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Abstract

The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical
physics to machine learning to computational biology, and is ubiquitous in decoding classical error-
correcting codes. The algorithm works by passing messages between nodes of the factor

graph associated with the code and enables efficient decoding of the channel, in some cases even up to
the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the
factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This
gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show
that this decoder can be modified to work with polar codes for the pure state channel and as part of a
decoder for transmitting quantum information over the amplitude damping channel. These represent
the first explicit capacity-achieving decoders for non-Pauli channels.

1. Introduction

Graphical models are at the heart of the current revolution in machine learning and computational statistics.
They provide simple representations of the correlations among large numbers of random variables and enable
efficient algorithms for feature discovery and analysis. Among the most well-known of these algorithms is belief
propagation (BP), whose origin can be traced to the Bethe—Peierls approximation in statistical physics [1]. BP
can be used to marginalize the joint distribution of several random variables, often efficiently. For instance, in
the setting of reliable communication over noisy channels via error correction, BP is used to find the most likely
input for a given set of observed outputs. Indeed, in modern coding theory BP is simply indispensible [2]. The
joint distribution of channel inputs and outputs can be represented by a factor graph, and BP works by passing
messages between the nodes of this graph (an instance of more general message-passing algorithms). This leads
to efficient decoding algorithms for high rate codes, several of which are employed in current wireless
communication standards. Moreover, it was recently shown that BP decoding of a certain class of low-density
parity-check (LDPC) codes can achieve the Shannon capacity [3].

Factor graphs have been adapted to the quantum-mechanical setting from several different perspectives
[4-7]. Applied to quantum communication, BP and other message passing methods have been constructed for
syndrome decoding of a variety of stabilizer codes subjected to Pauli noise channels [5, 8—14]. Despite their use
in decoding quantum codes, these message passing algorithms are classical. Indeed, decoding any stabilizer code
used for a Pauli channel or the erasure channel is essentially a classical task due to the Gottesman—Knill theorem
[15]. However, stabilizer decoding is not optimal for non-Pauli channels such as the amplitude damping
channel, for either the entanglement fidelity achievable by fixed-size codes or the largest achievable rates for
codes with increasing blocklength. Therefore it would be of interest to extend BP decoding to more general
channels. As much also holds in the setting of quantum polar codes, where the classical decoding method
(ultimately a variant of BP) can only be employed without loss of rate for Pauli channels or the erasure channel
[16-18].

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Note that the quantum decoding problem is different than the one solved by the classical algorithm for
‘quantum BP’ in [5]". There, one is interested in computing marginals of quantum states which have a structure
given by a factor graph. For classical decoding, computing such marginals is indeed sufficient, as we will describe
in more detail below. But even for bitwise decoding of a classical-quantum (CQ) channel having classical input
and quantum output, it is not enough to know the relevant marginal state; we need a way to perform the optimal
(Helstrom) measurement [20] or some suitable approximation. Put differently, a quantum BP decoder isa
quantum algorithm, and we may expect that it will need to pass quantum messages.

In this paper we construct a quantum BP decoding algorithm for the pure state channel, a binary input CQ
channel whose outputs are pure states. The algorithm for estimating a single input bit works by passing single
qubits as well as classical information along the factor graph, while sequential estimation of all input bits requires
passing many qubits. For codes whose factor graphs are trees, as well as for polar codes, we show how the BP
decoder leads to explicit circuits for the optimal measurement that have quadratic size in the code length. To the
best our knowledge, this is the first instance of a quantum algorithm for BP.

The pure state channel arises, for instance, in binary phase-shift keying (BPSK) modulation of a pure loss
Bosonic quantum channel, whose channel outputs are coherent states [21]. Thus, our result gives an explicit
construction of a successive cancellation decoder for the capacity-achieving polar code described in [21], and
addresses the issue of decoding CQ polar codes discussed in [17]. Moreover, the pure state channel also arises as
part of the quantum polar decoder for the amplitude damping channel [16, 18], and therefore our result gives an
explicit decoder for polar codes over this channel.

The remainder of the paper is structured as follows. In the next section give a very brief overview of factor
graphs and their use in classical decoding, and then rewrite the BP rules in a manner that lead to the quantum
algorithm. Section 3 gives the quantum BP decoding algorithm and applications to polar codes are given in
section 4.1. We finish with several open questions for future research raised by our result.

2.BP decoding on factor graphs

Let us first examine BP on factor graphs directly in the coding context; for a more general treatment see [2, 22].
Consider the problem of reliable communication over a memoryless channel W using a linear code C. Fix Cto be
an n-bit code, i.e. alinear subspace of 7}, and suppose that the channel W maps inputsin X = Z, to some
alphabet Y according to the transition probabilities Py;x_, = W (y|x). Now suppose a codeword

X' = (x, %, ..., x,) € Cispicked at random and its consituent bits are each subjected to W, producing the
output y7. The goal of decoding is to invert this process and determine the input codeword from the channel
output. This is a task of statistical inference, whose nominal solution is to output the xi which maximizes the
conditional probability of inputs given outputs, Px» y». Since we assume the inputs are uniformly chosen from
C, we can directly work with the joint distribution Py~ of inputs and outputs. In general, though, this task is
known to be computationally intractable.

A simpler approach is to decode bitwise and find the most likely value of x; given ¥, for each k. Then we are
interested in the marginal distribution Py, y», and we need only determine which of the two values of x;
maximize Py, y«(xi, );"). Exact marginalization is also generally computationally intractable since the size of the
joint distribution grows exponentially in the number of variables. However, for linear codes the joint
distribution can be factorized, which often greatly simplifies the marginalization task. The joint distribution
Pxnyn can be written

n 1 n z
Pxnyn(x(’, y") = ﬁll[xl € CI[T Wl )
j=1

Since the channel is memoryless, the channel contribution to (1) is already in factorized form. Meanwhile, code
membership is enforced by a sequence of parity-check constraints associated with the code, which also leads to
factorization. In the three-bit repetition code, for instance, there are two parity constraints, x; + x = 0 and
% 4+ x3 = 0(or x; + x3 = 0), and therefore }l[xl3 € C] = I[x + % = 0] I[%, + x3 = 0]. We can represent the
joint distribution of any linear code (up to normalization) by a factor graph; figure 1 shows the factor graph of a
code involving two parity checks on four bits. For an arbitrary factorizeable function, the factor graph contains
one (round) variable node for each variable and one (square) factor node for each factor, and factor nodes are
connected to all their constituent variable nodes. This convention is violated in the figure by not including y;
variable nodes; instead they are treated as part of the channel factors since their values are fixed and in any case
each is connected to only one factor node.

For factor graphs which are trees, meaning only one path connects any two nodes as in figure 1, the BP
algorithm can compute the marginal distributions exactly. In the present context of coding, it directly finds the

! The algorithm of [19] is also a classical algorithm.
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Figure 1. Factor graph for the joint probability distribution of a four-bit code with two parity checks x; 4+ x3 = 0 and
X1+ X%+ X4 = 0.

most likely input value. Supposing we are interested in determining x;, treat variable node x; as the root of the
tree. BP then proceeds by passing messages between nodes, starting from the leaves (here, channel outputs) and
working inward, combining all relevant information as it goes. Simplifying the general BP rules (see [2]) to the
decoding problem, the initial messages from the channel factors to the variable nodes can be taken as the log-
likelihood ratios £ = log[ W ( 7:10) / W (ylID] of the channel given the output y; (here we suppress the
dependence of # on the channel output y]) Atvariable nodes the messages 51mply add, so that the outgoing £ is
the sum of incoming 7. At check nodes the rule is more complicated: tanh = [I, tanh . After all messages
have arrived at the root, the algorithm produces the log-likelihood ratio for x1 given all the channel outputs, and
the decoder simply outputs 0 if the ratio is positive or 1 if negative.

By adopting a modified update rule it is in fact possible to compute all the marginals at once with only a
modest overhead. Instead of only proceeding inward from the leaves, we send messages in both directions along
each edge, starting by sending channel log-likelihoods in from the leaves. Each node sends messages on each
edge once it has received messages on all its other edges. For graphs that contain loops, the algorithm is not
guaranteed to converge, but one can nevertheless hope that the result is a good approximation and that the
decoder outputs the correct value. This is borne out in practice for turbo codes and LDPC codes.

There is an intuitive way of understanding the BP decoding algorithm which is the basis of our quantum
generalization. At every step the message can be interpreted as the log-likelihood ratio of the effective channel from
that node to its descendants. This is sensible as the likelihood ratio is a sufficient statistic for estimating the (binary)
input from the channel output. The rules for combining messages can then be interpreted as rules for combining
channels, and the algorithm can be seen as successively simplifying the channel from the root to the leaves by
utilizing the structure of the factor graph. At variable nodes, adding the log-likelihood ratios for two channels W
and W’ amounts to considering the convolution channel y4; g 1477 with transition probabilities given by

(W® W1y, y'lx) = W () W(y'|x). )

That is, the effective channel associated with a variable node is simply the convolution W; & --- ® W of its
descendants. The form of the effective channel at check nodes is not as immediate, but it is not too difficult to
verify that the appropriate channel convolution 1y ; 1y//has transition probabilities

W & W1, 'l = (W WG/10) + Wyl + DW/(/[1). 3)

These two channel convolutions are also the fundamental building blocks of polar codes [23], at least when
the input channels are symmetric. The check node convolution is the ‘worse’ channel in the channel splitting or
channel synthesis step (see [23], equation (19)); this holds regardless of the symmetry of the channel. On the
other hand, the ‘better’ combination of Wand W' is defined by (see [23], equation (20))

W'y, y', xlx") = %W (ylx + x")W'(y'|x"). Compared to (2), the input x is uniformly random and not always
zero, but it is given at the channel output. When Wis symmetric in the sense that W (y|x + u) = W (m,(y)|x)
for a suitable permutation 7 of the output alphabet depending on u, we can reversibly transform W” into

W @ wand vice versa.

3. BP decoding of quantum outputs

The form of the check and variable convolutions also applies to channels with quantum output”. We need only
replace the probability distributions over the output alphabet by quantum states. Abusing notation, let us denote

% This was first applied in the setting of polar codes in [24].

3
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by W(x) the quantum state of the output of W given input x. This includes the previous case by considering
commuting W(x). The the variable and check node convolutions are now just

We Wk = Wk © Wix), )
WE W) = 2(WE) @ W)+ W+ 1)@ W) (5)

To properly generalize the BP decoding algorithm we need a ‘sufficient statistic’ for the quantum channels at
the various nodes. For binary-input pure state channels, it turns out that a combination of classical bits and just
one qubit suffices. The channel outputs can always be represented by a qubit, so suppose that W outputs | £6),
where |0) = cos §|0> + sin §| 1). Note that the overlap of the two states is cos 6 and the Helstrom measurement
for these two states is measurement of the o, operator.

The convolution W ® W’ outputs either |§) @ [0’) or |—60) ® |—6'), which are again two pure states, with
an overlap angle pe givenby . p® _ <9 cos o L e following unitary transformation compresses the states
to the first qubit, leaving the second in the state | 0):

a. 0 O a_

a_ 0 0 —ag (6)
0 by b o[
0 b —by O

with T T coneo® = (cos(*52) = cos(“5) Jand

bin1 — cosfcos® = % (sin (9 +2 91) F sin (%) ) To combine more than two channels, we just perform

the pairwise convolution sequentially. Thus, the g convolution of pure state channels can itself be represented as
a pure state channel.

The [# convolution is more complicated because the outputs are no longer pure. However, applying the
unitary Ug) = CNOT2—.1CNOT; -2 results ina CQ state of the form 3=, 1,2, :t@ ) <:t€ | @ |7) (j].- Weare
free to measure the second qubit, and conditional state of the first qubit is again one of two pure states, though
now the overlap cos 0 depends on the measurement outcome . In particular, p, = %(1 + cos 6 cos 0),

p; = 1 — p,>and the two overlaps are given by

U (0, 0') =

!/

cos 9: cos ) + cosf ’ (7)
1 + cosf cos b’
_ /

cos F— €080 = st (8)

1 — cosOcos®

For outcomej = 0 the angle between the states has decreased, while for outcome j = 1 the angle has increased.
Therefore, the [*] convolution of pure state channels can be represented by two pure state channels,
corresponding to the two measurement outcomes. As before, several channels can be combined sequentially.

The quantum decoding algorithm now proceeds as in classical BP, taking the quantum outputs of the
channels and combining them at variable and check nodes. At a variable node the algorithm combines the
outputs using Uy and forwards the output to its parent node. At check nodes the algorithm applies Uy, measures
the second qubit, and forwards both the qubit and the measurement result to its parent node. The classical
messages are required to inform parent variable nodes how to choose the angles in subsequent U unitaries.
Ultimately this procedure results in one qubit at the root node such that measurement of o, corresponds to the
optimal Helstrom measurement for the associated bit. This then is sufficient to estimate one input bit.

For example, return to the code depicted in figure 1 for a pure state channel with overlap 6, and suppose we
are interested in decoding the first bit. Starting at the leaves, the outputs of all but the first channel can be
immediately passed to their corresponding variable nodes, since these variable nodes do not have any other
outward branches. (Formally this follows from the convolution rules by considering convolution with a trivial
channel, having # = 0.) The output of the first channel, meanwhile, must wait to be combined according to the
@ convolution with several other qubit messages. Next, since 2 and 4 are connected by a check node, we
combine qubits 2 and 4 into one qubit (2) and one classical bit (4) by applying {; and measuring the 4th qubit. As
qubits 1 and 3 are connected by a variable node, we can simultaneously combine these with U,(6, 0)- Finally, we

2cosl T
29 and cos 90. = 5

cos d+ st 01—
(1 + cos*6) 2
depending on the value j of the earlier measurement. A quantum circuit implementing these steps is shown in

figure 2.
One drawback is that the above procedure implements the Helstrom measurement destructively, since once
we estimate the first bit we no longer have the original channel output in order to estimate the second bit. And we

combine qubits 1 and 2 by applying U,(6°, 9 )» where cos 08—
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Um @

Figure 2. Circuit decoding the first bit of the code depicted in figure 1. The first @ convolution is Ug (0, 0).thesecond

@® _ 2cosb
Ug (07, 07 for o5 9®= cos? gand cos by = 0+ cos20)’ U1
in the bottom wire. The symbol  denotes that the qubit is discarded. The final Hadamard gate and measurement implement the
Helstrom measurement.

= g, depending on the value j of the measurement outcome

cannot run the algorithm backwards to reproduce the channel output as we have made measurements at every
check node. To implement the Helstrom measurement as non-destructively as possible, we can leave the CQ
output states unmeasured and instead use the classical subsystems to coherently control the variable node
unitaries Ug. In this way the steps in the algorithm can be reversed, save the final measurement. For example, in
figure 2 all output qubits are kept and the classical measurement and subsequent conditioning of the second Ug
gate is performed by a coherent conditional gate involving three qubits.

Denoting the unitary action of the algorithm for the jth bit by V, the Helstrom measurement can be
implemented by the projective measurement with projectors IL; ; = V;k k) (k| i Vi, where k) (k| ;i denotes the
kth o, basis projector on the jth qubit. Each V; is composed of O(n) gates, yielding an overall circuit size of O (n?)
to decode all bits. Supposing that the code is designed such that the jth input bit can be estimated with error no
larger than ¢;, Gao’s non-commutative union bound [25] implies that the error in sequentially estimating all bits
is no worse than 435 €.

4. Applications to polar codes

4.1. Polar codes for the pure state channel

Polar codes for the pure state channel may also be decoded with this algorithm. Indeed, the successive
cancellation decoding algorithm proposed by Arikan in [23] proceeds precisely by combining channels using the
®and [¥]rules, and was adapted to the case of CQ channels in [24]. The difference is that successive cancellation
does not use the factor graph of the code, but a graph related to a fixed reversible encoding circuit. Importantly,
the graph associated to each input of the encoding circuit is a tree. In fact, each such graph has logarithmic depth
from all channel factors to each variable, and every node has degree three. Unlike the BP decoder, however, the
successive cancellation decoder used by polar codes takes previously decoded bits into account. But these bits
can be handled by the BP decoder since the pure state channel is symmetric in the manner described at the end of
section 2. There, the value of the previous bits is incorporated into the better channel by appropriately
permuting the output symbols, which is equivalent to flipping the input value. Similarly, for the pure state
channel, applying o, to the output is equivalent to flipping the input. Therefore, the quantum BP decoding
algorithm gives a successive cancellation decoder for polar codes over the pure loss Bosonic channel using the
BPSK constellation [21].

4.2. Quantum polar codes for amplitude damping

The idea behind the quantum polar coding scheme of [ 16, 18] is to decompose the problem of transmitting
quantum information over a channel \V; . p into transmitting classical information about two conjugate
observables, ‘amplitude’ and ‘phase’, consider polar codes for each subproblem, and then combine the coding
schemes using CSS codes at the encoder and coherent sequential decoding of amplitude and phase at the
decoder. This decoding strategy is depicted in [16], figure 3 for Pauli channels and [26, figure 1] for the general
case. As detailed in [18], the two classical transmission tasks are to transmit ‘amplitude’ information over the CQ
channel givenby z — p, = N(|z) (z|) and ‘phase’ information over the CQ channel given by

x — ¢, = (Z* @ D(Z ® N)[P](Z* ® 1). Here |z) is an arbitrary basis, and we choose that of 0, for
convenience, while [®)44 = 3=, \/p, |2)|2) is abipartite pure state in this same basis with coefficients of our
choosing. (See [18] for the precise relation to the conjugate observables o, and o,.)
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Let us now show how to build a decoder for the amplitude damping channel )V, with damping parameter
7 € [0, 1]. First note that the amplitude outputs all commute due to the form of VV,; the amplitude channel is
effectively a classical Z channel in which the input 0 is always transmitted perfectly, but the input 1 may decay to
0 with probability +. Therefore we can use the classical polar encoder and decoder for this channel [27]. Since the
Z channel is not symmetric, the optimal input distribution in the capacity formula is not the uniform
distribution, but one with probabilities pand 1 — p.

Now suppose that the bipartite pure state in the phase channel is the state |®) = \/p|00) + (/1 — p|11).
Abusing notation slightly and denoting the channel outputs ¢, it is not difficult to verify that for
U = CNOTy/_,p,

Up, U* = (1 — v(1 = p)|£bo) (£ @ [0) (0] + (1 — p)|1) (1] @ [1) (1], with ©)
1—2p—7(1—p)_
1 —~v1-p)

Each of these states is a CQ state with the first qubit pure and the second qubit classical, just as in a [#] output.
Given the second qubit, the first is either in the pure state | +6) corresponding to the channel input =+, or the
state | 1) independently of the input; the latter is equivalent to |#; = 0). Hence the decoder can begin justasata
step, measuring the second qubit to determine the angle associated to the first qubit.

The rate achievable by the quantum polar code construction is simply R = max,co,11(1 — H(Z|B)y —

H (X|BA")¢), where ¥z5 = p|0) (0] @ p, + (1 — p)|1) (1] ® p,and &y, = %er{o,l} |x) (x] ® @,.A
cumbersome but straightforward calculation confirms that R equals the capacity of the channel, C(NV,) =
max,epo,11(h((1 — 7)p) — hy(7p)), for hy is the binary entropy [28, proposition 23.7.2]. Moreover, since the
amplitude damping channel is degradable, the arguments in [ 16] ensure that no entanglement-assistance is

required to meet the CSS constraint when constructing the quantum polar code.

cosfy = (10)

5. Discussion

We have presented a BP algorithm for bitwise decoding of CQ channels which operates by passing quantum
messages on tree factor graphs, and shown several applications to polar codes. This invites the study of quantum
message passing algorithms, and not just in the context of decoding. More generally we may look for BP and
related algorithms for any task of statistical inference where the input data comes in the form of many quantum
bits, for instance in quantum metrology. This work also raises many interesting questions. Most immediately in
the context of decoding is whether the complexity of the algorithm can be reduced for structured factor graphs.
Classical polar codes, for instance, have decoding complexity O (1 log 7). Can this also be achieved for the pure
state channel? Similarly, can one find a quantum version of the max-product or Viterbi algorithm for
determining the most likely x} given the channel outputs?

More generally, it would be very interesting to understand how to run the algorithm on a factor graph with
loops, or how it can be modified to handle some set of non-pure output states. In the former case it may be useful
to explore the characterization of loopy BP as a variational problem [1, 29]. Perhaps in the latter case one can
make use of the work on quantum sufficiency (see e.g. [30, 31] and references therein) to find a suitable set of
quantum messages for a given decoding problem.

Another interesting question with potentially far-reaching consequences is the relation of the BP algorithm
to tensor network methods. The problem of marginalization in the commutative setting is explicitly treated as
tensor network contraction in [14], and the particulars of the quantum BP decoder bear a similarity with the data
gathering approach using tensor network states in [32]. Can the methods of approximating quantum states by
tensor networks be used to create efficient approximate decoders?
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