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Abstract
The belief propagation (BP) algorithm is a powerful tool in awide range of disciplines from statistical
physics tomachine learning to computational biology, and is ubiquitous in decoding classical error-
correcting codes. The algorithmworks by passingmessages between nodes of the factor
graph associatedwith the code and enables efficient decoding of the channel, in some cases even up to
the Shannon capacity. Here we construct thefirst BP algorithmwhich passes quantummessages on the
factor graph and is capable of decoding the classical–quantum channel with pure state outputs. This
gives explicit decoding circuits whose number of gates is quadratic in the code length.We also show
that this decoder can bemodified toworkwith polar codes for the pure state channel and as part of a
decoder for transmitting quantum information over the amplitude damping channel. These represent
thefirst explicit capacity-achieving decoders for non-Pauli channels.

1. Introduction

Graphicalmodels are at the heart of the current revolution inmachine learning and computational statistics.
They provide simple representations of the correlations among large numbers of randomvariables and enable
efficient algorithms for feature discovery and analysis. Among themostwell-known of these algorithms is belief
propagation (BP), whose origin can be traced to the Bethe–Peierls approximation in statistical physics [1]. BP
can be used tomarginalize the joint distribution of several randomvariables, often efficiently. For instance, in
the setting of reliable communication over noisy channels via error correction, BP is used tofind themost likely
input for a given set of observed outputs. Indeed, inmodern coding theory BP is simply indispensible [2]. The
joint distribution of channel inputs and outputs can be represented by a factor graph, and BPworks by passing
messages between the nodes of this graph (an instance ofmore generalmessage-passing algorithms). This leads
to efficient decoding algorithms for high rate codes, several of which are employed in current wireless
communication standards.Moreover, it was recently shown that BP decoding of a certain class of low-density
parity-check (LDPC) codes can achieve the Shannon capacity [3].

Factor graphs have been adapted to the quantum-mechanical setting from several different perspectives
[4–7]. Applied to quantum communication, BP and othermessage passingmethods have been constructed for
syndrome decoding of a variety of stabilizer codes subjected to Pauli noise channels [5, 8–14]. Despite their use
in decoding quantum codes, thesemessage passing algorithms are classical. Indeed, decoding any stabilizer code
used for a Pauli channel or the erasure channel is essentially a classical task due to theGottesman–Knill theorem
[15]. However, stabilizer decoding is not optimal for non-Pauli channels such as the amplitude damping
channel, for either the entanglement fidelity achievable byfixed-size codes or the largest achievable rates for
codes with increasing blocklength. Therefore it would be of interest to extend BPdecoding tomore general
channels. Asmuch also holds in the setting of quantumpolar codes, where the classical decodingmethod
(ultimately a variant of BP) can only be employedwithout loss of rate for Pauli channels or the erasure channel
[16–18].
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Note that the quantumdecoding problem is different than the one solved by the classical algorithm for
‘quantumBP’ in [5]1. There, one is interested in computingmarginals of quantum states which have a structure
given by a factor graph. For classical decoding, computing suchmarginals is indeed sufficient, as wewill describe
inmore detail below. But even for bitwise decoding of a classical–quantum (CQ) channel having classical input
and quantumoutput, it is not enough to know the relevantmarginal state; we need away to perform the optimal
(Helstrom)measurement [20] or some suitable approximation. Put differently, a quantumBPdecoder is a
quantumalgorithm, andwemay expect that it will need to pass quantummessages.

In this paperwe construct a quantumBPdecoding algorithm for the pure state channel, a binary input CQ
channel whose outputs are pure states. The algorithm for estimating a single input bit works by passing single
qubits as well as classical information along the factor graph, while sequential estimation of all input bits requires
passingmany qubits. For codes whose factor graphs are trees, as well as for polar codes, we showhow the BP
decoder leads to explicit circuits for the optimalmeasurement that have quadratic size in the code length. To the
best our knowledge, this is the first instance of a quantum algorithm for BP.

The pure state channel arises, for instance, in binary phase-shift keying (BPSK)modulation of a pure loss
Bosonic quantum channel, whose channel outputs are coherent states [21]. Thus, our result gives an explicit
construction of a successive cancellation decoder for the capacity-achieving polar code described in [21], and
addresses the issue of decodingCQpolar codes discussed in [17].Moreover, the pure state channel also arises as
part of the quantumpolar decoder for the amplitude damping channel [16, 18], and therefore our result gives an
explicit decoder for polar codes over this channel.

The remainder of the paper is structured as follows. In the next section give a very brief overview of factor
graphs and their use in classical decoding, and then rewrite the BP rules in amanner that lead to the quantum
algorithm. Section 3 gives the quantumBPdecoding algorithm and applications to polar codes are given in
section 4.1.Wefinishwith several open questions for future research raised by our result.

2. BP decoding on factor graphs

Let usfirst examine BPon factor graphs directly in the coding context; for amore general treatment see [2, 22].
Consider the problemof reliable communication over amemoryless channelW using a linear codeC. FixC to be
an n-bit code, i.e. a linear subspace of n

2, and suppose that the channelWmaps inputs in = 2 to some
alphabet  according to the transition probabilities == ( ∣ )∣P W y xY X x . Now suppose a codeword

= ¼ Î( )x x x x C, , ,n
n1 1 2 is picked at randomand its consituent bits are each subjected toW, producing the

output y1
n. The goal of decoding is to invert this process and determine the input codeword from the channel

output. This is a task of statistical inference, whose nominal solution is to output the xn1 whichmaximizes the
conditional probability of inputs given outputs, ∣PX Yn n. Sincewe assume the inputs are uniformly chosen from
C, we can directly workwith the joint distribution PX Yn n of inputs and outputs. In general, though, this task is
known to be computationally intractable.

A simpler approach is to decode bitwise andfind themost likely value of xk given y1
n, for each k. Thenwe are

interested in themarginal distribution PX Yk
n, andwe need only determinewhich of the two values of xk

maximize ( )P x y,X Y k
n

1k
n . Exactmarginalization is also generally computationally intractable since the size of the

joint distribution grows exponentially in the number of variables. However, for linear codes the joint
distribution can be factorized, which often greatly simplifies themarginalization task. The joint distribution
PX Yn n can bewritten

 = Î
=

( )
∣ ∣

[ ] ( ∣ ) ( )P x y
C

x C W y x,
1

. 1X Y
n n n

j

n

j j1 1 1
1

n n

Since the channel ismemoryless, the channel contribution to (1) is already in factorized form.Meanwhile, code
membership is enforced by a sequence of parity-check constraints associatedwith the code, which also leads to
factorization. In the three-bit repetition code, for instance, there are two parity constraints, + =x x 01 2 and

+ =x x 02 3 (or + =x x 01 3 ), and therefore   Î = + = + =[ ] [ ] [ ]x C x x x x0 01
3

1 2 2 3 .We can represent the
joint distribution of any linear code (up to normalization) by a factor graph; figure 1 shows the factor graph of a
code involving two parity checks on four bits. For an arbitrary factorizeable function, the factor graph contains
one (round) variable node for each variable and one (square) factor node for each factor, and factor nodes are
connected to all their constituent variable nodes. This convention is violated in the figure by not including yj
variable nodes; instead they are treated as part of the channel factors since their values are fixed and in any case
each is connected to only one factor node.

For factor graphswhich are trees,meaning only one path connects any two nodes as infigure 1, the BP
algorithm can compute themarginal distributions exactly. In the present context of coding, it directly finds the

1
The algorithmof [19] is also a classical algorithm.
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most likely input value. Supposingwe are interested in determining x1, treat variable node x1 as the root of the
tree. BP then proceeds by passingmessages between nodes, starting from the leaves (here, channel outputs) and
working inward, combining all relevant information as it goes. Simplifying the general BP rules (see [2]) to the
decoding problem, the initialmessages from the channel factors to the variable nodes can be taken as the log-
likelihood ratios =ℓ [ ( ∣ ) ( ∣ )]W y W ylog 0 1j j of the channel given the output yj (herewe suppress the
dependence ofℓ on the channel output yj). At variable nodes themessages simply add, so that the outgoingℓ is

the sumof incomingℓk. At check nodes the rule ismore complicated: = ℓ ℓtanh tanhk2 2
k . After allmessages

have arrived at the root, the algorithmproduces the log-likelihood ratio for x1 given all the channel outputs, and
the decoder simply outputs 0 if the ratio is positive or 1 if negative.

By adopting amodified update rule it is in fact possible to compute all themarginals at oncewith only a
modest overhead. Instead of only proceeding inward from the leaves, we sendmessages in both directions along
each edge, starting by sending channel log-likelihoods in from the leaves. Each node sendsmessages on each
edge once it has receivedmessages on all its other edges. For graphs that contain loops, the algorithm is not
guaranteed to converge, but one can nevertheless hope that the result is a good approximation and that the
decoder outputs the correct value. This is borne out in practice for turbo codes and LDPC codes.

There is an intuitiveway of understanding theBPdecoding algorithmwhich is thebasis of our quantum
generalization. At every step themessage can be interpreted as the log-likelihood ratio of the effective channel from
that node to its descendants. This is sensible as the likelihood ratio is a sufficient statistic for estimating the (binary)
input from the channel output. The rules for combiningmessages can then be interpreted as rules for combining
channels, and the algorithmcan be seen as successively simplifying the channel from the root to the leaves by
utilizing the structure of the factor graph. At variable nodes, adding the log-likelihood ratios for twochannelsW
and ¢W amounts to considering the convolution channel with transition probabilities givenby

ð2Þ

That is, the effective channel associatedwith a variable node is simply the convolution Wk of its
descendants. The formof the effective channel at check nodes is not as immediate, but it is not too difficult to
verify that the appropriate channel convolution has transition probabilities

ð3Þ

These two channel convolutions are also the fundamental building blocks of polar codes [23], at least when
the input channels are symmetric. The check node convolution is the ‘worse’ channel in the channel splitting or
channel synthesis step (see [23], equation (19)); this holds regardless of the symmetry of the channel. On the
other hand, the ‘better’ combination ofW and ¢W is defined by (see [23], equation (20))

 ¢ ¢ = + ¢ ¢ ¢ ¢( ∣ ) ( ∣ ) ( ∣ )W y y x x W y x x W y x, , 1

2
. Compared to (2), the input x is uniformly random and not always

zero, but it is given at the channel output.WhenW is symmetric in the sense that p+ =( ∣ ) ( ( )∣ )W y x u W y xu

for a suitable permutationπ of the output alphabet depending on u, we can reversibly transform W into
and vice versa.

3. BP decoding of quantumoutputs

The formof the check and variable convolutions also applies to channels with quantumoutput2.We need only
replace the probability distributions over the output alphabet by quantum states. Abusing notation, let us denote

Figure 1. Factor graph for the joint probability distribution of a four-bit codewith two parity checks + =x x 01 3 and
+ + =x x x 01 2 4 .

2
This was first applied in the setting of polar codes in [24].
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byW(x) the quantum state of the output ofW given input x. This includes the previous case by considering
commutingW(x). The the variable and check node convolutions are now just

ð4Þ
ð5Þ

Toproperly generalize the BP decoding algorithmweneed a ‘sufficient statistic’ for the quantum channels at
the various nodes. For binary-input pure state channels, it turns out that a combination of classical bits and just
one qubit suffices. The channel outputs can always be represented by a qubit, so suppose thatW outputs q ñ∣ ,

where qñ = ñ + ñq q∣ ∣ ∣cos 0 sin 1
2 2

. Note that the overlap of the two states is qcos and theHelstrommeasurement

for these two states ismeasurement of the sx operator.
The convolution outputs either q qñ Ä ¢ñ∣ ∣ or q q- ñ Ä - ¢ñ∣ ∣ , which are again two pure states, with

an overlap angle given by . The following unitary transformation compresses the states
to thefirst qubit, leaving the second in the state ñ∣0 :

ð6Þ

with q q+ ¢ = q q q q


- ¢ + ¢( )( ) ( )a 1 cos cos cos cos1

2 2 2
and

q q- ¢ = q q q q


+ ¢ - ¢( )( ) ( )b 1 cos cos sin sin1

2 2 2
. To combinemore than two channels, we just perform

the pairwise convolution sequentially. Thus, the convolution of pure state channels can itself be represented as
a pure state channel.

The convolution ismore complicated because the outputs are no longer pure.However, applying the
unitary results in aCQ state of the form We are
free tomeasure the second qubit, and conditional state of the first qubit is again one of two pure states, though
now the overlap depends on themeasurement outcome j. In particular, q q= + ¢( )p 1 cos cos0

1

2
,

= -p p11 0, and the two overlaps are given by

ð7Þ

ð8Þ

For outcome j=0 the angle between the states has decreased, while for outcome j=1 the angle has increased.
Therefore, the convolution of pure state channels can be represented by two pure state channels,
corresponding to the twomeasurement outcomes. As before, several channels can be combined sequentially.

The quantumdecoding algorithmnowproceeds as in classical BP, taking the quantumoutputs of the
channels and combining them at variable and check nodes. At a variable node the algorithm combines the
outputs using and forwards the output to its parent node. At check nodes the algorithm applies ,measures
the second qubit, and forwards both the qubit and themeasurement result to its parent node. The classical
messages are required to informparent variable nodes how to choose the angles in subsequent unitaries.
Ultimately this procedure results in one qubit at the root node such thatmeasurement of sx corresponds to the
optimalHelstrommeasurement for the associated bit. This then is sufficient to estimate one input bit.

For example, return to the code depicted infigure 1 for a pure state channel with overlap θ, and supposewe
are interested in decoding the first bit. Starting at the leaves, the outputs of all but the first channel can be
immediately passed to their corresponding variable nodes, since these variable nodes do not have any other
outward branches. (Formally this follows from the convolution rules by considering convolutionwith a trivial
channel, having q = 0.)The output of the first channel,meanwhile,must wait to be combined according to the
convolutionwith several other qubitmessages. Next, since 2 and 4 are connected by a check node, we

combine qubits 2 and 4 into one qubit (2) and one classical bit (4) by applying andmeasuring the 4th qubit. As
qubits 1 and 3 are connected by a variable node, we can simultaneously combine thesewith . Finally, we

combine qubits 1 and 2 by applying , where and ,

depending on the value j of the earliermeasurement. A quantum circuit implementing these steps is shown in
figure 2.

One drawback is that the above procedure implements theHelstrommeasurement destructively, since once
we estimate the first bit we no longer have the original channel output in order to estimate the second bit. Andwe

4

New J. Phys. 19 (2017) 072001



cannot run the algorithmbackwards to reproduce the channel output as we havemademeasurements at every
check node. To implement theHelstrommeasurement as non-destructively as possible, we can leave theCQ
output states unmeasured and instead use the classical subsystems to coherently control the variable node
unitaries . In this way the steps in the algorithm can be reversed, save the finalmeasurement. For example, in
figure 2 all output qubits are kept and the classicalmeasurement and subsequent conditioning of the second
gate is performed by a coherent conditional gate involving three qubits.

Denoting the unitary action of the algorithm for the jth bit byVj, theHelstrommeasurement can be
implemented by the projectivemeasurement with projectors *P = ñá∣ ˜ ˜∣V k k Vj k j j j, , where ñá∣ ˜ ˜∣k k j denotes the

kth sx basis projector on the jth qubit. EachVj is composed ofO(n) gates, yielding an overall circuit size of ( )O n2

to decode all bits. Supposing that the code is designed such that the jth input bit can be estimatedwith error no
larger than  j, Gao’s non-commutative union bound [25] implies that the error in sequentially estimating all bits
is noworse than å4 j j.

4. Applications to polar codes

4.1. Polar codes for the pure state channel
Polar codes for the pure state channelmay also be decodedwith this algorithm. Indeed, the successive
cancellation decoding algorithmproposed byArıkan in [23] proceeds precisely by combining channels using the
and rules, andwas adapted to the case of CQ channels in [24]. The difference is that successive cancellation

does not use the factor graph of the code, but a graph related to afixed reversible encoding circuit. Importantly,
the graph associated to each input of the encoding circuit is a tree. In fact, each such graph has logarithmic depth
fromall channel factors to each variable, and every node has degree three. Unlike the BP decoder, however, the
successive cancellation decoder used by polar codes takes previously decoded bits into account. But these bits
can be handled by the BPdecoder since the pure state channel is symmetric in themanner described at the end of
section 2. There, the value of the previous bits is incorporated into the better channel by appropriately
permuting the output symbols, which is equivalent toflipping the input value. Similarly, for the pure state
channel, applying sz to the output is equivalent toflipping the input. Therefore, the quantumBPdecoding
algorithm gives a successive cancellation decoder for polar codes over the pure loss Bosonic channel using the
BPSK constellation [21].

4.2.Quantumpolar codes for amplitude damping
The idea behind the quantumpolar coding scheme of [16, 18] is to decompose the problemof transmitting
quantum information over a channel  A B into transmitting classical information about two conjugate
observables, ‘amplitude’ and ‘phase’, consider polar codes for each subproblem, and then combine the coding
schemes usingCSS codes at the encoder and coherent sequential decoding of amplitude and phase at the
decoder. This decoding strategy is depicted in [16],figure 3 for Pauli channels and [26,figure 1] for the general
case. As detailed in [18], the two classical transmission tasks are to transmit ‘amplitude’ information over theCQ
channel given by r = ñá(∣ ∣)z z zz and ‘phase’ information over theCQ channel given by

  j = Ä Ä F Ä( )( )[ ]( )x Z Zx
x x . Here ñ∣z is an arbitrary basis, andwe choose that of sz for

convenience, while Fñ = å ñ ñ¢∣ ∣ ∣p z zA A z z is a bipartite pure state in this same basis with coefficients of our
choosing. (See [18] for the precise relation to the conjugate observables sx and sz .)

Figure 2.Circuit decoding thefirst bit of the code depicted infigure 1. Thefirst convolution is the second

for and , depending on the value j of themeasurement outcome

in the bottomwire. The symbol denotes that the qubit is discarded. The finalHadamard gate andmeasurement implement the
Helstrommeasurement.

5
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Let us now showhow to build a decoder for the amplitude damping channel g with damping parameter
g Î [ ]0, 1 . First note that the amplitude outputs all commute due to the formof g; the amplitude channel is
effectively a classicalZ channel in which the input 0 is always transmitted perfectly, but the input 1may decay to
0with probability γ. Thereforewe can use the classical polar encoder and decoder for this channel [27]. Since the
Z channel is not symmetric, the optimal input distribution in the capacity formula is not the uniform
distribution, but onewith probabilities p and - p1 .

Now suppose that the bipartite pure state in the phase channel is the state Fñ = ñ + - ñ∣ ∣ ∣p p00 1 11 .
Abusing notation slightly and denoting the channel outputsj, it is not difficult to verify that for
= ¢U CNOTA B,

*j g q q g= - -  ñá Ä ñá + - ñá Ä ñá ( ( ))∣ ∣ ∣ ∣ ( )∣ ∣ ∣ ∣ ( )U U p p1 1 0 0 1 1 1 1 1 , with 90 0

q
g

g
=

- - -
- -

( )
( )

( )p p

p
cos

1 2 1

1 1
. 100

Each of these states is a CQ statewith thefirst qubit pure and the second qubit classical, just as in a output.
Given the second qubit, the first is either in the pure state q ñ∣ 0 corresponding to the channel input±, or the
state ñ∣1 independently of the input; the latter is equivalent to q = ñ∣ 01 . Hence the decoder can begin just as at a
step,measuring the second qubit to determine the angle associated to thefirst qubit.
The rate achievable by the quantumpolar code construction is simply = - -yÎ ( ( ∣ )[ ]R H Z Bmax 1p 0,1

¢ x( ∣ ) )H X BA , where y r r= ñá Ä + - ñá Ä∣ ∣ ( )∣ ∣p p0 0 1 1 1ZB 0 1 and x j= å ñá Ä¢ Î ∣ ∣{ } x xXBA x x
1

2 0,1 . A

cumbersome but straightforward calculation confirms thatR equals the capacity of the channel,  =g( )C
g g- -Î ( (( ) ) ( ))[ ] h p h pmax 1p 0,1 2 2 , for h2 is the binary entropy [28, proposition 23.7.2].Moreover, since the

amplitude damping channel is degradable, the arguments in [16] ensure that no entanglement-assistance is
required tomeet theCSS constraint when constructing the quantumpolar code.

5.Discussion

Wehave presented a BP algorithm for bitwise decoding of CQ channels which operates by passing quantum
messages on tree factor graphs, and shown several applications to polar codes. This invites the study of quantum
message passing algorithms, and not just in the context of decoding.More generally wemay look for BP and
related algorithms for any task of statistical inference where the input data comes in the formofmany quantum
bits, for instance in quantummetrology. This work also raisesmany interesting questions.Most immediately in
the context of decoding is whether the complexity of the algorithm can be reduced for structured factor graphs.
Classical polar codes, for instance, have decoding complexity ( )O n nlog . Can this also be achieved for the pure
state channel? Similarly, can onefind a quantumversion of themax-product or Viterbi algorithm for
determining themost likely x1

n given the channel outputs?
More generally, it would be very interesting to understand how to run the algorithmon a factor graphwith

loops, or how it can bemodified to handle some set of non-pure output states. In the former case itmay be useful
to explore the characterization of loopy BP as a variational problem [1, 29]. Perhaps in the latter case one can
make use of thework on quantum sufficiency (see e.g. [30, 31] and references therein) tofind a suitable set of
quantummessages for a given decoding problem.

Another interesting questionwith potentially far-reaching consequences is the relation of the BP algorithm
to tensor networkmethods. The problemofmarginalization in the commutative setting is explicitly treated as
tensor network contraction in [14], and the particulars of the quantumBPdecoder bear a similarity with the data
gathering approach using tensor network states in [32]. Can themethods of approximating quantum states by
tensor networks be used to create efficient approximate decoders?
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