
ETH Library

Signature Inference for Functional
Property Discovery

Master Thesis

Author(s):
Kerckhove, Tom Sydney

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-b-000202825

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000202825
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Master thesis

Signature Inference for Functional
Property Discovery

Tom Sydney Kerckhove

Adviser Dr Dmitriy Traytel
Supervisor Prof. David Basin
Department Information Security
Date 2017-09-09

Abstract

Property discovery is the process of discovering properties of code via
automated testing. It has the potential to be a great tool for a practical
approach to software correctness. Unfortunately current methods remain
infeasible because of the immense search space. We contribute a new
approach to taming the complexity of a state-of-the-art generate and test
algorithm. Our approach runs this algorithm several times with carefully
chosen inputs of smaller size: signature inference. We implement this
approach in a new tool called EasySpec. The results suggest that this
approach is several orders of magnitude faster, fast enough to be practical,
and produces similar results.

1

Acknowledgements

I would first like to acknowledge Professor David Basin. He allowed me to work
on a topic of my choosing and believed in me when I did.
I would also like to thank my thesis adviser Dr Dmitriy Traytel. His door
was always open whenever I ran into a trouble spot or had a question about
my research or writing. He consistently allowed this work to be my own, but
steered me in the right the direction whenever he thought I needed it.
A big thank you to everyone who contributed to proofreading this work. Their
extra eyes were most helpful.
Finally, I must express my very profound gratitude to my parents and to my
brother for providing me with unfailing support and continuous encouragement
throughout my years of study and through the process of researching and writing
this thesis. This accomplishment would not have been possible without them.
As such, I would like to dedicate this work to my father, and introduce this
work with his summary of what it means to present a thesis:

Ik heb ergens op gestudeerd en nu ga ik mijn vertellingske doen.

Thank you.
Tom Sydney Kerckhove

2

Contents

1 Introduction 5

2 Background 8
2.1 Haskell . 8

2.1.1 Type Classes . 8
2.1.2 Type Class Evidence Dictionaries 8

2.2 Property Testing with QuickCheck 9
2.2.1 Generators and the Arbitrary Type Class 9
2.2.2 Properties . 9
2.2.3 Running Property Tests 10

2.3 Property Discovery with QuickSpec 10

3 Signature Inference with EasySpec 13
3.1 Premise . 13
3.2 Automation . 13

3.2.1 Generating a Signature 13
3.2.2 Monomorphisation . 14
3.2.3 Complexity . 15

3.3 Reducing Signature Inference Strategies 15
3.4 Distance-based Reducing Signature Inference Strategies 16

3.4.1 Syntactic Similarity Name 17
3.4.2 Syntactic Similarity Symbols 17
3.4.3 Syntactic Similarity Type 18

3.5 Type Reachability . 19
3.5.1 Motivation . 19
3.5.2 Definition . 19
3.5.3 The Type Reachability Strategy 20

3.6 Graph Signature Inference Strategies 20
3.6.1 Definition . 21
3.6.2 Chunks . 22

3.7 Monadic Signature Inference Strategies 23
3.7.1 Definition . 23
3.7.2 Chunks Plus . 25

3.8 Composing strategies: Drilling and Reducing 25
3.8.1 Composing Two Reducings 26
3.8.2 Composing Two Drillings 26
3.8.3 Composing a Reducing With a Drilling 27
3.8.4 Filling the Gaps . 27
3.8.5 Special Compositions . 28

4 Evaluation 29
4.1 Discovery Complexity . 29

4.1.1 Maxmimum Number of Discovered Equations 29
4.1.2 Example . 30

4.2 Evaluators . 30
4.3 Experiments . 32
4.4 Strategies . 32

4.4.1 Empty Background . 32

3

4.4.2 Syntactic Similarity . 33
4.4.3 Type Reachability . 35
4.4.4 Chunks . 36
4.4.5 Chunks Plus . 38
4.4.6 Compositions . 39
4.4.7 Overview . 42

5 Discussion 44
5.1 Configurability . 45
5.2 Shortcomings . 45

6 Conclusion 46
6.1 Future Work . 46

List of Figures

1 Runtime of full-background 15

2 General distance based signature inference strategy 17
3 syntactic-similarity-name 17

4 syntactic-similarity-symbols 18

5 The multiset of parts of the type [a] -> [a] 18

6 syntactic-similarity-type 18

7 An example scope in which type-reachability would work well 19

8 type-reachability . 20

9 Number of different functions that occur in a property 21
10 An example scope . 22
11 The graph that chunks builds for the example 23

12 chunks as a monadic signature inference strategy 24

13 The graph that chunks-plus builds for the example 25

14 Composed signature inference strategies 27
15 Runtime of empty-background 33

16 Relevant equations of empty-background 33

17 Runtime of the syntactic similarity signature inference strate-
gies: syntactic-similarity-name , syntactic-similarity-symbols

and syntactic-similarity-type 34

18 Relevant equations of the syntactic similarity signature inference
strategies: syntactic-similarity-name , syntactic-similarity-symbols

and syntactic-similarity-type 34

19 The runtime of type-reachability 35

20 The number of relevant equations of the reducing signature in-
ference strategies . 36

21 The number of relevant equations of chunks 36

22 The number of relevant equations of chunks 37

23 The number of relevant equations of chunks-plus 38

24 The number of relevant equations of chunks-plus 39

25 A summary of the different signature inference strategies 44

4

1 Introduction

Writing correct code is hard. In order to write correct code, a programmer first
has to decide what it means for code to be correct, and then write code that
matches these expectations. The process is further complicated by the fact that
these two phases are rarely separated in practice.
The first step in writing correct code is to choose a programming language. Com-
pilation, static typing, immutability, functional programming, purity, higher-
order programming and laziness are just some examples of programming lan-
guage features that should support the programmer in writing correct code.
Beyond what the language of choice can offer, tools that employ formal methods
such as formal verification, model checking, various static analysis techniques,
etc, can provide additional correctness guarantees. These usually suffer from
one of two problems: Either the programmer already has to have decided what
it means for their code to be correct, or the method is so specific in its scope
that it cannot help in general. Moreover, they are also often too expensive in
terms of engineering effort or computing power, or both, to be used in practice.
The most commonly adopted approach in practice, is testing. Testing suffers
from the same issue that a programmer already has to know what it means for
their code to be correct, but it is rather more generally applicable. The idea
of automated testing is that programmers can tell if their code is faulty before
running the code in production. In principle, the programmer writes extra code
that will automatically test whether the subject code is faulty. It seems that
testing currently has the best balance between cost and benefit, but it is still
too often beneficial from a business perspective to skip writing tests in the short
term.
Unit testing is the most widely adopted approach to testing. A unit test consists
of a piece of code, without arguments, and possibly some assertions about the
results. We say that a unit test passes if, when run, the code does not crash
and no assertions fail. Unit tests have two main problems.
Edsger W. Dijkstra famously said “Program testing can be a very effective way
to show the presence of bugs, but it is hopelessly inadequate for showing their
absence. ” [3]. Indeed, unit tests often fail to address all possible aspects of
the code under test. One would have to write at least one unit test for every
possible code path of the code under test to have a chance to cover all possible
aspects of the code under test. In what follows, we will call this problem the
coverage problem.
Unit testing is quite expensive when it comes to developer time. Developers
have to come up with enough examples of inputs and their corresponding out-
puts to cover the subject code. Then they have to implement the corresponding
unit testing code. Not only does this process take a lot of time, it is also a
mentally taxing task since the process is repetitive and often unrewarding. The
problem of cost is exacerbated by the sad reality that management often does
not see the value in testing. After all, if the code works, then testing looks like
an extra cost that could be cut. If the code contains mistakes, then spending
time testing (instead of ignoring the mistakes) just makes the development pro-
cess seem slower. As a result, tests are all too often omitted from a software
project.
Property testing [12] [22] differs from unit testing in one key aspect: The test
code now takes an argument as input. For any argument, the test code now

5

tests a property of this argument, namely the property that the test passes when
given this input. We say that the property test passes if it passes for a given
number of randomly generated input values.
Property testing solves the coverage problem of unit testing probabilistically,
but exacerbates the cost problem of unit testing. As the number of executions
of a property test increases, the probability that all possible aspects of the code
under test are covered, should tend to one. This means that a programmer
now only needs to write a limited number of property tests, instead of a large
number of unit tests. However, coming up with general properties of code is
often considered more difficult than coming up with example test cases. Con-
sequently, the developer time costs of property testing is even higher and, as a
result, property testing is rarely ever done in practice.
Property discovery [14], [16], [21] is a technique to produce property tests for
subject code automatically. By eliminating the human effort from conceiving
tests, this approach can be combined with property testing to solve both of the
problems with unit testing. By discovering properties automatically, the pro-
grammer is relieved from having to think of examples or properties, and now
only has to select the properties that they think should hold. Property discov-
ery is a relatively new technique, that is not ready for use in practical software
engineering yet.
Claessen et al. [14] have explored automatic discovery of equational properties,
and have shown that property discovery is a complex problem. The first at-
tempt failed to discover large properties or properties of a large codebase in a
reasonable amount of time. Subsequent research [16] has improved upon these
limitations, but remains unable to discover properties of realistic codebases.
The input to the property discovery algorithm developed [14] and [16] is called
a signature of functions. A signature is a set of functions that are defined to
be relevant in property discovery. All functions that are not in the signature
are completely ignored. This means that, to discover the properties of a single
function, the programmer has to specify which functions are relevant. The pro-
cess of figuring out which functions are relevant in property discovery is often
only marginally easier than to think of the properties manually.
This signature is defined by a piece of code that the programmer has to write
manually. It contains the names, types, and references to the implementations,
of all the functions in the signature upon which one wishes to run the property
algorithm. Writing this code represents a significant burden on the programmer
that ensures that property discovery is not a practical method in practice from
a developer’s perspective.
We contribute a new approach to taming the computational complexity of prop-
erty discovery: signature inference. The premise is that a programmer should
not have to specify all relevant functions in order to perform property discov-
ery. Ideally, the programmer should also not have to write an extra piece of
code just to run the property discovery algorithm. Signature inference consists
of inferring appropriate input for the current property discovery mechanism by
using compile time information about the subject code. This approach therein
simultaneously solves the “code as input” problem. Altogether, signature in-
ference has the potential to solve the problems with property discovery and,
by extension, property testing and unit testing. We propose a domain specific
language to define what we have named signature inference strategies. These de-
scribe how to automatically supply input to a property discovery algorithm and

6

combine the results. Lastly, we contribute several signature inference strategies
and a framework in which these signature inference strategies can be evaluated
and compared to each other.

7

2 Background

In this section I will introduce the setting of our work.

2.1 Haskell

The code in this work is written in the Haskell programming language. Some
familiarity is assumed, but the important details will be revisited here.
Haskell is a statically typed, purely functional language that evaluates lazily by
default. The language lends itself well to concurrent programming and it uses
type inference to ease programming [6].

2.1.1 Type Classes

Haskell famously has support for type classes [18], [19], [2]. Type classes are
a way to support ad hoc polymorphism, as opposed to the parametric poly-
morphism that type parameters provide. Using type classes, the program-
mer can add constraints to type parameters. As an example, consider equal-
ity. Without type classes, the programmer would have to write a different
equality function for each type. eqInt :: Int -> Int -> Bool for integers,

eqFloat :: Float -> Float -> Bool for floating point numbers, etc. The

Eq type class solves this problem by allowing the programmer to define what

equality means for a type.

class Eq a where

(==) :: a -> a -> Bool

For specific instances, equality is defined by instantiating the Eq type class

using a type class instance. In this instance, the programmer implements the
evidence that the given type indeed belongs to the Eq type class.

instance Eq Int where

(==) :: Int -> Int -> Bool

i == j = eqInt i j

Once equality is defined, the programmer can use the == function to test
for equality, and the type checker will infer which equality will be used. Now
that equality can be defined parametrically in which type of values is tested,
the programmer can write functions that are parametric in a type, so long as
that type supports equality. For example, the elem function can test if a list
contains a given element, as long as the elements of the list support equality.

elem :: Eq a => a -> [a] -> Bool

When a type supports equality, we say that this type is in the type class Eq .

2.1.2 Type Class Evidence Dictionaries

The Glasgow Haskell Compiler implements type classes using a desugaring
method called evidence dictionaries [9]. Take the previous example of a function
with a type parameter that has a type class constraint.

8

elem :: Eq a => a -> [a] -> Bool

The compiler can compile this function without knowing which type will even-
tually inhabit the parameter a . However, in order to do that, the compiler
needs to know which concrete function to use in place of the == function in the

Eq type class. The type of the elem function is desugared to the following.

elem :: Dict (Eq a) -> a -> [a] -> Bool

In the above, the new Dict Eq argument is a dictionary that contains the

concrete implementations of the functions in the Eq type class. This dictio-

nary is called an evidence dictionary, because it contains the evidence that the
corresponding type class inhabits the given type.

2.2 Property Testing with QuickCheck

QuickCheck [12], [11] is an implementation of the concept of property testing
and it is written in Haskell. It is a particularly elegant example of a use case for
type classes. Instead of requiring a programmer to specify a specific example
of the workings of their code, the programmer now gets to specify a general
property of their code. To perform property tests, a programmer needs to
provide two pieces of code: a generator, and a function that takes the output
of the generator and produces a Boolean value.

2.2.1 Generators and the Arbitrary Type Class

Generators are a central component of QuickCheck and property testing in gen-
eral. In essence, a generator is a pure function that can use a pseudorandom
generator to produce values of a certain type. For example, a value of type
Gen Int provides evidence that it is possible to generate pseudorandom in-

tegers given a pseudorandom generator of bits. Users can write generators for
their own data types such that values of those types can also be generated.
Elements of the Arbitrary type class provide a generator called arbitrary

that can generate random values of that type.

class Arbitrary a where

arbitrary :: Gen a

QuickCheck will use the Arbitrary type class by default, but users can also

specify which generator to use in the random testing.

2.2.2 Properties

A property, in this case, is loosely defined as anything that can produce a
Boolean value from supplied pseudorandomness. An example is a function as
follows.

f :: A -> Bool

9

This function is also usually called the property, even though it is pure. To
produce random Boolean values using this function, QuickCheck will require a
generator of the input type A .

2.2.3 Running Property Tests

When instructed to do so using the quickCheck function, the QuickCheck

testing framework will generate random inputs to the supplied property. For
each of the inputs, QuickCheck asserts that the resulting Boolean value is True .

If all of the output values are True then we say that the property passes the

property test. If the property evaluates any of the input values to False then
the test fails. When a function fails a property test, a shrinking process is
started. In this process, the input value for which the property does not hold is
inspected further in order to find a smaller value that still fails the property. The
shrinking process is not relevant to the work described in this thesis. For further
details, please refer to the original QuickCheck paper [12] and the QuickCheck
package on Hackage [11].

2.3 Property Discovery with QuickSpec

QuickSpec is a recently developed tool for property discovery [14], [16]. Quick-
Spec aims to simplify the process of writing property tests. It is based on the
idea that properties could be discovered using a combination of intelligently
looking at types, and using tests to validate the properties using QuickCheck.
QuickSpec exposes the following function as its entry point.

quickSpec :: Signature -> IO Signature

To run QuickSpec, a programmer is required to write a piece of code that
calls this function in order to discover any properties. To call the quickSpec

function, the programmer has to define a value of the type Signature .

The following is a simplified definition of Signature .

data Signature =

Signature {

constants :: [Constant],

instances :: [[Instance]],

background :: [Property]

}

A signature mainly consists of a list of functions (constants) that are called

constants because they must be in the Typeable type class. Specifically, a

type with a Typeable instance allows a concrete representation of a type to be

calculated [24]. A Typeable instance can automatically be generated with the

DeriveDataTypeable GHC language extension or written manually, but only

if the type in question is monomorphic. For example, the type Int -> Bool

is in Typeable but a -> Double is not, because the latter is polymorphic in

a type variable: a . It is important to note that generating values of a type

with type parameters is impractical. A value of type Constant also contains a

10

given name for the function that it represents. This allows QuickSpec to output
the discovered properties in a human readable manner.
A signature also contains a set of type class instances (instances) specifically
the evidence dictionaries or information about how to construct them. For
example, if a signature is said to contain the instance Eq Int then it contains

a record with the following two functions.

(==) :: Int -> Int -> Int

(/=) :: Int -> Int -> Int

QuickSpec only knows about those instances that it gets supplied with via the
signature.
The last part of a signature that is important for this work is a set of background
properties (background). These are properties that we can tell the signature

about if we already know them, and will use in its discovery. One way for a
signature to contain background properties, is by using the properties that a
previous run of QuickSpec discovered.
A signature also contains several configuration settings such as the maximum
size of the discovered properties. The default value for this setting sets the max-
imum size of discovered properties to be 7 and we do not change it throughout
this work. The discovery algorithm will discover all properties smaller than or
equal to this maximum size. The size of a property is the maximum of the sizes
of each of the sides of the equation.
Using a signature, QuickSpec will enumerate all properties that relate the func-
tions in that signature, up to a given size. A property, in QuickSpec, is defined
as an equation of the following form.

leftTerm = rightTerm

Here, leftTerm and rightTerm must be of the same type, and that type

must be of the following form.

A -> B

In this type, A must be in Arbitrary such that arbitrary values can be

generated as input. Note that it is not a restriction to only allow properties
where the input types of both sides are the same. Indeed, for any property
where the input types of the sides are different, there exists a property where
this is not the case and where it expresses the same equation.

\a -> f a = \b -> g b -- different input type

\(a, b) -> f a = \(a, b) -> g b -- same input type

Furthermore, B must be in Eq such that the results of the respective functions

may be compared for equality. Note that the shape of these properties is not
a limitation with respect to their expressiveness. Indeed, any general property
p :: A -> Bool can be expressed in the above form as follows.

\x -> p x = _ -> True

11

Also note that QuickSpec does not show properties in this form. In fact, Quick-
Spec leaves out the left side of the lambda expression, so it would show the
above equation as follows.

p x = True

When QuickSpec is run using the quickSpec function, the discovered prop-

erties are contained in the background field of the resulting Signature . In

fact, this resulting Signature is equal to the input Signature in all other

respects. For further details, please refer to the QuickSpec papers [14], [16] and
the QuickSpec repository on GitHub [17].

12

3 Signature Inference with EasySpec

In this section we will introduce the concept of signature inference and how we
implemented it in the EasySpec tool.

3.1 Premise

QuickSpec requires a programmer to specify all of the context that they are
interested in. If one were to automate the process of generating QuickSpec code
from a codebase, the result would discover all properties that relate any prop-
erties in that codebase. This work, however, asserts that usually a programmer
is not necessarily interested in all the equations relating the functions in the
entire codebase. The assumption is that a programmer is more interested in
the properties that involve a very small number of functions, say one. We call
these functions the focus functions. The new goal is to find the properties that
relate the focus functions to the rest of the codebase. We will call these relevant
equations or relevant properties. With respect to this new goal, QuickSpec has
at least two problems.

• QuickSpec will most likely find (a lot) of properties that do not relate the
focus functions with the rest of the code base at all.

• QuickSpec will take an immense amount of time to run, with respect to
the size of the signature it is given.

The question that this work tries to answer is “How do we choose the inputs
to give to QuickSpec intelligently, such that it will find properties of that one
focus function in a practically feasible amount of time?”. Ideally the inputs will
be chosen such that:

• QuickSpec finds all of the properties that relate the focus function with
the rest of the codebase.

• QuickSpec does not waste any time finding the properties of the codebase
that do not involve the focus function.

3.2 Automation

The first step in making property discovery feasible for practical use, is ensuring
that a programmer never has to write extra code to discover properties of their
code. This automation involves inspecting the subject code and generating a
Signature to run quickSpec on using an automated interactive evaluator.

3.2.1 Generating a Signature

By interfacing with the GHC API [5] one can find all functions that are in scope
in a given module. We will refer to these functions as values of type Function

for easy reference, because these values have several names in the GHC API.
To automatically supply QuickSpec with a Signature we need to generate a

Haskell expression that describes a Signature and interactively evaluate it.

Recall that a signature contains a list of Constant values. To generate an

expression that evaluates to a Signature , we need to generate subexpressions

13

that each evaluate to a Constant . This involves monomorphising the functions

in scope, and generating a Constant expression for each of the Function

values by giving each function a name, and specifying their type explicitly.

not :: Bool -> Bool

-- becomes --

constant "not" (not :: Bool -> Bool)

Next, we need to generate an expression that describes the type class instances
that are in scope. QuickSpec already knows about some instances by default,
and these were comprehensive enough to perform our research, so the full in-
stance resolution work has not been implemented in EasySpec.
Lastly, we need to generate an expression that describes the properties that we
already know about. Previously discovered properties usually come from pre-
vious runs of QuickSpec, so we leave this field empty for now and get back to
it in section 3.6.1. We will call this initial automation full-background for

reasons that will become clear in section 3.3.

3.2.2 Monomorphisation

Monomorphisation consists of instantiating any type variables in the type of a
function with monomorphic types so that no type variables remain.
For type parameters of kind * in types without any constraints on the type
parameters, QuickSpec has support in the form of placeholders. QuickSpec
exposes five types A, B, C, D, E that represent type parameters. In real-

ity these placeholders are just newtype s over Integer 1. This means that

monomorphising such a type is as simple as turning the type parameters into
the QuickSpec placeholders. The following translation is an example of such a
monomorphisation.

map :: (a -> b) -> [a] -> [b]

-- becomes --

map :: (A -> B) -> [A] -> [B]

Monomorphisation is a bit more complicated in types that have type class con-
straints. Consider the following type.

sort :: Ord a => [a] -> [a]

Given type class constraints, the previous translation would be unsound. Con-
sider the translation as follows.

sort :: Ord A => [A] -> [A]

There is in fact no guarantee that A is in fact in the Ord type class even

though the parameter that it represents should be in the Ord type class. The
way QuickSpec solves this problem is by translating type class constraints to
argument evidence dictionaries. The previous type would be translated to the
following.

1Note that this is sound because values of a parametric type cannot be inspected at all.

14

mkDict sort :: Dict (Ord A) -> [A] -> [A]

Here Dict (Ord A) is the evidence dictionary for the Ord A constraint, and

mkDict the function that can turn a type class constraint into an evidence
dictionary argument.
Haskell supports type parameters that cannot be instantiated with a type, but
rather with a type constructor. These type parameters are called higher kinded.
An example of a higher kinded type parameter is t in the length function.

length :: Foldable t => t a -> Int

Monomorphisation of higher kinded types is not trivial in general, but could be
performed manually for type constructors in scope, given that type constraints
can be resolved. This transformation has not been implemented in EasySpec
yet.

3.2.3 Complexity

The full-background automation already offers many benefits, but it does

not solve the problem of computational complexity that QuickSpec exhibits.

1

10

100

5 10 15

scope−size (functions)

log(runtime) (seconds)

Figure 1: Runtime of full-background

In Figure 1 we see the runtime of the automated version of QuickSpec with
respect to the size of the scope that it was run on. The maximum size of the
discovered properties was set to the same default as QuickSpec. In fact, the
complexity is of the order O

(
N2P

)
where N is the size of the scope, and P is

the maximum size of the discovered properties. This is still polynomial time,
since we fix P to be 7, but it is not practical for real codebases. For a more
detailed breakdown of this complexity, we refer to section 4.1.

3.3 Reducing Signature Inference Strategies

The first attempt at speeding up the above process is to shrink the signa-
ture that is given to QuickSpec by omitting functions. This means that we

15

looked for ways to select a smaller subset of the scope. The first definition of a
SignatureInferenceStrategy looks as follows.

type SignatureInferenceStrategy

= [Function] -> [Function] -> [Function]

The first argument to a signature inference strategy is the list of focus functions,
and the second argument is a list of all the functions in scope. The result is
supposed to be a list of elements of the scope that is smaller than the entire
scope. This kind of signature inference strategy is sometimes called a reducing
signature inference strategy.
Running QuickSpec on the entire scope of functions can be described as a trivial
reducing signature inference strategy as follows.

fullBackground :: SignatureInferenceStrategy

fullBackground focus scope = scope

The simplest reducing signature inference strategy is called empty-background .

It consists of reducing the scope to the focus and its entire implementation can
be written as follows.

emptyBackground :: SignatureInferenceStrategy

emptyBackground focus scope = focus

The empty-background signature inference strategy will only run QuickSpec

on the focus functions. As a result, it will find only relevant equations. However,
it will only find equations that exclusively relate the focus functions to each
other. Examples of such equations are idempotency and involution.

reverse (reverse x) = x -- Involution

sort (sort x) = sort x -- Idempotency

3.4 Distance-based Reducing Signature Inference Strate-
gies

Given a general distance between functions, we can construct a reducing signa-
ture inference strategy. The idea is that we may be able to use a distance to
predict whether functions will be relevant to each other. If this is true, then
the functions that are closest to the focus functions should be chosen to run
QuickSpec on. A general distance based signature inference strategy has one
parameter, namely the number of functions to choose around the focus func-
tions. We will call this parameter i. For each function in scope, the distance
to the focus function is calculated and the i closed functions in scope are put
together in the signature. The following piece of code implements this concept
2.

2This piece of code assumes that there is only a single focus function. In practice this is
a valid assumption, but this code could also be extended to work on a larger focus using a
summation.

16

distanceBased

:: (Function -> Function -> Double)

-> Int -> SignatureInferenceStrategy

distanceBased dist i [focus] scope

= take i

$ sortOn

(\sf -> dist focus sf)

scope

Figure 2: General distance based signature inference strategy

3.4.1 Syntactic Similarity Name

The first distance based reducing signature inference strategy is called syntactic-similarity-name .

It is based on the assumption that mutual relevance of functions can be predicted
by the similarity of their names. For example, the functions isPrime :: Int -> Bool

and primeAtIndex :: Int -> Int are most likely relevant to each other, and

we may be able to predict this fact because the names both mention the word
“prime”. Because EasySpec has access to compile time information about code,
it can introspect the name of functions. The following is pseudocode to define
this signature inference strategy.

inferSyntacticSimilarityName

:: Int -> SignatureInferenceStrategy

inferSyntacticSimilarityName

= distanceBased

(\ff sf ->

hammingDistance (name ff) (name sf))

Figure 3: syntactic-similarity-name

3.4.2 Syntactic Similarity Symbols

A second distance based reducing signature inference strategy is called syntactic-similarity-symbols .

This strategy looks at the implementation of functions to determine a distance.
It is based on the assumption that mutually relevant functions will have a similar
looking implementation when it comes to the functions that they use. To use the
same example, isPrime :: Int -> Bool and primeAtIndex :: Int -> Int

both probably use div :: Int -> Int -> Int and mod :: Int -> Int -> Int

and should therefore be judged to be close to each other. syntactic-similarity-symbols

defines the distance between two functions as the hamming distance between
the symbol vectors of these functions.

17

inferSyntacticSimilaritySymbols

:: Int -> SignatureInferenceStrategy

inferSyntacticSimilaritySymbols

= distanceBased

(\ff sf ->

hammingDistance (symbols ff) (symbols sf))

Figure 4: syntactic-similarity-symbols

3.4.3 Syntactic Similarity Type

Our final distance based reducing signature inference strategy is called syntactic-similarity-type .

This strategy is based on the assumption that functions that are relevant to each
other will have similar types. In the example of isPrime :: Int -> Bool and

primeAtIndex :: Int -> Int both of the types of these functions mention

the type Int . For each type, we define a multiset of parts of that type. For

example, the type [a] -> [a] has the following parts multiset.

[a] -> [a] : 1

([a] ->) : 1

(-> [a]) : 1

(->) : 2

[a] : 2

[] : 2

a : 2

Figure 5: The multiset of parts of the type [a] -> [a]

This multiset is interpreted as a vector in an infinitely dimensional vector
space. In this space, the hamming distance between two vectors is used as the
distance between two functions. The resulting signature inference strategy looks
as follows.

inferSyntacticSimilarityType

:: Int -> SignatureInferenceStrategy

inferSyntacticSimilarityType

= distanceBased

(\ff sf ->

hammingDistance (typeParts ff) (typeParts sf))

Figure 6: syntactic-similarity-type

18

3.5 Type Reachability

A more sophisticated signature inference strategy is based on how functions can
be composed. This signature inference strategy is called type-reachability

and it is a reducing signature inference strategy. It uses type information to try
to rule out parts of the scope from being relevant to the focus.

3.5.1 Motivation

The idea is to determine which functions could possibly be composed with the
focus functions to produce an equation. Consider the following example of a
scope.

f :: Int -> Char

g :: () -> Int

h :: Char -> Double

i :: Bool -> Bool

j :: Double -> Double

Figure 7: An example scope in which type-reachability would work well

If the focus consists of the single function f then, without looking at their

implementation, we can already say that i can never occur in an equation

together with f . This is because there is no way to make terms on the left

and right hand side of the equation that both mention f and have a sub term

of type Bool . The intention of the type-reachability signature inference

strategy is to eliminate functions from the scope that cannot occur together in
an equation with any focus functions. To see why this situation occurs, we have
to explore a concept that we have called type reachability.

3.5.2 Definition

Type reachability is defined recursively as follows.

1. Every function is type reachable from itself in zero steps.

2. If two functions can make up an equation by each occurring on either side
of the equation, then they are type reachable from each other in one step.
This means that the types of these two functions must be unifiable. For ex-
ample, the functions id :: a -> a and reverse :: [a] -> [a] are

type reachable from each other because the equation id xs = reverse xs

typechecks. Note that this equation does not have to hold.

3. If the output of one function can be used as an input to a second func-
tion, then these functions are type reachable from each other in one
step. For example, the functions (+) :: Num a => a -> a -> a and

take :: Int -> [a] -> [a] are type reachable from each other be-

cause they can be composed as take (a + b) xs . Note that there can

19

be multiple possible input and output types of a function. The function
(+) can have both a and a -> a as an output type due to currying.

The function take can have both Int and a as an input type due to
the fact that it has multiple arguments.

4. If a function f is type reachable from a function g in a steps, and a

third function h is reachable from g in b steps, then we say that f is

type reachable from h in a + b steps.

Consider the example in Figure 3.5.1 again. From the function f , the functions

g and h are type reachable in one step. The function j is type reachable in

two steps, and i is not type reachable from f at all.

3.5.3 The Type Reachability Strategy

The idea of type-reachability is to find all functions in scope that are type

reachable from the focus functions in less than i steps, where i is a parameter of
the strategy. It is important to note that we only use an underapproximation
for real type reachability. This underapproximation only deals with monomor-
phic types, and only considers the first argument and the last output of func-
tions. This limitation allows us to implement the underapproximation function
typeReachableInOneStep without integrating with any type checker.

inferTypeReachability :: Int -> SignatureInferenceStrategy

inferTypeReachability i focus scope = go i focus

where

go 0 acc = acc

go n acc = go (n - 1) $

concatMap

(\af -> filter (typeReachableInOneStep af) focus)

acc

Figure 8: type-reachability

In this work, we investigate this strategy with 7 as the parameter i, because
this is the maximum size of properties that we use.

3.6 Graph Signature Inference Strategies

During experimentation, we searched for clues to build better strategies. One
of the measures we looked at, was the number of different functions that occur
in any given property. We ran full-background on many examples, and

gathered the following data.

20

Histogram of the number of different functions in an equation

Different functions

re
la

tiv
e

of

 c
as

es

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 9: Number of different functions that occur in a property

In Figure 9 there is a histogram of the number of different functions in an
equation. We notice that 60 and 70 per cent of all properties that were discov-
ered by full-background only talk about two or fewer functions. Similarly,

we find that almost 90 per cent of all properties only talk about three or fewer
functions. This means that it may not always be worthwhile to run Quick-
Spec on large signatures. The runtime of running QuickSpec suggests that it is
cheaper to run QuickSpec multiple times with different small signatures than
to run QuickSpec on a large signature.

3.6.1 Definition

To allow for multiple runs of QuickSpec, the definition of a signature inference
strategy needs to be changed. The first attempt involved defining a signature
inference strategy as a reducing signature inference strategy that produces a list
of signatures instead of a single signature.

type SignatureInferenceStrategy

= [Function] -> [Function] -> InferredSignature

type InferredSignature = [Signature]

A list signature inference strategy, as these were named, could be run very sim-
ilarly to a regular reducing signature inference strategy. QuickSpec is run on
each of the different signatures that is inferred, and the resulting equations are
collected as the result. Note that any reducing signature inference strategy can
be trivially converted to a reducing signature inference strategy.
In the next iteration of this idea, we observed that QuickSpec has a feature
that allows it to learn from previous discoveries as alluded to in section 2.3.
Recall that a signature contains a field called background that allows a user

to specify previously discovered properties. The result of running QuickSpec
is a signature in which this field has been filled with the properties that were
discovered in that run. In subsequent runs, the user can then specify these
discovered properties in the signatures to run QuickSpec on, and QuickSpec

21

will take these properties into account for optimisation of further discovery. For
more details, refer to the second QuickSpec paper [16].
We adapted our definition to allow for dependencies between signatures by ar-
ranging the resulting signatures in a forest.

type InferredSignature = Forest Signature

Now we could describe the idea that every signature had to be run before its
parent could be run, and QuickSpec would perform the appropriate optimisa-
tion. Again, it is trivial to convert a list signature inference strategy into a
forest signature inference strategy. Next, we noticed that we may as well al-
low signature inference strategies to share children in the forest. That’s why
we adapted our definition again, this time to arrange signatures in a directed
acyclic graph.

type InferredSignature = DAG Signature

Note that any tree is a directed acyclic graph as well, so translations were trivial
again. At this point, signature inference strategies were strictly more expressive,
which allowed for more intricate signature inference strategies.

3.6.2 Chunks

Using the newfound knowledge that properties usually contain very few different
functions, we set out to create a signature inference strategy that takes advan-
tage of this fact. It sets out to find the properties that contain two or fewer
different functions. As such, it first creates a node that only contains the focus
functions. Next, it creates a signature for every tuple of one focus function and
one scope function and adds the initial node as a dependency. The resulting
directed acyclic graph of signatures is star shaped and only contains signatures
with two or fewer functions. As an example, consider the scope in figure 10,
and choose sort as the focus.

sort :: Ord a => [a] -> [a]

reverse :: [a] -> [a]

id :: a -> a

not :: Bool -> Bool

Figure 10: An example scope

The chunks signature inference strategy will first run QuickSpec on a sig-
nature that only contains sort , and then on the signatures with two functions
as depicted in figure 13.

22

[sort]

[sort, reverse] [sort, id] [sort, not]

Figure 11: The graph that chunks builds for the example

3.7 Monadic Signature Inference Strategies

Graph signature inference strategies are expressive enough to declare dependen-
cies between QuickSpec runs, but they cannot use information from previous
runs in subsequent runs. One hypothesis suggests that the equations that are
discovered in QuickSpec runs may teach more about the functions at hand, and
what we can expect when we subsequently run QuickSpec. The definition of a
signature inference strategy would have to be adapted again, to make it even
more expressive.

3.7.1 Definition

One standard abstraction that allows for the expression of composition is the
monad. We adapted the result of a signature inference strategy to be defined
as a monadic piece of data that expresses how and when QuickSpec should be
run.

23

type SignatureInferenceStrategy

= [Function] -> [Function] -> InferM ()

data InferM a where

InferPure :: a -> InferM a

InferFmap :: (a -> b) -> InferM a -> InferM b

InferApp :: InferM (a -> b) -> InferM a -> InferM b

InferBind :: InferM a -> (a -> InferM b) -> InferM b

InferFrom

:: Signature

-> [OptiToken]

-> InferM (OptiToken, [Equation])

To allow for monadic computation, but not for arbitrary input or output,
the InferM monad represents a syntax tree that describes a computation. The
following instances then enable syntactic sugar to construct such a syntax tree.

instance Functor InferM where

fmap = InferFmap

instance Applicative InferM where

pure = InferPure

(<*>) = InferApp

instance Monad InferM where

(>>=) = InferBind

The special constructor InferFrom describes the intent to run QuickSpec

on the given signature. For each run of QuickSpec, an OptiToken is generated

that describes that run of QuickSpec, and can be given to subsequent runs to
inform QuickSpec about the corresponding previous discoveries. As an example,
chunks can now be described as follows.

inferChunks :: [Function] -> [Function] -> InferM ()

inferChunks focus scope = do

(l1t, _) <- InferFrom focus []

forM_ [(f, s) | f <- focus, s <- scope] $ \(f, s) ->

InferFrom [f, s] [l1t]

Figure 12: chunks as a monadic signature inference strategy

This monad only expresses the intent to run QuickSpec. One still requires
a straightforward interpreter to actually discover any properties.

24

3.7.2 Chunks Plus

The increased expressiveness of monadic signature inference strategies opened
the doors for a new strategy: chunks-plus . This strategy is built upon the

assumption that if two functions are related by any properties that only relate
these two properties, then they are more likely to also be related in proper-
ties with more different functions. The idea is that chunks-plus first runs

QuickSpec in a similar way to chunks and then potentially runs QuickSpec
some more based on the following procedure. For each set of two different scope
functions, the corresponding nodes in the chunks strategy are considered. If
QuickSpec finds relevant equations in both of these nodes, a new node is created
that contains both of these scope functions and the focus function. This new
node then points to appropriate two nodes as a dependant. As an example,
consider the same example scope as in section 3.6.2. The chunks-plus signa-

ture inference strategy will first run QuickSpec exactly as chunks would, and
then conditionally on the signatures with three functions as depicted in grey in
figure 13.

[sort]

[sort, reverse] [sort, id] [sort, not]

[sort, reverse, id] [sort, id, not][sort, not, reverse]

Figure 13: The graph that chunks-plus builds for the example

3.8 Composing strategies: Drilling and Reducing

In the previous sections, a larger pattern emerges. The idea that the entire
codebase is too large to consider even a substantial part of it, leads us to sig-
nature inference strategies that try to reduce the scope to a smaller subset of
relevant functions. On the other hand, we find signature inference strategies
that find more relevant equations (but fewer irrelevant equations) and spend
less time as a result. In this section we call this concept “drilling”. Now we
can combine these two ideas and make new signature inference strategies by
composing previous signature inference strategies. A reducing corresponds to a

25

function as follows.

[Function] -> [Function] -> [Function]

We have already considered the following reducings.

• empty-background

• syntactic-similarity-name

• syntactic-similarity-type

• syntactic-similarity-symbols

• type-reachability

A drilling corresponds to a function as follows.

[Function] -> [Function] -> InferM ()

The idea here is to find as many relevant equations as possible for the given
focus. We have already considered the following drillings.

• full-background

• chunks

• chunks-plus

3.8.1 Composing Two Reducings

Given two reducings, we can create a new reducing by composition.

composeReducings

:: ([Function] -> [Function] -> [Function])

-> ([Function] -> [Function] -> [Function])

-> ([Function] -> [Function] -> [Function])

composeReducings s1 s2 focus = s2 focus . s1 focus

Note that this is only a useful idea in practice if the two reducings do not both
predetermine the size of the result. For example, composing syntactic-similarity-name

with syntactic-similarity-type is not useful because the result will be

equivalent to the result of syntactic-similarity-type 3. However, com-

posing, for example, type-reachability with syntactic-similarity-name

could be useful.

3.8.2 Composing Two Drillings

Given two drillings, we can create a new drilling by composition.

3This is modulo some details involving the parameter i for each reducing.

26

composeDrillings

:: ([Function] -> [Function] -> InferM ())

-> ([Function] -> [Function] -> InferM ())

-> ([Function] -> [Function] -> InferM ())

composeDrillings d1 d2 focus scope = do

d1 focus scope

d2 focus scope

In theory composing two drillings could be useful, for example if the two drillings
operate fundamentally differently and if they both do not take much time. In
practice we only have very similar drillings, so we will not be looking at any
compositions of drillings.

3.8.3 Composing a Reducing With a Drilling

Given a reducing and a drilling, we can compose them to make a new drilling
as follows.

composeReducingAndDrilling

:: ([Function] -> [Function] -> [Function]

-> ([Function] -> [Function] -> InferM ())

-> ([Function] -> [Function] -> InferM ())

composeReducingAndDrilling s d focus =

d focus . s focus

This composition opens up opportunities for new trade-offs. For example, in
such a composition, we could combine a reducing that reduces a scope to a
constant size with a drilling that does not concern itself with the size of the
scope.

3.8.4 Filling the Gaps

Consider all possible compositions of one reducing and one drilling. Any com-
bination of a reducing and full-background as the drilling corresponds to

that reducing by itself. Any combination of empty-background with a drilling

will not be much different in practice from just using empty-background by

itself. Now let us consider the combinations that we have not discussed yet. We
can combine each of the reducings with both chunks and chunks-plus as a

drilling, to define the following new strategies.

chunks-similarity-name chunks-plus-similarity-name

chunks-similarity-symbols chunks-plus-similarity-symbols

chunks-similarity-type chunks-plus-similarity-type

chunks-type-reachability chunks-plus-type-reachability

Figure 14: Composed signature inference strategies

27

3.8.5 Special Compositions

The last signature inference strategies that we consider are compositions of two
reducings and a drilling. The first reducing is type-reachability the sec-

ond is one of the distance based reducings, and the drilling is chunks-plus .

At this point we did not consider similar combinations with chunks anymore,
because the scope size would be constant after the distance based reducing,
which meant that the drilling was allowed to be slow. We called these strategies
chunks-plus-reachability-name , chunks-plus-reachability-symbols and

chunks-plus-reachability-type .

28

4 Evaluation

In this section we evaluate the different signature inference strategies that were
introduced in the previous section.

4.1 Discovery Complexity

The nature of signature inference strategies is that they perform some local
computation interleaved with property discovery by QuickSpec. For this work,
we conceived a type of complexity analysis that specifically applies to signature
inference strategies. We assume that the local computation is negligible com-
pared to the QuickSpec invocations. For the purpose of the analysis, we will
consider the local computation free, and we will focus on the complexity of the
property discovery. If we view QuickCheck as a “generate and test” method,
then its runtime is upper bounded by the number of equations that are tested.
This means that we will compute the discovery complexity of a signature in-
ference strategy as the sum of those numbers, over the executions of property
discovery.

4.1.1 Maxmimum Number of Discovered Equations

The number of properties of maximum size M that can be discovered in a scope
of S functions is related to the number of terms T that can be built using those
functions. Because QuickSpec only discovers properties that consist of function
applications and variables, we can compute the number of possible terms of
maximum size S as follows.
If we assume a fixed number of possible variables V that could occur in a term,
the number of possible terms of size one T1 is S + V . For terms of size two, the
number of possible terms T2 is equal to (S + V)

2
because every such term is of

the form fg where f and g are both terms of size one. For terms of size three,
there are two options. A term of size three is either of the form f (gh) or of the

form (fg)h. This means that there are 2(S + V)
3

different terms of size three.
In general, the number of possible terms of size n is equal to the number of
possible binary trees with n leaves times the number of possible combinations
of contents of those leaves (S + V)

n
. The number of binary trees with n leaves,

is well known to be the Catalan number Cn−1 [10].

Tn = Cn−1(S + V)
n

=
1

n

(
2n− 2

n− 1

)
(S + V)

n

The number of terms of maximum size n is then a sum as follows.

M∑
i=1

1

n

(
2i− 2

i− 1

)
(S + V)

i

To arrive at the maximum number of discovered equations of size M from a
scope of S functions, we take all possible tuples of terms of maximum size M .(

M∑
i=1

1

n

(
2i− 2

i− 1

)
(S + V)

i

)2

29

Now we only need to choose the number of distinct variables we allow in an
equation. Variables are scoped over both sides of the equation, but not across
different equations. This means that more than 2M different variables will never
be used in the same equation, but there could be a (rather useless) equation
consisting only of 2M different variables. To conclude, the maximum number
of equations of maximum size M that can be discovered using a scope of S
functions can be computed as follows.(

M∑
i=1

1

n

(
2i− 2

i− 1

)
(S + 2M)

i

)2

In our experiments, we have fixed the maximum size of discovered equations to
be 7. This naturally limits the maximum size of discovered equations in a scope
of S functions to the following number.(

7∑
i=1

1

n

(
2i− 2

i− 1

)
(S + 14)

i

)2

In general, this number is O
(
S2M ,

)
but because we have fixed M to be 7, this

number is O
(
S14
)

for us.

4.1.2 Example

We will look at the discovery complexity of two different signature inference
strategies in more detail here. The first is full-background as defined in

section 3.3 and it is easy to analyse because it performs little local computation
and only runs QuickSpec once. For a scope of size S, full-background runs

QuickSpec once with a scope size of S. This means that the discovery complexity
of full-background is O

(
S14
)
.

Next, consider chunks as defined in section 3.6.2. This signature inference
strategy performs some local computation to construct tuples of a scope function
and a focus function, and runs QuickSpec as many times as there are such tuples.
In a situation with S scope functions and F focus functions, there are SF such
tuples. This means that chunks runs QuickSpec a total of SF times with a

scope of constant size 2. The discovery complexity of chunks is therefore linear
in the number of those tuples.

O (SF)

This means that the discovery complexity is linear in the scope size if the focus
size is constant (usually it is one). Note that this is a worst case analysis. In
practice types and advanced pruning by QuickSpec vastly decreases the number
of equations tested [16].

4.2 Evaluators

It is hard to quantify which of two inference strategies is better. We developed
an evaluation framework that, for every run of EasySpec, remembers the input,
the equations that were discovered, and how long the run took. To define what
‘better’ means when it comes to inference strategies, we developed the concept

30

of an evaluator. An evaluator has a name and a way to create a Maybe Double

, given this information about a run of EasySpec.

type Evaluator = EvaluationInput -> Maybe Double

We define the following evaluators.

• equations : The number of equations that were found

• runtime : The amount of time that the run took

• relevant-equations : The number of relevant equations that were found

• relevant-functions : The number of relevant functions that were found

• equations-minus-relevant-equations : The number of irrelevant equa-

tions that were found

• relevant-equations-divided-by-runtime : The number of relevant

equations found per unit of time

In practice, what we are looking for is a strategy that runs in a practical amount
of time on a programmer’s development machine. What we mean by practical
depends on the use case. We had two use cases in mind.
In the first use case, EasySpec would be run at night, to find gaps in a test
suite. In this use case, we envision that a linear discovery complexity would be
feasible, but anything worse than that would be impractical.
In the second use case, EasySpec would be an interactive assistant that can sug-
gest tests for code that is being written as it is being written. For this purpose,
anything slower than a logarithmic discovery complexity would most likely be
impractical, and even a logarithmic discovery complexity may be infeasible for
large codebases. Because of the difference between complexity and actual run-
time, testing out a particular signature inference strategy will still be the best
way to tell if it is practical.
A signature inference strategy should not just be fast, but it should also find
relevant properties. In practice we only care about properties that are relevant
to the focus functions, but it is important to note that all properties take time
to discover. This means that we look for a strategy that finds many relevant
properties, and ideally few irrelevant properties and therefore few properties
beyond the relevant properties.
While a measure like relevant-equations-divided-by-runtime can be a

useful tool for evaluation, we have not found a single evaluator to rank sig-
nature inference strategies by 4. The best way to evaluate signature inference
strategies that we have found is to first decide if the runtime is practical, and
among practical signature inference strategies, choose the signature inference
strategy with the highest score for relevant-equations . We chose to com-

pare other strategies with full-background mostly, because the output of

full-background most accurately represents what was already possible with

QuickSpec.

4For example, empty-background scores very well on the

relevant-equations-divided-by-runtime evaluator, but is hardly the best signature

inference strategy.

31

4.3 Experiments

To evaluate EasySpec and the different signature inference strategies, we per-
formed multiple experiments. In a perfect world, we would run EasySpec on
real world Haskell code. However, Haskell is a large language when it comes to
syntax, and the GHC compiler extensions make the language bigger. Due to
time constraints, EasySpec could not be readied for use on real world code. As
a result, experiments had to be performed on subject code that was limited to
the part of the language that is currently supported. We put together example
code with as large a scope as full-background could handle with a diverse

mixture of functions and types. For each of these examples, for each signature
inference strategy and for each function in the module, EasySpec is run using
that function as the focus. The code samples can be found in the EasySpec
repository, [23] and consist of the following major groups.

• Bools.hs consists of Boolean functions, operators, and list functions that
use Boolean filter functions.

• Monoid.hs consists of integer functions, operators and constants.

• DNA.hs consists of functions that deal with strings characters.

These examples are together comprehensive in the sense that they contain all
the types that QuickSpec supports by default. We made a separate group of
code samples to evaluate the runtime aspect of signature inference strategies.
These files consist of three locally defined functions that resemble id , ++ and
reverse and an increasing scope of prelude functions around them.

4.4 Strategies

4.4.1 Empty Background

In Figure 15, the runtime of empty-background is plotted compared to the

runtime of full-background . Because the signature that QuickSpec is run on

in empty-background is of constant size, empty-background will always run

in constant time. This means that empty-background is a practical signature

inference strategy to use.

32

0

50

100

150

200

250

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy empty−background full−background

Figure 15: Runtime of empty-background .

However, when we look at Figure 16, we see that empty-background finds

almost no relevant equations. Figure 16 shows a box plot of the number of rele-
vant equations found, comparing empty-background and full-background .

●empty−background

full−background

0 5 10 15 20 25 30

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Figure 16: Relevant equations of empty-background

Because the empty-background signature inference strategy only finds

equations that only consist of functions in focus, it misses out on most of the
relevant equations.

4.4.2 Syntactic Similarity

All distance based signature inference strategies have a parameter i that de-
termines the maximum size of the signature to select. We chose to fix this
parameter to 5 such that the runtime of each of these signature inference strate-
gies would remain constant as well.

33

0

50

100

150

200

250

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy full−background syntactical−similarity−name−5 syntactical−similarity−symbols−5 syntactical−similarity−type−5

Figure 17: Runtime of the syntactic similarity signature inference strate-
gies: syntactic-similarity-name , syntactic-similarity-symbols and

syntactic-similarity-type

In Figure 17, we find the runtimes of full-background , syntactic-similarity-name ,

syntactic-similarity-symbols and syntactic-similarity-type . As is

to be expected, all of these signature inference strategies run in constant time
and are practical as such.

●●

●●●

●●

full−background

syntactical−similarity−name−5

syntactical−similarity−symbols−5

syntactical−similarity−type−5

0 10 20 30 40 50

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Figure 18: Relevant equations of the syntactic similarity signature inference
strategies: syntactic-similarity-name , syntactic-similarity-symbols

and syntactic-similarity-type

In Figure 18, we find a box plot of the number of relevant equations that each
of these strategies discover. As it turns out, these strategies already find a good
number of equations. However, the way we have set up our experiments may
have skewed these numbers because the number we fixed for the parameter i: 5

34

is already a significant fraction of the size of the scope. This would not be the
case in practice. It seems that choosing smaller signatures to run QuickSpec on
is a good idea, but that these strategies are not ideal in deciding which functions
to put in the smaller signature.

4.4.3 Type Reachability

The type-reachability signature inference strategy is different from the

distance based signature inference strategies because it does not guarantee
that the reduced scope is any smaller than the original scope. As such, it is
not guaranteed to be any faster than full-background . This could make

type-reachability infeasible for use in certain situations, but as we can see

in Figure 19, the experiments that we used do not cause type-reachability

to exhibit this problem.

0

50

100

150

200

250

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy full−background type−reachability−7

Figure 19: The runtime of type-reachability

In practice, we see that type-reachability reduces the scope to a suffi-

ciently small subset such that the runtime is subsequently small enough to be
practically feasible. As for the discovered equations, in Figure 20, we find that
type-reachability is not better than full-background , but it is at least

as promising as the distance based signature inference strategies.

35

●●

●●●

●●

●

full−background

syntactical−similarity−name−5

syntactical−similarity−symbols−5

syntactical−similarity−type−5

type−reachability−7

0 10 20 30 40 50

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Figure 20: The number of relevant equations of the reducing signature inference
strategies

4.4.4 Chunks

The chunks signature inference strategy runs QuickCheck on many signatures

of constant size. To be precise, chunks runs QuickSpec on exactly SF signa-
tures of size 2 and one more signature of size F . Here, S is the size of the scope,
and F is the size of the focus. As a result, we expect chunks to have a linear
discovery complexity with respect to the size of the scope.

0

50

100

150

200

250

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy chunks full−background

Figure 21: The number of relevant equations of chunks

Figure 21 confirms this expectation. For the interactive use case, chunks

may not be practical, but for the nightly use case, it could be. A user would have
to evaluate whether the strategy is fast enough for their use case. Moreover,
the chunks signature inference strategy may still be a useful building block for
developing better signature inference strategies.
For the chunks signature inference strategy, we expected to find the equations

36

that full-background finds, but only the ones that mention two or fewer

distinct functions.

chunks

full−background

0 10 20 30 40 50 60

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Figure 22: The number of relevant equations of chunks

However, Figure 22, shows that chunks often even finds even more relevant

properties than full-background does. This may seem curious at first, but it

is explained by the fact that QuickSpec outputs only the most general properties
it discovers. With a larger scope, general properties that subsume others are
more likely to be discovered. With more scope, properties are more likely to have
a more general property that will be discovered. If the context is reduced, such
as in the case of chunks , QuickSpec is more likely to find multiple different
relevant equations that could generalise to fewer equations if QuickSpec had
more context. As an example, consider the following scope.

a :: Int -> Int

a = (+1)

b :: Int -> Int

b = (+2)

c :: Int -> Int

c = (+3)

d :: Int -> Int

d = (+4)

When we run full-background on this scope, we find the following equations.

a (a x) = b x

a (b x) = c x

a (c x) = d x

If we chose d as the focus, only the last equation would be considered relevant.

This means that full-background only finds one relevant equation. When

we run chunks on this scope with focus d we find the following relevant
equations.

37

b (b x) = d x

a (a (a (a x))) = d x

Note that neither of these equations are found in the full-background results,

because they are more specific than some of the equations that full-background

finds. The reduction of the scope caused chunks to find more relevant equa-

tions than full-background did.

4.4.5 Chunks Plus

We expect chunks-plus to have a quadratic discovery complexity. As such,

chunks-plus is most likely not a practical signature inference strategy to use

by itself in the use cases that we had in mind. However, as a building block,
chunks-plus may still be useful.

0

50

100

150

200

250

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy chunks chunks−plus full−background

Figure 23: The number of relevant equations of chunks-plus

In Figure 23, we see that chunks-plus has the complexity that we ex-

pected. This plot also confirms that chunks-plus would be impractical to use

by itself. As for the relevant equations that chunks-plus finds, we expect that

it finds at least as many as chunks does.

38

chunks

chunks−plus

full−background

0 20 40 60 80 10
0

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Figure 24: The number of relevant equations of chunks-plus

In Figure 24, we see that this is indeed the case. While the runtime of
chunks-plus prohibits it from being used in practice, its time complexity is

still twelve factors of the scope size faster than full-background is, and it

regularly finds more relevant equations.

4.4.6 Compositions

In Figure 4.4.6, we see that all the compositions of a reducing with chunks

yield a signature inference strategy that runs in a practically feasible amount of
time, even chunks-type-reachability .

0

50

100

150

200

250

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy chunks−similarity−name−5 chunks−similarity−symbols−5 chunks−similarity−type−5 chunks−type−reachability−7

In Figure , we see that these composed strategies all approach full-background

in terms of how many relevant equations they find.

39

●

●●●

●

●

chunks−similarity−name−5

chunks−similarity−symbols−5

chunks−similarity−type−5

chunks−type−reachability−7

full−background

0 10 20 30 40 50 60

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

As we can see in Figure 4.4.6, composing the same reducings with a more
intensive drilling: chunks-plus produces signature inference strategies that

still run in a practical amount of time, but still a greater amount of time, even
chunks-plus-type-reachability .

0

50

100

150

200

250

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy chunks−plus−similarity−name−5 chunks−plus−similarity−symbols−5 chunks−plus−similarity−type−5 chunks−plus−type−reachability−7

In Figure 4.4.6 we find that these compositions regularly outperform full-background .

40

●chunks−plus−similarity−name−5

chunks−plus−similarity−symbols−5

chunks−plus−similarity−type−5

chunks−plus−type−reachability−7

full−background

0 20 40 60 80 10
0

12
0

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

The compositions of two reducings with a drilling produced less successful
signature inference strategies than expected. As we can see in Figure 4.4.6,
these strategies still ran in a practical amount of time.

0

50

100

150

200

250

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy chunks−plus−reachability−name−5−7 chunks−plus−reachability−symbols−5−7 chunks−plus−reachability−type−5−7

However, if we look at Figure 4.4.6, we see that these more complex compo-
sitions do not outperform their simpler variants.

41

chunks−plus−reachability−name−5−7

chunks−plus−reachability−symbols−5−7

chunks−plus−reachability−type−5−7

full−background

0 20 40 60 80 10
0

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

4.4.7 Overview

In Figure 4.4.7, there is an overview of the performance, with respect to the
number of relevant equations found, of all the signature inference strategies
that we studied.

●

●

●●●

●

●

●

●●

●●●

●●

●

chunks

chunks−plus

chunks−plus−reachability−name−5−7

chunks−plus−reachability−symbols−5−7

chunks−plus−reachability−type−5−7

chunks−plus−similarity−name−5

chunks−plus−similarity−symbols−5

chunks−plus−similarity−type−5

chunks−plus−type−reachability−7

chunks−similarity−name−5

chunks−similarity−symbols−5

chunks−similarity−type−5

chunks−type−reachability−7

empty−background

full−background

iterative−chunks−4−2

syntactical−similarity−name−5

syntactical−similarity−symbols−5

syntactical−similarity−type−5

type−reachability−7

0 20 40 60 80 10
0

12
0

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

42

The best performing signature inference strategy is clearly chunks-plus

and, while it is still significantly faster than full-background , it may not run

in a practically feasible amount of time. Of the signature inference strategies
that run in a feasible amount of time, chunks-plus-type-reachability finds

the most relevant equations. If one needs a constant time guarantee, then
chunks-plus-similarity-type or chunks-plus-similarity-symbols are

viable alternatives.

43

5 Discussion

This work has explored several different signature inference strategies. A sum-
mary can be found in Figure 25.

Strategy DC DC ′

full-background O
(
S2M

)
O
(
S14
)

empty-background O
(
F 2M

)
O (1)

syntactic-similarity-name O
(
i2M

)
O (1)

syntactic-similarity-symbols O
(
i2M

)
O (1)

syntactic-similarity-type O
(
i2M

)
O (1)

type-reachability O
(
S2M

)
O
(
S14
)

chunks O
(
SF22M

)
O (S)

chunks-plus O
(
S2F32M

)
O
(
S2
)

chunks-similarity-name O
(
Fi22M

)
O (1)

chunks-similarity-symbols O
(
Fi22M

)
O (1)

chunks-similarity-type O
(
Fi22M

)
O (1)

chunks-type-reachability O
(
SF22M

)
O (S)

chunks-plus-similarity-name O
(
Fi232M

)
O (1)

chunks-plus-similarity-symbols O
(
Fi232M

)
O (1)

chunks-plus-similarity-type O
(
Fi232M

)
O (1)

chunks-plus-type-reachability O
(
S2F32M

)
O
(
S2
)

chunks-plus-reachability-name O
(
Fi232M

)
O (1)

chunks-plus-reachability-symbols O
(
Fi232M

)
O (1)

chunks-plus-reachability-type O
(
Fi232M

)
O (1)

Figure 25: A summary of the different signature inference strategies

The symbols in this table are defined as follows.

• S: size of the scope

• M : maximum size of the discovered properties

• F : size of the focus

• i: chosen size of the signature in a reducing signature inference strategy

• j: chosen depth of type reachability

• DC: worst case discovery complexity

• DC ′: worst case discovery complexity, when M is fixed to be 7, F is fixed
to be 1, i is fixed to be 5 and j is fixed to be 7; This is the configuration
that we chose.

44

5.1 Configurability

The exploration of different signature inference strategies has had the nice side
effect that signature inference can now be configured to use a chosen signature
inference strategy.
Indeed, different signature inference strategies make it possible to support mul-
tiple use cases. One potential user interface involves online property discovery
and immediate feedback. This use case can be enabled by choosing a signature
inference strategy that has an appropriate discovery complexity.
Another potential user interface involves running property discovery overnight.
In this case there is a larger number of feasible signature inference strategies
available.
Users are not forced to use any single signature inference strategy, and are in-
vited to choose their own and evaluate whether it is appropriate for their use
case.

5.2 Shortcomings

EasySpec suffers from most of the functional shortcomings that QuickSpec has.
This includes false positives, which means that sometimes properties are discov-
ered that do not hold. This is not a big problem since a human must still select
the properties that they want to have hold, and the properties are still tested
afterwards with different random input.
Both QuickSpec and EasySpec can only discover properties that already hold
(modulo false positives). This means that properties that you may want to have
hold about code will not be discovered if the code does not already satisfy those
properties.
Higher kinded type variables are not supported in EasySpec because their
monomorphisation still has to be done manually in QuickSpec and QuickSpec
has no dummy higher kinded variables as it does for other variables.
Both QuickSpec and EasySpec use the arbitrary generators from the Arbitrary

type class to generate random values. Custom generators could be of great value
if certain properties only hold for a subset of a type, but neither QuickSpec nor
EasySpec currently supports them. Furthermore, EasySpec currently does not
find any instances that are in scope, so EasySpec will only operate on types of
which QuickSpec already has the Arbitrary instance built-in.
Lastly, because EasySpec uses the interactive evaluator that built into GHC by
interpolating Strings, there are many issues with respect to modules and unex-
ported symbols. For example, EasySpec does not work well on modules that ex-
port functions of which the type contains unexported symbols, such as the func-
tion error :: HasCallStack a => String -> a wherein HasCallStack is

not exported.
EasySpec uses the GHC API to type check code, and translates the resulting
types to a representation defined in an external library. This translation al-
lowed for quicker iteration because the translated representation was easier to
work with than internal representation in GHC, but the translation is not loss-
less. Therefore the translation incurs several limitations. It further complicates
certain common practical situations such as modules and unexported symbols.
Moreover, it also prevents us from using the type checking mechanisms within
GHC to implement type reachability.

45

6 Conclusion

QuickSpec has made great progress toward practical property discovery. It
looked promising, until we had a look at the complexity of QuickSpec with
respect to realistic codebases. Signature inference has proved to be a promis-
ing approach to making property discovery practical by taming the complexity
of QuickSpec. We provided options to decrease the discovery complexity from
O
(
S14
)

to O (S) or O (1). The progress that we achieved on making prop-
erty discovery practical for codebases of realistic sizes promises that property
discovery could become a real and very valuable tool in software development.

6.1 Future Work

Significant engineering effort is required to make property discovery realistically
usable. Much of the necessary research is done, but significant corners had to
be cut with respect to practical usability. Nevertheless, there is still room for
more research on this topic.
The signature inference strategies discussed in this work only ever choose func-
tions out of the scope and translate their types literally. These strategies never
attempt to add anything to the signature that was not already in scope. It may
be useful to consider adding entirely new functions or expressions to a signature.
Literals are a good example of such expressions: it could be useful to add the
zero constant to the signature, if the focus involves numbers. Similarly, it may
be useful to add the empty list to the scope, if the focus involves lists, etc.
Automatic monomorphisation of higher kinded type variables has been glossed
over in this work, because it is a nontrivial concept to implement. Higher kinded
type variables cannot simply be translated in the same way that simple type
variables can be translated because QuickSpec currently has no support for such
a translation.
Type class instances should be discovered by the signature inference tool, but
currently are not. This limitation has cut down the practical significance of
EasySpec significantly, and requires engineering effort to lift. However, instance
discovery could also aid signature inference.

46

References

[1] Colin Runciman and Matthew Naylor and Fredrik Lindblad. Smallcheck
and lazy smallcheck: automatic exhaustive testing for small values. In Pro-
ceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008,
Victoria, BC, Canada, 25 September 2008, pages 37–48, 2008.

[2] Cordelia V. Hall and Kevin Hammond and Simon L. Peyton Jones and
Philip Wadler. Type Classes in Haskell. ACM Trans. Program. Lang.
Syst., 18(2):109–138, 1996.

[3] Edsger W. Dijkstra. The Humble Programmer. Commun. ACM,
15(10):859–866, 1972.

[4] GHC Developers. Glasgow Haskell Compiler version 8.0.2, 2016.

[5] GHC Developers. Glasgow Haskell Compiler API version 8.0.2, 2017.

[6] haskell.org. Haskell Language Front Page.

[7] Jasmin Christian Blanchette and David Greenaway and Cezary Kaliszyk
and Daniel Kühlwein and Josef Urban. A Learning-Based Fact Selector for
Isabelle/HOL. J. Autom. Reasoning, 57(3):219–244, 2016.

[8] Jia Meng and Lawrence C. Paulson. Lightweight relevance filtering for
machine-generated resolution problems. volume 7, pages 41–57, 2009.

[9] John Peterson and Mark P. Jones. Implementing Type Classes. In Pro-
ceedings of the ACM SIGPLAN’93 Conference on Programming Language
Design and Implementation (PLDI), Albuquerque, New Mexico, USA, June
23-25, 1993, pages 227–236, 1993.

[10] Knuth, Donald E. The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1997.

[11] Koen Claessen. QuickCheck: Automatic testing of Haskell programs. http:
//hackage.haskell.org/package/QuickCheck-2.9.2, September 2016.

[12] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for ran-
dom testing of Haskell programs. In Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’00),
Montreal, Canada, September 18-21, 2000., pages 268–279, 2000.

[13] Koen Claessen and Moa Johansson and Dan Rosén and Nicholas Small-
bone. Automating Inductive Proofs Using Theory Exploration, pages 392–
406. 2013.

[14] Koen Claessen and Nicholas Smallbone and John Hughes. QuickSpec:
Guessing Formal Specifications Using Testing. In Tests and Proofs, 4th
International Conference, TAP 2010, Málaga, Spain, July 1-2, 2010. Pro-
ceedings, pages 6–21, 2010.

[15] Lee Pike. SmartCheck: automatic and efficient counterexample reduction
and generalization. In Proceedings of the 2014 ACM SIGPLAN symposium
on Haskell, Gothenburg, Sweden, September 4-5, 2014, pages 53–64, 2014.

47

http://hackage.haskell.org/package/QuickCheck-2.9.2
http://hackage.haskell.org/package/QuickCheck-2.9.2

[16] Nicholas Smallbone and Moa Johansson and Koen Claessen and Maximilian
Algehed. Quick specifications for the busy programmer. J. Funct. Program.,
27:e18, 2017.

[17] Nick Smallbone. QuickCheck: Automatic testing of Haskell
programs. https://github.com/nick8325/quickspec/tree/

3c6e0105374bcf1ed0d4f8d2a1a1d2875764fa56, 2016.

[18] Philip Lee Wadler. Letter to Haskell working group, February 1988.

[19] Philip Wadler and Stephen Blott. How to Make ad-hoc Polymorphism Less
ad-hoc. In Conference Record of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, Austin, Texas, USA, January 11-
13, 1989, pages 60–76, 1989.

[20] Rudy Braquehais and Colin Runciman. FitSpec: refining property sets for
functional testing. In Proceedings of the 9th International Symposium on
Haskell, Haskell 2016, Nara, Japan, September 22-23, 2016, pages 1–12,
2016.

[21] Rudy Braquehais and Colin Runciman. Speculate: discovering conditional
equations and inequalities about black-box functions by reasoning from test
results. In Haskell Symposium 2017. ACM, 2017.

[22] Rudy Matela. LeanCheck: Cholesterol-free property-based testing
for Haskell. https://hackage.haskell.org/package/leancheck-0.6.2,
March 2017.

[23] Tom Sydney Kerckhove. EasySpec: Signature Inference for Functional
Property Discovery. https://github.com/NorfairKing/easyspec/tree/
ec1c933e7c647a010e941ca36662dc23ded3c511, 2017.

[24] unknown. Typeable @ base-4.9.1.0. http://hackage.haskell.org/

package/base-4.9.1.0/Data-Typeable.html#t:Typeable, January
2017.

48

https://github.com/nick8325/quickspec/tree/3c6e0105374bcf1ed0d4f8d2a1a1d2875764fa56
https://github.com/nick8325/quickspec/tree/3c6e0105374bcf1ed0d4f8d2a1a1d2875764fa56
https://hackage.haskell.org/package/leancheck-0.6.2
https://github.com/NorfairKing/easyspec/tree/ec1c933e7c647a010e941ca36662dc23ded3c511
https://github.com/NorfairKing/easyspec/tree/ec1c933e7c647a010e941ca36662dc23ded3c511
http://hackage.haskell.org/package/base-4.9.1.0/Data-Typeable.html#t:Typeable
http://hackage.haskell.org/package/base-4.9.1.0/Data-Typeable.html#t:Typeable

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Signature Inference for Functional Property Discovery

Kerckhove Tom Sydney

Zürich, 2017-09-08 Tom Sydney Kerckhove

