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Abstract

Linear Programming is one of the most frequently applied tools for modeling and
solving real world optimization problems. Nonetheless, most commercially avail-
able solvers are often incapable of dealing with large problem sizes, e.g. millions of
variables or hundreds of thousands of constraints, arising in modern applications.
To cope, researchers have applied decomposition methods, in particular Lagrange
relaxation. In this thesis, we investigate new methods for solving Lagrange relax-
ations and consequently the Linear Program approximately both from a theoretical
as well as a numerical point of view.

In the theoretical part, we consider two recently developed primal-dual optimization
methods by Nesterov for approximately solving non-smooth convex optimization
problems. The first method, called Primal-Dual Subgradient method, is a variation
of the standard subgradient method, where the computed subgradients are used
not only to create at each step a primal but also a dual solution. This method
has a convergence rate of O( 1

ϵ2
) to reach an absolute accuracy of ϵ > 0, which is

the best possible rate for techniques based on subgradients. The second method,
called Excessive Gap method, consists of a smoothing of the objective functions and
the usage of optimal gradient schemes. It has a convergence rate of O(1

ϵ
). Using

this method, we design a polynomial time approximation scheme for the linear
programming relaxation of the Uncapacitated Facility Location problem, which
improves the running time dependence on ϵ from the previously known O( 1

ϵ2
) to

O(1
ϵ
).

Both methods depend on oracles for solving subproblems in each iteration. However,
exact oracles are often unavailable. We examine the influence of approximate oracles
on the overall convergence of the methods. We show that in order to obtain an
overall absolute accuracy of ϵ, the Primal-Dual Subgradient method requires oracles
with a theoretical accuracy of ϵ2. In contrast, the Excessive Gap method needs an
oracle accuracy of ϵ5 suggesting that it is much less stable. However, we only
assumed to know the absolute accuracy of the solution delivered by the oracles.
Introducing other requirements may lead to an improvement of these results.

In the practical part of the thesis, we examine the application of the methods to the
linear programming relaxation of the Uncapacitated Facility Location problem and
the Static Traffic Assignment Problem, for which we had access to real world data.
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As expected by theory, the Excessive Gap method outperformed the Primal-Dual
Subgradient method in solving the linear programming relaxation of the Uncapaci-
tated Facility Location problem, for which exact oracles are available. Surprisingly,
the Primal-Dual Subgradient method was much better than the Excessive Gap
method in solving the Static Traffic Assignment Problem. This can be explained
by the subproblems arising in the methods. In the Excessive Gap method, we have
to solve Minimum Quadratic Cost Flow problems, which are much harder than the
Shortest Paths computations arising in the Primal-Dual Subgradient method. For
solving the Minimum Quadratic Cost Flow problem, we considered approximate or-
acles and we noticed that the Excessive Gap method demonstrated more stability
than predicted by theory.

As we used a novel formulation of the Static Traffic Assignment problem developed
by Nesterov and de Palma, we also compared the characteristics of the obtained
traffic assignments to assignments obtained using the traditional Beckmann model.
Results showed that the Nesterov and de Palma model better concentrates travel
flows leading to more predictable congestions.



Zusammenfassung

Lineare Programme gehören zu den meist verwendeten Werkzeugen zum Model-
lieren und Lösen von Optimierungsproblemen aus der Praxis. Die meisten kom-
merziellen Programme sind jedoch überfordert, wenn die Probleminstanzen riesig
werden (Millionen von Variablen oder Hunderttausende von Restriktionen). Für sol-
che Fälle werden oft Dekompositionsmethoden, wie etwa die Lagrange Relaxation,
verwendet. In dieser Dissertation untersuchen wir neue Methoden zum approxima-
tiven Lösen von Lagrange Relaxationen und damit Linearer Programme sowohl aus
einer theoretischen als auch einer praktischen Perspektive.

Im theoretischen Teil betrachten wir zwei kürzlich entwickelte Primal-Duale Op-
timierungsmethoden von Nesterov, welche nicht glatte konvexe Optimierungspro-
bleme approximativ lösen. Die erste Methode, Primal-Duale Subgradientenmetho-
de genannt, ist eine Variation der normalen Subgradientenmethode, welche die in
jeder Iteration berechneten Subgradienten zur Berechnung nicht nur primaler son-
dern auch dualer Lösungen verwendet. Die Methode hat eine Konvergenzrate von
O( 1

ϵ2
), um eine absolute Präzision von ϵ > 0 zu erreichen. Dies entspricht dem

bestmöglichen Wert, welcher mit Methoden basierend auf Subgradienten erreicht
werden kann. Die zweite Methode, Methode der exzessiven Lücke genannt, verwen-
det eine Glättung der Zielfunktionen und optimale Gradientenschemen. Sie hat eine
Konvergenzrate von O(1

ϵ
). Mit Hilfe dieser Methode entwickeln wir ein Approxima-

tionsschema in polynomieller Zeit für die Relaxation als Lineares Programm des
Platzierungsproblem von Anlagen ohne Kapazitätseinschränkungen, welche die Re-
chenzeitabhängigkeit vom bisher besten bekannten Wert O( 1

ϵ2
) auf O(1

ϵ
) verbessert.

Beide Methoden benötigen Orakel zum Lösen von Subproblemen. Exakte Orakel
sind aber nicht immer vorhanden. Wir untersuchen den Einfluss approximativer
Orakel auf die Konvergenz der Methoden und zeigen, dass, um eine absolute Präzi-
sion von ϵ zu erreichen, die Primal-Duale Subgradientenmethode ein Orakel mit
einer theoretischen Präzision von ϵ2 benötigt. Demgegenüber bedarf die Methode
der exzessiven Lücke eines Orakels mit einer Präzision von ϵ5, was auf eine viel
kleinere Stabilität hindeutet. Wir haben jedoch ausser der Präzision keine weiteren
Voraussetzungen an die Orakel gestellt. Das Einführen weiterer Vorgaben könnte
zu einer Verbesserung dieser Resultate führen.

Im Anwendungsteil der Dissertation haben wir die Methoden zum Lösen der Re-
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laxation als Lineares Progamm des Platzierungsproblems von Anlagen ohne Kapa-
zitätseinschränkungen und des statischen Verkehrsumlegungsproblems verwendet.
Für letzteres hatten wir Zugang zu Daten aus der realen Welt. Wie aufgrund der
Theorie erwartet, schlägt die Methode der exzessiven Lücke die Primal-Duale Sub-
gradientenmethode beim Lösen der Relaxation als Lineares Progamm des Anla-
genplatzierungsproblems, für welches exakte Orakel vorhanden sind. Überraschen-
derweise ist die Primal-Duale Subgradientenmethode viel besser im Lösen des Ver-
kehrsumlegungsproblems. Dies kann man durch die zu lösenden Subprobleme er-
klären. Die Methode der exzessiven Lücke muss Flussprobleme mit quadratischen
Kosten lösen, welche viel schwieriger als die kürzeste Wege Probleme in der Sub-
gradientenmethode sind. Für das Flussproblem mit quadratischen Kosten mussten
approximative Orakel verwendet werden und es zeigte sich, dass die Methode der
exzessiven Lücke stabiler war, als die Theorie erwarten liess.

Da wir eine neue Formulierung von Nesterov und de Palma des statischen Ver-
kehrsumlegungsproblems verwendet haben, haben wir auch die Charakteristiken
der erhaltenen Verkehrsumlegungen mit den Umlegungen verglichen, welche man
mit dem traditionellen Beckmannmodell erhält. Die Resultate zeigten, dass das Mo-
dell von Nesterov und de Palma die Verkehrsflüsse stärker konzentriert, was zu einer
Verkehrsprognose mit mehr Staus führt.



Résumé

La Programmation Linéaire fait partie des outils les plus utilisés pour modéliser et
résoudre des problèmes d’optimisation survenant dans l’industrie. Ces problèmes
ont besoin en général de plusieurs millions de variables et de quelques centaines de
milliers de contraintes pour être décrits, ce qui les rend intraitables pour la plupart
des logiciels commerciaux. Afin de traiter ce type de problèmes, des méthodes de
décomposition sont utilisées, en particulier les relaxations de Lagrange. Dans cette
thèse, nous étudions à la fois d’un point de vue théorique et pratique des nouvelles
méthodes pour résoudre les relaxations de Lagrange de manière approximative et
ainsi les programmes linéaires correspondants.

Dans la partie théorique de cette thèse, nous considérons deux méthodes
développées récemment par Nesterov pour résoudre de manière approximative des
problèmes d’optimisation convexe mais non differentiables. La première méthode,
nommée en anglais Primal-Dual Subgradient method (Méthode de Sous-gradients
primale-duale), est une variante de la méthode standard des sous-gradients. A
chaque itération, les sous-gradients calculés sont non seulement utilisés pour créer
une solution primale mais aussi une solution duale. Pour obtenir une erreur ab-
solue de ϵ > 0, O( 1

ϵ2
) itérations sont suffisantes. Cette vitesse de convergence est

la meilleure que l’on puisse espérer pour des méthodes basées uniquement sur des
sous-gradients. La deuxième méthode envisagée se nomme en anglais Excessive Gap
method (Méthode du Seuil excessif). Elle consiste à lisser préalablement la fonction
objectif et ensuite à utiliser des méthodes de gradient optimales pour résoudre le
problème rendu différentiable. Sa vitesse de convergence est de l’ordre de O(1

ϵ
).

Grâce à cette méthode, nous avons pu créer un schéma d’approximation dont le
temps d’exécution est polynomial en la donnée de l’instance pour résoudre la re-
laxation en variables continues du problème de localisation de dépôts à capacité
illimitée. Ceci améliore la dépendance du temps d’exécution en ϵ de O( 1

ϵ2
) à O(1

ϵ
)

par rapport à la meilleure méthode connue.

Les deux méthodes de Nesterov supposent l’existence d’oracles résolvant de manière
exacte des sous-problèmes d’optimisation à chaque itération. Il se peut cependant
que de tels oracles ne soit pas disponibles. Nous étudions l’impact de solutions
approchées de ces sous-problèmes sur la convergence des deux méthodes. De notre
étude, nous obtenons que pour maintenir une erreur absolue de ϵ, les sous-problèmes
dans la méthode des Sous-gradients primale-duale doivent être résolus avec une
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précision absolue de ϵ2, et pour la méthode du Seuil excessif avec une précision
absolue de ϵ5. Ce dernier résultat indique que la méthode du Seuil excessif est
moins stable que la méthode des Sous-gradients primale-duale. Toutefois nous n’exi-
geons des oracles approchés qu’une garantie sur l’erreur absolue. D’autres conditions
peuvent peut-être améliorer ce résultat.

Cette thèse contient une partie expérimentale, où nous considérons la relaxation
en variables continues du problème de localisation de dépôts a capacité illimitée
et le problème d’affectation statique du trafic routier. Pour ce dernier problème,
nous disposons de données provenant d’un réseau routier réel. La méthode du Seuil
excessif surpasse la méthode des Sous-gradients primale-duale pour la relaxation en
variables continues du problème de localisation de dépôts à capacité illimitée, ce
qui est en accord avec nos résultats théoriques. Pour ce problème nous disposons
d’oracles exacts. Par contre, dans le cas du problème d’affectation statique du trafic
routier la méthode des Sous-gradients primale-duale est beaucoup plus efficace que
la méthode du Seuil excessif. Ceci peut s’expliquer par le type de sous-problèmes
qui doivent être résolus dans chacun des algorithmes. Dans le cas de la méthode des
Sous-gradients primale-duale, nous devons simplement effectuer un calcul des plus
courts chemins alors que dans le cas de la méthode du Seuil excessif nous devons
déterminer des flots de coût quadratique minimal. Pour ce dernier problème, nous
ne disposons que d’oracles approximatifs. Nous avons constaté numériquement que
la méthode du Seuil excessif est plus stable que notre théorie le prévoyait.

Nous avons envisagé dans cette thèse une nouvelle formulation du problème d’af-
fectation statique du trafic routier développée par Nesterov et de Palma. Nous
comparons également certaines caractéristiques des affectations du trafic routier
obtenues par ce nouveau modèle avec celles obtenues par le modèle classique de
Beckmann. Les résultats montrent que le modèle de Nesterov et de Palma distribue
le trafic de manière plus concentrée et pronostique plus de congestion.



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
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1. Introduction

1.1 Motivation

Linear Programming (LP) is the most frequently used tool for modeling and solving
optimization problems arising in diverse areas such as telecommunication network
management, supply chain management, statistics, finance, and biology. The main
reason for its popularity is the widespread belief by practitioners that commercially
available solvers are capable of solving any instance of an LP problem in a reasonable
amount of time.

Commercially available solvers are based on simplex or interior point methods. Both
methods terminate with an optimal solution or conclude that the problem instance
is unbounded or infeasible. An algorithm is considered efficient in theory if the
time to find an optimal solution is bounded by a polynomial in the size of the input
data. In this case the method or the algorithm is said to have a polynomial running
time or to be polynomial. Simplex like algorithms are not known to be polynomial.
Interior point methods on the other hand are polynomial (see [Kha79, Kar84]).

From a practical point of view, these methods are limited with respect to the prob-
lem size. As the problem size grows, simplex-like algorithms require a prohibitive
number of iterations and interior point methods need a large amount of time and
memory to compute a single iteration. Thus, commercially available solvers are
frequently inadequate for the large instances of LP problems arising in practice to-
day, in spite of many improvements introduced in the last twenty years to scale and
speed up these solvers (see [Bix02]). For example, problem instances in telecom-
munication networks exist with several million variables and hundreds of thousands
of constraints all needing to be solved in a few minutes (see [Bie02]). However,
currently available solvers running on modern computers need hours or even days
to solve such instances if they are able to solve them at all (see [Bie02]).

In order to cope with these problems many researchers have investigated decompo-
sition methods, such as Benders’ and Dantzig-Wolfe decomposition, and Lagrange
relaxations (see [Van96, BT97, Mar99]). The main idea of these methods is to
divide the initial problem into subproblems that are simpler and easier to solve.
Researchers also exploit the structure of special LP for dealing with even larger
problems, for example by using problem sparsity. The efficiency analysis of these
methods is mostly based on empirical results for specific problem instances.
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In this thesis, the aim is to develop algorithms that given a target accuracy of ϵ > 0
deliver a solution within a factor of (1 + ϵ) of the optimum of the LP problem and
have a running time, which is polynomial in the size of the input data. Such an
algorithm is called an approximation algorithm. We can safely relax the optimality
requirement since it usually has little value in real world problems, where the model
itself and the data may not be accurate. In this case a solution can only be as
accurate as the input.

In order to design such an approximation algorithm, we use decomposition methods,
in particular Lagrange relaxation. The main difficulty with this approach is that
it leads to non-smooth optimization. Usually, researchers have applied subgradient
techniques to solve this problem. We apply two recently proposed methods by
Nesterov. The first is a primal-dual subgradient technique [Nes09, Nes05b]. The
second consists of two steps. First, the Lagrange relaxation is smoothed and then
solved by optimal gradient-like optimization schemes [Nes05c, Nes05a]. In this
fashion, we obtain algorithms with an approximation guarantee for special LP.

Bienstock and Iyengar were to our knowledge the first to apply these methods. They
obtain approximation algorithms for Fractional Packing problems with a running
time of O(1

ϵ
) [BI04]. Simultaneously to our work, Iyengar, Phillips, and Stein de-

velop approximation algorithms for Semidefinite Packing problems [IPS05]. Chudak
and Nagano exploit both methods of Nesterov to solve relaxations of combinatorial
problems with submodular penalties [CN07]. Finally, Gilpin et al. develop an algo-
rithm for finding Nash equilibria in sequential games [GHPS07] using the method
described in [Nes05a]. That paper presents also numerical results.

Note that many other methods related to Lagrange relaxation exist. Just to men-
tion a few, there are the so-called bundle methods, see e.g. [LNN95], the penalty
methods, see e.g. [CD94] or [FG99], the volume method, see e.g. [BA00], and the
mirror descent method, see e.g. [NY83] or [BTMN01]. However, these methods are
not further investigated in this thesis.

1.2 Goals

This thesis aims at contributing to the understanding of recently developed approx-
imation algorithms both theoretically and numerically.

Theory

From a theoretical point of view, we design polynomial time approximation schemes
for special LPs, i.e., schemes that for a given ϵ > 0 deliver a solution within a
factor of (1+ϵ) of the optimum and have an execution time that may depend on
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ϵ and must be bounded by a polynomial in the length of the input. We focus on
the dependence of the running time of the designed method on ϵ. These schemes
are based on optimization methods for non-smooth convex problems developed by
Nesterov in [Nes05c], [Nes05a], [Nes09], and [Nes05b]. Binary search and knowledge
on the optimal solution are subsequently used to restrict the feasible region as in
[You01], [Bie02], [GK02], and [BI04].

Using this approach, we design approximation algorithms for the linear program-
ming relaxation of the Uncapacitated Facility Location (UFL) problem. [CE05]
presents an approximation algorithm that improves the running time dependence
on ϵ from O(1/ϵ2) to O(1/ϵ). To our knowledge, O(1/ϵ2) was previously the best
known complexity, see for example the work of [GK02]. The previous result was
obtained applying the method presented in [Nes05a]. In this thesis, we extend this
approach to other methods by Nesterov.

At each iteration, Nesterov’s algorithms require an optimal solution of subproblems
that may be non-linear and even more difficult than the original problem. Based
on the work of Bienstock and Iyengard in [BI04], we extend the results of Nesterov
to accommodate approximate solutions. For the method presented in [Nes05a],
[CE05] gives a theoretical bound on the required accuracy of the solutions to the
subproblems, however without proof. This proof as well as theoretical bounds for
the other methods are presented in this thesis.

The results for the linear programming relaxation of the UFL problem can be
extended to other problems such as the Packing problem, Scheduling problem, the
Set Covering problem, the Maximum Concurrent Multicommodity Flow problem,
and the Survival Network Design problem. Results based on [Nes05a] are given in
[CE05]. However, we will not further investigate these problems in this thesis.

Application

An important part of this thesis is the implementation of the designed approxima-
tion schemes, since up until now only little empirical work on the performance of
approximation algorithms for LP has been done. In the second part of the thesis,
the focus is on the practical applicability of the developed methods.

In this work, numerical performance study concerns two problem classes, the linear
programming relaxation of the Uncapacitated Facility Location problem and the
Static Traffic Assignment (STA) problem. Both problem classes are derived from
the class of linear multicommodity flow problems. Since both applied approximation
schemes deliver a primal and dual solution at each step, the relative errors can easily
be bounded using the duality gap.

The algorithms have been tested on randomly generated instances for the linear
programming relaxation of the Uncapacitated Facility Location problem. Both
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algorithms, primal-dual subgradient methods and smoothing techniques with gra-
dient schemes were implemented with subproblems solved to optimality. Numerical
results showed that performance was good for algorithms based on the smoothing
techniques with gradient schemes and poor for the algorithms based on primal-dual
subgradient schemes.

For the Static Traffic Assignment problem, a new model developed by Nesterov
and de Palma in 2000 [NdP00, NdP03] is considered, which is compared with Beck-
mann’s classical model developed in 1956 [BMW56]. We test both models in small
benchmark instances using commercial solvers. Particularly of interest is an under-
standing of how the two models compare regarding e.g. congestion, Braess paradox,
and Price of Anarchy. Then, based on Nesterov’s optimization various algorithms
are designed for solving the Static Traffic Assignment problem. Using benchmark
and real world instances of the problem we compare the algorithms. As opposed
to the Uncapacited Facility Location problem, the algorithms based on the primal-
dual subgradients schemes show better performance than those based on smoothing
techniques with optimal gradient schemes. Furthermore, a comparison between the
quality of the Traffic Assignment delivered by our algorithms and the quality of
Traffic Assignment computed by VISUM, ([VIS06]), a commercial software based
on the Beckmann model, is made.

The Static Traffic Assignment problem as formulated by Nesterov and de Palma
corresponds to a Minimum Linear Cost Multicommodity Flow problem and its dual.
Lagrange relaxation remains one of the most often used method for solving large
Minimum Cost Multicommodity Flow problems. As an example for a different
solution approach (without an approximation guarantee), we refer to the recent
paper of Babonneau, du Merle, and Vial [BdMV06], where the Lagrange relaxation
is solved with a variant of the analytic center cutting-plane method. An overview
on approximation algorithms for solving the Minimum Cost Multicommodity Flow
problem is given in Chapter 9.

1.3 Structure of the Thesis

The thesis is divided into two main parts. The first part (Chapters 2 to 6) is
concerned with the theoretical basis of large scale linear optimization, while the
second part (Chapters 7 to 10) deals with practical applications of the algorithms
from the first part. Chapter 2 briefly introduces linear programming and frequently
used methods applied to solve them exactly or approximately. Chapter 3 describes
strongly convex functions, which are fundamental for the methods in the follow-
ing two chapters. In Chapter 4, we present primal-dual subgradient methods for
approximately solving large scale linear programs in detail. Chapter 5 then ex-
amines smoothing techniques and gradient schemes. All methods from this thesis
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assume that oracles exist, which can provide exact solutions to “easy” subproblems.
Chapter 6 provides answers as to whether these methods still converge when only
approximate oracles are available.

The second part of the thesis begins with Chapter 7, in which the linear program-
ming relaxation of the Uncapacitated Facility Location problem is examined. The
algorithms from Chapters 4 and 5 are implemented and test results are given. Chap-
ter 8 deals with the static Traffic Assignment Problem for which two models are
given. Chapter 9 shows numerical results for the Traffic Assignment Problem. We
compare on the one hand the practical performance of the implemented algorithms
and on the other hand the traffic predictions made by the two models. Chapter
10 concludes the application part with tests of two algorithms on their practical
performance for solving the Minimum Quadratic Cost Flow problem, which is the
only subproblem that must be solved approximately. Finally, Chapter 11 gives a
summary and an outlook.





Part I

Large Scale Linear Programs and
Optimization Methods





2. Large Scale Linear Programs (LP)

We assume that the reader is familiar with the theory of Linear Programming (LP).
Nevertheless, the following provides a brief overview of the concepts used. Details
and proofs in particular are omitted however and the interested reader is referred
to the following books [Van96, BT97, BV04].

2.1 Linear Programs

Simply stated, a linear program is a mathematical optimization problem in which
both the objective function and the constraints are linear functions. Many prob-
lems arising in practice can be formulated in this fashion. Examples are network
problems such as telecommunication, portfolio optimization, or resource allocation.
This widely applicable use is one of the main reasons for the enormous interest in
linear programming.

A compact formulation of an LP is as follows

(LP) minimize cTx
subject to Ax ≤ b

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. Each LP has an associated dual problem,
which is formulated as follows

(Dual LP) maximize −bT z
subject to AT z + c = 0.

z ≥ 0

The relation of the optimal solutions of the two problems is given by the weak and
strong duality theorems.

Theorem 2.1 (Weak duality — Theorem 4.3 in [BT97])
If x is primal feasible and z dual feasible, then cTx ≥ −bT z.

Thus, a duality gap can be defined as cTx+ bT z. By defining the optimal value of
the LP by p⋆ and the optimal value of the dual LP by d⋆, we can state the strong
duality theorem.
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Theorem 2.2 (Strong duality — Theorem 4.4 in [BT97])
If either the LP or its dual has a bounded feasible solution, then the other also has
a bounded feasible solution and p⋆ = d⋆.

One can prove the optimality of a pair of primal and dual solutions (x⋆, z⋆) using
the so-called Karush-Kuhn-Tucker (KKT) conditions.

Theorem 2.3 (KKT Conditions — Section 5.5.3 in [BV04])
x⋆ and z⋆ are primal respectively dual optimal solutions if and only if

1) Ax⋆ ≤ b (feasibility of x⋆)
2) AT z⋆ + c = 0, z⋆ ≥ 0 (feasibility of z⋆)
3) (z⋆)T (Ax⋆ − b) = 0 (complementarity)

The feasible region of an LP is given by a polyhedron since each constraint that
the decision variable is subject to, defines a hyperplane. The following theorem
states an interesting fact about the location of optimal solutions. Note that an
extreme point of a polyhedron is by definition a point, which cannot be expressed
as a convex combination of other points in the polyhedron, i.e. a vertex.

Theorem 2.4 (Theorem 2.8 in [BT97])
If the feasible region of an LP contains at least one extreme point, the optimal
objective value is either unbounded or is attained at an extreme point.

Both exact and approximation algorithms for solving linear programs exist. An
overview is given in the next sections.

2.2 Exact Optimization Methods

Several algorithms exist which can solve linear programs exactly. Here, two of the
most widely used methods shall be briefly described, namely the Simplex and the
Interior Point methods.

The Simplex method was introduced in 1947 by Dantzig [Dan63]. It starts with
an extreme point of the polyhedron that defines the feasible region of the LP and
then moves in every iteration of the algorithm to an adjacent extreme point with
improved objective value. Combining Theorem 2.4 with the fact that the number
of extreme points is finite guarantees termination at an optimal solution (though
precautions against cycling are needed if the polyhedron is degenerate).

A major drawback of the Simplex method is given by the fact that the number of
extreme points of polyhedrons grows exponentially with the number of constraints.
Klee and Minty showed an example of an LP, for which the Simplex method passed
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all extreme points before reaching the optimal solution, thus proving that the worst
case performance of the algorithm is exponential [KM72]. However, the Simplex
method proves to be efficient in most real life applications of modest size.

Whether the linear programming problem could be solved in polynomial time re-
mained an open question until 1979, when a method was presented that had poly-
nomial worst case running time (Khachian’s Ellipsoid method [Kha79]. However,
it compared poorly to the Simplex method in real life applications.

The first algorithm having a polynomial worst case running time and showing good
performance in practical applications was the Interior Point method presented by
Karmakar in 1984 [Kar84]. The method starts from an interior point of the feasible
region and then follows a “central” path given by adding a logarithmic barrier
function to the objective function towards an optimal point. Newton’s method is
applied to follow the central path. Finally, when a point sufficiently near an optimal
extreme point is found, it can be rounded in a polynomial number of steps to an
exact solution. The theoretical worst case running time is given by O(Ln ln(n)),
where n is the dimension of the problem space and L is the length of the input
data, i.e., A, b, and c.

2.3 Decomposition Methods

We are interested in large scale linear programs, i.e. problems containing millions
of decision variables. In this case it is usually no longer possible to solve the
problem exactly because both running time and memory usage become prohibitively
large. Most frequently used approaches are then decomposing the problem into
subproblems or relaxing some constraints. An overview is given in the following
subsections.

2.3.1 Dantzig-Wolfe Decomposition and Bender’s
Decomposition

In order to improve problem tractability, decomposition methods reduce either the
number of variables or the number of constraints to be considered in an algorith-
mic step. The basic idea of both Dantzig-Wolfe and Bender’s decomposition is to
reformulate the linear program into a suitable master-problem and then iteratively
solve subproblems to improve the current solution of the master-problem.

The Dantzig-Wolfe decomposition is applied if the linear program has an excessive
number of variables, i.e. columns in the tableau of the LP. The method starts from
a basic solution of the master-problem and solves linear subproblems in order to
find variables, which must enter the basic solution of the master-problem in order to
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improve the objective function value. Thus, variables enter the solution iteratively,
which is called “delayed column generation”.

Bender’s decomposition is applied if the LP has a large number of constraints.
This method starts with a solution of a relaxed master-problem, in which only a
part of the constraints are included. Subproblems are then applied to find violated
constraints, which must enter the relaxed master-problem. This approach is called
“delayed constraint generation”.

Note, that both methods are very similar in the sense that Bender’s decomposition
is essentially the same as Dantzig-Wolfe decomposition applied to the dual problem.

2.3.2 Lagrange Relaxation

The Lagrange relaxation is a technique that enables us to transfer some constraints
into the objective function. Assume that the constraints of a given LP can be
divided into “easy” and “hard” ones. We then rewrite the problem in the following
fashion.

(LP) minimize cTx
subject to Ax ≤ b

x ∈ Q

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, Q ⊆ Rn is a sufficiently simple non-empty
polyhedron, e.g., a simplex or box. Thus, the “easy” constraints define Q. The
Lagrange relaxation of the inequality constraints of this problem is as follows.

(LR) max
u≥0

ψ(u) ψ(u) := min
x∈Q

{cTx+ uT (Ax− b)}.

The problem LR is called the Lagrange dual problem. Note that the dual LP is
obtained if Q = Rn. If we suppose that the linear problem, LP, has a finite optimal
solution, solving the LP problem is equivalent to solving its Lagrange relaxation
(LR) as the following theorem shows.

Theorem 2.5
Consider the linear minimization problem LP and its Lagrange relaxation LR,

LP := min cTx LR := maxu≥0

{
minx∈Q{cTx+ uT (Ax− b)}

}
Ax ≤ b
x ∈ Q

where Q := {x | Ãx ≤ b̃} is a polyhedron. If the linear minimization problem has a
finite optimal solution, then LP = LR.

A proof is given in Appendix A, Theorem A.1.



3. Theoretical Foundations

In this chapter we give a definition of the problem, which will be investigated in
subsequent chapters, and introduce strongly convex functions. These functions
play an important part in the optimization methods and thus some of their basic
properties are also investigated.

3.1 Problem Description

We consider specially structured large scale linear programs, which can be formu-
lated as follows

(LP) minimize cTx
subject to Ax ≤ b

x ∈ Q

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, Q ⊂ Rn is a sufficiently simple non-empty
polyhedron, e.g., a simplex, and n and m are in the order of millions. Then, we
consider the Lagrange relaxation of the inequality constraints,

(LR) max
u≥0

ψ(u) ψ(u) := min
x∈Q

{cTx+ uT (Ax− b)}.

and we assume in addition that Q is bounded and that a non-empty, convex and
compact polytope P ⊂ Rm containing an optimal solution of the Lagrange relax-
ation LR exists. Thus,

max
u∈P

ψ(u) = min
x∈Q

f(x) (3.1)

where f(x) := maxu∈P {cTx + uT (Ax − b)}, see Theorem A.3 or Corollary 37.3.2
in [Roc70]. The function ψ(u) is a concave piecewise linear function and the func-
tion f(x) is a convex piecewise linear function. Hence, both functions are non-
differentiable. Our objective is to solve (3.1) approximately, i.e., to find x̄ ∈ Q and
ū ∈ P such that f(x̄) − ψ(ū) ≤ ϵ, ϵ > 0.

Note, however, that bounding the polyhedron Q and finding a non-empty, convex
and compact polytope P containing an optimal solution of LR is not trivial. The
choice of Q and P influences the tractability of the implemented methods.

Let us present the main assumptions that we are making as well as the problem we
are considering.
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Assumption 1

• Q ⊂ Rn is a non-empty, convex and compact polytope,

• P ⊂ Rm is a non-empty, convex and compact polytope.

As a consequence

• the function f(x) := maxu∈P {cTx+uT (Ax−b)} is well defined for all x ∈ Q,

• the function ψ(u) := minx∈Q {cTx+uT (Ax−b)} is well defined for all u ∈ P ,

• the function f(x) has a finite minimum f ∗ over Q attained at x∗ ∈ Q,

• the function ψ(u) has a finite maximum ψ∗ over P attained at u∗ ∈ P .

We note that under Assumption 1 there is no duality gap.

Problem 1 Suppose Assumption 1 holds. Given ϵ > 0, find a feasible primal
solution x̄ ∈ Q and a feasible dual solution ū ∈ P such that f(x̄) − ψ(ū) ≤ ϵ.

The methods presented in Chapters 4 and 5 deal with convex non-smooth optimiza-
tion problems. They were developed by Yurii Nesterov between 2001 and 2007, see
[Nes05c], [Nes05a], [Nes09], and [Nes05b]. We use them here in order to solve simul-
taneously the maximization and minimization problems in Equation (3.1). First,
we consider optimization methods based on subgradient techniques (Chapter 4).
Next, we consider methods based on gradient optimization (Chapter 5), which con-
sist mainly of two steps. First, a smooth approximation of the objective function
is derived, and then gradient-based optimization methods are applied. In the fol-
lowing chapters, we will follow the lines of Nesterov in [Nes05c], [Nes05a], [Nes09],
and [Nes05b] to introduce these methods.

3.2 Strongly Convex Functions

In the following we introduce some basic definitions that are used throughout the
text.
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Definition 3.1 (Convex and Closed Convex Function)
Let S ⊆ Rn be a convex set and g : S −→ R. The set

epi g := {(x, t) | x ∈ S, t ∈ R, g(x) ≤ t} ⊂ Rn+1 (3.2)

is called the epigraph of the function g. The function g is convex if its epigraph,
epi g, is a convex set. Moreover, if the epigraph is a closed convex set, the function
g is called closed convex.

Note that the convexity of a function g : S −→ R, over its convex domain S ⊆ Rn

is equivalent to satisfy

g((1 − θ)x+ θy) ≤ (1 − θ)g(x) + θg(y) 0 < θ < 1 (3.3)

for every x, y ∈ S, Theorem 4.1 in [Roc70].

Definition 3.2 (Smooth Function and Lipschitz Continuous Gradient)
Let S ⊆ Rn, with Rn endowed with a norm ∥.∥S. The function g : S −→ R is called
smooth on S if it is finite and differentiable throughout S.

The gradient of ∇g(.) is Lipschitz continuous on S, if

∃ Lg,S > 0 s.t. ∥∇g(x) −∇g(y)∥∗S ≤ Lg,S∥x− y∥S ∀ x, y ∈ S, (3.4)

where the dual norm is defined by ∥ζ∥∗S := max∥x∥S≤1{⟨ζ, x⟩} for ζ ∈ Rn. The
constant Lg,S is called Lipschitz constant of ∇g with respect to ∥.∥S.

For the sake of clarity we use the following notation. Our main space is Rn and we
consider a set S ⊆ Rn. Any parameter whose value depends on the subset S will
have S as index, e.g., the Lipschitz constant Lg,S in the previous definition. The
same notation will be used for the norms.

Note that for any smooth convex function g : S −→ R, with a convex domain
S ⊆ Rn,

g(y) ≥ g(x) + ⟨∇g(x), y − x⟩ (3.5)

holds, see e.g. Definition 2.1.1 and Theorem 2.1.2 in [Nes03]. If the gradient of g is
also Lipschitz continuous, then g has the following nice property.

Theorem 3.3
Let S ⊆ Rn be convex and let Rn be endowed with a norm ∥.∥S. Let g : S −→ R
be a smooth convex function, such that its gradient is Lipschitz continuous with
Lipschitz constant Lg,S with respect to ∥.∥S. Then, for all x, y ∈ S

g(y) ≤ g(x) + ⟨∇g(x), y − x⟩ +
Lg,S
2

∥y − x∥2
S (3.6)

holds.
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For a proof see e.g. Theorem 2.1.5 in [Nes03].

Definition 3.4 (Smooth Strongly Convex Function)
Let S be a convex subset of Rn and let Rn be endowed with a norm ∥.∥S. A smooth
function g : S −→ R is called strongly convex with convexity parameter σS > 0 for
∥.∥S if

g(y) ≥ g(x) + ⟨∇g(x), y − x⟩ +
1

2
σS∥y − x∥2

S ∀ y, x ∈ S. (3.7)

A typical smooth strongly convex function over Rn related to the Euclidean norm
is the squared Euclidean norm,

g(x) :=
1

2
∥x∥2

2 =
1

2

(
n∑
i=1

x2
i

)
.

In this case, the convexity parameter σ is equal to 1 with respect to ∥.∥2.
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Fig. 3.1: Smooth convex function g(x) with lower approximation, g(x) +
⟨∇g(x), y − x⟩, and upper approximation, g(x) + ⟨∇g(x), y − x⟩ +
Lg,S

2
∥y − x∥S, at x

A crucial property of a strongly convex function is the uniqueness of its minimizer.

Theorem 3.5 (First Order Condition)
Let S ⊂ Rn be a closed convex set and let g : S −→ R be a smooth convex function.
Consider the minimization problem

min
x∈S

g(x). (3.8)
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a) x∗ ∈ S is an optimal solution of (3.8) if and only if

⟨∇g(x∗), x− x∗⟩ ≥ 0 ∀ x ∈ S. (3.9)

b) If g is strongly convex then the optimal solution x∗ ∈ S of (3.8) exists and is
unique.

The reader is referred to Theorem 2.2.5 and 2.2.6 in [Nes03] for a proof.

The methods that we present in this chapter are oracle based, i.e., they assume
that specific subproblems can be solved to optimality, in the sense that an optimal
solution can be cheaply computed. The optimal solution of these subproblems
are needed in order to evaluate special function values and their gradients. These
special functions are of the following type

g(x) := ĝ(x) + max
u∈T

{⟨Bx, u⟩ − φ̂(u) − βdT (u)} ∀ x ∈ S (3.10)

where S ⊂ Rn and T ⊂ Rm are convex and compact sets and β > 0. Both
spaces, Rn and Rm, are endowed with a norm, respectively ∥.∥S and ∥.∥T . The
function ĝ : S → R is smooth and convex with a Lipschitz continuous gradient
with Lipschitz constant Lĝ,S with respect to ∥.∥S. The function φ̂ : T → R is also
smooth and convex with a Lipschitz continuous gradient with Lipschitz constant
Lφ̂,T with respect to ∥.∥T . B ∈ Rm×n is a linear operator and its norm is defined as

∥B∥S,T := max
∥x∥S≤1

max
∥u∥T≤1

⟨Bx, u⟩. (3.11)

Finally, dT : T → R+ is a prox-function of T , i.e., a strongly convex function with
special properties, see Definition 3.6. Its convexity parameter is denoted by σT and
its minimizer over T by uo.

Definition 3.6 (Prox-Function)
Let S be a convex subset of Rn and let us endow Rn with a norm ∥.∥S. The func-
tion dS : S −→ R+ is a prox-function associated to S if it is a smooth strongly
convex function over S with convexity parameter σS > 0 with respect to norm ∥.∥S.
Moreover an xo ∈ ri S exists, such that dS(x

o) = 0.

For clarity we introduce the auxiliary function Γβ,

Γβ : S × T → R (3.12)

(x, u) 7→ ⟨Bx, u⟩ − φ̂(u) − βdT (u).

Hence for all x ∈ S, g(x) = ĝ(x) + max
u∈T

Γβ(x, u).

For all fixed u ∈ T , the function Γβ(., u) is convex and smooth. Its gradient at
x ∈ S is given by

∇xΓβ(x, u) = BTu.
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For all fixed x ∈ S, the function Γβ(x, .) is smooth and its gradient at u ∈ T is

∇uΓβ(x, u) = Bx−∇φ̂(u) − β∇dT (u).

−Γβ(x, .) is strongly convex with convexity parameter βσT with respect to the norm
∥.∥T . Therefore, the maximum ux,

ux := arg max
u∈T

Γβ(x, u), (3.13)

is unique.

Theorem 3.7 (Properties of g(x) — Theorem 1 in [Nes05c])
Consider the function g(x) defined in (3.10). Then, g(x) has the following proper-
ties.
g(x) is a convex and smooth function and its gradient ∇g(x) is Lipschitz continuous
with Lipschitz constant Lg,S, i.e.,

∇g(x) = ∇ĝ(x) +BTux Lg,S = Lĝ,S +
∥B∥2

S,T

βσT
(3.14)

where ux := arg max
u∈T

{⟨Bx, u⟩ − φ̂(u) − βdT (u)}.

Proof. The convexity of g follows from the convexity of ĝ and of Γβ(., u) for all
u ∈ T (see (3.12)). Its differentiability is due to the uniqueness of the maximizer
of Γβ(x, .) over T . Namely, for fixed x, the function Γβ(x, .) is strongly concave.
Thus, the gradient of g at x is then defined by the sum of the gradient of ĝ at x and
the gradient of Γβ(., ux) at x, where ux is the unique maximizer of Γβ(x, .). For a
detailed proof see Theorem A.6 in Appendix A.

The value of the Lipschitz constant, Lg,S, remains to be evaluated. For x, y ∈ S we
have

∥∇g(x) −∇g(y)∥∗S = ∥∇ĝ(x) −∇ĝ(y) +BTux −BTuy∥∗S
≤ ∥∇ĝ(x) −∇ĝ(y)∥∗S + ∥BT (ux − uy)∥∗S.

Thus we need to bound ∥BT (ux−uy)∥∗S. Using the first order condition for Γβ(x, .)
at ux and for Γβ(y, .) at uy, i.e.,

⟨Bx−∇φ̂(ux) − β∇dT (ux), uy − ux⟩ ≤ 0

⟨By −∇φ̂(uy) − β∇dT (uy), ux − uy⟩ ≤ 0

we get

⟨B(x− y), ux − uy⟩ ≥ ⟨∇φ̂(ux) −∇φ̂(uy), ux − uy⟩
+ β⟨∇dT (ux) −∇dT (uy), ux − uy⟩

≥ β⟨∇dT (ux) −∇dT (uy), ux − uy⟩
≥ βσT∥ux − uy∥2

T .



3.3 From an Absolute to a Relative Error 23

We used the convexity of φ̂(u) to prove the second inequality and the strong con-
vexity of dT (u) to prove the third inequality. Hence,(

∥BT (ux − uy)∥∗S
)2 ≤ ∥B∥2

S,T∥ux − uy∥2
T

≤ ∥B∥2
S,T

1

βσT
⟨B(x− y), ux − uy⟩

≤
∥B∥2

S,T

βσT
∥BT (ux − uy)∥∗S∥x− y∥S.

Finally, ∥∇g(x) −∇g(y)∥∗S ≤
(
Lĝ,S +

∥B∥2
S,T

βσT

)
∥x− y∥S.

3.3 From an Absolute to a Relative Error

The methods in Chapters 4, 5, and 6 are meant for computing ϵ-approximate solu-
tions, ϵ > 0, i.e., solutions that guarantee an absolute optimality gap of at most ϵ.
Here we present a procedure to generate solutions that ensure a relative error of at
most ϵ′ > 0, if an algorithm delivering solutions with a guaranteed absolute error
of ϵ is available for specially structured large scale linear problems. This approach
has been presented in the primary paper [CE05]. However, note that it has been
followed before, see [You01], [Bie02], [GK02] and [BI04]. In a paper of the same
flavor as [CE05], Chudak and Nagano, [CN07], use the same approach, albeit proofs
are harder than in [CE05].

Under Assumption 1, we define the following problem.

Problem 2 Given ϵ′ > 0, find a feasible primal solution x̄ ∈ Q such that
f(x̄) ≤ (1 + ϵ′) · f ∗. We call x̄ an ϵ′-relative-approximate solution.

The procedure for solving Problem 2 consists of three steps.

1. Modeling.

2. Developing a method for solving the LP within an absolute error of ϵ, ϵ > 0.

3. Using binary search to obtain a relative error of (1 + ϵ′), ϵ′ > 0, for the LP.

Step 1 is the most important and difficult since it has to take into account the
tractability of the following steps. Recall that solving our original structured linear
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problem is equivalent to solving its Lagrange relaxation max
u≥0

ψ(u), with ψ(u) :=

min
x∈Q

{cTx+ uT (Ax− b)} and min
x∈Q

f(x), with f(x) := max
u≥0

{cTx+ uT (Ax− b)}.

In Step 2 we design a decision procedure, denoted by A-FEAS, that given an error
ϵ > 0 and a target R > 0, either finds a feasible solution x such that f(x) < (1+ϵ)R
or concludes that f ∗ > R. In order to achieve that, methods with a running time
that is a polynomial of the input size times a polynomial of 1

ϵ
times R, have to be

available. Note that the choice of R requires a good knowledge of the problem.

Step 3 follows from a result of Young ([You01]) where the important problem is
finding a good enough initial feasible solution. Suppose that we have a decision
procedure A-FEAS, whose running time depends on the size of the input and a
polynomial on 1

ϵ
(but not on R). The following lemma provides us with a method

for getting a relative approximate solution using A-FEAS.

Lemma 3.8 ([You01])
Suppose that we know a feasible solution x and a lower bound LB such that LB ≤
f ∗ ≤ f(x) ≤ l LB, for some l > 0, then we can find a feasible solution x̄ such that
f(x̄) ≤ (1 + ϵ′)f∗, ϵ′ > 0, by running A-FEAS O(log log l) times with ϵ = 1

2
and an

additional number of A-FEAS runs whose overall running time is O(1) times the
time necessary to run once A-FEAS with ϵ = ϵ′.

In the second part of this thesis, we apply this procedure to generate polynomial
time approximation schemes for the linear programming relaxation of the Uncapac-
itated Facility Location Problem. We will study them not only from a theoretical
point of view but also from a computational point of view.



4. Primal-Dual Subgradient Method

The Primal-Dual Subgradient method developed by Nesterov in [Nes09] is a simple
but ingenious variation of the standard subgradient method. The main advantage
of the method is that it is a primal-dual method. Namely, at each step an approx-
imate solution for the considered non-smooth minimization problem as well as an
approximate solution for a dual problem are computed. Thus, a dual gap can be
evaluated at each step and used as stopping criteria.

We first introduce the definition of a subgradient of a convex function as well as
the type of problems we are interested in and a few necessary assumptions.

Definition 4.1 (Subgradient)
Let g be a convex function. A vector ξ is called a subgradient of g at x̃ ∈ dom g if

g(x) ≥ g(x̃) + ⟨ξ, x− x̃⟩ ∀ x ∈ dom g. (4.1)

The subset of all subgradients at x̃ is denoted by ∂g(x̃) and is called the subdiffer-
ential of g at x̃.

Assumption 2

• S ⊆ Rn is a non-empty, convex and compact set,

• g : S −→ R is a closed, finite and convex function over S, its minimum, g∗,
is attained at x∗ ∈ S,

• the subgradients of g are bounded over S, i.e.,

∃ L > 0 such that ∀ x ∈ S, ∀ ξ ∈ ∂g(x) ∥ξ∥∗S ≤ L (4.2)

where ∥.∥S is a norm defined over Rn and ∥.∥∗S is its dual norm.

Problem 3 Suppose Assumption 2 holds. Given ϵ > 0, find a feasible primal
solution x̄ ∈ S such that g(x̄) − g∗ ≤ ϵ. We call x̄ an ϵ-approximate solution.
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Here, we focus on the presentation of the Primal-Dual Subgradient methods in-
troduced in [Nes09] and [Nes05b] to solve Problem 3. We will also present the
important definitions and results of standard subgradient techniques. A compre-
hensive survey of the standard subgradient techniques applied to Problem 3 can be
found in [Pol87, Ber95, Nes03].

4.1 Standard Subgradient Method

The main objects used in the standard subgradient method are the subgradient
and the Euclidean projection. The calculation of both objects is assumed to be
tractable and numerically cheap.

Definition 4.2 (Euclidean Projection)
Let S ⊆ Rn be a closed convex set with non-empty interior. For y ∈ Rn, the
Euclidean projection of y onto S is denoted by πS(y) and defined as follows

πS(y) = arg min
x∈S

∥y − x∥2. (4.3)

Lemma 4.3 (Euclidean Projection Property)
Let S ⊆ Rn be a closed convex set with non-empty interior. For any y ∈ Rn and
for any x ∈ S

∥πS(y) − x∥2 ≤ ∥y − x∥2 (4.4)

holds.

For a proof see e.g. Lemma 3.1.4 and 3.1.5 in [Nes03].

π(y)

y

x

S

Fig. 4.1: Euclidean Projection Property

In the following, we introduce the standard subgradient methods. In addition to
Assumption 2, we assume that we know a point x0 ∈ S and a Euclidean ball of
radius R around x0 containing the set S. Consider Algorithm 1, which corresponds
to the standard subgradient method. We note that the difficult operations in the
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algorithm are the computation of the subgradient, which depends on the complexity
of g(x), and the computation of the Euclidean projection, which depends on the
complexity of the set S.

Algorithm 1 Standard Subgradient Algorithm

Requires: - An initial point x0 ∈ S
- A constant R > 0 such that ∥x− x0∥2 ≤ R ∀x ∈ S
- A constant L > 0 such that ∥ξ∥2 ≤ L ∀ξ ∈ ∂g(x) ∀x ∈ S
- A maximal number of iterations N

Ensures: An approximate solution x̄ ∈ S such that g(x̄) − g∗ ≤ RL√
N+1

.

set step size h = 1√
N+1

R
L

while k ≤ N do
compute ξk ∈ ∂g(xk) Subgradient computation

set yk = xk − hξk
compute xk+1 = arg min

x∈S
∥yk − x∥2 Euclidean projection

end while
x̄ = 1

N+1

∑N
i=0 xk

The convergence result for the standard subgradient algorithm is as follows.

Theorem 4.4 (Convergence of Standard Subgradient Algorithm—Theo-
rem 3.2.2 in [Nes03])
Suppose that Assumption 2 holds for the Euclidean norm, ∥.∥S = ∥.∥2. Assume also
that a constant R > 0 and an initial point x0 exist such that ∥x − x0∥2 ≤ R for
all x ∈ S and consider Problem 3. Finally let {xk}Nk=0 be the sequence of points in
S generated by Algorithm 1 and define x̄ := 1

N+1

∑N
k=0 xk.

Then,

g(x̄) − g∗ ≤ RL√
N + 1

. (4.5)

Proof. Consider the following lower linear approximation of g(x),

lN(x) =
1

N + 1

(
N∑
k=0

g(xk) + ⟨ξk, x− xk⟩

)
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and define l∗N := min
x∈S

lN(x). We observe that l∗N ≤ g∗. Then,

g(x̄) − g∗ ≤ g(x̄) − l∗N

≤ 1

N + 1

(
N∑
k=0

g(xk) − min
x∈S

{ N∑
k=0

g(xk) + ⟨ξk, x− xk⟩
})

=
1

N + 1
max
x∈S

{ N∑
k=0

⟨ξk, xk − x⟩
}
. (4.6)

In order to bound (4.6), we define rk = ∥xk − x∥2 for all x ∈ S and evaluate

r2
k+1 − r2

k = ∥xk+1 − x∥2
2 − ∥xk − x∥2

2

≤ ∥xk − hξk − x∥2
2 − ∥xk − x∥2

2 (Lemma 4.3)

≤ h2∥ξk∥2
2 − 2h⟨xk − x, ξk⟩.

Then

r2
N+1 − r2

0 =
N∑
k=0

(r2
k+1 − r2

k) ≤ h2

N∑
k=0

∥ξk∥2
2 − 2h

N∑
k=0

⟨xk − x, ξk⟩,

and

0 ≤ r2
N+1 ≤ R2 +

R2

(N + 1)L2
(N + 1)L2 − 2

R√
N + 1L

N∑
k=0

⟨xk − x, ξk⟩,

since r0 ≤ R. We deduce

N∑
k=0

⟨xk − x, ξk⟩ ≤ RL
√
N + 1,

and, from (4.6)

g(x̄) − g∗ ≤ RL√
N + 1

.

We note that the convergence rate of the standard subgradient method does not
depend directly on n, the dimension of the problem. However for an absolute error
of ϵ, we need to compute O( 1

ϵ2
) iterations, i.e., O( 1

ϵ2
) subgradients and Euclidean

projections. A natural question is whether we can find a method with a better
convergence-rate dependency on ϵ using the same tools, i.e subgradients and pro-
jections. The answer is no. Namely, Nesterov shows in [Nes03] (Theorem 3.2.1)
that for n ≥ 1

ϵ2
, instances of Problem 3 that require at least Ω( 1

ϵ2
) iterations to

achieve an ϵ absolute accuracy, exist. Thus, the standard subgradient technique is
optimal for Problem 3. Note that the latter result was first published by Nesterov
and Yudin in [NY83]
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4.2 Primal-Dual Subgradient Method

In spite of the fact that the convergence rate dependency on ϵ cannot be improved,
Nesterov provides a refinement of the standard subgradient method with the primal-
dual subgradient method. Namely, the latter does not require the number of it-
erations to be fixed in advance. Instead, it uses an absolute gap calculation as a
stopping criterion.

Recall that g : S −→ R is a closed, finite, and convex function over S, its minimum
g∗ is finite and attained at x∗ ∈ S. Let us extend the domain of g to Rn by setting
g(x) = ∞ for x ̸∈ S and consider its conjugate function,

g∗(ζ) := sup
x∈Rn

{⟨ζ, x⟩ − g(x)}. (4.7)

In general the following inequality holds between a convex function and its conju-
gate,

g∗(ξ) + g(x) ≥ ⟨ξ, x⟩ ∀ x ∈ S, ∀ ξ ∈ dom g∗.

This inequality is called Fenchel’s Inequality. For every fixed x ∈ dom g, the
equality

g∗(ξ) + g(x) = ⟨ξ, x⟩ (4.8)

holds, if and only if ξ ∈ ∂g(x) (Theorem 23.5 in [Roc70]).

Now, recall that the function g is assumed to be convex and closed. Thus, we have
(g∗)∗ = g, i.e,

g(x) = sup
ζ∈dom g∗

{⟨x, ζ⟩ − g∗(ζ)} = max
ζ∈dom g∗

{⟨x, ζ⟩ − g∗(ζ)}.

The last equality holds since for any x ∈ S, the previous supremum is attained at
ζ̃ ∈ ∂g(x). Namely, using Equality (4.8), we have

g(x) = sup
ζ∈dom g∗

{⟨x, ζ⟩ − g∗(ζ)} = ⟨x, ζ̃⟩ − g∗(ζ̃).

Thus we can write our optimization problem as follows

g∗ = min
x∈S

g(x) = min
x∈S

max
ζ∈dom g∗

{⟨x, ζ⟩ − g∗(ζ)}

= max
ζ∈dom g∗

min
x∈S

{⟨x, ζ⟩ − g∗(ζ)}

(Theorem A.3 or Corollary 37.3.2 in [Roc70])

= max
ζ∈dom g∗

{−g∗(ζ) + min
x∈S

⟨ζ, x⟩}

= max
ζ∈dom g∗

φ(ζ).
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where
φ(ζ) := −g∗(ζ) + min

x∈S
⟨ζ, x⟩ (4.9)

and define the general dual problem as

max
ζ∈dom g∗

φ(ζ). (4.10)

The main idea of the method is to use the computed subgradients in order to de-
termine an approximate solution for the dual problem as well as an approximate
solution for the primal problem. Moreover, the method retains all computed gradi-
ents during the process in order to create a smooth convex function whose minimizer
converges to a minimizer of the objective function.

Algorithm 2 Primal-Dual Subgradient Algorithm - Dual Averaging Algorithm
(DA)

Requires: - A prox-function dS(x) over S with convexity parameter σS > 0 with
respect to norm ∥.∥S and minimizer xo over S
- An absolute error ϵ > 0

Ensures: An approximate primal solution x̄ ∈ S and an approximate dual solution
ζ̄ such that g(x̄) − φ(ζ̄) ≤ ϵ.

choose β0 > 0
choose λ0 > 0 and set Λ0 = λ0

set x0 = xo

compute ξ0 ∈ ∂g(x0) and set ζ0 = λ0ξ0 Subgradient computation

set x̄ = λ0x0

Λ0
and ζ̄ = λ0ξ0

Λ0

set k = 0
while g(x̄) − φ(ζ̄) > ϵ do

set k = k + 1
choose βk ≥ βk−1 and compute xk = arg min

x∈S
{⟨ζk−1, x⟩ + βkdS(x)}
Strongly convex projection

choose λk > 0 and set Λk = Λk−1 + λk
compute ξk ∈ ∂g(xk) and set ζk = ζk−1 + λkξk Subgradient computation

set x̄ = 1
Λk

∑k
i=0 λixi and ζ̄ = 1

Λk
ζk = 1

Λk

∑k
i=0 λiξi
Objective functions evaluation

end while

Consider Algorithm 2, which corresponds to the general Primal-Dual Subgra-
dient algorithm, and Figure 4.2, which illustrates the main ideas of the algo-
rithm. Namely, at each step a new subgradient, ξ2, is computed and accumulated
ζ2 := ζ1 + λ2ξ2. With this accumulation and a prox-function, a strongly convex
approximation of g(x) is created, νβ3(x). The minimizer of νβ3(x) over S will be
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Fig. 4.2: Primal-Dual Subgradient Method

the point where the next subgradient will be evaluated. The primal solution is then
given by a weighted sum of the computed evaluation points. The dual solution is
similarly given by a weighted sum of the computed subgradients.

We note that the difficult operations in Algorithm 2 are the evaluation of the
primal and dual functions g(x) and φ(ζ), the computation of the subgradients of
the primal function, and finally the computation of the minimizer of the strongly
convex approximation over S, i.e., for fixed ζ and β > 0, arg min

x∈S
{⟨ζ, x⟩+βdS(x)}.

Theorem 4.5 (Convergence of Primal-Dual Subgradient Algorithm —
Theorem 1 in [Nes09])
Suppose that Assumption 2 holds and consider Problem 3. Let x̄ and ζ̄ be the
solutions generated by Algorithm 2 after k iterations. Then,

g(x̄) − g∗ ≤ g(x̄) − φ(ζ̄) ≤ 1∑k
i=0 λi

(
βk+1DS +

1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2

)
(4.11)

holds, where DS := max
x∈S

dS(x) and the dual function φ is defined in (4.9).

From the statement of Theorem 4.5, we notice that we can use the last part of
Inequality (4.11) as stopping criterion instead of the dual gap, which requires the
evaluation of both objective functions, g(x̄) and φ(ζ̄). For a same desired accuracy,
this choice of this stopping criterion leads to an increase of the number of completed
iterations with respect to the dual gap. However, each iteration is less expensive,
since we do not need to evaluate both objective functions anymore.

Before we prove Theorem 4.5, we investigate the sequences {λi}ki=0 and {βi}ki=0 since
the quality of the convergence of the primal-dual method depends on them as we
note from Equation (4.11).
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In particular, let us consider the following two kinds of sequences:

Simple averages sequences:

λi = 1, βi =
L√

2σSDS

β̂i ∀ i ≥ 0 (4.12)

Weighted averages sequences:

λi =
1

∥ξi∥∗S
, βi =

1√
2σSDS

β̂i ∀ i ≥ 0 (4.13)

where the sequence {β̂i}ki=0 is defined as follows

β̂0 = β̂1 = 1 and β̂i+1 = β̂i +
1

β̂i
∀ i ≥ 1. (4.14)

The sequence {λi}ki=0 defines how the evaluation points {xi}ki=0 and the subgradients
{ξi}ki=0 are accumulated. In the simple averages sequences every xi and ξi for
i = 0, · · · ,m have the same weight. In the weighted averages sequences, the weight
of xi and ξi depends on the norm of ξi for i = 0, · · · ,m. For the sequence {βi}ki=0,
the constants multiplying βi for i = 0, · · · ,m, have been chosen in order to minimize
the right hand side of Equation (4.11).

The choice of {β̂i}ki=0 is motivated by their advantageous properties, see Lemma
4.6.

Lemma 4.6 (Lemma 3 in [Nes09])
The sequence {β̂i}ki=0 defined in (4.14) has the following properties,

a) β̂k+1 =
∑k

i=0
1

β̂i
for k ≥ 0,

b)
√

2k − 1 ≤ β̂k ≤ 1
1+

√
3

+
√

2k − 1 for k ≥ 1.

Given the properties of sequence {β̂i}i≥0, Theorem 4.5 results in Theorem 4.7 when
the simple averages sequences or the weighted averages sequences are used.

Theorem 4.7 (Theorem 2 and 3 in [Nes09])
Suppose that Assumption 2 holds and consider Problem 3. Let x̄ and ζ̄ be the
solutions generated by Algorithm 2 after k iterations using either simple averages
sequences (4.12) or weighted averages sequences (4.13). Then,

g(x̄) − g∗ ≤ g(x̄) − φ(ζ̄) ≤ 2L√
k + 1

√
2DS

σS
(4.15)

holds, where DS := max
x∈S

dS(x) and the dual function φ is defined in (4.9).
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Proof. First note that the first inequality in (4.15) is trivially satisfied since g∗ =
max{ζ∈dom g∗} φ(ζ), see Equation (4.10).

Then, we evaluate the convergence result of Theorem 4.5,

g(x̄) − φ(ζ̄) ≤ 1∑k
i=0 λi

(
βk+1DS +

1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2

)
,

when special {λi}ki=0 and {βi}ki=0 sequences are used.

We first consider the simple averages sequences. Since λi = 1 and ∥ξi∥∗S ≤ L for
i = 1, . . . , k,

βk+1DS +
1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2

≤ βk+1DS +
L2

2σS

k∑
i=0

1

βi

=
LDS√
2σSDS

β̂k+1 +
L2

2σS

k∑
i=0

√
2σSDS

Lβ̂i
(βi =

Lβ̂i√
2σSDS

)

= L

√
DS

2σS

(
β̂k+1 +

k∑
i=0

1

β̂i

)

= L

√
2DS

σS
β̂k+1 (Lemma 4.6 statement a))

≤ L

√
2DS

σS

(
1

1 +
√

3
+
√

2k − 1

)
(Lemma 4.6 statement b))

≤ 2L

√
2DS

σS

√
k + 1.

Finally, we obtain 1
Pk

i=0 λi

(
βk+1DS + 1

2σS

∑k
i=0

λ2
i

βi
∥ξi∥∗S

2
)
≤ 2L√

k+1

√
2DS

σS
.

Now we consider the weighted average sequences. Since for i = 1, . . . , k, λi =
1/∥ξi∥∗S, ∥ξi∥∗S ≤ L, and βi = 1√

2σSDS
β̂i, we get the following results, using similar

arguments as previous for the average sequences.

βk+1DS +
1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2 = βk+1DS +
1

2σS

k∑
i=0

1

βi

=

√
DS

2σS

(
β̂k+1 +

k∑
i=0

1

β̂i

)

≤ 2

√
2DS

σS

√
k + 1.
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Again we obtain 1
Pk

i=0 λi

(
βk+1DS + 1

2σS

∑k
i=0

λ2
i

βi
∥ξi∥∗S

2
)
≤ 2L√

k+1

√
2DS

σS
.

As expected, the Primal-Dual Subgradient method—same as the standard subgra-
dient method—is optimal. Namely, for an approximate solution with an absolute

error of ϵ > 0, the primal-dual subgradient method requires at most O( 1
ϵ2

√
DS

σS
L)

iterations. The values of the constants L,DS, and σS depend on the choice of the
norm defined in the feasible set S and on the choice of the strongly convex function
dS. The numerical results presented in the second part of this thesis illustrate the
importance of the constants L,DS, and σS for speeding-up the Primal-Dual Sub-
gradient algorithm. Let us turn to the proof of Theorem 4.5. This proof can be
found in [Nes09]. However, we present it here since we extensively use it in Chapter
6, when we deal with approximate oracles.

Proof of Theorem 4.5. The solutions x̄ and ζ̄ are primal and dual feasible since they
are a convex combination of primal, respectively dual, feasible solutions. Moreover,
the first inequality in (4.11) is trivially satisfied since g∗ = max{ζ∈dom g∗} φ(ζ), see
Equation (4.10).

Let us evaluate g(x̄) − φ(ζ̄). By definition of φ(ζ̄), (4.9), we have

g(x̄) − φ(ζ̄) = g(x̄) + g∗(ζ̄) − min
x∈S

⟨ζ̄ , x⟩

≤
k∑
i=0

λi
Λk

(g(xi) + g∗(ξi)) − min
x∈S

⟨
k∑
i=0

λiξi
Λk

, x⟩

( by convexity of g and g∗)

=
k∑
i=0

λi
Λk

⟨ξi, xi⟩ − min
x∈S

⟨
k∑
i=0

λiξi
Λk

, x⟩

(ξi ∈ ∂g(xi))

=
1

Λk

max
x∈S

{ k∑
i=0

λi⟨ξi, xi − x⟩
}
.

We define θk+1 := max
x∈S

{∑k
i=0 λi⟨ξi, xi − x⟩

}
and proceed in two steps to find an

upper bound for it. In the first step we show that

θk+1 ≤ βk+1DS +
k∑
i=0

λi⟨ξi, xi − x0⟩ + max
x∈S

{⟨ζk, x0 − x⟩ − βk+1dS(x)} (4.16)

and in the second step we show that,

(4.16) ≤ βk+1DS +
1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2, (4.17)
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where DS = max
x∈S

dS(x).

We start with the right-hand side of Inequality (4.16),

βk+1DS +
k∑
i=0

λi⟨ξi, xi − x0⟩ + max
x∈S

{⟨ζk, x0 − x⟩ − βk+1dS(x)}

= max
x∈S

{βk+1(DS − dS(x)) +
k∑
i=0

λi⟨ξi, xi − x0 + x0 − x⟩}

(because ζk =
k∑
i=0

λiξi)

≥ max
x∈S

k∑
i=0

λi⟨ξi, xi − x⟩ = θk+1. (DS = max
x∈S

dS(x) and βk+1 > 0)

In order to prove inequality (4.17) we define the following functions

νβi
(ζ) := max

x∈S
{⟨ζ, x0 − x⟩ − βidS(x)}, i = 0, . . . k. (4.18)

In view of Theorem 3.7, the functions νβi
(ζ) are convex and their gradient are

Lipschitz continuous. The gradients and their Lipschitz constant can be expressed
as follows,

∇νβi
(ζ) := x0 − xζ Lνβi

,S :=
1

βiσS
(4.19)

where xζ := arg maxx∈S{⟨ζ, x0 − x⟩ − βdS(x)} and σS is the convexity parameter
of dS. In particular, ∇νβ(0) = 0. Moreover, since βi+1 ≥ βi for i ≥ 0, we have
νβi+1

(ζ) ≤ νβi
(ζ).

For i = 0, . . . , k, note that the points xi computed in Algorithm 2 correspond to
xζi−1

= arg maxx∈S{⟨ζi−1, x0 − x⟩ − βidS(x)}.

For i ≥ 1 we have

νβi+1
(ζi) ≤ νβi

(ζi) (βi+1 ≥ βi)

≤ νβi
(ζi−1) + ⟨∇νβi

(ζi−1), ζi − ζi−1⟩ +
Lνβi

2
∥ζi − ζi−1∥∗S

2

(Theorem 3.3)

= νβi
(ζi−1) + ⟨x0 − xi, ζi − ζi−1⟩ +

1

2βiσS
∥ζi − ζi−1∥∗S

2(
Equation (4.19) and xζi−1

= xi
)

= νβi
(ζi−1) + ⟨x0 − xi, λiξi⟩ +

λ2
i

2σSβi
∥ξi∥∗S

2.
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Last equality holds since ζi − ζi−1 = λiξi for i ≥ 1. Hence, the inequality

νβi+1
(ζi) − νβi

(ζi−1) ≤ λi⟨ξi, x0 − xi⟩ +
λ2
i

2σSβi
∥ξi∥∗S

2

holds for i = 1, . . . , k. Summing up over all i ≥ 1, we get

νβk+1
(ζk) − νβ1(ζ0) ≤

k∑
i=1

λi⟨ξi, x0 − xi⟩ +
1

2σS

k∑
i=1

λ2
i

βi
∥ξi∥∗S

2.

Using that ζ0 = λ0ξ0, we have

νβ1(ζ0) ≤ νβ1(0) + ⟨∇νβ1(0), ζ0⟩ +
λ2

0

2σSβ1

∥ξ0∥∗S
2

≤ −β1dS(x0) + ⟨x0 − x0, ζ0⟩ +
λ2

0

2σSβ0

∥ξ0∥∗S
2 (β1 ≥ β0)

=
λ2

0

2σSβ0

∥ξ0∥∗S
2 (dS(x0) = 0)

and νβk+1
(ζk) +

∑k
i=0 λi⟨ξi, xi − x0⟩ ≤ 1

2σS

∑k
i=0

λ2
i

βi
∥ξi∥∗S

2.

Thus,

θk+1 ≤ βk+1DS +
k∑
i=0

λi⟨ξi, xi − x0⟩ + νβk+1
(ζk)

≤ βk+1DS +
1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2

and we finally get

g(x̄) − φ(ζ̄) ≤ 1

Λk

θk+1 ≤
1∑k
i=0 λi

(
βk+1DS +

1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2

)
.

4.3 Primal-Dual Subgradient Algorithm for

Functions with Bounded Variation of

Subgradients

For the analysis of the Primal-Dual Subgradient method we assumed that the sub-
gradients of g(x) were bounded with respect to the chosen norm ∥.∥∗S for any
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x ∈ S, i.e, we assumed that a constant L > 0 exists so that ∥ξx∥∗S ≤ L for all
ξx ∈ ∂g(x), x ∈ S, see Assumption 2. Now, we replace this assumption by suppos-
ing that the function g has subgradients with bounded variations, which gives us
Assumption 3.

Assumption 3

• S ⊆ Rn is a non-empty, convex and compact set,

• g : S −→ R is a proper, closed, finite and convex function over S, its mini-
mum, g∗, is attained at x∗ ∈ S,

• the function g has subgradients with bounded variations over S, i.e.,

∃ M > 0 such that ∥ξx − ξy∥∗S ≤M ∀ ξx ∈ ∂g(x), ξy ∈ ∂g(y), x, y ∈ S
(4.20)

where ∥.∥S is a norm defined over Rn and ∥.∥∗S is its dual.

Then, Problem 3 becomes Problem 4

Problem 4 Suppose Assumption 3 holds. Given ϵ > 0, find a feasible primal
solution x̄ ∈ S such that g(x̄) − g∗ ≤ ϵ. We call x̄ an ϵ- approximate solution.

In [Nes05b], Nesterov slightly modified the primal dual subgradient method to cope
with the minimization of functions having bounded variations of subgradients. The
modification consists of removing the starting primal solution x0 and the corre-
sponding subgradient ξ0 ∈ ∂g(x0) from the primal and dual solution given by the
algorithm, i.e.,

x̄ =
1

Λk

k∑
i=1

λixi and ζ̄ =
1

Λk

k∑
i=1

λiξi, where Λk =
k∑
i=1

λi.

As in Algorithm 2, the difficult operations in Algorithm 3 are the evaluation of
the primal and dual functions, g(x) and φ(ζ), the computation of subgradients of
the primal function, and finally the computation of the minimizer of the strongly
convex approximation over S, i.e., for fixed ζ and β > 0, arg min

x∈S
{⟨ζ, x⟩+βdS(x)}.

In order to avoid the evaluation of both objective functions, we may choose as
stopping criterion the last part of the Equation (4.21) in Theorem 4.8, which states
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Algorithm 3 Truncated Dual Averaging Algorithm (TDA)

Requires: - A prox-function dS(x) over S with convexity parameter σS > 0
with respect to norm ∥.∥S and minimizer xo over S
- An absolute error ϵ > 0

Ensures: An approximate primal solution x̄ ∈ S and an approximate dual solution
ζ̄ such that g(x̄) − φ(ζ̄) ≤ ϵ.

choose λ0 = λ1 > 0 and β0 = β1 > 0
compute ξ0 ∈ ∂g(x0) and set ζ0 = λ0ξ0 Subgradient computation

compute x1 = arg min
x∈S

{⟨ζ0, x⟩ + β1dS(x)} Strongly convex projection

compute ξ1 ∈ ∂g(x1) and set ζ1 = λ1ξ1 Subgradient computation

set x̄ = x1, ζ̄ = ξ1, and Λ1 = λ1

set k = 1
while g(x̄) − φ(ζ̄) > ϵ do

set k = k + 1
compute xk = arg min

x∈S
{⟨ζk−1, x⟩ + βk−1dS(x)}

Strongly convex projection

choose λk > 0 and set Λk = Λk−1 + λk
choose βk such that βk

Λk
≤ βk−1

Λk−1

compute ξk ∈ ∂g(xk) and set ζk = ζk−1 + λkξk Subgradient computation

set x̄ = 1
Λk

∑k
i=1 λixi, and ζ̄ = 1

Λk
ζk = 1

Λk

∑k
i=1 λiξi

Objective functions evaluation

end while
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the convergence of Algorithm 3. Again, as for the Dual Averaging Algorithm, this
may lead to an increase of the number of iterations with respect to the number of
iterations done using the dual gap as stopping criterion.

Theorem 4.8 (Truncated Dual Averaging Algorithm)
Suppose that Assumption 3 holds and consider Problem 4. Let x̄ and ζ̄ be the
solutions generated by Algorithm 3 after k iterations. Then,

g(x̄) − g∗ ≤ g(x̄) − φ(ζ̄) ≤ 1∑k
i=1 λi

(
DS

(
β0 +

k∑
i=2

λiβi−1

Λi−1

)
+
M2

2σS

k∑
i=1

λ2
i

βi−1

)
,

(4.21)
holds, where DS := max

x∈S
dS(x).

In particular, using the sequences {λi}ki=0 and {βi}ki=0 defined as follows

λi = 1, βi =
M√

2σSDS

√
i ∀ i ≥ 1, and λ0 = λ1, β0 = β1,

we have after k iterations that g(x̄) − φ(ζ̄) ≤ 2M√
k

√
2DS

σS
.

The proof of convergence of Algorithm 3 is similar to the proof of convergence of
Algorithm 2. As for Algorithm 2, the convergence rate of Algorithm 3 depends on
the choice of the sequences {λi}ki=0 and {βi}ki=0. The main difference between the
convergence of Algorithm 2 and Algorithm 3 is then the value of the constants L
and M . We know that M ≤ 2L, however M could be small and L large.

4.4 Applying the Primal-Dual Subgradient

Method to LPs

We would like to apply the Primal-Dual Subgradient method to solve the following
problem:

min
x∈Q

f(x), f(x) := cTx+ max
u∈P

{uTAx− bTu}, (4.22)

where c ∈ Rn, b ∈ Rm, A ∈ Rn×m, Q ⊂ Rn and P ⊂ Rm are non-empty, convex, and
compact polytopes, see Assumption 1. We assume that Rn and Rm are induced
with norms, which we denote by ∥.∥Q and ∥.∥P respectively.

First, we consider the subdifferential of f at x ∈ Rn, ∂f(x). Note that the domain
of definition of f is Rn since P is compact.

Lemma 4.9

For x ∈ Rn, define U(x) :=

{
u ∈ P | u := arg max

v∈P
{(Ax− b)Tv}

}
. Then,

∂f(x) = c+ conv{ATux | ux ∈ U(x)}. (4.23)
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Proof. “⊇”: Let x, y ∈ Rn. Take ux ∈ U(x) and define ξ := c+ ATux. Then,

f(x) + ξT (y − x) = cTx+ max
u∈P

{(Ax− b)Tu} + (c+ ATux)
T (y − x)

= cTx+ (Ax− b)Tux + cT (y − x) + uTxA(y − x)

= cTy + (Ay − b)Tux

≤ cTy + max
u∈P

{(Ay − b)Tu} = f(y)

holds. Thus, ξ ∈ ∂f(x).

“⊆”: The function f(x) is closed and convex over its domain, Rn. Therefore, we
have (Theorem 23.5 in [Roc70])

f(x) + f∗(ξ) = xT ξ ∀ x ∈ Rn,∀ ξ ∈ ∂f(x). (4.24)

Let us consider f∗(ξ) for ξ ∈ ∂f(x).

f∗(ξ) = sup
x∈Rn

{ξTx− f(x)}

= sup
x∈Rn

{
ξTx− cTx+ min

u∈P
{−(Ax)Tu+ bTu}

}
= min

u∈P

{
sup
x∈Rn

{
(
ξ − (c+ ATu)

)T
x} + bTu

}
.

We note that f∗(ξ) is finite if and only if an ũ ∈ P exists such that ξ = c + AT ũ,
i.e., ξ − c ∈ ImAT .

Let us observe that the function x 7→ max
u∈P

{(Ax−b)Tu} corresponds to the support

function of P evaluated at Ax − b and that its conjugate is the indicator function
of P .

Now suppose that a ũ exists with ξ = c+ AT ũ. Then

f∗(c+ AT ũ) = sup
x∈Rn

{
(c+ AT ũ)Tx− cTx− max

u∈P
{(Ax− b)Tu}

}
= sup

x∈Rn

{
(Ax− b)T ũ+ bT ũ− max

u∈P
{(Ax− b)Tu}

}
= bT ũ+ sup

x∈Rn

{
(Ax− b)T ũ− max

u∈P
{(Ax− b)Tu}

}
= bT ũ

Last equality holds since the last supremum corresponds to the indicator function
of P evaluated at ũ ∈ P .
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Then, using Equality (4.24), last result and that f(x) is finite we have

(c+ AT ũ)Tx− f∗(c+ AT ũ) = f(x)

cTx+ (Ax)T ũ− bT ũ = cTx+ max
u∈P

{(Ax− b)Tu}

(Ax− b)T ũ = max
u∈P

{(Ax− b)Tu}.

Thus, ũ ∈ U(x) and ξ = (c+ AT ũ) ∈ c+ conv{ATux | ux ∈ U(x)}.

Note that computing a subgradient of f at x ∈ Rn is equivalent to solving the
maximization problem maxu∈P{(Ax − b)Tu} and thus, to evaluating f(x). Since
the function u 7→ (Ax−b)Tu is linear in u, its maximum is attained on the boundary
of P and is prone to be non-unique.

We previously presented two Primal-Dual Subgradient methods, one for minimizing
functions with bounded subgradients (Algorithm 2) and the other for minimizing
functions with bounded variations of subgradients (Algorithm 3). The convergence
rates of both methods mainly differ on the value of these bounds, i.e., the bound
of the subgradients’ norm L and the bound of the norm of subgradients variations
M . Which method should we employ for our minimization problem (4.22)?

Let x, y ∈ Rn and ξx ∈ ∂f(x), ξy ∈ ∂f(y) be defined as follows

ξx := c+ ATvx ξy := c+ ATvy,

where vx ∈ U(x) and vy ∈ U(y), with U(x) and U(y) defined as in Lemma 4.9.
Then, for all x ∈ Q we have

∥ξx∥∗Q = ∥c+ ATvx∥∗

≤ ∥c∥∗Q + ∥A∥Q,P∥vx∥P
≤ ∥c∥∗Q + ∥A∥Q,P max

v∈P
∥v∥P

= ∥c∥∗Q + ∥A∥Q,PRP

where RP := max
v∈P

∥v∥P . For all x, y ∈ Q, we also have

∥ξx − ξy∥∗Q = ∥c+ ATvx − (c+ ATvy)∥∗Q
= ∥AT (vx − vy)∥∗Q
≤ ∥A∥Q,P∥vx − vy∥P
≤ 2∥A∥Q,P max

v∈P
∥v∥P

= 2∥A∥Q,PRP .

Thus, we take L := ∥c∥∗Q + ∥A∥Q,PRP and M := 2∥A∥Q,PRP . Depending on the
value of ∥c∥∗Q, the constant L may be larger thanM . Thus, the choice of the method
depends on the considered instance of our LPs.
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Algorithms 2 and 3 are primal-dual algorithms. Namely, at each step of the algo-
rithms, primal and dual feasible solutions are computed and a dual gap can therefore
be evaluated. The general dual problem considered by the methods is however not
the standard one, which is established using the conjugate function of the function
to be minimized,

max
ζ∈dom f∗

φ(ζ),

where φ(ζ) := −f∗(ζ) + min
x∈Q

ζTx, (see Section 4.2), but they are equivalent. Let

us consider the conjugate function of f ,

f∗(ζ) = sup
x∈Rn

{ζTx− f(x)}

= sup
x∈Rn

{
ζTx− cTx− max

u∈P
{(Ax)Tu− bTu}

}
= sup

x∈Rn

{
ζTx− cTx+ min

u∈P
{bTu− (Ax)Tu}

}
= min

u∈P

{
sup
x∈Rn

{
(
ζ − (c+ ATu)

)T
x} + bTu

}
=

{
+∞ if @ ũ ∈ P s.t. ζ = c+ AT ũ
bT ũ if ∃ ũ ∈ P s.t. ζ = c+ AT ũ and ũ = arg min

u∈P
{bTu}

and the general dual objective function φ(ζ) is defined as follows,

φ(ζ) := −f∗(ζ) + min
x∈Q

{ζTx}

=


−∞ if @ ũ ∈ P s.t. ζ = c+ AT ũ

−bT ũ+ min
x∈Q

{(c+ AT ũ)Tx} if ∃ ũ ∈ P s.t. ζ = c+ AT ũ and

ũ = arg min
u∈P

{bTu}

For ζ ∈ dom f∗, a ũ ∈ P exists so that ζ = c+ AT ũ. Thus,

max
ζ∈dom f∗

φ(ζ) = max
u∈P

φ(c+ ATu)

= max
u∈P

{
−bTu+ min

x∈Q
{(c+ ATu)Tx}

}
= max

u∈P
ψ(u)

We show in the following that we can use the information provided by the solution
ζ̄ delivered by Algorithm 2 to create a feasible solution for our dual problem having
the same dual gap upper bound as f(x̄) − φ(ζ̄).

For each computed xi and ξi we choose vi ∈ U(xi) and define v̄ := 1
Λk

∑k
i=0 λivi.

Since each vi belongs to P and P is convex, we have v̄ ∈ P . Thus, v̄ is a dual
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feasible solution. Let us now evaluate f(x̄) − ψ(v̄).

f(x̄) − ψ(v̄) = f
( 1

Λk

k∑
i=0

λixi

)
− ψ

( 1

Λk

k∑
i=0

λivi

)
≤ 1

Λk

k∑
i=0

λi (f(xi) − ψ(vi))

=
1

Λk

k∑
i=0

λi

(
cTxi + max

v∈P
{(Axi − b)Tv} +

bTvi − min
x∈Q

{(ATvi + c)Tx}
)

=
1

Λk

k∑
i=0

λi

(
cTxi + vTi Axi − bTvi +

bTvi + max
x∈Q

{−(ATvi + c)Tx}
)

=
1

Λk

max
x∈Q

{ k∑
i=0

λi⟨c+ ATvi, xi − x⟩
}

=
1

Λk

max
x∈Q

{ k∑
i=0

λi⟨ξi, xi − x⟩
}

Recall that we defined in the proof of Theorem 4.5 on the convergence of Algorithm
2 the quantity

θk+1 := max
x∈Q

{ k∑
i=0

λi⟨ξi, xi − x⟩
}

and we showed that

θk+1 ≤ βk+1DS +
1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2.

Thus, we have the same dual gap upper bound as the general dual problem,

f(x̄) − ψ(v̄) ≤ 1∑k
i=0 λi

(
βk+1DS +

L2

2σS

k∑
i=0

λ2
i

βi

)
.

A similar reasoning can be done for a dual approximation solution v̄ obtained by
Algorithm 3.





5. Smoothing Techniques and Gradient
Mapping

The optimization techniques in [Nes05c] and in [Nes05a] were developed for mini-
mizing non-smooth functions with a special structure and are therefore, less general
than the Primal-Dual Subgradient techniques described in the previous chapter.
However, they have a better theoretical running time of O(1/ϵ) instead of O(1/ϵ2)
for an absolute accuracy of ϵ for this special structure, which is

g(x) := ĝ(x) + max
u∈T

{⟨Bx, u⟩ − φ̂(u)} ∀ x ∈ S (5.1)

where S ⊂ Rn and T ⊂ Rm are non empty, convex, and compact sets. ĝ : S →
R and φ̂ : T → R are differentiable convex functions with Lipschitz continuous
gradients with Lipschitz constants Lĝ,S and Lφ̂,T . B ∈ Rm×n is a linear operator.

Our objective is to minimize g over S. Given the properties of function g and of
the sets S and T we have

min
x∈S

g(x) = max
u∈T

φ(u),

where

φ(u) := −φ̂(u) + min
x∈S

{⟨Bx, u⟩ + ĝ(x)} ∀ u ∈ T, (5.2)

see Theorem A.3 or Corollary 37.3.2 in [Roc70].

We use S and T as indices to distinguish between the norms defined on Rn and Rm

as well as the different parameters defined with respect to the sets S and T . We
denote the norm of the linear operator B by

∥B∥S,T := max
∥x∥S≤1

max
∥u∥T≤1

⟨Bx, u⟩.

Moreover, g shall be called the primal objective function and finding g∗ =
minx∈S g(x) is the corresponding primal optimization problem. Analogously φ
is the dual objective function and finding φ∗ = maxu∈T φ(u) the dual optimization
problem.

We next describe the characteristics of the problem under consideration in this
chapter.
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Assumption 4

• S ⊂ Rn is a non empty, convex and compact set.

• T ⊂ Rn is a non empty, convex and compact set.

• ĝ : S −→ R is a closed, smooth, and convex function over S

• φ̂ : T −→ R is a closed, smooth, and convex function over T

• B ∈ Rm×n is a linear operator.

• g : S −→ R is a closed and convex function over S defined as follows

g(x) := ĝ(x) + max
u∈T

{⟨Bx, u⟩ − φ̂(u)} ∀ x ∈ S

Its minimum, g∗, is finite and attained at x∗ ∈ S.

• φ : T −→ R is a closed and concave function over T defined as follows

φ(u) := −φ̂(u) + min
x∈S

{⟨Bx, u⟩ + ĝ(x)} ∀ u ∈ T

Its maximum, φ∗, is finite and attained at u∗ ∈ T .

Problem 5 Suppose Assumption 4 holds. Given ϵ > 0, find a feasible primal
solution x̄ ∈ S and a feasible dual solution ū ∈ T such that g(x̄) − φ(ū) ≤ ϵ.

The first step in the methods from [Nes05c] and [Nes05a] is to find smooth ap-
proximation functions for both the primal and the dual objective function. The
functions g and φ are not differentiable in general, since the optimization problems
max{u∈T}{⟨Bx, u⟩ − φ̂(u)} and min{x∈S}{⟨Bx, u⟩ + ĝ(x)} may have a non unique
solution.

In order to create smooth convex, respectively concave, approximations, the meth-
ods use prox-functions, see Definition 3.6. Namely, dT : T −→ R+ is a strongly
convex function with convexity parameter σT > 0 with respect to norm ∥.∥T and
dS : S −→ R+ is a strongly convex function with convexity parameter σS > 0 with
respect to norm ∥.∥S. Without loss of generality we assume that the minimum of dS
over S and of dT over T is zero. Then, the smooth approximations of the objective
functions are defined as follows,

gµT
(x) := ĝ(x) + max

u∈T
{⟨Bx, u⟩ − φ̂(u) − µTdT (u)} ∀ x ∈ S (5.3)
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φµS
(u) := −φ̂(u) + min

x∈S
{⟨Bx, u⟩ + ĝ(x) + µSdS(x)} ∀ u ∈ T (5.4)

where µT > 0 and µS > 0 are called the smoothing factors.

Both functions gµT
and φµS

are of the same type as the function defined in (3.10)
and therefore they have the properties described in Theorem 3.7. In particular, gµT

is convex and differentiable with Lipschitz continuous gradient ∇gµT
with Lipschitz

constant LgµT
,S,

∇gµT
(x) = ∇ĝ(x) +BTuµT ,x LgµT

,S = Lĝ,S +
∥B∥2

S,T

µTσT
(5.5)

where
uµT ,x := arg max

u∈T
{⟨Bx, u⟩T − φ̂(u) − µTdT (u)}, (5.6)

and φµS
is concave and differentiable with Lipschitz continuous gradient ∇φµS

with
Lipschitz constant LφµS

,T ,

∇φµS
(u) = −∇φ̂(u) +BxµS ,u LφµS

,T = Lφ̂,T +
∥B∥2

S,T

µSσS
(5.7)

where
xµS ,u := arg min

x∈S
{⟨Bx, u⟩ + ĝ(x) + µSdS(x)}. (5.8)

In [Nes05c], Nesterov defines an optimal scheme for smooth optimization where
the smooth objective function also has a Lipschitz continuous gradient. Denoting
by L the Lipschitz constant of its gradient, the scheme has a convergence rate
of O(

√
L/ϵ), which is the best we can hope for, see [Nes03], Chapter 2. This

result was first published in [NY83]. Putting together the optimal scheme and the
approximation of the primal function (5.3), with a smoothing factor µT of order
O(ϵ) and thus L ≈ O(1

ϵ
), we achieve a convergence rate of O(1/ϵ).

The method presented in [Nes05c] is a primal-dual method, yet it requires a number
of iterations fixed in advance and the dual is only computed once, during the last
iteration. Here, we concentrate on a variation of the method described in [Nes05a].
It has the same convergence rate as the method described in [Nes05c], yet it com-
putes a primal and a dual solution at each step and the number of iterations needed
to proceed does not have to be known in advance.

Before entering into the details of the method described in [Nes05a], let us recall
the relation between both objective functions and their approximations. For all
x ∈ S and u ∈ T we have φ(u) ≤ g(x) and there is no duality gap, i.e., φ∗ = g∗.
Let us denote by DT the maximum of the prox-function dT over T and by DS the
maximum of the prox-function dS over S, i.e.,

DT := max
u∈T

dT (u) and DS := max
x∈S

dS(x).
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Then, using Equations (5.1), (5.2), (5.3), and (5.4), we have for all x ∈ S and u ∈ T

gµT
(x) ≤ g(x) ≤ gµT

(x) + µTDT (5.9)

and

φµS
(u) − µSDS ≤ φ(u) ≤ φµS

(u). (5.10)

Hence, we note that for all x ∈ S and u ∈ T the corresponding gap can be bounded
as follows,

0 ≤ g(x) − φ(u) ≤ gµT
(x) − φµS

(u) + µTDT + µSDS. (5.11)

Thus, if we can ensure for an x ∈ S, and a u ∈ T that gµT
(x) ≤ φµS

(u), we
can bound the duality gap using the smoothing factors and the maximum of the
prox-functions,

0 ≤ g(x) − φ(u) ≤ µTDT + µSDS.

The idea of the method consists in finding a way to generate sequences {xk, µkT}k≥0

and {uk, µkS}k≥0 satisfying gµk
T
(xk) ≤ φµk

S
(uk) for each k ≥ 0 and µkT , µ

k
S −→ 0 with

k −→ ∞, so that the duality gap g(xk)−φ(uk) remains bounded by µkTDT +µkSDS

at every step k of the algorithm. Nesterov called the condition

gµk
T
(xk) ≤ φµk

S
(uk), (5.12)

the Excessive Gap condition and the method is then called Excessive Gap method.
Figure 5.1 illustrates this idea for the special case where S = T and φ(u) := −f(x).
This picture is based on the illustration of the Excessive Gap method in [Chu05].

ϕ
µ

S

(u)

(u)

µ
T
 → 0 gµ

T

(x)

ϕ µ
S
 → 0

g(x)

Fig. 5.1: Excessive Gap Method
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5.1 Gradient Mapping

The main object used in the methods presented by Nesterov ([Nes05c],[Nes05a]) is
called gradient mapping. We begin by focusing on the primal approximation gµT

.
The latter is a smooth function with Lipschitz continuous gradient with Lipschitz
constant LgµT

,S, see Equations (5.3) and (5.5). Thus, for x, y ∈ S, the inequality

gµT
(y) ≤ gµT

(x) + ⟨∇gµT
(x), y − x⟩ +

LgµT
,S

2
∥y − x∥2

S

holds (Theorem 3.3). Hence, for a fixed x ∈ S the function ZµT ,x : S −→ R defined
as

ZµT ,x(y) := gµT
(x) + ⟨∇gµT

(x), y − x⟩ +
LgµT

,S

2
∥y − x∥2

S (5.13)

is smooth and strongly convex and may be interpreted as an upper approximation of
gµT

(y). The gradient mapping, denoted by GMgµT
(x), is then the unique minimizer

of this upper approximation,

GMgµT
(x) := arg min

y∈S
ZµT ,x(y) (5.14)

= arg min
y∈S

{
⟨∇gµT

(x), y − x⟩ +
LgµT

,S

2
∥y − x∥2

S

}
.

See Figure 5.2 for an illustration of the gradient mapping.
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T
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(x)
g(x)gµ

T

(y)

Fig. 5.2: Gradient Mapping

Similarly, for a fixed u ∈ T , we define WµS ,u : T −→ R, a smooth strongly concave
lower approximation of φµS

(v), as

WµS ,u(v) := φµS
(u) + ⟨∇φµS

(u), v − u⟩ −
LφµS

,T

2
∥v − u∥2

T (5.15)
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and its unique maximizer GMφµS
(u),

GMφµS
(u) := arg max

v∈T
WµS ,u(v) (5.16)

= arg max
v∈T

{
⟨∇φµS

(u), v − u⟩ −
LφµS

,T

2
∥v − u∥2

T

}
.

In the following we show how using the gradient mapping GMgµT
(x) and its sym-

metric GMφµS
(u), we can generate from the pairs (x, µT ) and (u, µS) satisfying

the Excessive Gap condition, gµT
(x) ≤ φµS

(u), the pairs (x̄, µ̄T ) and (ū, µ̄S) also
satisfying the Excessive Gap condition.

Theorem 5.1 ([Nes05a], Theorem 4.2)
Let x ∈ S and u ∈ T satisfying the Excessive Gap Condition for some µT > 0 and
µS > 0. For τ ∈ (0, 1) compute

x̂ := (1 − τ)x+ τxµS ,u

ū := (1 − τ)u+ τuµT ,x̂

x̄ := GMgµT
(x̂)

and set µ̄S := (1 − τ)µS and µ̄T := µT . Then, the pairs (x̄, µ̄T ) and (ū, µ̄S) satisfy
the Excessive Gap condition provided that τ is chosen in accordance to

τ 2

1 − τ
≤ µSσS
LgµT

,S

. (5.17)

Theorem 5.2 gives the symmetric result of Theorem 5.1 for the dual step.

Theorem 5.2
Let x ∈ S and u ∈ T satisfying the Excessive Gap condition for some µT > 0 and
µS > 0. For τ ∈ (0, 1) compute

û := (1 − τ)u+ τuµT ,x

x̄ := (1 − τ)x+ τxµS ,û

ū := GMφµS
(û)

and set µ̄S := µS and µ̄T := (1 − τ)µT . Then, the pairs (x̄, µ̄T ) and (ū, µ̄S) satisfy
the Excessive Gap condition provided that τ is chosen in accordance to

τ 2

1 − τ
≤ µTσT
LφµS

,T

. (5.18)

Before proving Theorem 5.1 we consider the following important inequality for the
proof of Theorem 5.1.
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Lemma 5.3 ([Nes05a], Lemma 3.2)
For any x, y ∈ S and µT > 0 we have

gµT
(y) + ⟨∇gµT

(y), x− y⟩ ≤ ĝ(x) + ⟨Bx, uµT ,y⟩ − φ̂(uµT ,y). (5.19)

Proof. By definition of gµT
and convexity of ĝ we have for any x, y ∈ S and µT > 0,

gµT
(y) + ⟨∇gµT

(y), x− y⟩
= ĝ(y) + ⟨By, uµT ,y⟩ − φ̂(uµT ,y) − µTdT (uµT ,y) +

⟨∇ĝ(y) +BTuµT ,y, x− y⟩
≤ ĝ(x) + ⟨Bx, uµT ,y⟩ − φ̂(uµT ,y) − µTdT (uµT ,y)

≤ ĝ(x) + ⟨Bx, uµT ,y⟩ − φ̂(uµT ,y).

The last inequality holds since we assume that dT is non-negative over T .

Next, we present the proof of Theorem 5.1. This proof can be found in [Nes05a].
However, we also present it here since we use it in Chapter 6, when we consider
approximate oracles.

Proof of Theorem 5.1. We have to show that φµ̄S
(ū) ≥ gµ̄T

(x̄). Therefore we eval-
uate φµ̄S

(ū).

φµ̄S
(ū) = −φ̂(ū) + min

y∈S
{⟨By, ū⟩ + ĝ(y) + µ̄SdS(y)}

= −φ̂(ū) + min
y∈S

{⟨By, ū⟩ + ĝ(y) + (1 − τ)µSdS(y)}

( µ̄S = (1 − τ)µS )

≥ −(1 − τ)φ̂(u) − τ φ̂(uµT ,x̂) +

min
y∈S

{
⟨By, (1 − τ)u+ τuµT ,x̂⟩ + ĝ(y) + (1 − τ)µSdS(y)

}
(by convexity of φ̂)

= min
y∈S

{
(1 − τ) [−φ̂(u) + ⟨By, u⟩ + ĝ(y) + µSdS(y)]︸ ︷︷ ︸

A1

+

τ [−φ̂(uµS ,x̂) + ⟨By, uµT ,x̂⟩ + ĝ(y)]︸ ︷︷ ︸
A2

}
In order to simplify the calculations we first evaluate Expression A1 and then Ex-
pression A2. We start by considering Expression A1 as a function of y, H(y) :=
−φ̂(u) + ⟨By, u⟩ + ĝ(y) + µSdS(y). Note that φµS

(u) = miny∈S H(y) and therefore
arg miny∈S H(y) = xµS ,u by definition. As H is differentiable and strongly convex
with convexity parameter µSσS, we have

H(y) ≥ H(xµS ,u) +
1

2
µSσS∥y − xµS ,u∥2

S

= φµS
(u) +

1

2
µSσS∥y − xµS ,u∥2

S.
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Then, using the Excessive Gap condition, we have

A1 ≥ φµS
(u) +

1

2
µSσS∥y − xµS ,u∥2

S

≥ gµT
(x) +

1

2
µSσS∥y − xµS ,u∥2

S (Excessive Gap condition)

≥ gµT
(x̂) + ⟨∇gµT

(x̂), x− x̂⟩ +
1

2
µSσS∥y − xµS ,u∥2

S

= gµT
(x̂) + τ⟨∇gµT

(x̂), x− xµS ,u⟩ +
1

2
µSσS∥y − xµS ,u∥2

S.

Last equality holds, since x − x̂ = τ(x − xµS ,u) Now we consider Expression A2.
Using Lemma 5.3 we get

A2 = −φ̂(uµT ,x̂) + ⟨By, uµT ,x̂⟩ + ĝ(y)

≥ gµT
(x̂) + ⟨∇gµT

(x̂), y − x̂⟩
= gµT

(x̂) + ⟨∇gµT
(x̂), y − (1 − τ)x− τxµS ,u⟩.

Finally putting together both expressions and using Inequality (5.17) we get

φµ̄S
(ū) ≥ min

y∈S
{(1 − τ)A1 + τA2}

≥ min
y∈S

{
(1 − τ)

[
gµT

(x̂) + τ⟨∇gµT
(x̂), x− xµS ,u⟩ +

1

2
µSσS∥y − xµS ,u∥2

S

]
+

τ
[
gµT

(x̂) + ⟨∇gµT
(x̂), y − (1 − τ)x− τxµS ,u⟩

]}
= min

y∈S
{gµT

(x̂) + ⟨∇gµT
(x̂), τ(y − xµS ,u)⟩ + (1 − τ)

1

2
µSσS∥y − xµS ,u∥2

S}

≥ min
y∈S

{gµT
(x̂) + ⟨∇gµT

(x̂), τ(y − xµS ,u)⟩ +
1

2
LgµT

,S∥τ(y − xµS ,u)∥2
S}

(Inequality (5.17) : (1 − τ)µSσS ≥ LgµT
,S · τ 2)

≥ min
z∈S

{gµT
(x̂) + ⟨∇gµT

(x̂), z − x̂⟩ +
1

2
LgµT

,S∥z − x̂∥2
S}

(Define z := x̂+ τ(y − xµS ,u), since x̂ = (1 − τ)x+ τxµS ,u ∈ S,

we have z ∈ (1 − τ)x+ τS ⊆ S)

= gµT
(x̂) + ⟨∇gµT

(x̂), x̄− x̂⟩ +
1

2
LgµT

,S∥x̄− x̂∥2
S

(x̄ = GMgµT
(x̂))

≥ gµT
(x̄) = gµ̄T

(x̄).

Theorem 5.1 and Theorem 5.2 lie at the heart of Algorithm 4. Note that the difficult
operations in the algorithm are first the evaluation of the primal and dual functions,
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g(x) and φ(u), the different strongly convex projections onto S, xµS ,u and xµS ,û,
respectively the strongly concave projections onto T , uµT ,x and uµT ,x̂, and finally
both gradient mappings, GMgµT

(x̂) and GMφµS
(û).

From this point on, we restrain ourselves to a special instance of the problem, where
the Lipschitz constants of ĝ and φ̂ are equal to zero, Lĝ,S = Lφ̂,T = 0. Note that
the LP instances that we are interested in, have this special structure.

Theorem 5.4 (Convergence of Excessive Gap Algorithm, [Nes05a] Lemma
4.1 and Theorem 6.3)
Assume Assumption 4 holds and consider Problem 5. Let the pairs of sequences
({xk}k≥0, {µkT}k≥0) and ({uk}k≥0, {µkS}k≥0) be generated by Algorithm 4. Then, for
each k ≥ 0 the pairs (xk, µ

k
T ) and (uk, µ

k
S) satisfy the excessive gap condition,

gµk
T
(xk) ≤ φµk

S
(uk)

and

g(xk) − φ(uk) ≤
4

k + 1
∥B∥S,T

√
DSDT

σSσT
. (5.20)

Thus, the theorem shows that if we run the algorithm for 4
ϵ
∥B∥S,T

√
DSDT

σSσT
iterations,

we obtain an absolute accuracy of at least ϵ. In other words, the convergence rate
of the Excessive Gap method is O(1

ϵ
).

Proof. A recursive argument exhibits the following behavior of the sequences
{µkT}k≥0 and {µkS}k≥0. For k even, we have µkS = 1

k+1
µ0
S and µkT = 2

k+2
µ0
T . For

k odd, we have µkS = 1
k+2

µ0
S and µkT = 2

k+1
µ0
T .

Now we show that at each iteration k, either Inequality (5.17) or (5.18) holds. For

k ≥ 0, we have
τ2
k

1−τk
= 4

(k+3)(k+1)
. If k is even,

µkSσS
Lg

µk
T
,S

=
σSσT
∥B∥2

S,T

µkSµ
k
T =

σSσT
∥B∥2

S,T

µ0
Sµ

0
T

2

(k + 1)(k + 2)
=

4

(k + 1)(k + 2)

and if k is odd

µkTσT
Lφ

µk
S
,T

=
σSσT
∥B∥2

S,T

µkSµ
k
T =

σSσT
∥B∥2

S,T

µ0
Sµ

0
T

2

(k + 2)(k + 1)
=

4

(k + 2)(k + 1)
.

Thus, inequalities (5.17) and (5.18) hold alternatively. Consequently, the Excessive
Gap condition propagates from iteration to iteration provided that it is satisfied for
k = 0, in view of Theorem 5.1 and Theorem 5.2. Hence, it remains to be shown
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Algorithm 4 Excessive Gap Algorithm

Requires: - xo = arg min
x∈S

ds(x) (dS(x
o) = 0)

- An initial smoothing factor µ0
S := 2∥B∥S,T

√
DT

σSσTDS

- An initial smoothing factor µ0
T := ∥B∥S,T

√
DS

σSσTDT

- An absolute error ϵ > 0
Ensures: An approximate primal solution x̄ ∈ S and an approximate dual solution

ū such that g(x̄) − φ(ū) ≤ ϵ

compute x0 = GMg
µ0

T

(xo) Quadratic projection onto S

compute u0 = uµ0
S ,x

o Strongly convex projection onto T
set k = 0
while g(xk) − φ(uk) > ϵ do
τk = 2

k+3

if k is even then
compute xµk

S ,uk
= arg min

y∈S
{⟨By, uk⟩ + ĝ(y) + µkSdS(y)}

Strongly convex projection onto S
set x̂ = (1 − τk)xk + τkxµk

S ,uk

compute uµk
T ,x̂

= arg max
v∈T

{⟨Bx̂, v⟩ − φ̂(v) − µkTdT (v)}
Strongly convex projection onto T

set uk+1 = (1 − τk)uk + τkuµk
T ,x̂

compute xk+1 = GMg
µk

T

(x̂) Quadratic projection onto S

set µk+1
S = (1 − τk)µ

k
S and µk+1

T = µkT
end if
if k is odd then

compute uµk
T ,xk

= arg max
v∈T

{⟨Bxk, v⟩ − φ̂(v) − µkTdT (v)}
Strongly convex projection onto T

set û = (1 − τk)uk + τkuµk
T ,xk

compute xµk
S ,û

= arg min
y∈S

{⟨By, û⟩ + ĝ(y) + µkSdS(y)}
Strongly convex projection onto S

set xk+1 = (1 − τk)xk + τkxµk
S ,û

compute uk+1 = GMφ
µk

S

(û) Quadratic projection onto T

µk+1
T = (1 − τk)µ

k
T and µk+1

S = µkS
end if
k = k + 1 Objective functions evaluation

end while
set x̄ = xk and ū = uk
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that the Excessive Gap condition holds for k = 0.

gµ0
T
(x0) ≤ gµ0

T
(xo) + ⟨∇gµ0

T
(xo), x0 − xo⟩ +

Lg
µ0

T
,S

2
∥x0 − xo∥2

S

= min
x∈S

{gµ0
T
(xo) + ⟨∇gµ0

T
(xo), x− xo⟩ +

Lg
µ0

T
,S

2
∥x− xo∥2

S}

≤ min
x∈S

{ĝ(x) + ⟨Bx, u0⟩ − φ̂(u0) +
Lg

µ0
T
,S

2
∥x− xo∥2

S}

(Lemma 5.3)

≤ min
x∈S

{ĝ(x) + ⟨Bx, u0⟩ − φ̂(u0) +
1

2
µ0
SσS∥x− xo∥2

S}

( Lg
µ0

T
,S ≤ µ0

SσS )

≤ −φ̂(u0) + min
x∈S

{ĝ(x) + ⟨Bx, u0⟩ + µ0
SdS(x)}

(
1

2
σS∥x− xo∥2

S ≤ dS(x) ∀ x ∈ S )

= φµ0
S
(u0)

Now, Inequality (5.20) follows immediately from Inequality (5.11) and the particular
form of µkS and µkT .

5.2 Applying Excessive Gap Method to LPs

Recall that our objective is to solve large scale linear problems and for this purpose
we consider their Langrange relaxations (see Chapter 3.1). This approach leads us
to the following optimization problems, the primal problem

min
x∈Q

f(x), f(x) := cTx+ max
u∈P

{⟨Ax, u⟩ − bTu}

and the dual problem

max
u∈P

ψ(u), ψ(u) := −bTu+ min
x∈Q

⟨Ax, u⟩ + cTx

with
min
x∈Q

f(x) = max
u∈P

ψ(u).

since Q ⊂ Rm, P ⊂ Rn are assumed to be convex and compact.

We note that both problems fit perfectly the structure of the optimization problems
considered in this chapter, see (5.1) and (5.2). Choosing appropriately the prox-
functions dQ(x) and dP (u) with convexity parameters σQ > 0 and σP > 0 with
respect to norm ∥.∥Q and ∥.∥P , we define the following smooth approximations,

fµP
(x) := cTx+ max

u∈P
{⟨Ax, u⟩ − bTu− µPdP (u)} (5.21)
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with ∇fµP
(x) = c+ ATuµP ,x and LfµP

,Q =
∥A∥2

Q,P

µP σP
, see Equation (5.5), and

ψµQ
(u) := −bTu+ min

x∈Q
{⟨Ax, u⟩ + cTx+ µQdQ(x)} (5.22)

with ∇ψµQ
(u) = −b + AxµQ,u and LψµQ

,P =
∥A∥2

Q,P

µQσQ
, see Equation (5.7). Note that

the corresponding Lĝ,S = 0 and Lφ̂,T = 0.

Therefore for an approximate primal and dual solution with an absolute gap of ϵ

we need to compute at most 4
ϵ
∥A∥2

Q,P

√
DQDP

σQσP
iterations of Excessive Gap method.

As for the Primal-Dual Subgradient algorithms, the choice of the prox-functions as
well as the norms is crucial for the performance of the Excessive Gap algorithm.



6. Approximate Oracles and the
Optimization Methods

The Primal-Dual Subgradient method as well as the Excessive Gap method, are
oracle based methods. As we mentioned in the previous chapter, the methods
assume that the minimum of a specific class of strongly convex functions can be
exactly determined. We suppose now that it is difficult or numerically expensive to
compute this minimum, yet possible to get an approximation with a given guarantee
without unacceptable numerical effort. Working with such approximate solutions
is attractive but the question remains whether the algorithm will still converge or
not? In Theorem 7 in [CE05], the result concerning the Excessive Gap method was
presented without proof. The previous question arises when applying the Excessive
Gap method to the Survivable Network Design problem since we face Minimum
Quadratic Cost Flow problems as subproblems. In the following, we present the
proof in details and extend the result of the paper to the Primal-Dual Subgradient
methods.

6.1 Approximate Oracles

The main idea of the proof of Theorem 7 in [CE05] consists of using an oracle
providing a solution with the guarantee of an absolute accuracy and the properties
of strongly convex functions.

Definition 6.1
Let h be a a strongly convex and differentiable function defined over a convex and
compact set S ∈ Rn, and let σS > 0 be its convexity parameter with respect to the
norm ∥.∥S. A δ-oracle provides a δ-approximation xδ of the minimum x∗ of the
function h(x) over S, such that,

h(xδ) − δ ≤ h(x∗) ≤ h(xδ), (6.1)

holds for δ > 0.

In the next lemma the properties of such δ-approximations are described.
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Lemma 6.2
Let h(x) be a strongly convex and differentiable function defined over the convex
and compact set S ∈ Rn, and let σS > 0 denote its convexity parameter with respect
to the norm ∥.∥S. For a given δ > 0, let xδ be a δ-approximation of the minimum
x∗ of function h(x) over S with

h(xδ) − δ ≤ h(x∗) ≤ h(xδ).

Then,

1. ∥xδ − x∗∥S ≤
√

2δ/σS.

2. For all y ∈ S,

h(y) + θ(δ, CS, σS) ≥ h(xδ) +
1

2
σS∥y − xδ∥2

S,

where θ(δ, CS, σS) := (2δ +
√

2δσSCS) and CS := max
x,y∈S

∥x− y∥S.

Proof. The function h is strongly convex, thus

h(xδ) ≥ h(x∗) + ⟨∇h(x∗), xδ − x∗⟩ +
1

2
σS∥xδ − x∗∥2

S

holds. Since x∗ is the minimum of h over S, ⟨∇h(x∗), xδ − x∗⟩ ≥ 0 holds. Thus, we
get 1

2
σS∥xδ − x∗∥2

S ≤ h(xδ) − h(x∗) ≤ δ and ∥xδ − x∗∥S ≤
√

2δ/σS holds.

The second property follows from the definition of a δ-oracle and the first statement
of this lemma. Namely,

h(xδ) +
1

2
σS∥y − xδ∥2

S ≤ h(x∗) + δ +
1

2
σS∥y − x∗∥2

S

+ σS∥y − x∗∥S∥x∗ − xδ∥S +
1

2
σS∥x∗ − xδ∥2

S

≤ h(y) + δ +
√

2δσSCS + δ

= h(y) + (2δ +
√

2δσSCS).

6.2 Primal-Dual Subgradient Methods

In the Primal-Dual Subgradient algorithms we suppose that at each step k we can
exactly compute xk, the minimum of a strongly convex function, i.e.,

xk := arg min
x∈S

{⟨ζk−1, x⟩ + βkdS(x)}
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where βk > 0 and dS(x) is a prox-function over S with convexity parameter σS > 0
with respect to a norm ∥.∥S and with minimum attained at xo, see Algorithm 2.
Using the notation introduced in the previous chapter we define

Γβk
(x, ζ) := ⟨ζ, x⟩ + βkdS(x) (6.2)

and thus xk = arg min
x∈S

Γβk
(x, ζk−1). Note that for fixed ζ, Γβk

(x, ζ) is also strongly

convex with convexity parameter βkσS with respect to ∥.∥S.

Now, we assume that for δ > 0 and fixed ζk−1 ∈ Rn a βkδ-oracle exists that delivers
a βkδ-approximate solution xβkδ

k of xk, i.e.,

Γβk
(xβkδ

k , ζk−1) − βkδ ≤ Γβk
(xk, ζk−1) ≤ Γβk

(xβkδ
k , ζk−1). (6.3)

The only difference between the primal-dual subgradients algorithms presented in
Chapter 4 and those we present next, is the use of βkδ-oracles instead of exact
oracles at each step k. We generate βkδ approximate solutions instead of exact
solutions, see Algorithm 5. Recall that the objective of Algorithm 5 is to minimize
approximately a convex function g(x) defined over the set S ⊆ Rn. It generates a
approximation solution x̄ ∈ S and a dual approximation solution ζ̄ ∈ ∂g(x̄). The
dual objective function is φ(ζ) = −g∗(ζ) + min

x∈S
⟨ζ, x⟩.
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Algorithm 5 Dual Averaging Algorithm with δ-Oracles

Requires: - A δ-oracle
Requires: - A prox-function dS(x) over S with convexity parameter σS > 0

with respect to norm ∥.∥S and minimizer xo over S
- A constant δ > 0
- An absolute error ϵ > 0

Ensures: An approximate primal solution x̄ ∈ S and an approximate dual
solution ζ̄ such that g(x̄) − φ(ζ̄) ≤ ϵ.

set k = 0 and β0 = 1
choose λ0 > 0 and set Λ0 = λ0

compute xβ0δ, a β0δ-approximation of x0 = arg min
x∈S

dS(x) β0δ-Oracle

compute ξ0 ∈ ∂g(xβ0δ
0 ) and set ζ0 = λ0ξ0 Subgradient computation

set x̄ =
λ0x

β0δ
0

Λ0
and ζ̄ = λ0ξ0

Λ0

while g(x̄) − φ(ζ̄) > ϵ do
set k = k + 1
choose βk ≥ βk−1 and compute xβkδ

k , a βkδ-approximation of
xk = arg min

x∈S
{⟨ζk−1, x⟩ + βkdS(x)} βkδ-Oracle

choose λk > 0 and set Λk = Λk−1 + λk
compute ξk ∈ ∂g(xβkδ

k ) and ζk = ζk−1 + λkξk Subgradient computation

set x̄ = 1
Λk

∑k
i=0 λix

βiδ
i and ζ̄ = 1

Λk
ζk = 1

Λk

∑k
i=0 λiξi

Objective functions evaluation

end while
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Theorem 6.3 (Convergence of Primal-Dual Subgradient Algorithm with
δ-Oracles)
Let x̄ and ζ̄ be the solutions generated by Algorithm 5 after k iterations. Then

g(x̄) − φ(ζ̄) ≤ 1∑k
i=0 λi

(
βk+1DS +

1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2

)
+

√
2δ

σS
L

where DS := max
x∈S

dS(x) and ∥ξi∥∗S ≤ L for i = 1, . . . , k.

Before proving Theorem 6.3, we study the influence of the βkδ-approximation on
the convergence of Algorithm 5 if it uses the simple averages sequences (4.12) or
the weighted averages sequences (4.13). Given the properties of these sequences
(Lemma 4.6), the convergence of Algorithm 5 results in Theorem 6.4. It turns out
that to ensure a theoretical absolute error 0 < ϵ ≤ 1 in O( 1

ϵ2
) iterations, δ has to

be of the same order as ϵ2.

Theorem 6.4
Let x̄ and ζ̄ be the solutions generated by Algorithm 5 after k iterations using either
simple averages sequences (4.12) or weighted averages sequences (4.13).

If δ =
DS

k + 1
, then g(x̄) − φ(ζ̄) ≤ 2

√
2L√

k + 1

√
D

σS
, (6.4)

where DS := max
x∈S

dS(x) and ∥ξi∥∗S ≤ L for i = 1, . . . , k.

Proof. Putting together the results of Theorem 6.3 and Theorem 4.7, we get

g(x̄) − φ(ζ̄) ≤ L√
k + 1

√
2DS

σS
+

√
2δ

σS
L.

Then, using δ = DS

k+1
, we obtain the desired result,

g(x̄) − φ(ζ̄) ≤ L√
k + 1

√
2DS

σS
+

√
2DS

σS(k + 1)
L ≤ 2

√
2L√

k + 1

√
DS

σS
.

Let us now prove Theorem 6.3.

Proof of Theorem 6.3. This proof is similar to the proof of Theorem 4.5, except
that the absolute error at each step of the algorithm must be carried along the
calculations.



62 Approximate Oracles and the Optimization Methods

As in Algorithm 2, the solutions x̄ and ζ̄ are primal and dual feasible since they are
a convex combination of primal, respectively dual, feasible solutions. We evaluate

g(x̄) − φ(ζ̄) = g(x̄) + g∗(ζ̄) − min
x∈S

⟨ζ̄ , x⟩

≤
k∑
i=0

λi
Λk

(
g(xβiδ

i ) + g∗(ξi)
)
− min

x∈S
⟨
k∑
i=0

λiξi
Λk

, x⟩

(by convexity of g and g∗)

=
k∑
i=0

λi
Λk

⟨ξi, xβiδ
i ⟩ − min

x∈S
⟨
k∑
i=0

λiξi
Λk

, x⟩(ξi ∈ ∂g(xβiδ
i ))

=
1

Λk

max
x∈S

{ k∑
i=0

λi⟨ξi, xβiδ
i − x⟩

}
.

We define Θk+1 := max
x∈S

{∑k
i=0 λi⟨ξi, x

βiδ
i − x⟩

}
and procede in two steps to find

an upper bound,

Θk+1 ≤ βk+1DS +
k∑
i=0

λi⟨ξi, xβiδ
i − xβ0δ

0 ⟩ + νδβk+1
(ζk), (6.5)

≤ βk+1DS +
1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2 +

√
2δ

σS

k∑
i=0

λi∥ξi∥∗S, (6.6)

where

νδβk+1
(ζk) := ⟨ζk, xβ0δ

0 ⟩ − min
x∈S

Γβk+1
(x, ζk) (6.7)

=
k∑
i=0

λi⟨ξi, xβ0δ
0 ⟩ − min

x∈S
{

k∑
i=0

λi⟨ξi, x⟩ + βk+1dS(x)}. (ζk =
k∑
i=0

λiξi)

First, recall that β0 = 1. Then, note that as νβk+1
(ζk) in proof of Theorem 4.5,

(4.18), the function νδβk+1
(ζk) is convex and differentiable. Its gradient is given

by ∇νδβk+1
(ζ) = xβ0δ − xk where xk = arg minx∈S Γβk+1

(x, ζ) and it is Lipschitz

continuous over S with Lipschitz constant Lνδ
βk+1

,S = 1
βk+1σS

(see Theorem 3.7).



6.2 Primal-Dual Subgradient Methods 63

Let us first show Inequality (6.5),

βk+1DS +
k∑
i=0

λi⟨ξi, xβiδ
i − xβ0δ

0 ⟩ + νδβk+1
(ζk)

= βk+1DS +
k∑
i=0

λi⟨ξi, xβiδ
i − xβ0δ

0 ⟩ +
k∑
i=0

λi⟨ξi, xβ0δ
0 ⟩ −

min
x∈S

{
k∑
i=0

λi⟨ξi, x⟩ + βk+1dS(x)}

= max
x∈S

{βk+1(DS − dS(x)) +
k∑
i=0

λi⟨ξi, xβiδ
i − x⟩}

≥ max
x∈S

k∑
i=0

λi⟨ξi, xβiδ
i − x⟩.

To show Inequality (6.6), we first note that νδβi+1
(ζi) ≤ νδβi

(ζi) holds for i ≥ 1
because {βi}i≥1 is a increasing sequence and then

νδβi+1
(ζi) ≤ νδβi

(ζi)

≤ νδβi
(ζi−1) + ⟨∇νδβi

(ζi−1), ζi − ζi−1⟩ +
Lνδ

βi
,S

2
∥ζi − ζi−1∥∗S

2

= νδβi
(ζi−1) + ⟨xβ0δ

0 − xβiδ
i + xβiδ

i − xi, λiξi⟩ +
1

2βiσS
λ2
i ∥ξi∥∗S

2

= νδβi
(ζi−1) + ⟨xβ0δ

0 − xβiδ
i , λiξi⟩ +

1

2βiσS
λ2
i ∥ξi∥∗S

2 + ⟨xβiδ
i − xi, λiξi⟩

≤ νδβi
(ζi−1) + ⟨xβ0δ

0 − xβiδ
i , λiξi⟩ +

1

2βiσS
λ2
i ∥ξi∥∗S

2 + ∥xβiδ
i − xi∥Sλi∥ξi∥∗S

≤ νδβi
(ζi−1) + ⟨xβ0δ

0 − xβiδ
i , λiξi⟩ +

1

2βiσS
λ2
i ∥ξi∥∗S

2 +

√
2δ

σS
λi∥ξi∥∗S.

(Lemma 6.2 — convexity parameter of Γβi
(x, ζi−1) : βiσS)

Hence, for i ≥ 1,

νδβi+1
(ζi) − νδβi

(ζi−1) ≤ λi⟨ξ, xβ0δ
0 − xβiδ

i ⟩ +
λ2
i

2βiσS
∥ξi∥∗S

2 +

√
2δ

σS
λi∥ξi∥∗S.

Summing up over all i ≥ 1 we get

νδβk+1
(ζk) − νδβ1

(ζ0) ≤
k∑
i=1

λi⟨ξi, xβ0δ
0 − xβiδ

i ⟩ +
1

2σS

k∑
i=1

λ2
i

βi
∥ξi∥∗S

2 +

√
2δ

σS

k∑
i=1

λi∥ξi∥∗S.
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Given that

νδβ1
(ζ0) ≤ νδβ1

(0) + ⟨∇νδβ1
(0), ζ0⟩ +

Lνδ
β1
,S

2
∥ζ0∥∗S

2

= νδβ1
(0) + ⟨xβ0δ

0 − x0, λ0ξ0⟩ +
λ2

0

2β1σS
∥ξ0∥∗S

2

(νδβ1
(0) ≤ 0 since dS(x) ≥ 0 ∀ x ∈ S)

≤ 1

2β1σS
λ2

0∥ξ0∥∗S
2 +

√
2δ

σS
λ0∥ξ0∥∗S

we have

νδβk+1
(ζk) ≤

k∑
i=0

λi⟨ξi, xβ0δ
0 − xβiδ

i ⟩ +
1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2 +

√
2δ

σS

k∑
i=0

λi∥ξi∥∗S

and thus

k∑
i=0

λi⟨ξi, xβiδ
i − xβ0δ

0 ⟩ + νδβk+1
(ζk) ≤ 1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2 +

√
2δ

σS

k∑
i=0

λi∥ξi∥∗S

and Inequality (6.6) is proved. Finally, we get

g(x̄) − φ(ζ̄) ≤ 1∑k
i=0 λi

Θk+1

≤ 1∑k
i=0 λi

(
βk+1DS +

1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2 +

√
2δ

σS

k∑
i=0

λi∥ξi∥∗S

)

≤ 1∑k
i=0 λi

(
βk+1DS +

1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2 +

√
2δ

σS

k∑
i=0

λiL

)
(∥ξi∥∗S ≤ L ∀ i = 1, . . . , k)

≤ 1∑k
i=0 λi

(
βk+1DS +

1

2σS

k∑
i=0

λ2
i

βi
∥ξi∥∗S

2

)
+

√
2δ

σS
L

Approximate Subgradients.

Each iteration of the primal-dual subgradient method requires not only the compu-
tation of a minimizer of a smooth strongly convex function but also the computation
of a subgradient of the objective function. The influence of the approximate mini-
mizer in the convergence of the methods was studied in the previous section. Here,
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we investigate the influence of approximate subgradients. The definition as well
as results presented in this subsection are standard (see, e.g., a work by Chudak
and Guarisco, [CG06], concerning the use of subgradient methods for stochastic
optimization problems).

Definition 6.5 (abc-subgradients)
Let a, b > 0 and c ≥ 0. For a convex function g, ξabcx is an abc-subgradient of g at
x ∈ dom g if

ag(x) + ⟨ξabcx , y − x⟩ ≤ bg(y) + c ∀ y ∈ dom g. (6.8)

The 110-subgradients correspond to the usual subgradients. The hyperplane defined
by a 11c-subgradient, ξ11c

x , defines a supporting hyperplane after a translation of
at most c in the opposite direction of ξ11c

x . An abc-subgradient will perturb the

c

g(y)

g(x)

supporting hyperplane

ξ11c ∈ ∂g(x)11c
g(x) + 〈ξ11c, y − x〉

Fig. 6.1: 11c-subgradient

convergence of the primal-dual subgradient less than an approximate minimizer. In
particular, we show in the following theorem that the error due to the approximate
subgradients will not propagate through the iterations. In [CG06], Theorem A.3,
Chudak and Guarisco show a similar result for the Standard Subgradient Method.

Theorem 6.6 (Convergence of Primal-Dual Subgradient Algorithm with
Approximate Subgradient)
Let a, b > 0 and c ≥ 0. Moreover, suppose that at each iteration i of Algorithm 2,
an abc-subgradient ξabci of xi is computed instead of an exact subgradient ξi. After
k iterations, denote the average primal solution by x̄ :=

∑k
i=0

λi

Λk
xi and the average

dual solution by ζ̄abc :=
∑k

i=0
λi

Λk
ξabci . Then,

ag(x̄) − bφ(
ζ̄abc

b
) ≤ 1∑k

i=0 λi

(
βk+1DS +

1

2σ

k∑
i=0

λ2
i

βi
∥ξabci ∥∗S

2

)
+ c, (6.9)

where DS := max
x∈S

dS(x).
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Proof.

ag(x̄) − bφ(
ζ̄abc

b
) ≤ ag(x̄) + bg∗(

ζ̄abc

b
) − min

x∈S
⟨ζ̄abc, x⟩

≤
k∑
i=0

λi
Λk

(
ag(xi) + bg∗(

ξabci

b
)

)
− min

x∈S
⟨ζ̄abc, x⟩

≤
k∑
i=0

λi
Λk

(
⟨ξabci , xi⟩ + c

)
− 1

Λk

min
x∈S

k∑
i=0

λi⟨ξabci , x⟩

≤ 1

Λk

max
x∈S

{
k∑
i=0

λi⟨ξabci , xi − x⟩

}
+ c

The fourth inequality holds due to the definition of abc-subgradients (Definition
6.5). Namely,

ag(xi) + bg∗(
ξabci

b
) = ag(xi) + b sup

y∈dom g
{⟨ξ

abc
i

b
, y⟩ − g(y)}

= ag(xi) + sup
y∈dom g

{⟨ξabci , y⟩ − bg(y)}

≤ ag(xi) + ⟨ξabci , xi⟩ − ag(xi) + c

= ⟨ξabci , xi⟩ + c.

The remaining part of the proof can be deduced directly from the proof of Theorem
4.5, since from here on, the fact that ξi is a subgradient of g at xi for i ≥ 0 is not
used anymore.

Note that if we suppose that a = b = 1, i.e., that the computed abc-subgradients
are exact subgradients up to a constant c, the claim of the previous theorem results
in the following corollary.

Corollary 6.7
Let a = b = 1 and c ≥ 0. Moreover, suppose that at each iteration i of Algorithm 2,
an abc-subgradient ξ11c

i of xi is computed instead of an exact subgradient ξi. After
k iterations, denote the average primal solution by x̄ :=

∑k
i=0

λi

Λk
xi and the average

dual solution by ζ̄11c :=
∑k

i=0
λi

Λk
ξ11c
i . Then,

g(x̄) − φ(ζ̄abc) ≤ 1∑k
i=0 λi

(
βk+1DS +

1

2σ

k∑
i=0

λ2
i

βi
∥ξabci ∥∗S

2

)
+ c, (6.10)

where DS := max
x∈S

dS(x).
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6.3 Excessive Gap with Approximate Gradients

Compared to the primal-dual subgradient methods, working with approximate or-
acles within the methods using smoothing techniques and gradient mappings needs
additional care. Namely, the errors induced by the approximate oracles influence
not only the computed approximate solutions but also the definition of the gradient
mapping.

Next, let us recall the kind of functions that can be minimized using the Excessive
Gap method (see Chapter 5). For x ∈ S ⊂ Rn and u ∈ T ⊂ Rm,

g(x) := ĝ(x) + max
v∈T

{⟨Bx, v⟩ − φ̂(v)} (6.11)

is the primal function and

φ(x) := −φ̂(u) + min
y∈S

{⟨By, u⟩ + ĝ(y)} (6.12)

is the dual function. The sets S and T are assumed to be convex and compact.
The function ĝ(x) and φ̂(u) are convex and differentiable. At each step k of the
Excessive Gap method, approximate smooth functions of g(x) and φ(u) are defined.
Namely, for µkT > 0 and µkS > 0, we have

gµk
T
(x) := ĝ(x) + max

v∈T
{⟨Bx, v⟩ − φ̂(v) − µkTdT (v)} (6.13)

where dT (v) is a prox-function over T with convexity parameter σT > 0 with respect
to a norm ∥.∥T and

φµk
S
(u) := −φ̂(u) + min

y∈S
{⟨By, u⟩ + ĝ(y) + µkSdS(y)} (6.14)

where dS(y) is a prox-function over S with convexity parameter σS > 0 with respect
to a norm ∥.∥S. To simplify the notation we introduce as in Chapter 5 the following
auxiliary functions

Γµk
T
(x, u) := ⟨Bx, u⟩ − φ̂(u) − µkTdT (u) (6.15)

and

Φµk
S
(x, u) := ⟨Bx, u⟩ + ĝ(x) + µkSdS(x). (6.16)

Then, the approximate smooth function can be rewritten as gµk
T
(x) := ĝ(x) +

maxv∈T Γµk
T
(x, v) and φ(u)µS

:= −φ̂(u)+miny∈S Φµk
S
(x, y). For fixed x ∈ S, we note

that −Γµk
T
(x, .) is smooth and strongly convex with convexity parameter µkTσT and

for fixed u ∈ T , Φµk
S
(., u) is smooth and strongly convex with convexity parameter

µkSσS. Thus, the approximate functions gµk
T
(x) and φ(u)µk

S
are convex respectively
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concave, differentiable, and their gradients are Lipschitz continuous, see Theorem
3.7. The gradients and their Lipschitz constants are given as follows

∇gµk
T
(x) = ∇ĝ(x) +BTuµk

T ,x
∇φµk

S
(u) = −∇φ̂(u) +Bxµk

S ,u
(6.17)

Lg
µk

T
,S = Lĝ,S +

∥B∥2
S,T

µkTσT
Lφ

µk
S
,T = Lφ̂,T +

∥B∥2
S,T

µkSσS
(6.18)

where Lĝ,S is the Lipschitz constant of ∇ĝ(x) over S, Lφ̂,T is the Lipschitz con-
stant of ∇φ̂(x) over T , xµk

S ,u
is the minimizer of Φµk

S
(., u) over S, and uµk

T ,x
is the

maximizer of Γµk
T
(x, .) over T .

At each step of the Excessive Gap method, uµk
T ,x

and xµk
S ,u

must be computed for
a given x ∈ S and for a given u ∈ T . In Chapter 5 we assumed that both optima
are delivered by exact oracles. Here we work with δ-oracles (see Definition 6.1).
We consider a δ-approximation of uµk

T ,x
and a δ-approximation of xµk

S ,u
at each step

k. Both solutions, uµk
T ,x

and xµk
S ,u

, are needed for evaluating the primal and dual
approximate functions as well as for computing their gradients and thus, for defin-
ing the gradient mapping. In the following, we investigate how δ-approximations
perturb the evaluation of the approximate functions and their gradients.

Lemma 6.8
For x ∈ S, µT > 0, and δ > 0, define

gδµT
(x) := ĝ(x) + ΓµT

(x, uδµT ,x
) (6.19)

= ĝ(x) + ⟨Bx, uδµT ,x
⟩ − φ̂(uδµT ,x

) − µTdT (uδµT ,x
)

∇gδµT
(x) := ∇ĝ(x) +BTuδµT ,x

, (6.20)

where uδµT ,x
is a δ-approximation of uµT ,x with guaranteed accuracy δ, i.e.,

ΓµT
(x, uδµT ,x

) ≤ ΓµT
(x, uµT ,x) ≤ ΓµT

(x, uδµT ,x
) + δ.

Then,

1. gδµT
(x) ≤ gµT

(x) ≤ gδµT
(x) + δ,

2. ∥∇gµT
(x) −∇gδµT

(x)∥∗S ≤ ε(δ, µTσT ),

where ε(δ, µTσT ) :=
√

2δ
µT σT

∥B∥S,T .

Proof. These results follow directly from the definition of uδµT ,x
.
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1. Since ΓµT
(x, uδµT ,x

) ≤ ΓµT
(x, uµT ,x) ≤ ΓµT

(x, uδµT ,x
) + δ, we have

ĝ(x) + ΓµT
(x, uδµT ,x

)︸ ︷︷ ︸
gδ

µT
(x)

≤ ĝ(x) + ΓµT
(x, uµT ,x)︸ ︷︷ ︸

gµT
(x)

≤ ĝ(x) + ΓµT
(x, uδµT ,x

) + δ︸ ︷︷ ︸
gδ

µT
(x)+δ

.

2. Recall that ∇gµT
(x) = ∇ĝ(x) + BTuµT ,x where uµT ,x = arg maxu∈T ΓµT

(x, u) ,
then

∥∇gµT
(x) −∇gδµT

(x)∥∗S ≤ ∥BTuµT ,x −BTuδµT ,x
∥∗S ≤ ∥B∥S,T∥uµT ,x − uδµT ,x

∥T

≤ ∥B∥S,T

√
2δ

µTσT
= ε(δ, µTσT )

The last inequality follows from Lemma 6.2 applied to ΓµT
(x, u). Since uδµT ,x

is a δ-
approximation of ux and −ΓµT

(x, u) is smooth and strongly convex with convexity

parameter µTσT , we have ∥ux − uδµT ,x
∥T ≤

√
2δ

µT σT
.

The previous lemma can be written in a dual form as follows.

Lemma 6.9
For u ∈ T , µS > 0, and δ > 0, define

φδµS
(u) := −φ̂(u) + ΦµS

(xδµS ,u
, u) (6.21)

= −φ̂(u) + ⟨BxδµS ,u
, u⟩ + ĝ(xδµS ,u

) + µSdS(x
δ
µS ,u

)

∇φδµS
(u) := −∇φ̂(u) +BxδµS ,u

, (6.22)

where xδµS ,u
is a δ-approximation of xµS ,u with guaranteed accuracy δ, i.e.,

ΦµS
(xδµS ,u

, u) − δ ≤ ΦµS
(xµS ,u, u) ≤ ΦµT

(xδµS ,u
, u).

Then,

1. φδµS
(u) − δ ≤ φµS

(u) ≤ φδµS
(u),

2. ∥∇φµS
(u) −∇φδµS

(u)∥∗T ≤ ε(δ, µSσS),

where ε(δ, µSσS) :=
√

2δ
µSσS

∥B∥S,T .

The approximation functions gδµT
and φδµS

are respectively convex and concave
with Lipschitz continuous gradient. In the following lemma and its corollary we
investigate similar properties for the functions gδµT

(x) and φδµS
(u).
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Lemma 6.10 (Properties of gδµT
(x))

For all x, y ∈ S, we have

1. ∥∇gδµT
(x) −∇gδµT

(y)∥∗S ≤ LgµT
,S∥y − x∥S + 2ε(δ, µTσT ),

2. gδµT
(y) + ε(δ, µTσT )∥y − x∥S + δ ≥ gδµT

(x) + ⟨∇gδµT
(x), y − x⟩,

3. gδµT
(y) ≤ gδµT

(x)+ ⟨∇gδµT
(x), y − x⟩+ LgµT

,S

2
∥y−x∥2

S + ε(δ, µTσT )∥y−x∥S + δ,

with LgµT
,S := Lĝ,S +

∥B∥2
S,T

µT σT
and ε(δ, µTσT ) :=

√
2δ

µT σT
∥B∥S,T .

Proof. To prove the properties of gδµT
(x) we use Lemma 6.8 and the properties of

gµT
(x) recalled above and shown in Theorem 3.7.

1. ∥∇gδµT
(x) −∇gδµT

(y)∥∗S ≤ ∥∇gδµT
(x) −∇gµT

(x)∥∗S + ∥∇gµT
(x) −∇gµT

(y)∥∗S
+ ∥∇gµT

(y) −∇gδµT
(y)∥∗S

≤ ε(δ, µTσT ) + ∥∇gµT
(x) −∇gµT

(y)∥∗S + ε(δ, µTσT )

(Lemma 6.10, statement 1)

≤ 2ε(δ, µTσT ) + LgµT
,S∥x− y∥S.

(∇gµT
is Lipschitz continuous with constant LgµT

,S)

2. gδµT
(y) ≥ gµT

(y) − δ (Lemma 6.10, statement 1)

≥ gµT
(x) + ⟨∇gµT

(x), y − x⟩ − δ (gµT
(x) is smooth and convex)

≥ gδµT
(x) + ⟨∇gµT

(x), y − x⟩ − δ (Lemma 6.10, statement 1)

= gδµT
(x) + ⟨∇gδµT

(x), y − x⟩ − ⟨∇gδµT
(x) −∇gµT

(x), y − x⟩ − δ

≥ gδµT
(x) + ⟨∇gδµT

(x), y − x⟩ − ∥∇gδµT
(x) −∇gµT

(x)∥∗S∥y − x∥S − δ

≥ gδµT
(x) + ⟨∇gδµT

(x), y − x⟩ − ε(δ, µTσT )∥y − x∥S − δ

(Lemma 6.10, statement 2)

3. gδµT
(y) ≤ gµT

(y) (Lemma 6.10, statement 1)

≤ gµT
(x) + ⟨∇gµT

(x), y − x⟩ +
LgµT

,S

2
∥y − x∥2

S

(gµT
(x) is convex and smooth with Lipschitz continuous gradient)

≤ gδµT
(x) + δ + ⟨∇gδµT

(x), y − x⟩ + ∥∇gµT
(x) −∇gδµT

(x)∥∗S∥y − x∥S

+
LgµT

,S

2
∥y − x∥2

S (Lemma 6.10, statement 1)

≤ gδµT
(x) + δ + ⟨∇gδµT

(x), y − x⟩ + ε(δ, µTσT )∥y − x∥S

+
LgµT

,S

2
∥y − x∥2

S
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Again, we can formulate a dual version of the previous result.

Lemma 6.11 (Properties of φδµS
(u))

For all u, v ∈ T , we have

1. ∥∇φδµS
(v) −∇φδµS

(u)∥∗T ≤ LφµS
,T∥u− v∥T + 2ε(δ, µSσS),

2. φδµS
(v) ≤ φδµS

(u) + ⟨∇φδµS
(u), v − u⟩ + ε(δ, µSσS)∥v − u∥T + δ,

3. φδµS
(v)+ε(δ, µSσS)∥v−u∥T +δ ≥ φδµS

(u)+⟨∇φδµS
(u), v − u⟩− LφµS

,T

2
∥v−u∥2

S,

with LφµS
,T := Lφ̂,T +

∥B∥2
S,T

µSσS
and ε(δ, µSσS) :=

√
2δ

µSσS
∥B∥S,T .

The influence of the δ-oracles on the main objects of the Excessive Gap method—
the Gradient Mappings defined below—remains to be studied.

GMgµT
(x) := arg min

y∈S
ZµT ,x(y) (6.23)

= arg min
y∈S

{gµT
(x) + ⟨∇gµT

(x), y − x⟩ +
1

2
LgµT

,S∥y − x∥2
S}

GMφµS
(u) := arg max

v∈T
WµS ,u(v) (6.24)

= arg max
v∈T

{φµS
(u) + ⟨∇φµS

(u), v − u⟩ − 1

2
LφµS

,T∥v − u∥2
T}

Our first remark concerns the gradient of both approximation functions, i.e.,
∇gµT

(x) and ∇φµS
(u). Their evaluation requires computing the maximum of the

function ΓµT
(x, .) over T and respectively the minimum of the function ΦµS

(., u)
over S, see (6.17). Since we assume that we can only compute δ-approximations of
these optima, we now aim at evaluating the optima of the following functions

Zδ
µT ,x

(y) := gδµT
(x) + ⟨∇gδµT

(x), y − x⟩ +
1

2
LgµT

,S∥y − x∥2
S (6.25)

and

W δ
µS ,u

:= φδµS
(u) + ⟨∇φδµS

(u), v − u⟩ − 1

2
LφµS

,T∥v − u∥2
T , (6.26)

where gδµT
(x) and ∇gδµT

(x) are defined as in Lemma 6.8 and φδµS
(u) and ∇φδµS

(u)
are defined as in Lemma 6.9. Then, we denote by GM δ

gµT
(x) the δ-approximation

of the minimum y∗ of Zδ
µT ,x

(y) over S, and by GM δ
φµS

(u) the δ-approximation of
the maximum v∗ of W δ

µS ,u
(v) over T , i.e.,

Zδ
µT ,x

(GM δ
gµT

(x)) − δ ≤ Zδ
µT ,x

(y∗) ≤ Zδ
µT ,x

(GM δ
gµT

(x))

W δ
µS ,u

(GM δ
φµS

(u)) ≤ W δ
µS ,u

(v∗) ≤ W δ
µS ,u

(GM δ
φµS

(u)) + δ
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At a fixed point x ∈ S we have the following relation between the Gradient Mapping
GMgµT

(x) and its approximation GM δ
gµT

(x),

ZµT ,x(GMgµT
(x)) ≤ Zδ

µT ,x
(GM δ

gµT
(x)) + δ + ε(δ, µTσT )∥GM δ

gµT
(x) − x∥S, (6.27)

where ε(δ, µTσT ) =
√

2δ
µSσS

∥B∥S,T . Namely,

ZµT ,x(GMgµT
(x)) ≤ ZµT ,x(GM

δ
gµT

(x))

≤ gδµT
(x) + δ + ⟨∇gδµT

(x), GM δ
gµT

(x) − x⟩ +

⟨∇gµT
(x) −∇gδµT

(x), GM δ
gµT

(x) − x⟩

+
1

2
LgµT

,S∥GM δ
gµT

(x) − x∥2
S (Lemma 6.10, statement 1)

≤ Zδ
µT ,x

(GM δ
gµT

(x)) + δ

+ ∥∇gµT
(x) −∇gδµT

(x)∥∗S∥GM δ
gµT

(x) − x∥S
≤ Zδ

µT ,x
(GM δ

gµT
(x)) + δ + ε(δ, µTσT )∥GM δ

gµT
(x) − x∥S.

(Lemma 6.10, statement 2)

Algorithm 6 corresponds to the Excessive Gap method using the above defined
approximate Gradient Mappings and δ-oracles.

In order to investigate the convergence of Algorithm 6, we will first study the
influence of the δ-oracles on the Excessive Gap conditions (gµk

T
(xk) − φµk

S
(uk) ≤

0 ∀ k). For this sake, we show that Lemma 5.3 also holds when δ-oracles are used.

Lemma 6.12
For any x, y ∈ S and µT > 0 we have

gδµT
(y) + ⟨∇gδµT

(y), x− y⟩ ≤ ĝ(x) + ⟨Bx, uδµT ,y
⟩ − φ̂(uδµT ,y

),

where uδµT ,y
is a δ-approximation of uµT ,y := arg max

u∈T
{⟨By, u⟩ − φ̂(u)− µTdT (u)}.

Proof. By definition of gδµT
and convexity of ĝ we have for any x, y ∈ S and µT > 0,

gδµT
(y) + ⟨∇gδµT

(y), x− y⟩
= ĝ(y) + ⟨By, uδµT ,y

⟩ − φ̂(uδµT ,y
) − µTdT (uδµT ,y

) +

⟨∇ĝ(y) +BTuδµT ,y
, x− y⟩

≤ ĝ(x) + ⟨Bx, uδµT ,y
⟩ − φ̂(uδµT ,y

) − µTdT (uδµT ,y
)

≤ ĝ(x) + ⟨Bx, uδµT ,y
⟩ − φ̂(uδµT ,y

).

The last inequality holds since dT (u) ≥ 0 for all u ∈ T is zero.
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Algorithm 6 Excessive Gap Algorithm with Approximate Oracles

Requires: - A δ-oracle with δ > 0
- xo = minx∈S ds(x) (dS(x

o) = 0)

- An initial smoothing factor µ0
S = 2∥B∥S,T

√
DT

σSσTDS

- An initial smoothing factor µ0
T = ∥B∥S,T

√
DS

σSσTDT

- An absolute error ϵ > 0
Ensures: An approximate primal solution x̄ ∈ S and an approximate dual

solution ū such that g(x̄) − φ(ū) ≤ ϵ

compute x̄0 = GMg
µ0

T

(xo) a δ-approximation of

arg min
y∈S

{
⟨∇ĝ(xo) +BTuδ

µk
T ,x

o , y − xo⟩ + 1
2
Lg

µk
T
,S∥y − xo∥2

S

}
δ-oracle

compute ū0 = uµ0
S ,x

o , a δ-approximation of arg max
v∈T

{⟨Bxo, v⟩−φ̂(v)−µkTdT (v)}
δ-oracle

k = 0 Objective functions evaluation

while g(x̄k) − φ(ūk) > ϵ do
τk = 2

k+3

if k is even then
compute xδ

µk
S ,ūk

δ-oracle

set x̂ = (1 − τk)x̄k + τkx
δ
µk

S ,ūk

compute uδ
µk

T ,x̂
δ-oracle

set ūk+1 = (1 − τk)ūk + τku
δ
µk

T ,x̂

compute x̄k+1 = GM δ
g

µk
T

(x̂) δ-oracle

set µk+1
S = (1 − τk)µ

k
S and µk+1

T = µkT
end if
if k is odd then

compute uδ
µk

T ,x̄k
δ-oracle

set û = (1 − τk)ūk + τku
δ
µk

T ,x̄k

compute xδ
µk

S ,û
δ-oracle

set x̄k+1 = (1 − τk)x̄k + τkx
δ
µk

S ,û

compute ūk+1 = GM δ
φ

µk
S

(û) δ-oracle

set µk+1
T = (1 − τk)µ

k
T and µk+1

S = µkS
end if
k = k + 1 Objective functions evaluation

end while
set x̄ = x̄k and ū = ūk



74 Approximate Oracles and the Optimization Methods

Details for the even steps of Algorithm 6

if k is even then
compute xδ

µk
S ,ūk

, a δ-approximation of arg min
y∈S

{⟨By, ūk⟩ + ĝ(y) + µkSdS(y)}
δ-oracle

set x̂ = (1 − τk)x̄k + τkx
δ
µk

S ,ūk

compute uδ
µk

T ,x̂
, a δ-approximation of arg max

v∈T
{⟨Bx̂, v⟩ − φ̂(v) − µkTdT (v)}

δ-oracle
set ūk+1 = (1 − τk)ūk + τku

δ
µk

T ,x̂

compute x̄k+1 = GM δ
g

µk
T

(x̂), a δ-approximation of

arg min
y∈S

{
⟨∇ĝ(x̂) +BTuδ

µk
T ,x̂
, y − x̂⟩ + 1

2
Lg

µk
T

,S
∥y − x̂∥2

S

}
δ-oracle

set µk+1
S = (1 − τk)µ

k
S and µk+1

T = µkT
end if

Details for the odd steps of Algorithm 6

if k is odd then
compute uδ

µk
T ,x̄k

, a δ-approximation of arg max
v∈T

{⟨Bx̄k, v⟩ − φ̂(v) − µkTdT (v)}
δ-oracle

set û = (1 − τk)ūk + τku
δ
µk

T ,x̄k

compute xδ
µk

S ,û
, a δ-approximation of arg min

y∈S
{⟨By, û⟩ + ĝ(y) + µkSdS(y)}

δ-oracle
set x̄k+1 = (1 − τk)x̄k + τkx

δ
µk

S ,û

compute ūk+1 = GM δ
φ

µk
S

(û), a δ-approximation of

arg max
v∈T

{⟨∇φ̂(û) +Bxδ
µk

S ,û
, v − û⟩ + 1

2
Lφ

µk
S

,T
∥v − û∥2

T} δ-oracle

set µk+1
T = (1 − τk)µ

k
T and µk+1

S = µkS
end if
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Theorem 6.13 (Excessive Gap Condition for Approximate Oracles)
Let δ > 0, x ∈ S, u ∈ T , and µT , µS > 0 satisfy the excessive gap condition up to
an error E(δ), i.e.,

gµT
(x) ≤ φµS

(u) + E(δ).

For τ ∈ (0, 1) compute

xδµS ,u
:= δ-approximation of arg min

y∈S
Φµk

S
(y, u)

= δ-approximation of arg min
y∈S

{⟨By, u⟩ + ĝ(y) + µkSdS(y)}

x̂ := (1 − τ)x+ τxδµS ,u

uδµT ,x̂
:= δ-approximation of arg max

v∈T
Γµk

T
(x̂, v)

δ-approximation of arg max
v∈T

{⟨Bx̂, u⟩ − φ̂(v) − µkTdT (v)}

ū := (1 − τ)u+ τuδµT ,x̂

x̄ := GM δ
gµT

(x̂)

µ̄S := (1 − τ)µS

µ̄T := µT .

Then, provided that τ is chosen in accordance to

τ 2

1 − τ
≤ µSσS
LgµT

,S

, (6.28)

the pairs (x̄, µ̄T ) and (ū, µ̄S) satisfy the excessive gap condition up to an error Ē(δ),

gµT
(x̄) ≤ φµS

(ū) + Ē(δ)

where

Ē(δ) := (2 − τ)

(
3δ + 4∥B∥S,T

√
DSDT

σSσT

√
δ

µTDT

)
+ (1 − τ)

(
4
√
δµSDS + E(δ)

)
.

Proof. We follow the lines of the proof of Theorem 5.1.

φµ̄S
(ū) = −φ̂(ū) + min

y∈S
{⟨By, ū⟩ + ĝ(y) + µ̄SdS(y)}

= −φ̂(ū) + min
y∈S

{⟨By, ū⟩ + ĝ(y) + (1 − τ)µSdS(y)}

( µ̄S = (1 − τ)µS )

≥ −(1 − τ)φ̂(u) − τ φ̂(uδµS ,x̂
) +

min
y∈S

{
⟨By, (1 − τ)u+ τuδµS ,x̂

⟩ + ĝ(y) + (1 − τ)µSdS(y)
}

(by convexity of φ̂ and definition of ū)
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= min
y∈S

{
(1 − τ) [−φ̂(u) + ⟨By, u⟩ + ĝ(y) + µSdS(y)]︸ ︷︷ ︸

A1

+

τ [−φ̂(uδµS ,x̂
) + ⟨By, uδµS ,x̂

⟩ + ĝ(y)]︸ ︷︷ ︸
A2

}
Now consider the expression A1 as a function of y, that is, H(y) := −φ̂(u) +
⟨By, u⟩+ ĝ(y)+µSdS(y). The function H is differentiable and strongly convex with
convexity parameter µSσS and has xµS ,u as unique minimizer over S. For xδµS ,u

, a
δ-approximation of xµS ,u,

H(y) ≥ H(xδµS ,u
) +

1

2
µSσS∥y − xδµS ,u

∥2
S − θ(δ, CS, µSσS)

= φδµS
(u) +

1

2
µSσS∥y − xδµS ,u

∥2
S − θ(δ, CS, µSσS)

holds with θ(δ, CS, µSσS) := 2δ+
√

2δµSσSCS and CS = max
x,y∈S

∥x−y∥S, see Lemma

6.2 statement 2. Thus,

A1 ≥ φδµS
(u) +

1

2
µSσS∥y − xδµS ,u

∥2
S − θ(δ, CS, µSσS)

≥ φµS
(u) +

1

2
µSσS∥y − xδµS ,u

∥2
S − θ(δ, CS, µSσS)

(Lemma 6.9 statement 1)

≥ gµT
(x) − E(δ) +

1

2
µSσS∥y − xδµS ,u

∥2
S − θ(δ, CS, µSσS)

(Excessive Gap condition )

≥ gδµT
(x) − E(δ) +

1

2
µSσS∥y − xδµS ,u

∥2
S − θ(δ, CS, µSσS)

(Lemma 6.8 statement 1)

≥ gδµT
(x̂) + ⟨∇gδµT

(x̂), x− x̂⟩ − E(δ) − ε(δ, µTσT )∥x− x̂∥S − δ

+
1

2
µSσS∥y − xδµS ,u

∥2
S − θ(δ, CS, µSσS)

(Lemma 6.10 statement 2)

= gδµT
(x̂) + τ⟨∇gδµT

(x̂), x− xδµS ,u
⟩ +

1

2
µSσS∥y − xδµS ,u

∥2
S − δ

−ε(δ, µTσT )τ∥x− xδµS ,u
∥S − θ(δ, CS, µSσS) − E(δ).

(x− x̂ = τ(x− xδµS ,u
))

Now we consider expression A2. Using Lemma 6.12 and the definition of x̂, we get

A2 = −φ̂(uδµS ,x̂
) + ⟨By, uδµS ,x̂

⟩ + ĝ(y)

≥ gδµT
(x̂) + ⟨∇gδµT

(x̂), y − x̂⟩
= gδµT

(x̂) + ⟨∇gδµT
(x̂), y − (1 − τ)x− τxδµS ,u

⟩
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Putting both expressions together we get

φµ̄S
(ū) ≥ min

y∈S
{(1 − τ)A1 + τA2}

≥ min
y∈S

{
(1 − τ)

[
gδµT

(x̂) + τ⟨∇gδµT
(x̂), x− xδµS ,u

⟩ +
1

2
µSσS∥y − xδµS ,u

∥2
S

]
+ τ

[
gδµT

(x̂) + ⟨∇gδµT
(x̂), y − (1 − τ)x− τxδµS ,u

⟩
]}

− (1 − τ)
[
δ + ε(δ, µTσT )∥τ(x− xδµS ,u

)∥S + θ(δ, CS, µSσS) + E(δ)
]

= min
y∈S

{
gδµT

(x̂) + ⟨∇gδµT
(x̂), τ(y − xδµS ,u

)⟩ + (1 − τ)
1

2
µSσS∥y − xδµS ,u

∥2
S

}
− (1 − τ)

[
δ + ε(δ, µTσT )∥τ(x− xδµS ,u

)∥S + θ(δ, CS, µSσS)

+ E(δ)
]

≥ min
y∈S

{
gδµT

(x̂) + ⟨∇gδµT
(x̂), τ(y − xδµS ,u

)⟩ +
1

2
LgµT

,S∥τ(y − xδµS ,u
)∥2
S

}
− (1 − τ)

[
δ + ε(δ, µTσT )∥τ(x− xδµS ,u

)∥S + θ(δ, CS, µSσS)

+ E(δ)
]

(Inequality (6.28) : (1 − τ)µSσS ≥ τ 2LgµT
,S)

≥ min
z∈S

{
gδµT

(x̂) + ⟨∇gδµT
(x̂), z − x̂⟩ +

1

2
LgµT ,S

∥z − x̂∥2
S

}
− (1 − τ)

[
δ

+ ε(δ, µTσT )∥τ(x− xδµS ,u
)∥S + θ(δ, CS, µSσS) + E(δ)

]
(Define z := x̂+ τ(y − xδµS ,u

), since x̂ = (1 − τ)x+ τxδµS ,u
∈ S,

we have z ∈ (1 − τ)x+ τS ⊆ S)

≥ gδµT
(x̂) + ⟨∇gδµT

(x̂), x̄− x̂⟩ +
1

2
LgµT

,S∥x̄− x̂∥2
S − δ

− (1 − τ)
[
δ + ε(δ, µTσT )∥x− x̂∥S + θ(δ, CS, µSσS) + E(δ)

]
(Definition of x̄ := GM δ

gµT
(x̂) and x̂)

≥ gδµT
(x̄) − 2δ − ε(δ, µTσT )∥x̄− x̂∥S

− (1 − τ)
[
δ + ε(δ, µTσT )∥x− x̂∥S + θ(δ, CS, µSσS) + E(δ)

]
( Lemma 6.10 statement 3)

≥ gµ̄T
(x̄) − 3δ − ε(δ, µTσT )∥x̄− x̂∥S

− (1 − τ)
[
δ + ε(δ, µTσT )∥x− x̂∥S + θ(δ, CS, µSσS) + E(δ)

]
(Lemma 6.10 statement 1 and µ̄T = µT )

Thus,

Ē(δ) = 3δ + ε(δ, µTσT )∥x̄− x̂∥S
+ (1 − τ)

[
δ + ε(δ, µTσT )∥(x− x̂∥S + θ(δ, CS, µSσS) + E(δ)

]
.
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Since dS(x) is strongly convex, we have ∥x − xo∥S ≤
√

2Ds/σS for any x ∈ S,
where xo minimizes dS(x) over S. Therefore, for any x, y ∈ S,

∥x− y∥S ≤ ∥x− xo∥S + ∥xo − y∥S ≤ 2

√
2Ds

σS
.

Then,

Ē(δ) = (4 − τ)δ + (2 − τ)ε(δ, µTσT )∥(x− x̂∥S + (1 − τ)θ(δ, CS, µSσS)

+(1 − τ)E(δ)

= (4 − τ)δ + (2 − τ)ε(δ, µTσT )∥(x− x̂∥S + (1 − τ)(2δ +
√

2δµSσS∥y − ∥S)
+(1 − τ)E(δ)

(Definition of θ(δ, CS, µSσS))

≤ (6 − 3τ)δ + 2(2 − τ)

√
2δ

µTσT
∥B∥S,T

√
2DS

σS
+ 2(1 − τ)

√
2δµSσS

√
2DS

σS

+(1 − τ)E(δ)

(Definition of ε(δ, µTσT ) and ∥x− y∥S ≤ 2

√
2Ds

σS
∀ x, y ∈ S)

= 3(2 − τ)δ + 4(2 − τ)∥B∥S,T
√
DSDT

σSσT

√
δ

µTDT

+ 4(1 − τ)
√
δµSDS

+(1 − τ)E(δ).

The symmetric result of Theorem 6.13 for the dual step is claimed in the next
theorem.

Theorem 6.14
Let δ > 0, x ∈ S, u ∈ T , and µT , µS > 0 satisfy the excessive gap condition up to
an error E(δ), i.e.,

gµT
(x) ≤ φµS

(u) + E(δ).

For τ ∈ (0, 1) compute

uδµT ,x
:= δ-approximation of arg max

v∈T
Γµk

T
(x, v)

û := (1 − τ)u+ τuδµT ,x

xδµS ,û
:= δ-approximation of arg min

y∈S
Φµk

S
(y, û)

x̄ := (1 − τ)x+ τxδµS ,û

ū := GM δ
φµS

(û)

µ̄T := (1 − τ)µT

µ̄S := µS.
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Then, provided that τ is chosen in accordance to

τ 2

1 − τ
≤ µTσT
LφµS

,T

, (6.29)

the pairs (x̄, µ̄T ) and (ū, µ̄S) satisfy the excessive gap condition up to an error Ē(δ),

gµT
(x̄) ≤ φµS

(ū) + Ē(δ)

where

Ē(δ) := (2 − τ)

(
3δ + 4∥B∥S,T

√
DSDT

σSσT

√
δ

µSDS

)
+ (1 − τ)

(
4
√
δµTDT + E(δ)

)
.

Combining the previous results, we derive the following theorem, which is the key
to evaluating the order of the propagated error δ.

Theorem 6.15
Let the pairs of sequences ({x̄k}k≥0, {µkT}k≥0) and ({ūk}k≥0, {µkS}k≥0) be generated
by Algorithm 6. Then, for each k ≥ 0 the pairs (x̄k, µ

k
T ) and (ūk, µ

k
S) satisfy the

excessive gap condition,

gµk
T
(x̄k) ≤ φµk

S
(ūk) + Ek(δ) (6.30)

where

E0(δ) = 3δ +
√
δ

(
4∥B∥S,T

√
DSDT

σSσT

) 1
2

Ek(δ) = 6δk + 2
√

2
√
δ

k∑
i=1

(√
i+ 1 +

1√
i

)(
4∥B∥S,T

√
DSDT

σSσT

) 1
2

+ E0(δ)

for k ≥ 1.

Proof. We first prove that Inequality (6.30) holds for k = 0.

gµ0
T
(x̄0) ≤ gδµ0

T
(x̄0) + δ (Lemma 6.8 statement 1)

≤ gδµ0
T
(xo) + ⟨∇gδµ0

T
(xo), x̄0 − xo⟩ +

Lg
µ0

T
,S

2
∥x̄0 − xo∥2

S

+ 2δ + ε(δ, µ0
TσT )∥x̄0 − xo∥S (Lemma 6.10 statement 3)

≤ min
x∈S

{
gδµ0

T
(xo) + ⟨∇gδµ0

T
(xo), x− xo⟩ +

Lg
µ0

T
,S

2
∥x− xo∥2

S

}
+ 3δ + ε(δ, µ0

TσT )∥x̄0 − xo∥S (Definition of GM δ
g

µ0
T

(xo))
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≤ min
x∈S

{
gδµ0

T
(xo) + ⟨∇gδµ0

T
(xo), x− xo⟩ +

1

2
µ0
TσT∥x− xo∥2

S

}
+ 3δ + ε(δ, µ0

TσT )∥x̄0 − xo∥S (Lg
µ0

T
,S =

1

2
µ0
TσT )

≤ min
x∈S

{
gδµ0

T
(xo) + ⟨∇gδµ0

T
(xo), x− xo⟩ + µ0

TdS(x)
}

+ 3δ

+ ε(δ, µ0
TσT )∥x̄0 − xo∥S (dS(x) ≥

1

2
σS∥x̄0 − xo∥2

S)

= min
x∈S

{
ĝ(xo) + ⟨Bxo, uδµ0

T ,x
o⟩ − φ̂(uδµ0

T ,x
o) − µ0

TdT (uδµ0
T ,x

o)

+ ⟨∇ĝ(xo) +BTuδµ0
T ,x

o , x− xo⟩ + µ0
SdS(x)

}
+ 3δ

+ ε(δ, µ0
TσT )∥x̄0 − xo∥S

(Definition of gδµ0
T
(xo) and ∇gδµ0

T
(xo) in Lemma 6.8)

≤ min
x∈S

{
ĝ(x) + ⟨Bx, uδµ0

T ,x
o⟩ + µ0

SdS(x)
}
− φ̂(uδµ0

T ,x
o) + 3δ

+ ε(δ, µ0
TσT )∥x̄0 − xo∥S

(Convexity of ĝ(x) and dT (u) ≥ 0 ∀ u ∈ T )

= −φ̂(ū0) + min
x∈S

{
ĝ(x) + ⟨Bx, ū0⟩ + µ0

SdS(x)
}

+ 3δ

+ ε(δ, µ0
TσT )∥x̄0 − xo∥S (ū0 := uδµ0

T ,x
o)

≤ φδµ0
T
(ū0) + 3δ + ε(δ, µ0

TσT )∥x̄0 − xo∥S

= φδµ0
T
(ū0) + 3δ +

√
2δ

µ0
TσT

∥B∥S,T∥x̄0 − xo∥S

≤ φδµ0
T
(ū0) + 3δ +

√
4δ∥B∥S,T

(
DSDT

σSσT

) 1
4

(µ0
T := ∥B∥S,T

√
DS

σSσTDT

and ∥x̄0 − xo∥S ≤
√

2DS

σS
)

For k ≥ 1, we proceed by induction. To simplify the notation we define the constant

Υ = 4∥B∥S,T
√
DSDT

σSσT
.

Let us show that Inequality (6.30) holds for k = 1. Using Theorem 6.13 with τ = τ0
and E(δ) = E0(δ), we have

gµ1
T
(x̄1) ≤ φµ1

S
(ū1) + Ē(δ)

= φµ1
S
(ū1) + (2 − τ0)

(
3δ + Υ

√
δ

µ0
TDT

)
+ (1 − τ0)

(
4
√
δµ0

SDS + E0(δ)

)
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= φµ1
S
(ū1) +

4

3

(
3δ + 2

√
δΥ
)

+
1

3

(
2
√

2δΥ + E0(δ)
)

(τ0 =
2

3
, µ0

SDS =
Υ

2
, µ0

TDT =
Υ

4
)

= φµ1
S
(ū1) + 4δ + 2

√
2δΥ

(
2
√

2

3
+

1

3

)
+

1

3
E0(δ)

≤ φµ1
S
(ū1) + 6δ + 2

√
2δΥ(

√
2 + 1) + E0(δ)

= φµ1
S
(ū1) + 6δ + 2

√
2δ(

√
2 + 1)

(
4∥B∥S,T

√
DSDT

σSσT

) 1
2

+ E0(δ).

Now assume that Inequality (6.30) holds for k and show that it also holds for k+1.
We distinguish the case where k is even from the case where k is odd.

Suppose k is even. From Theorem 6.13 we have

gµk+1
T

(x̄k+1) ≤ φµk+1
S

(ūk+1) + Ek+1(δ)

with

Ek+1(δ) = (2 − τk)

(
3δ + Υ

√
δ

µkTDT

)
+ (1 − τk)

(
4
√
δµkSDS + Ek(δ)

)
.

Let us first evaluate µkTDT and µkSDS. Since µkT = 2
k+2

µ0
T and µkS = 1

k+1
µ0
S we have

µkTDT =
2

k + 2
µ0
TDT =

2

k + 2
∥B∥S,T

√
DS

σSσTDT

DT =
1

k + 2

Υ

2
,

µkSDS =
1

k + 1
µ0
SDS =

1

k + 1
2∥B∥S,T

√
DT

σSσTDS

DS =
1

k + 1

Υ

2
.

Then,

Ek+1(δ) =

(
2 − 2

k + 3

)(
3δ + Υ

√
2δ(k + 2)

Υ

)

+

(
1 − 2

k + 3

)(
4

√
δΥ

2(k + 1)
+ Ek(δ)

)

=
k + 2

k + 3

(
6δ + 2

√
2
√
δΥ(k + 2)

)
+
k + 1

k + 3

(
2
√

2

√
δΥ

k + 1
+ Ek(δ)

)

≤ 6δ + 2
√

2
√
δΥ

(√
(k + 1) + 1 +

1√
k + 1

)
+ Ek(δ).
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Note that if k is odd, µkT = 2
k+1

µ0
T and µkS = 1

k+2
µ0
S we have

µkTDT =
2

k + 1
µ0
TDT =

2

k + 1
∥B∥S,T

√
DS

σSσTDT

DT =
1

k + 1

Υ

2
,

µkSDS =
1

k + 2
µ0
SDS =

1

k + 2
2∥B∥S,T

√
DT

σSσTDS

DS =
1

k + 2

Υ

2
,

and using Lemma 6.14 we also get

Ek+1(δ) ≤ 6δ + 2
√

2
√
δΥ

(√
(k + 1) + 1 +

1√
k + 1

)
+ Ek(δ).

Thus,

Ek+1(δ) ≤ 6δ + 2
√

2
√
δΥ

(√
(k + 1) + 1 +

1√
k + 1

)
+ Ek(δ)

≤ 6δ + 2
√

2
√
δΥ

(√
(k + 1) + 1 +

1√
k + 1

)
+ 6δk + 2

√
2
√
δ

k∑
i=1

(
√
i+ 1 +

1√
i
)
√

Υ + E0(δ)

= 6δ(k + 1) + 2
√

2
√
δ

k+1∑
i=1

(
√
i+ 1 +

1√
i
)
√

Υ + E0(δ)

= 6δ(k + 1) + 2
√

2
√
δ
k+1∑
i=1

(
√
i+ 1 +

1√
i
)

(
4∥B∥S,T

√
DSDT

σSσT

) 1
2

+ E0(δ)

Having derived the error propagation, we can finally state the accuracy δ of the
approximate oracles, which is sufficient for obtaining the same rate of convergence
as if exact oracles were available.

Theorem 6.16 (Convergence of Excessive Gap Algorithm with Approxi-
mate Oracles— Theorem 7 in [CE05])
Let the pairs of sequences ({x̄k}k≥0, {µkT}k≥0) and ({ūk}k≥1, {µkS}k≥1) be generated
by Algorithm 6. Then, for each k ≥ 1

g(x̄k) − φ(ūk) ≤
24

k + 1
∥B∥S,T

√
DSDT

σSσT
(6.31)

holds provided that δ = 1
(k+1)5

∥B∥S,T
√

DSDT

σSσT
.
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Proof. Using Theorem 6.15 we get for k ≥ 1

0 ≤ g(x̄k) − φ(ūk)

(Definition and properties of gµk
T

and φµk
S
)

≤ gµk
T
(x̄k) − φµk

S
(ūk) + µkSDS + µkTDT

(Excessive Gap condition, Theorem 6.15)

≤ Ek(δ) + µkSDS + µkTDT

≤ 6δk + 2
√

2
√
δ

k∑
i=1

(
√
i+ 1 +

1√
i
)

(
4∥B∥S,T

√
DSDT

σSσT

) 1
2

+ E0(δ)

+
4

k + 1
∥B∥S,T

√
DSDT

σSσT

≤ 6δ(k + 1) +
√
δ

(
4∥B∥S,T

√
DSDT

σSσT

) 1
2
(

2
√

2
k∑
i=1

(
√
i+ 1 +

1√
i
) + 1

)

+
4

k + 1
∥B∥S,T

√
DSDT

σSσT

≤ 6δ(k + 1) +
√
δ

(
4∥B∥S,T

√
DSDT

σSσT

) 1
2

·(
2
√

2

(∫ k+2

2

√
ωdω + 1 +

∫ k

1

1√
ω
dω

)
+ 1

)
+

4

k + 1
∥B∥S,T

√
DSDT

σSσT

≤ 6δ(k + 1) + 4
√

2
√
δ

(
4∥B∥S,T

√
DSDT

σSσT

) 1
2
(

(k + 2)
3
2

3
+ k

1
2

)

+
4

k + 1
∥B∥S,T

√
DSDT

σSσT

≤ 6δ(k + 1) + 4
√

2
√
δ

(
4∥B∥S,T

√
DSDT

σSσT

) 1
2 (

(k + 1)
3
2 + k

1
2

)
+

4

k + 1
∥B∥S,T

√
DSDT

σSσT

≤

(
3

2

1

(k + 1)3
+

2
√

2

(k + 1)
+ 2

√
2 + 1

)
4

k + 1
∥B∥S,T

√
DSDT

σSσT(
δ =

1

(k + 1)5
∥B∥S,T

√
DSDT

σSσT

)

≤ 24

k + 1
∥B∥S,T

√
DSDT

σSσT
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Last inequality holds since for k ≥ 1 we have
(

3
2

1
(k+1)3

+ 2
√

2
(k+1)

+ 2
√

2 + 1
)
≤ 6.

Thus, in order to obtain an error of ϵ > 0, δ has to be of order O(ϵ5). This sug-
gests that the algorithm could be instable under minor inaccuracies of the oracles.
However, the numerical results in Section 9.3 do not support this concern. Note
that we have not made any assumptions on the oracles except their accuracy. The
last result was presented in Theorem 7 in [CE05]. Note that due to a calculation
error we supposed that a δ of order O(ϵ4) was sufficient. Nevertheless, such an
order of precision is prohibitive and implies that subproblems must be solved to
optimality. If possible, Primal-Dual Interior Point methods should be applied given
their running time dependence on δ, O(log 1

δ
). It may be possible to improve the

theoretical result by imposing other requirements on the approximate oracles.



Part II

Applications of the Optimization
Methods to Special Linear
Problems





7. Uncapacitated Facility Location
Problem

In this chapter, we present polynomial time approximation schemes for the lin-
ear programming relaxation of the Uncapacitated Facility Location problem (UFL)
basing either on the Primal-Dual Subgradient methods (see Chapter 4) or the Ex-
cessive Gap method (see Chapter 5). These schemes are analyzed not only from
a theoretical point of view but also a practical. Theoretical and numerical results
were partially presented in [CE05]. In this paper we focus on the presentation of
a polynomial time approximation scheme based on the Excessive Gap method and
using the Euclidean norm and the Squared Euclidean norm as prox-functions. We
obtained the following result, for ϵ > 0 a polynomial time approximation scheme
exists, which delivers a (1+ϵ)-approximation in O(1

ϵ
). It improves the dependence

on ϵ of the previous best algorithms we were aware of by a factor of O(1
ϵ
), [You00],

[GK02], and [Chu03]. Here, we extend the presentation to the polynomial time
approximation scheme based on Primal-Dual Subgradient methods and we also
consider other choices of norms and prox-functions. Note that we focus on the
presentation of numerical performance of the developed algorithms. Related results
concerning the Facility Location problem with submodular penalties were presented
by Chudak and Nagano in [CN07].

7.1 Problem Description

The Uncapacitated Facility Location problem (UFL) consists of a set of potential
facility locations F and a set of clients D that require service. Building a facility
at location i ∈ F has an associated fixed cost fi ≥ 0, and any open facility can
provide an unlimited amount of a certain commodity. Each client j ∈ D has a
demand dj > 0 that must be shipped from one of the open facilities. If a facility
at location i ∈ F is used to satisfy the demand of the client j ∈ D, the service cost
incurred is proportional to the distance cij from i to j. The goal is to determine
a subset of the set of potential facility locations at which to open facilities and an
assignment of clients to these facilities so as to minimize the overall total cost; that
is, the fixed costs of opening the facilities plus the total service cost.
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We assume that all the demands are 1 (otherwise we replace cij with djcij) and
throughout we let m := |F| and n := |D|. Of course the UFL problem corresponds
to an integer minimization problem but here we consider the simplest linear pro-
gramming relaxation introduced by Balinski in [Bal65]), which we will refer to as
UFL-LP,

(UFL-LP) minimize
∑
i∈F

∑
j∈D

cijxij +
∑
i∈F

fiyi

subject to
∑
i∈F

xij = 1 ∀j ∈ D (7.1)

xij ≤ yi ∀j ∈ D, i ∈ F (7.2)

xij ≥ 0.

Any 0-1 feasible solution corresponds to a feasible solution to the UFL problem.
Namely, yi = 1 indicates that a facility at location i ∈ F is open, whereas xij = 1
means that client j ∈ D is serviced by the facility built at location i ∈ F . The
inequalities (7.1) state that each demand point j ∈ D must be assigned to some
facility, whereas inequalities (7.2) say that clients can only be assigned to open
facilities. Thus the linear program UFL-LP is indeed a relaxation of the prob-
lem. The linear programming relaxation, UFL-LP, is known to provide excellent
lower bounds, and sometimes is referred to as the “strong linear programming re-
laxation”. Namely, it was often observed that optimal solutions of the UFL-LP are
integral, see [MF90] and references thereafter. Moreover, Chudak shows in [Chu98]
that for the metric case (service costs are proportional to distance), the UFL-LP
optimal solution is within a factor of 1.736 of the optimal cost of the UFL problem.
Bäıou and Barahona recently show in [BB06] that for special instances of the UFL
problem, the convex hull of the integer feasible solutions is equal to the polytope
of feasible solutions of the UFL-LP.

In order to solve the UFL-LP, Lagrange relaxations have been considered because
of its large size (O(mn) variables and constraints). In practice, the algorithms that
are known to obtain the best results are those that relax equations (7.1). However
these algorithms usually have problems delivering feasible primal solutions (see
[BC99]) and do not have a known worst-case analysis of the running time. In
contrast, from a theoretical point of view, relaxing constraints (7.2) has proven
more useful. In this category, there are the algorithms of [You00], [GK02] and
[CS03]. These algorithms are all polynomial time approximation schemes providing
in O( 1

ϵ2
) iterations an ϵ-relative approximate solution, which corresponds to the

previously best known running time dependence on ϵ. We follow this approach
as well and derive polynomial time approximation schemes first with a running
time dependence O( 1

ϵ2
) and secondly with a running time dependence O(1

ϵ
), our

improvement contribution.
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Consider the Lagrange relaxation of inequalities (7.2),

max
w

min
x,y

m∑
i=1

n∑
j=1

cijxij +
m∑
i=1

fiyi +
m∑
i=1

n∑
j=1

wij(xij − yi)

subject to x ∈ ∆n
m

wij ≥ 0 ∀j ∈ D, i ∈ F

where ∆n
m denotes the Cartesian product of n m-dimensional simplex, i.e., ∆m :=

{z ∈ Rm |
∑m

i=1 zi = 1, zi ≥ 0 ∀ i = 1, . . . ,m} and ∆n
m := ∆m × · · · × ∆m

(the notation will be used throughout this chapter). Since we do not require the
variable y to be nonnegative, we can assume without loss of generality that for each
i = 1, . . . ,m, fi =

∑n
j=1wij. Then, using the change of variables wij = fiuij for

i = 1, · · · ,m and j = 1, · · · , n, with u ∈ ∆m
n , we get the following representation

of the previous Lagrange relaxation,

(UFL-LR) max
u∈∆m

n

min
x∈∆n

m

{
m∑
i=1

n∑
j=1

cijxij +
m∑
i=1

n∑
j=1

fiuijxij

}
.

For the sake of clarity, we will use the notations introduced in Chapter 3. Thus,
the primal space Q is ∆n

m and the dual space P is ∆m
n . The primal function is

f(x) :=
m∑
i=1

n∑
j=1

cijxij + max
u∈P

{
m∑
i=1

n∑
j=1

fiuijxij

}
(7.3)

and the dual function is

ψ(u) := min
x∈Q

{
m∑
i=1

n∑
j=1

cijxij +
m∑
i=1

n∑
j=1

fiuijxij

}
. (7.4)

Thus, the sets Q and P with the objective functions f(x) and ψ(u) satisfy Assump-
tion 1.

Note that both functions have the property of being separable either by clients or
by facilities. Namely we can rewrite the functions as follows,

f(x) :=
m∑
i=1

(
n∑
j=1

cijxij + max
ui∈∆n

n∑
j=1

fiuijxij

)
(7.5)

and

ψ(u) :=
n∑
j=1

(
min
xj∈∆m

m∑
i=1

cijxij + fiuijxij

)
. (7.6)
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The evaluation of both functions is hence simplified, since we have to compute a
sequence of smaller maximization or minimization problems. These optimization
problems correspond to minimization or maximization of linear functions over ∆m,
respectively ∆n, which can be done in O(m), respectively O(n). Hence, the overall
complexity of the evaluation of the primal or the objective functions is O(nm)

Before considering in detail the developed approximation algorithm for solving UFL-
LR and its dual, we show that it is simple to derive a feasible solution, (x, y), for
the UFL-LP from a feasible solution x̄ ∈ ∆n

m, such that the corresponding costs are
equal to f(x̄). Namely, for each facility i ∈ F we define yi := maxj∈D x̄ij and for
all i ∈ F and j ∈ D we define xij := x̄ij. Then,

f(x̄) =
m∑
i=1

n∑
j=1

cijx̄ij +
m∑
i=1

max
ui∈∆n

n∑
j=1

fiuijx̄ij

=
m∑
i=1

n∑
j=1

cijx̄ij +
m∑
i=1

fi max
j∈D

x̄ij

=
m∑
i=1

n∑
j=1

cijxij +
m∑
i=1

fiyi.

Similarly, we can derive from a feasible solution ū ∈ ∆m
n a feasible solution for the

dual problem of UFL-LP. In the following consider the dual of UFL-LP,

(UFL-DP) maximize
∑
j∈D

vj

subject to
∑
j∈D

wij = fi ∀i ∈ F

vj − wij ≤ cij ∀j ∈ D, i ∈ F
wij ≥ 0.

For all i ∈ F and j ∈ D we define wij := fiūij and for all j ∈ D we define
vj := mini∈F{cij + fiūij}. Then,

ψ(ū) =
n∑
j=1

min
xj∈∆m

m∑
i=1

(cij + fiūij)xij

=
n∑
j=1

min
i∈F

(cij + fiūij)

=
n∑
j=1

vj.
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7.2 Optimization Methods

For applying both methods, Primal-Dual Subgradient method and Excessive Gap
method, the first step consists of choosing space norms and then the appropriate
prox-functions (differentiable and strongly convex functions). This decision has
considerable impact on the tractability, since it generates different algorithms and
implies different oracles.

We are going to consider two options. First we use the Euclidean norm for the
space norms and the squared Euclidean norm for the prox-functions. Secondly, we
consider the Norm 1 and the Entropy function for the prox-functions. Both choices
generate approximation functions, which are either separable by client or by facility.

First, let us investigate the subdifferential of the primal function, which does not
depend on the chosen norm.

For fixed x ∈ Q, define

Ui(x) :=

{
ui ∈ ∆n | ui = arg max

vi∈∆n

{
n∑
j=1

fixijvij}

}
∀ i = 1, . . . ,m

and U(x) := U1(x) × · · · × Um(x). Moreover, define for u ∈ U(x),

ξij := cij + fiuij ∀ i = 1, . . . ,m, j = 1, . . . , n, (7.7)

then ξ ∈ ∂f(x) using Lemma 4.9. Thus, computing a subgradient at x is equivalent
to solving

max
vi∈∆n

n∑
j=1

fixijvij ∀ i = 1, . . . ,m

i.e., it is sufficient to evaluate max{1≤j≤n} xij for i = 1, . . . ,m, which can be done
in O(nm), see Algorithm 7.

Algorithm 7 UFL:Subgradient

Input: An evaluation point x
Output: ξx ∈ ∂f(x) and the corresponding feasible dual solution u

for i = 1 to m do
compute j∗ = arg max

1≤j≤n
xij

set uij =

{
1 if j = j∗

0 otherwise
and ξij =

{
cij + fiuij if j = j∗

cij otherwise
end for

Note that when we compute a subgradient ξ, we also compute a corresponding dual
solution u.
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The next subsections are divided into two parts; one part concerning the Primal-
Dual Subgradients methods and the other part concerning the Excessive Gap
method.

7.2.1 Euclidean Norm

We endow the primal space as well as the dual space with Euclidean norms. As
prox-functions we consider the squared Euclidean norm. Thus, the primal prox-
function is defined as follows

dQ(x) :=
1

2
∥x− xo∥2, (7.8)

where xo :=
1

m
1 = arg min

x∈Q
∥x∥2

σQ = 1 and DQ =
n

2

(m− 1)

m
≥ max

x∈Q
dQ(x),

(7.9)

and similarly, the dual prox-function is defined as

dP (u) :=
1

2
∥u− uo∥2, (7.10)

where uo :=
1

n
1 = arg min

u∈P
∥u∥2

σP = 1 and DP =
m

2

(n− 1)

n
≥ max

u∈P
dP (u),

(7.11)

where we denote the unit vector by 1.

The minimum xo, respectively uo, corresponds to the Euclidean projection of 0 ∈
Rmn onto the product of simplices ∆n

m, respectively ∆m
n . The maximal value of

both prox-functions, DQ and DP , are attained at the extreme points of the product
of simplices, ∆n

m and ∆m
n .

Finally the norm of matrix A is given by

∥A∥Q,P := max
∥x∥2≤1

max
∥u∥2≤1

⟨Ax, u⟩

= max
∥x∥2≤1

max
∥u∥2≤1

m∑
i=1

n∑
j=1

fiuijxij

≤ max
∥x∥2≤1

max
∥u∥2≤1

( max
1≤i≤m

fi)∥x∥2∥u∥2

≤ ( max
1≤i≤m

fi) =: fmax. (7.12)
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Primal Dual Subgradient Method

In the different subgradient methods with the exception of the Truncated Dual Av-
eraging method, we assume that the norm of the computed subgradients is bounded
(this bound was denoted by L). Since the adjoint norm of the Euclidean norm is
the Euclidean norm itself, the norm of the subgradients is also Euclidean. Let x be
fixed and consider ξx ∈ ∂f(x) defined as in Equation (7.7) with u ∈ U(x), then

∥ξx∥∗ = ∥ξx∥2 =

(
m∑
i=1

n∑
j=1

(cij + fiuij)
2

)1/2

≤

(
m∑
i=1

n∑
j=1

(cij + fi)
2

)1/2

= ∥c+ f̃∥2 =: L

where u ∈ U(x), f̃ ∈ Rnm with f̃i1 = · · · = f̃in = fi for all 1 ≤ i ≤ m.

In the Truncated Dual Averaging method, we assume that the subgradients of the
primal function f(x) have bounded variations. We next evaluate an upper bound
for those variations, which we denoted in Section 4.3 by M . Let x and y be fixed
and consider ξx ∈ ∂f(x) and ξy ∈ ∂f(y) defined as in Equation (7.7), then

∥ξx − ξy∥2 =

(
m∑
i=1

n∑
j=1

(cij + fiu
x
ij − cij − fiu

y
ij)

2

)1/2

with ux ∈ U(x), uy ∈ U(y)

=

(
m∑
i=1

n∑
j=1

f 2
i (u

x
ij − uyij)

2

)1/2

≤
(√

2∥f̄∥2

)
=: M

where f̄ = (fi, · · · , fm).

Now we have all the elements necessary to apply the Primal-Dual Subgradients
algorithms to the linear programming relaxation of the UFL problem. Algorithm 8
corresponds to Algorithm 2 using the simple averages sequences (4.12), Algorithm
9 corresponds to Algorithm 2 using the weighted averages sequences (4.13), and
Algorithm 10 corresponds to Algorithm 3.
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Algorithm 8 Simple Dual Averaging Algorithm for UFL (UFL-SDA-Euclidean)

Input: - xo = 1
m
1

- The constants DQ and L
- An absolute error ϵ > 0

Output: An approximate primal solution x̄ ∈ ∆n
m and an approximate

dual solution ū ∈ ∆m
n such that f(x̄) − ψ(ū) ≤ ϵ.

set k = 0 and β̂0 = 1
set x0 = xo

compute ξ0 ∈ ∂f(x0) and u0 UFL:Subgradient

set ζ0 = ξ0
set x̄ = x0 and ū = u0.
while f(x̄) − ψ(ū) > ϵ do

set k = k + 1
compute β̂k = β̂k−1 + 1

β̂k−1
and βk = L√

2DQ
β̂k

compute xk = arg min
x∈Q

{⟨ζk−1, x⟩ + βk
1
2
∥x− xo∥2

2}
UFL:Quadratic projection onto ∆n

m

compute ξk ∈ ∂f(xk) and uk UFL:Subgradient

set ζk = ζk−1 + ξk
x̄ = 1

k+1

∑k
l=0 xl and ū = 1

k+1

∑k
l=0 ul UFL:Objective functions

evaluation

end while
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Algorithm 9 Weighted Dual Averaging Algorithm for UFL (UFL-WDA-
Euclidean)

Input: - xo = 1
m
1

- The constant DQ

- An absolute error ϵ > 0

Output: An approximate primal solution x̄ ∈ ∆n
m and an approximate

dual solution ū ∈ ∆m
n such that f(x̄) − ψ(ū) ≤ ϵ.

set k = 0, and β̂0 = 1
set x0 = xo

compute ξ0 ∈ ∂f(x0) and u0 UFL:Subgradient

set λ0 = 1
∥ξ0∥2

, Λ0 = λ0, and ζ0 = λ0ξ0
set x̄ = x0 and ū = u0.
while f(x̄) − ψ(ū) > ϵ do

set k = k + 1
compute β̂k = β̂k−1 + 1

β̂k−1
and βk = 1√

2DQ
β̂k

compute xk = arg min
x∈Q

{⟨ζk−1, x⟩ + βk
1
2
∥x− xo∥2

2}
UFL:Quadratic projection onto ∆n

m

compute ξk ∈ ∂f(xk) and uk UFL:Subgradient

set λk = 1
∥ξk∥2

, Λk = Λk−1 + λk, and ζk = ζk−1 + λkξk

set x̄ = 1
Λk

∑k
l=0 λlxl and ū = 1

Λk

∑k
l=0 λlul
UFL:Objective functions evaluation

end while
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Algorithm 10 Truncated Simple Dual Averaging Algorithm for UFL (UFL-TSDA-
Euclidean)

Input: - xo := 1
m
1

- The constants DQ and M
- An absolute error ϵ > 0

Output: An approximate primal solution x̄ ∈ ∆n
m and an approximate

dual solution ū ∈ ∆m
n such that f(x̄) − ψ(ū) ≤ ϵ.

set k = 1 and β1 = 1
set x0 = xo

compute ξ0 ∈ ∂f(x0) and u0 UFL:Subgradient

compute x1 = arg min
x∈Q

{⟨ξ0, x⟩ + β1
1
2
∥x− xo∥2

2}
UFL:Quadratic projection onto ∆n

m

compute ξ1 ∈ ∂f(x1) and u1 UFL:Subgradient

set ζ1 = ξ1
x̄ = x1 and ū = u1 UFL:Objective functions evaluation

while f(x̄) − ψ(ū) > ϵ do
set k = k + 1
compute xk = arg min

x∈Q
{⟨ζk−1, x⟩ + βk

1
2
∥x− xo∥2

2}
UFL:Quadratic projection onto ∆n

m

set βk = M√
2DQ

√
k

compute ξk ∈ ∂f(xk) and uk UFL:Subgradient

set ζk = ζk−1 + ξk
x̄ = 1

k

∑k
l=1 xl and ū = 1

k

∑k
l=1 ul UFL:Objective functions evaluation

end while
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In order to evaluate the running time of all algorithms, we need to study the com-
plexity of the three operations below, which are the most demanding operations in
the algorithms, i.e.,

1) the evaluation of the primal and the dual objective functions, f(x), x ∈ ∆n
m and

ψ(u), u ∈ ∆m
n

2) the computation of the subgradients of the primal objective function, ξx ∈
∂f(x), x ∈ ∆n

m.

3) the computation of the quadratic projections onto ∆n
m.

We note that these operations can be efficiently conducted. Namely, as explained at
the end of the previous subsection, it takes O(nm) time to evaluate both objective
functions. Moreover, using Algorithm 7, a subgradient of the primal objective
function as well as a corresponding feasible dual solution can be computed in O(nm)
time. The oracle providing quadratic projection onto ∆n

m remains to be determined.

Towards that end, we consider a general formulation of the quadratic projections
onto ∆n

m,

minimize
n∑
j=1

m∑
i=1

aijyij +
1

2
b

n∑
j=1

m∑
i=1

y2
ij (7.13)

subject to y ∈ ∆n
m

where a ∈ Rnm and b ∈ R+. We observe that this problem is decomposable. Thus,
it is sufficient to solve the following n minimization problems,

yj := arg min
x∈∆m

{
m∑
i=1

aijxi +
1

2
b

m∑
i=1

x2
i

}
∀j = 1, . . . , n (7.14)

and y = (y1, . . . , yn).

From the KKT conditions of a single optimization problem (7.14), we derive the
procedure described in Algorithm 11 for computing the general quadratic projection
onto ∆n

m (7.13).

Lemma 7.1
Algorithm 11 delivers in O(nm logm) time an optimal solution to the following
problem

minimize
n∑
j=1

m∑
i=1

aijyij +
1

2
b

n∑
j=1

m∑
i=1

y2
ij

subject to y ∈ ∆n
m

where a ∈ Rnm and b ∈ R+.
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Proof. To show that Algorithm 11 delivers an optimal solution we show that output
y and (λ,w) satisfy the KKT conditions for the considered optimization problem.
Note that we assume the components of vector a to be ordered, i.e., a1j ≤ a2j ≤
· · · ≤ amj for j = 1, . . . , n.

Thus, we show that

1) aij + byij + λj − wij = 0 for i = 1, . . . ,m and j = 1, . . . , n

2) yijwij = 0 for i = 1, . . . ,m and for j = 1, . . . , n (orthogonality)

3)
∑m

i=1 yij = 1 for j = 1, . . . , n and yij ≥ 0 for i = 1, . . . ,m and for j = 1, . . . , n
— (primal feasibility)

4) λ ∈ Rm and wij ≥ 0 for i = 1, . . . ,m and for j = 1, . . . , n
— (dual feasibility)

hold.

Let us fix j and consider k ≥ 1 such that ykj = −1
b
(λj + akj) ≥ 0 with

λj = − 1
k
(b+

∑k
i=1 aij).

For i = 1, . . . , k, we have wij = 0 and yij = −1
b
(λj + aij) ≥ −1

b
(λj + akj) ≥ 0 since

aij ≤ akj. Thus, the KKT conditions 1), 2), and 4) are satisfied for i = 1, . . . , k
and fixed j.

For proving that they are also satisfied for i = k + 1, . . . ,m and fixed j let us first
note that for k + 1,

−1

b

(
− 1

k + 1
(b+

k+1∑
i=1

aij) + ak+1j

)
< 0

and thus − 1
k
(b+

∑k
i=1 aij) + ak+1j > 0. Then, for i = k + 1, . . . ,m,

yij = 0

wij = −1

k
(b+

k∑
i=1

aij) + aij ≥ −1

k
(b+

k∑
i=1

aij) + ak+1j > 0.

Finally,

m∑
i=1

yij =
k∑
i=1

−1

b
(λj+aij) =

k∑
i=1

−1

b
(−1

k
(b+

k∑
l=1

alj)+aij) = 1+
k∑
l=1

alj
b
−

k∑
i=1

aij
b

= 1.

Thus, y and (λ,w) satisfy the KKT conditions for the considered optimization
problem.



7.2 Optimization Methods 99

For fixed j the running time is O(m logm + m) where the first term is due to
the sorting of the components of a, a1j, . . . , amj. Thus the total complexity of the
procedure is O(nm logm).

As mentioned in [CE05] and pointed out by one of the referees of the paper, the
sorting can be avoided using a variant of the weighted median algorithm, see [KV00],
and thus providing a linear time algorithm for solving the quadratic projection onto
∆n
m. Nevertheless, the numerical results presented in the last section of this chapter

concern the algorithms using the non linear version of the quadratic projections onto
∆n
m, Algorithm 11, which is very simple to implement.

Algorithm 11 UFL:Quadratic projection onto ∆n
m

Input: - A vector a ∈ Rnm and a constant b ∈ R+

Output: - The optimal solution y ∈ ∆n
m of the quadratic optimization

problem described in (7.13).
- A Lagrange dual solution (λ,w) ∈ Rn+nm.

Order a such that a1j ≤ a2j ≤ · · · ≤ amj for j = 1, . . . , n.
for j = 1 to n do

set λj = − 1
m

(b+
∑m

i=1 aij) and k = m
set ykj = −1

b
(λj + akj)

while ykj < 0 and k > 1 do
k = k − 1
set λj = − 1

k
(b+

∑k
i=1 aij)

set ykj = −1
b
(λj + akj)

end while
for i = 1 to k do

set yij = −λj+aij

b
and wij = 0

end for
for i = k + 1 to m do

set yij = 0 and wij = λj + aij
end for

end for

Now, we have all the required information for the investigation of the running time
of the UFL-SDA-Euclidean Algorithm (8), the UFL-WDA-Euclidean Algorithm (9)
and the UFL-TSDA-Euclidean Algorithm (10).

Theorem 7.2
Given ϵ > 0, the UFL-SDA-Euclidean Algorithm (8) and the UFL-WDA Algorithm

(9) output in O
(

1
ϵ2
∥c+ f̃∥2

2n
2m logm

)
time a primal and a dual solution, x̄ ∈ ∆n

m

and ū ∈ ∆m
n , such that f(x̄) − ψ(ū) ≤ ϵ.
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Proof. Using the theoretical result presented in Theorem 4.7, we know that if we
run either the Simple Dual Averaging Algorithm or the Weighted Dual Averaging
Algorithm for (9L2

ϵ2
DQ

σQ
−1) iterations, we obtain a primal and dual solution, x̄ ∈ ∆n

m

and ū ∈ ∆m
n , such that f(x̄) − ψ(ū) ≤ ϵ, ϵ > 0. Thus we need to run

9∥c+ f̃∥2
2

ϵ2
n

2

(m− 1)

m
≤ 9

2

∥c+ f̃∥2
2n

ϵ2

of the UFL-SDA-Euclidean Algorithm or the UFL-WDA-Euclidean Algorithm to
have a primal and a dual solution with an additive gap of ϵ.

At each iteration we need to compute a subgradient, which requires O(nm) time, a
quadratic projection onto the ∆n

m, which requires O(nm logm) time, and to evaluate
both primal and dual objective functions, which requires O(nm) time. Thus, each
iteration takes O(nm logm) time and thus, the running time of the considered
algorithms is

O

(
1

ϵ2
∥c+ f̃∥2

2n
2m logm

)
.

Theorem 7.3
Given ϵ > 0, the UFL-TSDA-Euclidean Algorithm (10) outputs in
O
(

1
ϵ2
n2m logm∥f̄∥2

2

)
time a primal and a dual solution, x̄ ∈ ∆n

m and ū ∈ ∆m
n ,

such that f(x̄) − ψ(ū) ≤ ϵ.

Proof. Using the theoretical result presented in 4.8, we know that if we run 8M2

ϵ2
DQ

σQ

iterations of the Truncated Simple Dual Averaging Algorithm, we obtain a primal
and dual solution, x̄ ∈ ∆n

m and ū ∈ ∆m
n , such that f(x̄) − ψ(ū) ≤ ϵ, ϵ > 0. Thus,

we need to run UFL-TSDA-Euclidean Algorithm for

16∥f̄∥2
2

ϵ2
n

2

(m− 1)

m
≤ 8∥f̄∥2

2

ϵ2
n

iterations to have a primal and a dual solution with an additive gap of ϵ.

As for the UFL-SDA-Euclidean Algorithm and the UFL-WDA-Euclidean Algo-
rithm, each iteration takes O(nm logm). Finally, the running time of the UFL-
TSDA Algorithm is

O

(
1

ϵ2
n2m logm∥f̄∥2

2

)
.

We note that UFL-TSDA-Euclidean Algorithm outperforms the other two algo-
rithms. In the last section of this chapter we confirm this observation with numer-
ical results.
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Excessive Gap Method

The first step in the elaboration of the Excessive Gap method is the creation of
smooth approximation functions for both primal and dual objective functions. This
corresponds to the choice of the prox-function dQ and the prox-function dP , defined
in (7.8) and (7.10).

Using the same notation as in Section 5.2 we define the following smooth approxi-
mations:

fµP
(x̃) :=

m∑
i=1

(
n∑
j=1

cijx̃ij + max
ui∈∆n

{
n∑
j=1

fiuijx̃ij −
1

2
µP

n∑
j=1

(uij − uoij)
2

})
(7.15)

ψµQ
(ũ) :=

n∑
j=1

(
min
xj∈∆m

{
m∑
i=1

(cij + fiũij)xij +
1

2
µQ

m∑
i=1

(xij − xoij)
2

})
(7.16)

with the smoothing factors µQ > 0 and µP > 0. Recall that xo is the minimizer of
dQ(x) over Q and uo is the minimizer of dT (u) over T , see (7.8) and (7.10). We note
that both approximation functions, fµP

and ψµQ
, are separable either per client or

per facility as the objective functions, f and ψ, themselves.

Recall that we denote by uµP ,x̃ the maximum over ∆m
n of{∑m

i=1

∑n
j=1 fiuijx̃ij −

1
2
µP
∑m

i=1

∑n
j=1(uij − uoij)

2
}

and by xµQ,ũ the minimum

over ∆n
m of

{∑m
i=1

∑n
j=1(cij + fiũij)xij + 1

2
µQ
∑m

i=1

∑n
j=1(xij − xoij)

2
}

.

The gradient of the smooth approximation functions are Lipschitz continuous and
are defined as follows,

∇fµP
(x̃)ij := cij + fiu{µP ,x̃}ij

∇ψµQ
(ũ)

ij
:= fix{µQ,ũ}ij

for i = 1, . . . ,m and j = 1, . . . , n. Their corresponding Lipschitz constants are

LfµP
,Q =

f2
max

µP
LψµQ

,P =
f 2

max

µQ
.

Hence, computing a gradient demands the use of Algorithm 11 to compute respec-
tively uµP ,x̃ and xµQ,ũ.

In Algorithm 12 we tailor the Excessive Gap algorithm (Algorithm 4) to the linear
programming relaxation of the UFL problem. The initial smoothing factors µ0

Q and
µ0
P are then given by

µ0
Q := 2∥A∥Q,P

√
DP

σQσPDQ

= 2fmax
m

n

√
(n− 1)

(m− 1)



102 Uncapacitated Facility Location Problem

and

µ0
P := ∥A∥Q,P

√
DQ

σQσPDP

= fmax
n

m

√
(m− 1)

(n− 1)
.

Before specifying Algorithm 12, we study the structure of the primal and the dual
Gradient Mapping. Let x̃ ∈ Rmn, ũ ∈ Rmn, µQ > 0, and µP > 0. The primal
Gradient Mapping at x̃, GMfµP

(x̃), is defined as follows,

GMfµP
(x̃) := arg min

y∈Q
{⟨∇fµP

(x̃), y − x̃⟩ +
LfµP

,Q

2
∥y − x̃∥2

2}

= arg min
y∈Q

{⟨∇fµP
(x̃), y⟩ +

LfµP ,Q

2
∥y − x̃∥2

2}

and the dual Gradient Mapping at ũ, GMψµQ
(ũ), is defined as follows,

GMψµQ
(ũ) := arg max

v∈P
{⟨∇ψµQ

(ũ), v − ũ⟩ −
LψµQ

,P

2
∥v − ũ∥2

2}

= arg min
v∈P

{−⟨∇ψµQ
(ũ), v⟩ +

LψµQ
,P

2
∥v − ũ∥2

2}.

Both optimization problems are quadratic projections onto ∆n
m, respectively on ∆m

n .
As shown in Lemma 7.2.1, these projections can be solved in either O(nm logm)
or O(mn log n) with Algorithm 11.

Theorem 7.4 (Theorem 2 and Lemma 1 in [CE05])
Let n > m. Then, given ϵ > 0, the UFL-EG-Euclidean Algorithm (12) delivers in
O
(

1
ϵ
fmaxn

3/2m3/2 log n
)

time a primal and a dual solution, x̄ ∈ ∆n
m and ū ∈ ∆m

n ,
such that f(x̄) − ψ(ū) ≤ ϵ.

Proof. Using the theoretical results in Theorem 5.4, we know that if we run
4∥A∥
ϵ

√
DQDP

σQσP
iterations of the Excessive Gap algorithm, we obtain a primal and

dual solution, x̄ ∈ ∆n
m and ū ∈ ∆m

n , such that f(x̄) − ψ(ū) ≤ ϵ, ϵ > 0. Thus we
need to run 2fmax

ϵ

√
(n− 1)(m− 1) iterations of the UFL-EG-Euclidean Algorithm

to get a primal and dual solution with an additive gap of ϵ.

At each iteration of the UFL-EG Algorithm we either need to solve two quadratic
projections onto ∆n

m and one quadratic projection onto ∆m
n or two quadratic pro-

jections onto ∆m
n and one quadratic projection onto ∆n

m. Assuming that there are
more clients to deliver than potential facilities to open, i.e., n > m, we have that
each iteration takes O(mn log (n)) time. Moreover, recall that the evaluation of the
primal and dual functions take O(nm).

Thus finally, the running time of the UFL-EG-Euclidean Algorithm is

O

(
1

ϵ
fmaxn

3/2m3/2 log n

)
.
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Algorithm 12 Excessive Gap Algorithm for UFL (UFL-EG-Euclidean)

Input: - xo = 1
m
1 ∈ Rnm

- Initial smoothing factors µ0
Q and µ0

P

- An absolute error ϵ > 0

Output: An approximate primal solution x̄ ∈ ∆n
m and an approximate

dual solution ū ∈ ∆m
n such that f(x̄) − ψ(ū) ≤ ϵ.

set k = 0
compute x0 = GMf0

µP
(xo) UFL:Quadratic projection onto ∆n

m

compute u0 = uµ0
Q,x

o UFL:Quadratic projection onto ∆m
n

while f(xk) − ψ(uk) > ϵ do
if k is even then

compute xµk
P ,uk

UFL:Quadratic projection onto ∆n
m

set x̂ = k+1
k+3

xk + 2
k+3

xµk
P ,uk

compute uµk
Q,x̂

UFL:Quadratic projection onto ∆m
n

set uk+1 = k+1
k+3

uk + 2
k+3

uµk
Q,x̂

compute GMf
µk

P

(x̂) UFL:Quadratic projection onto ∆n
m

set xk+1 = GMf
µk

P

(x̂)

set µk+1
Q = k+1

k+3
µkQ and µk+1

P = µkP
else

compute uµk
Q,xk

UFL:Quadratic projection onto ∆m
n

set û = k+1
k+3

uk + 2
k+3

uµk
Q,xk

compute xµk
P ,û

UFL:Quadratic projection onto ∆n
m

set xk+1 = k+1
k+3

xk + 2
k+3

xµk
P ,û

compute GMψ
µk

Q

(û) UFL:Quadratic projection onto ∆m
n

set uk+1 = GMψ
µk

Q

(û)

set µk+1
Q = µkQ and µk+1

P = k+1
k+3

µkP
end if
set k = k + 1

UFL:Objective functions evaluation

end while
set x̄ = xk and ū = uk
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Note that the difference with respect to the result presented in [CE05], Theorem 2
and Lemma 1, is the factor log n due to the sorting required for solving the quadratic
projections onto ∆m

n using Algorithm 11.

The UFL-EG-Euclidean Algorithm outperforms all three Primal-Dual Subgradient
algorithms, in the dependence on the input data as well as in the dependence on
the absolute error ϵ. The numerical results given in Section 7.4 strongly support
this observation.

7.2.2 Entropy Function

We study now another choice of prox-functions and norms. For the space’s norms,
we consider the following combination of the norm 1 and the Euclidean norm. For
x ∈ Rnm let us write it as x = (x1, . . . , xn) with xj ∈ Rm for j = 1, . . . , n and endow
the primal space with the norm ∥x∥Q defined as follows,

∥x∥Q :=

(
n∑
j=1

∥xj∥2
1

)1/2

=

 n∑
j=1

(
m∑
i=1

|xij|

)2
1/2

.

Symmetrically, we endow the dual space with the norm ∥u∥P ,

∥u∥P :=

(
m∑
i=1

∥ui∥2
1

)1/2

=

 m∑
i=1

(
n∑
j=1

|uij|

)2
1/2

,

with u = (u1, . . . , um), ui ∈ Rn for i = 1, . . . ,m.

As prox-function, we choose the Entropy function defined for the primal space as
follows

dQ(x) := n lnm+
m∑
i=1

n∑
j=1

xij ln xij (7.17)

and for the dual space,

dP (u) := m lnn+
m∑
i=1

n∑
j=1

uij lnuij. (7.18)

Note that both functions are well defined over Q(= ∆n
m) respectively over P (= ∆m

n ).
Moreover, the convexity parameter σQ = 1 over Q and the convexity parameter
σP = 1 over P .
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Lemma 7.5 ([Nes05c], Lemma 3)
The prox-function dQ is smooth and strongly convex with σQ = 1 over the set Q
with respect to the norm ∥.∥Q.

Proof. Clearly, the function dQ(x) is smooth over its domain. From theorem of
Taylor, we have that dQ(x+h) = dQ(x)+ ⟨∇dQ(x), h⟩+ 1

2
⟨d′′Q(η)h, h⟩ for η a convex

combination of x and (x+ h), both in riQ and where the second derivative of dQ is

given by ⟨d′′Q(η)h, h⟩ :=
∑m

i=1

∑n
j=1

h2
ij

ηij
.

Now we fix j and using Cauchy-Schwartz we get a lower bound for the second
derivative at η. Namely,

∥hj∥2
1 =

(
m∑
i=1

| hij |

)2

=

(
m∑
i=1

hij√
ηij

√
ηij

)2

≤
m∑
i=1

h2
ij

ηij

m∑
i=1

ηij =
m∑
i=1

h2
ij

ηij
.

Summing over j we get ∥h∥2
Q ≤ ⟨d′′Q(η)h, h⟩ and thus,

dQ(x+ h) ≥ dQ(x) + ⟨∇dQ(x), h⟩ +
1

2
∥h∥2

Q.

The minimizer of dQ(x) over Q is xo = 1
m
1 and the minimizer of dP (u) over P is

uo = 1
n
1. Both can be easily computed using the KKT conditions. The maximum

of dQ(x) over Q is attained at the extreme points of the set Q, namely if the
maximum of a convex function over a convex set is attained, it is allways attained
at an extreme point of the set. Then, DQ := max

x∈Q
dQ(x) = n lnm. Respectively,

DP := max
u∈P

dP (u) = m lnn.

The norm of matrix A remains to be computed.

∥A∥Q,P := max
∥x∥Q≤1

max
∥u∥P≤1

⟨Ax, u⟩

= max
∥x∥Q≤1

max
∥u∥P≤1

m∑
i=1

n∑
j=1

fiuijxij

≤ max
∥x∥Q≤1

max
∥u∥P≤1

( max
1≤i≤m

fi)∥x∥2∥u∥2

(for w ∈ Rn, ∥w∥2 ≤ ∥w∥1 ≤
√
n∥w∥2)

≤ fmax max
∥x∥Q≤1

max
∥u∥P≤1

∥x∥Q∥u∥P = fmax. (7.19)

Since ∥.∥2 ≤ ∥.∥1, it is not suprising that we get the same bound for the norm of A
as when we consider Euclidean norms.
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Primal Dual Subgradient Method

In order to use the Dual Averaging Method we need to evaluate an upper bound
for the norm of the subgradients computed at each step of the method.

Lemma 7.6

Let ξ : Rnm −→ R defined as ξ(x) := ⟨ξ, x⟩. Then ∥ξ∥∗Q =

(∑2
j=1( max

1≤i≤m
|ξij|)2

)1/2

.

Proof.

∥ξ∥∗Q := max
∥x∥Q≤1

n∑
j=1

m∑
i=1

ξijxij ≤ max
∥x∥Q≤1

n∑
j=1

m∑
i=1

|ξij||xij|

≤ max
∥x∥Q≤1

n∑
j=1

( max
1≤i≤m

|ξij|)
m∑
i=1

|xij|

≤ max
∥x∥Q≤1

(
n∑
j=1

( max
1≤i≤m

|ξij|)2

)1/2( n∑
j=1

(
m∑
i=1

|xij|)2

)1/2

≤

(
n∑
j=1

( max
1≤i≤m

|ξij|)2

)1/2

=

(
n∑
j=1

∥ξj∥∞

)1/2

Now define x̄kj :=

{
ξkj if max

1≤i≤m
|ξij| = |ξkj|

0 otherwise
and x := x̄

∥x̄∥Q
. Then,

n∑
j=1

m∑
i=1

ξijxij =
n∑
j=1

m∑
i=1

ξij
x̄ij
∥x̄∥Q

=

∑n
j=1( max

1≤i≤m
|ξij|)2

(
∑n

j=1( max
1≤i≤m

|ξij|)2)1/2
= ∥ξ∥∗Q.

Recall that ξij = cij + fiu
x
ij, i = 1, . . . ,m and j = 1, . . . , n with ux ∈ U(x) is a

subgradient of f(x), x ∈ Rmn (see Equation 7.7). Then,

∥ξ∥∗Q =

(
n∑
j=1

( max
1≤i≤m

|cij + fiu
x
ij|)2

)1/2

≤

(
n∑
j=1

( max
1≤i≤m

cij + fmax)
2

)1/2

≤
√
n(cmax + fmax) =: L

where cmax = max
1≤j≤n

max
1≤i≤m

cij.
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To use the Truncated Dual Averaging Algorithm we need to bound the subgradient
variations. Thus, let x and y ∈ Rnm and let ξx and ξy be the subgradient of f at x,
respectively the subgradient of f at y. Then, for ux ∈ U(x) and uy ∈ U(y),

∥ξx − ξy∥∗Q =

(
n∑
j=1

( max
1≤i≤m

|cij + fiu
x
ij − (cij + fiu

y
ij)|)2

)1/2

=

(
n∑
j=1

( max
1≤i≤m

fi|uxij − uyij|)2

)1/2

≤

(
n∑
j=1

f2
max

)1/2

≤
√
nfmax =: M.

Now we have all the elements needed to apply the Primal-Dual Subgradients algo-
rithms to the linear programming relaxation of the UFL problem. Algorithm 13
corresponds to Algorithm 2 using the simple averages sequences (4.12), Algorithm
14 corresponds to Algorithm 2 using the weighted averages sequences (4.13), and
Algorithm 15 corresponds to Algorithm 3.



108 Uncapacitated Facility Location Problem

Algorithm 13 Simple Dual Averaging Algorithm for UFL (UFL-SDA-Entropy)

Input: - xo := 1
m
1

- The constants DQ and L
- An absolute error ϵ > 0

Output: An approximate primal solution x̄ ∈ ∆n
m and an approximate

dual solution ū ∈ ∆m
n such that f(x̄) − ψ(ū) ≤ ϵ.

set k = 0 and β̂0 = 1
set x0 = xo

compute ξ0 ∈ ∂f(x0) and u0 UFL:Subgradient

set ζ0 = ξ0
set x̄ = x0 and ū = u0.
while f(x̄) − ψ(ū) > ϵ do

set k = k + 1
compute β̂k = β̂k−1 + 1

β̂k−1
and βk = L√

2DQ
β̂k

compute xk = arg min
x∈Q

{⟨ζk−1, x⟩ + βk
∑n

j=1

∑m
i=1 xij ln xij}

UFL:Entropy projection onto ∆n
m

compute ξk ∈ ∂f(xk) and uk UFL:Subgradient

set ζk = ζk−1 + ξk
x̄ = 1

k+1

∑k
l=0 xl and ū = 1

k+1

∑k
l=0 ul UFL:Objective functions

evaluation

end while
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Algorithm 14 Weighted Dual Averaging Algorithm for UFL (UFL-WDA-Entropy)

Input: - xo := 1
m
1

- The constant DQ

- An absolute error ϵ > 0

Output: An approximate primal solution x̄ ∈ ∆n
m and an approximate

dual solution ū ∈ ∆m
n such that f(x̄) − ψ(ū) ≤ ϵ.

set k = 0, and β̂0 = 1
set x0 = xo

compute ξ0 ∈ ∂f(x0) and u0 UFL:Subgradient

set λ0 = 1
∥ξ0∥2

, Λ0 = λ0, and ζ0 = λ0ξ0
set x̄ = x0 and ū = u0.
while f(x̄) − ψ(ū) > ϵ do

set k = k + 1
compute β̂k = β̂k−1 + 1

β̂k−1
and βk = 1√

2DQ
β̂k

compute xk = arg min
x∈Q

{⟨ζk−1, x⟩ + βk
∑n

j=1

∑m
i=1 xij ln xij}

UFL:Entropy projection onto ∆n
m

compute ξk ∈ ∂f(xk) and uk UFL:Subgradient

set λk = 1
∥ξk∥2

, Λk = Λk−1 + λk, and ζk = ζk−1 + λkξk

set x̄ = 1
Λk

∑k
l=0 λlxl and ū = 1

Λk

∑k
l=0 λlul
UFL:Objective functions evaluation

end while
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Algorithm 15 Truncated Simple Dual Averaging Algorithm for UFL (UFL-TSDA-
Entropy)

Input: - xo := 1
m
1

- The constants DQ and M
- An absolute error ϵ > 0

Output: An approximate primal solution x̄ ∈ ∆n
m and an approximate

dual solution ū ∈ ∆m
n such that f(x̄) − ψ(ū) ≤ ϵ.

set k = 1 and β1 = 1
set x0 = xo

compute ξ0 ∈ ∂f(x0) and u0 UFL:Subgradient

compute x1 = arg min
x∈Q

{⟨ξ0, x⟩ + β1

∑n
j=1

∑m
i=1 xij ln xij}

UFL:Quadratic projection onto ∆n
m

compute ξ1 ∈ ∂f(x1) and u1 UFL:Subgradient

set ζ1 = ξ1
x̄ = x1 and ū = u1 UFL:Objective functions evaluation

while f(x̄) − ψ(ū) > ϵ do
set k = k + 1
compute xk = arg min

x∈Q
{⟨ζk−1, x⟩ + βk

∑n
j=1

∑m
i=1 xij ln xij}

UFL:Entropy projection onto ∆n
m

set βk = M√
2DQ

√
k

compute ξk ∈ ∂f(xk) and uk UFL:Subgradient

set ζk = ζk−1 + ξk
x̄ = 1

k

∑k
l=1 xl and ū = 1

k

∑k
l=1 ul UFL:Objective functions evaluation

end while
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In the following we study the complexity of the oracle needed by the three algo-
rithms, Algorithm 13, 14, and 15, i.e., UFL:Entropy projection onto ∆n

m.

First we observe that due to the separability by clients of the Entropy function
dQ(x) we can rewrite the projection onto ∆n

m as follows: at iteration k we have
xk+1 := (x1, . . . , xn) where for j = 1, . . . , n

xj := arg min
y∈∆m

{
m∑
i=1

ζk−1ij
yi + βk

m∑
i=1

yi ln yi

}
. (7.20)

Using the KKT conditions of a single optimization problem in (7.20), we can show
that this problem has a closed form solution.

Namely, let the problem described by Equation (7.21) be a generic formulation of
the optimization problem (7.20),

minimize
n∑
j=1

m∑
i=1

aijyij + b

n∑
j=1

m∑
i=1

yij ln yij (7.21)

subject to y ∈ ∆n
m

where a ∈ Rnm and b ∈ R+, Lemma 7.7 solves Equation (7.21).

Lemma 7.7
Consider the generic optimization problem of Equation (7.21) and let y ∈ Rnm and
(λ,w) ∈ Rn+nm be defined as follows:

yij :=
e−aij/b∑m
l=1 e

−alj/b
∀ i = 1, . . . ,m j = 1, . . . , n (7.22)

λj := −b

(
− ln

(
m∑
l=1

e−alj/b

)
+ 1

)
∀ j = 1, . . . , n (7.23)

wij := 0 ∀ i = 1, . . . ,m, j = 1, . . . , n. (7.24)

Then, y is primal feasible and optimal and (λ,w) is dual feasible and optimal.

Proof. We verify that the solution y and (λ,w) satisfies the KKT conditions for the
optimization problem described by Equation (7.21):

1. aij + b(ln yij + 1) + λj − wij = 0 ∀ i = 1, . . . ,m, j = 1, . . . , n

2. yijwij = 0 ∀ i = 1, . . . ,m, j = 1, . . . , n (orthogonality)

3.
∑m

i=1 yij = 1 ∀ j = 1, . . . , n and yij ≥ 0 ∀ i = 1, . . . ,m, j = 1, . . . , n
(primal feasibility)
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4. wij ≥ 0 ∀ i = 1, . . . ,m, j = 1, . . . , n (dual feasibility)

Since wij = 0 for i = 1, . . . ,m and j = 1, . . . , n, the orthogonality condition (2) as
well as the dual feasibility (4) are trivially satisfied. The primal feasibility (3) is

also easily verified. Namely, for i = 1, . . . ,m and j = 1, . . . , n, yij = e−aij/b

Pm
l=1 e

−alj/b > 0

and for fixed j we have
∑m

i=1 yij =
∑m

i=1(e
−aij/b)/(

∑m
l=1 e

−alj/b) = 1. Finally,

aij + b(ln yij + 1) + λj − wij

= aij + b

(
−aij/b+ ln

(
1/

m∑
l=1

e−alj/b

))
− b

(
ln

(
1/

m∑
l=1

e−alj/b

)
+ 1

)
= 0

for i = 1, . . . ,m and j = 1, . . . , n. All KKT conditions are satisfied and thus y is
primal feasible and optimal and (λ,w) is dual feasible and optimal.

We note that the computation of the primal solution y in Lemma 7.7 requires
O(nm) time. Now we are able to derive the running time of the Algorithms 13, 14,
and 15.

Theorem 7.8
Given ϵ > 0, the UFL-SDA-Entropy Algorithm (13) and the UFL-WDA-Entropy
Algorithm (14) output in O

(
1
ϵ2

(cmax + fmax)
2n3m lnm

)
time a primal and a dual

solution, x̄ ∈ ∆n
m and ū ∈ ∆m

n , such that f(x̄) − ψ(ū) ≤ ϵ.

Proof. Using the theoretical results in Theorem 4.7, we know that if we run either
the Simple Dual Averaging Algorithm or the Weighted Dual Averaging Algorithm
for (9L2

ϵ2
DQ

σQ
− 1) iterations, we obtain a primal and dual solution , x̄ ∈ ∆n

m and

ū ∈ ∆m
n , such that f(x̄) − ψ(ū) ≤ ϵ, ϵ > 0. Thus we need to run

9n(cmax + fmax)
2

ϵ2
n lnm− 1 ≤ 9n2(cmax + fmax)

2 lnm

ϵ2

of the UFL-SDA Algorithm or the UFL-WDA Algorithm to have a primal and a
dual solution with an additive gap of ϵ.

At each iteration we need to compute a subgradient, which requires O(nm) time, an
entropy projection on ∆n

m, which requires O(nm) time, and to evaluate both primal
and dual objective functions, which requires O(nm) time. Thus, each iteration takes
O(nm) time and the running time of the considered algorithms is

O

(
1

ϵ2
n3m lnm(cmax + fmax)

2

)
.
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Theorem 7.9
Given ϵ > 0, the UFL-TSDA-Entropy Algorithm (15) outputs in
O
(

1
ϵ2
f2
maxn

3m lnm
)

time a primal and a dual solution, x̄ ∈ ∆n
m and ū ∈ ∆m

n , such
that f(x̄) − ψ(ū) ≤ ϵ.

Proof. Using the theoretical results in Theorem 4.8, we know that if we run 8M2

ϵ2
DQ

σQ

iterations of the Truncated Simple Dual Averaging Algorithm, we obtain a primal
and dual solution, x̄ ∈ ∆n

m and ū ∈ ∆m
n , such that f(x̄) − ψ(ū) ≤ ϵ, ϵ > 0. Thus,

we need to run UFL-TSDA-Entropy Algorithm for 8n2 lnmf2
max

ϵ2
iterations to get a

primal and a dual solution with an additive gap of ϵ.

As for the UFL-SDA-Entropy Algorithm and the UFL-WDA-Entropy Algorithm,
each iteration takes O(nm). Finally, the running time of the UFL-TSDA-Entropy
Algorithm is

O

(
1

ϵ2
f 2
maxn

3m lnm

)
.

As with the algorithms based on the Euclidean Norm, we note that UFL-TSDA-
Entropy Algorithm outperforms the other two algorithms.

Excessive Gap Method

We now apply the Excessive Gap method to the linear programming relaxation
of the UFL problem using Entropy functions and Entropy norms for defining the
primal and dual smooth approximations,

fµP
(x̃) :=

m∑
i=1

(
n∑
j=1

cijx̃ij + max
ui∈∆n

{
n∑
j=1

fiuijx̃ij − µP

n∑
j=1

uij lnuij

})
(7.25)

ψµQ
(ũ) :=

n∑
j=1

(
min
xj∈∆m

{
m∑
i=1

(cij + fiũij)xij + µQ

m∑
i=1

xij lnxij

})
(7.26)

with the smoothing factors µQ > 0 and µP > 0. Note that both approximation
functions, fµP

and ψµQ
, are separable either per client or per facility as the objective

functions, f and ψ, themselves.

The gradient of the smooth approximation functions are Lipschitz continuous and
are defined as follows,

∇fµP
(x̃)ij := cij + fiu{µP ,x̃}ij

∇ψµQ
(ũ)

ij
:= fix{µQ,ũ}ij
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for i = 1, . . . ,m and j = 1, . . . , n. Recall that we denote by uµP ,x̃ the maxi-

mum of
{∑m

i=1

∑n
j=1 fiuijx̃ij − µP

∑m
i=1

∑n
j=1 uij lnuij

}
over ∆m

n and by xµQ,ũ the

minimum of
{∑m

i=1

∑n
j=1(cij + fiũij)xij + µQ

∑m
i=1

∑n
j=1 xij ln xij

}
over ∆n

m. Their

corresponding Lipschitz constants are

LfµP
,Q =

f2
max

µP
LψµQ

,P =
f 2

max

µQ
.

Consider Algorithm 16, which corresponds to the application of the Excessive Gap
algorithm (Algorithm 4) to the linear programming relaxation of the UFL problem.
The initial smoothing factors µ0

Q and µ0
P are given by

µ0
Q := 2∥A∥Q,P

√
DP

σQσPDQ

= 2fmax

√
m lnn

n lnm

and

µ0
P := ∥A∥Q,P

√
DQ

σQσPDP

= fmax

√
n lnm

m lnn
.

Now, we study the structure of the primal and the dual Gradient Mapping, the
main object in the Excessive Gap method. Let x̃ ∈ Rmn, ũ ∈ Rmn, µQ > 0, and
µP > 0. The primal Gradient Mapping at x̃, GMfµP

(x̃), is defined as follows,

GMfµP
(x̃) := arg min

y∈Q

{
⟨∇fµP

(x̃), y − x̃⟩ +
LfµP

,Q

2
∥y − x̃∥2

Q

}
(7.27)

and the dual Gradient Mapping at ũ, GMψµQ
(ũ), is defined as follows,

GMψµQ
(ũ) := arg max

v∈P

{
⟨∇ψµQ

(ũ), v − ũ⟩ −
LψµQ

,P

2
∥v − ũ∥2

P

}
. (7.28)

We recall the definitions of both primal and dual norms,

∥y∥Q :=

 n∑
j=1

(
m∑
i=1

|xij|

)2
1/2

and ∥u∥P :=

 m∑
i=1

(
n∑
j=1

|uij|

)2
1/2

.

The optimization problems (7.27) and (7.28) are either separable per client or per
facility. However, they are not as simple as when Euclidean norms are considered.
Once a client or a facility is fixed the remaining optimization problems are of the
following type.

opt := minimize
m∑
i=1

ai(yi − ȳi) +
1

2
b

(
m∑
i=1

|yi − ȳi|

)2

(7.29)

subject to y ∈ ∆m
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where a ∈ Rm, ȳ ∈ ∆m, and b ∈ R+.

Next lemma is the key for solving the previous optimization problems.

Lemma 7.10 ([Nes05c], Lemma 6)
Let ∥.∥ be any norm in Rn and let ∥.∥∗ be its dual norm. Then, for any b > 0 and
any h and g

⟨g, h⟩ +
1

2
b∥h∥2 = max

s

{
⟨s, h⟩ − 1

2b
∥s− g∥∗2

}
(7.30)

holds.

As in Section 5 in [Nes05c], we use Lemma 7.10 to rewrite the optimum of problem
(7.29) as follows. Note that we consider the norm ∥.∥1 and its dual ∥.∥∞.

opt := min
y∈∆m

⟨a, y − ȳ⟩ +
1

2
b

(
m∑
i=1

|yi − ȳi|

)2


= min
y∈∆m

max
s

{
⟨s, y − ȳ⟩ − 1

2b
(∥s− a∥∗)2

}
= min

y≥0
max
s,λ

{
⟨s, y − ȳ⟩ − 1

2b
(∥s− a∥∗)2 + λ(1 − ⟨1, y⟩)

}
= max

s,λ

{
−⟨s, ȳ⟩ − 1

2b
(∥s− a∥∗)2 + λ

∣∣∣ si ≥ λ for i = 1, . . . ,m

}
= max

s,λ,τ

{
−⟨s, ȳ⟩ − τ 2

2b
+ λ

∣∣∣ si ≥ λ and |si − ai| ≤ τ for i = 1, . . . ,m

}
Since |si−ai| ≤ τ for i = 1, . . . ,m, we have si = max{ai−τ, λ} for i = 1, . . . ,m and
λ ≤ ai + τ must hold for i = 1, . . . ,m in order to have a feasible problem. Then,

−opt = min
λ,τ

{
m∑
i=1

ȳi max{ai − τ, λ} +
τ 2

2b
− λ

∣∣∣ λ ≤ amin + τ, τ ≥ 0

}

where amin is the smallest component of vector a.

Since the objective function is decreasing in λ, we have that the optimal λ∗ =
amin + τ ∗, where τ ∗ optimal. Thus,

−opt = min
τ≥0

{
m∑
i=1

ȳi max{ai − amin − 2τ, 0} +
τ 2

2b

}
. (7.31)

Assume now that the components of vector a are ordered increasingly and note
that the objective function in (7.31) is defined differently on the following intervals
]−∞, 0], [0, a2−a1

2
], [a2−a1

2
, a3−a1

2
], . . . , [am−1−a1

2
, am−a1

2
], [am−a1

2
,+∞[. In order to find
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the optimal τ ∗ it is sufficient to study the objective function in these intervals, i.e.,
to check its derivative at the following points 0, a2−a1

2
, . . . , am−a1

2
.

Suppose now that the optimal τ ∗ is in the following interval [ak−1−a1

2
, ak−a1

2
]. Then,

either τ ∗ := 2b
∑m

i=k ȳi or τ ∗ := ak−1−a1

2
and s∗i = max{ai − τ ∗, λ∗} = max{ai −

τ ∗, τ ∗ + a1} =

{
τ ∗ + a1 for i = 1, . . . , k − 1
ai − τ ∗ for i = k, . . . ,m

. Moreover ||s∗ − a||∗ = max
1≤i≤m

|si −

ai| = τ ∗.

The optimal y∗ remains to be computed. For that sake we consider Lemma 7.10
again. Namely, we look for y∗ ∈ ∆m such that 0 ∈ ∂s{−⟨s∗, y − ȳ⟩+ 1

2b
(∥s∗−a∥∗)2}.

Assume for the sake of simplicity that all components of a are different, then by
definition of s∗ we have that ||s∗ − a||∗ = maxi{|s∗i − ai|} is attained at i = 1 and
i = k, . . . ,m. Now, define ζ := −y∗+ ȳ+ τ∗

b
(λ1e1−

∑m
i=k λiei) with λ1+

∑m
i=k λi = 1

and λ1, λk, . . . , λm ≥ 0, and note that ζ ∈ ∂s{−⟨s∗, y∗ − ȳ⟩+ 1
2b

(∥s∗−a∥∗)2}. Then,
we compute y∗ by setting ζ = 0 and choosing the convex combination of the vectors
e1,−ek, . . . ,−em, i.e., choosing λ1, λk, . . . , λm, which generate y∗ ∈ ∆m.

To continue, we note that to compute y∗ we need O(m logm), which corresponds
to the sorting of the vector a. Since for computing the primal gradient mapping
GMfµP

(x̃) we need to solve a problem of the type of the generic problem (7.29) n
times, the evaluation of GMψµQ

(ũ) requires O(nm logm). Respectively, for com-

puting the dual gradient mapping we need O(mn log n).

Now, let us evaluate the running time of UFL-EG-Entropy Algorithm.

Theorem 7.11
Let n > m. Then, given ϵ > 0, the UFL-EG-Entropy Algorithm (16) delivers in

O
(

1
ϵ
n3/2m3/2 log n

√
lnn lnmfmax

)
time a primal and a dual solution, x̄ ∈ ∆n

m and

ū ∈ ∆m
n , such that f(x̄) − ψ(ū) ≤ ϵ.

Proof. Using the theoretical results in Theorem 5.4, we know that if we run
4∥A∥
ϵ

√
DQDP

σQσP
iterations of the Excessive Gap algorithm, we obtain a primal and

dual solution, x̄ ∈ ∆n
m and ū ∈ ∆m

n , such that f(x̄) − ψ(ū) ≤ ϵ, ϵ > 0. Thus we
need to run 2fmax

ϵ

√
nm lnn lnm iterations of the UFL-EG-Entropy Algorithm to get

a primal and dual solution with an additive gap of ϵ. At each iteration of the UFL-
EG Algorithm we either need to solve two entropy projections, one onto ∆n

m and one
onto ∆m

n , which take O(nm) time and one projection of the square of the entropy
norm either onto ∆m

n or into ∆n
m, which takes either O(nm logm) or O(mn log n).

Assuming that there are more clients to deliver than potential facilities to open, i.e.,
n > m, we have that each iteration takes O(mn log n) time. Moreover, recall that
the evaluation of the primal and dual functions take O(nm). Finally, the running

time of the UFL-EG-Entropy Algorithm is O
(

1
ϵ
n3/2m3/2 log n

√
lnn lnmfmax

)
.
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Algorithm 16 Excessive Gap Algorithm for UFL (UFL-EG-Entropy)

Input: - xo = 1
m
1 ∈ Rnm

- Initial smoothing factors µ0
Q and µ0

P

- An absolute error ϵ > 0

Output: An approximate primal solution x̄ ∈ ∆n
m and an approximate

dual solution ū ∈ ∆m
n such that f(x̄) − ψ(ū) ≤ ϵ.

set k = 0
compute x0 = GMf

µ0
P

(xo) UFL:Entropy norm projection onto ∆n
m

compute u0 = uµ0
Q,x

o UFL:Entropy projection onto ∆m
n

while f(xk) − ψ(uk) > ϵ do
if k is even then

compute xµk
P ,uk

UFL:Entropy projection onto ∆n
m

set x̂ = k+1
k+3

xk + 2
k+3

xµk
P ,uk

compute uµk
Q,x̂

UFL:Entropy projection onto ∆m
n

set uk+1 = k+1
k+3

uk + 2
k+3

uµk
Q,x̂

compute GMf
µk

P

(x̂) UFL:Entropy norm projection onto ∆n
m

set xk+1 = GMf
µk

P

(x̂)

set µk+1
Q = k+1

k+3
µkQ and µk+1

P = µkP
else

compute uµk
Q,xk

UFL:Entropy projection onto ∆m
n

set û = k+1
k+3

uk + 2
k+3

uµk
Q,xk

compute xµk
P ,û

UFL:Entropy projection onto ∆n
m

set xk+1 = k+1
k+3

xk + 2
k+3

xµk
P ,û

compute GMψ
µk

Q

(û) UFL:Entropy norm projection onto ∆m
n

set uk+1 = GMψ
µk

Q

(û)

set µk+1
Q = µkQ and µk+1

P = k+1
k+3

µkP
end if
set k = k + 1

UFL:Objective functions evaluation

end while
set x̄ = xk and ū = uk
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7.3 From an Absolute to a Relative Error

In this section, we construct a decision making procedure A-FEAS, using the al-
gorithms presented in the previous sections as explained in Chapter 3.3. Table 7.1
resumes the running time of the different algorithms for the linear programming re-
laxation of the UFL problem. We note that all either depend on ∥c∥2, ∥f̄∥, ∥c+ f̃∥2,
cmax, or fmax, which we would like to remove. In order to create the decision making

Running Time
dependence of # of iterations time per iteration

on ϵ on problem data

UFL-SDA-Euclidean 1/ϵ2 O(n∥c+ f̃∥2
2) O(nm logm)

UFL-WDA-Euclidean 1/ϵ2 O(n∥c+ f̃∥2
2) O(nm logm)

UFL-TSDA-Euclidean 1/ϵ2 O(n∥f̄∥2
2) O(nm logm)

UFL-SDA-Entropy 1/ϵ2 O(n2 lnm(cmax + fmax)
2) O(mn)

UFL-WDA-Entropy 1/ϵ2 O(n2 lnm(cmax + fmax)
2) O(mn)

UFL-TSDA-Entropy 1/ϵ2 O(n2 lnmf 2
max) O(mn)

UFL-EG-Euclidean 1/ϵ O(
√
nmfmax) O(mn log n)

UFL-EG-Entropy 1/ϵ O(
√
nm lnn lnmfmax) O(mn log n)

Tab. 7.1: Running Time of UFL Algorithms for an absolute error ϵ > 0

procedure, we consider the following two results that follow closely [GK02].

Lemma 7.12 (Lemma 2 in [CE05])
Let (x̄, ȳ) be any feasible solution of UFL-LP. Then,

a) if there is some ȳio > 0 with fio >
∑

i∈F
∑

j∈D cijx̄ij +
∑

i∈F fiȳi, we can find
a new solution (x̂, ŷ) with strictly smaller objective function value such that
ŷio = 0,

b) if there is some x̄iojo > 0 with ciojo >
∑

i∈F
∑

j∈D cijx̄ij +
∑

i∈F fiȳi, we can find
a new solution (x̂, ŷ) with strictly smaller objective function value such that
x̂iojo = 0.

Proof. For sake of clarity let us denote the objective function in UFL-LP by
p(x, y) :=

∑
i∈F
∑

j∈D cijxij +
∑

i∈F fiyi.

a) We note first that ȳio < 1 must hold. We define then (x̂, ŷ) as follows,

x̂ij :=
x̄ij

1−x̄ioj
∀ i ∈ F \ {io}, j ∈ D,

x̂ioj := 0 ∀ j ∈ D,
ŷi := ȳi

1−ȳio
∀ i ∈ F \ {io},

ŷio := 0.
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We can easily check the feasibility of (x̂, ŷ). For fixed j ∈ D,
∑

i∈F x̂ij =
(
∑

i∈F\{io} x̄ij)/(1 − x̄ioj) = (1 − x̄ioj)/(1 − x̄ioj) = 1 and for i ∈ F and j ∈ D,

x̂ij ≤ ȳi/(1 − x̄ioj) ≤ ȳi/(1 − ȳio) = ŷi. Furthermore, p(x̂, ŷ) ≤ 1
1−ȳio

(p(x̄, ȳ) −
fio ȳio) <

1−ȳio

1−ȳio
p(x̄, ȳ).

b) We note first that x̄iojo < 1 must hold. We define then (x̂, ŷ) as follows,

x̂ij := x̄ij ∀ i ∈ F , j ∈ D \ {jo},
x̂ijo :=

x̄ijo

1−x̄iojo
∀ i ∈ F \ {io},

x̂iojo := 0
ŷi := ȳi

1−x̄iojo
∀ i ∈ F .

(x̂, ŷ) is feasible. For fixed j ̸= jo,
∑

i∈F x̂ij =
∑

i∈F x̄ij = 1 and
∑

i∈F x̂ijo =∑
i∈F x̄ijo/(1 − x̄iojo) − x̄iojo/(1 − x̄iojo) = 1. For all i ∈ F and j ∈ D \ {jo},

x̂ij = x̄ij ≤ ȳi ≤ ȳi/(1− x̄iojo) = ŷi. For all i ∈ F \{io}, x̂ijo ≤ x̄ijo/(1− x̄iojo) ≤
yi/(1 − x̄iojo) = ŷi. Now, we evaluate the value of the objective function at

(x̂, ŷ), p(x̂, x̂) ≤ 1
1−x̄iojo

(p(x̄, ȳ) − ciojox̄iojo) <
1−x̄iojo

1−x̄iojo
p(x̄, ȳ).

Suppose that we know that the optimal value OPT of UFL-LP is greater than a
certain bound R. Then, we can drop all facility locations with building costs bigger
than R and we can prevent assigning clients to facilities with delivering costs greater
than R. In the following lemma we derive an upper bound for the optimal value
OPT of UFL-LP.

Lemma 7.13 (Lemma 3 in [CE05])
For each client j ∈ D, let LBj := mini∈F (cij + fi) and LB := maxj∈D LBj.
Then, LB≤OPT ≤ nLB and a feasible solution to UFL-LP exists whose cost is
also bounded by (n LB). Recall that OPT denotes the optimal value of UFL-LP.

Proof. It is clear that LBj is a lower bound for each client j ∈ D. For the upper
bound consider the solution obtainend by opening all the facilities that realize the
minima of LBj, j ∈ D. Then, the solution is feasible and its cost is at most∑

j∈D LBj ≤ n LB.

For given ϵ, R > 0, we construct a decision procedure A-FEAS using the UFL-SDA-
Euclidean Algorithm as follows. First we remove all facility locations with building
costs fi > R and we forbid a client to be assigned to a facility if the corresponding
delivering costs are bigger than R and we run N = ⌈9n2m

ϵ2
− 1⌉ iterations of the

algorithm. If the objective value at solution delivered by the algorithm, x̄N , is
smaller or equal to (1 + ϵ)R, the decision procedure returns x̄N , or else it claims
that OPT > R.
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Running Time
# of iterations time per iteration

UFL-SDA-Euclidean O(n2m(log log n+ 1
ϵ2

)) O(nm logm)
UFL-WDA-Euclidean O(n2m(log log n+ 1

ϵ2
)) O(nm logm)

UFL-TSDA-Euclidean O(nm(log log n+ 1
ϵ2

)) O(nm logm)
UFL-SDA-Entropy O(n2 lnm(log log n+ 1

ϵ2
)) O(mn)

UFL-WDA-Entropy O(n2 lnm(log log n+ 1
ϵ2

)) O(mn)
UFL-TSDA-Entropy O(n2 lnm(log log n+ 1

ϵ2
)) O(mn)

UFL-EG-Euclidean O(
√
nm(log log n+ 1

ϵ
)) O(mn log n)

UFL-EG-Entropy O(
√
nm lnn lnm(log log n+ 1

ϵ
)) O(mn log n)

Tab. 7.2: Running Time of UFL Algorithms for a relative error ϵ > 0

Let us show that the previous decision procedure is valid. For ϵ > 0, we need to
run O( 1

ϵ2
n∥c+ f̃∥2

2) iterations of UFL-SDA-Euclidean to have a primal solution x̄N
and a dual solution ūn with f(x̄N) − ψ(ūN) ≤ ϵ. Note that ∥c + f̃∥2 ≤ 2

√
nmR

since we assume OPT ≤ R and we remove the too expensive assignments. Thus, if
we run N = ⌈9n2m

ϵ2
− 1⌉ iterations we have

f(x̄N) ≤ ϵR + ψ(ūN) ≤ ϵR + OPT ≤ (1 + ϵ)R.

Finally we apply Lemma 3.8 using the initial solution given in Lemma 7.13 to
obtain an algorithm, that finds an approximate solution with a relative error of ϵ
in O(n2m(log log n+ 1

ϵ2
)) iterations.

The same idea can be applied using the other algorithms. Table 7.2 resumes their
convergence results.

The fastest algorithms we are aware of for the UFL-LP have been developed by
Young [You00], Garg and Khandekar [GK02], and Chudak [Chu03]. Their running
time is O(nm2 log n(log log n+ 1

ϵ2
). With respect to the dependence of the running

time on ϵ, the Excessive Gap method improves this result. However, with respect
to the dependence of the running time on the input size, our algorithms are less
effective.

7.4 Numerical Results

The algorithms used here were tested using randomly generated instances of the
UFL problem where the facility locations and the clients are located at random in
the unit square [0, 1]× [0, 1]. We proceeded as in [BC99]. We chose n points in the
unit square uniformly and independently, each simultaneously corresponding to a
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facility location and a client. The cost of delivering the clients are proportional to
the Euclidean distance between the clients and the facility locations. All facilities
have the same building costs. We considered three different types of building costs.
The first type is

√
n/10, the second type is

√
n/100, and the third type is

√
n/1000.

Depending on the building costs we get instances with different properties. In
general, instances with high building costs are difficult to solve. To avoid numerical
problems, we rounded the data to 4 significant digits and multiplied all values by
104. Thus, all data entries are integer. All results were obtained using a computer
with a cpu running at 2.2 GHz.

We primarily compared the number of iterations that each algorithm required.
As expected, the Primal-Dual Subgradient algorithms performed worse than the
algorithms based on the Excessive Gap method, see Tables 7.3 and 7.5. Even if
the theoretical running time is better for the algorithms using Euclidean norm, we
had expected a better practical running time for the methods using the Entropy
function, since our feasible spaces are products of simplices. However, when using
the Excessive Gap method, the algorithm based on Euclidean norm, see Table 7.3,
clearly outperformed the algorithm based on Entropy function, see Table 7.5. In
case of the Primal-Dual Subgradient methods, the results show a less clear picture.
Depending on the chosen building costs either the algorithms using the Euclidean
norm or the algorithms using the Entropy function converged faster.

Tables 7.4 and 7.6 show the maximum number of iterations needed according to
theory, which are at least an order of magnitude larger than needed in practice.

Number of Iterations

n,m
building UFL-EG UFL-SDA UFL-WDA UFL-TSDA

costs Euclidean Euclidean Euclidean Euclidean

500

√
n/10 42 7463 5769 1091√
n/100 29 100000 (0.084) 100000 (0.083) 331√
n/1000 4 100000 (0.262) 100000 (0.261) 15

1000

√
n/10 45 8138 6384 1917√
n/100 39 100000 (0.094) 100000 (0.328) 592√
n/1000 9 100000 (0.093) 100000 (0.328) 51

1500

√
n/10 40 6167 5040 2458√
n/100 38 100000 (0.083) 100000 (0.082) 581√
n/1000 14 100000 (0.338) 100000 (0.337) 99

Tab. 7.3: Comparing the number of iterations required for a relative error ϵ = 0.05
using Euclidean norm (maximal number of iterations allowed: 100000,
in brackets relative error at this limit)

Figure 7.1, 7.2, 7.3, and 7.4 show the evolution of the primal value and the dual value
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Theoretical Number of Iterations

n,m
building UFL-EG UFL-SDA UFL-WDA UFL-TSDA

costs Euclidean Euclidean Euclidean Euclidean

500

√
n/10 573 1.51∗107 1.51∗107 1.50∗107

√
n/100 129 2.06∗107 (0.084) 2.10∗107 (0.083) 5.69∗107

√
n/1000 32 8.48∗106 (0.262) 8.54∗106 (0.261) 2.36∗108

1000

√
n/10 904 3.74∗107 3.74∗107 3.70∗107

√
n/100 204 4.16∗107 (0.094) 4.24∗107 (0.328) 1.43∗108

√
n/1000 45 1.62∗107 (0.093) 1.62∗107 (0.328) 6.77∗108

1500

√
n/10 1171 6.40∗107 6.40∗107 6.30∗107

√
n/100 264 2.06∗107 (0.083) 9.12∗107 (0.082) 2.40∗108

√
n/1000 62 2.74∗107 (0.338) 2.75∗107 (0.337) 1.18∗109

Tab. 7.4: Comparing the theoretical number of iterations required for the relative
errors attained in Table 7.3 using Euclidean norm

Number of Iterations

n,m
building UFL-EG UFL-SDA UFL-WDA UFL-TSDA

costs Entropy Entropy Entropy Entropy

500

√
n/10 1409 78063 4308 15083√
n/100 310 65516 399 707√
n/1000 50 97042 363 11

1000

√
n/10 2330 100000 (0.058) 67320 35288√
n/100 530 100000 (0.051) 755 1013√
n/1000 111 100000 (0.079) 452 46

1500

√
n/10 2966 100000 (0.065) 100000 (0.076) 48523√
n/100 689 100000 (0.054) 1354 3021√
n/1000 159 100000 (0.084) 506 97

Tab. 7.5: Comparing the number of iterations required for a relative error ϵ = 0.05
using Entropy function (maximal number of iterations allowed: 100000,
in brackets relative error at this limit)
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Theoretical Number of Iterations

n,m
building UFL-EG UFL-SDA UFL-WDA UFL-TSDA

costs Entropy Entropy Entropy Entropy

500

√
n/10 7107 1.06∗107 1.05∗107 1.06∗107

√
n/100 1596 1.06∗107 1.06∗107 1.06∗107

√
n/1000 330 3.37∗107 3.38∗107 3.46∗107

1000

√
n/10 12424 1.67∗107 (0.058) 2.27∗107 2.32∗107

√
n/100 2810 1.59∗107 (0.051) 1.65∗107 1.66∗107

√
n/1000 620 1.09∗107 (0.079) 5.57∗107 5.75∗107

1500

√
n/10 17157 2.17∗107 (0.065) 1.56∗107 (0.076) 3.68∗107

√
n/100 3844 1.76∗107 (0.054) 2.06∗107 2.08∗107

√
n/1000 869 2.41∗107 (0.084) 6.80∗107 6.80∗107

Tab. 7.6: Comparing the theoretical number of iterations required for the relative
errors attained in Table 7.5 using Entropy function

with respect to the computed iterations. We plot all values until a relative error of
0.01 is achieved. All figures show the same pattern, namely, that the optimal value
is approximated more quickly by the dual values than by the primal values. Again,
the methods based on the Euclidean norm perform better than the methods based
on the Entropy function, except for the Weighted Dual Average Algorithm (WDA).

We further investigate UFL-EG-Euclidean algorithm for larger instances. We also
compared the running time needed by the commercial solver Cplex 11.0 ([Cpl])for
solving the same instances to optimality with the running time needed by UFL-
EG-Euclidean algorithm to achieve different relative errors. Due to memory re-
quirements of Cplex 11.0, we used a computer with a cpu running at 2.6 GHz and
32G RAM. Nevertheless, we could only use the dual simplex method but not the
barrier methods. Table 7.7 shows the corresponding results, with the number of
computed iterations in brackets. The advantage of UFL-EG-Euclidean algorithm
becomes clear in the larger instances with high building costs. However, with small
building cost Cplex 11.0 outperforms the approximation algorithm except when
relative errors of 0.05 are sufficient.
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Fig. 7.1: Excessive Gap Method: UFL-EG-Euclidean vs. UFL-EG-Entropy, evo-
lution of primal and dual value
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Fig. 7.2: UFL-SDA-Euclidean vs. UFL-SDA-Entropy, evolution of primal and
dual value
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Fig. 7.3: UFL-WDA-Euclidean vs. UFL-WDA-Entropy, evolution of primal and
dual value
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Running Time

n,m
building Cplex 11.0 UFL-EG-Euclidean

costs (dual simplex) ϵ = 0.05 ϵ = 0.01 ϵ = 0.0075

2000

√
n/10 5045s 119s (40) 1435s (483) 2134s (835)√
n/100 328s 131s (40) 977s (316) 1332s (433)√
n/1000 116s 62s (18) 263s (83) 357s (107)

2500

√
n/10 17821s 184s (38) 1991s (452) 3272s (711)√
n/100 1039s 203s (41) 1613s (344) 2254s (480)√
n/1000 217s 103s (21) 477s (96) 603s (128)

3000

√
n/10 27645s 230s (38) 2715s (457) 4337s (729)√
n/100 2633s 247s (40) 2273s (360) 3360s (506)√
n/1000 378s 178s (24) 766s (113) 1035s (146)

Tab. 7.7: Cplex 11.0 vs. UFL-EG-Euclidean, comparing running times (in brack-
ets # of completed iterations)



8. Static Traffic Assignment Problem
(STAP)

8.1 Motivation and Problem Statement

Starting with the mass production of automobiles in the beginning of the last cen-
tury, transport analysts and economists and later, mathematicians and computer
scientists have considered options for coping with road congestion. From a driver
(user) point of view, the highest economic impact of congestion translates into de-
lays. In [War52], Wardrop pointed out in his Second Principle that congestion can
only occur if users choose their routes individually in order to optimize their own
utility functions, which is usually the case in transportation networks. Thus the
main focus of research has been on ways of understanding and possibly relieving
congestion in a setting where drivers are free to choose their way. From a game-
theoretic point of view, a transportation network is considered at equilibrium when
all traffic patterns stabilize (and thus, also the delays) and no driver has any incen-
tive to change his current route (Wardrop’s First Principle, [War52]). In this case,
we say that the system is at a user equilibrium state (UE). The other side of the
spectrum is when there is a central decision maker that assigns routes to drivers.
In this case, the goal is to collectively optimize the utilization of the network; when
this goal is achieved we say that the system is at a social optimum state (SO). The
existence and uniqueness of either states is a non-trivial question, but they can be
guaranteed in certain cases for some mathematical models.

Beckmann et al. were the first to propose and solve a mathematical model to
compute both the UE and SO state in [BMW56]. Since then, their model has be-
come standard in transportation networks (e.g., [Nag93], [BMN05] and references
therein) and nowadays there are several commercial codes to solve it. In this model,
the crucial assumption is the existence of a latency function for each road of the
network. As more users use a road, its latency grows, thus making it less attractive.
Mathematically the problem usually becomes a minimum cost multicommodity flow
problem with non-linear but convex objective in which there are no binding con-
straints among the flows (the natural road capacity constraints are encoded only
through the latency functions).
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Parallel to the development of algorithms to solve the underlying mathematical op-
timization problem, extensions of the Beckmann model with additional constraints
have been investigated, which aim at being more realistic. A generalized utility
function is considered, where at the same time a latency function and Lagrange
multipliers of the additional constraints are used. However, these models have been
little studied mainly due to computational issues, see [LP99], and references therein.

More recently Nesterov and De Palma developed an alternative model, [NdP00,
NdP03]. In this model, the capacity constraints are kept explicitly in the mul-
ticommodity flow problem, and, more crucially the First Wardrop Principle is a
consequence of the complementary slackness conditions of a convex optimization
problem. In contrast to the Beckmann model, the delays are not computed by
means of latency functions, but rather as the Lagrange multipliers of the capacity
constraints of a linear multicommodity flow problem.

In the following both models and their main properties are presented. The aim
is to provide clarity in the differences of the models both theoretically and practi-
cally. However, as they rely on different assumptions, the models cannot be directly
compared. Thus, the following measures are considered in order to determine the
utility of the models.

• The price of anarchy, introduced by Koutsoupias and Papadimitriou in
[KP99], defined as the ratio between the total utility at UE and at SO, mea-
sures how far the UE is from the best possible use of the network.

• The Braess paradox, studied by Braess in [Bra68], describes the counter-
intuitive phenomenon occurring when adding more resources to a transporta-
tion network, e.g., adding a road or a bridge, deteriorates the quality of a UE.
Given the significant cost of adding resources to a transportation network, a
good model should be able to predict Braess-paradox type of problems before
actually making a physical change to the network.

Problem Statement

We consider a traffic network G = (N ,A), where N is the set of nodes, i.e., inter-
sections or zones, and A is the set of the arcs, i.e., the roads. Each arc a ∈ A has
a capacity, ca, i.e., the maximal number of cars that can cross the road a during a
given period of time, and a free travel time, t̄a, the minimal travel time needed to
travel through the road a at maximal allowed speed.

The goal of the static traffic assignment problem is to allocate a given set of drivers
with fixed origins and destinations on the network in order to attain a Social Opti-
mum (SO) state or an User Equilibrium (UE) state. At the SO state, the total travel
time, i.e., the sum of all drivers’ travel time is minimized (second Wardrop principle,
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1952). At the UE state, each driver selects his fastest route (first Wardrop principle,
1952). The current state of a traffic network is specified by a flow, s ∈ R|A|, i.e.,
where users are driving, and a travel time, t ∈ R|A|, i.e., how long it takes to travel
through the roads of the network.

The set of fixed origins and destinations is denoted by OD ⊂ N×N . For each fixed
origin-destination pair (OD-pair), k ∈ OD, dk > 0 corresponds to the number of
drivers travelling during a given period of time from the origin of k to its destination.
We denote by hk ∈ R|A| the flow of the OD-pair k ∈ OD and thus, s =

∑
k∈OD h

k.

We assume the number of drivers using a road to be constant during the considered
period of time. Thus, we use this problem for studying the network load only during
short specific periods of the day, for example peak hours where the average number
of drivers using a road can be considered as constant.

8.2 Nesterov & de Palma Model

For Nesterov and de Palma, the capacity ca of a road a ∈ A in a traffic network
cannot be violated and as long as there is enough capacity on the roads to allocate
to all drivers, there is no slowdown on the roads. At capacity limit, if the flow of
drivers is not well managed, congestion and thus delays on the roads may occur. One
can characterize the model as a fluid model. Assumption 5 resumes the previous
remarks.

Assumption 5 ([NdP00, NdP03]) Let (s, t) be a traffic assignment. Then,
(s, t) satisfy the following conditions:

• The total flow sa on an arc a ∈ A never exceeds the capacity ca of this arc,
sa ≤ ca.

• Below capacity the travel time ta on an arc a ∈ A is equal to its free travel
time t̄a. At capacity limit, it can take any value larger or equal to the free
travel time, i.e.,

if sa < ca ⇒ ta = t̄a,

if sa = ca ⇒ ta ≥ t̄a.

The total travel time is defined as
∑

a∈A sata.

Recall that at SO we assume that the drivers are managed by a central organization,
which assigns the drivers on the network in order to minimize the total travel time.
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Thus, even for a road with flow at capacity limit, the travel time does not exceed the
free flow travel time. For Nesterov and de Palma, computing a traffic assignment
at SO is equivalent to solving the following minimum linear cost multicommodity
flow problem,

(NdP-SO) min
s,h

∑
a∈A

sat̄a

s.t. sa =
∑
k∈OD

hka ≤ ca ∀ a ∈ A (8.1)

Ehk = δk ∀ k ∈ OD (8.2)

hk ≥ 0 ∀ k ∈ OD (8.3)

where E is the node-arc incidence matrix and δk is the node demand vector, i.e.,

Ez,a =


−1 if node z is the tail of arc a,
1 if node z is the head of arc a,
0 otherwise

δkz =


−dk if node z is the origin of OD-pair k,
dk if node z is the destination of OD-pair k,
0 otherwise.

The objective function of NdP-SO corresponds to the total travel time since there
are no delays and thus the travel time is equal to the free travel time, t = t̄.
Equation (8.1) ensures that capacity constraints are respected. Equations (8.2)
and (8.3) ensure that the demand of each OD-pair is satisfied, i.e., all drivers have
to be correctly assigned. We note that this minimization problem models the SO
problem in a very natural manner.

Now let us focus on the capacity constraints (8.1). From duality theory the cor-
responding dual variables are usually considered as the price a user is willing to
pay for getting one additional unit of capacity. Nesterov and de Palma interpret
it as a penalty, i.e., a delay that the drivers will face for trying to use a road al-
ready at capacity limit. We relax (8.1), the capacity restriction, and consider the
corresponding Lagrange Dual problem,

max
u≥0

min
hk, k∈OD

{
⟨t̄,
∑
k∈OD

hk⟩ + ⟨u,
∑
k∈OD

hk − c⟩ | Ehk = δk, hk ≥ 0 ∀ k ∈ OD

}
.

(8.4)
For fixed u, we observe that the optimization problem (8.4) is decomposable by
k ∈ OD. Then, for each k ∈ OD, the minimization problem

min
hk

{
⟨t̄+ u, hk⟩ − ⟨u, c⟩ | Ehk = δk, hk ≥ 0

}
, (8.5)
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is a minimum cost flow problem without capacity constraints, where the cost cor-
responds to the total travel time for assigning drivers of OD-pair k given the travel
time t = t̄ + u. Hence, it is then sufficient to distribute the demand dk along a
shortest path for the commodity k with respect to the given travel time t = t̄+ u.
Having established the duality relation, we observe that for an optimal solution of
NdP-SO, s∗, and optimal Lagrange multipliers, u∗, for (8.1) we have

(s∗, t̄) is a traffic assignment at SO,
(s∗, t̄+ u∗) is a traffic assignment at UE.

It is important to note here that the flow is the same at UE and at SO. UE and SO
only differ in their travel times, i.e., on the Lagrange multipliers. Thus, from the
point of view of traffic management, u∗ can be used as an incentive for selfish drivers
to reach the SO. One may think of the use of toll (road pricing) or a calibration of
maximal allowed speeds and/or flow capacities.

Let us consider again the Lagrange Dual problem (8.4). Denote Pk the set of all
paths between origin and destination of the OD-pair k, and akP the arc incidence
vector for each path P ∈ Pk. Then, the length of the shortest path for the OD-pair
k given the travel time t, Tk(t), is defined by

Tk(t) = min
P∈Pk

{
⟨akP , t⟩

}
. (8.6)

Using (8.5) and (8.6), the Lagrange dual of the NdP-SO problem, (8.4), becomes

max
t≥t̄

{∑
k∈OD

dkTk(t) − ⟨t− t̄, c⟩

}
, (8.7)

where we replaced t̄+ u by t. Theorem 8.1 resumes the previous remarks.

Theorem 8.1 ([NdP00, NdP03])
The arc travel time t∗ and the arc flow vector s∗ correspond to a traffic assignment
at user equilibrium (UE) if and only if t∗ is a solution of the following problem

(NdP-UE) max
t≥t̄

{ ∑
k∈OD

dkTk(t) − ⟨t− t̄, c⟩

}
, (8.8)

and s∗ = c − l∗, where l∗ is a vector of optimal dual multipliers for the inequality
constraints t ≥ t̄ in (8.7).

Note that the flow s∗ defined in the previous theorem, i.e., s∗ = c − l∗ where l∗

is the vector of optimal dual multipliers, satisfies the roads capacities. Namely,
c − s∗ = l∗ ≥ 0 since the feasible dual multipliers are non-negative. The existence



132 Static Traffic Assignment Problem (STAP)

1

2

c1 = 2 t̄1 = 1

c2 = 1 t̄2 = 2

s1 = 1 s2 = 0

tSO
1 = tUE

1 = 1

tSO
2 = tUE

2 = 2

s1 = 1 s2 = 0

tSO
1 = 1 tS0

2 = 2

tUE
1 ∈ [1, 2] tUE

2 = 2

c1 = 1 t̄1 = 1

c2 = 1 t̄2 = 2

1

2

c2 = 0.5 t̄2 = 2

c1 = 0.5 t̄1 = 1

s1 = 0.5 s2 = 0.5

tSO
1 = 1 tSO

2 = 2

tUE
1 ≥ 2 tUE

2 ≥ 2

c)a) b)

arc index

1

2

1-1 -1 1 -1 1
demand

Fig. 8.1: Non uniqueness of delays

and uniqueness of the SO and UE states for the Nesterov & de Palma model is a
delicate question. It is obvious that as long as the NdP-SO problem is feasible, the
SO state exists but may be non-unique. The existence of UE is more restrictive.
If the Lagrange multipliers are not unique the delays and, hence the travel times,
cannot be exactly determined. In this case the mathematical model indicates that
the distribution of the drivers on the transportation network is unstable with respect
to a small change in the capacity of the roads. In the example of Figure 8.1 we
have in (a) a situation where delays are unique, and actually equal to zero. In (b),
since the upper road is used at its capacity limit, the delay on this road is bounded
by the difference in the free travel times of both alternative routes. Finally in (c)
we have the flow on both roads at capacity limit and thus, the travel time of both
roads have to be equal but the delays may be unbounded.

In case of unboundedness of delays, there is at least one OD-pair having no other
alternative route, such that any small decrease of flow capacity make the NdP-SO
problem infeasible. One can show that it is enough to find one single road a ∈ A for
which any reduction of capacity makes the NdP-SO problem infeasible for having
unbounded delays and vice versa, see [Rud07].

8.3 Comparison with the Beckmann Model

In this section, we first summarize the basic properties of the Beckmann model and
then present some differences between the Nesterov & de Palma and the Beckmann
models based on numerical results. For the numerical experiments we consider small
networks where the UE and the SO can be solved with high accuracy for both models
using commercial solvers. In Chapter 9, numerical results using larger networks and
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the methods described in Chapters 4 and 5 are presented. The objective is then to
study the numerical performance of the investigated algorithms. Here, we focus on
the comparison of the models.

8.3.1 Beckmann Model

In the Beckmann model, one assumes that the travel time for each arc a ∈ A only
depends on the flow on the arc and it is defined by a latency function la(·), which
is convex, continuous, non-negative and non-decreasing. Moreover, the capacity
constraints are taken into account by choosing la(·) such that a violation of the
capacity ca is penalized. Note that this allows solutions where the capacity con-
straints are violated. The total travel time of a traffic assignment (s, l(s)) is defined
by
∑

a∈A la(sa)sa. Under these assumptions, the SO is the solution of the following
convex optimization problem

(B-SO) mins,h
∑

a∈A sala(sa)

s.t. sa =
∑

k∈OD hka ∀ a ∈ A

Ehk = δk ∀ k ∈ OD

hk ≥ 0 ∀ k ∈ OD

As in the Nesterov & de Palma model, this problem corresponds to a minimum
cost multicommodity flow problem having, however, no capacity constraints and an
objective function that may be non-linear. Typically used latency functions are the
BPR functions ([Bur64]) given by

la(sa) := t̄a

(
1 + α(

sa
ca

)β
)
, α, β ≥ 0, ∀ a ∈ A (8.9)

They penalize the overflow on the roads depending on the values of the parameters
α and β, see the example in Figure 8.2. Recall that Pk denotes the set of all paths
for the OD-pair k. We denote by hkP ∈ R the flow of OD-pair k along path P ∈ Pk
and note that the total flow sa on road a ∈ A can be then computed as follows

sa =
∑
k∈OD

∑
{P∈Pk,a∈P}

hkP .

The travel time of a path P given the total flow s is defined by lP (s) =
∑

a∈P la(sa).
The first Wardrop principle in this context can be stated as follows:
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Fig. 8.2: Typical latency functions, BPR, Bureau of Public Road, 1964

Principle (First Wardrop principle, 1952)
The total flow, s∗, satisfies the first Wardrop principle if and only if

∀ k ∈ OD and ∀ P,Q ∈ Pk such that hkP
∗
> 0 ⇒

∑
a∈P

la(s
∗
a) ≤

∑
a∈Q

la(s
∗
a), (8.10)

i.e., only the shortest paths are used for each OD-pair.

One can show that condition (8.10) corresponds to the optimality conditions of the
following convex optimization problem (see [BMW56] and [Pat94])

(B-UE) mins,h
∑

a∈A
∫ sa

0
la(x)dx

s.t. sa =
∑

k∈OD hka ∀ a ∈ A

Ehk = δk ∀ k ∈ OD

hk ≥ 0 ∀ k ∈ OD

Each optimal solution s∗ of the optimization problem B-UE corresponds to a traffic
assignment, (s∗, l(s∗)) at UE for the Beckmann model.

The UE and SO exist always in this setting. Namely, the feasible set

{(hk)k∈OD | Ehk = δk, hk ≥ 0 ∀ k ∈ OD},
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which is closed but not bounded, can be reduced to the closed and bounded set

{(hk)k∈OD | Ehk = δk, hk ≥ 0, hka dk ∀ a ∈ A ∀ k ∈ OD} (8.11)

without affecting the solution set, since both objective functions are continuous,
non-negative, and non-decreasing. Then, by Weierstrass’ Theorem (Theorem A.2),
we have that the minimum of B-SO and the minimum of B-UE are attained in the
compact set (8.11). The literature on methods for solving the B-SO and B-UE is
vast. See the paper of [BMN05] for an overview. In particular, [BG02] develops an
origin-based algorithm efficient for solving the UE problem when highly accurate
solutions for small and large-scale instances are required.

Extensions of the Beckmann model, where additional constraints are considered,
have also been investigated, e.g. [LP99]. However, they have not been deeply stud-
ied. Mathematically, the UE with additional constraints is formulated as follows

(B-UEext) mins,h
∑

a∈A
∫ sa

0
la(x)dx

s.t. gi(s) ≤ 0 ∀i ∈ I (additional constraints)

sa =
∑

k∈OD hka ∀ a ∈ A

Ehk = δk ∀ k ∈ OD

hk ≥ 0 ∀ k ∈ OD,

where I is a subset of indices of arcs, nodes or OD pairs, and gi(s) are additional
constraints, which are assumed to be convex and continuously differentiable func-
tions. Again, the first Wardrop principle corresponds to the optimality conditions
of the convex optimization problem B-UEext. The path’s travel time are in this
setting generalized as follows

tP (s∗, ζ∗) =
∑
a∈P

la(s
∗
a) +

∑
i∈I

ζ∗i

(∑
a∈P

∂gi(s
∗)

∂sa

)
, ∀ P ∈ Pk, ∀ k ∈ OD,

where s∗ is an optimal solution of B-UEext and ζ∗ are the Lagrange multipliers
corresponding to the additional constraints. Consider for example the special case
of flow capacity constraints on the roads, ga(s) := sa − ca for a ∈ A. For an
optimal solution s∗ and the optimal Lagrange multipliers ζ∗a to ga(s) for a ∈ A,
the generalized travel time for each road a ∈ A is given by ta(s

∗
a) = la(s

∗
a) + ζ∗a .

This corresponds to the Nesterov & de Palma model in the case of constant latency
functions, la(sa) = t̄a ∀ a ∈ A.

B-UEext is computationally more difficult to solve than B-UE, since the additional
constraints are often binding constraints. Moreover, the existence of a UE is a non
trivial question as in Nesterov & de Palma model. The non-uniqueness of the dual
multipliers implies that the travel times cannot be exactly determined.
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8.3.2 Numerical Comparison Based on Small-Scale
Networks

The models base the travel times on different assumptions. Therefore, a direct
comparison of the travel times is not suitable. Instead, we study the influence of
the models’ assumptions on the drivers’ distribution on the network. Thus, we
consider the set of congested roads, the number of paths used per OD-pair, the
price of anarchy and the detection of Braess paradoxes.

In this subsection, we consider two small but well investigated instances of the static
traffic assignment problem, namely the Sioux Falls and the Anaheim networks,
which can be solved with high accuracy (10−6) using commercial solvers. The data
concerning these two instances can be found in [BG07] and their main characteristics
are shown in Table 8.1.

Instance Nodes Roads OD-pairs

Sioux Falls 24 76 528
Anaheim 416 914 1’405

Tab. 8.1: Characteristics of the small networks

For the Beckmann model, three different BPR functions are used, BPR low, middle,
and, high. They correspond to the latency function defined at Equation (8.9)
for different values of the parameters α and β, see Table 8.2. For the extended
Beckmann model, we choose the capacity constraints for the roads as additional
constraints.

la(sa) := t̄a

(
1 + α( sa

ca
)β
)

α β
BPR low 0.15 4
BPR middle 0.5 3
BPR high 0.75 4

Tab. 8.2: Characteristics of the latency function

First we investigate the set of congested roads at SO and at UE for both models. In
Figures 8.3 and 8.4 these sets are depicted for the Sioux Falls network. The roads
at capacity limit are drawn in yellow and the roads with overflow are drawn in red.
We observe that the set of congested roads provided by the solution of the Nesterov
& de Palma model contains the set of congested roads provided by the solutions of



8.3 Comparison with the Beckmann Model 137

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

unused  road

not congested road

Legend

overflow

congested  road

(a) Nesterov &
de Palma model

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

(b) Beckmann model (c) Beckmann model (d) Beckmann model
BPR low BPR medium BPR high

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

(e) Extended Beckmann (f) Extended Beckmann (g) Extended Beckmann
model BPR low model BPR medium model BPR high

Fig. 8.3: Sioux Falls - flow distribution at Social Optimum



138 Static Traffic Assignment Problem (STAP)

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

unused  road

not congested road

Legend

overflow

congested  road

(a) Nesterov &
de Palma model

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

(b) Beckmann model (c) Beckmann model (d) Beckmann model
BPR low BPR medium BPR high

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

(e) Extended Beckmann (f) Extended Beckmann (g) Extended Beckmann
model BPR low model BPR medium model BPR high
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the considered Beckmann and extended Beckmann models at SO as well as at UE.
The same results can be observed for the Anaheim network. Moreover, as expected,
the flow distribution delivered by the solutions of the extended Beckmann model is
close to the flow distribution obtained by using the Nesterov & de Palma model.
Not surprisingly, if the latency function increases the penalty on the overflow, the
overflow in the derived traffic assignment is reduced (see Tables 8.3 and 8.4). How-
ever, it is interesting to remark that the latency function which best duplicates the
solution provided by the Nesterov & de Palma model, both at SO and at UE, is
the BPR low function with the standard parameters’ values, α = 0.15 and β = 4.
These values were defined by the [Bur64].

Model SO UE
average (%) std (%) average (%) std (%)

Beckmann
BPR low 108.5 2.1 116.4 2.8
BPR medium 104 1.8 111.2 1.9
BPR high 102.7 4 109 2.1

Tab. 8.3: Sioux Falls - average overflow at SO and at UE

Model SO UE
average (%) std (%) average (%) std (%)

Beckmann
BPR low 106.7 5.6 122.7 9.7
BPR medium 0 0 110 7.9
BPR high 0 0 103.9 7.7

Tab. 8.4: Anaheim - average overflow at SO and at UE

Model SO UE

Nesterov & de Palma 1.057 1.057

Beckmann
BPR low 1.572 1.299
BPR medium 1.458 1.439
BPR high 1.545 1.574

Extended Beckmann
BPR low 1.598 1.598
BPR medium 1.485 1.652
BPR high 1.545 1.598

Tab. 8.5: Sioux Falls - average number of used paths at SO and at UE



140 Static Traffic Assignment Problem (STAP)

Model S0 UE

Nesterov & de Palma 1.004 1.004

Beckmann
BPR low 1.357 1.277
BPR medium 1.443 1.398
BPR high 1.458 1.440

Extended Beckmann
BPR low 1.322 1.289
BPR medium 1.443 1.403
BPR high 1.458 1.436

Tab. 8.6: Anaheim - average number of used paths at SO and at UE

In Tables 8.5 and 8.6, the average numbers of paths used per OD-pair at SO and at
UE by both models is summarized. We remark that the flow distribution derived
from the Nesterov & de Palma model (≃ 1 path/OD-pair) uses less paths than
the flow distribution derived by the Beckmann models (≃ 1.4 paths/OD-pair).
The addition of capacity constraints on the Beckmann model does not significantly
influence the number of paths used.

From our numerical results, we observe that the Nesterov & de Palma model gen-
erates traffic assignments where the flow distribution is concentrated as much as
possible, whether we look for a SO or a UE state. In contrast, but as expected
from the Beckmann model, the more we penalize the overflow the more the flow is
spread out over the network.

Price of Anarchy

As already mentioned in the introduction, the price of anarchy was first introduced
by [KP99], and it is defined as the ratio between the total utility at UE and at
SO. In our context, the total utility corresponds to the total travel time of a traffic
assignment (s, t) and is denoted by U(s, t) =

∑
a∈A sata. The price of anarchy is

then formulated as follows

price of anarchy =
U(sUE, tUE)

U(sSO, tSO)
, (8.12)

where (sUE, tUE) corresponds to a traffic assignment at UE and (sSO, tSO) to a
traffic assignment at SO. In our context, an upper bound on the price of anarchy is
a relative measure on how far a UE is off from a best possible network utilization
(SO).

The existence of such bounds for the Beckmann model without additional con-
straints has been intensively investigated in recent years, see [RT00], [RT04],
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[CSSM04] and references therein. For example, [Rou03], shows that the price of
anarchy is bounded by O( d

log d
) when the latency function is a polynomial with non-

negative coefficients and degree at most d. Thus, the price of anarchy for the BPR
functions is bounded by O( β

log β
) (= 2 for β = 4).

For the Nesterov & de Palma model as well as for the Beckmann model with ad-
ditional constraints, the existence of such a bound is intrinsically related to the
boundedness of the delays, i.e., the Lagrange dual multipliers. We reconsider now
the example in Figure 8.1 (c). Using the Nesterov & de Palma model, we get a
total travel time at SO of 3

2
. The total travel time at UE is unbounded since any

solution distributing half of the flow on each arc with the delays u1 = u2+1, u2 ≥ 0,
is a traffic assignment at UE. The price of anarchy is then 2

3
(1 + u1). The same

observation can be made for the extended Beckmann model.

The price of anarchy provides information on the utilization of the network. Table
8.7 summarizes the results of the price of anarchy for the Sioux Falls and the
Anaheim networks. We observe that the Nesterov & de Palma model is more
pessimistic than the Beckmann model, even if capacity constraints are explicitly
considered. The difference in the Anaheim instance is much smaller compared to
the Sioux Falls instance, since the first does not correspond to a highly loaded
network. In the Anaheim instance, only 0.76 % of the roads are at capacity limit
for the Nesterov & de Palma model and 0.66 % for the pessimistic UE given by the
Beckmann model.

Model Sioux Falls Anaheim

Nesterov & de Palma 1.38 1.008

Beckmann
BPR low 1.026 1.002
BPR medium 1.039 1.006
BPR high 1.053 1.007

Extended Beckmann
BPR low 1.003 1.002
BPR medium 1.016 1.006
BPR high 1.025 1.008

Tab. 8.7: Price of Anarchy

Braess Paradox

As already mentioned in the introduction, the Braess paradox occurs when adding
more resources to a transportation network, for example adding a road or a bridge,
deteriorates the quality of a UE. In other words, more resources increase delays
for the drivers. [Bra68], was the first to point out this counter-intuitive fact by
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exhibiting a simple example using the Beckmann model. This phenomenon can
also be interpreted as follows. Suppose we close a road or we increase its free travel
time by decreasing the maximal allowed speed in this road. If the utility, i.e., the
total travel time, at UE decreases then we also observe a Braess paradox. By Braess
roads, we denote roads that worsen the UE under current conditions, i.e. cause a
Braess paradox.

In the following we numerically investigate the detection of Braess phenomena on
the Sioux Falls network using the three models. For this comparison we increase
the free travel time for one road at a time and we look for a decrease in the total
travel time at UE. In Table 8.8 the relative improvement of the total travel time is
given for the tested roads.

Road Nesterov & Beckmann
de Palma BPR low BPR medium BPR high

15 2.02% - - -
16 2.02% - - -
25 3.52% - 1.19% 1.36%
26 3.52% - 1.19% 1.36%

Tab. 8.8: Sioux Falls - Braess Paradox

Since the extended Beckmann model does not detect any Braess paradox, we have
omitted it from the table. Road 25 and 26 are seen as Braess roads by the Nesterov
& de Palma model as well as by the Beckmann model but only for latency function
BPR medium and high. Road 15 and 16 are only considered as Braess roads by the
Nesterov & de Palma model. The same observation can be made for the Anaheim
network.

The Braess paradox is intrinsically tied to the demands of the OD-pairs. After
reducing the demands of all OD-pairs by 30 %, neither the Nesterov & de Palma
model nor the Beckmann model detects a Braess paradox. From our numerical
results, we note that the detection of the Braess Paradox for the Beckmann model
depends as expected, on the choice of the latency function.

8.4 Remarks

The existence of a social optimum (SO) is ensured for both models under minimal
requirements. The existence of a user equilibrium (UE) is also easily ensured for the
Beckmann model, but it is more restrictive for the Nesterov & de Palma and the
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extended Beckmann model. The latter two models use minimum cost multicom-
modity flow problems with capacity constraints and the corresponding Lagrange
dual multipliers for defining a UE. Therefore, the existence of a UE and its unique-
ness are intrinsically tied to the existence and uniqueness of the Lagrange dual
multipliers.

In the Nesterov & de Palma model, duality theory yields that the flow patterns are
equal at SO and at UE and that the travel times differ exactly by the Lagrange
dual multipliers. This duality relation provides a natural way to offer an incentive
to selfish drivers to reach the SO. On the other hand, with the Beckmann and the
extended Beckmann model, traffic managers need to adjust the parameters of the
latency function to achieve the same result.

We focused on a computational comparison of the flow distribution at UE and at
SO generated by the models. We observed that the set of congested roads in the
Nesterov & de Palma model includes the set of congested roads in the Beckmann
model. Moreover, the drivers are less spread out in the Nesterov & de Palma model
than in the Beckmann model.

In the next chapter we will consider large networks. Our primary goal is to study
the numerical performance of the algorithms presented in Chapter 9, nevertheless
we will also compare both models.





9. Numerical Results for the Static
Traffic Assignment Problem

In this chapter we investigate the numerical performance of the Primal-Dual Sub-
gradient methods and the Excessive Gap method on the Static Traffic Assignment
problem using the Nesterov & de Palma model. Recall that we have two math-
ematical formulations for this problem, the primal formulation corresponding to
the Social Optimum (NdP-SO) and the dual formulation corresponding to the User
Equilibrium (NdP-UE), see Section 8.2. We apply the Primal-Dual Subgradient
methods for solving the dual formulation, i.e., (NdP-UE), and the Excessive Gap
method is used for solving the primal formulation (NdP-SO).

We consider instances of STAP from standard networks such as Sioux Falls, Ana-
heim, or Barcelona, and from real data corresponding to the traffic of the metropoli-
tan region of Zurich. The last network is out of range for commercial LP solvers
such as Cplex 11 due to its very large size. We then compare the results obtained
by our algorithms with the assignments computed by the commercial solver VISUM
[VIS06], which has been developed for approximately solving the Beckmann model.

Before explaining the implementation of the algorithms, we introduce some addi-
tional notation and make a few remarks concerning the NdP-SO formulation. The
set of roads contains m elements, i.e. | A |= m, and there are n zones, i.e., | N |= n.
Finally, K OD-pairs exist, i.e., | OD |= K and the sum of their demand is denoted
by dtot :=

∑
k∈OD dk.

The problem NdP-SO corresponds to the traditional minimum cost multicommodity
flow problem, where the commodities are the OD-pairs. The literature concerning
multicommodity flow problems is very rich due to the large number of applications.
Typical examples are message routing in telecommunications, traffic assignment,
production scheduling and planning, VLSI design, etc. For an overview on multi-
commodity flow problems, we refer the reader to the book of Ahuja, Magnanti, and
Orlin [AMO93] and the chapters by Minoux and by Lisser and Mahey in [RP06],
where multicommodity flow problems in telecommunications are considered. The
first book presents more traditional ways for solving this problems, such as Lagrange
relaxation, column generation or Dantzig-Wolfe decompositions. In the other book,
recent approximation schemes are also presented.
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Since we are interested in approximation algorithms, we mention some important
results concerning approximation algorithms for the minimum cost multicommodity
flow problem. The first approximation scheme was presented by Plotkin, Shmoys,
and Tardos in [PST95] with a running time of Õ(ϵ−2K2m2), where ϵ is the desired
accuracy and the notation Õ() means that logarithm factors are ignored. In [GK96]
Grigoriadis and Khachiyan presented an approximation algorithm which improved
this result by a factor of n/(Km), i.e., Õ(ϵ−2Kmn). A few years later, based on
results of Garg and Könemann, [GK98] (different algorithm but same running time
as Grigoriadis and Khachian), Fleischer presented in [Fle00] an approximation al-
gorithm with running time Õ(ϵ−2m(m+K)), which improved the previous bound
when a large number of commodities is considered. The first approximation algo-
rithm, whose running time is independent of the number of commodities, Õ(ϵ−2m2),
was developed by Karakostas in [Kar02]. His algorithm is also based on the algo-
rithms of Garg and Könemann and Fleischer. In 2005 Villavicencio improved the
last result by presenting an approximation algorithm with running time Õ(ϵ−2m).
For numerical results on some of the above mentioned approximation algorithms,
we refer to the paper of Goldberg et al. [GOPS98].

We note that the dependence on ϵ of all algorithms is of order ϵ2. Using the
Excessive Gap method we generate an approximation algorithm whose dependence
on ϵ is of order ϵ−1. However, at each iteration our algorithm requires the solution
of K minimum quadratic cost flow problems, whereas the others only require the
solution of minimum cost flow problems (K or less). The same phenomenon is
encountered by Bienstock and Iyengar for the maximum concurrent flow problem
in [BI04] as well as in [CE05], where at each iteration a convex quadratic problem
has to be solved. Therefore the algorithms with a running time of order ϵ2 remain
more attractive. This is also the case for the approximation algorithm we develop
using the Primal-Dual Subgradient methods.

9.1 Primal-Dual Subgradient Algorithms

We apply the Primal-Dual Subgradient methods on the User Equilibrium formula-
tion (NdP-UE) of the Static Traffic Assignment problem,

(NdP-UE) max
t≥t̄

{∑
k∈OD

dkTk(t) − ⟨t− t̄, c⟩

}
=: UE∗ (9.1)

where for each OD-pair k ≥ 1, Tk(t) = minP∈Pk

{
⟨akP , t⟩

}
and Pk is the set of

all possible paths from the origin of the k-th OD-pair to its destination. In the
following we denote by UE∗ the optimal value of NdP-UE and we use the notation
introduced in Chapters 3, 4, and 5.
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The objective function, which we want to minimize is defined as

f(t) := −
∑
k∈OD

dkTk(t) + ⟨t− t̄, c⟩ (9.2)

and the optimization problem is min
t≥t̄

f(t) = −UE∗. The feasible space corresponds

to the space of travel times on the roads, which are at least equal to the free travel
times. However, we cannot estimate the maximal possible travel times in advance.
Nevertheless, we assume for the moment that we know a valid upper bound for
the travel time, R. This results in a convex and compact feasible space for the
travel times Q := {t ∈ Rm | t̄ ≤ t ≤ R}. The upper bound R will be iteratively
updated during the Primal-Dual Subgradient algorithms by a procedure that we
explain later in this section.

The objective function f(t) is not differentiable due to the functions Tk(t), k ∈ OD.
The subdifferential of f(t), ∂f(t), depends on the subdifferential of the functions
Tk(t), ∂Tk(t), k ∈ OD. Namely, ∂f(t) = −

∑
k∈OD dk∂Tk(t)+c. In order to evaluate

these subdifferentials, let us fix t ∈ Q and k ≥ 1. Given that the function Tk(t) is
defined as a infimum of linear functions in t, its subdifferential is defined as a convex
combination of the gradients of the active linear functions, i.e., ξk ∈ ∂Tk(t) if and
only if ξk ∈ conv{ap | p ∈ Ik(t)} with Ik(t) := {p ∈ Pk | Tk(t) = ⟨ap, t⟩}. Therefore,
to compute a subgradient of f(t) at each step of the algorithm, it is sufficient to find
one path incidence vector in each Ik(t), i.e., to evaluate one shortest path for each
OD-pair with respect to the travel time t, for which we apply Dijkstra’s Algorithm,
see [AMO93]. The latter algorithm computes the shortest paths from one given
origin to all other nodes of the network with a running time of O(m + n log n).
Thus, the total running time for computing a subgradient of f(t) for fixed t is
O(K(m+ n log n)), see Algorithm 17.

In order to specify which dual problem we consider, we rewrite the objective function
as follows,

f(t) = −
∑
k∈OD

dkTk(t) + ⟨c, t− t̄⟩

= −
∑
k∈OD

dk min
p∈Pk

⟨ap, t⟩ + ⟨c, t− t̄⟩

=
∑
k∈OD

dk max
uk∈∆|Pk|

(∑
p∈Pk

⟨−ukpap, t⟩

)
+ ⟨c, t− t̄⟩

= max
u∈△

⟨c−
∑
k∈OD

dku
k
pap, t⟩ − ⟨c, t̄⟩

where △ = ∆|P1| × · · · × ∆|PK |. Then,

min
t∈Q

f(t) = max
u∈△

ψ(u),
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with
ψ(u) = min

t∈Q
⟨c−

∑
k∈OD

dku
k
pap, t⟩ − ⟨c, t̄⟩, (9.3)

defining the considered dual function. As explained in Chapter 4, we can simul-
taneously compute a subgradient and a dual feasible solution at each step of the
Primal-Dual Subgradient algorithms. Namely, for each k ∈ OD the convex combi-
nation defining ξk ∈ ∂Tk(t) is in ∆|Pk|. The product of these convex combinations
gives a dual feasible solution. Recall that during the algorithm, just one shortest
path is computed per OD-pair. Then, for each k ∈ OD, the corresponding part
of the computed dual solution will have zeros as components everywhere expect in
the component corresponding to the computed shortest path, which has value 1,
see Algorithm 17.

Algorithm 17 NdP-UE:Subgradient

Input: An evaluation point t
Output: ξt ∈ ∂f(t) and the corresponding dual value u

for k = 1 to K do
compute p∗ = arg min

p∈Pk

⟨ap, t⟩

set ukp =

{
1 if p = p∗

0 otherwise
and ξkt = ap∗

end for
set u = (u1, . . . , uK) and compute ξt = −

∑
k∈OD dkξ

k
t + c.

Now let us choose a norm for our feasible space as well as a prox-function in order
to concretize the Primal-Dual Subgradient algorithms. We endow Rm with the
Euclidean norm and we use the squared Euclidean norm as prox-function. Following
the notation of Chapters 3 and 4, we have

dQ(t) :=
1

2
∥t− t̄∥2

2

with σQ = 1 and maxt∈Q dQ(t) ≤ 1
2
∥R∥2

2 := DQ. We define the prox-function so
that its minimizer is the free travel time and, thus, the initial solution for the Primal-
Dual Subgradient algorithms is t0 = t̄. Since the dual norm of the Euclidean norm
is the Euclidean norm itself, we can bound the norm of the computed subgradient
as follows. For fixed t let ξt ∈ ∂f(t), then

∥ξt∥2 ≤ ∥ −
∑
k∈OD

dk1 + c∥2 ≤
√
m
∑
k∈OD

dk + ∥c∥2 =
√
mdtot + ∥c∥2 =: L,

where 1 is the unit vector. We note that the upper bound L depends on the road
capacities, c, which usually have large values. In order to remove this dependence,
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we consider an upper bound on the norm of subgradients variation. For fixed
t1, t2 ∈ Q let ξt1 ∈ ∂f(t1) and ξt2 ∈ ∂f(t2). Then,

∥ξt1 − ξt2∥2 ≤ ∥ −
∑
k∈OD

dka
t1
pk

+ c+
∑
k∈OD

dka
t2
pk

− c∥2 ≤ ∥
∑
k∈OD

dk(a
t2
pk

− at1pk
)∥2

≤ ∥
∑
k∈OD

dk1∥2 =
√
m · dtot := M,

where at1pk
, respectively at2pk

, is the path incidence vector of one of the shortest paths
for OD-pair k given the travel time t1, respectively t2. Since M < L we may expect
a better convergence from the Truncated Dual Averaging algorithm than the Dual
Averaging algorithms.

Now, let us consider the projection we need to calculate at each step of the Primal-
Dual Subgradient algorithms. Suppose ζi−1 is the summation of subgradients at step
i. For computing the travel time ti we need to solve arg min

t∈Q
{⟨ζi−1, t⟩+βi 12∥t− t̄∥

2
2}

for βi > 0. Thus, we have to solve a quadratic minimization problem over a box.
Using Lemma 9.1, a solution for the latter optimization problem can be computed
in O(m) time.

Lemma 9.1
Let a, tmin, tmax ∈ Rm and b > 0. Consider the optimization problem

minimize
m∑
i=1

aiti +
b

2

m∑
i=1

t2i (9.4)

subject to tmin ≤ t ≤ tmax

and define t∗ as follows, t∗i := max{tmin
i ,min{−ai

b
, tmax
i }} ∀ i = 1, . . . ,m. Then, t∗

is the optimal solution of problem (9.4).

Proof. The function t 7−→
∑m

i=1 aiti + b
2

∑m
i=1 t

2
i is well defined over Rm and it is

separable by component. For component i we define gi(x) = aix + b
2
x2. g(x) is

strongly convex, thus its minimum is unique and attained at x∗i with g′(x∗) = 0,
i.e., x∗i = −ai

b
. Then,

t∗i =


tmin
i if − ai

b
< tmin

i

−ai

b
if tmin

i ≤ −ai

b
≤ tmax

i

tmax
i if tmax

i < −ai

b

In order to evaluate the running time of an iteration of the Primal-Dual Subgradient
algorithms for the NdP-UE, we need to know the running time for evaluating the
objective function at a given travel time t and the dual function at a given dual
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solution u. For evaluating f(t) we need to compute K shortest paths, which takes
O(K(m+n log n)). To calculate ψ(u) we need to evaluate the minimum of a linear
function over a box, which can be done in O(m). Thus, each iteration of the
Primal-Dual Subgradient algorithms takes O(K(m+ n log n)).

Suppose the upper bound R on the travel times is correct. The next two theorems
resume the convergence rate of the Primal-Dual Subgradient algorithms applied to
NdP-UE.

Theorem 9.2
Given ϵ > 0, the Dual Averaging Algorithm, Algorithm 2, using either sim-
ple averages sequences (4.12) or weighted averages sequences (4.13) outputs in
O(K

ϵ2
(m + n log n)(

√
mdtot + ∥c∥2)

2∥R∥2
2) time a primal and a dual solution, t ∈ Q

and u ∈ △, such that f(t) − ψ(u) ≤ ϵ.

Proof. From Theorem 4.7, we know that if we run the Primal-Dual Subgradient
Algorithm 2 using either simple averages sequences (4.12) or weighted averages

sequences (4.13) for (9L2

ϵ2
DQ

σQ
− 1) iterations, we obtain primal and dual solutions,

t ∈ Q and u ∈ △, such that f(t)−ψ(u) ≤ ϵ, ϵ > 0. Thus we need 9(
√
m·dtot+∥c∥2)2

ϵ2
∥R∥2

2

steps to have a primal and a dual solution with an additive gap of ϵ. Since each
iteration takes O(K(m+n log n)), the total running time is O(K

ϵ2
(m+n log n)(

√
m ·

dtot + ∥c∥2)
2∥R∥2

2).

Theorem 9.3
Given ϵ > 0, the Truncated Dual Averaging algorithm, Algorithm 3, applied to solve
NdP-UE outputs in O(Km

ϵ2
(m+n log n)d2

tot∥R∥2
2) time a primal and a dual solution,

t ∈ Q and u ∈ △, such that f(t) − ψ(u) ≤ ϵ.

Proof. From Theorem 4.8, we know that if we run 8M2

ϵ2
DQ

σQ
iterations of the Trun-

cated Simple Dual Averaging Algorithm, we obtain a primal and dual solution,

t ∈ Q and u ∈ △, such that f(x)−ψ(u) ≤ ϵ, ϵ > 0. Thus, we need 8m·dtot
2

ϵ2
∥R∥2

2

2
steps

to have a primal and a dual solution with an additive gap of ϵ. Since each iteration
takes O(K(m+n log n)), the total running time is O(Km

ϵ2
(m+n log n)·dtot2∥R∥2

2)

Recall that to correctly define a state of a network we need to know the travel times
of the roads as well as the flow on the roads. In the following we will explain how
to derive a flow at UE from a solution given by the Primal-Dual Subgradient algo-
rithms. Suppose t∗ is an optimal solution of NdP-UE. From the theory in Chapter
8, the flow s∗ defined as s∗ :=

∑
k∈OD s

∗k, s∗k := dk∂Tk(t
∗) ∀ k ∈ OD, satisfies the

UE conditions with t∗ and the SO conditions with t̄. After N iterations, in addi-
tion to a primal solution tN and a dual solution uN , the Primal-Dual Subgradient
algorithms also deliver a flow skN = dk

∑
p∈Pk

(ukN)pap for all k ∈ OD. Note that
we do not consider all paths in the set Pk but only the shortest paths computed at
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each subgradient computation. Moreover, note that such a flow satisfies only the
flow balance equations (8.2) but not necessarily the capacity constraints (8.1).

Heuristic for iteratively updating the travel times upper bound R.
Until now, we assumed to know a valid upper bound for the travel times. This bound
is important since it affects the value of the averages sequences, which determine the
quality of the convergence of the Primal-Dual Subgradient algorithms, see Chapter
4 and Theorems 9.2 and 9.3. In order to be sure that we do not underestimate
the possible delays, we must choose a relatively large R. However, this slows the
convergence of the algorithms. We apply the following procedure. The algorithm
starts with a multiple of the free travel times, i.e., R = r · t̄ with r > 1. Then, in
every iteration, we check if the current travel times solution t is near to the current
upper bound R. If for some fixed component i, Ri − ti < θ, for fixed θ > 0, the
value of Ri is doubled and all constants depending on R are updated. Note that this
procedure does not affect the dependence on ϵ of the convergence of the algorithm.

Algorithm 18 Update Procedure for Upper Bound R

Input: - An evaluation point t
- Current value of upper bound R
- Distance tolerance θ > 0

Output: Updated upper bound R.

for i = 1 to m do

set Ri =

{
2Ri if Ri − ti < θ
Ri otherwise

end for

Increasing the algorithms’ speed.
Two other important constants in the convergence of the Primal-Dual Subgradient
algorithms are the subgradient’s norm upper bound L and the upper bound M on
the norm of the variation of subgradients. If the estimate of those upper bounds
are too large, they slow down the algorithms. In order to improve the algorithms
we could run the algorithms with L/2, respectively M/2. However, convergence of
the algorithms is in this case no longer ensured. In order to solve this problem,
we consider the following procedure. We first define two new constants Lmax := L,
respectively Mmax = M and we set L = L/α, respectively M = M/α, for α > 1.
Then, at each iteration the current value of the theoretical absolute gap is computed
at the same time as the current absolute gap. If the latter is greater than the
theoretical absolute gap, we have an indicator that the upper bounds L or M were
underestimated. In this case, the values of L and M are doubled until the current
theoretical bound is larger than the current absolute gap, as it should be if the
bounds L or M were equal to Lmax, respectively Mmax. Each update of the bounds
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L or M leads to changes in different parameters of the algorithms. Algorithm 19
corresponds to this procedure, if the Simple Dual Averaging algorithm is used. For
the Truncated Simple Dual Averaging we consider Algorithm 20. Note that the
Weighted Dual Averaging algorithm does not use the upper bound L.

The values of the constants L and M influence the values of the parameters βk at
iteration k, see Algorithm 2 and 3. Decreasing the value of L or M decreases the
value of βk. When the Algorithm 2 is used with the weighted averages sequences
(4.13) the parameter βk does not dependent on L or M . However, we also decrease
it in order to speed up the algorithm. We introduce the dummy value L = 1 and
apply the same update procedure as for the Simple Dual Averaging algorithm.

Algorithm 19 Update Procedure for Upper Bound L

Input: - Current value of absolute gap, gap = f(t) − ψ(u)
- Current value of upper bound, L
- Maximal value of upper bound L, Lmax

- Current iteration number, i
Output: Updated upper bound, L

theo gap = 2
√

2L√
i+1

√
DQ

while gap > theo gap do
set L = 2L
if L > Lmax then
L = Lmax

end if
theo gap = 2

√
2L√
i+1

√
DQ

end while

Supposing that we start Simple Dual Averaging algorithm with L = Lmax

α
, α > 1,

respectively the Truncated Simple Dual Averaging algorithm with M = Mmax

α
, α >

1, then at most logα runs of the update procedure for upper bound L, respectively
M are needed.

Now we have all the elements needed to apply the Primal-Dual Subgradient algo-
rithms to the NdP-UE problem. We change the stopping criterion of Algorithm
2 and 3, i.e., an absolute error sufficiently small, f(t) − ψ(u) ≤ ϵ, ϵ > 0, into a
relative error. We run the algorithms until a primal solution t and a dual solution
u is computed such that

f(t) − ψ(u)

ψ(u)
≤ ϵ

for a given ϵ > 0. Thus, we consider the following algorithms. Algorithm 21
corresponds to Algorithm 2 using the simple averages sequences (4.12), Algorithm
22 corresponds to Algorithm 2 using the weighted averages sequences (4.13), and
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Algorithm 20 Update Procedure for Upper Bound M

Input: - Current value of absolute gap, gap = f(t) − ψ(u)
- Current value of upper bound, M
- Maximal value of upper bound M , Mmax

- Current iteration number, i
Output: Updated upper bound, M

theo gap = 2
√

2M√
i

√
DQ

while gap > theo gap do
set M = 2M
if M > Mmax then
M = Mmax

end if
theo gap = 2

√
2M√
i

√
DQ

end while

Algorithm 23 corresponds to Algorithm 3. Note that both objective functions are
not difficult to evaluate. Computing the primal objective function f(t), (9.2), is
equivalent to computing a shortest path for each OD-pair. To compute the dual
objective function ψ(u), (9.3), we have to compute the minimum of a linear function
over a box.
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Algorithm 21 Simple Dual Averaging Algorithm for NdP-UE (NdP-UE-SDA)

Input: - Free travel time t̄
- The constants DQ and L
- Upper bound R = rt̄, r > 1
- Distance tolerance θ > 0
- A relative error ϵ > 0

Output: An approximate primal solution t ∈ Q and an approximate
dual solution u ∈ △ such that f(t)−ψ(u)

ψ(u)
≤ ϵ.

set i = 0 and β̂0 = 1
set t0 = t̄
compute ξ0 ∈ ∂f(t0) and u0 NdP-UE:Subgradient

set ζ0 = ξ0
set t = t0 and u = u0.
while f(t)−ψ(u)

ψ(u)
> ϵ do

set i = i+ 1
check theoretical absolute gap L:Update Procedure

compute β̂i = β̂i−1 + 1

β̂i−1
and βi = L√

2DQ
β̂i

compute ti = arg min
t∈Q

{⟨ζi−1, t⟩ + βi
1
2
∥t− t̄∥2

2}
NdP-UE:Quadratic Projection on the box Q

check upper bound R and update DQ = 1
2
∥R∥2

2 if needed
R:Update Procedure

compute ξi ∈ ∂f(ti) and ui NdP-UE:Subgradient

set ζi = ζi−1 + ξi
t = 1

i+1

∑i
l=0 tl and u = 1

i+1

∑i
l=0 ul NdP-UE:Objective functions

evaluation

end while
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Algorithm 22 Weighted Dual Averaging Algorithm for NdP-UE (NdP-UE-WDA)

Input: - Free travel time t̄
- The constants DQ and L = 1
- Upper bound R = rt̄, r > 1
- Distance tolerance θ > 0
- A relative error ϵ > 0

Output: An approximate primal solution t ∈ Q and an approximate
dual solution u ∈ △ such that f(t)−ψ(u)

ψ(u)
≤ ϵ.

set i = 0 and β̂0 = 1
set t0 = t̄
compute ξ0 ∈ ∂f(t0) and u0 NdP-UE:Subgradient

set λ0 = 1
∥ξ0∥2

, Λ0 = λ0, and ζ0 = λ0ξ0
set t = t0 and u = u0.
while f(t)−ψ(u)

ψ(u)
> ϵ do

set i = i+ 1
check theoretical absolute gap L:Update Procedure

compute β̂i = β̂i−1 + 1

β̂i−1
and βi = L√

2DQ
β̂i

compute ti = arg min
t∈Q

{⟨ζi−1, t⟩ + βi
1
2
∥t− t̄∥2

2}
NdP-UE:Quadratic Projection on the box Q

check upper bound R and update DQ = 1
2
∥R∥2

2 if needed
R:Update Procedure

compute ξi ∈ ∂f(ti) and ui NdP-UE:Subgradient

set λi = 1
∥ξi∥2

, Λi = Λi−1 + λi, and ζi = ζi−1 + λiξi

t = 1
Λi

∑i
l=0 λltl and u = 1

Λi

∑i
l=0 λlul NdP-UE:Objective functions

evaluation

end while
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Algorithm 23 Truncated Simple Dual Averaging Algorithm for NdP-UE (NdP-
UE-TSDA)

Input: - Free travel time t̄
- The constants DQ and M
- Upper bound R = rt̄, r > 1
- Distance tolerance θ > 0
- A relative error ϵ > 0

Output: An approximate primal solution t ∈ Q and an approximate
dual solution u ∈ △ such that f(t)−ψ(u)

ψ(u)
≤ ϵ.

set i = 1 and β1 = 1
set t0 = t̄
compute ξ0 ∈ ∂f(t0) and u0 NdP-UE:Subgradient

compute t1 = arg min
t∈Q

{⟨ζ0, t⟩ + β1
1
2
∥t− t̄∥2

2}
NdP-UE:Quadratic Projection on the box Q

compute ξ1 ∈ ∂f(t1) and u1 NdP-UE:Subgradient

set ζ1 = ξ1
set t = t1 and u = u1 NdP-UE:Objective functions evaluation

while f(t)−ψ(u)
ψ(u)

> ϵ do
set i = i+ 1
check theoretical absolute gap M:Update Procedure

compute ti = arg min
t∈Q

{⟨ζi−1, t⟩ + βi
1
2
∥t− t̄∥2

2}
NdP-UE:Quadratic Projection on the box Q

check upper bound R and update DQ = 1
2
∥R∥2

2 if needed
R:Update Procedure

compute βi = M√
2DQ

√
i

compute ξi ∈ ∂f(ti) and ui NdP-UE:Subgradient

set ζi = ζi−1 + ξi
t = 1

i

∑i
l=1 tl and u = 1

i

∑i
l=1 ul NdP-UE:Objective functions evaluation

end while
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9.2 Excessive Gap Method

In this section we consider the Social Optimum formulation (NdP-SO) of the Static
Traffic Assignment problem.

(NdP-SO) minimize
∑
a∈A

sat̄a

subject to sa =
∑
k∈OD

hka ≤ ca ∀ a ∈ A (9.5)

Ehk = δk ∀ k ∈ OD (9.6)

hk ≥ 0 ∀ k ∈ OD. (9.7)

In the following we denote by SO∗ the optimal value of the NdP-SO problem. Recall
that by strong duality SO∗ = UE∗.

The NdP-SO problem is a typical minimum cost multicommodity flow problem,
where the difficult constraints are the binding constraints, i.e., the capacity con-
straints (9.5). We start the general procedure described in Chapter 3.3 by relax-
ing the capacity constraints. The corresponding Lagrange Dual problem is then
max
u≥0

ψ(u), where

ψ(u) := min
h

{∑
a∈A

∑
k∈OD

hkat̄a +
∑
a∈A

ua(
∑
k∈OD

hka − ca)
∣∣∣ Ehk = δk, h

k ≥ 0 ∀ k ∈ OD

}
.

Recall that the dual variables u are interpreted as the delays occurring on the roads
in case of congestion. As for the travel times t in the previous section, we cannot
estimate the maximal possible delays in advance. Nevertheless, we assume for the
moment that we know a valid upper bound for the delays, C. Just as for the travel
times, we get a convex and compact feasible space

U := {u ∈ Rm | 0 ≤ u ≤ C} ⊂ Rm.

The upper bound C will be iteratively updated during the Excessive Gap method
by a similar procedure as the upper bound R for the travel times. This procedure
will be explained later in this section.

The primal function is defined as follows

f(h) := max
u∈U

{∑
a∈A

∑
k∈OD

hkat̄a +
∑
a∈A

ua(
∑
k∈OD

hka − ca)

}
(9.8)

and the primal feasible space corresponds to the flow on the OD pairs, which have
to fulfill the flow balance equations (9.6) and be non negative (9.7). This space
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is convex but not compact. Thus, we add the following constraints motivated by
(9.5),

hk ≤ c ∀ k ∈ OD.

Note that a feasible solution of NdP-SO trivially satisfies these constraints. The
primal feasible space, which we denote by Π, is now convex and compact and can
be considered as a product of K spaces, i.e., Π := Π1 × · · · × ΠK ⊂ RKm, where

Πk := {hk ∈ Rm | Ehk = δk, 0 ≤ hk ≤ c} ⊂ Rm ∀ k ∈ OD.

The dual function is now

ψ(u) := min
h∈Π

{∑
a∈A

∑
k∈OD

hkat̄a +
∑
a∈A

ua(
∑
k∈OD

hka − ca)

}
. (9.9)

In order to define the approximation functions for f(h) and ψ(u), fµU
(h) respec-

tively ψµΠ
(u), we endow RKm and Rm with the Euclidean norm and we chose as

prox-function on Π and U the squared Euclidean norm. Thus,

dΠ(h) :=
1

2
∥h− ho∥2

2 =
1

2

K∑
k=1

∥hk − hko∥2
2

where ho := arg minh∈Π ∥h∥, i.e., the projection of 0 into Π. The convexity param-
eter is σΠ = 1 and the maximum of dΠ(h) over Π is bounded by DΠ := K

2
∥c∥2

2. For
the dual space U we have

dU(u) :=
1

2
∥u∥2

2

with convexity parameter σU = 1 and DU = 1
2
∥C∥2

2. The prox-functions are then
defined as follows. For µU > 0 and µΠ > 0,

fµU
(h) :=

∑
a∈A

∑
k∈OD

hkat̄a + max
u∈U

{∑
a∈A

∑
k∈OD

hkaua −
∑
a∈A

uaca −
µU
2

∑
a∈A

u2
a

}
, (9.10)

ψµΠ
(u) := −

∑
a∈A

uaca +
∑
kOD

min
hk∈Πk

{∑
a∈A

uah
k
a +

∑
a∈A

t̄ah
k
a +

µΠ

2
∥hk − hk0∥2

2

}
. (9.11)

The operator B(h, u) := ⟨u,Bh⟩ =
∑

a∈A
∑

k∈OD h
k
aua (see notation of Chapters

3 and 5), corresponds to the following matrix B = [Im . . . Im] ∈ Rm×Km where
Im ∈ Rm×m is the identity matrix. Recall that the Lipschitz constants of the
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gradient of fµU
(h) and ψµΠ

(u) depend on the norm of matrix B,

∥B∥2 = max
∥h∥2≤1

max
∥u∥2≤1

∑
a∈A

∑
k∈OD

hkaua

≤ max
∥h∥2≤1

max
∥u∥2≤1

∑
a∈A

(∑
k∈OD

hka

)2
1/2(∑

a∈A

u2
a

)1/2

≤ max
∥h∥2≤1

(∑
a∈A

(∑
k∈OD

1

)(∑
k∈OD

(hka)
2

))1/2

≤
√
K.

For fixed h ∈ Π and u ∈ U , the gradients are defined as follows

(∇fµU
(h))k = t̄+ uµU ,h ∀ k ∈ OD and ∇ψµΠ

(u) = −c+
∑
k∈OD

hkµΠ,u
,

where

uµU ,h := arg max
u∈U

{∑
a∈A

(∑
k∈OD

hka − ca

)
ua −

µU
2

∑
a∈A

u2
a

}
(9.12)

and

hµΠ,u :=
(
hkµΠ,u

)
k=1,...,K

(9.13)

hkµΠ,u
:= arg min

hk∈Πk

{∑
a∈A

(ua + t̄a)h
k
a +

µΠ

2
∥hk − hk0∥2

2

}
∀ k.

The Lipschitz constants are LfµU
,Π =

∥B∥2
2

µUσU
= K

µU
and LψµΠ

,U =
∥B∥2

2

µΠσΠ
= K

µΠ
.

While executing the Excessive Gap method, we need to solve among others the
optimization problems (9.12) and (9.13). We note that the optimization problem
(9.12) is of the same type as the problem described in the previous section, i.e., the
minimization of a quadratic function over a box. Using Lemma 9.1, a solution for
the latter optimization problem can be computed in O(m) time. Computing hµΠ,u

is equivalent to computing the K optimization problems described in (9.13). This
problem is a Minimum Quadratic Cost Flow problem, which can be solved in poly-
nomial time using Khachian’s algorithm ([KTK79],[Kha79]). Since the Minimum
Quadratic Cost Flow is interesting per se, we analyze it separately in Chapter 10.

The Gradient Mapping GMfµU
(h̃) and GMψµΠ

(ũ) at fixed h̃ ∈ Π and ũ ∈ U remain
to be investigated. Recall that

GMfµU
(h̃) := arg min

h∈Π

{
⟨∇fµU

(h̃), h− h̃⟩ +
LfµU

,Π

2
∥h− h̃∥2

2

}
= arg min

h∈Π

{∑
k∈OD

(
⟨t̄+ uµU ,h̃

, hk − h̃k⟩ +
K

2µu
∥hk − h̃k∥2

2

)}
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and

GMψµΠ
(ũ) := arg max

u∈U

{
⟨∇ψµΠ

(ũ), u− ũ⟩ −
LψµΠ

,U

2
∥u− ũ∥2

2

}
= arg max

u∈U

{
⟨
∑
k∈OD

hkµΠ,ũ
− c, u− ũ⟩ − K

2µΠ

∥u− ũ∥2
2

}
.

We note that for computing GMfµU
(h̃) we need to solve K Minimum Quadratic

Cost Flow problems, which is a similar problem as computing hµΠ,u itself for a
given u ∈ U , (9.13). Likewise, to compute GMψµΠ

(ũ) we need to solve a quadratic
minimization problem similar to computing uµU ,h for a fixed h ∈ Π, (9.12).

Heuristic for updating iteratively the delays upper bound C
Until now we assumed to know a valid upper bound for the delays. As for the
Primal-Dual Subgradient algorithm and the upper bound for the travel times R,
this bound is important since it affects the value of the initial smoothing factors
µ0

Π and µ0
U , which determine the quality of the convergence of the Excessive Gap

method, see Chapter 5. We apply the following procedure to iteratively update the
upper bound of the delays. The algorithm starts with a multiple of the free travel
times, i.e., C = r · t̄, r > 0. In every iteration, we check if the current delays solution
u is near to the current upper bound C. If for some fixed component i, Ci− ti < θ,
for fixed θ > 0, the value of Ci is doubled and all constants depending on C are
updated. In particular the smoothing factors are updated as follows. Denote by
Cold the value of the upper bound C before and by Cnew after the update. Then,
µΠ,new = µΠ,old

∥Cnew∥2

∥Cold∥2
and µU,new = µU,old

∥Cold∥2

∥Cnew∥2
.

Algorithm 25 corresponds to the NdP-SO problem including the update procedure
for the upper bound of the delays C for the Excessive Gap method (Algorithm 4).
Note that both objective functions are not difficult to evaluate. Computing the
primal objective f(h), (9.8), is equivalent to computing the maximum of a linear
function over a box. To compute the dual objective ψ(u), (9.9), we have to compute
for each OD-pair a Minimum Cost Flow problem with non-integer demand.

Algorithm 24 Update Procedure for Upper Bound C

Input: - An evaluation point u
- Current value of upper bound C
- Distance tolerance θ > 0

Output: Updated upper bound C.

for i = 1 to m do

set Ci =

{
2Ci if Ci − ui < θ
Ci otherwise

end for
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Algorithm 25 Excessive Gap Algorithm for NdP-SO (NdP-SO-EG)

Input: - ho := minh∈Π dΠ(h)
- Distance tolerance θ > 0
- An bound C = rt̄, r > 0
- Initial smoothing factors µ0

Π := 2∥C∥2

∥c∥2
and µ0

U := K ∥c∥2

∥C∥2

- A relative error ϵ > 0

Output: An approximate primal solution h ∈ Π and an approximate
dual solution u ∈ U such that f(h)−ψ(u)

ψ(u)
≤ ϵ.

set i = 0
compute h0 = GMf

µ0
U

(ho) NdP-SO: Min Quadratic Cost Flow

compute u0 = uµ0
Π,ho

NdP-SO:Quadratic Projection on the box U

while f(hi)−ψ(ui)
ψ(ui)

> ϵ do
if i is even then

compute hµi
U ,ui

NdP-SO: Min Quadratic Cost Flow

set ĥ = i+1
i+3
hi +

2
i+3
hµi

U ,ui

compute uµi
Π,ĥ

NdP-SO:Quadratic Projection on the box U

set ui+1 = i+1
i+3
ui +

2
i+3
uµi

Π,ĥ

compute GMf
µi

U

(ĥ) NdP-SO: Min Quadratic Cost Flow

set hi+1 = GMf
µi

U

(ĥ)

set µi+1
Π = i+1

i+3
µiΠ and µi+1

U = µiU
check upper bound C and update DU , µi+1

U , and µi+1
Π if needed

C:Update Procedure

else
compute uµi

Π,hi
NdP-SO:Quadratic Projection on the box U

set û = i+1
i+3
ui +

2
i+3
uµi

Π,hi

compute hµi
U ,û

NdP-SO: Min Quadratic Cost Flow

set hi+1 = i+1
i+3
hi +

2
i+3
hµi

U ,û

compute GMψ
µi
Π

(û) NdP-SO:Quadratic Projection on the box U

set ui+1 = GMψ
µi
Π

(û)

set µi+1
Π = µiΠ and µi+1

U = i+1
i+3
µiU

check upper bound C and update DU , µi+1
U , and µi+1

Π if needed
C:Update Procedure

end if
set i = i+ 1

NdP-SO:Objective functions evaluation

end while
set h = hi and u = ui
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9.3 Numerical Results

To compare the algorithms described in the previous sections, i.e., NdP-UE-SDA
(Alg. 21), NdP-UE-WDA (Alg. 22), NdP-UE-TSDA (Alg. 23), and NdP-SO-EG
(Alg. 25) we ran various simulations testing the parameters of the algorithms. We
investigated the relation between the accuracy and the running time, but also the
quality of the traffic assignments, e.g., violations of arc capacities or the relation
between congested and delayed arcs.

Our pool of problems contains two kinds of instances. The first one consists of
standard networks mostly used to test algorithms for solving the Traffic Assignment
problem using the Beckmann model, see Section 8.3, which we needed to adapt to
the Nesterov & de Palma model. These changes mainly concern the capacities of
the arcs. We considered the Sioux Falls instance, the Anaheim instance and the
Barcelona instance, which can be downloaded from the website [BG07]. The second
kind of instances corresponds to the metropolitan region of Zurich, Switzerland.
There are 24 instances, each one describing the traffic during a one hour period of
the day. These data were provided by the Federal Office for Territorial Development
[Bun05]. All instances are assumed to be feasible. However, we could only compute
an optimal solution using the commercial solver Cplex 11.0 ([Cpl]) for the standard
instances. All Zurich instances required an amount of computer memory that we
did not have. The characteristics of the instances are presented in Table 9.1. Table
9.2 gives an overview of the number of variables in the instances.

Two types of computers have been used for the simulations. For the tests with the
standard instances we used a computer with a cpu running at 1GHz and 2G RAM.
For the tests with the Zurich instances we used a computer with a cpu running at
2.6GHz and 32G RAM.

Our objective is two-fold. With the tests on the standard instances our focus is on
the performance of the algorithms. We tested them against each other and used the
optimal solution obtained by Cplex 11.0 as reference solution. With the tests on
the Zurich instances, we also tested the performance of the algorithms but at the
same time we compared the quality of the traffic assignments with those provided
by the commercial software VISUM ([VIS06]), which uses the Beckmann model, see
Section 8.3.

Since we are interested in the total travel times at User Equilibrium (UE) and So-
cial Optimum (SO), we present these values in the tables of the numerical results.
Primal and dual objective values are neglected since they are related to the total
travel times at UE and SO. Note however, that the value of the relative gap be-
tween the primal and dual objective functions does not correspond to the relative
error between the approximate total travel times at UE, respectively SO, and the
reference solution in the following tables.
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Name Arcs Nodes OD-pairs
Total Total

demand capacity

Sioux Falls
76 24 528 49152.78 185000

(highly loaded)
Anaheim 914 416 1405 99441.95 5511600
Barcelona 2522 1020 7922 184679.56 13745299.36

Zurich 12pm - 1am 14070 6739 193397 7507.77 30045562
Zurich 1am - 2am 14070 6739 150284 5645.29 30045562
Zurich 2am - 3am 14070 6739 186536 7829.39 30045562
Zurich 3am - 4am 14070 6739 217616 12737.84 30045562
Zurich 4am - 5am 14070 6739 377998 39993.77 30045562
Zurich 5am - 6am 14070 6739 514395 176496.92 30045562
Zurich 6am - 7am 14070 6739 570658 216017.67 30045562
Zurich 7am - 8am 14070 6739 526391 128910.50 30045562
Zurich 8am - 9am 14070 6739 506057 98772.35 30045562
Zurich 9am - 10am 14070 6739 508292 100668.31 30045562
Zurich 10am - 11am 14070 6739 520456 141547.35 30045562
Zurich 11am - 12am 14070 6739 522332 154639.18 30045562
Zurich 12am - 1pm 14070 6739 554851 179042.55 30045562
Zurich 1pm - 2pm 14070 6739 532536 146904.05 30045562
Zurich 2pm - 3pm 14070 6739 545516 155177.43 30045562
Zurich 3pm - 4pm 14070 6739 589353 196306.97 30045562
Zurich 4pm - 5pm 14070 6739 618519 235547.11 30045562
Zurich 5pm - 6pm 14070 6739 584180 171376.41 30045562
Zurich 6pm - 7pm 14070 6739 521290 120764.13 30045562
Zurich 7pm - 8pm 14070 6739 450467 69952.95 30045562
Zurich 8pm - 9pm 14070 6739 429427 57537.12 30045562
Zurich 9pm - 10pm 14070 6739 447019 57790.17 30045562
Zurich 10pm - 11pm 14070 6739 397301 40493.03 30045562
Zurich 11pm - 12pm 14070 6739 193397 7507.77 30045562

Tab. 9.1: Networks used in the simulations

Name Arcs Nodes OD-pairs # variables

Sioux Falls
76 24 528 4.01∗104

(highly loaded)
Anaheim 914 416 1405 1.28∗106

Barcelona 2522 1020 7922 2.00∗107

Zurich 2am - 3am 14070 6739 186536 2.62∗109

Zurich 4pm - 5pm 14070 6739 618519 8.70∗109

Tab. 9.2: Total number of variables of the instances used in the simulations
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9.3.1 Primal-Dual Subgradients Algorithms

Algorithms’ performance and standard instances

The NdP-UE-SDA, NdP-UE-WDA, and NdP-UE-TSDA algorithms have the par-
ticularity that they have extra updating procedures that the Primal-Dual Subgra-
dient methods do not have. These are the updating procedure of the upper bound
of the primal variables and the updating procedure of the norm of the computed
subgradient respectively the norm of the variation of the computed subgradients,
see Algorithms 18, 19, and 20.

We first investigated the influence of these procedures on the running times of the
algorithms. Table 9.3 resumes the corresponding results. Method 18, in Section
9.1, corresponds to the updating procedure of the upper bound R of the travel time
t, the primal variables. In all algorithms, the starting value for R is given by a
multiple of the free travel time t̄, i.e., R = rt̄, r > 1. In the second column of Table
9.3, we find the value of r, which leads to the smallest running time. In the fourth
column, we have the number of updates of R induced by the choice of r.

We expect that theory overestimates the values of L and M , see Section 9.1. Thus,
we set the following values as the maximal values for L, respectively for M ,

Lmax =
√
m · dtot + ∥c∥2 and Mmax =

√
m · dtot,

and use as starting upper bounds L = Lmax

l
, respectively M = Mmax

l
with l > 1.

In the third column of Table 9.3, we find the best choice of l, which gives us the
starting values of L, respectively M . In the fifth column we have the number of
updates of L, respectively M , induced by the choice of l. In the special case of the
NdP-UE-WDA algorithm, we set Lmax = 1 and then L = Lmax

l
, see Section 9.1.

We observe that once the right choices for r and l are made, the algorithms have all
the same running time for the same relative gap, with the exception of NdP-UE-
TSDA for the Anaheim instance and Barcelona instance. Here we notice that even
though the obtained relative gap is the same as for the two other algorithms, NdP-
UE-SDA and NdP-UE-WDA, the quality of the solutions is worse. For example, the
NdP-UE-TSDA algorithm delivers a traffic assignment at User Equilibrium with no
congested arcs but with 86 delayed arcs. For a better quality, we must require a
higher relative error, which leads to an increase in running time.

Now let us evaluate the stability of the algorithms with respect to changes in r and
l. First, consider Figure 9.1 and Table 9.4.

For the Sioux Falls instance we ran the algorithm NdP-UE-WDA for different values
of r and l = 1 until a relative error of 0.05 was reached. We notice that the minimum
is achieved between r = 2 and r = 4 for both running time and number of iterations.
In particular, we observe a drop in the running time when increasing from r = 1.75



9.3 Numerical Results 165

Sioux Falls instance, relative gap 0.005

Algorithm
Best Best cpu # of # of # of Total
r l time [s] changes changes itera- travel

R L or M tions time (UE)

NdP-UE-SDA 2 100 2.15 8 1 730 3238.7
NdP-UE-WDA 2 2.7 1.83 8 0 694 3217.74
NdP-UE-TSDA 1.5 65 1.88 13 0 791 3228.44

Cplex 11.0
— — 16 — — — 3397.38reference

solution

Anaheim instance, relative gap 0.01

Algorithm
Best Best cpu # of # of # of Total
r l time [s] changes changes itera- travel

R L or M tions time (UE)

NdP-UE-SDA 1.5 250 1.15 23 45 130 24680.5
NdP-UE-WDA 1.5 3 1.32 18 0 135 24580.2
NdP-UE-TSDA 1.5 40 0.13 7 0 13 24548.8

Cplex 11.0
— — 1276 — — — 24923.6reference

solution

Barcelona instance, relative gap 0.01

Algorithm
Best Best cpu # of # of # of Total
r l time [s] changes changes itera- travel

R L or M tions time (UE)

NdP-UE-SDA 1.8 200 11.75 6 12 202 1239510
NdP-UE-WDA 1.5 30 11.78 5 0 202 1237530
NdP-UE-TSDA 1.5 300 0.14 1 0 2 1260420

Cplex 11.0
— — 334110 — — — 1241300reference

solution

Tab. 9.3: Find best values of upper bounds R,L, and M : NdP-UE-SDA v.s. NdP-
UE-WDA v.s. NdP-UE-TSDA
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NdP-UE-WDA algorithm, Sioux Falls instance, relative gap 0.005

r
# of theoretical # cpu # of changes Total travel

iterations of iterations time [s] R time (UE)

1.2 7370 1.53∗107 30.34 22 3191.82
1.4 10621 6.12∗107 41.09 26 3229.34
1.6 12168 1.38∗108 46.83 23 3256.02
1.74 12489 2.09∗108 47.09 19 3255.22
1.75 12537 2.15∗108 49.71 21 3253.3
1.76 6073 2.21∗108 22.92 13 3213.59
1.77 6154 2.27∗108 23.1 16 3215.71
1.8 6399 2.45∗108 24.54 14 3218.07
2 5017 3.82∗108 20.5 12 3209.75

2.2 6017 5.51∗108 22.7 12 3243.69
2.4 3214 7.49∗108 12.84 8 3208.84
2.6 3883 9.78∗108 15.4 10 3230.71
2.8 4251 1.24∗109 17.81 8 3244.47
3 4832 1.53∗109 18.72 7 3255.76
4 4047 3.46∗109 15.99 0 3270.21
5 5964 6.11∗109 25.54 0 3285.48

reference
— — 16 — 3397.38

solution

Tab. 9.4: Varying the starting value of the upper bound R = rt̄. Selected results
for a 0.005 relative gap—note the jump at 1.75 to 1.76
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Fig. 9.1: Varying the starting value of the upper bound R = rt̄ , NdP-UE-WDA
algorithm, Sioux Falls instance, relative gap 0.005

to r = 1.76. The same kind of behavior is observed with the other algorithms and
instances.

Now, consider Table 9.5. For a fixed value of r, we look for the allowed interval
for l, that does not increase the running time of the algorithms by more than 30%
compared to the best case. The acceptable running times are presented in the fourth
column of Table 9.5 and the interval for l is given in the fifth and sixth columns.

We note that in relative values the intervals of l for the NdP-UE-SDA algorithm
and the NdP-UE-WDA algorithm are equivalent. Note that for NdP-UE-TSDA,
the results are also given in the same table for completeness but they should be
interpreted with extreme care since the running time values are too small and
measurement errors become important.

A fact of particular importance is that the admissible intervals of l overlap greatly
among the networks, which enables us to determine some relatively good values for
r and l independent of the networks.
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Sioux Falls instance, relative gap 0.005

Algorithm r Min cpu Acceptable From l To l
time [s] cpu time[s]

NdP-UE-WDA 2 1.03 1.34 1.6 3
NdP-UE-SDA 2 1.09 1.42 50 100
NdP-UE-TSDA 1.5 0.03 0.04 3.5 10

Anaheim instance, relative gap 0.01

Algorithm r Min cpu Acceptable From l To l
time [s] cpu time[s]

NdP-UE-WDA 1.5 1.32 1.72 2 10
NdP-UE-SDA 1.5 1.15 1.5 20 300
NdP-UE-TSDA 1.5 0.13 0.17 30 50

Barcelona instance, relative gap 0.01

Algorithm r Min cpu Acceptable From l To l
time [s] cpu time[s]

NdP-UE-WDA 1.5 11.78 15.31 1.5 300
NdP-UE-SDA 1.5 11.75 15.28 1.5 300
NdP-UE-TSDA 1.5 0.14 0.18 1.5 300

Tab. 9.5: Tradeoff between value of l and cpu time.
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In order to investigate how the algorithms depend on the network’s load, in other
words, on the network’s congestion, we randomly change the demand of the OD-
pairs in the networks. We observe an exponential relation between the total demand
and the algorithms’ running time. In Figure 9.2, this relaxation is depicted for the
Sioux Falls instance and the NdP-UE-WDA algorithm. In this instance 42% of the
arcs are congested, thus we randomly decrease the demand of the OD-pairs.
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Fig. 9.2: Behavior of cpu time under randomly decrease of the demand—NdP-
UE-WDA algorithm, Sioux Falls instance, relative gap 0.005

Until now we have considered the performance of the algorithms from the point of
view of running time. In the following we closely investigate the quality of the traffic
assignment at UE and at SO delivered by the algorithms. We consider first the total
travel time at UE and at SO, and thus the Price of Anarchy, i.e., (total travel time
at UE)/(total travel time at SO), see Equation (8.12) in Section 8.3.2. In Tables
9.6 and 9.7 selected results are presented for the NdP-UE-WDA algorithm and the
Sioux Falls, respectively Barcelona instances. We investigate the influence of the
relative gap on the total travel times. We observe in both tables the same trend.
As the relative error decreases the deviation of the total travel time at UE and
at SO with respect to the values of the reference solution decreases as expected.
Nevertheless, the values obtained for 0.01 relative error are already acceptable.
Namely, the deviation of the total travel time at UE from the reference solution is
less than 7% for the Sioux Falls and less than 2% for the Barcelona instance. For
the total travel time at SO this deviation is negligible for both instances. Note that
both total travel times as well as the Price of Anarchy are underestimated by the
algorithm. Note also that the small values for the Barcelona instance are normal
since there is almost no congestion.
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NdP-UE-WDA algorithm, Sioux Falls instance, r = 2 and l = 2

UE deviation SO deviation deviation
Relative total from total from Price of from

error travel reference travel reference Anarchy reference
time solution time solution solution

(%) (%) (%)
0.0100 3188.58 6.15 2451.45 0.42 1.301 5.75
0.0075 3209.75 5.52 2453.18 0.35 1.308 5.19
0.0050 3244.48 4.50 2455.4 0.26 1.321 4.25
0.0040 3257.75 4.11 2456.48 0.22 1.326 3.90
0.0030 3269.56 3.76 2457.64 0.17 1.330 3.60
0.0020 3280.19 3.45 2458.89 0.12 1.334 3.33
0.0010 3301.51 2.82 2460.26 0.06 1.342 2.76
0.0005 3368.88 0.84 2461.19 0.03 1.369 0.81

reference
3397.38 — 2461.82 — 1.38 —

solution

Tab. 9.6: Tradeoff between the relative error and the traffic assignment quality—
Total travel time at UE, total travel time at SO, and Price of Anarchy.

An optimal traffic assignment at UE violates no arcs’ capacities and the travel time
of the routes chosen for all OD-pairs are equal. Moreover, only congested arcs have
delays. We next study how well the computed traffic assignment at UE satisfies
these requirements in respect to the relative error of the algorithms.

First, we consider Table 9.8, which corresponds to the results obtained using NdP-
UE-WDA for the highly loaded Sioux Falls instance. In the fourth column the
maximal difference between the travel times of the routes used for the same OD-
Matrix is presented. As expected, the difference decreases as the accuracy increases.
Then, in the fourth and fifth column we have the evaluation of the violation of the
arcs’ capacities. First given is the number of arcs where the flow violates the
capacity and afterwards the average violation. We consider that an arc’s capacity
is violated if the flow on the arc exceeds the capacity by more than 1%. Both values,
the number of arcs with capacity violation and the average violation, decrease when
the accuracy increases. The next column contains the number of congested arcs.
An arc is congested if the flow on it is between 0.99 and 1.01 times the capacity. The
number of congested arcs increases when the relative error decreases. Namely, the
quality of the solution improves since the arc whose flow violates the arc’s capacity
becomes congested when the relative error decreases. An interesting phenomenon
is that the number of delayed arcs decreases with the relative error, however the
average delay and the maximal delay increases, see the eighth, ninth, and tenth
columns. An arc is delayed if its travel time is at least 1.01 times its free travel
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NdP-UE-WDA algorithm, Barcelona instance, r = 2 and l = 3

UE deviation SO deviation deviation
Relative total from total from Price of from

error travel reference travel reference Anarchy reference
time solution time solution solution

(%) (%) (%)

0.0100 1227940 1.08 1205230 0.15 1.0188 0.93
0.0080 1228300 1.05 1205300 0.15 1.0191 0.9
0.0060 1228790 1.01 1205380 0.14 1.0194 0.87
0.0040 1229550 0.95 1205490 0.13 1.0200 0.82
0.0020 1230960 0.83 1205690 0.11 1.0210 0.72
0.0010 1232460 0.71 1205840 0.10 1.0221 0.61
0.0005 1234210 0.57 1206000 0.09 1.0234 0.48

reference
1241300 — 1207050 — 1.0284 —

solution

Tab. 9.7: Tradeoff between the relative error and the traffic assignment quality—
Total travel time at UE, total travel time at SO, and Price of Anarchy.

time (t̄). The number of congested and delayed arcs converge to similar values.
Recall that an arc can be congested at optimum without being delayed, see Section
8.2.

The numerical results presented in Table 9.9 for the Barcelona instance confirm the
previous remarks.

Note that solutions delivered by the algorithm for a relative error of 0.01 are already
acceptable, i.e. even if the number of arcs with violated arc’s capacity is relatively
high the maximal violation is very low in respect to the arc’s capacity. The solutions
delivered for a relative error of 0.001 have less arcs with violated capacities and
better ratio between the congested and delayed arcs. However, a large increase of
running time is incurred. T he biggest increase resulted for the Sioux Falls instance,
where the running time increased from 3.41 seconds to 233.03 seconds.
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Zurich instances and NdP-UE-WDA vs. VISUM.

We have tested the Zurich instances on the one hand with the commercial software
VISUM, which uses the Beckmann model and on the other hand with the NdP-UE-
WDA algorithm applying the Nesterov & de Palma model. Thus, we can make a
two-fold comparison, i.e., the running time performance of the two algorithms and
the predicted congestions of the two models.

NdP-UE-WDA was calibrated to solve all test instances with a relative accuracy of
ϵ = 0.002 and the constants r = 2 and l = 2. VISUM on the other hand terminates
when the calculated travel time relative difference among all routes for the same
OD-pair is smaller than 0.05. These tests were conducted on a machine with a cpu
running at 1.6 GHz and 512 MB RAM.

For NdP-UE-WDA, two separable running times are listed in Table 9.10. In the first
case, only the total flow was calculated, whereas in the second case the algorithm
computed individual flows for all OD-pairs including the chosen route.

Table 9.10 presents the running times of the algorithms for all instances. The
relation between the demand and running times—second column in case of NdP-
UE-WDA—is plotted in Figure 9.3. Note that both running times are scaled in
respect to the running time for the period 2am to 3am, i.e., the running times of
NdP-UE-WDA are divided by 7’379 and the running times of VISUM are divided
by 38.08. Since only 24 instances are available, conclusions should be made with
care. However, the plot seems to indicate that while running time increases linearly
with the demand for VISUM, the increase is superlinear for NdP-UE-WDA.
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Fig. 9.3: Scaled Running Time — NdP-UE-WDA v.s. VISUM
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Hour
Total NdP-UE-WDA NdP-UE-WDA VISUM

Demand Running time [s] Running Running
(only total flow) time [s] time [s]

12pm - 1am 7507.77 3393 6816 45.33
1am - 2am 5645.29 3263 6010 40.12
2am - 3am 7829.39 3391 7379 38.08
3am - 4am 12737.84 3429 8930 44.27
4am - 5am 39993.77 3840 27294 104.09
5am - 6am 176496.92 4180 111620 327.73
6am - 7am 216017.67 4300 163952 401.36
7am - 8am 128910.50 4230 62063 230.90
8am - 9am 98772.35 4194 49134 196.03
9am - 10am 100668.31 4142 52812 208.50
10am - 11am 141547.35 4176 57754 218.66
11am - 12am 154639.18 4142 59299 185.80
12am - 1pm 179042.55 4303 84671 184.02
1pm - 2pm 146904.05 5192 70581 156.34
2pm - 3pm 155177.43 5271 80216 207.72
3pm - 4pm 196306.97 5422 117155 285.05
4pm - 5pm 235547.11 4724 242833 411.85
5pm - 6pm 171376.41 5365 128929 318.03
6pm - 7pm 120764.13 5121 52996 147.13
7pm - 8pm 69952.95 4995 45164 129.56
8pm - 9pm 57537.12 4199 44391 105.68
9pm - 10pm 57790.17 3961 49313 100.51
10pm - 11pm 40493.03 4107 31547 84.49
11am - 12pm 7507.77 3385 6863 50.19

Tab. 9.10: Running time for NdP-UE-WDA and VISUM for the Zurich instances
1 day = 86’400 s
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Now, let us compare the flow predictions of the models. Figures 9.4 and 9.5 show
the load on the arcs as predicted by the models for some representative hours.
Though the figures look very similar, we can see that the Nesterov & de Palma
model has more congested arcs during peek hours. In the following we will have a
closer look at this result.

Figure 9.6 plots the number of arcs with more than 20% load as well as the number
of congested arcs for each model. We can clearly see that the Nesterov & de Palma
model results in much more congested arcs while having slightly fewer arcs with
more than 20% load compared to the Beckmann model. This can be explained by
two effects. First, in the Nesterov & de Palma model the shortest paths will be
completely filled before any demand moves to other arcs, which is not the case in
the Beckmann model where other routes might receive demand before the shortest
route is fully filled. Second, in the Beckmann model capacities are more often
violated leading to less demand on other routes. This is shown clearly in Figure
9.7. Finally, let us compare the Price of Anarchy for the two models. Figure 9.8
shows the total travel time ratio of UE to SO for both models. In the Beckmann
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model the Price of Anarchy is much larger with roughly 25% compared to about
10% for the Nesterov & de Palma model. Moreover, we observe that the Price of
Anarchy in the Beckmann model increases with the demand. The Nesterov & de
Palma model on the other hand shows the largest Price of Anarchy in the instances
one hour before the highest demands.

9.3.2 Excessive Gap Method

Solving the smallest instance, i.e. Sioux Falls, with the Excessive Gap method al-
ready took several hours of computing time, which compares extremely bad, see
Table 9.11, to the Primal-Dual Subgradient algorithms, which needed a few sec-
onds for this instance, see Table 9.5. This can be explained by the fact that each
iteration of the Excessive Gap method is very costly, since as many as three times
the number of OD-pairs of Minimum Quadratic Cost Flow (MQCF) problems need
to be evaluated. (Chapter 10 presents the techniques used for approximately solving
the MQCF problem.) Though each of these subproblems is small and the number
of iterations needed for convergence by the Excessive Gap algorithm were smaller
than predicted by theory, see Table 9.11, the cost of each iteration prevents the
algorithm of being competitive and lead to the decision to not try to solve any
larger problem instance. In the following some results and interpretations are given
for the SiouxFalls instance.
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Sioux Falls instance, relative gap 0.025

r
# of updates cpu # of theoretical # Total travel

of C time iterations of iterations time (SO)

0.5 2 8h17min 2196 51150 2342.25
1 2 15h17min 4339 104563 2374.82

1.5 2 18h57min 6101 158436 2407.09

reference
— 16sec — — 2461.82

solution

Tab. 9.11: Find best initial values of upper bound C = rt̄ — Excessive Gap using
exact oracle (Cplex 11.0)

Table 9.11 shows the influence of the choice of the upper bound C for the delays (see
Algorithm 24) on the performance of the Excessive Gap Algorithm 25. These results
were obtained using Cplex 11.0 ([Cpl]) in order to solve the MQCF problems within
an iteration. Cplex 11.0 uses a Primal-Dual Interior Point method for solving such
problems and we interpret the solution delivered at maximal accuracy as an “exact”
solution. In Section 10.1, we present the main ideas of Primal-Dual Interior Point
methods. Note that the stopping criterion used by Cplex 11.0 does not correspond
to the duality gap, see Equation (10.12).

The results show that C is less frequently updated compared to the Primal-Dual
Subgradient Algorithms, see Table 9.4. This indicates an underestimation of the
delays. Tables 9.12 and 9.13 confirm this. In particular, we note that for the same
relative gap, the Primal-Dual Subgradients algorithms deliver solutions closer to
the reference solution.
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NdP-SO-EG algorithm, Sioux Falls instance
r = 1 and exact oracle (Cplex 11.0)

UE deviation SO deviation deviation
Relative total from total from Price of from

error travel reference travel reference Anarchy reference
time solution time solution solution

(%) (%) (%)
0.050 2642.06 22.23 2354.06 4.38 1.12 18.84
0.025 2806.85 17.38 2374.82 3.53 1.18 14.49
0.010 2913.04 14.26 2401.05 2.47 1.21 12.32

NdP-UE-
3188.58 6.15 2451.45 0.42 1.301 5.75WDA(1)

0.010

reference
3397.38 — 2461.82 — 1.38 —

solution

Tab. 9.12: Tradeoff between the relative error and the traffic assignment quality—
Total travel time at UE, total travel time at SO, and Price of Anarchy.
(1) NdP-UE-WDA with r = 2 and l = 2
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Table 9.14 presents results obtained by using approximate instead of exact oracles
in the subproblems arising in the Excessive Gap method (MQCF problems). The
approximate oracles correspond to an application of a Fast Gradient scheme on a
Lagrange relaxation of the MQCF problem, for which details are given in Section
10.2. Additionally, numerical results comparing this method to the Primal-Dual
Interior Point method of Cplex 11.0 are presented in Section 10.3.

We consider various values for the stopping criterion of the oracle stop fg = 0.01,
0.001, 0.0001, and 0.00001, see Section 10.3. In case of the Sioux Falls instance,
these values correspond to a duality gap of order from 100 to 0.1 respectively. When
we chose stop fg= 0.0001, both the results as well as the running time needed
were better than those obtained using exact oracles for the same initial upper
bound C, see Table 9.15 and 9.16. When a lower accuracy (stop fg= 0.001 or 0.01)
was chosen, the number of iterations and running time yet also the quality of the
solution decrease also. On the other hand, when we enforced a higher accuracy
of (stop fg= 0.00001), the results and the number of iterations needed remained
as when stop fg= 0.0001, yet the running time increased due to the additional
time needed to solve the subproblems. Remark that, though according to theory
an absolute accuracy of the oracle of the order of O(ϵ5) is required for an overall
accuracy of ϵ, in this piratical instance a much lower accuracy sufficed for the oracle.

Sioux Falls instance, relative gap 0.025
r = 1 and approximate oracle (Fast Gradient scheme)

stopping criterion cpu # of theoretical # Total travel
stop fg time iterations of iterations time (SO)

0.01 6h2min 4331 104456 2369.41
0.001 8h6min 4333 104456 2373.97
0.0001 9h16min 6165 105601 2406.45
0.00001 14h23min 6119 105601 2407.37

reference
16sec — — 2461.82

solution

Tab. 9.14: Find acceptable value of stopping criterion for the approximate oracles,
stop fg — Excessive Gap using C = t̄
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NdP-SO-EG algorithm, Sioux Falls instance
r = 1 and approximate oracle (stop fg= 0.0001)

UE deviation SO deviation deviation
Relative total from total from Price of from

error travel reference travel reference Anarchy reference
time solution time solution solution

(%) (%) (%)
0.050 2642.51 22.22 2354.06 4.34 1.12 18.84
0.025 2990.52 11.98 2406.49 2.22 1.24 10.15
0.010 3216.51 5.32 2450.84 0.45 1.31 5.07

NdP-UE-
3188.58 6.15 2451.45 0.42 1.301 5.75WDA(1)

0.010

reference
3397.38 — 2461.82 — 1.38 —

solution

Tab. 9.15: Tradeoff between the relative error and the traffic assignment quality—
Total travel time at UE, total travel time at SO, and Price
of Anarchy — Excessive Gap method with approximate oracle.
(1) NdP-UE-WDA with r = 2 and l = 2



186 Numerical Results for the Static Traffic Assignment Problem

N
d
P

-S
O

-E
G

al
go

ri
th

m
,
S
io

u
x

F
al

ls
in

st
an

ce
r

=
1

an
d

ap
p
ro

x
im

at
e

or
ac

le
(s

to
p

fg
=

0.
00

01
)

M
ax

im
al

#
of

ar
cs

A
ve

ra
ge

#
of

#
of

R
el

at
iv

e
#

of
cp

u
O
D

w
it

h
ca

p
ac

it
y

co
n
ge

st
ed

d
el

ay
ed

A
ve

ra
ge

M
ax

im
al

er
ro

r
it

er
at

io
n
s

ti
m

e
[s

]
tr

av
el

ti
m

e
v
io

la
te

d
v
io

la
ti

on
ar

cs
ar

cs
d
el

ay
d
el

ay
d
iff

er
en

ce
[s

]
ca

p
ac

it
y

0.
05

0
18

37
4h

57
m

in
0.

03
4

32
0.

16
38

62
0.

19
4.

1
0.

02
5

61
65

9h
16

m
in

0.
02

1
26

0.
07

35
62

0.
39

3.
25

0.
01

0
28

52
1

78
h
43

m
in

0.
01

3
22

0.
05

33
46

0.
76

3.
25

N
d
P

-U
E

-
73

3
3.

41
se

c
0.

1
13

0.
01

21
31

0.
94

2.
24

W
D

A
1

0.
01

0

re
fe

re
n
ce

—
16

se
c

—
—

—
33

30
1.

21
3.

25
so

lu
ti

on

T
a
b
.
9
.1

6
:

T
ra

d
eo

ff
b
et

w
ee

n
re

la
ti

ve
er

ro
r

an
d

tr
affi

c
as

si
gn

m
en

t
q
u
al

it
y

—
V

io
la

ti
on

of
ar

c’
s

ca
p
ac

it
y,

ar
c’

s
co

n
ge

st
io

n
,

an
d

ar
c’

s
d
el

ay
—

E
x
ce

ss
iv

e
G

ap
m

et
h
o
d

w
it

h
ap

p
ro

x
im

at
e

or
ac

le
.

(1
)
N

d
P

-U
E

-W
D

A
w

it
h
r

=
2

an
d
l
=

2



9.3 Numerical Results 187

Excessive Gap Method using Exact Oracles
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Fig. 9.9: Evolution of primal and dual value

Finally, consider Figure 9.9. As in the case of the linear pogramming relaxation of
the Uncapacitated Facility Location problem, we have that the dual value converges
faster than the primal value when approximate oracles are used (stop fg = 0.0001),
see Figure 7.1. Yet, for “exact” oracles this is not the case. We notice two jumps
in both figures, which correspond to the update of the delays’ upper bound C.

9.3.3 Summary

We were able to solve all instances faster than the commercial solver Cplex 11.0
with the Primal-Dual Subgradient algorithms. Note however, that Cplex 11.0 finds
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exact solutions while our algorithms deliver approximate solutions within relative
errors from 0.01 to 0.001. We found that the algorithms performance was sensitive
to the additional updating procedure and therein the chosen values of r and l.
However, it was always possible to find values of r and l for each algorithms such
that it performed well for all instances. Moreover, once a good choice was made, all
algorithms except the truncated simple dual averaging algorithm (NdP-UE-TSDA)
showed a similar performance. Note that we did not conduct any further finetuning
of the algorithms except for choosing the values for r and l.

Running time increased strongly if a gap of 0.001 instead of 0.01 was required.
However, the solution quality regarding arcs with violated capacities and congested
or delayed arcs did not improve much, i.e., the additional solution time was not
worthwhile.

The Primal-Dual Subgradient algorithm compared badly concerning running time
with the commercial software VISUM. Note however, that we solved problems with
different complexities. The derived traffic assignments showed as expected that the
flow at UE in the Beckmann model is more spread out leading to less congested
arcs.

Contrary to the impressive result for the linear programming relaxation of the Un-
capacitated Facility Location Problem, the Excessive Gap method performed very
poorly for the Traffic Assignment Problem requiring hours to solve small instances.
Though, the number of iterations needed remained as small as for the linear pro-
gramming relaxation of the Uncapacitated Facility Location Problem, the calcula-
tion of each iteration was too time-consuming.

We notice that in practice a much lower accuracy is required for the oracle than is
predicted by theory.



10. Minimum Separable Quadratic Cost
Flow Problem

In this chapter, we consider the minimum separable quadratic cost flow prob-
lem. This problem can be solved in polynomial time using Khachian’s Algorithm
([Kha79],[KTK79]). However, this algorithm performs poorly in pratice. Thus,
starting with Minoux in 1984 ([Min84]) many researchers sought after efficient
polynomial algorithms for this problem. For our purpose, we investigate algorithms
delivering approximate solutions.

Suppose we have a network with m arcs and n nodes, two of which are special,
the source, s, and the sink, t. We denote by A the set of arcs and by N the
set of nodes. Between the source and the sink a flow with value η > 0 has to
be transported satisfying the arc’s capacity, c ∈ Rm. The target is minimizing
the costs, which are incurred by transporting flow over arcs. Here, these costs are
separable and quadratic, i.e., for a flow x ∈ Rm the corresponding costs are defined
as ⟨a, x⟩ + b

2
⟨x, x⟩, with a ∈ Rm and b ∈ R+. The minimum separable quadratic

cost flow problem is then formulated as follows.

(MQCF) minimize f(x) := aTx+
b

2
xTx

subject to Ex = d (10.1)

0 ≤ x ≤ c (10.2)

where E ∈ Rn×m corresponds to the node-arc incidence matrix and d ∈ Rm to the
demand vector, i.e.,

Ez,i =


−1 if node z = t(i),
1 if node z = h(i),
0 otherwise.

dz =


−η if node z = s the source,
η if node z = t the sink,
0 otherwise.

Recall that for an arc i ∈ A, t(i) denotes its tail and h(i) denotes its head.

In the following, we present two methods for approximately solving the MQCF
problem, a Primal-Dual Interior Point method and a Fast Gradient method, which
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we then compare numerically. We are interested in methods that deliver good
approximation solutions with little numerical effort. The numerical comparisons
are presented in the last section of this chapter.

10.1 Primal-Dual Interior Point Method

At the core of most commercial optimization software used for minimizing quadratic
convex optimization problems lie Primal-Dual Interior Point methods. The idea
of the method is to simplify the problem by replacing the inequality constraints
(10.2) with a suitable barrier function added to the objective function f(x), which
penalizes all solutions that do not strictly satisfy the inequality constraints (10.2).
Namely, we define for µ > 0,

ϕµ(x) :=
1

µ
f(x) −

m∑
i=1

ln(ci − xi) −
m∑
i=1

ln(xi).

The function x 7−→ −
∑m

i=1 ln(ci−xi) is a barrier function for the set {x ∈ Rm | x ≤
c} and the function x 7−→ −

∑m
i=1 ln(xi) is a barrier function for Rn

+.

We minimize ϕµ(x) over the set {Ex = d}. The corresponding KKT conditions are
∇ϕµ(x) − ETy = 0 and Ex = d, where

∇ϕµ(x) =
1

µ
(a+ bx) +

m∑
i=1

1

ci − xi
ei −

m∑
i=1

1

xi
ei,

with ei ∈ Rm, eij = 1 if j = i and eij = 0 otherwise for i = 1, . . . ,m.

For µ > 0, consider x(µ) and ỹ(µ) satisfying the KKT conditions. Then, defining
y(µ) := µỹ(µ), s(µ) := µX(µ)−11 and z(µ) := µ(C − X(µ))−11 with X(µ) :=
diag(x(µ)) and C := diag(c), and 1 ∈ Rm, the unit vector, these KKT conditions
can be written as follows.

a+ bx(µ) + z(µ) − s(µ) − ETy(µ) = 0 (10.3)

(C −X(µ))z(µ) = µ1, z(µ) > 0 (10.4)

X(µ)s(µ) = µ1, s(µ) > 0 (10.5)

Ex(µ) = d, 0 < x(µ) < c (10.6)

Now, suppose we have a solution (x(µ), y(µ), z(µ), s(µ)) satisfying the KKT con-
ditions (10.3), (10.4), (10.5), and (10.6). We first note that x(µ) is primal fea-
sible, i.e., it is a feasible solution of the MQCF problem. Second, we have that
(y(µ), z(µ), s(µ)) is a feasible solution of the Lagrange dual of the MQCF problem,

maximize ψ(y, z, s) := dTy − cT z − 1

2b
∥a− ETy + z − s∥2

2

such that s, z ≥ 0.
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Then, we evaluate the duality gap at (x(µ), y(µ), z(µ), s(µ)).

f(x(µ)) = aTx(µ) +
b

2
x(µ)Tx(µ)

= y(µ)TEx(µ) − z(µ)Tx(µ) + s(µ)Tx(µ) − b

2
x(µ)Tx(µ)

(using (10.3))

= y(µ)TEx(µ) − cT z(µ) + 2mµ− b

2
x(µ)Tx(µ)

(using (10.4), and (10.5))

= dTx(µ) − cT z(µ) + 2mµ− b

2
x(µ)Tx(µ) (using (10.6))

= ψ(y(µ), z(µ), s(µ)) + 2mµ (using (10.3))

Thus, as µ decreases the duality gap (f ∗ denotes the optimal value of the MQCF
problem), the difference

f(x(µ)) − f ∗ ≤ f(x(µ)) − ψ(y(µ), z(µ), s(µ)) = 2mµ (10.7)

decreases.

Starting with a relatively big value µ̄ for µ and a feasible solution
(x(µ̄), y(µ̄), z(µ̄), s(µ̄)) of the KKT conditions (10.3), (10.4), (10.5), and (10.6),
for µ̄, the main idea of the interior point method is to decrease µ = µ̄

t
, t > 1, and

to solve approximately the KKT conditions for µ. A Newton method starting at
(x(µ̄), y(µ̄), z(µ̄), s(µ̄)) is used for finding (x(µ), y(µ), z(µ), s(µ)). This procedure is
repeated until a desired duality gap is achieved. For a duality gap of ϵ > 0 we need
to solve at most

N =

⌈
log

(
2µ̄m

ϵ

)
1

log t

⌉
KKT conditions, applying the Newton method.

The interior point method is known to be polynomial. Since we use the interior
point method of the commercial software Cplex ([Cpl]) as a black box we do not
discuss the complexity in detail. For a survey of Primal-Dual Interior Point method
for linear and quadratic minimization problems, the reader is referred to [Wri97].
For general convex optimization problems the reader is refereed to [NN94], where
Nesterov and Nemirovsi precisely investigated the generation of appropriate barrier
functions.

10.2 Fast Gradient Method

We apply a fast gradient method, based on the method presented by Nesterov
in [Nes07], to the Lagrange dual of the MQCF obtained by relaxing the demand
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constraint (10.1), which are first normalized by the demand η, i.e., we set Ẽx = d̃
with for any node z ∈ N and for any arc j ∈ A

Ẽz,j =


− 1
η

if z = t(j),
1
η

if z = h(j),

0 otherwise.

d̃z =


−1 if node z = s,

1 if node z = t,
0 otherwise.

The dual objective function is then defined for any p ∈ Rn as follows

ψ(p) :=

{
min

0≤x≤c
⟨a, x⟩ +

b

2
⟨x, x⟩ + ⟨p, d̃− Ẽx⟩

}
. (10.8)

In order to evaluate it we first need to compute

xp := arg min
0≤x≤c

{
⟨a− ẼTp, x⟩ +

b

2
⟨x, x⟩

}
. (10.9)

This minimization problem corresponds to a quadratic projection over a box, whose
solution is given as follows

(xp)j = max

{
0,min

{
(ẼTp− a)j

b
, cj

}}

= max

{
0,min

{
1

b
(
1

η
ph(j) −

1

η
pt(j) − aj), cj

}}
(10.10)

where
(
ẼT p−a

b

)
is the optimum of the corresponding unconstrained quadratic min-

imization problem (see Lemma 9.1). Finally, we get

ψ(p) = pt−ps+
∑
j∈Jp

(
(aj −

1

η
ph(j) +

1

η
pt(j))cj +

b

2
c2j

)
−
∑
j∈Ip

1

2b

(
1

η
ph(j) −

1

η
pt(j) − aj

)2

(10.11)
where

Jp :=

{
j ∈ A

∣∣∣ cj < 1

b
(
1

η
ph(j) −

1

η
pt(j) − aj)

}
,

Ip :=

{
j ∈ A

∣∣∣ 0 ≤ 1

b
(
1

η
ph(j) −

1

η
pt(j) − aj) ≤ cj

}
.

Now we compute the gradient of ψ(p), ∇ψ(p), using the sets Jp and Ip. First we
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consider the partial derivatives of ψ(p) at the source and the sink,

∂sψ(p) = −1 −
∑
zs∈Jp

1

η
czs +

∑
sz∈Jp

1

η
csz

−
∑
zs∈Ip

1

ηb
(
1

η
ps −

1

η
pz − azs) +

∑
sz∈Ip

1

ηb
(
1

η
pz −

1

η
ps − asz)

∂tψ(p) = 1 −
∑
zt∈Jp

1

η
czt +

∑
tz∈Jp

1

η
ctz

−
∑
zt∈Ip

1

ηb
(
1

η
pt −

1

η
pz − azt) +

∑
tz∈Ip

1

ηb
(
1

η
pz −

1

η
pt − atz)

Then, for any other node w, we have

∂wψ(p) = −
∑
zw∈Jp

1

η
czw +

∑
wz∈Jp

1

η
cwz

−
∑
zw∈Ip

1

ηb
(
1

η
pw − 1

η
pz − azw) +

∑
wz∈Ip

1

ηb
(
1

η
pz −

1

η
pw − awz)

The Fast Gradient method presented in [Nes07] assumes working with functions
having Lipschitz continuous gradient. Moreover the value of the Lipschitz constant
influences the convergence of the method. We define the following norm for the dual
space, ∥p∥B := (pTBp)

1
2 , where the matrix B is a lower estimate of the Hessian of

−ψ(p).

For any node w and z we have

∂2
wwψ(p) = − 1

η2b
|{zw ∈ Ip} ∪ {wz ∈ Ip}|

∂2
wzψ(p) = ∂2

zwψ(p) =
1

η2b


0 if wz ̸∈ Ip, zw ̸∈ Ip
1 if wz ∈ Ip, zw ̸∈ Ip
1 if wz ̸∈ Ip, zw ∈ Ip
2 if wz ∈ Ip, zw ∈ Ip

For the elements in the diagonal of the Hessian of ψ(p), we have that for any node
w, the set {zw ∈ Ip} ∪ {wz ∈ Ip} has at most degw elements, where degw denotes
the degree of node w, i.e., the number of arcs having w as head plus the number of
arcs having w as tail.

Thus, the diagonal matrix B, with Bww = 1
η2b

degw for any node w, satisfy

−∇2ψ(p) ≼ 2B and
√

2 is an estimate for the Lipschitz constant L of the gra-
dient of −ψ, i.e., L ≈

√
2.
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We consider then the Fast Gradient scheme described in Algorithm 26. The stop
criterion of the algorithm is the value of the gradient’s norm, which is zero at
optimum.

Algorithm 26 MQCF—Fast Gradient Scheme

Input: p0 = q0 = 0 ∈ Rn, initial solutions
L0 < Lψ, estimate for gradient’s Lipschitz constant Lψ
α0 ∈ (0, 1) and A = 0
ϵ > 0, desired accuracy

Output: p(ϵ) ∈ Rn such that ∥∇ψ(p(ϵ))∥∗B ≤ ϵ and the corresponding
flow solution x(ϵ).

k = 0
repeat
L = Lk
repeat

find a such that La2 − a− Ak = 0
set y = Ak

Ak+a
pk + a

Ak+a
qk

compute ∇ψ(y) and set ȳ = y + 1
L
B−1∇ψ(y)

compute ∇ψ(ȳ)
if ⟨∇ψ(ȳ), y − ȳ⟩ > 1

2L
∥∇ψ(ȳ)∥∗B

2 then
L = 2L

end if
until ⟨∇ψ(ȳ), y − ȳ⟩ ≤ 1

2L
∥∇ψ(ȳ)∥∗B

2

ak+1 = a and Ak+1 = Ak + a
set Lk+1 = L

2

set pk+1 = ȳ and qk+1 = qk + ak+1B
−1∇ψ(pk+1)

k = k + 1
until ∥∇ψ(pk+1)∥∗B ≤ ϵ
set p(ϵ) = pk+1

set x(ϵ)j = max{0,min{1
b
( 1
η
p(ϵ)h(j) − 1

η
p(ϵ)t(j) − aj), cj}} for all j ∈ A.

From Theorem 6 in [Nes07] we have that at each step k ≥ 1 of Algorithm 26,

ψ(p∗) − ψ(pk) ≤
8Lψ∥p∗ − p0∥2

B

k2
,

where p∗ denotes a maximum of ψ over Rn. In this work, We do not provide more
details on the analysis of the method. The reader is referred to [Nes07]. However,
note that ȳ = y + 1

L
B−1∇ψ(y) is a standard gradient step and qk is the maximum
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network # nodes # arcs
Anaheim 416 914
Barcelona 1020 2522

Zurich 5835 15184

Tab. 10.1: Networks’ characteristics

of the following function

ϕk(q) :=
k∑
i=1

ai (ψ(pi) + ⟨∇ψ(pi), q − pi⟩) +
1

2
∥q − p0∥2

B

which when divided by Ak is a strongly concave approximation of ψ(q). Namely,

ϕ(k) ≥ Akψ(q) − 1

2
∥q − p0∥2

B.

10.3 Numerical Results

In order to compare the methods presented in the previous sections, i.e., the Primal-
Dual Interior Point method (section 10.1) and the Fast Gradient method (section
10.2), we design the following experiment.

Test Instances. First, we create a pool of instances of the MQCF problem based
on the networks used in Chapter 9. In particular, we consider the Anaheim, the
Barcelona and the Zurich network. Their characteristics are resumed in Table 10.1.
Four OD-pairs are chosen for each network in order to define the sources, the sinks
and the demands. The linear costs a and the quadratic factor b, are uniformly
distributed on given intervals. These intervals are specified at the top of each table
with numerical results.

Stopping Criteria. For the Interior Point method, we use the commercial solver
Cplex [Cpl]. The Interior Point method in Cplex uses as stopping criterion not the
duality gap (10.7), but the duality gap divided by the norm of the primal solution
and the norm of the dual solution,

f(x(µ)) − ψ(y(µ), z(µ), s(µ))

∥x(µ)∥2∥y(µ), z(µ), s(µ)∥2

=
2mµ

∥x(µ)∥2∥y(µ), z(µ), s(µ)∥2

. (10.12)

For the Fast Gradient method we use as stopping criterion the norm of the gradient
of ψ(p), ∥∇ψ(p)∥∗B. The algorithm is implemented in C++.

We run the methods for different values of their stopping criteria and numerically
compare the delivered solutions. For sake of clarity, we use the following notations
in this section.
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network

aj ∈ (−1, 1) aj ∈ (−1, 1) aj ∈ (−100, 100)
b ∈ (0, 1) b ∈ (0, 100) b ∈ (0, 1)

objective cpu objective cpu objective cpu
value time [s] value time [s] value time [s]

Anaheim 1 1.5∗108 0.08 1.5∗1010 0.08 1.5∗108 0.08
Anaheim 2 4.3∗107 0.07 4.3∗109 0.08 4.3∗107 0.06
Anaheim 3 9.9∗107 0.07 9.9∗109 0.08 9.9∗107 0.05
Anaheim 4 4.7∗107 0.06 4.7∗109 0.07 4.7∗107 0.06

Barcelona 1 1.5∗109 0.22 1.5∗1011 0.24 1.5∗109 0.18
Barcelona 2 1.5∗109 0.20 1.5∗1011 0.20 1.5∗109 0.18
Barcelona 3 7∗108 0.09 7∗1010 0.14 7.1∗108 0.15
Barcelona 4 5.9∗108 0.10 5.9∗1010 0.09 5.9∗108 0.15

Zurich 1 4.6∗106 0.44 4.6∗108 0.51 -2∗106 0.41
Zurich 2 4.6∗106 0.47 4.6∗108 0.53 -2∗106 0.4
Zurich 3 2.6∗106 0.43 2.6∗108 0.53 -4∗106 0.38
Zurich 4 7.4∗106 0.46 7.4∗108 0.6 1.5∗106 0.41

Tab. 10.2: Reference solution values delivered by CPLEX 11.0 for an accuracy of
10−12

stop ip: stopping criterion for the Primal-Dual Interior Point method
(normalized duality gap)

stop fg : stopping criterion for the Fast Gradient method
(∥∇ψ(p)∥∗B)

Investigated values. All of the generated instances are feasible. Namely, we
assume that the solution delivered by Cplex at maximal accuracy, 10−12, to be op-
timal. We consider this solution as the optimal solution and compute the absolute
error, the relative error as well as the difference of flow in the arcs. All computed
solutions satisfy the capacities constraints (10.2) but not always the demand con-
straints (10.1). Thus, we also compute ∥Ex− d∥2 and ∥Ex− d∥∞.

Results. We first present the values of the solutions delivered by the Primal-Dual
Interior Point method for stop ip = 10−12, see Table 10.2. These shall be the
solutions of reference, assumed to be almost optimal. We note that the method is
fast. It takes at most 0.53 seconds for the biggest network, i.e., Zurich.

Now, we consider the solutions generated by the Primal-Dual Interior Point method
using small values for the stopping criterion. We tested it for stop ip=0.01, 0.001,
0.0001, and 0.00001. It turns out that the solutions obtained with stop ip=0.01
are the same as the solutions obtained with stop ip=0.00001. Thus, the method
finds good solutions early. On Table 10.3, we present the results for the Barcelona
network. We note that the quality of the solutions are reasonable since the relative
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network
aj ∈ (−1, 1), b ∈ (0, 1)

absolute relative max flow average cpu
error error difference flow difference time [s]

Barcelona 1 69.362 4.6∗10−8 1.4238 0.0432 0.19
Barcelona 2 20.410 1.3∗10−8 0.8086 0.0213 0.17
Barcelona 3 26.361 3.7∗10−8 0.9410 0.0210 0.09
Barcelona 4 42.179 7.1∗10−8 1.1126 0.0350 0.09

aj ∈ (−1, 1), b ∈ (0, 100)

Barcelona 1 36087.3 2.4∗10−8 2.9872 0.1063 0.11
Barcelona 2 2560.5 1.7∗10−8 0.8958 0.0278 0.11
Barcelona 3 2317.3 3.3∗10−8 0.8835 0.0227 0.12
Barcelona 4 13410.6 2.6∗10−8 1.8970 0.0683 0.09

aj ∈ (−100, 100), b ∈ (0, 1)

Barcelona 1 471.406 3.1∗10−7 2.9362 0.0763 0.15
Barcelona 2 15.396 1.0∗10−8 1.3911 0.0099 0.14
Barcelona 3 23.087 3.3∗10−8 0.9648 0.0153 0.13
Barcelona 4 26.116 4.4∗10−8 1.0685 0.0196 0.14

Tab. 10.3: Primal-Dual Interior Point method using 0.01 as stopping criterion
value

errors are between 10−9 and 10−6. The cpu time is slightly better than the cpu time
needed to compute the solution of reference.

Now, we consider the Fast Gradient method. In order to get a relative error of
10−8, we need to run the method with stop fg = 0.0001. Table 10.4 resumes the
results. Immediately, we note that the method is much slower than the Primal-
Dual Interior Point method even for computing the solution of reference. The Fast
Gradient method is 10-40 times slower than the Primal-Dual Interior Point method
with stop ip=0.01. However, we note that the difference of the arc’s flow between
the solutions delivered by the Fast Gradient method and the reference solution are
smaller than the difference of the arc’s flow between the solutions delivered by the
Primal-Dual Interior Point method with stop ip =0.01.

As mentioned, we do not expect the demand constraints to be satisfied by the
methods. We note that the solutions delivered by the Primal-Dual Interior Point
method with stop ip =0.01 and the solutions delivered by the Fast Gradient method
with stop fg = 0.0001 violate the demand constraints similarly, see Table 10.5.
However, these violations are small. Namely, the value of ∥Ex − d∥2 is between
10−6 and 0.4 and the value of ∥Ex− d∥∞ is between 3 ∗ 10−7 and 7 ∗ 10−5.

The last table, Table 10.6, presents the results concerning the cpu time for the
Primal-Dual Interior Point method and the Fast Gradient method. The latter
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network
aj ∈ (−1, 1), b ∈ (0, 1)

absolute relative max flow average cpu
error error difference flow difference time [s]

Barcelona 1 -32.292 -2.1∗10−8 0.0033 2.2∗10−5 2.43
Barcelona 2 -24.716 -1.6∗10−8 0.0062 2.0∗10−5 2.66
Barcelona 3 2.553 3.6∗10−9 0.0035 1.1∗10−5 2.56
Barcelona 4 37.9306 6.3∗10−9 0.0051 2.5∗10−5 2.26

aj ∈ (−1, 1), b ∈ (0, 100)

Barcelona 1 -109.406 -7.3∗10−10 0.0043 8.1∗10−5 4.09
Barcelona 2 468.855 3.1∗10−9 0.0027 4.4∗10−5 4.97
Barcelona 3 -387.789 -5.5∗10−9 0.0026 3.5∗10−5 3.93
Barcelona 4 -261.015 -4.4∗10−9 0.0021 2.5∗10−5 3.56

aj ∈ (−100, 100), b ∈ (0, 1)

Barcelona 1 25.577 1.7∗10−9 0.0009 1.2∗10−5 2.17
Barcelona 2 2.921 1.9∗10−9 0.0075 1.4∗10−5 1.85
Barcelona 3 23.393 3.3∗10−8 0.0015 1.8∗10−5 1.85
Barcelona 4 20.229 3.4∗10−8 0.0003 1.7∗10−5 1.65

Tab. 10.4: Fast Gradient method using 0.0001 as stopping criterion value

is definitely slower than the Primal-Dual Interior Point method. An interresting
phenomenon can be observed. As the values of the quadratic costs decrease in
respect to the values of the linear costs, the Primal-Dual Interior Point method as
well as the Fast Gradient method become quicker.

We conclude that the Primal-Dual Interior Point method is the method of choice
for solving the MQCF problem. It generates good approximate solutions quickly.
However, to avoid depedence on Cplex 11.0, the method should be self-implemented.
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11. Conclusions

This thesis aimed at improving the understanding of approximation algorithms for
solving large scale linear programs from a theoretical as well as practical point of
view. We investigated on the one hand a Primal-Dual Subgradient method and
on the other hand an approximation scheme combining smoothing techniques with
optimal gradient methods, which is called Excessive Gap method. The former has
a theoretical convergence dependency of O(1/ϵ2) on the desired accuracy of ϵ while
the latter needs only O(1/ϵ). We applied the Excessive Gap method to solve the
linear programming relaxation of the Uncapacitated Facility Location problem. By
a Lagrangian reformulation, the problem became accessible for the method and,
thus, we were able to design a polynomial approximation scheme with a running
time of O(1/ϵ). To our knowledge, the previously best known approximation scheme
result was O(1/ϵ2), [GK02].

Both investigated algorithms rely on oracles for solving subproblems. We have
investigated the dependence of the methods on the accuracy of the oracles. We
found that the primal-dual subgradient method requires oracles with an accuracy
of ϵ2 for an overall accuracy of ϵ. The Excessive Gap method requires for the
same precision an oracle with an accuracy of ϵ5 suggesting that it is much less
stable. However, we suppose that this result could be improved by finding suitable
additional requirements for the oracles. Moreover, the practical results showed that
a much lower accuracy sufficed.

To investigate the practical performance of the algorithms, we have applied them
to random instances of the Uncapacitated Facility Location Problem and on real-
world instances of the Travel Assignment Problem. Exact oracles are available for
the former and the Excessive Gap method significantly outperformed the Primal-
Dual Subgradient method as expected due to the theoretical running time results.
This is not the case for the Travel Assignment Problem, for which we do not have
exact oracles for the Excessive Gap method. Here, the Primal-Dual Subgradient
method showed better results. We have also found that the bounding of the feasible
spaces and their norms as well as the choice of the prox-functions do not only affect
the theoretical convergence, but also show to have a big impact on the practical
running time.

Finally, we have compared two different formulations of the Traffic Assignment
Problem, namely the classic formulation of Beckmann and a recent version of Nes-
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terov & de Palma. Test results for travel data of the Zurich metropolitan region
show that travel flows are much more concentrated in the second model leading to
more predictable congestion.

Results were obtained for the Beckmann model using a commercially available
solver, while we applied the Primal-Dual Subgradient method for solving the Nes-
terov & de Palma model. Our algorithm compared poorly from a computation
time point of view, which can be explained by the fact that we evaluated additional
information during computation. It would be interesting to see how the algorithm
performs if this information was not incorporated.
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A. Miscellaneous

Theorem A.1
Consider the linear minimization problem LP and its Lagrange relaxation LR,

LP := min cTx LR := max min {cTx+ uT (Ax− b)}
Ax ≤ b u ≥ 0 x ∈ Q
x ∈ Q

where Q := {x | Ãx ≤ b̃} is a polyhedron. If the linear minimization problem has a
finite optimal solution, then LP = LR.

Proof. One can easily show that LP ≥ LR. Then, consider the dual problem of
the linear problem

DP := max −bTv − b̃Tw

−ATv − ÃTw = c
v, w ≥ 0

Since the linear problem has an optimal solution, there is by strong duality an
optimal solution (v∗, w∗) of the dual problem and DP = LP . Now we evaluate the
Lagrange function L(u) := minx∈Q c

Tx+ uT (Ax− b) at u = v∗.

L(v∗) = min
x∈Q

(cT + v∗TA)x− v∗T b

= min
x∈Q

−w∗T Ãx− v∗T b

≥ −w∗T b̃− v∗T b

= DP = LP

Thus LR = LP .

Theorem A.2 (Weierstrass’s Theorem, Proposition A.8 in [Ber95])
Let E ⊂ Rn be a nonempty closed set and let f : E −→ R be lower semi-continuous
at all points of E.

a) If E is compact, x∗ ∈ E exists such that f(x∗) = infx∈E f(x).

b) If f is coercive, x∗ ∈ E exists such that f(x∗) = infx∈E f(x).
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Theorem A.3 ([Roc70], Corollary 37.3.2)
Let C and D be a non empty closed convex sets in Rm and Rn, respectively, and let
K be a continuous finite concave-convex function on C × D. If either C or D is
bounded, one has

inf
v∈D

sup
u∈C

K(u, v) = sup
u∈C

inf
v∈D

K(u, v).

Theorem A.4 ([Nes03], Theorem 3.1.14)
Let f be a closed convex function. For any x0 ∈ int(dom f) and p ∈ Rn we have

f ′(x0; p) = max{⟨ξ, p⟩|ξ ∈ ∂f(x0)}.

Theorem A.5 (Danskin’s Theorem, Proposition B.25 in [Ber95])
Let T ⊂ Rm be a compact set and ϕ : Rn × T −→ R be a continuous function
such that the function x 7−→ ϕ(x, u) is convex for each u ∈ T . Then the function
f : Rn −→ R defined by

f(x) = max
u∈T

ϕ(x, u)

is convex and has directional derivative given by

f ′(x, y) = max
u∈Tx

ϕ′(x, u; y)

where

ϕ′(x, u; y) = lim
α↓0

ϕ(x+ αy, u) − ϕ(x, u)

α

is the directional derivative of ϕ(., u) in direction y and

Tx := {ū | ϕ(x, ū) = max
u∈T

ϕ(x, u)}.

In particular if the set Tx contains one unique point ū and ϕ(., u) is differentiable
at x, then f is differentiable at x, and ∇f(x) = ∇xϕ(x, ū).

Theorem A.6 (Properties of g(x), Danskin’s Theorem in [Ber95] and The-
orem 1 in [Nes05c]))
Consider the function g(x) defined in (3.10). Then, g(x) has the following proper-
ties.
g(x) is a convex and smooth function and its gradient ∇g(x) is Lipschitz continuous
with Lipschitz constant Lg,S, i.e.,

∇g(x) = ∇ĝ(x) +BTux Lg,S = Lĝ,S +
∥B∥2

S,T

βσT
(A.1)

where ux := arg max
u∈T

{⟨Bx, u⟩ − ϕ̂(u) − βd(u)}.
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Proof. First we show that g is convex. Let α ∈ [0, 1], then

g (αx+ (1 − α)y) = ĝ (αx+ (1 − α)y) +

max
u∈T

{⟨B(αx+ (1 − α)y), u⟩ − φ̂(u) − βdT (u)}

≤ α

{
ĝ(x) + max

u∈T
{⟨Bx, u⟩ − φ̂(u) − βdT (u)}

}
+

(1 − α)

{
ĝ(y) + max

u∈T
{⟨By, u⟩ − φ̂(u) − βdT (u)}

}
= αg(x) + (1 − α)g(y).

In order to show that g is differentiable we consider Danskin’s Theorem (Theorem
A.5) for

ϕ : S × T −→ R
(x, u) 7−→ ϕ(x, u) := ĝ(x) + Γβ(x, u).

Then, g(x) = maxu∈T ϕ(x, u) and is differentiable if and only if the maximizer of
ϕ(x, .) over T for each x ∈ S is unique and ϕ(., u) is differentiable. Since Γβ(x, .)
is strongly concave over T for each x ∈ S, ϕ(x, .) is also strongly concave over T
for each x ∈ S and thus, its maximizer is unique and is ux = arg max

u∈T
Γβ(x, u).

Moreover,

∇g(x) = ∇xϕ(x, ux) = ∇ĝ(x) + ∇xΓβ(x, ux) = ∇ĝ(x) +BTux,

since ĝ and Γβ(., u) are differentiable.

We now evaluate the value of the Lipschitz constant Lg,S. For x, y ∈ S we have

∥∇g(x) −∇g(y)∥∗S = ∥∇ĝ(x) −∇ĝ(y) +BTux −BTuy∥∗S
≤ ∥∇ĝ(x) −∇ĝ(y)∥∗S + ∥BT (ux − uy)∥∗S.

Thus we need to bound ∥BT (ux−uy)∥∗S. Using the first order condition for Γβ(x, .)
at ux and for Γβ(y, .) at uy, i.e.,

⟨Bx−∇φ̂(ux) − β∇dT (ux), uy − ux⟩ ≤ 0

⟨By −∇φ̂(uy) − β∇dT (uy), ux − uy⟩ ≤ 0

we get

⟨B(x− y), ux − uy⟩ ≥ ⟨∇φ̂(ux) −∇φ̂(uy), ux − uy⟩
+β⟨∇dT (ux) −∇dT (uy), ux − uy⟩

≥ β⟨∇dT (ux) −∇dT (uy), ux − uy⟩
≥ βσT∥ux − uy∥2

T .
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We used the convexity of φ̂(u) to prove the second inequality and the strong con-
vexity of dT (u) to prove the third inequality. Hence,(

∥BT (ux − uy)∥∗S
)2 ≤ ∥B∥2

S,T∥ux − uy∥2
T

≤ ∥B∥2
S,T

1

βσT
⟨B(x− y), ux − uy⟩

≤
∥B∥2

S,T

βσT
∥BT (ux − uy)∥∗S∥x− y∥S.

Finally, ∥∇g(x) −∇g(y)∥∗S ≤
(
Lĝ,S +

∥B∥2
S,T

βσT

)
∥x− y∥S.



B. List of Notation

Part I - Large Scale Linear Programs and

Optimization Methods

Chapter 2

LP linear program
Dual LP dual program
LR Langrange dual program
x ∈ Rn primal decision variables
z ∈ Rm dual variables
u ∈ Rm Lagrange dual variables
c ∈ Rn linear cost vector
b ∈ Rm right-hand side vector
A ∈ Rm×n matrix of constraints
Q ⊆ Rn polyhedron
ψ(u) Lagrange dual objective function

Chapter 3

Problem Description

LP linear program
LR Langrange dual program

x ∈ Rn primal decision variables
u ∈ Rm Lagrange dual variables
c ∈ Rn linear cost vector
b ∈ Rm right-hand side vector
A ∈ Rm×n matrix of constraints
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Q ⊂ Rn non-empty, convex and compact polytope
P ⊂ Rm non-empty, convex and compact polytope
f(x) := max

u∈P
{cTx+ uT (Ax− b)} primal objective function

f∗, x∗ minimum and minimizer of f(x) over Q
ψ(u) := min

x∈Q
{cTx+ uT (Ax− b)} Lagrange dual objective function

ψ∗, u∗ maximum and maximizer of ψ(u) over P
ϵ absolute accuracy

Strongly Convex Functions

S ⊆ Rn convex set or compact convex set
∥.∥S, ∥.∥∗S norm defined over Rn containing the set S and

its dual/adjoint norm
T ⊆ Rm convex set or compact convex set
∥.∥T , ∥.∥∗T norm defined over Rm containing the set T and

its dual/adjoint norm
∥B∥S,T , B ∈ Rm×n norm of matrix B with respect to norm ∥.∥S and

norm ∥.∥T
dS(x) prox-function over S with convexity parameter σS

in respect to norm ∥.∥S and minimizer xo over S
dT (u) prox-function over T with convexity parameter σT

in respect to norm ∥.∥T and minimizer uo over T

epi g epigraph of function g
∇g(x) gradient of function g
Lg,S Lipschitz constant of the gradient of function g
ĝ(x) smooth convex function over S
φ̂(u) smooth convex function over T
Γβ(x, u) saddle function, which is convex over S for fixed

:= ⟨Bx, u⟩ − φ̂(u) − βdT (u) u and concave over T for fixed x, β > 0
ux maximizer of Γβ(x, .) over T

From an Absolute to a Relative Error

ϵ absolute accuracy
ϵ′ relative accuracy
A-FEAS decision procedure
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Chapter 4

S ⊆ Rn convex set or compact convex set
∥.∥S, ∥.∥∗S norm defined over Rn containing the set S and

its dual/adjoint norm
dS(x) prox-function over S with convexity parameter σS

in respect to norm ∥.∥S and minimizer xo over S
DS maximum of dS(x) over S

g : S −→ R closed, finite and convex function
g∗, x∗ minimum and minimizer of g(x) over Q
∂g(x) subdifferential of g at point x
ξx ∈ ∂g(x) subgradient of g at point x
L upper bound on subgradients’ norm

∀ ξx ∈ ∂g(x), x ∈ S, ∥ξx∥∗S ≤ L
M upper bound on subgradients’ variation

∀ ξx ∈ ∂g(x), ξy ∈ ∂g(y), x, y ∈ S, ∥ξx − ξy∥∗S ≤M

g∗ conjugate function of g
φ(ζ) := −g∗(ζ) + min

x∈S
⟨ζ, x⟩ dual function

ζ dual variables

Chapter 5

S ⊂ Rn convex set or compact convex set
∥.∥S, ∥.∥∗S norm defined over Rn containing the set S and

its dual/adjoint norm
dS(x) prox-function over S with convexity parameter σS

in respect to norm ∥.∥S and minimizer xo over S
DS maximum of dS(x) over S

T ⊂ Rm convex set or compact convex set
∥.∥T , ∥.∥∗T norm defined over Rm containing the set T and

its dual/adjoint norm
dT (x) prox-function over T with convexity parameter σT

in respect to norm ∥.∥T and minimizer xo over T
DT maximum of dT (x) over T

ĝ(x) smooth convex function over S
Lĝ,S Lipschitz constant of the gradient of ĝ

φ̂(u) smooth convex function over T
Lφ̂,T Lipschitz constant of the gradient of φ̂
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g(x) := ĝ(x) + max
u∈T

{⟨Bx, u⟩ − φ̂(u)} primal function

φ(u) := −φ̂(u) + min
x∈S

{⟨Bx, u⟩ + ĝ(x)} dual function

gµT
(x) := ĝ(x) + max

u∈T
{⟨Bx, u⟩ − φ̂(u) − µTdT (u)} lower approximation

of g(x)
φµS

(u) := −φ̂(u) + min
x∈S

{⟨Bx, u⟩ + ĝ(x) + µSdS(x)} upper approximation

of φ(u)

µT , µS smoothing factors
LgµT

,S Lipschitz constant of the gradient of gµT

LφµS
,T Lipschitz constant of the gradient of φµS

ZµT ,x(y) := gµT
(x) + ⟨∇gµT

(x), y − x⟩ +
LgµT

,S

2
∥y − x∥2

S upper approximation
of g(y)

WµS ,u(v) := φµS
(u) + ⟨∇φµS

(u), v − u⟩ − LφµS
,T

2
∥v − u∥2

T lower approximation
of φ(v)

GMgµT
(x) := arg min

y∈S
ZµT ,x(y) Gradient Mapping of gµT

at point x

GMφµS
(u) := arg max

v∈T
WµS ,u(v) Gradient Mapping of φµS

at point u

Chapter 6

δ-oracle oracle that delivers an approximate solution of the minimum of a
strongly convex function

xδ δ-approximation, i.e., approximate solution delivered by a δ-oracle

ξabcx abc-subgradient of a convex function at point x

ΓµT
(x, u) := ⟨Bx, u⟩ − φ̂(u) − µTdT (u) saddle function, which is linear over S for

fixed u and concave over T for fixed x
ux, u

δ
x maximizer of ΓµT

(x, .) over T and its
δ-approximation

ΦµS
(x, u) := ⟨Bx, u⟩ + ĝ(x) + µSdS(x) saddle function, which is convex over S for

fixed u and linear over T for fixed x
xu, x

δ
u minimizer of ΦµS

(., u) over S and its
δ-approximation

gδµT
(x) := ĝ(x) + ΓµT

(x, uδx) δ-approximate of gµT
(x) := ĝ(x) + ΓµT

(x, ux)
∇gδµT

(x) := ∇ĝ(x) +BTuδx

φδµS
(u) := −φ̂(u) + ΦµS

(xδu, u) δ-approximate of φµS
(u) := −φ̂(u) + ΦµS

(xu, u)
∇φδµS

(u) := −∇φ̂(u) +Bxδu
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Zδ
µT ,x

(y) := gδµT
(x) + ⟨∇gδµT

(x), y − x⟩ +
LgµT

,S

2
∥y − x∥2

S δ-approximation
of ZµT ,x(y)

W δ
µS ,u

(v) := φδµS
(u) + ⟨∇φδµS

(u), v − u⟩ − LφµS
,T

2
∥v − u∥2

T δ-approximation
of WµS ,u(v)

GM δ
gµT

(x) δ-approximation of the minimizer of Zδ
µT ,x

(y) over S

GM δ
φµS

(u) δ-approximation of the maximizer of W δ
µS ,u

(v) over T

Part II - Applications of the Optimization

Methods to Special Linear Problems

Chapter 7

UFL problem Uncapacitated Facility Location problem
UFL-LP linear programming formulation of the UFL problem
UFL-LR Lagrange relaxation of UFL-LP
UFL-DP dual problem of UFL-LP

F set of potential facility locations
D set of clients

m,n number of facility locations and number of clients
fi cost of building the facility i
dj demand of client j
cij cost of serving client j by facility i

xij primal decision variable, serving or not client j by facility i
yi primal decision variable, opening or not facility location i
wij Lagrange dual variable
uij dual variable (wij = fiuij)

∆m ⊂ Rm m-dimensional simplex set
∆n
m ⊂ Rn×m product of n m-dimensional simplex

∆m := {z ∈ Rm |
∑m

i=1 zi = 1, zi ≥ 0 ∀ i = 1, . . . ,m}

Q = ∆n
m primal space

P = ∆m
n dual space

f(x) :=
∑m

i=1

∑n
j=1 cijxij + max

u∈P

{∑m
i=1

∑n
j=1 fiuijxij

}
primal function

ψ(u) := min
x∈Q

{∑m
i=1

∑n
j=1 cijxij +

∑m
i=1

∑n
j=1 fiuijxij

}
dual function
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UFL-EG-Euclidean Excessive Gap method using Euclidean norms
and Euclidean projections

UFL-EG-Entropy Excessive Gap method using 1-norms and Entropy
functions

UFL-SDA-Euclidean Simple Dual Averaging Primal-Dual Subgradient
method using Euclidean norms and Euclidean
projections

UFL-SDA-Entropy Simple Dual Averaging Primal-Dual Subgradient
method using 1-norms and Entropy functions

UFL-WDA-Euclidean Weighted Dual Averaging Primal-Dual Subgradient
method using Euclidean norms and Euclidean
projections

UFL-WDA-Entropy Weighted Dual Averaging Primal-Dual Subgradient
method using 1-norms and Entropy functions

UFL-TSDA-Euclidean Truncated Simple Dual Averaging Primal-Dual
Subgradient method using Euclidean norms and
Euclidean projections

UFL-TSDA-Entropy Truncated Simple Dual Averaging Primal-Dual
Subgradient method using 1-norms and Entropy
functions

Chapter 8

STAP or STA problem Static Traffic Assignment problem
UE User Equilibrium
SO Social Optimum

G = (N ,A) traffic network
N set of nodes (e.g., intersections)
A set of arcs (e.g., roads)
OD ⊂ N ×N set of Origin-Destination pairs or commodities
OD-pair origin-destination pair

ca capacity of arc a ∈ A
t̄a free travel time of arc a ∈ A

dk number of drivers travelling during a period of time from origin
of OD-pair k to its destination or demand of commodity k

δk demand(drivers) node vector of OD-pair k

E node-arc incidence matrix

Pk set of all paths between origin and destination of OD-pair k
akP arc incidence vector of path P ∈ Pk.
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hk flow vector for OD-pair k
s total flow vector, f =

∑
k∈OD h

k

t travel time vector
(s, t) traffic assignment
U(s, t) := ⟨s, t⟩ total travel time of traffic assignment (s, t)

Nesterov & de Palma model

NdP Nesterov & de Palma
NdP-SO linear programming formulation of finding at traffic assignment

at social optimum in Nesterov & de Palma model
NdP-UE convex formulation of finding at traffic assignment at user

equilibrium in Nesterov & de Palma model
Tk(t) function given the length of the shortest path for OD-pair k given

travel time t.

Beckmann model

B-SO convex formulation of finding at traffic assignment at social
optimum in Beckmann model

B-UE convex formulation of finding at traffic assignment at user
equilibrium in Beckmann model

B-UEext convex formulation of finding at traffic assignment at user
equilibrium in Beckmann model with additional constraints

la(t) latency function
BPR Bureau of Public Road latency function

Chapter 9

m number of arcs (e.g., roads)
n number of nodes (e.g., intersections, zones)
K number of OD-pairs
dtot sum of the demands of all OD-pairs

SO∗ optimal value of the NdP-SO problem
UE∗ optimal value of the NdP-UE problem
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Primal-Dual Subgradient methods

R upper bound on travel times
Q := {t ∈ Rm | t̄ ≤ t ≤ R} primal feasible space

(travel times’ space)
f(t) :=

∑
k∈OD dkTk(t) − ⟨t− t̄, c⟩ primal function

△ = ∆|P1| × · · · × ∆|PK | dual feasible space
ψ(u) := mint∈Q⟨c−

∑
k∈OD dku

k
pap, t⟩ − ⟨c, t̄⟩ dual function

Lmax largest upper bound on subgradients’ norm considered
Mmax largest upper bound on subgradients’ variation considered

NdP-UE-SDA Simple Dual Averaging Primal-Dual Subgradient using
Euclidean norms and Euclidean projections

NdP-UE-WDA Weighted Dual Averaging Primal-Dual Subgradient using
Euclidean norms and Euclidean projections

NdP-UE-TSDA Truncated Simple Dual Averaging Primal-Dual
Subgradient using Euclidean norms and Euclidean
projections

Excessive Gap method

Πk := {hk ∈ Rm | Ehk = δk, 0 ≤ hk ≤ c} feasible space for the flow of OD-pair k
Π := Π1 × · · · × ΠK ⊂ RKm primal feasible space (flows’ spaces)

f(h) := max
u∈U

{∑
a∈A

∑
k∈OD h

k
at̄a +

∑
a∈A ua(

∑
k∈OD h

k
a − ca)

}
primal function

C upper bound on delays
U := {u ∈ Rm | 0 ≤ u ≤ C} dual feasible space (delays’ space)

ψ(u) := min
h∈Π

{∑
a∈A

∑
k∈OD h

k
at̄a +

∑
a∈A ua(

∑
k∈OD h

k
a − ca)

}
dual function

NdP-UE-EG Excessive Gap using Euclidean norms and Euclidean projections

Chapter 10

MQCF problem Minimum Quadratic Cost Flow problem
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N set of nodes
A set of arcs
s source node
t sink node
η demand

t(i) tail of arc i
h(i) head of arc i

ai linear cost of arc i
b quadratic cost
ci capacity of arc i
E node-arc incidence matrix
d demand vector

Ẽ normalized node-arc incidence matrix

d̃ normalized demand vector

stop ip: stopping criterion for the Primal-Dual Interior Point method
stop fg : stopping criterion for the Fast Gradient method
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