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ScienceDirect
Significant developments and improvements in basic and

clinical research notwithstanding, infectious diseases still claim

at least 13 million lives annually. Classical research approaches

have deciphered many molecular mechanisms underlying

infection. Today it is increasingly recognized that multiple

molecular mechanisms cooperate to constitute a complex

system that is used by a given pathogen to interfere with the

biochemical processes of the host. Therefore, systems-level

approaches now complement the standard molecular biology

techniques to investigate pathogens and their interactions

with the human host. Here we review omic studies in

Mycobacterium tuberculosis, the causative agent of

tuberculosis, with a particular focus on proteomic methods and

their application to the bacilli. Likewise, the discussed methods

are directly portable to other bacterial pathogens.
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Introduction
Thirty six years ago, improvement in hygiene and nutri-

tion as well as the development of new drugs and vaccines

conferred a dominant thought that infectious diseases are

close to becoming insignificant [1]. However, due to the

persistence of serious infectious diseases the death rate

attributed to infection now stands at 13–15 million people

per year and will continue as such at least until 2030 [2].

Mycobacterium tuberculosis (Mtb) is the leading cause of
Current Opinion in Microbiology 2017, 39:64–72 
mortality among infectious diseases and claims �1.8 million

lives annually. Macrophages recognize and engulf the

bacilli following infection but cannot thoroughly clear them,

making Mtb difficult to treat. Mtb achieve this intracellular

state by modulating the immune and other cellular systems

at various levels. For instance, Mtb partially blocks phago-

somal acidification, a prerequisite for phagosomal rupture,

and lysosome–phagosome fusion following uptake by

macrophages [3]. A growing body of evidence suggests that

the strategy applied by a pathogen such as Mtb to subvert

the human host involves multiple mechanisms and that

systems-level studies are indispensable to study them. In

the Mtb field, the vast majority of effort in systems-level

analyses have been focused on genomic and functional

genomics studies. Yet, proteins are the main functional

elements of biochemical pathways, thus determining phe-

notypic traits. The state of the proteome of a cell is

therefore expected to provide more direct functional infor-

mation than genomic analyses alone. Over the past decade,

new proteomic methods and tools have been developed

that now support the quantification of proteins systemati-

cally and reproducibly over many samples, thus facilitating

systems-level studies at the level of the proteome.

Lessons from genetic and transcriptional
studies of Mtb
Mtb, as an intracellular pathogen has a GC rich genome of

4.4 million base pairs that contains 4018 protein coding

genes. The genome was initially sequenced in 1998 [4].

Strikingly, 26% of the Mtb genes, called leaderless genes,

lack 50UTR and hence the Shine-Dalgarno sequence

commonly used for the initialization of ribosome engage-

ment [5]. The general lack of genetic recombination in

bacteria and horizontal gene transfer keep the Mtb

genome in complete linkage [6,7]. Advances in DNA

sequencing throughput and affordability paved the way

to explore the diversity and evolution of the bacilli with

respect to the human host. Genomic results from clinical

cohort studies suggest that Mtb has co-evolved, migrated

and expanded within the human host, since its origin in

Africa [8]. To date, Mtb’s phylogenetic dendrogram

comprises seven lineages of strains infecting humans.

They are associated with different geographical regions,

with any two strains differing by �1200 SNPs on average

[9]. Contrary to the situation in many other bacteria, about

two thirds of the SNPs of Mtb in the coding regions are

non-synonymous and more than half fall into highly

conserved positions, hinting that the majority of the
www.sciencedirect.com
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mutations are functional and consequently implicated in

the phenotypic diversity of the pathogen [10,11]. Clinical

isolates of Mtb feature diverse phenotypes in response to

the host [7,12��]. Despite the fact that pathogens usually

carry variable antigens to evade the host immune system,

human T-cell epitopes in Mtb are highly conserved,

suggesting that lung damage during tuberculosis might

be largely caused by the host immune response which

increases patient coughing and eventually facilitates the

transmission of the pathogen. Genome-wide association

studies (GWAS) together with standard molecular biology

techniques identified the most common causative muta-

tions conveying resistance to at least 16 different drugs

[13,14,15�,16�]. Also, recently, a genomic study on

5310 Mtb genomes elucidated that the katG mutation

encoding p.S315T, which confers resistance to isoniazid,

overwhelmingly arises before causative mutations of

rifampicin resistance across all the lineages. In spite of

these and other successes of genomic studies, it remains

challenging to derive detailed molecular mechanisms of

infection and persistence from such data alone.

In addition to large-scale genome sequencing efforts

Mtb researchers have turned to functional genomic ap-

proaches, primarily mRNA analysis by microarrays or

RNA sequencing following perturbation experiments to

increase systems level understanding. For example, Mtb

can effectively respond to stresses such as hypoxia and

remain in a non-replicating state called dormancy, even

for decades. The dormant state of Mtb introduces a

marked phenotypic drug resistance and its persistence

within the host. Sherman and colleagues used transcrip-

tome analyses to demonstrate that a transcription factor,

DosR (Rv3133c), regulates �50 genes in the so-called

DosR regulon in response to hypoxia [17,18]. This first

effort was followed by a larger study where they mapped

the transcriptional network of Mtb using ChIPSeq com-

bined with expression data from the induction of the same

transcription factors [19,20]. The data revealed Rv0081 as

one of the largest hubs orchestrating the transcriptional

network in hypoxic stress [21]. A related study showed

the significance of two transcription factors, Rv0324 and

Rv0880, in pushing Mtb into a tolerant state following the

treatment with the antitubercular drug bedaquiline [22�].
However, some regulatory mechanisms are not apparent

from transcriptional results. For instance, the vaccine

strain of Mtb, BCG, modifies 40 ribonucleosides in tRNA

in response to hypoxia which results in the selective trans-

lation of mRNAs from families of codon-biased persistence

genes [23��]. Although Mtb exposed to nitric oxide stress

respond rapidly at the transcriptome level, it takes some

time of these changes to be revealed on protein level, a

behavior that has been linked to protein degradation rather

than proteins synthesis [24]. It has therefore been suggested

that proteomic data should be integrated with results from

other large-scale biomolecular studies and specific func-

tional assays to generate mechanistic models of complex
www.sciencedirect.com 
processes. As a way of multi-omics data integration, genetic

association studies are portable to the transcriptome, meta-

bolome and proteome of a given organism to determine how

genomic variants translate into altered quantitative biomo-

lecular profiles that eventually determine phenotypic traits

[25,26,27��,28].

Proteomics methods to provide mechanistic
insights in bacterial pathogens
Proteomics aims at characterizing the state of the prote-

ome across conditions and biological samples at a given

time point. It offers a wide variety of methods relying

primarily on liquid chromatography coupled to tandem

mass spectrometry (LC–MS/MS) to identify and quantify

proteins, their post-translational modifications (PTMs),

conformations and interactions [29�]. Proteomics meth-

ods can be subdivided into two conceptual streams, top-

down and bottom-up proteomics. In the top-down

approach, molecular ions of the intact proteoform are

generated that are then fragmented within the mass

spectrometer for more extensive analyses. Bottom-up

proteomics, currently the dominant paradigm for most

proteomics applications, relies on the protein inference

logic where peptides originating from proteins following

digestion by a protease are identified and then mapped

back to proteins for both identification and quantification

(Figure 1a) [30]. After initially determining the mass to

charge ratio of molecular ions of peptides (MS1), they are

fragmented in a collision cell of a mass spectrometer and

the masses and intensities of fragment ions (MS2) are

determined. This information can then be used to iden-

tify the amino acid sequence of the peptide. In the last

20 years bottom-up proteomics has been dominated by

two approaches, referred to as discovery and targeted

proteomics [31]. In discovery proteomics the instrument

is operated in data dependent acquisition mode (DDA)

where the most intense peptide ions detected in MS1

scans are sequentially selected for fragmentation and

MS2 analysis. Discovery proteomics can identify and

quantify thousands of proteins over many conditions

and samples. However, given that precursor selection

for MS2 analysis occurs semi-stochastically in complex

samples, this can result in a considerable number of

missing values in the final quantitative data matrix if

multiple samples are being sequentially analyzed, alto-

gether impairing the reproducibility of results of cohort

studies (Figure 1b). In contrast, targeted proteomics

attempts to systematically acquire quantitative informa-

tion on a pre-specified set of proteins by directing the

mass spectrometer to deterministically acquire fragment

ion signals only for a predetermined set of peptides that

represent the proteins under investigation. This type of

measurement primarily relies on an MS acquisition mode

referred to as selected or multiple reaction monitoring, (S/

MRM), or a related method termed parallel reaction

monitoring (PRM), and allows the multiplexed analysis

of dozens to maximally hundreds of proteins. Targeting
Current Opinion in Microbiology 2017, 39:64–72
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Figure 1
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methods show the highest accuracy and reproducibility

among the mass spectrometric strategies but are not

practically scalable to thousands of proteins. S/MRM

requires mass spectrometric and chromatographic coordi-

nates for the peptides of interest as prior knowledge to

direct the MS data acquisition and to score the resulting

data output (Figure 1c) [32,33]. In an effort to overcome

the limitations mentioned above several labs have more

recently developed methods based on an MS data acqui-

sition mode referred to as data independent acquisition

(DIA) in which many peptides are fragmented and ana-

lyzed in parallel. For example, SWATH-MS, an imple-

mentation of the DIA strategy, combines the strengths of

both aforementioned strategies, and can systematically

and reproducibly analyze up of thousands proteins across

various conditions and samples (Figure 1d) [31,34]. To

extract quantitative data from the highly complex and

convoluted fragment ion spectra generated by DIA/

SWATH-MS, prior knowledge about the fragmentation

properties of specific peptides is typically employed [35].

During the past years, custom computational tools have

been developed enabling chromatogram extraction

[36,37], false discovery rate control [38], protein quantifi-

cation [39], differential expression analysis [40,41] and

study of PTMs for SWATH-MS [42].

Overall, the developed proteomics workflows can com-

plement each other in the sense that each method is more

suitable for a given biological objective. For instance,

discovery proteomics (shotgun-MS) is a prerequisite for

targeted proteomic studies where there is no reliable

knowledge on the proteome of organism of interest. In

contrast, targeting methods (S/MRM) and DIA/SWATH-

MS are implemented to quantify proteins over a sample

cohort consistently and reproducibly. They do require

however, prior knowledge of the fragment ion spectra of

the targeted peptides.

Current knowledge about the proteome of
Mtb
A decade ago, shotgun-MS was the only viable mass

spectrometry-based proteomic method and consequently

most of the available proteomic data was in this form. In

addition to providing important insights into the compo-

sition of the respective sample, the resulting fragment ion

spectra provided the basis for specific measurement as-

says for targeting MS and DIA methods. This progression

from proteome discovery to serial proteome quantification
(Figure 1 Legend) Schematic overview on bottom-up proteomics and its th

bottom-up proteomic study consisting of sample preparation, data acquisiti

between various proteomic methods is the data acquisition step and assoc

precursors (ionized peptides) are isolated for MS2 scan based on their inten

The final data matrix has a considerable amount of missing values. (c) S/MR

obtain chromatographic and mass spectrometric coordinates of peptides o

not rely on MS1 scans for isolating precursors, they are considered as data

range into several dozen windows and each time a subpopulation of precur

and eventually their MS2 scan is measured. In the data processing step, qu
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by targeting MS and DIA methods has been robustly

implemented for Mtb. Specifically, Mtb is one of only a

few species for which reference fragment ion spectra

have been generated and made publicly accessible for

proteins from every ORF of the genome [43,44��,45��].
In the following, we discuss the biological insights into

the proteome of Mtb gained from different proteomic

methods.

Discovery of Mtb proteomic features using DDA

methods

Protein profiling of clinical isolate strains of Mtb has

increased the depth of our knowledge about the Mtb

proteome. Comparison of proteomic datasets on H37Rv

and H37Ra, a virulent and avirulent strain of Mtb, iden-

tified 29 significant changes of membrane associated

proteins, including the possible protein export membrane

protein SecF and three ABC-transporter proteins, that

were upregulated in H37Rv. This suggested that the

bacterial secretion and transporter systems might be

significant determinants for the virulence of the bacilli

[46]. A similar approach applied to the membrane associ-

ated proteins of H37Rv and BCG, the vaccine strain of

Mtb, revealed the significance of membrane proteins in

causing the disease. Analyzing the proteome of H37Rv,

H37Ra, BND and JAL strains highlighted the distinct

protein expression patterns of Esx and mce1 operon

proteins in the JAL and BND strain, respectively, sug-

gesting EsxA as a potential virulence factor. Proteins

MmpL4, Rv1269c, Rv3137, and SseA have been reported

as major differences between the ancient and modern

Beijing strains which might clarify the increased viru-

lence and success of the modern Beijing strains [47].

SseA, a predicted thiol-oxidoreductase, together with

SodA and DoxX constitute a membrane-associated oxi-

doreductase complex (MRC) and lack of any MRC sub-

unit results in the defective recycling of mycothiol as a

functional analog of glutathione [48,49]. The low level of

SseA in the modern Beijing strains most likely results in

increased DNA oxidation damage which explains the

higher rate of mutation and accelerated acquisition of

drug resistance compared to more ancient strains [50].

Up-regulation of enzymes responsible for long-chain fatty

acid biosynthesis and HsaA implicated in steroid degra-

dation and down-regulation of long-chain fatty acid

degrading enzymes have been observed in Beijing B0/

W148 strains in compared to the reference strain termed

H37Rv [49]. The differential expression of 23 proteins
ree major modes. (a) The workflow shows the four major steps of a

on, data processing and data analysis. The significant difference

iated data analysis illustrated in panel b–d. (b) In Shotgun-MS

sity. The scheme depicts the selected precursors using asterisk signs.

M are knowledge based data acquisition methods where one has to

f interest in order to define the isolation scheme. As these methods do

 independent acquisition methods. (d) SWATH-MS divides the whole

sors attributed to a certain mass/charge range (window) are isolated

antitative proteomic data is extracted based on prior knowledge.

Current Opinion in Microbiology 2017, 39:64–72
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implicated in virulence were confirmed by SRM in seven

clinically relevant strains showing various degrees of

pathogenicity [51]. Proteomic and transcriptional analy-

ses also generated some insights on metabolic remodeling

between different BCG strains which might be mani-

fested by various degrees of immunogenicity and poten-

tially vaccine efficacy [52]. The mycobacterial protein

analysis of mono-infected and HIV co-infected macro-

phages revealed 92 significant changes which belong to

various functional categories such as toxin–antitoxin (TA)

modules, cation transporters and type VII (Esx) secretion

systems [53].

Proteomic studies have also increased the depth of our

knowledge about the significant regulatory pathways of

Mtb. PhoP as a virulence factor regulates a small non-

coding RNA (ncRNA) namely Mcr7 which affects the

activity of the Twin Arginine Translocation (Tat) protein

secretion system through TatC modulation. Conse-

quently, the secretion of BlaC and the antigen 85 complex

(Ag85), a key player in the pathogenicity, changes signifi-

cantly [54]. To decipher the role of SecA2 dependent

export pathway, the cell wall and cytosolic proteome of a

SecA2 mutant were compared to the wild type introduc-

ing the association of the pathway with DosR regulon and

the Mce1 and Mce4 lipid transporters [55]. Proteomic

analyses of culture filtrate on Mtb revealed EsxG and

EsxH, secreted co-dependently, facilitate the secretion of

several members of the proline–glutamic acid (PE) and

proline–proline–glutamic acid (PPE) protein families

such as PE5 [56�].

Drug resistant strains of Mtb are a growing problem for

healthcare systems and have been investigated using

proteomic methods. Bedaquiline (BDQ), approved for

the treatment of multidrug-resistant TB (MDR-TB),

inhibits ATP synthesis inducing a bacteriostatic state

for 3-4 days after drug exposure. The induction of the

DosR regulon as well as the activation of ATP-generating

pathways promote bacterial viability during this initial

drug exposure, explaining in part why BDQ is more

effective when the bacilli have access to only non-fer-

mentable energy sources such as lipids [57]. Studying the

proteome of ofloxacin (OFX) resistant strains showed

fourteen proteins up-regulated in respect to the OFX

susceptible strains. Further docking analysis on four of

the proteins elucidated conserved motifs and domains

interacting with OFX as a second-line drug against MDR-

TB [58]. A study showed that the abundance of several

proteins responsible for the maintenance of cell-envelope

permeability barrier changed significantly in Mtb exposed

to thioridazine. Thioridazine increases cell-envelope per-

meability and thereby facilitates components uptake [59].

The term post translational modification (PTM) refers

to the covalent modification of proteins by functional

groups such as phosphorylation which result in different
Current Opinion in Microbiology 2017, 39:64–72 
proteoforms which may represent different functional

states of the protein. Although the mechanistic impor-

tance of PTMs in mammalian systems has been exten-

sively reported, the roles of PTMs in pathogenic bacteria,

such as Mtb, are not well explored. To date, eight types of

protein modifications have been detected in the Mtb

proteome. Our meta-analyses show that at least 30% of

the Mtb proteins undergo one or more type of PTM

(Figure 2a). Acetylation [60] and phosphorylation [61–65]

are the most common modifications in Mtb. Moreover, O-

glycosylation [66,67], pupylation (prokaryotic ubiquitin-

like protein modification) [68], lipidation [66], methyla-

tion, deamidation and N-formylation have been reported

(Figure 2b and c) [69]. Our analysis also showed that

specific types of modifications can be enriched in specific

functional categories. For instance, the lipidated proteins

are mostly implicated in the cell wall processes

(Figure 2d). Serine, threonine and tyrosine phosphoryla-

tion constitute �37%, 52% and 11% of so far identified

phosphorylated proteins, respectively, which is in a simi-

lar range in comparison with other bacteria (Table S1

contains a literature curated list of post translationally

modified proteins detected so far in Mtb — corresponds

to Figure 2). Although a tyrosine kinase with in vivo
activity has not been identified in Mtb, some of the

serine — threonine protein kinases (STPKs) revealed

also tyrosine phosphorylation activities [65].

Robust and reproducible Mtb proteome profiling using

DIA methods

With the recent developments in the DIA/SWATH-MS

field, we can quantify �2700 proteins of Mtb at semi-

high-throughput (14 samples/day) consistently from 1 mg
of total peptide mass over many samples and conditions.

To support the quantitative measurement of the Mtb

proteome by DIA/SWATH-MS, an Mtb proteome spec-

tral library has been generated, validated and made

publicly accessible [45��]. It contains 97% of the anno-

tated Mtb proteins and has paved the way to study the

Mtb proteome under many different conditions. Accord-

ing to shotgun-MS and deep RNASeq experiment, we

presume that 3488 proteins are expressed in Mtb cumu-

latively and that protein concentrations range from 0.1 to

1000 fmol/mg (10–44 632 estimated protein copies per

cell), spanning four order of magnitude. GroEL1/2, MihF,

GroES and Tuf are the most abundant proteins. Further-

more, 29 previously unannotated proteins have been

identified by MS-based proteomics which emphasizes

that the genome annotation of Mtb still needs to be

further refined [45��]. In a prototypical study, the absolute

protein concentrations of the Mtb proteome and its

reorganization after exposure to hypoxia was determined

in a time course experiment. The results showed that

whereas ribosomal proteins remain largely unchanged,

products of DosR regulon genes were strongly induced

to constitute 20% of the cellular protein content dur-

ing dormancy. A quarter of 631 differentially expressed
www.sciencedirect.com
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Figure 2
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Meta-analysis on modified proteins of Mycobacterium tuberculosis. (a) Overview on modified proteins. (b) Distribution of modified proteins

according to their modification types. (c) Venn diagram shows overlap of the modified proteins with each other. (d) Contribution of modified

proteins in various functional categories.
proteins had metabolic functions and 80% of them con-

stituted connected metabolic pathways with at least four

enzymes [44��].

Prospective directions
Systems biology approaches have de-convoluted many

molecular mechanisms in various organisms. Given the

functional significance of proteins in biological systems,

MS-based proteomics has become a dominant method for

systematic studies at high throughput. In the case of Mtb,

a recently developed complete proteome spectral library

has facilitated proteomic measurements of the bacilli

using DIA/SWATH-MS and any targeted method.

SWATH-MS is able to quantify the bulk of the Mtb

proteome at semi-high-throughput reproducibly and sys-

tematically across samples and conditions and such a deep

and robust protein profiling brings new biological
www.sciencedirect.com 
questions to the realm of feasibility. For instance, more

than two thirds of the transcription factors in Mtb can be

quantified directly from the whole cell lysate which

would warrant various transcriptional analyses in order

to understand how transcription factors orchestrate the

Mtb transcriptional regulatory network in different con-

ditions. Since Gagneux and colleagues recently showed

that even Mtb strains belonging to the sublineages of

lineage 4 reveal different phenotypic traits, H37Rv as a

member of that lineage cannot be the representative of

Mtb clinical isolates anymore. Extending the Mtb

research from H37Rv to the clinical isolates opens new

opportunities for various types of studies. For instance,

the GWAS approach can be portable to other biomolecu-

lar layers of a cell such as the proteome to characterize the

consequence of natural genetic diversity on the proteome

and eventually various phenotypes. These types of
Current Opinion in Microbiology 2017, 39:64–72
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studies, already implemented for other organisms, might

manifest molecular mechanisms underlying infection,

survival and persistence of Mtb.

Moving from in vitro research to the more physiologically

relevant environment of the host should be an essential

long-term goal in the field of infectious diseases. Infected

cell lines or primary cells, and mouse models can be

considered as intermediates toward the analysis of clinical

human tissue samples. The proteomic technologies

described here also support in principle the analysis of

more complex samples that would include both bacterial

and host components, however, quantifying pathogens’

proteins following infection will be challenging due to the

dilution effect of bacterial proteins into the significantly

more complex proteome of the host. The significance of

such studies underlines the need for developing new

appropriate workflows to be able to address different

biological questions through profiling clinical tissue sam-

ples more efficiently. In the ideal case, such methods

would be able to quantify both pathogen and host pro-

teomes in order to address questions in host–pathogen

interactions.

We conclude that while, until recently, systems level

research in the Mtb field has been dominated by genomic

and functional genomic approaches, with the advent of

improved methods in quantitative proteomics and

increasing experience in their application to problems

in Mtb biology, the field is beginning to benefit from more

extensive protein measurements. We expect that protein-

level information will increase the functional relevance of

systems biology studies of Mtb.
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Kaufmann SHE et al.: Absolute proteome composition and
dynamics during dormancy and resuscitation of
Mycobacterium tuberculosis. Cell Host Microbe 2015, 18:96-
108.
Current Opinion in Microbiology 2017, 39:64–72

http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0425
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0425
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0425
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0430
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0430
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0430
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0435
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0435
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0435
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0435
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0445
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0445
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0445
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0445
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0450
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0450
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0450
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0450
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0455
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0455
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0455
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0455
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0460
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0460
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0460
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0460
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0465
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0465
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0465
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0465
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0465
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0470
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0470
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0470
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0470
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0475
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0475
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0475
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0475
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0480
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0480
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0480
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0480
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0485
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0485
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0485
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0485
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0490
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0490
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0495
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0495
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0495
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0500
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0500
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0500
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0500
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0500
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0505
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0505
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0505
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0510
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0510
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0510
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0515
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0515
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0515
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0515
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0515
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0520
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0520
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0520
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0520
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0525
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0525
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0525
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0525
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0525
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0530
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0530
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0530
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0530
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0535
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0535
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0535
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0535
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0535
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0540
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0540
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0540
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0540
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0545
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0545
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0545
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0545
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0550
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0550
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0550
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0550
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0550
http://dx.doi.org/10.1038/nbt.3908
http://dx.doi.org/10.1038/nbt.3908
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0560
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0560
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0560
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0560
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0560
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0565
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0565
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0565
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0565
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0565
http://refhub.elsevier.com/S1369-5274(17)30101-7/sbref0565


72 Bacterial systems biology
This is the first paper on the application of SWATH-MS in the Mtb field.
The authors analyzed the proteome of Mtb over the wayne model to
understand how Mtb’s proteome reorganizes in response to hypoxia. Due
to the high quality and coverage of the proteomic data and their precise
absolute quantification, different types of data analysis were in the realm
of feasibility.
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