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ABSTRACT1

The uncertainty in the estimation of the macroscopic fundamental diagram (MFD) under real-2

world traffic conditions and urban dynamics, might result in an inaccurate estimation of the3

MFD parameters - especially if congestion is rarely observed network-wide. For example, as4

data normally comes from punctual observations out of the whole network, it is unclear how5

representative these observations might be (i.e. how much is the observed capacity affected6

by the network’s inhomogeneity). Similarly, if the observed data does not exhibit a distinct7

congested branch, it is hard to determine the network capacity and critical density. This, in turn,8

also leads to uncertainties and errors in the parametrization of the MFD for applications, e.g.9

traffic control.10

In this paper we introduce a novel methodology to estimate (i) the level of inhomogeneity in11

the network, and (ii) the critical density of the MFD, even when no congested branch is observed.12

The methodology is based on the idea of re-sampling the empirical data set. Using an extensive13

data set from Lucerne, Switzerland, and London, UK, we provide insights on the performance14

and the application of the proposed methodology. We use the proposed methodology to illustrate15

how the level of inhomogeneity is lower in Lucerne than in the three areas of the network of16

London that we investigate. The proposed measure of the level of inhomogeneity gives city17

planners the possibility to analyze and investigate how efficiently their road network is utilized.18

Additionally, we show that, for the network of Lucerne, the proposed methodology allows us19

to accurately estimate the critical density up to 16 times more often than it would be possible20

otherwise. This simple and robust estimation of the critical density is crucial for the application21

of many traffic control algorithms.22
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INTRODUCTION1

Themacroscopic fundamental diagram (MFD) is the upper bound in the macroscopic flow-density2

(q-k) relationship for vehicular traffic in an urban road network. Similar to a fundamental3

diagram of a single road, MFDs are characterized by an uncongested branch and a congested4

branch. In the uncongested branch, flow increases with density, whereas in the congested branch,5

flow decreases with increasing density until gridlock is reached, and speeds drop to zero. Thus,6

MFDs can be described by a combination of some of the following parameters: free flow speed,7

backward wave speed, capacity, jam density, critical density, and a smoothing parameter that8

describes the change in the slope of the average speed. Notice that for control purposes, the9

critical density is an important parameter, as it marks the difference between the congested10

and the uncongested branch. The shape of the MFD is determined by the urban road structure,11

traffic control (1) and the level of inhomogeneity in the distribution of traffic (2–4), but more12

or less independent of the demand (assuming trip length remains more or less constant). New13

applications have been developed exploiting the elegance of the MFD to model traffic dynamics,14

predict travel behavior, and control traffic in urban networks (5–16), all relying on an accurate15

estimation of the MFD.16

The MFD can be either analytically derived or approximated from empirical data (17).17

Daganzo and Geroliminis (1) proposed a semi-analytical formulation for urban networks.18

However, their method relies on technical information (green times, number of links that can be19

passed by a fast vehicle without stopping, etc.), which might be highly variant or not available at20

all. The MFD can also be directly estimated from empirical data leading to a concave and to some21

extent well-defined and reproducible relationship. In real road networks, however, homogeneity22

is rarely found, and network-wide congestion is not always apparent. In the case where only a few23

roads show a different behavior than all the other roads, the observed flow-density relationship24

lies slightly below the upper bound (2). In general, empirical MFDs exhibit scatter that leads to a25

range of observed flows for any given accumulation, which leads to uncertainty in the estimation26

of the descriptive parameters (18–21). Seminal studies have identified the inhomogeneous spatial27

distribution of vehicle densities as the reason for this scatter (22, 2, 23, 4, 24). A partial solution,28

in case of contiguous and homogeneous sub-regions, is partitioning (25, 26).29

This uncertainty in the estimation of the MFD under real-world traffic conditions and urban30

dynamics, might result in an inaccurate estimation of the MFD parameters - especially if31

congestion is rarely observed network-wide (27). For example, if the observed data does not32

exhibit a distinct congested branch, it is hard to determine the network capacity and critical density.33

Similarly, as the data normally comes from punctual observations out of the whole network,34

it is unclear how representative these observations might be (i.e. how much is the observed35

capacity affected by the network’s inhomogeneity). This, in turn, also leads to uncertainties and36

errors in the parametrization of the MFD for applications (e.g. traffic control), reducing the37

effectiveness of such applications. This leads to the question addressed in this paper: Given38

day-to-day fluctuations from limited and probably biased empirical data, how can the shape of39

the MFD, and especially the critical density for traffic control purposes, as well as the level of40

inhomogeneity, be accurately estimated?41

This paper proposes a novel re-sampling methodology to estimate the level of inhomogeneity42

and the critical density in urban networks under uncertain traffic conditions, even when only43

limited empirical data is available. We provide empirical evidence on the performance of the44

proposed methodology using two large data sets for the cities of Lucerne, Switzerland (1 year)45

and London, UK (3 weeks).46
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The results show that the level of inhomogeneity is lower in Lucerne than in the three areas1

of the network of London that we investigate. Moreover, we show that in the case of London, the2

capacity of the system could be increased by around 20%, under the assumption that all links3

behave in a similar manner as the 50% best links. Additionally, we illustrate how the proposed4

methodology estimates the critical density accurately for Lucerne, even when no congested5

branch of the MFD is available. All things considered, this new methodology promotes the6

concept and the use of the MFD in real world applications.7

The remainder of this paper is organized as follows. The next section introduces the re-8

sampling approach, then we present and discuss the two available data sets in detail. Thereafter9

we show the empirical results. Conclusions are given at the end.10

METHODOLOGY11

Re-sampling the MFD12

This section introduces the re-sampling method, which later will be used to estimate the critical13

density and the level of inhomogeneity in an urban network. The idea of the re-sampling method14

is to identify the most homogeneous sub-samples of all roads by first creating many random15

sub-samples of the network, estimating for each an MFD, and extracting the smooth upper bound16

from the superposition of all MFDs. When the re-sampling parameters are chosen appropriately,17

all points on the upper bound represent the most homogeneous traffic states.18

As an illustration, consider an urban road network in and around a central business district19

(CBD) with many roads and vehicles. During the morning commute, most roads are congested,20

but not all of them, e.g. arterial roads leading into the CBD are more congested than those21

leading out. The resulting averages provide an estimate on the actual mean performance of the22

road network, but not the potential performance if all links were similarly congested. Choosing23

a certain sample size and repeating the sampling many times enables to find a homogeneous24

set of roads without the need to filter the most homogeneous links manually or apply a more25

complex partitioning (which usually assumes spatial contiguity of the partitioned regions).26

The urban road network of a city is given by N directed links, where N refers to all the27

monitored links (i.e. N might be any number covering between 0 and 100% of the links in the28

network). The length of each link i is known as li. Following Geroliminis and Daganzo (18),29

the MFD is given by the length-weighted means of flow q, and density k, q =
∑

i qili/
∑

i li and30

k =
∑

i kili/
∑

i li, respectively. As previously discussed, under real conditions a network might31

not be homogeneously congested, and some links might be more congested than others. If these32

form a connected subgraph in the road network, we could partition the network as for example in33

(23). However, if these links are randomly distributed across the network and the sample varies34

with time, we can estimate the MFD as follows in order to reduce the influence of inhomogeneity35

in the measurements. We randomly sample Ω-times without replacement Ns ⊂ N , where the36

ratio Ns/N denotes the sample size as a proportion of all observations. The maximum number37

of combinations is given by the binomial coefficient C =
(

N
Ns

)
. Notice that sometimes, the38

number of possible combinations that can be considered might be limited by the computational39

resources, leading to Ω � C.40

The intuition behind this statistical sampling is simple. In the case of a network with41

homogeneous roads (i.e. all exhibiting identical fundamental diagrams) and a homogeneous42

distribution of congestion, the proof of the equivalence between the upper bound of the full sample43
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and the re-sampled upper bound is trivial. For a more realistic and therefore inhomogeneous1

network, a representative sub-sample with Ns � 0 links will never exceed the theoretical upper2

bound by Daganzo and Geroliminis (1); the sub-sample will be equal to the upper bound in case3

of perfect homogeneous congestion, and below the upper bound in all other cases. In other words,4

estimating average flows and densities for all combinations C (or a subset of Ω combinations) of5

a representative subsets of links, increases the chance of obtaining for some combinations and6

time intervals a homogeneous distribution of congestion, leading to an MFD estimate that is less7

susceptible to inhomogeneities.8

Estimating the level of inhomogeneity9

Following the re-sampling methodology, we propose a measure to estimate inhomogeneity in a10

network based on the observed capacities in the re-sampled MFD without explicitly considering11

spatial and temporal effects. This approach is different from the approaches by (22) and (23),12

which explicitly capture temporal and spatial effects. The idea is to obtain the highest capacity13

from all investigated combinations in each sample size, and calculate the relative difference in14

reference to the observed capacity of the full sample. We define this relative difference as the15

additional capacity that the network could handle if all links were to behave similarly to the best16

sub-sample of the respective sample size.17

As an illustration, imagine a perfectly homogeneous road network, where all roads carry18

the same level of traffic. It is clear that for such a case the additional capacity will be zero19

for all sample sizes. In all other cases, where roads and traffic states are inhomogeneous, we20

will observe non-zero additional capacities, as we expect that some combinations from lower21

sample sizes will exclude the constraining roads from the sample. In other words, we estimate22

the additional capacity as a function of the sample size, and propose to calculate the area below23

this function - the larger this area is, the less homogeneous the urban network is based on its24

currently observed state. Notice that the level of inhomogeneity, as defined here, is a measure25

which is relative to the reference case.26

Identifying the critical density and capacity for empirical MFDs27

Since the proposed sampling method is repeated Ω times (i.e. we take Ω sub-samples of the28

same sample size), it significantly increases the scatter and range of flow-density relationships,29

but exhibits a smooth upper bound. To identify such a stable upper bound for the re-sampled30

MFD, we use the median of the top M flow values per density bin, where M depends on the31

number of observations in each bin. We chose the median to avoid any bias due to outliers. After32

a number of empirical trials, we have defined for most cases M = 50, but it can decrease down33

to 5 when the number of observations is small. From this upper bound we define the capacity as34

the 97.5th percentile of flow to avoid also the influence of outliers. The critical density is then35

the mean density corresponding to this capacity.36

DATA37

This section presents the available data sets for the cities of Lucerne, Switzerland and London,38

UK. Both cities differ significantly in size, population, and network topology. Lucerne has39

around 80’000 inhabitants, whereas London has around 100 times as many, with a population40

density which is around twice as large. The traffic authorities of Lucerne and London operate41

an extensive network of loop detectors in their cities. Such loop detectors are mainly installed42

for traffic control and congestion identification purposes. They measure traffic flow (number43
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of vehicles passing the detector) and occupancy (fraction of time the detector is occupied by a1

vehicle) during a certain observation interval T . Due to the system design, the loop detectors2

in London are located more frequently at the upstream end of the link, while in Lucerne the3

detectors are located further downstream. For London, we use three different regions, one around4

Whitechapel (253 loop detectors), one around Fulham (93 loop detectors), and one around5

Chelsea (102 loop detectors). For Lucerne, we consider the entire downtown area (158 loop6

detectors). Figure 1 provides an overview of the two cities, and Table 1 provides some relevant7

statistics. In the following, we discuss in more detail how the data sets were prepared.8

In order to locate each detector, we geo-referenced all spatial information of the loop detector9

positions in reference to the whole road network. Connecting the network and the loops has10

several advantages. First, MFDs for arbitrary shaped perimeters can be estimated, and potential11

partitioning can be carried out. Second, attributes of the road network, e.g. road type and speed12

limit, can be linked to the loop detectors, allowing further filtering, e.g. removing residential13

roads (20) that generally have no connecting character. Third, we enriched the data with14

information on the driving direction of each lane covered by a loop detector. This allowed us to15

identify multiple detectors per lane, and remove some to avoid any duplicity. For this analysis,16

we queried the road network from OpenStreetMap. At the end, we selected for this study only17

loops located on trunk, primary, secondary, and tertiary roads.18

It is clear that empirical datasets are error prone. Both Lucerne and London have an internal19

system that detects malfunctioning loops. Nevertheless, we defined a set of rules, whose objective20

is to identify potentially malfunctioning loop detectors as in (28). We automatically identified21

measurements as false when no variation of the values were registered during a full day, 80% of22

the values were zero, either flow or occupancy were zero while the other was not (as long as23

the occupancy was smaller than 0.95), and obviously when the internal system itself reported24

an error. Additionally, we inspected each loop detector’s scatter plot and verified the results25

of the filtering. The error rate is 30% (23% internal system, 7% verification) for Lucerne and26

31% (30% internal system, 1% verification) for London. Finally, we further scrutinized the data27

by identifying outliers (29) and by reducing noise with a moving average technique (30) and28

removed time slots where less than 85% of all loop detectors provide valid measurements.29

Occupancy-density conversion30

Loop detectors measure flow and occupancy. Traffic density can be approximated from occupancy31

using a scalar conversion (31, 32, 28). The scalar corresponds to the mean vehicle length as seen32

by the detector, i.e. the sum of vehicle length and detector length (33). Hall and Persaud (32) and33

Coifman (33) showed that this scalar conversion is a good approximation with small errors in34

uncongested traffic. Even though previous research predominantly focused on highways, based35

on recent findings we assume that this scalar conversion also holds for urban networks (20). In36

the context of MFD research, values around 0.005 km have been identified for the mean vehicle37

length: 0.0053 km for Yokohama (18) and 0.0063 km for Zurich (20). We estimate the mean38

effective vehicle length in Lucerne to be 0.0063 km and for London to be 0.006 km.39

RESULTS40

In this section, we present the results of the re-sampling methodology using the data described41

above.42
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0 250 500 750 1000 m

(a) Lucerne.

0 1 2 3 4 kmFulham

Chelsea

Whitechapel

(b) London.

FIGURE 1 Regions in Lucerne and London which are analyzed. Loop detectors are
represented as black squares. Both maps are oriented towards north.
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TABLE 1 Overview of the two cities and the respective data set.

City Lucerne (CH) London (UK)

Total population 81’000 8’500’000
Total number of detectors 158 5’719
Total lane-km covered [km] 26 1’298
Aggregation interval [min] 3 5
Number of working days 258 15

Empirical MFDs1

First, let us show the full-sample MFD for all regions in London and Lucerne. Figure 2 displays2

the MFD for 258 working days (i.e. one full year) for the city of Lucerne, and 15 working days for3

Whitechapel, Chelsea, and Fulham (London) all in the respective aggregation interval (see Table4

1). Every point represents a macroscopic traffic state in terms of vehicle density and vehicle flow5

for every aggregation interval during the observation period, indicated in Table 1. All regions6

show an uncongested branch and the beginning of the congested branch. It is not surprising7

that Lucerne shows a higher level of scatter, as there are significantly more days included in8

the dataset. In addition, in a more detailed analysis, we found that some of the working days9

(less than 6%) showed a slight hysteresis. The reasons for the hysteresis loops could not be yet10

investigated, especially due to the fact that we do not have access to signal timing, nor signal11

plans. We have added the stable upper bound, as defined previously, in white squares, as well as12

a line indicating the critical density. We observe that the highest capacity is found in Fulham,13

whereas the lowest is in Whitechapel. The free flow speeds of Lucerne and Fulham are similar14

and higher than the speeds observed in the other two regions. We attribute this to the difference15

in the network topology (road hierarchy) and traffic control. More details can be found in (34).16

Remarkably, all MFDs exhibit a smooth upper bound, which supports the general theory of17

the MFD, defined as a tight upper bound relatively independent of demand. Notice also that,18

to the best of our knowledge, this is the first time that a full year MFD is estimated. It shows19

relatively little variation which indicates that empirical MFDs can indeed be used for control20

schemes and other applications demanding a long-term invariance.21

Estimating the level of inhomogeneity22

We will now discuss the first application of our re-sampling method. We follow the approach23

as outlined in the previous section. For the re-sampled MFDs we choose a total of 10 sample24

sizes (10% - 100% of the full sample), and the number of draws without replacement Ω is set to25

500. As an example, we randomly select 20% of the loop detectors of a region, create the MFDs26

thereof, and repeat this 500 times re-selecting another 20% of loop detectors each time. We then27

find the stable upper bound from the joint set of the 500 samples and derive its capacity.28

Figure 3 shows the results of measuring the level of inhomogeneity in a city. We show the29

relative capacity increases as a function of the sample size for Lucerne and the 3 different regions30

in London introduced in Figure 1. As expected, the lower the sample size, the higher the relative31

difference is. We attribute this to the fact that with smaller sample sizes, it is easier to identify32

combinations of roads that exhibit a behavior exceeding the average in terms of vehicle flow, e.g.33
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FIGURE 2 MFDs from all days in which data is available and the upper bound. Estima-
ted critical density is indicated by the vertical line.

pockets of congestion. Two issues, however, deserve some consideration: First, it is clear that a1

certain number of roads need to be included in order to have a representative and meaningful2

sub-sample for the investigated network. We set the minimal sample size to 10%. Second, the3

increases in capacity are of theoretical nature, because they would only be observed if all roads4

were to behave like the best roads in the sub-sample. For example, we see that the region around5

Whitechapel in London would have a 19% higher capacity if all roads were to behave like the6

50% best roads.7

Regarding the differences between the different regions in Figure 3, we notice that Lucerne8

has the lowest curve and therefore the smallest area below the curve (i.e. integral of the curve)9

compared to the three regions in London. Thus, we conclude that Lucerne exhibits the least10

amount of inhomogeneity from the investigated sample. We attribute this to (i) the size of11

the network, which offers only a few higher level roads, and (ii) to the limited feasible route12

alternatives that are possible in Lucerne in combination with the very limited number of OD-pairs13

within this small city. Within the investigated perimeter, the south and the north of the city are14

only connected by two bridges (see Figure 1(a)); all other bridges are pedestrian bridges. In other15

words, for the few OD combinations that exist, there are only 1 or 2 routes available, constraining16

route choice. Conversely, for the regions of the city of London, we see from the map in Figure17

1(b) that the network is connected with more higher level roads and thus, the number of feasible18

routes is larger. In other words, many route options combined with many OD-pairs increases the19

likelihood of an inhomogeneous distribution of traffic. When we calculate the area below the20

curves as an indicator for the level of inhomogeneity, we find that the areas in London are around21
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1.5 to 2 times larger than the one in Lucerne. Interestingly, the three curves for the London area1

follow the same trend, including a relatively sharp increase at the full sample size (100% sample2

size). This indicates that a few roads exist in the sample, which have a significant impact on the3

average capacity of the network. In the best case, removing the 10% worst roads (in terms of4

capacity) from the sample, theoretically increases the network capacity by around 15%.5

Notice that this approach explicitly quantifies the level of inhomogeneity from the shape of6

the MFD, without considering spatial nor temporal variations in traffic volumes and densities.7

However, the method does have some clear advantages: it is easy to use, requires very little8

inputs, and is robust to the placement bias of loop detectors (19, 20). Link-based partitioning9

methods might include such a bias if they are based on traffic densities. For the re-sampling10

method, on the other hand, we consider the spatial mean of the densities, as multiple detectors11

are included in every sample. Hence, this method represents the first of its kind for assessing12

and identifying the level of inhomogeneity in an urban road network.13
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FIGURE 3 Results of the analysis on the level of inhomogeneity. All results cover a
period of 15 consecutive weekdays.

Estimating the critical density14

The few existing MFD empirical studies show that in reality, data availability is very often limited15

and only few days can be used for analysis. Empirical studies rely on observation periods that16

may cover only several days including weekends, which show little or no congestion making an17

estimation of the critical density hard or even impossible (e.g. 18, 19, 35, 20). In the following,18

we investigate how the proposed re-sampling method performs in the estimation of the critical19

density when only limited data is available, e.g. if we have only data from 1 day, 3 consecutive20

days, or 6 consecutive days, and not all exhibit a distinct congested branch.21

Here, we focus only on the city of Lucerne and refrain from showing the same results for22

London, as the MFD for the 3 regions in London exhibits a congested branch every day. Hence,23

there is no need to apply our method for identifying the critical density. For this analysis, the24

MFD in Figure 2(a) serves as the reference MFD. The experimental set-up is similar to the25
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previous section, but now we focus on the critical density instead of the capacity.1

We choose a total of 4 sample sizes (20%, 40%, 60% and 80% of the full sample), and the2

number of draws without replacement Ω is set to 500. For a sensitivity analysis we also vary the3

observation period for each MFD estimation using either 1, 3, or 6 consecutive day(s). These4

observation periods do not include weekends. In order to apply the methodology to days where5

congestion is highly unlikely, we further included weekend days (Saturday and Sunday) as an6

observation period. We then try to determine the critical density for each of the estimated MFDs.7

As an example, we randomly select 20% of Lucerne’s loop detectors, create the MFDs thereof,8

and repeat this 500 times re-selecting another 20% of loop detectors each time for every set of 1,9

3 and 6 consecutive day(s) and the weekends. Notice that not every MFD shows a decreasing10

branch, thus it is not possible to properly determine a critical density for every estimated MFD.11

We assume that the determined value of the critical density is valid only when the MFD shows12

a decrease in flow of at least 30 veh/h (around 5% of the capacity in the observed cases) for13

densities higher than the determined value of the critical density. Figure 4 shows the results14

of the critical density estimation for the MFD of Lucerne. Figure 4(a) shows the percentage15

of successful critical density estimations, for each combination of sample size and observation16

period. In case of an observation period of 1 day, the maximum number of estimations of critical17

densities is 258, in case of 3 days that number is 86, in case of 6 days the number is 43, and18

in case of weekends 40. From the figure we first see that as we reduce the sample size, the19

percentage of days where we can properly determine the critical density increases significantly.20

As a matter of fact, we can effectively determine the critical density over 75% of the time when21

the sample size is 20% or lower and the number of available days is 1, 3 or 6 workdays. In22

addition, and not surprisingly, the more days we include in the estimation of the MFD, the more23

likely we are to observe a valid critical density. For example, if we had only 1 day of data, then24

an estimation of the critical density would only be possible during 5% of all days (13 days) using25

the full sample (100% sample size), whereas if we had 3 days of available data, we could estimate26

the critical density in 17% of all cases. For the weekend days as observation period, we find that27

it is possible to increase the fraction of valid estimations from 2% up to around 45% when we28

consider a sample size of 20%. Some of the weekend days do not show any signs of congestion,29

even at a link level. Thus, it is not possible to estimate the critical density for such days.30

These results show how our re-sampling methodology can effectively increase our ability to31

determine the critical density, even when only limited data is available, e.g. when no clearly32

congested branch is apparent in the MFD. The analysis of the weekend days, however, show that33

the network must be at least loaded with traffic to some extent, in order for our methodology to34

work.35

Given that it is possible to determine a critical density for a given day, Figure 4(b) shows the36

range of the relative errors of such densities compared to the reference critical density, identified37

from the 1-year MFD. For brevity, we only show the results for the 1 day estimates; the results38

for the 3 and 6 days look similar. In the figure, an overestimation of the critical density has a39

positive sign. Interestingly, the accuracy remains within a similar range for all sample sizes (the40

different sample sizes include the number of observations given in Figure 4(a)). In other words,41

even as we decrease the sample size to increase the number of days where we can determine the42

critical density, the error in the estimation remains approximately the same. As a matter of fact,43

we can see that for the lowest two sample sizes (20% and 40%) we only underestimate the value44

of the critical density by less than 2% in the median. To conclude, this clearly indicates that the45

re-sampling method does not only increase our ability to estimate the critical density, but also46

maintains the level of accuracy of such estimation.47
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an observation period of 1 day.

FIGURE 4 Results for the critical density estimation.

As a further validation, we compared the error distributions from the full sample and the1

re-sampling method using a Kolmogorow-Smirnov test. We found a high p-value (0.4) for all2

sample sizes indicating that they all come from the same distribution of errors.3
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DISCUSSION AND CONCLUSIONS1

In this paper we introduced a novel methodology that allows us to estimate the critical density of2

the MFD, even when no congested branch is observed, and to estimate the level of inhomogeneity3

within the network. The proposed methodology is based on the idea of re-sampling the empirical4

data set. Using an extensive data set, which included the cities of Lucerne, Switzerland, (15

year) and London, UK, (3 weeks) we provided insights on the performance and the application6

of the re-sampling method. First, using the re-sampling method, we quantified the level of7

inhomogeneity in urban networks. For London, we find that the capacity of the system could8

be increased by around 20%, under the assumption that all links behave in a similar manner as9

the 50% best links. For Lucerne this value is around 10%. We propose to estimate the level of10

inhomogeneity as the area below the curve relating the sample size and the capacity increase.11

Second, we estimated the critical density of the MFD using limited data and found that we can12

drastically increase the number of days on which an estimation is possible - even if the network13

does not show network-wide congestion every day. This is important, as very often, access is14

only given to data of a very limited time period. We showed that for the network of Lucerne, we15

can increase the fraction of days that allow an estimation of the critical density, based on data of16

1 day, from 5% to 80% while keeping a similar level of accuracy. Such robust estimation of the17

empirical critical density is crucial for many control algorithms. In summary, the re-sampling18

method presented in this paper is very promising for different application purposes of the MFD.19

It is easy to use, requires only very few inputs, and is robust against a potential placement bias in20

loop detector data.21

The proposed measure of the level of inhomogeneity gives city planners the possibility to22

analyze and quantify how efficiently their road network is utilized. This line of questions was23

started over 50 years ago by Smeed (36), but can now be evaluated in more detail with the24

availability of big data. There have been numerous studies investigating the performance of25

the network when implementing a perimeter control scheme based on the MFD. However, the26

estimation of the required critical density has not yet been discussed in an empirical context and27

only few of the cities investigated up to now, exhibit a strong congested branch. The re-sampling28

methodology proposed in this paper provides a promising approach to estimate the critical29

density empirically at large urban scale.30

Future research will concentrate on how the re-sampling method and the theoretical upper31

bound from analytical approaches relate to each other. In other words, it should address32

the question of whether we can approach the theoretical upper bound with our re-sampling33

methodology based on the findings of (2) and (22). A more detailed investigation on the spatial34

and temporal distribution of congestion could generate further interesting findings. Furthermore,35

additional insights could be gained from an application of the methodology to floating car data,36

or the fusion of multiple data sources (37). On-going studies are also evaluating the possibility37

to estimate an infrastructure potential using the MFD, and thereby deepen the understanding of38

the effects of inhomogeneous traffic in urban networks.39
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