑
m≤0

(2m− 1)2JmJ1−m , (3.33)
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where the V 4 modes are defined in eq. (A.21). These commutators are now of local form

— the JJ bilinear term has spin s = 4.

3.2 Decoupling the u(1) currents

The generators V 3
n and V 4

n are the modes of a local spin-3 and spin-4 field of W1+∞[λ],

respectively. However, these fields are neither u(1) nor Virasoro primary, see, e.g. eqs. (3.23)

and (3.29), and eqs. (A.22) and (A.23), respectively. As a consequence, it is difficult to read

off from their commutators the relevant structure constants directly. On the other hand,

we know on general grounds that we can decouple the u(1) current, see eq. (2.31), and that

the resulting algebra must then be isomorphic to W∞[λ]. Thus it remains to perform this

u(1) decoupling explicitly, following [26]. For the Virasoro generators, the analysis is quite

standard, and we find for the decoupled generators

L̃m = Lm −
1

2ψ0

∑
l

: JlJm−l : . (3.34)

These generators then give rise to a Virasoro algebra

[L̃m, L̃n] = (m− n)L̃m+n +
c̃

12
m (m2 − 1) δm,−n , [L̃m, Jn] = 0 , (3.35)

where the central charge equals now, cf. eq. (3.9)

c̃ = −σ2ψ0 − σ2
3ψ

3
0 − 1 . (3.36)

For the u(1) decoupled spin-3 field we find

Ṽ 3
m = V 3

m +
2

ψ0

∑
l

: Jm−lL̃l : +
1

3ψ2
0

∑
l,n

: Jm−n−lJnJl : . (3.37)

This field is then primary with respect to both the u(1) and the decoupled Virasoro

algebra, i.e.

[L̃m, Ṽ
3
n ] = (2m− n)Ṽ 3

m+n , [Ṽ 3
m, Jn] = 0 . (3.38)

The u(1) decoupled primary spin-4 wedge generators are

V 4
m = Ṽ 4

m −
3

ψ0

∑
l

: Ṽ 3
m−lJl : +

3

ψ2
0

∑
n,l

: L̃m−n−lJnJl :

+
1

4ψ3
0

∑
l,p,q

: Jm−l−p−qJlJpJq : −σ2 − σ2
3ψ

2
0

20ψ0

∑
l

(5l2 − 5ml +m2 + 1) : Jm−lJl :

+
3(3σ2

3ψ
3
0 + 7σ2ψ0 + 5)

ψ0(5σ2
3ψ

3
0 + 5σ2ψ0 − 17)

(∑
l

: L̃m−lL̃l : − 3

10
(m+ 2)(m+ 3)L̃m

)
, (3.39)

which satisfy for |n| ≤ 3

[L̃m, Ṽ
4
n ] = (3m− n)Ṽ 4

m+n , [Jm, Ṽ
4
n ] = 0 . (3.40)
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3.3 Determining the structure constant

With these explicit expressions at hand, we can now determine the commutators of these

u(1) decoupled modes and find

[Ṽ 3
0 , Ṽ

3
2 ] = −4Ṽ 4

2 +
16(−σ2

3ψ
3
0 − 4σ2ψ0 − 8)

ψ0(5σ2
3ψ

3
0 + 5σ2ψ0 − 17)

∞∑
m=−∞

: L̃mL̃2−m :

[Ṽ 3
0 , Ṽ

3
1 ] = −2Ṽ 4

1 +
(−σ2

3ψ
3
0 − 4σ2ψ0 − 8)

10ψ0
L̃1

+
8(−σ2

3ψ
3
0 − 4σ2ψ0 − 8)

ψ0(5σ2
3ψ

3
0 + 5σ2ψ0 − 17)

( ∞∑
m=−∞

: L̃mL̃1−m : +
2

5
L̃1

)
.

(3.41)

This can now be compared with eq. (A.6) of [20]. Comparing (3.32) to the case m = 0,

n = 2 of (A.6) in [20], we have the identifications

c̃ = −ψ0(σ2 + σ2
3ψ

2
0)− 1 (3.42)

N3 =
c̃+ 22

5

16

16(σ2
3ψ

3
0 + 4σ2ψ0 + 8)

ψ0(5σ2
3ψ

3
0 + 5σ2ψ0 − 17)

=
1

5

(−σ2
3ψ

2
0 − 4σ2ψ0 − 8)

ψ0
. (3.43)

In order to determine λ it remains to compute at least one term in the commutator [Ṽ 3
n , Ṽ

4
m];

the simplest case to consider is the coefficient of the Θ6
5 term in the commutator [Ṽ 3

2 , Ṽ
4

3 ],

where Θ6 is the u(1) and Virasoro primary composite field of spin 6, whose modes are of

the form

Θ6
n =

∑
m

(
5

3
m− n

)
: L̃n−mṼ

3
m : + terms proportional to Ṽ 3 , (3.44)

see eq. (A.10) of [20]. From the explicit form of the commutators we can read off the

coefficient of Θ6
5 in the commutator [Ṽ 3

2 , Ṽ
4

3 ] to be

18(−27− 9σ2ψ0 − σ2
3ψ

3
0)

5ψ0(17− 5σ2ψ0 − 5σ2
3ψ

3
0)
. (3.45)

Comparing to eq. (3.4) of [20], this coefficient should equal 84N4
25N3(c+2) — recall that the

central charge c of [20] needs to be identified with c̃ defined by eq. (3.42) — from which

we conclude that
N4

N3
=

15(c+ 2)(−27− 9σ2ψ0 − σ2
3ψ

3
0)

14ψ0(17− 5σ2ψ0 − 5σ2
3ψ

3
0)

. (3.46)

Together with the previous expression (3.43), we therefore find

N4

N2
3

=
75(c+ 2)(27 + 9σ2ψ0 + σ2

3ψ
3
0)

14(8 + 4σ2ψ0 + σ2
3ψ

3
0)(17− 5σ2ψ0 − 5σ2

3ψ
3
0)
. (3.47)

This is now to be equated with, see eq. (3.4) of [20],

N4

N2
3

=
75(c+ 2)(λ− 3)

(
c(λ+ 3) + 2(4λ+ 3)(λ− 1)

)
14(5c+ 22)(λ− 2)

(
c(λ+ 2) + (3λ+ 2)(λ− 1)

) , (3.48)
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from which we conclude that

(27 + 9σ2ψ0 + σ2
3ψ

3
0)

(8 + 4σ2ψ0 + σ2
3ψ

3
0)

=
(λ− 3)

(
c(λ+ 3) + 2(4λ+ 3)(λ− 1)

)
(λ− 2)

(
c(λ+ 2) + (3λ+ 2)(λ− 1)

) . (3.49)

In order to explain the relation between the two sets of parameters, it is now convenient

to parameterize c and λ in terms of the coset labels (N, k) via

c = (N − 1)

(
1− N(N + 1)

(N + k)(N + k + 1)

)
, λ =

N

N + k
, (3.50)

and the σ2 and σ3 variables in terms of h1, h2 and h3, see eq. (2.3). Then one checks

by direct computation that the relations c = c̃ of eq. (3.36) and eq. (3.49) are exactly

compatible with the proposed identification of the parameters [11] as

ψ0 = N , (3.51)

and

h1 = −
√
N + k + 1

N + k
, h2 =

√
N + k

N + k + 1
, h3 =

1√
(N + k)(N + k + 1)

. (3.52)

This calculation therefore establishes the identification of parameters proposed in [11].

3.4 Triality symmetry

Recall from the analysis of [20] that the triality identifications of the (N, k) parameters are

generated by the two fundamental transformations

π1 : N 7→ N , k 7→ −2N − k − 1 (3.53)

and

π2 : N 7→ N

N + k
, k 7→ 1−N

N + k
, (3.54)

see eq. (3.10) of [20]. These transformations act on the (N, k) parameters as follows:

(N, k)

π1

vv

π2

(((
N,−1− 2N − k

)
66

π2

��

(
N

N+k ,
1−N
N+k

)
hh

π1

��(
N

N+k , 1−
N+1
N+k

)
((

OO

(
− N
N+k+1 ,

N−1
N+k+1

)
vv

OO

(
− N
N+k+1 ,−

k
N+k+1

) π2

66

π1

hh
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Under these transformations the structure constant (2.32) remains invariant, and hence

the W∞ algebra does not change. In terms of the λ parameters, π1 exchanges

λ1 ≡
N

N + k
←→ λ2 ≡ −

N

N + k + 1
, (3.55)

(while leaving λ3 ≡ N invariant), and π2 exchanges λ2 ↔ λ3 (while leaving λ1 invariant).

In this section we want to understand the incarnation of this symmetry in the language

of the affine Yangian. Under the transformation π1, N (and hence ψ0) does not change, and

π1 : (N + k + 1) 7→ −(N + k) , (N + k) 7→ −(N + k + 1) . (3.56)

Writing both signs as e±πi — if we think of the transformation (3.53) as arising from some

analytic continuation of k, both signs have the same form — then under the action of π1,

h1 7→ −h2, h2 7→ −h1, while h3 7→ −h3. The overall sign of the hi can be absorbed by the

rescaling with α = −1, see eq. (2.23), and this does not modify ψ0 = N , see eq. (2.22). Thus

we conclude that the transformation π1 acts on the hi parameters of the affine Yangian as

π1 : h1 ←→ h2 , (3.57)

while leaving h3 invariant, i.e. as the permutation (12).

The analysis for the case of π2 is analogous. Now N is transformed to N/(N +k), and

hence we need to rescale the resulting expressions with α = (N + k)−1/2, so as to bring ψ0

back to its original form. If we apply this α transformation also to the hi, then one finds

that π2 corresponds to the transformation

π2 : h2 ←→ h3 , (3.58)

while leaving h1 invariant. (For example, one finds π2(h1) =
√
N + k + 1, and then rescal-

ing by α = (N + k)−1/2 indeed gives back h1.)

The two triality transformations therefore correspond to the permutations (12) and

(23) acting on the hi parameters, while keeping ψ0 invariant; they therefore generate the

full permutation group (acting on the hi). The triality symmetry acts trivially on the

algebra, but exchanges the representations via the natural (geometric) permutation action

of the hi. This explains, from first principles, the observations made in [11].

3.5 The universal enveloping algebra and representations

Finally we should be a bit more precise in how the the affine Yangian of gl1 and W1+∞[λ]

are related to one another. Recall that the former is an associative algebra, while the latter

is a commutator algebra. So far, we have confirmed that at least the first few generators

of W1+∞[λ] can be expressed in terms of generators of the affine Yangian so that the

commutation relations of W1+∞[λ] follow from the defining relations of the affine Yangian.

We have not found a general formula for an arbitrary W1+∞[λ] generator in terms of

affine Yangian generators, except for the two free field constructions that will be described
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in section 4. However, we have found identifications (for general λ) for the first fewW1+∞[λ]

generators, and in each case the identification was of the triangular form

es = ±V s+1
−1 + correction terms with fields of lower spin , (3.59)

fs = ±V s+1
1 + correction terms with fields of lower spin . (3.60)

In particular, this is the case for f0 = −J1, f1 = −L1 (as well as e0 = J−1 and e1 = L−1),

see eqs. (3.1) and (3.4). Similarly, W 3
−1 = −e2 + lower spin terms, see eq. (3.11), and

W 4
−1 = e3 + lower spin terms, see eq. (A.3), and similarly for W 3

1 and W 4
1 . (The correction

terms that lead to the actual local modes V 3
±1 and V 4

±1 are also of lower spin.) Thus this

dictionary suggests that we can express recursively not only all W1+∞[λ] generators in

terms of affine Yangian generators, but also conversely all es and fs generators (and hence

also all ψs generators) in terms of W1+∞[λ] generators. Since the affine Yangian algebra

is the associative algebra generated by the modes es, fs and ψs, it then follows that the

affine Yangian is isomorphic to the universal enveloping algebra of W1+∞[λ].

In particular, it therefore follows that the affine Yangian of gl1 andW1+∞[λ] share the

same representation theory. At least generically, i.e. as long as the vacuum representation

does not possess any non-trivial null-vectors, the representations of the vertex operator

algebra associated toW1+∞[λ] are in one-to-one correspondence with those of the universal

enveloping algebra. Indeed, the vertex operator algebra associates a mode to every state of

the vacuum representation, and these can always be described in terms of normal-ordered

products of monomials of the generating modes; conversely, every element of the universal

enveloping algebra can (at least formally) be written as a sum of modes of the vertex

operator algebra. We therefore conclude that the representations of the vertex operator

algebra associated to W1+∞[λ] are in one-to-one correspondence with those of the affine

Yangian of gl1.

As explained in section 2.1, the set of plane partitions with given asymptotics

(Ξ(x),Ξ(y),Ξ(z)) furnishes a natural representation of the affine Yangian of gl1. A plane

partition is an eigenstate of ψ(z), with eigenvalue given by (2.25), and e(z)/f(z) acting

on it by (legally) adding/removing boxes, see eqs. (2.26)/(2.27). Therefore the set of

plane partitions with given asymptotics (Ξ(x),Ξ(y),Ξ(z)) also defines a representation of

the W1+∞ algebra.

Depending on how many of the three asymptotics are non-trivial, there are four dif-

ferent types of plane partition representations, see figure 1. If at most two boundary

conditions are non-trivial, and applying the triality symmetry if necessary, we may assume

that Ξ(z) = 0, i.e. that the boundary condition is described by (Ξ(x),Ξ(y), 0). Then the

representation can be identified with a representation of the coset

su(N)k ⊕ su(N)1

su(N)k+1
, (3.61)

where Ξ(x) and Ξ(y) are representations of the su(N)k and su(N)k+1 algebra, respectively.4

In the context of the dual higher spin theory, these three types correspond to the vacuum,

4Here we assume that N and k are sufficiently large so that the truncations that appear at finite N and

k can be ignored.
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the perturbative states in Vasiliev theory, and the non-perturbative states, respectively [20].

The last type, i.e. the one where all three asymptotics are non-trivial, does not seem to have

an interpretation in terms of the coset theory, i.e. it does not arise as the large (N, k) limit

of a coset representation. As far as we are aware, it defines a new type of representation

of W1+∞ that has not been constructed via any other method.

The generating function of a plane partition representation (Ξ(x),Ξ(y),Ξ(z)) counts,

at level n, the number of ways to stack n boxes (the yellow ones in figure 1) on top

of the ground state, given by the minimal configuration obeying the boundary condition

(Ξ(x),Ξ(y),Ξ(z)) (the blue configuration of figure 1). For the coset type representations

(i.e. for Ξ(z) = 0), the plane partition generating function is identical to the character

computed via the Kac̆-Weyl formula [17]. One advantage of the plane partition viewpoint

in describing representations of W∞, even those of the coset type, is that it is much easier

to compute the character via the combinatorics of box stacking than using the Kac̆-Weyl

character formula. For example, this idea was used to identify the twisted sector represen-

tations of the symmetric orbifold in [25].

The plane partition representations are quasi-finite, i.e. there are only finitely many

states at each level. We note that the affine Yangian (as well as W1+∞[λ]) also possess

larger representations; for example, for λ = N there are also representations that are

labelled by N independent Young diagrams. (This follows from the fact that the algebra

SHc, which is isomorphic to the affine Yangian of gl1, see [28] and section 5 below, has such

representations, see e.g. [29].)

4 Free field realizations

For λ = 0 and λ = 1, the W∞[λ] algebra has a free field construction in terms of free

fermions and free bosons, respectively. Thus we should expect that, for these values of λ,

we can find closed-form expressions for the affine Yangian generators in terms of the corre-

sponding free fields. For the case of λ = 0 this description was already found in [11] (and

we shall only briefly review it below), while the construction for λ = 1 appears to be new.

The fact that at least for these special values of λ we can establish a closed-form dictionary

between the affine Yangian and the W∞ generators gives strong support to the idea that

the partial dictionary we established in section 3 can be generalized to all spin fields.

Before we describe the details for the two cases, we would like to make one general

comment. The case λ = 0 correspond to taking k →∞ at fixed N , while λ = 1 is described

by taking N →∞ at fixed k. In either case, σ2 and σ3, defined by eq. (2.3), become

σ2 = −1− 1

(N + k)(N + k + 1)
∼= −1 ,

σ3 = − 1√
(N + k)(N + k + 1)

∼= 0 .
(4.1)

In particular, the non-local correction terms of section 3 and appendix A are absent since

they are proportional to σ3, see eqs. (3.22) and (A.21). Furthermore, at least formally, the

anti-commutator terms in the definition of the affine Yangian in eqs. (2.13), (2.15), (2.17)
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and (2.18) drop out. However, there is one important subtlety: in the relations eqs. (2.17)

and (2.18), σ3 is multiplied by ψj , and for j = 0, ψ0 = N is taken to infinity for λ = 1.

Hence while for λ = 0 all of these anti-commutator terms are indeed absent, for λ = 1, the

expression σ3ψ0 becomes

σ3ψ0 = − N√
(N + k)(N + k + 1)

∼= −1 , (4.2)

and hence leads to a correction term for the special cases

[ψ3, ek] = 3[ψ2, ek+1]− 3[ψ1, ek+2] + [ψ0, ek+3] + [ψ1, ek]− [ψ0, ek+1]− 2ek

= 6ek+1 − 2ek , (4.3)

and

[ψ3, fk] = 3[ψ2, ek+1]− 3[ψ1, ek+2] + [ψ0, ek+3] + [ψ1, ek]− [ψ0, ek+1] + 2fk

= −6fk+1 + 2fk . (4.4)

This will be important in our construction below.

4.1 The free fermion construction

The construction for λ = 0 was already given in [11], and hence we shall be brief. We start

with N free complex fermions ψi and ψ̄i with i = 1, . . . , N . The bilinear U(N) singlets

(where we take the ψi to transform in the fundamental representation of U(N), and the ψ̄i

in the anti-fundamental) generate the linear W1+∞ algebra [30–32], see also [26]. Thus the

Yangian generators should also be expressed in terms of such bilinears, and one finds that

ψr =
∑

m∈Z+ 1
2

N∑
i=1

((
−m− 1

2

)r
−
(
−m+

1

2

)r)
: ψ̄i−mψ

i
m : ,

fs =
∑

m∈Z+ 1
2

N∑
i=1

(
−m+

1

2

)s
: ψ̄i−m+1ψ

i
m : ,

es = −
∑

m∈Z+ 1
2

N∑
i=1

(
−m− 1

2

)s
: ψ̄i−m−1ψ

i
m :

(4.5)

satisfy all the relations of the affine Yangian at σ3 = 0, σ2 = −1. Note that the definition

of ψ0 formally vanishes, but that in order to reproduce the correct central charge c̃ = N−1

in (3.42) we should set ψ0 = N . (Since ψ0 is central and since all anti-commutators drop

out, we are free to set ψ0 to any value we chose without modifying the defining relations

of the affine Yangian.)

One can also check that the above generators give rise to the correct W -generators using

our general identification between the W∞ generators and the affine Yangian generators.

For example, we have from eq. (3.13)

W 3
1 = f2 +

1

2
σ3ψ0 f1

∼= f2 (4.6)
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in the λ→ 0 limit, leading to

W 3
1 =

∑
m∈Z+ 1

2

N∑
i=1

(
m− 1

2

)2

: ψ̄i−m+1ψ
i
m : , (4.7)

which reproduces the usual free field answer, see e.g. eq. (2.8) of [26]. (Recall that at σ3 = 0

there is no difference between the V 3
n and the W 3

n generators, see eq. (3.22).)

4.2 The free boson construction

The situation for the free boson case is slightly more subtle. We start again with k free

complex boson fields, whose modes satisfy the commutation relations

[αim, ᾱ
j
n] = mδij δm,−n , (4.8)

while all other commutators vanish. The U(k) singlets (where the αim/ᾱim transform in

the fundamental/anti-fundamental representation of U(k)) generate now only a linear W∞
algebra, and there is no spin-one generator. As a consequence, we should only expect to be

able to express the affine Yangian generators er, fr with r ≥ 1 and ψs with s ≥ 2 in terms

of these free fields; note that the algebra generated by this subset of fields is a well-defined

subalgebra of the affine Yangian algebra.5 For these generators we make the ansatz

fr = −
∑
m∈Z

k∑
j=1

(
−m+ 1

)r−1
: αjmᾱ

j
1−m :

er =
∑
m∈Z

k∑
j=1

(−m)r−1 : αjmᾱ
j
−1−m :

ψr =
∑
m∈Z

k∑
j=1

(
(m+ 1)(−m)r−2 +

(
−m+ 1

)r−1
)

: αjmᾱ
j
−m : ,

(4.9)

where the ψr modes are determined by the condition [er, fs] = ψr+s, see eq. (2.16). Note

that with respect to the hermitian structure defined by (αjm)† = ᾱj−m, we have e†r = −fr.
These modes then satisfy all relations of the affine Yangian algebra. In particular, the

commutators of two er generators are

[fr, fs] =
∑
m∈Z

k∑
j=1

((
−m+1

)r(−m+2
)s−1 −

(
−m+2

)r−1(−m+1
)s)

: αjmᾱ
j
2−m : (4.10)

and similarly

[er, es] =
∑
m∈Z

k∑
j=1

(
(−m)r−1

(
−m− 1

)s − (−m− 1
)r

(−m)s−1
)

: αjmᾱ
j
−2−m : . (4.11)

5It is also worth pointing out that this subset of Yangian generators will only correspond to the wedge

subalgebra of W∞ — all the modes below will be from within the wedge.
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It is then straightforward to check that they satisfy the relations (2.14)–(2.17) with σ2 = −1

and σ3 = 0, as well as (2.21). One also confirms directly that they indeed give rise to the

correct initial conditions

[ψ2, fk] = −2fk , [ψ3, fk] = −6fk+1 + 2fk , (4.12)

[ψ2, ek] = 2ek , [ψ3, ek] = 6ek+1 − 2ek . (4.13)

Here we have used that since the ψs are only defined for s ≥ 2, only the last equation from

eq. (2.19) and (2.20) makes sense, and because of (4.3) and (4.4), the commutator with ψ3

has indeed the required form.

Again, we can also check that the above generators give rise to the correct W -generators

using our general identification between the W∞ generators and the affine Yangian gener-

ators. For example, we have from eq. (3.13)

W 3
1 = f2 +

1

2
σ3ψ0 f1

∼= f2 −
1

2
f1 , (4.14)

where we have taken the λ→ 1 limit. This leads to

W 3
1 =

∑
m∈Z

k∑
j=1

(
m− 1

2

)
: αjmᾱ

j
1−m : , (4.15)

which reproduces (up to an overall normalization factor) the usual free field answer, see

for example eq. (2.5) of [33]. (Again, at σ3 = 0 there is no difference between the V 3
n and

W 3
n generators, see eq. (3.22).)

5 The relation to SHc

The affine Yangian is believed to be isomorphic [11, 28] to the spherical degenerate double

affine Hecke algebra, the so-called SHc algebra of [21], although the detailed dictionary

has, to our knowledge, not been written down before. In this section we exhibit this

isomorphism in detail; we also explain how this fits together with the equivalence to the

universal enveloping algebra of W1+∞[λ].

5.1 The SHc algebra and its isomorphism to the affine Yangian of gl1

The definition of the SHc algebra is spelled out in Def. 1.31 of [21]; here we follow the

description of the algebra in terms of generating functions that was worked out in [34, 35].

The definition of SHc is not manifestly triality invariant; in order to rectify this, it is

convenient to choose an arbitrary parameter h1, and define h2 and h3, using the parameters

κ and ξ that appear in [21] via

κ = −h2

h1
, ξ = 1− κ = −h3

h1
. (5.1)

Then we introduce the generating functions6

D±1(z) ≡
∞∑
j=0

(h1)j D±1,j

zj+1
and D0(z) ≡

∞∑
j=0

(h1)j D0,j+1

zj+1
. (5.2)

6The following definition is a slight correction of the conventions used in [35].
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The algebraic relations of SHc are then

[D0(z),D0(w)] = 0 (5.3)

[D0(z),D±1(w)] = ∓D±1(z)−D±1(w)

z − w
(5.4)

[D+1(z),D−1(w)] = − 1

h3

E(z)− E(w)

z − w
, (5.5)

where E(z) is the generating function of the modes Ej

E(z) = 1− h3

∑
j=0

(h1)j Ej
zj+1

, (5.6)

which are related in turn to the D0,j modes by eq. (1.73) of [21]. To express this relation

more conveniently, we introduce X (z) via [35]

X (z) ≡
∫ z

dz′D0(z′) = D0,1 log

(
z

h1

)
−

N∑
j=1

1

j

(h1)j D0,j+1

zj
, (5.7)

and then define Y(z) as

Y(z) ≡ ec(z) e
X (z−h1)eX (z−h2)

eX (z)eX (z+h3)
, (5.8)

where c(z) is the generating function of the central charges

c(z) =

∞∑
j=0

(h1)j cj
zj+1

. (5.9)

Then we have the simple relation

E(z) =
Y(z − h3)

Y(z)
. (5.10)

It was shown in [35] that, on the N -tuple Young diagram representations (that form

a faithful representation of SHc, see Corollary 8.7 of [21]) the SHc relations imply, see

eq. (2.30) of that paper,

Y(z)D+1(w)
1

Y(z)
= g(z − w + h3)D+1(w) +

h1h2

h3

[
D+1(z + h3)

z − w + h3
− D+1(z)

z − w

]
, (5.11)

where g(z) is defined via

g(z) ≡ (z + h1)(z + h2)

z(z − h3)
. (5.12)

Note that the second term in (5.11) only corrects for the poles that are explicitly introduced

by the function g(z); in particular, multiplying the whole equation by (z −w+ h3)(z −w)

we obtain

(z − w + h3)(z − w)Y(z)D+1(w)
1

Y(z)
= (z − w − h2)(z − w − h1)D+1(w)

+
h1h2

h3
(z − w)D+1(z + h3) (5.13)

− h1h2

h3
(z − w + h3)D+1(z) .
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The left-hand-side vanishes for z = w, while the right-hand-side then becomes

(−h2)(−h1)D+1(w)− h1h2

h3
h3 D+1(z)|z=w = 0 , (5.14)

because of the second term. The other correction term similarly guarantees that the equa-

tions holds for z = w − h3. Using (5.10), eq. (5.11) then leads to the identity

E(z)D+1(w)
1

E(z)
=ϕ(z − w)D+1(w)

+
2h1h2h3

(h1 − h2)(h2 − h3)(h3 − h1)

[
(h2 − h3)

D+1(z − h1)

z − w − h1

+ (h3 − h1)
D+1(z − h2)

z − w − h2
+ (h1 − h2)

D+1(z − h3)

z − w − h3

]
.

(5.15)

Again, the terms of the second and third line only correct for the poles that are explicitly

introduced by ϕ(z−w) at z = w+hi. Since these do not contribute to the terms that have

both negative Fourier coefficients in z and w, which are the only terms we are interested in,

given the definition of the generating functions (5.2) and (5.6), we can write this identity as

E(z)D+1(w) ∼ ϕ(z − w)D+1(w) E(z) , (5.16)

where ϕ(z − w) is the same function as defined in (2.4). Similarly, we find for D−1

the relation

E(z)D−1(w) ∼ ϕ(w − z)D−1(w) E(z) . (5.17)

These identities now look very similar to the relations that appear in the definition of

the affine Yangian, see in particular eqs. (2.8) and (2.9). (The relation eq. (5.5) is also

essentially the same as eq. (2.10). On the other hand, the relations eqs. (2.6) and (2.7) give

rise to commutation relations for the higher modes that are implicitly defined in eq. (2.4)

of [35].) Thus the isomorphism of the two algebras simply amounts to the identification

e(z) =
1√
h1h2

D+1(z) , f(z) =
1√
h1h2

D−1(z) , ψ(z) = E(z) . (5.18)

In terms of modes, this means that we have the identification

ej =
(h1)j√
h1h2

D1,j , fj =
(h1)j√
h1h2

D−1,j , ψj = −(h1)j

h1h2
Ej . (5.19)

5.2 The relation to W1+∞[λ]

It is argued in [21], see Remark 8.28, that the SHc algebra is isomorphic to the universal

enveloping algebra of W1+N realized via a Drinfeld-Sokolov construction with level

kDS = κ−N , (5.20)

where κ is the parameter that appears in the definition of the SHc. The relation of the DS

level kDS and the usual coset level k is, see e.g., [36, eq. (7.52)]

1

kDS +N
=

1

k +N
+ 1 , (5.21)
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from which we conclude that the κ parameter in SHc equals, in terms of the (N, k)

parametrization

κ =
k +N

k +N + 1
= −h2

h1
, (5.22)

where we have used (3.52) in the last step. This then precisely agrees with (5.1). In terms

of the parameters of the affine Yangian, the translation of the parameters is

κ+ κ−1 − 2 = −(h3)2

h1h2
. (5.23)

Note that the expression on the r.h.s. is invariant under the scaling symmetry (2.23).

The triality symmetry of the affine Yangian, which we studied in section 3.4, has also

an incarnation for the case of SHc; this was already studied in [37].

5.3 N-tuple Young diagram representation of SHc

The SHc algebra acts naturally on a vector space whose basis vectors are labelled by an

N -tuple of Young diagrams ~λ ≡ (λ1, . . . , λN ). Here each λi is a Young diagram, and the

representation is characterized by a vector of complex numbers ~a = (a1, . . . , aN ). More

specifically, each N -tuple Young diagram ~λ is an eigenvector of the operator E(z)

E(z) |~λ〉~a = E~λ(z) |~λ〉~a , (5.24)

where the eigenvalue equals

E~λ(z) =
∏
∈Add(~λ)

(
1− h3

z − φ( )

) ∏
∈Rem(~λ)

(
1 +

h3

z − φ( )

)
. (5.25)

Here Add(~λ) is the set of boxes that can be added to the N Young diagrams (so that the

resulting configuration still describes an N -tuple of Young diagrams), while Rem(~λ) is the

set of boxes that can be consistently removed. Furthermore, the function φ( ) is defined via

φ( ) = ai( ) + h1x( ) + h2y( ) , (5.26)

where i( ) denotes which of the N Young diagram the box is associated to, while x( )

and y( ) are its (x, y) coordinate — here the Young diagrams lie in the xy-plane, with the

first box having coordinates (x, y) = (0, 0), and the different Young diagrams are lined up

along the z-direction. (The alert reader will notice that this is a generalization of (2.29),

to which it reduces if ai = h3(i − 1).) With these conventions, the action of D±1(z) on

these states is defined as

D+1(z) |~λ〉~a =
∑
∈Add(~λ)

[
− 1
h3

Resw=φ( )E~λ(w)
] 1
2

z − φ( )
|~λ+ 〉~a , (5.27)

D−1(z) |~λ〉~a =
∑
∈Rem(~λ)

[
− 1
h3

Resw=φ( )E~λ(w)
] 1
2

z − φ( )
|~λ− 〉~a , (5.28)
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where Res is the residue, while D0(z) acts diagonally as

D0(z) |~λ〉~a =
∑
∈~λ

1

z − φ( )
|~λ〉~a . (5.29)

Here the ai are treated as formal (independent) variables, and it follows by the same

arguments as in [21] (see also [35]) that this defines a representation of SHc.

For generic ai, there are N states at level one. To obtain more special representa-

tions, in particular those with many null states, we need to choose special ai. The most

extreme example of this is the vacuum representation of W1+∞, for which we choose (cf.

the comment below eq. (5.26))

ai = a+ h3(i− 1) . (5.30)

It is not difficult to see that the numerator factor in (5.27) guarantees that one cannot

add a box to the (i + 1)th Young diagram at position (x, y), if one could also add a box

at position (x, y) to the ith. Thus, starting from the configuration of N empty Young

diagrams, one can only add a box to the (i + 1)th Young diagram if the corresponding

position is already occupied in the ith. The resulting configurations are therefore precisely

the plane partitions, whose counting function agrees with the MacMahon function (and

thus the vacuum character of W1+∞).

Similarly, the representations whose non-trivial asymptotics are described by the single

Young diagram Ξ(x) are obtained upon choosing

ai+1 = ai + h3 − h1

(
Ξ

(x)
i − Ξ

(x)
i+1

)
, (5.31)

where Ξ
(x)
j is the number of boxes in the jth row of Ξ(x). Indeed, then the numerator

factor in (5.27) guarantees that one cannot add a box to the (i + 1)th Young diagram at

position (x, y), if one could also add a box at position (x−n, y) to the ith Young diagram,

where n = Ξ
(x)
i − Ξ

(x)
i+1. For n > 0 it is therefore possible to add a box to the (i + 1)th

Young diagram at (x, y), even if the corresponding position has not yet been filled in the

ith; effectively, this is equivalent to imposing a non-trivial asymptotic (described by Ξ(x))

for the first few Young diagrams, i.e., the resulting configurations are counted by plane

partitions with boundary condition Ξ(x). By the same reasoning, for the case where there

are non-trivial boundary conditions both in the x- and the y-direction (described by the

Young diagrams Ξ(x) and Ξ(y), respectively), the relevant formula becomes

ai = a+ h3(i− 1)− h1 Ξ
(x)
i − h2 Ξ

(y)
i . (5.32)

We should note that the action of D+1(z), see eq. (5.27), is essentially the same as that

for the corresponding operator e(z), see eq. (2.26); in particular, apart from the h1- and

h2-terms that effectively implement the non-trivial asymptotics (see above), (5.26) with ai
being defined by (5.32) agrees with (2.29).
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6 Discussion

In this work we have spelled out some of the relations between the W∞ algebra and certain

novel algebraic structures that have been studied in recent years such as the affine Yangian

of gl1 and the SHc algebra. We expect these alternative viewpoints to shed new light on

both the W∞ algebra as well as the Yangians. We have already seen that the triality

symmetry of W∞, which is not obvious in any of its conventional formulations, is manifest

in the Yangian description. The Yangian picture is also very natural in the study of the

degenerate representations of W∞ in terms of plane partitions.

We can also expect insight in the reverse direction. Yangian symmetries have played

a role in understanding the two-dimensional integrable structures underlying planar gauge

theories such as N = 4 super Yang-Mills. These symmetries act non-locally on the dual

worldsheet description, which makes it difficult to tease out their consequences. As noted

above, the map (3.59) between generic Yangian generators and those of W∞ is non-local.

This suggests that we might be able to use (an analogue of) this relation, or rather, its

inverse, to search for an alternative, local worldsheet description to the Yangians that

appear in integrable spin chains [38]. It would also be particularly interesting to connect

this to the work on integrability in AdS3/CFT2 [39–42].

One of the original motivations for this work was to get a better handle on the unbroken

stringy symmetries of AdS3 backgrounds, as captured by dual symmetric product CFTs,

which are much bigger thanW∞. It was shown in [23] that for λ = 0 and λ = 1 the bosonic

W∞[λ] algebra can be extended to a much larger symmetry algebra, the analogue of the

stringyW-algebra of the N = 4 superconformal case [8]. Given that the stringyW-algebra

contains the W∞ algebra as a subalgebra, it is natural to ask how it is related to the affine

Yangian (or the SHc algebra). Unfortunately, we have not been able to find a direct relation

between these structures so far. The stringy symmetry algebra is equivalent to the universal

enveloping algebra of a complex boson theory — this is simply the familiar fact that the

symmetry algebra of a symmetric orbifold is generated, in the large N limit, by the (single-

particle) generators that are in one-to-one correspondence with all the states (including

the multi-particle states) of the underlying seed theory. However, this identification does

not seem to give rise to any simple relation between the stringy symmetry algebra and the

universal enveloping algebra of W1+∞, i.e., the affine Yangian. On the other hand, the

structure of the stringy symmetry algebra is fairly reminiscent of a Yangian algebra [23],

and this could be a sign that yet another Yangian algebra plays an important role here.
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A The construction of the local spin-4 field

For the wedge modes of the spin-4 field we make the ansatz

W 4
−3 = −1

2
[e1, [e1, e3]] (A.1)

W 4
−2 = −1

2
([e1, e3] + σ3ψ0[e1, e2]) (A.2)

W 4
−1 = e3 + σ3ψ0e2 −

1

5
(σ2 − σ3ψ1 − σ2

3ψ
2
0)e1 (A.3)

W 4
0 =

1

4
ψ4 +

1

4
σ3ψ0ψ3 −

1

20
(σ2 − σ3ψ1 − σ2

3ψ
2
0)ψ2 (A.4)

W 4
1 = −f3 − σ3ψ0f2 +

1

5
(σ2 − σ3ψ1 − σ2

3ψ
2
0)f1 (A.5)

W 4
2 =

1

2
([f1, f3] + σ3ψ0[f1, f2]) (A.6)

W 4
3 = −1

2
[f1, [f1, f3]] . (A.7)

Again, they satisfy the correct commutation relations with the wedge modes of the Virasoro

algebra

[Lm,W
4
n ] = (3m− n)W 4

m+n for m = 0,±1 . (A.8)

Some examples of their commutators with the spin-one generators are

[J−1,W
4
3 ] = 3W 3

2 (A.9)

[J−2,W
4
3 ] = 6W 3

1 − 3σ3ψ0L1 (A.10)

[J−3,W
4
3 ] = 9W 3

0 − 9σ3ψ0L0 + 3(σ2 − σ2
3ψ

2
0 − σ3ψ1)J0 (A.11)

[J−1,W
4
2 ] = 3W 3

1 −
1

2
σ3ψ0L1 (A.12)

[J−2,W
4
2 ] = 6W 3

0 − 4σ3ψ0L0 + (σ2 − σ2
3ψ

2
0 − σ3ψ1)J0 (A.13)

[J−3,W
4
2 ] = 9W 3

−1 −
21

2
σ3ψ0L−1 + 6(σ2 − σ2

3ψ
2
0 − σ3ψ1)J−1 (A.14)

[J−1,W
4
1 ] = 3W 3

0 − σ3ψ0L0 +
1

5
(σ2 − σ2

3ψ
2
0 − σ3ψ1)J0 (A.15)

[J−2,W
4
1 ] = 6W 3

−1 − 5σ3ψ0L−1 +
12

5
(σ2 − σ2

3ψ
2
0 − σ3ψ1)J−1 (A.16)

[J−3,W
4
1 ] = 9W 3

−2 − 12σ3ψ0L−2 +
48

5
(σ2 − σ2

3ψ
2
0 − σ3ψ1)J−2−6σ3(J−1J−1 − J0J−2)

[J−1,W
4
0 ] = 3W 3

−1 −
3

2
σ3ψ0L−1 +

3

5
(σ2 − σ2

3ψ
2
0 − σ3ψ1)J−1 (A.17)

[J−2,W
4
0 ] = 6W 3

−2 − 6σ3ψ0L−2 +
21

5
(σ2 − σ2

3ψ
2
0 − σ3ψ1)J−2−3σ3(J−1J−1 − J0J−2)

[J−1,W
4
−1] = 3W 3

−2 − 2σ3ψ0L−2 +
6

5
(σ2 − σ2

3ψ
2
0 − σ3ψ1)J−2−σ3(J−1J−1 − J0J−2) .
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If Jm and W 4
n are the modes of local quasi-primary operators, it follows from the general

analysis of [27] that their commutator has to take the form

[Jm,W
4
n ] = −3mW 3

m+n − σ3 ψ0
m

2
(3m+ n)Lm+n +

m

2
(3m+ n)Λ

(2)
m+n

− (σ2 − ψ2
0σ

2
3 − σ3ψ1)

m

10
(5m2 + 5mn+ n2 + 1)Jm+n , (A.18)

where Λ(2) =: JJ : is the normal ordered product of the spin-one current with itself. (In

principle, also a normal ordered field at s = 3 could have appeared, but this does not seem

to be the case.) In any case, the bilinear contribution of the J-modes is not of the correct

form — in particular, one would have expected an infinite sum of bilinear J modes, and

the coefficient in front of it does not have the correct (m,n) dependence — and it therefore

follows that the W 4 modes cannot be the modes of a local field. In order to correct for this

we define, for |n| ≤ 3,

W̃ 4
n =

1

2

∑
l

|3l − n| : Ln−l Jl : +
1

5
(3− 2n2)Θ(2− |n|) J0Ln . (A.19)

For |n| ≤ 3, these modes then satisfy the quasi-primary condition,

[Lm, W̃
4
n ] = (3m− n)W̃ 4

m+n , m = 0,±1 . (A.20)

The modified s = 4 generators

V 4
m = W 4

m − σ3W̃
4
m , (A.21)

then satisfy for |n| ≤ 3 and all m ∈ Z,

[Jm, V
4
n ] = −3mV 3

m+n −
σ2 − ψ2

0σ
2
3

10
m(5m2 + 5mn+ n2 + 1)Jm+n . (A.22)

Their commutators with the Virasoro modes can be similarly determined to be

[Lm, V
4
n ] = (3m− n)V 4

m+n −
m(m2 − 1)

10
(7σ2 + 3σ2

3ψ
2
0)Lm+n , (A.23)

where we have again assumed |n| ≤ 3. Both of these commutators are then of the local

form predicted by [27].

It should also be possible to extend the local modes V 4
n beyond the wedge, i.e. for

|n| ≥ 4. However, we have not found a closed formula for these modes. In any case, for the

determination of the relevant structure constant, it suffices to consider the modes inside

the wedge, see the discussion in section 3.3.
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[40] O. Ohlsson Sax, B. Stefański Jr. and A. Torrielli, On the massless modes of the AdS3/CFT2

integrable systems, JHEP 03 (2013) 109 [arXiv:1211.1952] [INSPIRE].

[41] R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański, The AdS3 × S3 × S3 × S1
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