Conference Paper

A new combined clustering method to analyse the potential of district heating networks at large-scale

Author(s):
Marquant, Julien F.; Bollinger, L. Andrew; Evins, Ralph; Carmeliet, Jan

Publication Date:
2017

Permalink:
https://doi.org/10.3929/ethz-b-000196118

Rights / License:
In Copyright - Non-Commercial Use Permitted
A new Combined Clustering Method to Analyse the Potential of District Heating Networks at Large-scale

Julien F. Marquanta,b, L. Andrew Bollingera, Ralph Evinsb,c and Jan Carmelietd

a Laboratory for Urban Energy Systems, Swiss Federal Laboratories for Materials Science and Technologies, EMPA, Dübendorf, Switzerland, Andrew.bollinger@empa.ch
b Chair of Building Physics, Swiss Federal Institute of Technology, ETH Zürich, Switzerland, Julien.marquant@empa.ch
c Department of Civil Engineering, University of Victoria, 3800 Finnery Road, Victoria, BC, Canada, revins@uvic.ca
d Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Materials Science and Technologies, EMPA, Dübendorf, Switzerland, Jan.carmeliet@empa.ch

Abstract:
For effective integration of large amounts of renewables and high-efficiency energy technologies, their benefits have to be quantified. Network-level energy optimisation approaches can determine the optimal location of generation technologies within a region and the optimal layout of energy distribution networks to link them. Mixed-integer linear programming (MILP) formulations are generally employed and this is often a burden for large scale models as the computational time drastically increases with the problem size. Most methods used to reduce the complexity of MILP problems focus on the temporal scale or use aggregated demand profiles for the spatial dimension. There is a lack of a method addressing the spatial complexity to assess the potential of interlinked energy networks at large scale. Therefore, this paper introduces a combined clustering schema enabling quantification of the potential of district heating networks based on building characteristics. A city-scale case is divided into multiple districts based on the output of the clustering algorithm. The parameters taken into account by the clustering method are the cluster density, homogeneity index and load magnitude. The analysis of the clustering map along with building characteristics of each cluster reveals the required characteristics for the installation of a district heating network or distributed energy system.

Keywords:
Combined clustering, Energy hubs, Distributed energy systems, Genetic algorithm, MILP energy optimisation.

1. Introduction
The COP21 conference in Paris 2015 aimed to maintain below 2 °C the rise of global temperature above pre-industrial levels, fixing a target of 1.5 °C [1]. This is ensured by the ratification of “Paris Agreement” protocol by 55 Parties responsible for at least an estimated 55% of global greenhouse gas emissions (GHG) [2]. Mitigating climate change by lowering GHG emissions from energy systems while still providing a desired level of services is possible when considering the vast range of renewable and highly efficient energy technologies available today [3]. However, the transition towards low carbon energy systems needs to be effective. This can be achieved by quantifying the needs for the creation, expansion or modification of energy networks in order to adequately integrate renewables and high-efficiency energy converters.

This paper first presents the challenge researchers face when dealing with large scale optimization of distributed energy systems (DES) and the solution obtained by using clustering techniques in order to reduce the problem complexity. The methodology employed to facilitate large scale modelling of DES in a bottom-up approach is presented in the next section, followed by a section introducing a combined clustering method based on building characteristics. The clustering method developed is employed with the bottom-up framework in an iterative process involving an
evolutionary approach to converge toward an optimal solution. An application to a case study assesses the computational benefits of the developed framework in handling a large-scale optimization problem while conserving a building level of detail on the energy model.

Finally, the parameters intrinsic to the clustering algorithm are highlighted and their importance is quantified. The case study reveals that the density, qualifying how distant buildings are from each other, and the heterogeneity in the scheduling of the energy consumption, are both important parameters which have to be considered. Conversely the loads magnitude indicator, representing how large a consumer is, appears to be of relatively minor significance for the design of district heating networks (DHN). An extension of this work will apply the method to multiple case studies to deduce the characteristics driving the requirements for the deployment of DHN.

1. Distributed energy systems optimisation

Evaluating the potential savings available by combining multiple energy sources and carriers is an energy optimisation problem, assessing the trade-off between centralised and/or distributed energy system infrastructures for the supply of energy at different scales. Such problems dealing with the design and/or operations scheduling of single or multiple energy systems are often formulated as Linear Programming (LP) [4–7] or Mixed-Integer Linear Programming (MILP) in the literature [5], [8–19]. Researchers are today moving from the single plant optimisation problem [6, 28] (current practice of centralised energy system for energy supply) towards the distributed energy systems (DES) optimisation problem where multiple energy converters and carriers can be installed and operated together. In this new context of multi-energy systems, finding the optimal design and operating strategy to increase the overall energy efficiency of a system is not straightforward. The benefit of decentralised energy systems (increase of overall efficiency, decrease of transport losses and risk minimisation [21], [22]) versus the benefits of centralised systems (economies of scale already existing networks) has to be carefully evaluated [23].

1.2. Clustering methods enabling large scale energy optimisation

Considering multiple energy systems in a MILP problem becomes computationally demanding in terms of solving time when increasing the problem space by augmenting the number of integer variables (exponential increases of the solving time [8]). This is often the case when adding specific constraints on technologies (minimum part-loads, banded efficiencies and/or costs), or when increasing the spatial or temporal dimensions of the problem. Commonly in research, large scale optimisation of DES is made possible by applying different reduction techniques. Typical day approaches are commonly employed to reduce the temporal scale by representing a full year horizon using shorter periods, which may be selected using k-medoids or k-means clustering methods [24], [25]. Other approaches, such as rolling horizon, can also be employed to divide the entire problem horizon into sub-problems solved sequentially, thus reducing the number of decision variables per interval [8], [16]. At the spatial resolution, often aggregation techniques are employed to represent the energy demand of many buildings by a single node [14], [26].

There is a lack of a method addressing the full spatial complexity and assessing the potential of interlinked energy networks at large scale, while considering a building scale level of detail to avoid sub-optimal solutions. We present a method formulated as a bottom-up approach, considering each building individually in the optimisation problem, by combining it with a clustering method.

2. Methodology

The multi-scale hierarchical approach for DES optimisation presented in [27] is employed and integrated with a combined clustering approach in order to enable solving of large scale DES problems while considering building scale level of detail. This is done in an iterative manner between the clustering method and a bottom-up optimisation framework. This section first introduces the optimisation problem and gives an overview of the multi-scale hierarchical approach
used. Full details of the multi-scale approach can be found in [27]. A city-scale case is divided into multiple clusters based on the output of the clustering algorithm. The optimisation problem is run individually for each cluster before being run between clusters at the higher scale (inter-cluster) based on the optimal results from the cluster scale.

2.1. The energy hub approach

The energy hub framework [28] is employed for the MILP formulation of the optimisation problem. The energy hub formulation allows representing the efficiency of multiple energy systems within a matrix coupling energy demand and supply [29] as shown in Fig. 1. Equations are given in the Appendix. The objective function (1) is to minimize the equivalent annual cost for design (2) and operations (3) of multiple urban energy systems including networks. The investment costs are multiplied by the capital recovery factor (CRF). A discount rate of 3% is used, with a lifespan of 20 years for the technologies and 40 years for the network pipelines in order to calculate the CRF. The operating costs are calculated for a year of operation.

The available energy systems considered in this study are natural gas boiler (NG), combined heat and power engine (CHP), photovoltaic panel (PV), thermal storage (TS) and district heating network (DHN), considering that gas and electrical networks are already connected to all buildings. CHP engines and NG boilers sizes can vary from mini–CHP or NG boiler of 2kW to large size CHP plant or boiler of 5MW.

The maximum allowable size of PV panels is constrained by the total roof area available per building. Similarly, the total capacity of thermal storage available per area depends on the number of buildings considering a fixed maximum capacity of 20 kWh per building. Cost and efficiency depend on the technology size which is a design variable of the optimisation problem. Size price and efficiency bands are obtained from various sources [14], [30], [31] and harmonized with Swiss prices in Table 1, see in appendix

2.2. Iterative hierarchical multi-scale framework to facilitate large scale optimisation

The hierarchical multi-scale optimisation framework developed in [27] is combined with a genetic algorithm and a combined clustering algorithm in order to avoid sub-optimal solution, by considering only one clustering result as input for the energy optimisation problem. The combined framework is presented in Fig. 2. It is divided in three phases (a,b,c in Fig. 2): a structuring phase (a), during which the clustering algorithm divide the problem space in multiple sub-problems (clusters); an optimisation phase (b) run per cluster; and a general optimisation between clusters (c) based on optimal solutions at the cluster level. Fig. 2 presents the workflow coloured based on the software used at each step. The building locations and load profiles are given as input to the energy optimisation problem, as is the set of technologies available to supply the energy demand. Each building is considered as an energy hub and energy systems can be installed at any location. A first density based clustering algorithm creates a set of hierarchically nested clusters as a tree structure. Those pre-clusters are ordered and grouped based on a combined clustering score function, developed in the next section. Based on the output of this combined clustering approach a set of clusters is created. The energy hub optimisation problem is then considered per cluster. In each cluster, multiple network shapes are generated based on a minimum spanning tree algorithm,
interconnecting at each generation a growing number of buildings within each cluster from no district heating network to fully connected DH network, as presented in [32]. Per network generation, the loads of the buildings included in the DHN are aggregated and losses considered as a linear relation with the network size. Aggregated buildings which are part of the network are considered as a single energy hub, with the other remaining buildings considered as individual hubs. The energy hub optimisation problem is solved per hub, and this is done per network generation and per cluster, as described in Fig. 2 (b). Finally once the optimisation problem has been run per cluster, the optimal solution is retained and the design variables are passed to an inter-cluster scale optimisation problem (9). This ultimate optimisation problem consider the possibility of interconnecting clusters as an integer design variable, as in [33].

The iterative loop between the result of the optimisation steps (b,c) and the clustering algorithm is developed in order to avoid ending up with sub-optimal solutions driven by the clustering algorithm output. The cluster set as output from the combined clustering can be based on building location and load profiles, reflected by density indices, load homogeneity and load magnitude of given clusters.

Fig. 2. Iterative multi-scale optimisation of DES

3. Combined clustering approach

Clustering methods drastically reduce the computational time in a ‘divide and conquer’ fashion. This can be done without significantly reducing the problem accuracy, e.g. lower than 2% difference in the objective function in [27]. However, the clustering schema has an influence on the results and design of the DHN due to the limitations imposed on the building interconnections at an inter-cluster level based on the intra-cluster optimisation results. The following section highlights
the different characteristics influencing the design of the DHN as well as the technology design variables. Finally, the combined clustering algorithm is presented to explore optimal solutions under different clustering maps, based on different building characteristics.

3.1. Spatial clustering and its limitations

The density distribution represents how far each object is from another object. A density-based and hierarchical algorithm is employed, called OPTICSxi (Ordering Points To identify the Clustering Structure). Density based algorithms evaluate for each object of a cluster that there is a minimum number of objects MinPts in a maximal neighbourhood distance EpsDist. The xi parameter is a contrast parameter defining the relative drop in density. More details on OPTICS can be found in [34]. For the distance matrix, the Minkowski Euclidean distance function is chosen as it best represents a measure of the distance between two objects. OPTICS is chosen as it is a density based algorithm which does not require selecting the number of clusters in advance. This number depends only on the minimum number of points to form a cluster, the maximal reachability distance and the data.

3.1.1. Density based clustering

Fig. 3 shows the district heating network connections for a small case comprised of three different clusters where the difference between Fig. 3a and Fig. 3b is the demand profiles of the buildings. On Fig. 3b, buildings are considered as residential, and profiles from one building to another are highly correlated (correlation coefficient is higher than 0.5, calculated in (13) as defined in [35]). This implies the same behaviours in the consumption patterns of building occupants. The graph on the bottom (Fig. 3d) shows the similarities in the hourly profiles, represented here for 12 optimally selected typical days (288 hourly time steps). The demand profiles have been randomly generated based on an approach presented in [36] where data are re-sampled per blocks of hourly period to maintain specific energy patterns. The correlation coefficient is lower than 0.5 for those demand profiles. The building types are similar to those from a mixed-use area.

The first clustering indicator essential to define the possibility of having a DH network is the distance between energy hubs: for highly dense clusters (e.g. 8 or 2 in Fig. 3a and Fig. 3b), even with different energy demand behaviour, it is worthwhile to install a district heating network. For cluster 8, the highest density, even the design variables fixing the sizes of the selected technologies remain the same after optimisation.

3.1.2. Loads based clustering

Load distribution reflects building use (sector) and user behaviour. The results from C8 in Fig. 3 indicate the importance of the load distribution as reflected in the Homogeneity Index (HI), which can be used as a clustering parameter. For cluster 9 the HI of the clustering has an influence. Indeed in cluster 9 in Fig. 3b, there is only a small network (interconnecting the highest energy consumer with two other buildings) and mostly distributed energy systems with gas boilers installed. Whereas in Fig. 3a for the same cluster 9, there is a full network deployed and a larger share of storage and CHP systems installed. Energy demand profiles and load peaks are different for a zone consisting only of residential buildings or a zone of pure commercial and office space buildings. Indeed, the energy consumption in the residential sector is mostly happening at different times from the offices. In a mixed zone with residential and office buildings there are possibilities of having a levelling out of the consumption curve when aggregating together multiple profiles, reducing the difference between peaks and average energy consumption. This opens up the possibility of decreasing the total energy consumption by an exchange of energy between buildings with different energy profiles. This is made possible by favouring the installation of large size CHP engines running at higher efficiency (which could not have been operated otherwise due to minimum part load constraints) in parallel with storage devices. The final result is a DH network interconnecting a large share of the buildings as seen in Fig. 3b. The deployment of the DHN is driven here by the
decrease of the homogeneity index for a mixed case compare to a residential case. It is then the increase of the heterogeneity (the complement of the homogeneity index) of the cluster which leads to a fully interconnected cluster 9 in Fig. 3a.

The load magnitude is calculated as the sum of the heating demand over a full year. A higher load should be considered as an input to the clustering algorithm, as its inclusion in a cluster can have a large influence on the overall results. It can be used to balance the grid or as an energy centre and creates the possibility of installing a large energy system with higher efficiency curves. The case where a large load should be part of a particular cluster can only be considered by adding the load based dimension to the clustering algorithm.

3.2. Combined clustering algorithm

A combined clustering algorithm is developed in order to take into account spatial and temporal aspects of building characteristics. This is done with the help of a feedback loop between the clustering output and the results of the energy optimisation at the cluster and inter-cluster level. Fig. 4 presents the clustering framework in which inputs are tuned using an evolutionary approach. First a set of clusters is determined (a) based on the hierarchical tree of clusters resulting from OPTICSxi density based algorithm. The clusters are extracted from the lowest branches of the hierarchical nested tree where clusters are characterized by different density. Clusters are ordered based on their
density and the following characteristics are calculated (b) per cluster and per combination of existing clusters (i.e., at each node of the tree):

\[\alpha \cdot Dy + \beta \cdot (1 - HI) + \gamma \cdot MAG \]

Clusters of different density, magnitude and homogeneity indexes are combined (all combinations from 1 to 3 clusters are considered) and grouped based on a maximisation of the score function. Before finalising the result of a clustering iteration, a last refinement is evaluated (d) by looking for a possible improvement of the score function. This is done by taking into account outlier entities (and created new clusters), which were not considered at the first density based clustering iteration (a). This is made possible by increasing \(xi \), the relative drop in density from 0.1 in the first iteration to 0.5, which allows sparser clusters. The \(\text{MinPts} \) parameter is fixed at two entities, enabling the creation of a cluster of outliers from 2 buildings. \(\text{EpsDist} \) the maximal reachability distance is fixed at 200 meters for the density based step, in order to not consider density-based clusters including very distant buildings.

Finally, a clustering map is generated and the optimisation problem objective function can be evaluated using the multi-scale framework presented in Fig. 2. A genetic algorithm is used to evaluate the result of the objective function and to tune the weights of the score function, \(\alpha, \beta, \gamma \) positive continuous decision variables bounded in the interval [0 - 2]. The choice of the genetic algorithm is motivated by the large discontinuous search space. Elitism is enabled preserving the best solution across generations. The crossover fraction is 0.8; crossover is biased with a ratio of 1.5 towards the better parent; the mutation rate is 0.2.

4. Results

The case study for evaluation consists of 32 buildings of a mixed residential-commercial area on the South-East side of Geneva. Buildings location and characteristics are extracted from an open data source SITG (Geneva Territorial Information System). The hourly heating and electricity demand profiles per building are based on variable profiles generated based on building occupation levels [37], and fitted to the actual buildings size and yearly energy consumption. The objective function studied here is the equivalent annual costs (EAC) for the supply of the total energy demand of the considered buildings, including design and operating of the distributed energy systems.

By tuning the weights \(\alpha, \beta, \gamma \) of the score function (13) of the clustering algorithm, the resulting map for optimisation is divided in a number \(k \) of clusters, between 4 and 7, leading to different values of the fitness function Fig. 5a. The density distribution indicates that for the lowest number

Fig. 4. Combined nested clustering algorithm
of division in 4 clusters, the fitness value increases. A higher number of clusters seems to provide a higher probability of leading to a better solution. This is also reflected in Fig. 6 where the division into 6 and 7 clusters minimized the objective function. Results are comparing the design obtained and objective function for a density-based solution where the clustering step only includes the spatial dimension ($\alpha=2$, $\beta=0$, $\gamma=0$), against a solution where the temporal dimension of the loads and their magnitude has been taken into account ($\alpha=1.9$, $\beta=1.9$, $\gamma=0.3$). The combined solution obtained considering the loads distribution and spatial dimension appears on Fig. 6 as the best solution determined by the GA algorithm. The fitness function of those two solutions is compared with a reference solution where the possibility of a DHN is not considered Fig. 5b.

![Fig. 5. Difference in the optimal solution for different weights of the clustering score function: (a) Fitness function kernel density estimation. (b) Equivalent annual cost (EAC) for the reference case, density-based case and combined clustering case.](image)

![Fig. 6. Density estimation of the fitness value after optimisation based on the weights of the combined clustering algorithm: density (α), heterogeneity index (β) and loads magnitude (γ).](image)

By considering the possibility of installing a district heating network, the equivalent annual costs (EAC) are decreased by 60.5 kCHF Fig. 5b, when the optimisation map is achieved using a density-based clustering method; the clustering is shown in Fig. 7. The EAC can be even further decreased (by 79.2 kCHF in Fig. 5b) when the temporal aspect is also considered in the clustering step using combined clustering; the clustering is shown in Fig. 8. Considering altogether the density coefficient DY and the load heterogeneity index ($1-HI$) creates cluster 2 in Fig. 8 with distant buildings. This enables the design of a large network connection within cluster 3, which is then connected to cluster 2 at the inter-clustering optimisation level. Whereas in the density based optimisation problem, restricted by the definition of cluster 5, the optimisation problem ends up
with a sub optimal solution by not being able to consider this large connection, as the optimal solution for cluster 2 is the installation of fully distributed energy systems.

From the results of Fig. 6, the role of the load magnitude index is not clear. The optimal solution retained after a GA optimisation of 250 hours for 50 generations with a population of 10 individuals, is a division of the problem space into 6 clusters with the weights \((\alpha=1.9, \beta=1.9, \gamma=0.3)\), showing a balance between the importance of density and load heterogeneity and a weak impact of the load magnitude.

Fig. 7. Density based clustering

Fig. 8. Density and loads based clustering

5. Conclusion

Clustering methods are shown to be a promising approach to facilitate large scale modelling and optimisation of urban energy systems. By alleviating limitations of MILP model, clustering methods enable the formulation and the solution of large scale optimisation problems for the exploration of design possibilities for the 4th generation DHN [38].

The combined framework of the multi-scale approach with a clustering algorithm presented in this work allows the execution of optimisation problem at large scales. The framework’s formulation maintains a high resolution level of details on the building scale, and by sub-dividing a large problem in sub-problems to reduce the computational burden it does not omit an optimal solution. This technique allows defining the building characteristics intrinsic to the cluster definition along with an optimisation problem.

In future work, the calibration of the clustering method across multiple cases will improve the ability to find good clustering patterns, which will allow assessing the durability of the role of spatial and temporal indicators for the deployment of energy streams.

Acknowledgements

This research has been financially supported by CTI within the SCCER FEEB&D (CTI.2014.0119).

Appendix A

A detailed formulation of the energy hub model employed in this framework is described here:

Objective function:

\[
\min \sum_{t=1}^{n_e} \left\{ I_{tech} \times CRF + \sum_{t=1}^{horizon} OC_{tech}(t) \right\}
\] \hspace{1cm} (1)
Where:

\[I_{tech} = \sum_{tech=1}^{n_{tech}} \delta_{tech} \times C_{tech}^{linear} \times P_{max_{tech}} \] (2)

\[OC_{tech}(t) = \sum_{tech=1}^{n_{tech}} P_{tech}(t) \times C_{linear_{supply}} \] (3)

\[Carb_{tech}(t) = \sum_{tech=1}^{n_{tech}} P_{tech}(t) \times Carb_{em_{supply}} \] (4)

Considering the following energy demand constraints:

\[L(t) = \Theta \times P_{tech}(t) + A_{-}Q_{-}(t) - A_{+}Q_{+}(t) \] (5)

\[E(t + 1) = \eta_{CCHP} \times E(t) + Q_{+}(t) - Q_{-}(t) \] (6)

\[\eta_{CCHP} \times P_{CCHP}(t) \leq B \times \delta_{on_{CCHP}}(t) \forall t \] (7)

\[0.5 \times P_{max}(t) \leq \eta_{CCHP} \times P_{CCHP}(t) + B \times \{1 - \delta_{on_{CCHP}}(t)\} \forall t \] (8)

At the inter-cluster level the district heating network formulation based on [33]:

\[L(t) = \Theta \times P_{tech}(t) + A_{-}Q_{-}(t) - A_{+}Q_{+}(t) + \sum Q_{ij}(t) \times HLI_{ij} - \sum Q_{ij}(t) \] (9)

\[Q_{ij}(t) \leq \delta_{ij} \times B \quad \delta_{ij} + \delta_{ji} \leq 1 \] (10)

\[o_{j} \geq o_{i} + 1 - N_{e}(1 - \delta_{ij}) \quad \forall i, j \quad i \neq j \] (11)

The Homogeneity Index (HI) on the load profile per cluster is calculated as defined by [35]:

\[HLI_{c} = \frac{\sum_{j=1}^{N_{c} \times N_{i}^{e}} Corr(M_{c}^{e}, M_{j}^{e})}{N_{c} \times (N_{i}^{e} - 1)/2} \] (12)

Table 1. Size band cost and efficiency per technology [30], [31]

<table>
<thead>
<tr>
<th>p_{max_{tech}} [kW]</th>
<th>\eta_{CCHP} [-]</th>
<th>\eta_{NG-b} [-]</th>
<th>C_{linear_{CCHP}} [CHF/kW]</th>
<th>C_{linear_{NG-b}} [CHF/kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-20</td>
<td>0.25</td>
<td>0.8</td>
<td>1128</td>
<td>211.5</td>
</tr>
<tr>
<td>20-50</td>
<td>0.27</td>
<td>0.8</td>
<td>775.5</td>
<td>176.25</td>
</tr>
<tr>
<td>50-180</td>
<td>0.30</td>
<td>0.8</td>
<td>564</td>
<td>131.13</td>
</tr>
<tr>
<td>180-350</td>
<td>0.30</td>
<td>0.8</td>
<td>564</td>
<td>111.39</td>
</tr>
<tr>
<td>350-500</td>
<td>0.30</td>
<td>0.8</td>
<td>564</td>
<td>91.65</td>
</tr>
<tr>
<td>500-5000</td>
<td>0.32</td>
<td>0.8</td>
<td>493.5</td>
<td>42.35</td>
</tr>
</tbody>
</table>

Nomenclature

A storage system charging (-) or discharging (+) efficiency, [-]

B big M constraint to reduce computational time, B is an arbitrary large number, [-]

C_{linear} linear cost per technology, [CHF/kW]

Carb_{em} linear carbon emissions per energy stream, [kgCO2/kW]

CRF Capital Recovery Factor, calculated with a discount rate of 3% [-]

E energy storage term, [kWh]

HL heat losses proportional to the distance and heat transfer between two energy hubs, [%]

I_{tech} investment cost per technology, [CHF]

L energy hub loads, [kW]
\(OC_{\text{tech}} \) operating costs per technology, [CHF]

\(P_{\text{tech}}^{\text{max}} \) design variable on size of a given technology, [kW]

\(Q \) energy exchange between two energy hubs [kWh]

\(M_j^{\text{cl}_x} \) j-th member of cluster \(x \), [-]

\(N_{\text{cl}_x} \) number of members within cluster \(x \), [-]

\(N_e \) number of energy hub \(e \), [-]

\(\delta \) binary variable

\(n \) energy dissipation, self-losses of an energy storage system, [-]

\(\Theta \) efficiency matrix coupling energy supply and energy demand of an energy hub, [-]

References

