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ABSTRACT

The uncertainty in the estimation of the macroscopic fundamental diagram (MFD) under real-

world tra�c conditions and urban dynamics, might result in an inaccurate estimation of the

MFD parameters - especially if congestion is rarely observed network-wide. For example, as

data normally comes from punctual observations out of the whole network, it is unclear how

representative these observations might be (i.e. how much is the observed capacity a�ected

by the network’s inhomogeneity). Similarly, if the observed data does not exhibit a distinct

congested branch, it is hard to determine the network capacity and critical density. This, in turn,

also leads to uncertainties and errors in the parametrization of the MFD for applications, e.g.

tra�c control.

In this paper we introduce a novel methodology to estimate (i) the level of inhomogeneity in

the network, and (ii) the critical density of the MFD, even when no congested branch is observed.

The methodology is based on the idea of re-sampling the empirical data set. Using an extensive

data set from Lucerne, Switzerland, and London, UK, we provide insights on the performance

and the application of the proposed methodology. We use the proposed methodology to illustrate

how the level of inhomogeneity is lower in Lucerne than in the three areas of the network of

London that we investigate. The proposed measure of the level of inhomogeneity gives city

planners the possibility to analyze and investigate how e�ciently their road network is utilized.

Additionally, we show that, for the network of Lucerne, the proposed methodology allows us

to accurately estimate the critical density up to 16 times more often than it would be possible

otherwise. This simple and robust estimation of the critical density is crucial for the application

of many tra�c control algorithms.



          

INTRODUCTION

Themacroscopic fundamental diagram (MFD) is the upper bound in the macroscopic �ow-density

(q-k) relationship for vehicular tra�c in an urban road network. Similar to a fundamental

diagram of a single road, MFDs are characterized by an uncongested branch and a congested

branch. In the uncongested branch, �ow increases with density, whereas in the congested branch,

�ow decreases with increasing density until gridlock is reached, and speeds drop to zero. Thus,

MFDs can be described by a combination of some of the following parameters: free �ow speed,

backward wave speed, capacity, jam density, critical density, and a smoothing parameter that

describes the change in the slope of the average speed. Notice that for control purposes, the

critical density is an important parameter, as it marks the di�erence between the congested

and the uncongested branch. The shape of the MFD is determined by the urban road structure,

tra�c control (1) and the level of inhomogeneity in the distribution of tra�c (2�4), but more

or less independent of the demand (assuming trip length remains more or less constant). New

applications have been developed exploiting the elegance of the MFD to model tra�c dynamics,

predict travel behavior, and control tra�c in urban networks (5�16), all relying on an accurate

estimation of the MFD.

The MFD can be either analytically derived or approximated from empirical data (17).

Daganzo and Geroliminis (1) proposed a semi-analytical formulation for urban networks.

However, their method relies on technical information (green times, number of links that can be

passed by a fast vehicle without stopping, etc.), which might be highly variant or not available at

all. The MFD can also be directly estimated from empirical data leading to a concave and to some

extent well-de�ned and reproducible relationship. In real road networks, however, homogeneity

is rarely found, and network-wide congestion is not always apparent. In the case where only a few

roads show a di�erent behavior than all the other roads, the observed �ow-density relationship

lies slightly below the upper bound (2). In general, empirical MFDs exhibit scatter that leads to a

range of observed �ows for any given accumulation, which leads to uncertainty in the estimation

of the descriptive parameters (18�21). Seminal studies have identi�ed the inhomogeneous spatial

distribution of vehicle densities as the reason for this scatter (22, 2, 23, 4, 24). A partial solution,

in case of contiguous and homogeneous sub-regions, is partitioning (25, 26).

This uncertainty in the estimation of the MFD under real-world tra�c conditions and urban

dynamics, might result in an inaccurate estimation of the MFD parameters - especially if

congestion is rarely observed network-wide (27). For example, if the observed data does not

exhibit a distinct congested branch, it is hard to determine the network capacity and critical density.

Similarly, as the data normally comes from punctual observations out of the whole network,

it is unclear how representative these observations might be (i.e. how much is the observed

capacity a�ected by the network’s inhomogeneity). This, in turn, also leads to uncertainties and

errors in the parametrization of the MFD for applications (e.g. tra�c control), reducing the

e�ectiveness of such applications. This leads to the question addressed in this paper: Given

day-to-day �uctuations from limited and probably biased empirical data, how can the shape of

the MFD, and especially the critical density for tra�c control purposes, as well as the level of

inhomogeneity, be accurately estimated?

This paper proposes a novel re-sampling methodology to estimate the level of inhomogeneity

and the critical density in urban networks under uncertain tra�c conditions, even when only

limited empirical data is available. We provide empirical evidence on the performance of the

proposed methodology using two large data sets for the cities of Lucerne, Switzerland (1 year)

and London, UK (3 weeks).



          

The results show that the level of inhomogeneity is lower in Lucerne than in the three areas

of the network of London that we investigate. Moreover, we show that in the case of London, the

capacity of the system could be increased by around 20%, under the assumption that all links

behave in a similar manner as the 50% best links. Additionally, we illustrate how the proposed

methodology estimates the critical density accurately for Lucerne, even when no congested

branch of the MFD is available. All things considered, this new methodology promotes the

concept and the use of the MFD in real world applications.

The remainder of this paper is organized as follows. The next section introduces the re-

sampling approach, then we present and discuss the two available data sets in detail. Thereafter

we show the empirical results. Conclusions are given at the end.

METHODOLOGY

Re-sampling the MFD

This section introduces the re-sampling method, which later will be used to estimate the critical

density and the level of inhomogeneity in an urban network. The idea of the re-sampling method

is to identify the most homogeneous sub-samples of all roads by �rst creating many random

sub-samples of the network, estimating for each an MFD, and extracting the smooth upper bound

from the superposition of all MFDs. When the re-sampling parameters are chosen appropriately,

all points on the upper bound represent the most homogeneous tra�c states.

As an illustration, consider an urban road network in and around a central business district

(CBD) with many roads and vehicles. During the morning commute, most roads are congested,

but not all of them, e.g. arterial roads leading into the CBD are more congested than those

leading out. The resulting averages provide an estimate on the actual mean performance of the

road network, but not the potential performance if all links were similarly congested. Choosing

a certain sample size and repeating the sampling many times enables to �nd a homogeneous

set of roads without the need to �lter the most homogeneous links manually or apply a more

complex partitioning (which usually assumes spatial contiguity of the partitioned regions).

The urban road network of a city is given by N directed links, where N refers to all the

monitored links (i.e. N might be any number covering between 0 and 100% of the links in the

network). The length of each link i is known as li. Following Geroliminis and Daganzo (18),

the MFD is given by the length-weighted means of �ow q, and density k, q =
˝

i qili�
˝

i li and

k =
˝

i kili�
˝

i li, respectively. As previously discussed, under real conditions a network might

not be homogeneously congested, and some links might be more congested than others. If these

form a connected subgraph in the road network, we could partition the network as for example in

(23). However, if these links are randomly distributed across the network and the sample varies

with time, we can estimate the MFD as follows in order to reduce the in�uence of inhomogeneity

in the measurements. We randomly sample 
-times without replacement Ns � N , where the

ratio Ns�N denotes the sample size as a proportion of all observations. The maximum number

of combinations is given by the binomial coe�cient C =
�

N
Ns

�
. Notice that sometimes, the

number of possible combinations that can be considered might be limited by the computational

resources, leading to 
 � C.

The intuition behind this statistical sampling is simple. In the case of a network with

homogeneous roads (i.e. all exhibiting identical fundamental diagrams) and a homogeneous

distribution of congestion, the proof of the equivalence between the upper bound of the full sample



          

and the re-sampled upper bound is trivial. For a more realistic and therefore inhomogeneous

network, a representative sub-sample with Ns � 0 links will never exceed the theoretical upper

bound by Daganzo and Geroliminis (1); the sub-sample will be equal to the upper bound in case

of perfect homogeneous congestion, and below the upper bound in all other cases. In other words,

estimating average �ows and densities for all combinations C (or a subset of 
 combinations) of

a representative subsets of links, increases the chance of obtaining for some combinations and

time intervals a homogeneous distribution of congestion, leading to an MFD estimate that is less

susceptible to inhomogeneities.

Estimating the level of inhomogeneity

Following the re-sampling methodology, we propose a measure to estimate inhomogeneity in a

network based on the observed capacities in the re-sampled MFD without explicitly considering

spatial and temporal e�ects. This approach is di�erent from the approaches by (22) and (23),

which explicitly capture temporal and spatial e�ects. The idea is to obtain the highest capacity

from all investigated combinations in each sample size, and calculate the relative di�erence in

reference to the observed capacity of the full sample. We de�ne this relative di�erence as the

additional capacity that the network could handle if all links were to behave similarly to the best

sub-sample of the respective sample size.

As an illustration, imagine a perfectly homogeneous road network, where all roads carry

the same level of tra�c. It is clear that for such a case the additional capacity will be zero

for all sample sizes. In all other cases, where roads and tra�c states are inhomogeneous, we

will observe non-zero additional capacities, as we expect that some combinations from lower

sample sizes will exclude the constraining roads from the sample. In other words, we estimate

the additional capacity as a function of the sample size, and propose to calculate the area below

this function - the larger this area is, the less homogeneous the urban network is based on its

currently observed state. Notice that the level of inhomogeneity, as de�ned here, is a measure

which is relative to the reference case.

Identifying the critical density and capacity for empirical MFDs

Since the proposed sampling method is repeated 
 times (i.e. we take 
 sub-samples of the

same sample size), it signi�cantly increases the scatter and range of �ow-density relationships,

but exhibits a smooth upper bound. To identify such a stable upper bound for the re-sampled

MFD, we use the median of the top M �ow values per density bin, where M depends on the

number of observations in each bin. We chose the median to avoid any bias due to outliers. After

a number of empirical trials, we have de�ned for most cases M = 50, but it can decrease down

to 5 when the number of observations is small. From this upper bound we de�ne the capacity as

the 97.5th percentile of �ow to avoid also the in�uence of outliers. The critical density is then

the mean density corresponding to this capacity.

DATA

This section presents the available data sets for the cities of Lucerne, Switzerland and London,

UK. Both cities di�er signi�cantly in size, population, and network topology. Lucerne has

around 80’000 inhabitants, whereas London has around 100 times as many, with a population

density which is around twice as large. The tra�c authorities of Lucerne and London operate

an extensive network of loop detectors in their cities. Such loop detectors are mainly installed

for tra�c control and congestion identi�cation purposes. They measure tra�c �ow (number



          

of vehicles passing the detector) and occupancy (fraction of time the detector is occupied by a

vehicle) during a certain observation interval T . Due to the system design, the loop detectors

in London are located more frequently at the upstream end of the link, while in Lucerne the

detectors are located further downstream. For London, we use three di�erent regions, one around

Whitechapel (253 loop detectors), one around Fulham (93 loop detectors), and one around

Chelsea (102 loop detectors). For Lucerne, we consider the entire downtown area (158 loop

detectors). Figure 1 provides an overview of the two cities, and Table 1 provides some relevant

statistics. In the following, we discuss in more detail how the data sets were prepared.

In order to locate each detector, we geo-referenced all spatial information of the loop detector

positions in reference to the whole road network. Connecting the network and the loops has

several advantages. First, MFDs for arbitrary shaped perimeters can be estimated, and potential

partitioning can be carried out. Second, attributes of the road network, e.g. road type and speed

limit, can be linked to the loop detectors, allowing further �ltering, e.g. removing residential

roads (20) that generally have no connecting character. Third, we enriched the data with

information on the driving direction of each lane covered by a loop detector. This allowed us to

identify multiple detectors per lane, and remove some to avoid any duplicity. For this analysis,

we queried the road network from OpenStreetMap. At the end, we selected for this study only

loops located on trunk, primary, secondary, and tertiary roads.

It is clear that empirical datasets are error prone. Both Lucerne and London have an internal

system that detects malfunctioning loops. Nevertheless, we de�ned a set of rules, whose objective

is to identify potentially malfunctioning loop detectors as in (28). We automatically identi�ed

measurements as false when no variation of the values were registered during a full day, 80% of

the values were zero, either �ow or occupancy were zero while the other was not (as long as

the occupancy was smaller than 0.95), and obviously when the internal system itself reported

an error. Additionally, we inspected each loop detector’s scatter plot and veri�ed the results

of the �ltering. The error rate is 30% (23% internal system, 7% veri�cation) for Lucerne and

31% (30% internal system, 1% veri�cation) for London. Finally, we further scrutinized the data

by identifying outliers (29) and by reducing noise with a moving average technique (30) and

removed time slots where less than 85% of all loop detectors provide valid measurements.

Occupancy-density conversion

Loop detectors measure �ow and occupancy. Tra�c density can be approximated from occupancy

using a scalar conversion (31, 32, 28). The scalar corresponds to the mean vehicle length as seen

by the detector, i.e. the sum of vehicle length and detector length (33). Hall and Persaud (32) and

Coifman (33) showed that this scalar conversion is a good approximation with small errors in

uncongested tra�c. Even though previous research predominantly focused on highways, based

on recent �ndings we assume that this scalar conversion also holds for urban networks (20). In

the context of MFD research, values around 0.005 km have been identi�ed for the mean vehicle

length: 0.0053 km for Yokohama (18) and 0.0063 km for Zurich (20). We estimate the mean

e�ective vehicle length in Lucerne to be 0.0063 km and for London to be 0.006 km.

RESULTS

In this section, we present the results of the re-sampling methodology using the data described

above.
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(b) London.

FIGURE 1 Regions in Lucerne and London which are analyzed. Loop detectors are
represented as black squares. Both maps are oriented towards north.



          

TABLE 1 Overview of the two cities and the respective data set.

City Lucerne (CH) London (UK)

Total population 81’000 8’500’000
Total number of detectors 158 5’719
Total lane-km covered [km] 26 1’298
Aggregation interval [min] 3 5
Number of working days 258 15

Empirical MFDs

First, let us show the full-sample MFD for all regions in London and Lucerne. Figure 2 displays

the MFD for 258 working days (i.e. one full year) for the city of Lucerne, and 15 working days for

Whitechapel, Chelsea, and Fulham (London) all in the respective aggregation interval (see Table

1). Every point represents a macroscopic tra�c state in terms of vehicle density and vehicle �ow

for every aggregation interval during the observation period, indicated in Table 1. All regions

show an uncongested branch and the beginning of the congested branch. It is not surprising

that Lucerne shows a higher level of scatter, as there are signi�cantly more days included in

the dataset. In addition, in a more detailed analysis, we found that some of the working days

(less than 6%) showed a slight hysteresis. The reasons for the hysteresis loops could not be yet

investigated, especially due to the fact that we do not have access to signal timing, nor signal

plans. We have added the stable upper bound, as de�ned previously, in white squares, as well as

a line indicating the critical density. We observe that the highest capacity is found in Fulham,

whereas the lowest is in Whitechapel. The free �ow speeds of Lucerne and Fulham are similar

and higher than the speeds observed in the other two regions. We attribute this to the di�erence

in the network topology (road hierarchy) and tra�c control. More details can be found in (34).

Remarkably, all MFDs exhibit a smooth upper bound, which supports the general theory of

the MFD, de�ned as a tight upper bound relatively independent of demand. Notice also that,

to the best of our knowledge, this is the �rst time that a full year MFD is estimated. It shows

relatively little variation which indicates that empirical MFDs can indeed be used for control

schemes and other applications demanding a long-term invariance.

Estimating the level of inhomogeneity

We will now discuss the �rst application of our re-sampling method. We follow the approach

as outlined in the previous section. For the re-sampled MFDs we choose a total of 10 sample

sizes (10% - 100% of the full sample), and the number of draws without replacement 
 is set to

500. As an example, we randomly select 20% of the loop detectors of a region, create the MFDs

thereof, and repeat this 500 times re-selecting another 20% of loop detectors each time. We then

�nd the stable upper bound from the joint set of the 500 samples and derive its capacity.

Figure 3 shows the results of measuring the level of inhomogeneity in a city. We show the

relative capacity increases as a function of the sample size for Lucerne and the 3 di�erent regions

in London introduced in Figure 1. As expected, the lower the sample size, the higher the relative

di�erence is. We attribute this to the fact that with smaller sample sizes, it is easier to identify

combinations of roads that exhibit a behavior exceeding the average in terms of vehicle �ow, e.g.
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FIGURE 2 MFDs from all days in which data is available and the upper bound. Estima-
ted critical density is indicated by the vertical line.

pockets of congestion. Two issues, however, deserve some consideration: First, it is clear that a

certain number of roads need to be included in order to have a representative and meaningful

sub-sample for the investigated network. We set the minimal sample size to 10%. Second, the

increases in capacity are of theoretical nature, because they would only be observed if all roads

were to behave like the best roads in the sub-sample. For example, we see that the region around

Whitechapel in London would have a 19% higher capacity if all roads were to behave like the

50% best roads.

Regarding the di�erences between the di�erent regions in Figure 3, we notice that Lucerne

has the lowest curve and therefore the smallest area below the curve (i.e. integral of the curve)

compared to the three regions in London. Thus, we conclude that Lucerne exhibits the least

amount of inhomogeneity from the investigated sample. We attribute this to (i) the size of

the network, which o�ers only a few higher level roads, and (ii) to the limited feasible route

alternatives that are possible in Lucerne in combination with the very limited number of OD-pairs

within this small city. Within the investigated perimeter, the south and the north of the city are

only connected by two bridges (see Figure 1(a)); all other bridges are pedestrian bridges. In other

words, for the few OD combinations that exist, there are only 1 or 2 routes available, constraining

route choice. Conversely, for the regions of the city of London, we see from the map in Figure

1(b) that the network is connected with more higher level roads and thus, the number of feasible

routes is larger. In other words, many route options combined with many OD-pairs increases the

likelihood of an inhomogeneous distribution of tra�c. When we calculate the area below the

curves as an indicator for the level of inhomogeneity, we �nd that the areas in London are around



          

1.5 to 2 times larger than the one in Lucerne. Interestingly, the three curves for the London area

follow the same trend, including a relatively sharp increase at the full sample size (100% sample

size). This indicates that a few roads exist in the sample, which have a signi�cant impact on the

average capacity of the network. In the best case, removing the 10% worst roads (in terms of

capacity) from the sample, theoretically increases the network capacity by around 15%.

Notice that this approach explicitly quanti�es the level of inhomogeneity from the shape of

the MFD, without considering spatial nor temporal variations in tra�c volumes and densities.

However, the method does have some clear advantages: it is easy to use, requires very little

inputs, and is robust to the placement bias of loop detectors (19, 20). Link-based partitioning

methods might include such a bias if they are based on tra�c densities. For the re-sampling

method, on the other hand, we consider the spatial mean of the densities, as multiple detectors

are included in every sample. Hence, this method represents the �rst of its kind for assessing

and identifying the level of inhomogeneity in an urban road network.
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FIGURE 3 Results of the analysis on the level of inhomogeneity. All results cover a
period of 15 consecutive weekdays.

Estimating the critical density

The few existing MFD empirical studies show that in reality, data availability is very often limited

and only few days can be used for analysis. Empirical studies rely on observation periods that

may cover only several days including weekends, which show little or no congestion making an

estimation of the critical density hard or even impossible (e.g. 18, 19, 35, 20). In the following,

we investigate how the proposed re-sampling method performs in the estimation of the critical

density when only limited data is available, e.g. if we have only data from 1 day, 3 consecutive

days, or 6 consecutive days, and not all exhibit a distinct congested branch.

Here, we focus only on the city of Lucerne and refrain from showing the same results for

London, as the MFD for the 3 regions in London exhibits a congested branch every day. Hence,

there is no need to apply our method for identifying the critical density. For this analysis, the

MFD in Figure 2(a) serves as the reference MFD. The experimental set-up is similar to the



          

previous section, but now we focus on the critical density instead of the capacity.

We choose a total of 4 sample sizes (20%, 40%, 60% and 80% of the full sample), and the

number of draws without replacement 
 is set to 500. For a sensitivity analysis we also vary the

observation period for each MFD estimation using either 1, 3, or 6 consecutive day(s). These

observation periods do not include weekends. In order to apply the methodology to days where

congestion is highly unlikely, we further included weekend days (Saturday and Sunday) as an

observation period. We then try to determine the critical density for each of the estimated MFDs.

As an example, we randomly select 20% of Lucerne’s loop detectors, create the MFDs thereof,

and repeat this 500 times re-selecting another 20% of loop detectors each time for every set of 1,

3 and 6 consecutive day(s) and the weekends. Notice that not every MFD shows a decreasing

branch, thus it is not possible to properly determine a critical density for every estimated MFD.

We assume that the determined value of the critical density is valid only when the MFD shows

a decrease in �ow of at least 30 veh/h (around 5% of the capacity in the observed cases) for

densities higher than the determined value of the critical density. Figure 4 shows the results

of the critical density estimation for the MFD of Lucerne. Figure 4(a) shows the percentage

of successful critical density estimations, for each combination of sample size and observation

period. In case of an observation period of 1 day, the maximum number of estimations of critical

densities is 258, in case of 3 days that number is 86, in case of 6 days the number is 43, and

in case of weekends 40. From the �gure we �rst see that as we reduce the sample size, the

percentage of days where we can properly determine the critical density increases signi�cantly.

As a matter of fact, we can e�ectively determine the critical density over 75% of the time when

the sample size is 20% or lower and the number of available days is 1, 3 or 6 workdays. In

addition, and not surprisingly, the more days we include in the estimation of the MFD, the more

likely we are to observe a valid critical density. For example, if we had only 1 day of data, then

an estimation of the critical density would only be possible during 5% of all days (13 days) using

the full sample (100% sample size), whereas if we had 3 days of available data, we could estimate

the critical density in 17% of all cases. For the weekend days as observation period, we �nd that

it is possible to increase the fraction of valid estimations from 2% up to around 45% when we

consider a sample size of 20%. Some of the weekend days do not show any signs of congestion,

even at a link level. Thus, it is not possible to estimate the critical density for such days.

These results show how our re-sampling methodology can e�ectively increase our ability to

determine the critical density, even when only limited data is available, e.g. when no clearly

congested branch is apparent in the MFD. The analysis of the weekend days, however, show that

the network must be at least loaded with tra�c to some extent, in order for our methodology to

work.

Given that it is possible to determine a critical density for a given day, Figure 4(b) shows the

range of the relative errors of such densities compared to the reference critical density, identi�ed

from the 1-year MFD. For brevity, we only show the results for the 1 day estimates; the results

for the 3 and 6 days look similar. In the �gure, an overestimation of the critical density has a

positive sign. Interestingly, the accuracy remains within a similar range for all sample sizes (the

di�erent sample sizes include the number of observations given in Figure 4(a)). In other words,

even as we decrease the sample size to increase the number of days where we can determine the

critical density, the error in the estimation remains approximately the same. As a matter of fact,

we can see that for the lowest two sample sizes (20% and 40%) we only underestimate the value

of the critical density by less than 2% in the median. To conclude, this clearly indicates that the

re-sampling method does not only increase our ability to estimate the critical density, but also

maintains the level of accuracy of such estimation.
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(b) Errors in the critical density estimation using the re-sampling methodology for
an observation period of 1 day.

FIGURE 4 Results for the critical density estimation.

As a further validation, we compared the error distributions from the full sample and the

re-sampling method using a Kolmogorow-Smirnov test. We found a high p-value (0.4) for all

sample sizes indicating that they all come from the same distribution of errors.



          

DISCUSSION AND CONCLUSIONS

In this paper we introduced a novel methodology that allows us to estimate the critical density of

the MFD, even when no congested branch is observed, and to estimate the level of inhomogeneity

within the network. The proposed methodology is based on the idea of re-sampling the empirical

data set. Using an extensive data set, which included the cities of Lucerne, Switzerland, (1

year) and London, UK, (3 weeks) we provided insights on the performance and the application

of the re-sampling method. First, using the re-sampling method, we quanti�ed the level of

inhomogeneity in urban networks. For London, we �nd that the capacity of the system could

be increased by around 20%, under the assumption that all links behave in a similar manner as

the 50% best links. For Lucerne this value is around 10%. We propose to estimate the level of

inhomogeneity as the area below the curve relating the sample size and the capacity increase.

Second, we estimated the critical density of the MFD using limited data and found that we can

drastically increase the number of days on which an estimation is possible - even if the network

does not show network-wide congestion every day. This is important, as very often, access is

only given to data of a very limited time period. We showed that for the network of Lucerne, we

can increase the fraction of days that allow an estimation of the critical density, based on data of

1 day, from 5% to 80% while keeping a similar level of accuracy. Such robust estimation of the

empirical critical density is crucial for many control algorithms. In summary, the re-sampling

method presented in this paper is very promising for di�erent application purposes of the MFD.

It is easy to use, requires only very few inputs, and is robust against a potential placement bias in

loop detector data.

The proposed measure of the level of inhomogeneity gives city planners the possibility to

analyze and quantify how e�ciently their road network is utilized. This line of questions was

started over 50 years ago by Smeed (36), but can now be evaluated in more detail with the

availability of big data. There have been numerous studies investigating the performance of

the network when implementing a perimeter control scheme based on the MFD. However, the

estimation of the required critical density has not yet been discussed in an empirical context and

only few of the cities investigated up to now, exhibit a strong congested branch. The re-sampling

methodology proposed in this paper provides a promising approach to estimate the critical

density empirically at large urban scale.

Future research will concentrate on how the re-sampling method and the theoretical upper

bound from analytical approaches relate to each other. In other words, it should address

the question of whether we can approach the theoretical upper bound with our re-sampling

methodology based on the �ndings of (2) and (22). A more detailed investigation on the spatial

and temporal distribution of congestion could generate further interesting �ndings. Furthermore,

additional insights could be gained from an application of the methodology to �oating car data,

or the fusion of multiple data sources (37). On-going studies are also evaluating the possibility

to estimate an infrastructure potential using the MFD, and thereby deepen the understanding of

the e�ects of inhomogeneous tra�c in urban networks.
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