
DISS. ETH NO. 24150

PERTURBATION THEORY FOR
STEADY-STATE LAPLACIAN MODELS OF

BIOLOGICAL SYSTEMS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

PENCHO STEFANOV YORDANOV

M. Sc. in Molecular Life Science, Jacobs University Bremen, Germany

born on 12.10.1987

citizen of
the Republic of Bulgaria

accepted on the recommendation of

Prof. Dr. Jörg Stelling, examiner
Prof. Dr. Mustafa Khammash, co-examiner

Prof. Dr. Jeremy Gunawardena, co-examiner

2017



ii



Summary

A fundamental problem in fields such as systems biology and pharmacology is to
determine how biological systems change their dose-response behaviour upon ex-
ternal or natural perturbations. A comprehensive understanding of this relation
through the effects of topologies, reactions, and parameters on the response is in-
valuable when designing, analysing, and identifying biological processes. However,
the characterisation of said relation is frequently challenged by the complexity,
topological and parametric uncertainty, multiple levels of organisation, and het-
erogeneity inherent to biology. We address these challenges through the lens of
the classical steady-state Laplacian models, which are mathematical models with
only zero and (pseudo) first order mass-action reactions. Laplacian models have
found countless applications in biology since, frequently, they can be obtained
from non-linear models using time-scale separation, and due to their analytical
tractability, i.e. that a closed form of their steady-states always exists. Despite
their apparent simplicity, Laplacian models suffer from the (super) exponential
growth of the size of their steady-state expressions that makes the symbolic anal-
ysis of models of even moderate sizes practically impossible.

This thesis develops theory and methods to study how perturbations in steady-
state Laplacian models of biological systems translate to dose-response relations,
while accounting for biological complexity, uncertainty, and heterogeneity.

First, in Chapter 3, we lay the theoretical groundwork of the thesis by inves-
tigating the factorisation properties of an important class of polynomials, the so
called Kirchhoff polynomials, which link the topology of Laplacian models, ex-
pressed through directed graphs, to their symbolic steady-state expressions. We
reveal the intimate connection between combinatorial properties of the digraph
representation of Laplacian models and its corresponding Kirchhoff polynomial.
Specifically, we devise digraph decomposition rules corresponding to factorisation
steps of the Kirchhoff polynomial and provide necessary and sufficient primality
conditions for the resulting factors expressed through connectivity properties of
the decomposed components. As a result we propose a linear time algorithm for
the prime factorisation of Kirchhoff polynomials based on directed graph connec-
tivity properties.

In Chapter 4 we employ the prime factorisation algorithm to develop a frame-
work for the efficient manipulation and generation of expressions of Kirchhoff
polynomials, which result from steady-state derivations for Laplacian models. To
manipulate such expressions we transform them to a coarse-grained represen-
tation which can easily be symbolically handled. To generate such expressions
we propose two heuristic algorithms producing compressed Kirchhoff polynomi-
als. Thereby we demonstrate that, contrary to prior belief, Kirchhoff polynomial
generation is not restricted by the (super) exponentially growing size of the poly-

iii



Summary

nomials but, rather, by the connectivity properties of their corresponding directed
graphs.

In Chapter 5 we proceed to study the relative differences between dose-response
curves produced by a reference and a perturbed steady-state Laplacian model. We
exploit the connectivity properties of the directed graph representation of Lapla-
cian models to identify equivalence classes of models, reliably reject improbable
hypothetical models, and determine how perturbations in topology and parame-
ters affect the dose-response, all in a parameter-free manner.

Finally, in Chapter 6 we formulate a framework to search for a minimal model
of interferon type I differential signalling. The framework accounts for topological
uncertainty by investigating an ensemble of hypothetical models and ranking them
with respect to experimental dose-response data using Bayesian model compari-
son, and for parametric uncertainty by employing Bayesian parameter inference.
Each considered model is a simple multi-scale threshold model that incorporates
at its core a steady-state Laplacian submodel determining the number of active in-
terferon receptors resulting from interferon stimulation, includes receptor number
cell-to-cell variability, and produces the proportion of alive cells in a population
resulting from interferon-induced activities. As a result we demonstrate that the
minimal sufficient mechanisms explaining differential signalling are receptor as-
sembly, receptor endocytosis and recycling, and inhibition by the factor USP18.
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Zusammenfassung

Ein grundlegendes Problem in Fachgebieten wie der Systembiologie und der Phar-
makologie ist es zu bestimmen, wie biologische Systeme ihr Dosis-Wirkungs-
Verhalten aufgrund äußerer oder natürlicher Störungen ändern. Ein umfassendes
Verständnis dieser Beziehung durch den Einfluss von Topologien, Reaktionen
und Parametern ist von unschätzbarem Wert, wenn es darum geht, biologis-
che Prozesse zu entwerfen, zu analysieren und zu identifizieren. Jedoch wird
die Charakterisierung dieser Beziehung häufig durch die Komplexität, die topol-
ogische und parametrische Unsicherheit, die verschiedenen Organisationsstufen
und die der Biologie innewohnende Heterogenität in Frage gestellt. Wir begegnen
diesen Herausforderungen durch Anwendung von klassischen, stationären Laplace-
Modellen, welche mathematischen Modelle mit Massenwirkungsreaktionen von
nullter und (pseudo-) erster Ordnung sind. Laplace-Modelle haben unzählige
Anwendungen in der Biologie gefunden, da sie häufig aus nichtlinearen Mod-
ellen unter Verwendung der Zeitskalen-Trennung erhalten werden können, und
aufgrund ihrer analytischen Lösbarkeit, d.h. dass eine geschlossene Form ihres
einzigen stationären Zustands immer existiert. Trotz ihrer scheinbaren Einfach-
heit leiden Laplace-Modelle an (super-) exponentiell wachsenden Steady-State-
Ausdrücken, was die symbolische Analyse von Modellen ab moderater Größe
praktisch unmöglich macht.

Diese Doktorarbeit entwickelt Theorie und Methoden, um zu untersuchen, wie
sich Perturbationen in Steady-State Laplace-Modelle von biologischen Systemen
in Dosis-Wirkungs-Beziehungen übersetzen, unter Berücksichtigung der biologis-
chen Komplexität, Ungewissheit und Heterogenität.

Zunächst werden im Kapitel 3 die theoretischen Grundlagen der Arbeit geschaf-
fen, indem wir die Faktorisierungseigenschaften einer wichtigen Klasse von Poly-
nomen untersuchen, die sogenannten Kirchhoff-Polynome, die die Topologie der
Laplace-Modelle, dargestellt durch gerichtete Graphen, mit ihren symbolischen
Steady-State-Ausdrücken verknüpfen. Wir zeigen die enge Verbindung zwis-
chen kombinatorischen Eigenschaften der Darstellung von Laplace-Modellen als
gerichteten Graphen und dementsprechendem Kirchhoff-Polynom. Insbesondere
entwickeln wir Zerlegungsregeln für gerichtete Graphen, die den Faktorisierungss-
chritten des Kirchhoff-Polynoms entsprechen, und liefern notwendige und hinre-
ichende Unreduzierbarkeitbedingungen für die resultierenden Faktoren, die durch
die zusammenhängenden Eigenschaften der zersetzten Komponenten repräsen-
tiert werden. Als Ergebnis schlagen wir einen linearen Zeitalgorithmus für die
Primfaktorisierung von Kirchhoff-Polynomen basierend auf gerichteten Graphen-
zusammenhangseigenschaften vor.

Im Kapitel 4 verwenden wir den Primfaktorisierungsalgorithmus, um ein Rah-
menkonzept für die effiziente Manipulation und Erzeugung von Ausdrücken von
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Zusammenfassung

Kirchhoff-Polynomen zu entwickeln, die aus stationären Ableitungen für Laplace-
Modelle resultieren. Um solche Ausdrücke zu manipulieren, verwandeln wir sie
in eine grobkörnige Darstellung, die leicht symbolisch gehandhabt werden kann.
Um solche Ausdrücke zu generieren, schlagen wir zwei heuristische Algorithmen
vor, die komprimierte Kirchhoff-Polynome erzeugen. Dabei zeigen wir, dass die
Kirchhoff-Polynomerzeugung, entgegen der bisherigen überzeugung, nicht durch
die (super-) exponentiell wachsende Größe der Polynome, sondern durch die Kon-
nektivitätseigenschaften ihrer entsprechenden gerichteten Graphen beschränkt ist.

Im Kapitel 5 werden die relativen Unterschiede zwischen den Dosis-Wirkungs-
Kurven, die durch ein Referenz- und ein perturbiertes Steady-State Laplace-
Modell erzeugt werden, untersucht. Wir nutzen die Konnektivitätseigenschaften
der gerichteten Graphendarstellung von Laplace-Modellen, um äquivalenzk-
lassen von Modellen zu identifizieren, unwahrscheinliche, hypothetische Modelle
zuverlässig zurückzuweisen und zu bestimmen, wie Perturbationen von der
Topologie und den Parametern die Dosisantwort beeinflussen, und zwar in einer
parameter-freien Weise.

Schließlich formulieren wir im Kapitel 6 ein Rahmenkonzept, um nach einem
minimalen Modell der Interferon-Typ-I-Differentialsignalisierung zu suchen. Das
Modell berücksichtigt topologische Unsicherheit, indem er ein Ensemble von hypo-
thetischen Modellen untersucht und in Bezug auf experimentelle Dosis-Wirkungs-
Daten unter Verwendung des Bayes’schen Modellvergleichs und für parametrische
Unsicherheit unter Verwendung der Bayes’schen Parameter-Schlußfolgerung klas-
sifiziert. Jedes betrachtete Modell ist ein einfaches mehrstufiges Schwellenmodell,
das in seinem Kern ein stationäres Laplace-Submodell enthält, das die Anzahl der
aktiven Interferonrezeptoren bei der Interferonstimulation bestimmt, Zell-zu-Zell-
Variabilität der Rezeptorenzahl einschließt und den aus Interferon-induzierten
Aktivitäten resultierten Anteil der Lebendzellen in einer Population produziert.
Als Ergebnis zeigen wir, dass die minimal ausreichenden Mechanismen, die die
differentielle Signalisierung erklären, die Rezeptorzusammenstellung, die Rezep-
torendozytose und Recycling und die Inhibition durch den Faktor USP18 sind.
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1
Introduction

1.1 Structure to Function Mapping in Biology

One of the most fundamental tenets in biology is that structure and function
are tightly coupled. This notion coheres with the principles of evolution that,
in general, biological structures are adaptations, that is, they have evolved over
time through the process of natural selection to perform functions necessary for
survival. The intertwining of structure and function is manifested at all levels of
biological self-organization, from the molecular, through the cellular, organismic,
and population level, to the ecosystem level. There are plenty of examples in
literature demonstrating how molecular structure determines function, one of the
classics being the binding of oxygen to haemoglobin. Particularly, upon oxygena-
tion the structure of haemoglobin is stabilised to a high affinity state for sub-
sequent oxygen binding which results in a cooperative behaviour and ultimately
to efficient oxygen transportation from the lungs to peripheral tissues (Fersht,
1999). Characterising the causal relationship between structure and function on
the molecular level as in the example of haemoglobin is a significant challenge
by itself. However, climbing up the ladder of biological organisation, we need to
investigate structure and function on a systems level, defined by interactions and
dynamics rather than molecular parts in isolation (Kitano, 2002). In doing so
we encounter a plethora of challenges, a central one being emergence of function,
which is best characterised by the famous quote from Aristotle – “The whole is
greater than the sum of its parts”. More precisely, this is the phenomenon in
which smaller and simpler entities combine through interactions to non-trivially
produce a larger entity capable of a functionality much richer than the functional-
ities of the individual parts. An instance of interest for this thesis are biochemical
signalling networks, which are composed of a network of interacting molecules
with various binding and catalytic properties, but exhibit higher level functions
such as integration of signals across multiple time scales and generation of dis-
tinct outputs depending on input type, strength, and duration (Bhalla & Iyengar,
1999).

1



1 Introduction

Structure Function

R
ef
er
en
ce

S
y
st
em

P
er
tu
rb
ed

S
y
st
em

Relative Difference

dose

re
sp
o
n
se

7!

dose

re
sp
o
n
se

7!

dose

re
sp
o
n
se

Figure 1.1: The typical process of structure to function mapping in systems bi-
ology. The response of a perturbed system is compared to the response of a
reference system to determine relative functional changes revealing the func-
tional role of the perturbed entity.

The art of investigating biochemical signalling networks using the system-level
approach, as is aimed in the field of systems biology (Kitano, 2002), is to thor-
oughly understand the intimate relation between topology and dynamics of molec-
ular interactions (which we define in this thesis as “structure”), and the signal pro-
cessing functions they accomplish. The detailed characterisation of this relation
would not only quench our thirst for knowledge but also provide means to control,
design, and repair signalling networks in our quest to treat complex diseases. The
essential tool to study and reverse-engineer structure-function relationships is that
of system perturbation as illustrated in Figure 1.1. For instance, a biochemical
system can be perturbed by changing its environmental stimuli, knocking down a
gene, inhibiting a reaction with a drug, or considering the disease state of a cell.
Such alterations could lead to a modified function which, when contrasted to the
response of the unperturbed system (also called reference), helps us build-up the
structure-function mapping from context-specific relative responses. Comparisons
between reference and perturbed states are not only a figment of human exper-
imentation but can also serve a “natural” purpose. Notably, cells perform such
fold-change comparisons to reliably trigger vital responses despite cellular noise
as it has been shown for Wnt signalling (Goentoro & Kirschner, 2009).

1.2 Major Challenges

A single perturbation experiment is usually not sufficient to elucidate the complex
structure-function relationships in biochemical systems. Rather, a detailed char-
acterisation requires, as illustrated in Figure 1.2, an iterative process in which the
(perturbed) function of a biological entity is measured to produce data, whose in-
terpretation can be used to design new (perturbation) experiments, and so forth,
until satisfactory understanding of the structure-function mapping is obtained
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Figure 1.2: The main phases and challenges of the iterative process to gain
understanding of structure-function relationships in biological systems.

(Kreutz & Timmer, 2009; Busetto et al., 2013; Molinelli et al., 2013). This pro-
cess is riddled with challenges due to the inherent complexity of biological systems
and their multiple levels of organisation. Namely, complex biochemical networks
comprise a multitude of different components which are coupled through dynamic
interactions. Additionally, the abundance of components among single cells in a
population could greatly vary due to noise of intrinsic or extrinsic origin (Elowitz
et al., 2002). With the aid of modern data acquisition techniques, these charac-
teristics of biological systems translate to vast amounts of data. However, the
data is generally incomplete since, at present time, many of the components and
interactions cannot be measured, and are uncertain due to measurement errors
and molecular noise.

To extract the essence of such complex, yet incomplete and uncertain data,
and to understand the structural mechanisms that generated it requires adequate
mathematical models and formalisms. However, model building and analysis are
directly influenced by the quality and quantity of available data. For example,
multiple model hypotheses have to be considered to account for incomplete and
uncertain data sets. It is not always clear how to generate these hypotheses and
frequently they are set up depending on the subjective understanding of the mod-
eller. Another challenge, falls into the domain of model selection, that is, choosing
the model hypothesis which offers the best description of a given biological sys-
tem. Accomplishing this is often computationally expensive and in many model
selection approaches heavily depends on the complexity of the likelihood function
(a function measuring the support for a model provided by the data for a set of
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parameter values) (Kirk et al., 2013). Further, large and complex data sets lead
to models which are too complicated for analysis in closed form and heavily rely
on computer simulations, which additionally complicates the comparison of the
competing hypotheses (Toni & Stumpf, 2010). Large dynamical models of bio-
chemical signalling networks also suffer from a large number of free parameters,
and a combinatorial explosion in the number of states they incorporate (Danos
et al., 2007). This complicates even their numerical analysis due to the compu-
tationally costly exploration of high-dimensional parameter spaces with complex
geometry that is necessary for model selection and parameter inference (Zamora-
Sillero et al., 2011).

1.3 Context and Motivation

This thesis is devoted to the study of the relationship between biochemical
networks’ structure, expressed through steady-state models containing a set of
biochemical species that interact through reactions with exclusively zero and
(pseudo) first order mass-action kinetics (Poland, 1989), which we call steady-
state Laplacian models, and the dose-response relationships they produce. For
instance, dose-response relationships in this context are generated when a ligand
with constant concentration modulates the rate constant of a reaction which
leads to changes in the steady-state concentration of a biochemical species.

Laplacian models have a long history of success stories staring from the early
years of studying enzyme kinetics, when King & Altman (1956) introduced their
structural method to derive rate-laws of enzyme-catalysed reactions, going though
various applications for allosteric enzymes, G-protein coupled receptors, ion chan-
nels, post-translational modification (Gunawardena, 2012), and lasting until the
present day, notably in studying non-equilibrium gene-regulation (Ahsendorf
et al., 2014; Estrada et al., 2016). Their enormous success is not only due to the
analysis power coming with their linearity (no second or higher order kinetics are
allowed), but also because they can be obtained from more complicated models
by applying the time-scale separation technique (Gunawardena, 2014).

We are interested to obtain a theoretical understanding of how perturbations in
the structure of steady-state Laplacian models translate to relative differences in
the dose-response relations they generate, and simultaneously to account for the
complexity, uncertainty, and heterogeneity inherent to the investigation of bio-
chemical networks and their accompanying data. Laplacian models are suitable
for this purpose since they possess a rare property – closed form solutions for their
steady-states always exist (Gunawardena, 2012). Thereby, they provide a direct,
analytically tractable connection between model structure and the steady-state
response it produces. The cornerstone for establishing the aforesaid connection
is Tutte’s Matrix-Tree Theorem (Tutte, 1948). It reveals the intimate relation
between a matrix representation of Laplacian models, the so called graph Lapla-
cian matrix, and a graph theoretical representation, that of subgraphs of labelled
directed graphs (digraphs) called arborescences (or also termed rooted directed
spanning trees).
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1.3 Context and Motivation

Briefly, Laplacian models can be represented as labelled digraphs in which ver-
tices describe model species and edges are reactions with rate constants contained
in the corresponding edge labels. The Laplacian matrix representation can be
obtained by expressing the dynamics of the model in the Ordinary Differential
Equation (ODE) framework, and the steady-state of the model is completely de-
termined by its kernel. On the other hand, when edge labels of the digraph
representation are regarded as variables, then the set of all arborescences can be
algebraically encoded in a polynomial form, a homogeneous multivariate polyno-
mial called the Kirchhoff polynomial (Chung & Yang, 2000). Additionally, the
same polynomial can be obtained by symbolically deriving all (j, j)-minors of the
graph Laplacian matrix and summing them up, a crucial step for deriving the
steady-state of the system (for details see Chapter 2). Thereby, Kirchhoff polyno-
mials become mediators between the structure of a model, in terms of its digraph
representation, and its function, expressed through its steady-state.

However, despite their apparent simplicity, Laplacian models are not ready to
meet the challenges of complex and uncertain data. The first reason concerns
the poor scaling of the available steady-state derivation and analysis techniques.
Namely, although closed form solutions always exist, it is often impractical to
obtain and manipulate them due to the typically (super) exponential growth
in the length of Kirchhoff polynomials, precluding handling of even Laplacian
models of moderate size. The second reason relates to the undeveloped integration
of Laplacian models with uncertain and heterogeneous data sets. This would
require the application of model comparison and parameter inference approaches,
as well as, the incorporation of the models into multi-scale models when cell-to-
cell variation in a population is studied. The recently introduced mathematical
rigour into Laplacian models of biological systems (Gunawardena, 2012; Mirzaev
& Gunawardena, 2013) paves the way for further theoretical developments in
order to meet these challenges.

With regards to the function generated by biochemical systems modelled in the
Laplacian framework, as previously briefly remarked, we consider steady-state
dose-response curves in which the dose is a reaction rate constant modulated
by an input, e.g. a ligand with a constant concentration, and the response is a
quantity, e.g. proportion of alive cells in a population, connected to the steady-
state of a model species. Experimentally obtained dose-response curves are a
classical and widely used apparatus to study input-output relations in biochemical
systems (Tallarida & Jacob, 2012). Usually, a reference dose-response curve,
e.g. coming from a control experiment, is compared to the dose-response curve
generated by a perturbed system to answer questions as diverse as what the
optimal dosage of a drug is by calculating its therapeutic index, and how ligands
with similar structure reliably trigger diverse cellular responses (Jaitin et al.,
2006). However, traditional methods concentrate on studying and comparing
sigmoid dose-response curves, while for non-monotone, or else termed hormetic,
dose-response relationships which are also common (Mattson & Calabrese, 2009),
comparison and analysis methods are still lacking.
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1 Introduction

1.4 Contributions of This Thesis

In this thesis we develop theoretical and practical tools to characterise the re-
lationship between model structure and produced dose-response in the realm of
Laplacian models under perturbation, and in the context of data heterogeneity
and uncertainty.

First, in Chapter 2, we formally introduce the main concepts and definitions
relevant for this thesis.

In Chapter 3 we show how to obtain the prime factorisation of Kirchhoff polyno-
mials using combinatorial properties of digraphs such as strong connectivity and
vertex domination. In particular, we provide digraph decomposition rules that
correspond to factorisation steps of the polynomial, and also give necessary and
sufficient primality conditions of the resulting factors expressed by connectivity
properties of the corresponding decomposed components. Thereby, we obtain a
linear time algorithm for decomposing a digraph into components corresponding
to factors of the initial polynomial, and a guarantee that no finer factorisation is
possible.

In Chapter 4, based on the Kirchhoff polynomial factorisation theory from
Chapter 3, we develop a framework for the efficient manipulation and generation
of expressions of Kirchhoff polynomials that result from steady-state derivations
for Laplacian models. In the manipulation part we devise criteria to efficiently test
the equality of Kirchhoff polynomials through their corresponding digraphs. By
prime decomposing the digraphs contained in an expression of Kirchhoff polyno-
mials and identifying the digraphs giving rise to equal polynomials, we formulate
a coarse-grained variant of the expression which is suitable for symbolic simplifi-
cation. In the generation part we introduce two heuristic algorithms to explicitly
generate individual Kirchhoff polynomials in a compressed form. The algorithms
are inspired by algebraic simplification of polynomials but operate on the cor-
responding digraphs. We demonstrate that Kirchhoff polynomial generation is
dependent on digraph connectivity and not, as earlier believed, on the (super)
exponentially growing number of arborescences.

The theoretical and practical basis built-up by the previous two chapters al-
lows us, in Chapter 5, to formulate a framework to study the relative differences
between reference and perturbed dose-response curves, which we call differential
responses, generated by Laplacian models. More precisely, we exploit the con-
nectivity properties of the digraphs representing Laplacian systems to address
challenges such as to determine the reactions that affect differential responses, to
identify equivalence classes of networks, and to reliably reject hypothetical models
without needing to know parameter values. We illustrate these direct connections
between network structure and function for models of insulin signalling to exem-
plify applications of the methodology in systems biology and pharmacology.

Finally, in Chapter 6, we make use of the developments from the previous chap-
ters to formulate a minimal model of interferon type I differential signalling on
the basis of prior literature knowledge and experimental population-level dose-
response data. We construct a simple multi-scale model consisting of an ex-
perimentally determined receptor number distribution over a population of cells
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1.4 Contributions of This Thesis

which gets transformed to the distribution of active receptors within the popula-
tion through a Laplacian model of important interferon dose dependent receptor
stability mechanisms. An activity threshold then divides the population into dead
and alive cells according to their number of active receptors. The resulting dose-
response relationship is evaluated against dose-response data, simultaneously ac-
counting for parametric uncertainty by performing Bayesian parameter inference
and for model topology uncertainty by exploring an ensemble of possible receptor
stability Laplacian models through Bayesian model comparison. As a result we
demonstrate that the mechanisms of receptor assembly, endocytosis, and inhibi-
tion by the factor USP18 are the minimal sufficient model constituents which can
explain the observed differential responses.
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2
Background, Definitions, and Notation

2.1 Laplacian Models

We focus on biological reaction networks governed by Laplacian dynamics, mod-
elled by ordinary differential equations (ODEs) with zero and (pseudo) first order
mass-action kinetics.

Consider the example network in Figure 2.1a in which all reactions follow first
order mass-action kinetics. It comprises three species and four reactions: a re-
ceptor R can transition to (from) its ligand-bound state RL with rate constant
r1 (r2), or the receptor can become irreversibly phosphorylated as RLp with rate
constant r3, and RLp can transition to R with rate constant r4. This system
is a simple model of receptor tyrosine kinase activation and its dynamics can be
expressed as the ODE system:

d

dt

 xR
xRL
xRLp

 =

−r1 r2 r4

r1 −(r2 + r3) 0
0 r3 −r4


︸ ︷︷ ︸

L

 xR
xRL
xRLp

 , (2.1)

where x denotes the concentration of the respective species in the subscript and
L is called the Laplacian matrix of the system.

The dynamics of Laplacian models can be represented as a diffusion process on
directed graphs (digraphs) corresponding to their reaction schemes. Formally, a
simple digraph G = (V,E) consists of a set of vertices V (G) and a set of edges
(ordered pairs of distinct vertices) E(G); it has no self-loops and no multiple
parallel edges. Laplacian models can correspond to strongly connected digraphs,
that is, digraphsG in which for any two vertices u, v ∈ V (G) there exists a directed
path from u to v and from v to u, or to non-strongly connected digraphs in which
the strong connectivity condition does not hold. For example, the digraph in
Figure 2.1a is strongly connected, whereas the digraph in Figure 2.1d is not.

We consider the reaction scheme in Figure 2.1a as a digraph G with V (G) =
{vR, vRL, vRLp}, where v denotes the vertex corresponding to the species in the
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Digraph G:

arb(G):

(a)

(b)

(c)

r2r4 r1r4 r1r3

κ(G) = r2r4 + r3r4 + r1r4 + r1r3

r3r4

R

RL

RLp

r1
r2

r3

r4

RL

RLp

r3

r4
R RLp

r1

r4
R

RL

r1 r3

RL

RLp

r2

r4

R

RL

RLp

r1 r3

r4

RLp
r4

W

G/vRLvR:(f)

R R

RL

RLp

R

RL

r1
r2

r3

RLp

rtvRLp
(G):(d) G \ vRLvR:(e)

(g) Γ1(κ(G)) = r2r4 + r3r4 + r1r4 + r1r3 (h) Γ2(κ(G)) = r4(r2 + r3 + r1) + r1r3

|Γ1(κ(G))| = 13 |Γ2(κ(G))| = 10

+

∗
r2 r4

∗
r3 r4

∗
r1 r4

∗
r1 r3

+

∗
r1 r3

∗
r4 +

r2 r1r3

Figure 2.1: Example model of receptor tyrosine kinase activation. (a) Digraph
(kinetic scheme) G, (b) all its arborescences rooted at each vertex, and (c) the
corresponding Kirchhoff polynomial. (d) The digraph obtained by rooting G at
vRL, (e) the edge deleted digraph G\vRLvR, and (f) the edge contracted digraph
G/vRLvR. Labels on vertices denote names of species represented by them and
W denotes a vertex obtained after the application of digraph operations. Grey
vertices are roots of the corresponding arborescence and of all arborescences
when rooting a digraph, respectively. In (g) and (h) two algebraically equivalent
representations of κ(G) are shown together with their expression trees and sizes,
i.e. (g) Γ1(κ(G)) a fully expanded representation and (h) Γ2(κ(G)) a simplified
representation.
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subscript, and E(G) = {vRvRL, vRLvRLp, vRLvR, vRLpvR}. The reaction rate
constants are labels of the corresponding edges in G. A label function ` : E(G) 7→
I associates a mathematical (arithmetic, polynomial, or algebraic) expression to
each edge of G. For example, `(vRvRL) = r1. Additionally, by `(G) we define the
set of all edge labels of G.

In such a labelled digraph G we can associate each vertex vi ∈ V (G) to a non-
negative species concentration xi and each edge to a mass-action reaction with
reaction rate constants that are independent of the species concentrations and
given by the label function `. Hence, we obtain a dynamical system in which
species concentrations hosted on the vertices of G flow in the direction of the
edges at rates proportional to the concentrations on the edges’ source vertices;
proportionality is defined by the edge label expression.

2.2 Closed and Open Models

Laplacian models can be closed, not exchanging matter with the environment (as
in the illustrative example), or open, when synthesis and degradation reactions
are present.

In general, the dynamics of closed Laplacian models can be expressed in the
form:

dx

dt
= L(G)x, (2.2)

where x = (x1, . . . , xn)T is the vector of species’ concentrations corresponding to
each vertex v1, . . . , vn ∈ V (G) and L(G) is the Laplacian matrix of G defined as:

L(G)ij =

{
`(vjvi) if i 6= j,
−∑r 6=j `(vjvr) if i = j,

(2.3)

and `(vjvi) = 0 when the vjvi /∈ E(G). In closed systems the total amount of
material xt is conserved and there is a single conservation law x1 + · · ·+ xn = xt.
The system reaches a unique stable steady-state that can be derived symbolically
for any species by obtaining a basis element of the kernel of the Laplacian matrix.

Digraphs G representing open systems are obtained by adding a vertex v∅
representing the environment to a core digraph G (akin to closed systems, the
core digraph is composed of all non-synthesis and non-degradation reactions) and
by introducing directed edges from v∅ to the synthesized species in G with labels
si and edges labelled di from the degraded species to v∅. The dynamics of open
Laplacian models are defined in general form as:

dx

dt
= L(G)x−∆x+ S,

where L(G) is the Laplacian matrix of the core digraph, ∆ is a diagonal matrix
with ∆ii = δi the degradation rate constants of the species with index i, and S
is a vector Si = si comprising the synthesis rate constants for all species. If a
species does not have a degradation or a synthesis reaction then si = 0 or δi = 0,
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2 Background, Definitions, and Notation

respectively. In open systems, the total amount of matter is not conserved but the
rates at which matter enters and leaves the system determine the final distribution
of steady-state concentrations. In particular, synthesis and degradation at steady-
state are balanced: δ1x1 + . . .+ δnxn = s1 + . . .+ sn. Similarly to closed systems,
but assuring that the steady-state concentration at v∅ is always 1, the unique
stable steady-state for vertex vi (vi 6= v∅) can be symbolically derived.

Note that in this thesis we are primarily interested in closed and open Lapla-
cian models of biological systems corresponding to strongly connected digraphs G
(the core digraph G in open models can be strongly or non-strongly connected),
although this does not limit the generality of the developed theory.

For more details, proofs, and derivations on Laplacian models we refer the
reader to Gunawardena (2012); Mirzaev & Gunawardena (2013); Mirzaev & Bortz
(2015).

2.3 Arborescences

Steady-states of Laplacian models can always be derived in symbolic form but, in
practice, the length of the symbolic steady-state expressions grows (super) expo-
nentially with the size of the digraph G. To cope with this growth, we introduce
concepts intimately connected to both the structure of Laplacian digraphs and
to the steady-states of Laplacian models: a certain class of subdigraphs, so-called
arborescences, that can be used to generate Kirchhoff polynomials (see next sub-
section).

Formally, a digraph H is a subdigraph of a digraph G if V (H) ⊆ V (G) and
E(H) ⊆ E(G), where every edge in E(H) has its vertices in V (H). For V ′ ⊆ V ,
G[V ′] denotes the induced subdigraph of G by the set of vertices V ′. A strongly
connected component (SCC ) of G is any largest (w.r.t. vertex inclusion) strongly
connected induced subdigraph of G. By definition, no two distinct SCCs can
share a vertex and thus the SCCs G1, . . . , Gk of a digraph G induce a unique
partition V (G1), . . . , V (Gk) of V (G). Again, by definition, for two distinct SCCs
Gi and Gj there can be a directed path from Gi to Gj , or from Gj to Gi, but
not both. The existence of such paths between SCCs naturally induces a unique
partial order on the SCCs G1, . . . , Gk.

An in-arborescence A is a subdigraph of G spanning its vertex set such that a
root vertex is reachable from all vertices along a unique directed path. In other
words, A is a rooted directed spanning tree of G with edges directed towards the
root vertex. Similarly, an out-arborescence is such a rooted directed spanning tree
for which all edges are directed away from a root vertex.

Note that to formally develop the theory in Chapter 3 we work with out-
arborescences which is a convention in combinatorics, while in all other chap-
ters we consider in-arborescences which are relevant for Laplacian models. This
is not restricting the application of the developed theory since there is a bijec-
tion between the in-arborescences of a digraph G and the out-arborescences of
the reverse (with all edges reversed) digraph of G. Consequently, statements on
out-arborescences can be rewritten for in-arborescences trivially. To avoid confu-
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sion, by “arborescences” we refer to both in- and out-arborescences and when a
definition is specific to in- or out-arborescences we mention it explicitly.

Thus by arb(G) we denote the set of all arborescences of G, and by arbv(G) the
set of all arborescences rooted at vertex v. All in-arborescences of the example
digraph are shown in Figure 2.1b: two in-arborescences are rooted at vR, one is
rooted at vRL, and another one at vRLp. Let rt be the digraph rooting opera-
tion such that rtv(G) is the digraph constructed from G by removing all edges
outgoing from v (see Figure 2.1d) for in-arborescences and incoming to v for out-
arborescences. All arborescences of rtv(G) are necessarily rooted at v. We denote
the set of all incoming edges to vertex v by inG(v) and when it is not ambiguous,
simply by in(v). We will say that a digraph G is rooted at a vertex v with respect
to in-arborescences if v has no outgoing edges and v is reachable from every other
vertex in G, and with respect to out-arborescences when v has no incoming edges
and every other vertex is reachable from v. Observe that arbv(G) = arb(rtv(G)).
Note also that an in-(out-)arborescence of G exists iff the partial order of the
SCCs has exactly one maximal (minimal) element, i.e. no other SCC is reachable
from the maximal SCC (all other SCCs are reachable from the minimal SCC).
Such a SCC is called a terminal SCC (initial SCC ).

2.4 Kirchhoff Polynomials and Steady-States of
Laplacian Models

An arborescence A of a digraph G with n vertices has n− 1 edges e1, . . . , en−1 ∈
E(G) (for a concise notation, we denote edges with the symbol e when not referring
to the pairs of vertices defining them). An arborescence can also be represented
as a monomial `(e1) · `(e2) · · · `(en−1) in the edge labels `(e1), `(e2), . . . , `(en−1)
of a uniquely labelled digraph G. Correspondingly, one can represent the set of all
arborescences in G by a homogeneous multivariate polynomial over the variables
`(ei), ei ∈ E(G). This polynomial is called the Kirchhoff polynomial κ(G):

κ(G) =
∑

A∈arb(G)

∏
ei∈A

`(ei). (2.4)

The Kirchhoff polynomial with respect to in-arborescences of the example digraph
is shown in Figure 2.1c.

We also denote the Kirchhoff polynomial of all arborescences rooted at vertex
v by κv(G) =

∑
A∈arbv(G)

∏
ei∈E(A) `(ei), where κv(G) is a shorter notation for

κ(rtv(G)). For a Kirchhoff polynomial P , we denote by var(P ) the set of variables
appearing in P . We call a Kirchhoff polynomial P a factor of another Kirchhoff
polynomial Q, if there exists a Kirchhoff polynomial R such that Q = P · R. A
Kirchhoff polynomial P that is irreducible because it cannot be factorized into
non-trivial factors, is called prime. We extend these definitions to digraphs by
calling G′ a component (a prime component) of G if κ(G′) is a factor (a prime
factor) of κ(G). Additionally, observe that if G is disconnected or has more than
one terminal SCC for in-arborescences and more than one initial SCC for out-
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arborescences then κ(G) = 0, and if G consists of a single vertex then κ(G) = 1.

A Kirchhoff polynomial can have multiple algebraically equivalent representa-
tions. For example, the Kirchhoff polynomial from Figure 2.1c can be written in
the following two ways as shown in Figure 2.1g,h:

Γ1 (κ(G)) = r2r4 + r3r4 + r1r4 + r1r3 and Γ2 (κ(G)) = r4(r2 + r3 + r1) + r1r3,

where the function Γi : R[`(G)]→ T denotes a specific representation of κ(G); it
relates a given Kirchhoff polynomial κ(G) over the set of labels `(G) to the set of
expression trees T in which the branch vertices represent either the n-ary addition
or the n-ary multiplication operation, and leaf vertices are the unique edge labels
`(G) which are the variables of the Kirchhoff polynomial. In this case Γ1(κ(G))
denotes a fully expanded representation while Γ2(κ(G)) is one possible simplified
representation.

We define the size of a representation of a Kirchhoff polynomial, denoted
|Γ(κ(G))|, as the size of its corresponding expression tree. Thus looking at Fig-
ure 2.1g we see that |Γ1 (κ(G)) | = 13 since there is one summation over all
monomials, one multiplication per monomial equal to four multiplication vertices
in total, and eight expression tree leaves. The size of the other algebraically equiv-
alent representation shown in Figure 2.1h is |Γ2 (κ(G)) | = 10 since there are two
addition vertices, two summation vertices, and six expression tree leaves.

The Kirchhoff polynomials establish a direct connection between model struc-
ture, in terms of in-arborescences, and function, in terms of steady-state expres-
sions. Briefly, the unique steady-state of a Laplacian model can be symbolically
obtained from a basis element of the kernel of the Laplacian matrix by employing
Tutte’s Matrix-Tree Theorem (Tutte, 1948)1. The theorem links the (i, j)-th mi-
nors of the Laplacian matrix L, i.e. the symbolic determinants of the sub-matrix
obtained from L by removing its i-th row and j-th column, to the graph theoretical
concept of in-arborescences and consequently to their representation as Kirchhoff
polynomials (see Gunawardena (2012); Mirzaev & Gunawardena (2013); Mirzaev
& Bortz (2015) for details and proofs).

Theorem 2.4.1 (Tutte’s Matrix-Tree Theorem). Let G be a digraph with n ver-
tices then the minors L(G)(i,j) of its Laplacian matrix can be expressed, up to a
sign, by the Kirchhoff polynomial rooted at the vertex vj corresponding to the j-th
column of L(G) as:

L(G)(i,j) = (−1)n+i+j−1
∑

A∈arbvj (G)

∏
e∈A

`(e) = κvj (G).

We are interested in the final results, namely that the steady-state concentration
xSSi of species i in a closed system associated to a vertex vi can be expressed as

1This theorem is itself a generalization of Kirchhoff’s Theorem (Kirchhoff, 1847) for undirected
graphs.
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a fraction of Kirchhoff polynomials:

xSSi =
κvi(G)

κ(G)
xt. (2.5)

Thus, the steady-state concentration of species RLp associated to vertex vRLp
in our example system is (see Figure 2.1b-d):

xSSRLp =
κvRLp(G)

κ(G)
xt =

r1r3

r3r4 + r2r4 + r1r4 + r1r3
xt.

Correspondingly, for open systems and a vertex vi 6= v∅ we obtain:

xSSi =
κvi(G)

κv∅(G)
.

We observe that the resulting steady-state expressions are expressions of Kirch-
hoff polynomials. While these expressions look simple, the number of arbores-
cences in a digraph G usually grows exponentially with the size of G (Gabow &
Myers, 1978). Symbolic steady-state expressions of Laplacian models as expressed
by Kirchhoff polynomials therefore face the problem of combinatorial explosion,
which makes manipulation and generation of such expressions challenging.

2.5 Deletion, Contraction, Domination

In this section we introduce additional digraph operations, connectivity defini-
tions, and constructs which are relevant for working with Kirchhoff polynomials.

For a digraph G with e ∈ E(G) and v ∈ V (G) we denote edge deletion by G\e,
i.e. the digraph obtained from G by deleting e, and vertex deletion by G \ v, i.e.
the digraph obtained from G by deleting v together with all edges in which it
participates (see Figure 2.1e for an application of edge deletion to the example
digraph).

Further, for a digraph G and an edge e = vivj ∈ E(G) we denote by G/e
the edge contracted digraph that is constructed from G, with respect to in-
arborescences, by (i) removing the edge vjvi, if it exists, and all out-going edges
from vi, i.e. viu ∈ E(G); and (ii) fusing vertices vi and vj into a single new vertex
w (see Figure 2.1f). Edge contractions may result in digraphs with multiple par-
allel edges between two vertices (multidigraphs) or self-loops. We resolve this by
replacing m multiple parallel directed edges e1, e2, . . . , em going from u to v with
a single edge e = uv such that `(e) = `(e1) + `(e2) + . . . + `(em) and removing
self-loops. Thereby, we transform the multidigraph into a simple digraph whose
Kirchhoff polynomial is equal to that of the multidigraph.

Of use will also be a more general definition of contraction with respect to
out-arborescences, which applies to contracting a subset of vertices in a digraph.
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Definition 2.5.1 (Contraction). For a subset S of the vertices of a digraph G,
and for a vertex u ∈ S, by contracted digraph G(S → u) we denote the digraph
G′ constructed from G as follows:

1. All edges xy, where x ∈ V \ S, y ∈ S \ {u} are removed from G.

2. All edges within S are removed (i.e., all edges xy, where x, y ∈ S).

3. All vertices of S are contracted into a single vertex u.

Observe that G′ has no loops, and if G has no parallel edges incoming to u,
then G′, as well, has no parallel edges incoming to u. It can, however, happen
that u has parallel outgoing edges. Further, for all z ∈ V \ S:

� zu ∈ E(G′) if and only if zu ∈ E(G), and

� for every edge sz ∈ E(G) such that s ∈ S, there is a corresponding edge
uz ∈ E(G′).

The classic deletion-contraction formula for an edge e ∈ E(G) partitions arb(G)
into two sets, one in which e participates in no arborescences and one in which e
participates in all arborescences. Equivalently, it decomposes κ(G) into a sum of
Kirchhoff polynomials (Levine, 2011):

Proposition 2.5.2 (Edge Deletion-Contraction). Let G be a digraph and e ∈
E(G) be an arbitrarily chosen edge. Then:

κ(G) = κ(G \ e) + `(e)κ(G/e).

We also define the digraph connectivity concepts of domination and immediate
domination with respect to out-arborescences.

Definition 2.5.3 (Domination). If G is rooted at v, then we say that vertex u
dominates vertex w, if all directed paths from v to w go through vertex u. By
domG(u) we denote the set of all vertices of G dominated by u. If domG(u) 6= {u}
and u 6= v, we say that u is a non-trivial dominator.

Definition 2.5.4 (Immediate Domination). Let G be rooted at v. Vertex y is
called an immediate dominator of vertex z, if y 6= z, y dominates z, and for every
other vertex x that dominates z, we have that x also dominates y. Equivalently
we say that z is immediately dominated by y, and we denote such y as parentG(z)
(it is easy to see that there can be at most one such vertex). The set of all vertices
immediately dominated by vertex y is denoted by immG(y) = {z : parentG(z) = y}.

Thus, parentG(z) taken over all z ∈ V defines a directed tree T (G) of imme-
diate domination, rooted at the root v of G (note that parentG(v) is undefined).
Furthermore, for any vertex y, the immediately dominated vertices z ∈ immG(y)
induce the following partition of domG(y) \ {y}: {domG(z) : z ∈ immG(y)}.
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2.6 Bayesian Parameter Inference and Model Comparison

2.6 Bayesian Parameter Inference and Model
Comparison

Bayesian theory offers a prominent approach to account for data and model un-
certainty in computational systems biology (Wilkinson, 2007; Geris & Gomez-
Cabrero, 2015). It supplies the formal means to infer uncertain parameters and
compare competing models on the basis of sparse and noisy experimental data
(Vyshemirsky & Girolami, 2008).

Under the Bayesian viewpoint probability is a measure of the degree of belief
about the occurrence of an event (Bernardo & Smith, 2001). This definition
applies to any event regardless the origin of its uncertainty or number of observa-
tions. In contrast to the frequentist approach in which events have unknown but
fixed probabilities, the Bayesian approach aims to directly incorporate the full
uncertainty within the same framework by assigning a probability distribution to
all unknown quantities – parameters, data, and competing models. The degree of
belief about these quantities can be iteratively updated using the famous Bayes’
Theorem (see Equation (2.6)) when new data becomes available. When comparing
different models this Bayesian inference process inherently incorporates Ockham’s
Razor effect (Jefferys & Berger, 1991), that is, it penalizes unnecessarily complex
models.

Next we recapitulate the main concepts of Bayesian parameter inference and
model comparison which are required for Chapter 6. More detailed introduction
to Bayesian methods can be found in Jaynes (2003); Bernardo & Smith (2001);
MacKay (2003) and specifically concerning the context of biology in Geris &
Gomez-Cabrero (2015).

Let us consider a data set D and an ensemble of m candidate models Mi each
with parametrisation θi, where i ∈ {1, 2, . . . ,m}. We allow each model to include
additional information I, for example, fixed parameters across all models.

Parameter inference. Through the Bayes’ Theorem we can infer the probability
over the parameters θi for a certain model Mi, given the data D and the additional
information I. Namely, in this case, the Bayes’ Theorem reads:

Pr(θi | D,Mi, I) =
Pr(D | θi,Mi, I) Pr(θi |Mi, I)

Pr(D |Mi, I)
, (2.6)

where the terms are identified as:

Pr(θi |Mi, I) – the prior. The probability for the parametrisation θi of model
Mi before observing the data D.

Pr(θi | D,Mi, I) – the posterior. The probability of the model parametrisation
θi obtained after taking into account the data D.

Pr(D | θi,Mi, I) – the likelihood. The probability of the data D being generated
by a model Mi with parametrisation θi.

Pr(D |Mi, I) – the evidence. The probability of observing the data D.
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2 Background, Definitions, and Notation

The evidence is a marginal distribution serving as a normalisation constant. It
is given by the integral over the whole continuous parameter space Ωi of model
Mi:

Pr(D |Mi, I) =

∫
Ωi

Pr(D | θi,Mi, I) Pr(θi |Mi, I)dθi.

The calculation of this usually high-dimensional and analytically intractable
integral can be neglected for parameter inference since it only acts as a normali-
sation constant.

We assume a log-uniform prior distribution of the parameters signifying our
ignorance about their order of magnitude. Thus from the prior and by setting the
likelihood we obtain a distribution proportional to the posterior which is sufficient
to infer the distribution of the parameter vector θi.

Frequently the posterior density cannot be analytically derived and numerical
methods to approximate it have to be employed. In particular, Markov Chain
Monte Carlo (MCMC) techniques are used to produce a sequence of points in
parameter space, whose density is proportional to the posterior probability density
function (Gamerman & Lopes, 2006).

Model comparison. The posterior probability of a model Mi can also be ex-
pressed through the Bayes’ Theorem as:

Pr(Mi | D, I) =
Pr(D |Mi, I) Pr(Mi | I)

Pr(D | I)
.

The terms in the formula have analogous interpretation as for parameter inference
but have their parameters θi integrated out – Pr(Mi | I) is the prior model
probability, Pr(D | I) is the probability of the data, and importantly the likelihood
Pr(D |Mi, I) is exactly equal to the evidence integral we acquired for parameter
inference.

To compare two models Mi and Mj we formulate their posterior odds ratio:

Pr(Mi | D, I)

Pr(Mj | D, I)
=

Pr(D |Mi, I)

Pr(D |Mj , I)

Pr(Mi | I)

Pr(Mj | I)
= Bij

Pr(Mi | I)

Pr(Mj | I)
,

where Pr(D | I) crosses out and the ratio Pr(D|Mi,I)
Pr(D|Mj ,I)

is the so called Bayes factor

Bij (Kass & Raftery, 1995):

Bij =

∫
Ωi

Pr(D | θi,Mi, I) Pr(θi |Mi, I)dθi∫
Ωj

Pr(D | θj ,Mj , I) Pr(θj |Mj , I)dθj
.

To calculate the posterior probability of a model Mi in the ensemble of m
considered models we calculate the Bayes factors for all models with respect to
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2.6 Bayesian Parameter Inference and Model Comparison

Mi to obtain (Sunn̊aker et al., 2013):

Pr(Mi | D, I) =

1 +

m∑
j=1,i6=j

Bji

−1

.

The most challenging aspect of model comparison is to marginalise the likeli-
hood to obtain the evidence and subsequently the Bayes factors. An approach to
approximate the evidence proposed by Zamora-Sillero et al. (2011) is to identify
the high-likelihood regions of the parameter space and sample them uniformly,
while assuming that the rest of the parameter space contributes negligibly little
to the likelihood. Then the evidence integrals is approximated by summing the
contribution of the high-likelihood regions as (Sunn̊aker, 2013):

Pr(D |Mi, I) ' V olhli
V oltoti

(
1

N

N∑
s=1

Pr(D | θ(s)
i ,Mi, I)

)
, (2.7)

where V oltoti is the total volume of the parameter space of model Mi, V ol
hl
i is the

combined volume of its high-likelihood regions, and the N parameter points θ
(s)
i

are uniformly sampled from the high-likelihood regions. The standard deviation
of this evidence estimate under the assumption of Gaussian distributed error is
expressed as (Zamora-Sillero et al., 2011):

σ =
V olhli
V oltoti

√√√√√ 1

N

 1

N

N∑
s=1

Pr(D | θ(s)
i ,Mi, I)2 −

(
1

N

N∑
s=1

Pr(D | θ(s)
i ,Mi, I)

)2
.

(2.8)
An important implementational detail is that for parameter inference and model

comparison we work with the negative log-likelihood functions of the considered
models.
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3
Prime Factorisation of the Kirchhoff
Polynomial

3.1 Introduction
A spanning tree of an undirected graph G is a connected acyclic subgraph con-
taining all vertices of G. As seen in Chapter 2, in a digraph G, the analogue
is an arborescence. In this chapter by an arborescence we always mean an out-
arborescence, i.e. a subdigraph of G spanning its vertex set such that all vertices
are reachable from a root vertex along a unique directed path.

Recall that according to Tutte’s Matrix-Tree Theorem (Theorem 2.4.1) sum-
ming up all (jj)-th minors of a Laplacian matrix results in a homogeneous polyno-
mial, called the Kirchhoff polynomial (Equation (2.4)), in which each monomial
represents an arborescence consisting of the edges corresponding to the labels
appearing in the monomial. In general, there might be (super) exponentially
many arborescences for a given G and thus explicitly computing the expanded
representation of κ(G) cannot be done in polynomial time.

In this chapter we investigate the algebraic properties of the Kirchhoff poly-
nomial and their relation to the connectivity properties of the corresponding
uniquely labelled digraph. More precisely, we are interested in finding an effi-
cient graph theoretical procedure to test primality of Kirchhoff polynomials and
to yield their prime factorisation.

To this end we present two decomposition rules for digraphs, and show that
every factor of κ(G) corresponds to a digraph obtained by applying one of the
decomposition rules and is derived from some subdigraph of G. The first decom-
position rule corresponds to finding a strongly connected component (SCC) of G
together with all of its incoming edges ein and subsequently contracting all source
vertices of ein into a single new vertex. The second decomposition rule is more
involved and is based on domination and immediate domination of vertices (these
terms are explained in Section 2.5). Our decomposition is closest to the decom-
position in Nakamura & Iri (1980) that has been formulated in the language of
principal partition of matroids.
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Figure 3.1: (left) A digraph with one trivial (the initial vertex) and four non-
trivial strongly connected components (here cycles), each induced by the edges
{x1, x2, x3}, x ∈ {a, b, c, d}. The gray area depicts one such strongly connected

component G[V ′]. (right) An illustration of Ĝ[V ′].

To the best of our knowledge, the question of relating combinatorial features
of a digraph to the algebraic properties of its Kirchhoff polynomial (such as its
prime factorisation), although being a fundamental one, has not previously been
investigated.

We illustrate the factorisation procedure on an example in Figure 3.1. Every
arborescence in the example is rooted at r, contains the edge with label o, and con-
tains the edges of type x1 and x2 from every SCC. The only freedom left is choosing
whether edge x4 or edge x5 is part of an arborescence. These choices are mutu-
ally independent and, as a result, there are 24 arborescences, which results in 208
leaves (each leaf is a variable) in the expression tree. The factorized representation
of the Kirchhoff polynomial (based on the SCC decomposition) is much shorter:
o(a1a2a4+a1a2a5)(b1b2b4+b1b2b5)(c1c2c4+c1c2c5)(d1d2d4+d1d2d5), and contains
25 explicitly written variables. We can further decompose each factor to finally
obtain the prime factorization oa1a2(a4+a5)b1b2(b4+b5)c1c2(c4+c5)d1d2(d4+d5),
containing only 17 explicitly written variables.

An exhaustive application of the decomposition rules results in non-
decomposable digraphs derived from subdigraphs of G, which correspond to
prime factors of κ(G). The prime decomposition provides a compressed form
of κ(G) which can be easily handled (evaluated) and manipulated (e.g. to find
the greatest common divisor of two Kirchhoff polynomials). Moreover, the prime
factorization of κ(G) retains important connectivity properties of the original
digraph and provides information about the type of digraphs with practically
enumerable arborescences, which is beneficial for various practical applications
such as symbolically deriving steady-states on digraphs governed by Laplacian
dynamics. Furthermore, the decomposition/prime factorization can serve as a
preprocessing step for the existing arborescence enumeration algorithms (such as
Gabow & Myers (1978), Uno (1996), or Kapoor & Ramesh (2000)). Importantly,
it is also a cornerstone for the development of the efficient Kirchhoff polynomial
generation and manipulation procedures presented in Chapter 4.

3.2 Primality of Components

Observe that κ(G) is a special homogeneous polynomial: every monomial of κ(G)
contains exactly n − 1 variables, n = |V |, each with exponent equal to one.
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3.2 Primality of Components

Obviously, this property needs to also hold for factors of κ(G) (recall that the
monomials of κ(G) represent an arborescence of G). Furthermore, observe that
no variable `(e) can appear in two factors of κ(G).

Proposition 3.2.1. If P is a factor of κ(G), then all monomials of P have the
same number of variables, each with exponent equal to one.

Proposition 3.2.2. If κ(G) = P ·Q, then var(P ) ∩ var(Q) = ∅.

We observe that the partitioning of edges into P or Q under the factorization
κ(G) = P ·Q is induced by a partitioning of vertices.

Lemma 3.2.3. If κ(G) = P · Q and v ∈ V , then either `(in(v)) ⊆ var(P ) or
`(in(v)) ⊆ var(Q).

Proof. Assume that there are two incoming edges to v, e1 and e2, such that `(e1) ∈
var(P ) and `(e2) ∈ var(Q). Then there exists a monomial in κ(G) containing
both `(e1) and `(e2). But such a monomial cannot represent an arborescence, a
contradiction.

Theorem 3.2.4. Let G be a strongly connected digraph. Then κ(G) is prime.

Proof. Assume, on the contrary, that κ(G) = P ·Q, and P and Q are nontrivial
factors. Let V1 and V2 be the set of vertices with incoming edges in var(P ) and
var(Q), respectively. By Proposition 3.2.2 and Lemma 3.2.3, V1 ∩ V2 = ∅, and
since P and Q are nontrivial, V1 6= ∅ and V2 6= ∅. Let v1, v2 be arbitrarily picked
vertices such that v1 ∈ V1 and v2 ∈ V2.

Since G is strongly connected, for any v ∈ V there exists an arborescence of G
rooted at v. Let A1, A2 be two arborescences rooted at v1 and v2, respectively.
Let p1 and p2 be the monomials from P corresponding to the arborescences A1

and A2, respectively. In A1, every vertex from V1, but the root v1, has exactly
one incoming edge in A1. The label of every such edge necessarily belongs to P .
Therefore, for A1, the degree of the monomial p1 in P is deg(p1) = |V1| − 1. On
the other hand, for A2, all vertices from V1 have an incoming edge whose label
belongs to P and, therefore, the total degree of p2 in P is deg(p2) = |V1|. Then
deg(p1) 6= deg(p2), which contradicts Proposition 3.2.1.

Theorem 3.2.5. Let G be a digraph rooted at v, such that G[V (G) \ {v}] is
strongly connected, and G has no non-trivial dominators. Then κ(G) is prime.

To prove the above theorem, we use the following notion, and prove further
auxiliary lemmas. Given a directed simple cycle C ⊆ G, we say that a vertex
u ∈ C is independent from C, if there exists a simple path P connecting the root
v to u, such that P and C are vertex-disjoint (except for u). We call any such P
an independent path of u (with respect to C).

Lemma 3.2.6. Let G be a digraph as in Theorem 3.2.5. For any edge wu of G
such that u,w 6= v, there exists a simple directed cycle C containing wu, such that
C has at least two independent vertices, and w is one of those.
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3 Prime Factorisation of the Kirchhoff Polynomial

Lemma 3.2.7. Let G be a digraph as in Theorem 3.2.5, and let V1 and V2 be
an arbitrary (non-trivial) partition of the vertices V \ {v}. There exists a simple
directed cycle having an independent vertex from V1 and an independent vertex
from V2.

3.3 Decomposition

In this section we present two digraph decomposition rules corresponding to fac-
torization steps of the Kirchhoff polynomial. The rules are based on the compu-
tation of SCCs and the dominator tree of a digraph. The exhaustive application
of these rules yields digraphs that are prime factors of the Kirchhoff polynomial
of the original digraph.

First, we need the following digraph construct.

Definition 3.3.1. Let G[V ′] be a SCC of G. By Ĝ[V ′] we denote the digraph
created from G[V ′] as follows (see Figure 3.1):

� If G[V ′] is the initial SCC, then Ĝ[V ′] = G[V ′].

� Otherwise, we create a new vertex vaux, and for every edge vu, such that
u ∈ V ′ and v 6∈ V ′, we add an edge vauxu with label `(vauxu) = `(vu).

Theorem 3.3.2. Let G[V1], G[V2], . . . , G[Vk] be all strongly connected components
of a connected digraph G. If G has exactly one initial component, then

κ(G) = κ(Ĝ[V1]) · κ(Ĝ[V2]) · . . . · κ(Ĝ[Vk]). (3.1)

Figure 3.2 presents an example on how SCC decomposition is employed to
factorise κ(G). The presented decomposition uncovers a fundamental property
of arborescences. Namely, it shows that the arborescences of a digraph G are in
a one-to-one correspondence with all combinations of subdigraphs of G obtained
following the procedure: i) Pick an arborescence from the initial SCC of G. ii)
For every non-initial SCC of G, pick as set W an arbitrary (nonempty) subset of
all vertices with incoming edges from outside of this SCC, and pick the spanning
forest of this SCC rooted in W .

An equivalent formulation (used in the proof of Theorem 3.3.2) is that any cycle
can only be contained in a single SCC of G. This property allows us to relate
the Kirchhoff polynomial of a digraph to the product of Kirchhoff polynomials of
digraphs derived from its SCCs.

Theorem 3.3.2 allows us to factorize κ(G) of any connected digraph G with at
least two SCCs. Yet, it is not guaranteed that the obtained factorization is prime
or non-trivial. Consider the case when the initial SCC is composed of a single ver-

tex v, then the theorem states that κ(G) = κ(G[{v}]) ·κ( ̂G[V \ {v}]). We can see

that this is a trivial factorisation since κ(G[{v}]) = 1 and κ( ̂G[V \ {v}]) = κ(G)

(here, ̂G[V \ {v}] renames the vertex v to vaux but preserves the arborescences).
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Figure 3.2: (left) An example of a digraph and (right) its decomposition using
strongly connected components. The edges in black are part of a strongly
connected component and the edges in red are connecting different SCCs.

In Theorem 3.2.4 we proved that the Kirchhoff polynomials of strongly connected
digraphs are prime, which implies that the factor corresponding to the initial
SCC is always prime. We note that the rest of the factors cannot be further
non-trivially decomposed just using Theorem 3.3.2. Their primality is unsettled
because they lack the property of strongly connected digraphs, namely, that any
vertex of the digraph is the root of an arborescence, due to possessing a single
root for all arborescences (the auxiliary vertex). Thereby, we proceed to studying
the decomposability of non-initial SCC factors.

With Theorem 3.3.3 we specify a decomposition step for non-initial SCC factors.
More precisely, we provide an additional factorization rule of κ(G) by using vertex
domination relations (with respect to the root vertex vaux).

Theorem 3.3.3. Let G be a digraph rooted at v and let u be an arbitrarily picked
vertex of G. Denote D = domG(u). Then

κ(G) = κ(rtu(G[D])) · κ(G(D → u)). (3.2)

Similarly to SCC decomposition, one can interpret this result as either a one-
to-one correspondence between arborescences of G and all combinations of the
arborescences of its two factors, or as a statement on the structure of cyclic sets
of edges in G (any cycle is either a cycle when restricted to D, or remains a cycle
when D is contracted to u).

Applying Theorem 3.3.3 to all domination relations defined by the dominator
tree T (G) extends the decomposition to the whole dominator tree at once. An
illustration of the dominator decomposition rule can be seen in Figure 3.3.

Corollary 3.3.4. Let G be a digraph rooted at v. Then

κ(G) =
∏
u∈V

κu(H[{u, u1, . . . , ui}]) (3.3)

where H = G(domG(u1)→ u1; . . . ; domG(ui)→ ui) and {u1, . . . , ui} = immG(u).

Recall Theorem 3.2.5 which states that if there are no non-trivial domination
relations in G (G being rooted at v for which no non-trivial decomposition by
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Figure 3.3: (above) Kirchhoff polynomial factorization of a digraph with respect
to its dominator tree. (below) The dominator tree of the example digraph.
Colour coding corresponds to immediate domination.
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Figure 3.4: An example of a digraph that requires SCC decomposition followed
by domination decomposition and another SCC decomposition to obtain the
prime factorization of its corresponding Kirchhoff polynomial.

SCCs applies) then κ(G) is prime. Corollary 3.3.4 ensures that all non-trivial
dominator relations are eliminated but that cannot guarantee the primality of
the decomposed factors since they can be SCC decomposable. Therefore, in or-
der to obtain a complete prime factorization of the input digraph we need to use
both rules of decomposition in an alternating fashion. One might expect that
this process requires deep recursion. However, for any digraph a constant depth
of recursion is needed. More precisely, it is enough to apply in sequence SCC
factorization, dominators factorization, and SCC factorization to get prime com-
ponents. This upper bound on the recursion depth is tight, as the example in
Figure 3.4 shows.

Theorem 3.3.5. If G is rooted at v, then any H being a factor obtained by the
application of rule (3.3) has the following property: all factors of H obtained by
applying (3.1) are prime.

Pseudocode and time complexity. The pseudocode of the prime decomposition
algorithm through SCCs and dominator relations can be found as Algorithm 1 in
Section 8.1.2 from the appendix. Observe that obtaining the SCC decomposition
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3.4 Discussion

takes time O(|V | + |E|) by Tarjan’s strongly connected components algorithm
(Tarjan, 1972). Similarly, by the result of Alstrup et al. (1999), one can find the
dominator tree of a digraph in time O(|V |+ |E|).
Corollary 3.3.6. There is an algorithm that finds the decomposition of G into
prime components G1, . . . , Gk in time O(|V |+ |E|).

3.4 Discussion

We studied the fundamental problem of factorising the Kirchhoff polynomial into
irreducible factors. We provided a graph-theoretic structural characterization of
digraphs corresponding to prime factors of κ(G). Based on this we presented a
linear-time digraph decomposition technique that corresponds to the prime fac-
torization of κ(G).

The presented decomposition technique has numerous uses, owing to its proper-
ties coming from the prime factorization of the Kirchhoff polynomial, preservation
of structural properties, and compressed representation inherent to polynomial
factorisation.

The fundamental insight provided by the decomposition is that practical
arborescence enumeration and Kirchhoff polynomial generation is not directly
dependent on the (super) exponentially growing number of arborescences but,
rather, depends on digraph structure. The decomposition rules hint at what
the structure of a digraph needs to be, in order to allow an effective (practical)
enumeration of arborescences/Kirchhoff polynomial generation. An immediate
example are digraphs, whose Kirchhoff polynomials factorize exclusively to small
(say, constant size) prime factors. These digraphs (and others) form the class of
practically enumerable digraphs – the class PE for short. In this thesis we do not
aim to classify PE exactly. We note that the mechanics of the SCC decomposition
(Theorem 3.3.2) and domination decomposition (Theorem 3.3.3) can be reversed
to define a build-up procedure for generating non-trivial digraphs belonging to
the class PE. For example, given two rooted digraphs P,G ∈ PE, we can obtain
the digraph P ◦ G in which all vertices of G are dominated by one particular
vertex p from P and κ(P ◦G) = κ(P ) ·κ(G). Additionally, G can be composed of
multiple SCCs factorizing as κ(G) = κ(P1) · . . . · κ(Pn), where P1, . . . , Pn ∈ PE.
Interestingly, many digraphs obtained from real-life applications possess rich
hierarchical and modular structure (Barabasi & Oltvai, 2004; Meunier et al.,
2010), which could facilitate the practical enumeration of their arborescences.

The prime factorisation technique is central to this thesis since it establishes a
theoretical basis for efficient generation and manipulation of Kirchhoff polynomi-
als (Chapter 4) and a direct link between model topology and its dose-response
function (Chapter 5) which are invaluable when modelling biological systems us-
ing steady-state Laplacian models (Chapter 6).

The decomposition can also find relevance in a wider context of applications.
In many situations, one needs to enumerate/count only arborescences of certain
type, e.g., those of minimum cost, or those of bounded degree. Our preliminary
experimental investigation suggests that our decomposition technique might be of
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3 Prime Factorisation of the Kirchhoff Polynomial

practical/theoretical use. Also, note that we can sample, uniformly at random, an
arborescence from the factorised form of κ(G) as follows: pick a random monomial
from each of the prime factors.
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4
Manipulation and Generation of
Expressions of Kirchhoff Polynomials

4.1 Introduction

The great significance of Kirchhoff polynomials stems from their instrumental role
in understanding linear diffusion processes (of information, probabilities, concen-
trations) on (di)graph models which are abundant in science. Hence they have
found essential applications and parallel developments in diverse disciplines, such
as electrical engineering (Kirchhoff, 1847), probability theory (Leighton & Rivest,
1986; Anantharam & Tsoucas, 1989; Biane, 2015), and physics (Weinzierl, 2013).

Classically in biology, Kirchhoff polynomials are obtained as the (symbolic)
expressions corresponding to King-Altman patterns which serve to derive steady-
states and steady-state rate laws of enzyme reaction mechanisms (King & Altman,
1956). More precisely, King-Altman patterns are spanning trees/arborescences of
biochemical reaction mechanisms represented as graphs/digraphs in which vertices
denote biochemical species and edges mark the reactions between the species. As
introduced in previous chapters we focus on biochemical networks represented as
digraphs which allow for irreversible reactions. Recall that such biochemical mech-
anisms contain reactions exclusively governed by (pseudo) first- and zero-order
mass-action kinetics (Poland, 1989), which we call Laplacian models. Models with
this linear structure are frequently obtained when applying time-scale separation
and have provided important insights to a wide spectrum of biological areas such
as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion chan-
nels, gene regulation, and post-translational modification (Gunawardena, 2012).
Besides, they continue guiding us understand biological systems (Gunawardena,
2014), notably finding application when the widely used equilibrium assumption
is inadequate and non-equilibrium steady-states have to be derived (Ahsendorf
et al., 2014; Estrada et al., 2016).

In Chapter 2 we introduced a central property of Laplacian models, namely that
they have a unique steady-state (in case their corresponding digraph is strongly
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connected) , which can always be derived symbolically through the generation
of appropriate Kirchhoff polynomials. Symbolic derivation of steady-states is
invaluable when parameter values in a model are uncertain or unknown, as is
commonly the case in biological models, and provides a direct link between model
structure and its steady-state functional capabilities. Yet, despite their apparent
mathematical simplicity, Laplacian models frequently suffer from the problem of
exponential, and even super-exponential, growth of the size of their Kirchhoff
polynomials and, respectively, their symbolic steady-state expressions. For exam-
ple, an enzyme state transition model of Prostaglandin H Synthase 1 (PGHS-1)
from Goltsov et al. (2010) with 30 vertices and 118 edges has 24 quadrillion ar-
borescences which translates to a Kirchhoff polynomial of size 735 quadrillion.
It is evident that symbolic steady-state expressions of such size are essentially
impossible to derive and manipulate. Even when we are interested in the ratio
between the steady-states of two species or their difference (as in steady-state rate
laws), which can be far simpler than the original expressions due to algebraic sim-
plifications, we have to generate complete Kirchhoff polynomials and symbolically
manipulate and simplify them.

The inherent problem of practical generation and manipulation of steady-state
expressions derived from Laplacian models was the primary incentive for King and
Altman to develop their method as means to visually facilitate manual derivations
instead of erroneously expanding determinants by hand. Their influential work
triggered a prolific succession of methods and software (reviewed in Qi et al.
(2009)) to derive steady-states and rate equations for Laplacian models of biolog-
ical systems. Graph theoretical methods were proposed which provide rules and
exploit symmetries to simplify derivations of steady-states and steady-state reac-
tion rates (Volkenstein & Goldstein, 1966; Chou & Forsén, 1980). Other methods
assume rapid equilibrium for some reactions (Cha, 1968) and employ systematic
determinant expansion (Varon et al., 1997; Garcia-Sevilla et al., 2010). A par-
ticularly prominent approach is Wang algebra, a set of simple algebraic rules to
determine unimodular discriminants (Duffin & Morley, 1978), since it allows to
easily formulate Kirchhoff polynomials, although in a form which requires expres-
sion expansion and elimination of redundant terms (Fromm, 1970; Lam & Priest,
1972; Indge & Childs, 1976; Qi et al., 2009).

In the field of computer science developments have also been made to enumer-
ate the set of all arborescences from which Kirchhoff polynomials are obtained.
Gabow & Myers (1978) presented an algorithm for enumerating all arborescences
with O(|E| + N · |E|) running time (N being the number of arborescences) and
O(|E|) space requirements. Later, this algorithm has been improved by the cur-
rently two state-of-the-art algorithms (Uno, 1996; Kapoor & Ramesh, 2000). Both
algorithms start by computing an initial (arbitrary) arborescence, and then, iter-
atively, compute “close-by” arborescences by outputting only the edge-difference
to the previously computed and listed arborescence. Uno (1996) uses a reverse
search, while Kapoor & Ramesh (2000) use depth-first search in the space of all
arborescences (represented as an undirected graph where a node corresponds to
an arborescence and an edge denotes a single edge-swap between the two adjacent
arborescences). The algorithm of Uno runs in O(|E|+N ·

√
|V | log(|E|/|V |)) time
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and has space complexity O(|E|), and the algorithm of Kapoor and Ramesh runs
in O(N |V |+ |V |3) time and has a space complexity O(|V |2).

Despite the considerable progress the existing methods and algorithms all suffer
from the “(super)exponential scaling curse” and only offer limited and ad hoc ma-
nipulation of steady-state expressions. The number of arborescences is present in
the time and space complexity classes of all available algorithms and it is regarded
as a hard bound on how well the algorithms can perform. This fact hinders the
analysis of larger and more detailed models which follow from the advancement
in experimental techniques such as phosphoproteomics to study posttranslational
modification of proteins (Gnad et al., 2011).

Exponential scaling of the size of Kirchhoff polynomials seems insurmount-
able but any approach that mitigates it would greatly benefit the applications
of Laplacian models in biology, namely would deepen structure-function under-
standing and allow analysis of larger models. An important step in the direction
of taming the exponential growth is the realisation in Chapter 3 that Kirchhoff
polynomials can be efficiently factorised into irreducible factors which provides a
natural compact representation that is not directly dependent on the number of
arborescences but is, rather, determined by digraph connectivity.

In this chapter, we employ the prime factorisation of Kirchhoff polynomials from
Chapter 3 as a basis to efficiently manipulate and compactly generate them. We
develop theory and algorithms to simplify expressions of Kirchhoff polynomials,
bypassing expensive symbolic generation and manipulation of lengthy expressions
by computer algebra systems. We achieve this by considering the prime compo-
nents of all Kirchhoff polynomials in an expression as symbolic variables. The
resulting coarse-grained expressions allow for symbolic simplification without the
explicit generation of the polynomials. This is possible since we derive one nec-
essary and one sufficient condition defining when different prime digraphs have
equal Kirchhoff polynomials. Further, we study how to do arithmetic and calculus
with Kirchhoff polynomials without explicitly generating them. We demonstrate
the benefits of efficient manipulation for cases in which lengthy expressions of
Kirchhoff polynomials can be significantly simplified.

To explicitly generate the Kirchhoff polynomials, e.g. as is needed for their re-
peated evaluation, we examine one recursive and one iterative algorithm inspired
by algebraic simplification. The algorithms alternate between prime decomposi-
tion and edge deletion-contraction in every prime component which decomposes
the irreducible component into a sum of desirably reducible digraphs. Although
it is a hard and instance specific problem to decide which edges to delete-contract
in order to obtain a maximally compressed Kirchhoff polynomial, we examine
various compression heuristics. We achieve additional compression within the it-
erative algorithm since it identifies digraphs with identical Kirchhoff polynomials
during runtime and thus avoids redundant Kirchhoff polynomial generation. We
apply the algorithms to a collection of Laplacian models and observe that digraph
connectivity aware heuristics prove to be useful in practice and achieve large com-
pressions and short running times. The developed methods and algorithms are
implemented in a Python package called KirchPy.
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4.2 Efficient Manipulation of Expressions of Kirchhoff
Polynomials

In Section 2.4 we have already seen that the steady-states of Laplacian models
are ratios of Kirchhoff polynomials, or put more generally they are expressions of
Kirchhoff polynomials. Similarly, any symbolic expressions derived from steady-
state Laplacian models through arithmetic and calculus would also be expressions
of Kirchhoff polynomials. Such examples are ratios of steady-states, steady-state
rate equations, the, so called, differential expressions which are the main subject
of study in Chapter 5, and differentiated steady-state expressions with respect to
a reaction constant to determine parameter sensitivities.

Expressions of Kirchhoff polynomials appear to play a central role in the anal-
ysis of steady-state Laplacian models. Developing methods for their algebraic
manipulation is important to understand when the expressions can be simplified.
If simplification is possible, long expressions can be transformed into shorter and
more comprehensible ones, and if simplification is impossible it is time-saving to
know that additional manipulation would not be useful. For example, the steady-
state of a Laplacian model, which is a ratio between Kirchhoff polynomials, can
be simplified if the numerator and denominator share common factors. After all
common factors are crossed out the numerator and denominator become rela-
tively prime and further simplification is not possible. Non-trivial steady-states
of closed systems can never be simplified since their denominators corresponds
to Kirchhoff polynomials of strongly connected digraphs which are always prime.
In contrast, it could be possible to simplify the steady-state of an open system
since its numerator and denominator are both Kirchhoff polynomials of rooted
digraphs. It could happen that the rooting operations delete edges which decom-
pose the numerator and denominator into prime factors, some of which could be
crossed out.

Despite its importance, symbolic simplification can prove impractical due to
the (super) exponentially growing size of Kirchhoff polynomials. We show how
to circumvent tedious symbolic manipulation by exploiting particular properties
of Kirchhoff polynomials which allow their implicit manipulation, that is without
explicitly generating polynomials in expanded form but working with the corre-
sponding digraphs. More precisely, our approach is to:

(i) find the prime components corresponding to prime factors of all Kirchhoff
polynomials in the expression, then

(ii) determine which prime components generate identical Kirchhoff polynomi-
als, and

(iii) form a coarse-grained representation of the original expression by substi-
tuting prime components with symbolic variables, where prime components
with identical Kirchhoff polynomials are assigned the same variable, and fi-
nally,

(iv) symbolically simplify the resulting coarse-grained expression.
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Prime decomposition is performed in linear time as seen in Chapter 3 and we rely
on available software for symbolic simplification. It remains to determine how to
efficiently decide which prime components generate equal Kirchhoff polynomials
without their explicit generation.

4.2.1 Prime Digraphs with Equal Kirchhoff Polynomials

We consider Kirchhoff polynomial equality in the algebraic sense, and not as a
general isomorphism between polynomials in which the identity of the variables
does not matter as long as they can be mapped through a bijection between the
compared polynomials. Thus it is important to remark that by uniquely labelling
a digraph we assign identity to each edge through its label, that is, a label defines
a particular reaction. Applying the digraph operations of prime decomposition,
edge deletion, edge contraction, and vertex rooting to a uniquely labelled digraph
preserves the identity of the reactions while the names of the vertices can change.
However, when comparing two Kirchhoff polynomials originating from different
sources, e.g. when evaluating competing hypotheses expressed through Laplacian
models with rearranged reactions, identical reactions between the sources need to
carry the same label and different reactions – different labels, in order to have a
meaningful comparison.

A necessary condition for two polynomials to be equal is to have the same set
of variables corresponding to terms with non-zero coefficients. This condition
cannot be transferred directly to compare the digraphs generating the Kirchhoff
polynomials polynomials because it is possible that the digraphs contain nuisance
edges which do not take part in any arborescence. Thereby, the set of labels of
two digraphs generating equal Kirchhoff polynomials will be different when one
or both of them contain nuisance edges. Next we show that if we concentrate on
comparing only prime digraphs we can prove that they do not contain nuisance
edges since every edge participates in, at least, one arborescence.

Theorem 4.2.1. Let G be a prime digraph, then each edge in G participates in
at least one arborescence.

The non-existence of nuisance edges in prime digraphs (digraphs with prime
Kirchhoff polynomials) allows us to formulate a necessary condition for Kirchhoff
polynomial equality in Corollary 4.2.2.

Corollary 4.2.2. Let G and H be two prime digraphs with equal Kirchhoff poly-
nomials, then G and H have equal sets of edge labels, i.e. κ(G) = κ(H) ⇒
`(G) = `(H).

Proof. Follows directly from Theorem 4.2.1.

The condition can be tested efficiently since it involves only a comparison be-
tween sets. It is also easy to show that it is not a sufficient condition for Kirchhoff
polynomial equality. An example is given in Figure 4.1a depicting two digraphs
with equal edge labels sets but different Kirchhoff polynomials.
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Figure 4.1: Examples for (a) two digraphs with equal edge label sets but different
Kirchhoff polynomials and for (b) two non-λ-isomorphic prime digraphs with
identical Kirchhoff polynomials.

We continue by presenting a digraph-based sufficient condition of Kirchhoff
polynomial equality. We define the term identical-label-isomorphism (for short λ-
isomorphism) to denote a vertex bijection which is edge-preserving and enforcing
the corresponding edges to have identical labels.

Definition 4.2.3 (λ-isomorphism). Two labelled digraphs G and H are called
identical-label-isomorphic (for short λ-isomorphic), denoted G 'λ H, iff there
exists a bijective mapping ψ : V (G) 7→ V (H), such that:

1. uv ∈ E(G) iff ψ(u)ψ(v) ∈ E(H) and

2. `(uv) = `(ψ(u)ψ(v)).

It is evident that two λ-isomorphic digraphs give rise to identical Kirchhoff
polynomials since the digraphs differ only by vertex names and otherwise have
identical topology and labels.

Observation 4.2.4. Let G and H be λ-isomorphic, then they generate identical
Kirchhoff polynomials, i.e. G 'λ H ⇒ κ(G) = κ(H).

To derive a condition testing for λ-isomorphism we need the definition of the,
so called, line digraph L (G) associated to a given digraph G.

Definition 4.2.5 (Line digraph). The line digraph L (G) associated to the di-
graph G satisfies the conditions:

1. the vertices of L (G) are the unique edge labels of G, i.e. V (L (G)) ≡ `(G)
and

2. two vertices u, v ∈ V (L (G)) are joined by a directed edge uv iff u =
`(rs), v = `(st) for r, s, t ∈ V (G).

Theorem 4.2.6. Two prime digraphs G and H are λ-isomorphic iff the edge sets
of their line digraphs are equal, i.e. G 'λ H ⇔ E(L (G)) = E(L (H)).

Theorem 4.2.6 allows us to formulate a sufficient condition for prime Kirchhoff
polynomial equality.
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Corollary 4.2.7. Let G and H be two uniquely labelled prime digraphs whose
line digraphs have equal edge sets, then the Kirchhoff polynomials they generate
are equal, i.e. E(L (G)) = E(L (H)) ⇒ κ(G) = κ(H)

Proof. Follows directly from Observation 4.2.4 and Theorem 4.2.6.

The sufficient condition for prime Kirchhoff polynomial equality presented in
Corollary 4.2.7 is also cheap to evaluate since it only involves line digraph con-
struction which has quadratic time complexity and the comparison of two sets.
The condition is not necessary for prime Kirchhoff polynomial equality because
two non-λ-isomorphic prime digraphs can generate identical Kirchhoff polynomi-
als as presented in Figure 4.1b.

4.2.2 Formulation of Coarse-Grained Expressions and Their
Algebraic Manipulation

We use the conditions from Corollary 4.2.2 and Corollary 4.2.7 to assign identical
variable names to prime digraphs with equal Kirchhoff polynomials in order to
formulate the coarse-grained description of an expression of Kirchhoff polynomials
without their explicit generation. First we apply the necessary condition to filter
possible matches and then the sufficient one to certify the equality. Pairs of prime
digraphs which are non-λ-isomorphic but have the same label sets require special
attention. If such are present we cannot guarantee that we have identified all
digraphs with equal Kirchhoff polynomials. This uncertainty translates to lack of
guarantees for maximal symbolic simplification of the coarse-grained description.
On the other hand, when such pairs of digraphs are not present in the expres-
sion we can guarantee the exhaustive identification of prime digraphs with equal
Kirchhoff polynomials. Further, the comparisons of prime digraphs can be sped
up by realizing that each prime component of a digraph can be equal to at most
one prime component of another digraph, since prime factorisation partitions the
set of labels.

It is also important to note that although the conditions are not necessary and
sufficient in general, they could be such in certain cases. For example, when we
compare the Kirchhoff polynomials of two prime digraphs G1 and G2 obtained
from the same digraph G by means of edge deletion and prime decomposition we
can be sure that they have the same Kirchhoff polynomials iff they have equal edge
label sets. This is due to the fact that starting from a common uniquely labelled
digraph G, edge deletions (removal of edges) and prime decomposition (partition
of edges) do not change the comparative topology of G1 and G2. An example
for such expressions derived from a single digraph by means of edge deletion and
prime decomposition are the steady-state expressions of open Laplacian models
– their numerator and denominator contain Kirchhoff polynomials of rooted di-
graphs which could possibly be prime decomposable. On the other hand, edge
contractions have the capacity to permute the edges and lead to the examples
form Figure 4.1.

Once coarse-grained expressions are formulated they can be symbolically sim-
plified with any computer algebra system, e.g. Python’s SymPy or Mathematica.
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For example, we can find the greatest common divisor between the numerator and
denominator of a ratio like an open systems’ steady-state expression and simplify
it to an irreducible fraction, or take out a common factor from a sum of products
of Kirchhoff polynomials to obtain a shorter form of the expression.

Note that there might be reasons different from incompletely identifying di-
graphs with equal Kirchhoff polynomials that do not guarantee full simplifica-
tion. For example, simplification on a lower or higher level from the coarse-
graining could be possible. One such instance is the difference between two prime
Kirchhoff polynomials which share monomials (the corresponding digraphs share
arborescences). The common monomials will cancel out if the Kirchhoff polyno-
mials are written in explicit form but cannot be cancelled in the coarse-grained
representation. Partially developing the prime Kirchhoff polynomials, e.g. using
the edge deletion-contraction identity, to sums containing the shared monomials
could often turn to be lengthy. Another instance is when the sum or difference can
be reduced by combining Kirchhoff polynomials to form the Kirchhoff polynomial
of another digraph. For example, according to the edge deletion-contraction iden-
tity if we identify digraphs G \ e and G/e in the expression κ(G \ e) + `(e)κ(G/e)
we can simplify it to κ(G). Other variations of this identity are also possible, e.g.

the expression κ(G)−κ(G\e)
`(e) can be written simply as κ(G/e).

Note that some proofs and derivations are constructed under the assumption
that the digraph models have unique and irreducible expressions in their labels. If
this assumption is not met, e.g. when different reactions are assumed to have the
same rate constant, rate constants are expressions which can be simplified or con-
tain symbols shared across different labels, then additional symbolic simplification
might be required since the primality of the decomposition is not guaranteed and
the manipulation formulas of the coarse-grained representation might not hold.

4.2.3 Calculus of Kirchhoff Polynomials

The study of steady-state Laplacian systems is not complete without an under-
standing of how to efficiently apply differentiation and integration to Kirchhoff
polynomials. Frequently, we need to evaluate the sensitivities of steady-states to
small changes in reaction-rate constants. Again, generating the full form of the
contained Kirchhoff polynomials and differentiating could be difficult due to their
length. We show that the properties of Kirchhoff polynomials allow to map differ-
entiation and integration to digraph operations and thus work with the implicit
coarse-grained representation.

Taking the partial derivative of a Kirchhoff polynomial with respect to a reac-
tion rate constant `(e) corresponding to the edge e is equivalent to edge contrac-
tion in the corresponding digraph as shown by Identity 4.2.8.

Identity 4.2.8.
∂κ(G)

∂`(e)
= κ(G/e).
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We can also derive a differentiation rule for digraphs with available prime de-
composition. Then, since prime decomposition is a partition of labels, we need
only contract the edge in a single prime component.

Identity 4.2.9.

∂κ(G)

∂`(e)
= κ(P1/e)

n∏
i=2

κ(Pi),

where P1 is the single prime component of G containing e and Pi are the remaining
n− 1 prime components.

Along the same lines, we can derive a formula for the ratio of Kirchhoff poly-
nomials composed of two digraphs G and H.

Identity 4.2.10. Let the prime factorisation of the Kirchhoff polynomials κ(G)
and κ(H) be κ(G) =

∏n
i=1 κ(Pi) and κ(H) =

∏m
j=1 κ(Qj), then:

∂

∂`(e)

κ(G)

κ(H)
=

∏n
i=2 κ(Pi)

κ(Q1)2
∏m
j=2 κ(Qj)

(κ(P1/e)κ(Q1)− κ(P1)κ(Q1/e)) ,

where P1 and Q1 are the prime components of G and H, correspondingly, con-
taining e.

It could be possible to further factorise the derived expressions since edge con-
traction could change the connectivity of the digraphs.

Integrating a Kirchhoff polynomial with respect to a label `(e) corresponding
to the edge e is equivalent to multiplication by `(e) and edge relabelling in the
corresponding digraph as seen from Identity 4.2.11.

Identity 4.2.11. ∫
κ(G)d`(e) = `(e)κ(G`(e)←

`(e)
2 ) + C,

where C is the integration constant and `(e)← `(e)
2 denotes a relabelling operation

replacing the label of e by the same label divided by two, e.g. if the old label was
`(e) = r1 the new would be `(e) = r1

2 .

Note that integration does not change the factorisation properties of G since

its connectivity remains unchanged and that the labels remain unique unless `(e)
2

is already labelling another edge in the digraph.

4.2.4 Results

To illustrate the manipulation of expressions of Kirchhoff polynomials in the
coarse-grained representation, we first consider the simple open receptor traf-
ficking model with a digraph G1 shown in Figure 4.2a. It consists of species for
an unbound surface receptor R, a cell surface ligand-receptor complex RL, their
respective internalized counterparts Ri and RLi, and a set of state transition,
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Figure 4.2: Simplification of expressions of Kirchhoff polynomials in the coarse-
grained representation. (a) Simple receptor trafficking model G1 and (b) the
simplification of its steady-state expression. Prime components with equal
Kirchhoff polynomials have the same colour. Note that vertex labels are not
important since they can change during edge contractions. Also, the symbol κ
is omitted in front of the digraphs for visual clarity. (c) A model of the PHGS
catalytic cycle G2 (see COX in Table 8.1) from Goltsov et al. (2010) and (d)
the steady-states ratio of species E21 and E17 obtained through the coarse-
grained representation. Coloured vertices denote the species of interest and the
coloured dashed arrows denote reactions contained in the simplified ratio.
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synthesis, and degradation reactions. In Figure 4.2b we derive the steady-state
for RLi by prime decomposing the digraphs in the steady-state ratio and crossing
out the common factors. We see, without the complete generation of the polyno-
mials κRLi(G1) or κ∅(G1), that the resulting expression does not depend on the
rate constants r1 and r3.

The advantage of the coarse-grained representation becomes more pronounced
for expressions consisting of digraphs with numerous arborescences. Let us con-
sider the model of the PHGS catalytic cycle from Goltsov et al. (2010) shown in
Figure 4.2c as G2 and derive the ratio of the steady-states of species E21 and
E17. Taking the standard approach, we have to generate the Kirchhoff polynomi-
als κE21(G2) and κE17(G2), and symbolically simplify their ratio. However, each
of them consists of trillions of arborescences (respectively 280,420,755,225,601
and 2,336,839,626,880) which makes both generation and simplification impos-
sible in practice. Adopting the digraph-based coarse-grained form implemented
in KirchPy we obtain the resulting very short expression shown in Figure 4.2d
instantly.

4.3 Compact Generation of Expressions of Kirchhoff
Polynomials

After simplifying an expression of Kirchhoff polynomials in its coarse-grained form
we can observe which labels have vanished (the corresponding reactions do not
affect the expression) and which remain (the corresponding reactions might affect
the function modelled by the expression). However, to symbolically obtain the
simplified expression for further analysis or repeated evaluation, e.g. for parame-
ter space exploration, we have to abandon the coarse-grained representation and
explicitly generate full-length Kirchhoff polynomials. To do that, we can once
more take advantage of the coarse-grained representation and only generate the
Kirchhoff polynomials for prime components with dissimilar Kirchhoff polynomi-
als. For this reason, in what follows, we focus on Kirchhoff polynomial generation
for individual digraphs and not in expressions of Kirchhoff polynomials.

4.3.1 Problem Formulation

The standard approaches for Kirchhoff polynomial generation based on arbores-
cence enumeration reviewed in the introduction provide us with (super) exponen-
tially growing output and evaluation time due to the frequently (super) expo-
nential growth of the number arborescences in digraphs. In order to lessen the
exponential blow-up in Kirchhoff polynomial length, we take a new approach to
Kirchhoff polynomial generation, namely, that of algebraic simplification – com-
pression of the polynomial to an equivalent but more compact form. Thus we look
for an algorithm C taking as an input a digraph G and producing an algebraically
equivalent representation of its Kirchhoff polynomial ΓC(κ(G)) with size as small
as possible.
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Figure 4.3: Algebraically equivalent Kirchhoff polynomials, their expression
trees, and sizes for (a) an example digraph G3 in (b) fully expanded form,
(c) factorised form obtained by algorithm CR, and (d) change of variables form
(forest of expression trees) obtained by algorithm CI . Note that the size of a
Kirchhoff polynomial representation is the sum of the number of branch vertices
and the number of leaves in its expression tree. Additionally, when change of
variables is applied, each expression tree from the forest is assigned a pointer
counting as 1 to the size of the representation and pointing to the leaves of other
expression trees where it should be substituted to obtain the expression tree
of the complete Kirchhoff polynomial. The pointer S denotes the “starting”
expression tree.
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An ideal algorithm C would take a digraph and generate its Kirchhoff poly-
nomial in a maximally compact form, bypassing explicit generation and tedious
simplification. It is hard to determine the best algorithm C and to even check
if a Kirchhoff polynomial is fully simplified. For that reason, we aim to pro-
pose algorithms which, despite not giving guarantees for maximal compression,
heuristically provide us with satisfactory results to practical problems.

Inspired from polynomial simplification, and more precisely by the well-known
polynomial simplification techniques of factorisation, taking out a common factor,
and change of variables, we find digraph operation counterparts to those symbolic
manipulation techniques for Kirchhoff polynomials and use them to propose two
greedy generation algorithms.

An important caveat is that the change of variables procedure requires an exten-
sion of the definition of Kirchhoff polynomial representation size since it produces
a forest of expression trees instead of a single expression tree as can be seen in
Figure 4.3. We define the size of a Kirchhoff polynomial for such a representation
as the the total number of branch vertices and leaves in the forest plus the number
of expression trees in the forest. It is necessary to account for the number of ex-
pression trees since each of them is given a unique pointer indicating its location
within the other expression trees.

4.3.2 Recursive Algorithm CR

The prime decomposition developed in Chapter 3 behaves as the ideal algorithm
C for compression – it takes a digraph and, in linear time, produces a guaran-
teed maximally compact form due to the irreducibility of each prime component.
However, it cannot be applied to prime digraphs, which can also have sizeable
Kirchhoff polynomials. Thus we need an additional procedure to compress the
Kirchhoff polynomials of the prime components. We achieve this by rearranging
irreducible Kirchhoff polynomials, particularly by taking a factor out from part of
their monomials, such that we can further factorise parts of them. Factoring out
a variable in a Kirchhoff polynomial, without its explicit generation, is achieved
through the deletion-contraction identity introduced by Proposition 2.5.2. To re-
call, after choosing an edge e ∈ E(G), any Kirchhoff polynomial can be written
as the sum:

κ(G) = κ(G \ e) + `(e)κ(G/e),

in which, for a prime G, the modified digraphs G \ e and G/e could be amenable
to further prime decomposition since e’s deletion and contraction could change
the connectivity of G.

With this insight, we formulate the algorithm CR whose pseudocode can be
found in Section 8.2.2 of the appendix as Algorithm 2. It takes a digraph G, and
recursively alternates between prime decomposition and edge deletion-contraction
in every prime component until digraphs are reduced to a single vertex or a
single edge, whose polynomials are trivial to generate. The algorithm is easy to
implement and produces an expression tree as in Figure 4.3c that is more compact
than the expanded form of the Kirchhoff polynomial. Importantly, the compact
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form can easily be evaluated and analysed, but multiple recursive calls could
unnecessarily work on large digraphs having the same Kirchhoff polynomial.

4.3.3 Iterative Algorithm CI with Change of Variables

We propose a second algorithm, CI (for pseudocode see Section 8.2.2, Algo-
rithm 3), employing the digraph comparisons certifying Kirchhoff polynomial
equality developed in Section 4.2.1 to eliminate the potential redundancy of mul-
tiply generating identical Kirchhoff polynomials.

As in CR, given a digraph G, CI alternates between prime decomposition and
edge deletion-contraction to reduce the Kirchhoff polynomial generation problem
to several smaller ones. Differences to CR are that a unique pointer is associated
to every digraph, and that CI adds the reduced digraphs to a queue for further
reduction, simultaneously remembering the partial expression tree they partici-
pate in. A partial expression tree is such a tree in which leaves could correspond
to Kirchhoff polynomials. For example, the deletion-contraction identity from
Proposition 2.5.2 provides a partial expression tree in which two leaves are Kirch-
hoff polynomials, κ(G \ e) and κ(G/e), and one is an edge label `(e). Thus this
tree can be remembered after substituting κ(G\e) and κ(G/e) with their pointers,
and the digraphs corresponding to these Kirchhoff polynomials taken for further
reduction. Additionally, during the reduction procedure every prime component
is compared to all previously encountered prime components using the edge la-
bel and the λ-isomorphism tests from Corollary 4.2.2 and Corollary 4.2.7. If the
equality of a prime component’s Kirchhoff polynomial to a previously considered
digraph’s Kirchhoff polynomial cannot be certified, then the prime component is
taken for further reduction. In contrast, if a prime component and a previously
encountered digraph H have equal Kirchhoff polynomials, then the reduction of
the prime component is discontinued and its Kirchhoff polynomial is substituted
with the pointer of H, thus marking the identity. Algebraically this is equivalent
to a change of variables – substituting identical parts of the Kirchhoff polynomial
with identical symbols and explicitly generating them only once (see Figure 4.3d).
The reduction procedure again continues until digraphs are reduced to a single
vertex or a single edge and produces a set of partial expression trees.

The partial expression trees are then assembled. The assembly starts from
the given digraph G (with pointer S) and its partial expression tree which is se-
quentially merged with the partial expression trees of its reduced digraphs. The
merging proceeds if the current reduced digraph has not been matched with an-
other digraph with identical Kirchhoff polynomial. If a match is present, then the
partial expression tree of the reduced digraph is substituted with the pointer, e.g.
X, (as a variable) of a predetermined digraph with equal Kirchhoff polynomial
encountered during the reduction procedure (could be the current digraph itself)
and merging is discontinued. Simultaneously, another assembly is initiated start-
ing from X and its corresponding digraph to obtain a forest of expressions marked
with the pointers of the initializing digraphs as in Figure 4.3 d. This forest of
expression trees corresponds to a set of Kirchhoff polynomials, which after being
substituted into each other give rise to the complete Kirchhoff polynomial of the
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given digraph G.
Note that substitution is unnecessary when evaluating the Kirchhoff polynomial

for a given set of edge label values. There exists a sequence obtainable in linear
time in which the expression trees from the forest can be evaluated such that there
are no uncalculated pointer variables during the evaluation. The reason is that
the expression trees in the forest can be thought arranged in a directed acyclic
graph, with vertices being the trees themselves and edges the change of variables
directed relations, which can always be topologically sorted.

The resulting representation of the Kirchhoff polynomial is more compact than
its expanded form and can still be easily evaluated and analysed. However, if
there are few small digraphs with equal Kirchhoff polynomials encountered during
the reduction, in comparison to CR, CI might consume more memory due to
remembering pointers and already considered digraphs, have longer running time
due to equality comparisons, and not provide significantly better compression
(compare Figure 4.3c and d). On the other hand, if there are many large digraphs
with equal Kirchhoff polynomials encountered during the reduction, only CI could
be capable to generate practically relevant Kirchhoff polynomials.

4.3.4 Heuristic Edge Deletion-Contraction

An important ingredient of both algorithms GR and CI is the choice of an edge for
the deletion-contraction operation reducing the Kirchhoff polynomial of a prime
digraph to the sum of the Kirchhoff polynomials of two smaller digraphs (function
GetEdgeForDelContr in Algorithm 2 and Algorithm 3).

For us it is an open problem which edges to delete-contract in order to generate
a maximally compressed Kirchhoff polynomial. Thus we resort to a heuristic
approach, that is, we greedily select an edge to delete-contract such that a criterion
on the decomposition properties, which we introduce later, is optimised. Since
Kirchhoff polynomial generation results are instance specific we explore different
heuristics to empirically look for rules leading to satisfactory compression.

The heuristics we consider follow a four-step procedure. For each step we pro-
pose several choices of sub-heuristics. Then the set of all heuristics we investigate
contains all combinations of these sub-heuristics at the different steps of the pro-
cedure. More precisely, the procedure is (also see Box 8.1 in the appendix for a
more concise description):

(i) Pre-select a subset of edges E′(G) ⊆ E(G).

This subset could be a single randomly picked edge (leading to a random
connectivity-uninformed heuristic), all edges, or a subset of edges connected
to the digraph cycle structure (aiming to break open many or large cycles).

(ii) Apply edge deletion-contraction to G for each e ∈ E′(G) and decide which
branch of the deletion-contraction tree to consider, i.e. the edge deleted
digraph G \ e, the edge contracted digraph G/e, or both (G \ e,G/e).
This is required since edge contraction could also lead to edge deletions and
thus to further prime decomposition.
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(iii) Choose whether to decompose the digraphs in the considered edge deletion-
contraction branch(es) to strongly connected components or to prime com-
ponents.

SCC decomposition alone leads to Kirchhoff polynomial factorisation which
is not guaranteed to be prime. Yet we include it as a sub-heuristic due to
recent results in strong connectivity allowing to retrieve all strong bridges
(Italiano et al., 2012), the total number of SCCs, and the size of the largest
and of the smallest SCCs obtained after edge deletion in linear time (Geor-
giadis et al., 2015c). Note that, in order to have comparable running times
when decomposing into prime components and SCCs, we naively delete-
contract each considered edge and do not employ the mentioned recent
advancements.

(iv) Calculate a score on the digraph decomposition and pick the edge producing
an optimal score.

The score is based on the number, size distribution (in terms of number of
vertices or edges), and complexity (number of arborescences) of components
in the selected branch(es) of the deletion-contraction tree. The scores from
the decompositions of G \ e and G/e are summed when both branches are
taken into account. We choose the edge whose deletion leads to a decom-
position in which there are the largest number of SCCs/prime components,
the largest component is the smallest, the total complexity is the small-
est, or there are the largest number of components with the smallest total
complexity.

We describe each heuristic by four integers, where each integer marks the choice
of a sub-heuristic. See Box 8.1 from the appendix for the identifiers of each
sub-heuristic we consider. For example, the heuristic H = 2205 translates to a
procedure in which we:

(i) 2: Find the longest simple cycle S in the input digraph G and take its
edges E(S).

(ii) 2: For every e ∈ E(S) we apply deletion-contraction to obtain the digraphs
from both branches of the deletion-contraction tree, G \ e and G/e.

(iii) 0: Obtain the strongly connected components for every G \ e and G/e and
add them to a list pe.

(iv) 5: Pick the edge producing the list pe with the largest length and return
the edge e. If there are several lists having the same length, we pick the
one with the smallest total sum of component complexities and return the
corresponding edge e.

We use the same heuristic throughout the whole reduction process of a given
input digraph. Note that we denote the connectivity-uninformed heuristic (i)
0 as H = 0 ∗ ∗∗ since we need not apply the steps (ii), (iii), and (iv) having
already chosen randomly an edge to delete-contract. Otherwise, we explore all 108
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combinations of the different sub-procedures, which we call connectivity-informed
heuristics. This amounts to 109 heuristics in total.

4.3.5 Results

We evaluated the running time and compression of the two Kirchhoff polyno-
mial generation algorithms, CR and CI , employing the 109 described heuristics
on a collection of biologically relevant examples (see Table 8.1 in the appendix
for example description). We selected examples from literature having a wide
spectrum of complexities – ten less complex digraph models with tens to millions
of arborescences and two more complex models, HC4 and COXD, having tens of
millions and quadrillions of arborescences, respectively. Although the collection
may not be representative of all Laplacian models encountered in biology, it cer-
tainly is a diverse and challenging example set. Further, we define compression
as the ratio between the size of the expanded representation of a Kirchhoff poly-
nomial |ΓE(κ(G))| and the size of its representation produced by an algorithm C,
|ΓC(κ(G))|.

The first part of the analysis concerns the less complex examples and aims to
shed light on relations and trade-off in performance between CR and CI , and
the different heuristics. We obtained the compression and average running time
(from 10 runs) for each example from this set using the 108 connectivity-informed
heuristics with each algorithm, CR and CI . The connectivity-uninformed random
heuristic H = 0 ∗ ∗∗ was run 20 times on each low complexity example for both
CR and CI .
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Figure 4.4: Scatter plots of running time versus compression obtained with each
of the two Kirchhoff polynomial generation algorithms, (left column) CR and
(right column) CI . The first row corresponds to COLE1, an example of low
complexity (having 26 arborescences), the second row to an example with high
complexity, TF ( 1.5 million arborescences). Blue points represent performance
results for each of the 108 connectivity-informed heuristics and red points mark
the results for the 20 runs of the uninformed random heuristic H = 0 ∗ ∗∗.

45



4 Manipulation and Generation of Expressions of Kirchhoff Polynomials

10-2 10-1 100 101 102 103

CR running time (s)

10-2

10-1

100

101

102

103

C
I
 r

u
n

n
in

g
 t

im
e

 (
s)

100 101 102 103 104 105

CR compression ratio

100

101

102

103

104

105

C
I
 c

o
m

p
re

ss
io

n
 r

a
ti

o COLE1

AMPAR

MDH

ACTMYO

KNF33

SHPIL

GR

PHO5

RND

TF

Figure 4.5: Scatter plots comparing the (left) running time and (right) com-
pression of algorithms CR and CI on the collection of less complex examples
described in Table 8.1. Each point represents the running time/compression
for an example digraph obtained by CR and CI using the same connectivity-
informed heuristic. The 45◦ dashed line marks equal running time/compression
for CR and CI . The examples are sorted by complexity – COLE1 having the
lowest complexity and TF the highest.

To understand how important the selection of the particular heuristic is we
contrasted the performance of the algorithms run with the random uninformed
heuristic H = 0 ∗ ∗∗ and with the informed heuristics incorporating digraph con-
nectivity information on the collection of less complex examples. The results for
an example with low complexity COLE1 and an example with high complexity
TF are shown in Figure 4.4 (for results on all less complex examples see Figure 8.2
in the appendix). They indicate that several runs with the uninformed heuristic
are enough to generate highly compressed Kirchhoff polynomials in short time for
examples of low complexity, possibly due to the lack of computational overhead
which is present for the informed heuristics. However, for digraphs with higher
complexity, the performance of the random heuristic quickly deteriorates becom-
ing orders of magnitude worse than the informed heuristics, as is evident from the
results for example TF. This behaviour is expected since compressibility depends
on digraph connectivity and it becomes less probable to randomly pick a set of
edges for deletion-contraction in larger digraphs without any connectivity infor-
mation. Additionally, we observe that running time and compression are inversely
correlated (in log-log space) and the correlation becomes more pronounced when
the complexity of the examples increases.

In Figure 4.5 we compare the performance of algorithms CR and CI for the
connectivity-informed heuristics. The running time and compression results for
examples of low complexity lie on or symmetrically around the 45◦ dashed line,
which indicates that the two algorithms perform alike. The more complex the
examples, the more apparent becomes the superiority of algorithm CI over CR.
More points fall below the 45◦ line in the time comparison scatter plot indicating
predominantly shorter running times for CI on the same example instance and
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Figure 4.6: Comparison of the normalised running time and compression distri-
butions on the set of less complex examples for algorithm CI grouped by the
different choices of each sub-heuristic - edges, branch, components, and opti-
mality criterion. The running time and compression were normalized from 0
to 1, using the formula x−min

max−min , where x is the running time/compression for
every heuristic and example, min is the shortest running time/smallest com-
pression and max is the longest running time/largest compression among all
heuristics for the particular example.

employing the same heuristic. In the compression comparison scatter plot the
results are even more striking since all points lie above the 45◦ line implying that
the change of variables benefits the compression of all less complex examples.

To assess the relative efficiency of the heuristics applied on the collection of
less complex examples we normalized the performance measures over all heuris-
tics separately for each example and divided them into groups. The resulting
box plots for algorithm CI can be seen in Figure 4.6. The results for CR are
similar and are presented in Figure 8.1 from the appendix. We observe that some
sub-heuristics, on average, perform better both in running time and compression
on the collection of examples. We performed the non-parametric Kruskal-Wallis
H-test which showed that in every group there was at least one choice for a sub-
heuristic dominating the others, with the exception of the compression results of
group “(iii) Components” in which no sub-heuristic dominates. Post-hoc com-
parisons of sub-heuristic choices using the Wilcoxon signed-rank test revealed
that focusing deletion-contraction to edges relevant to the cycle structure of the
digraphs (sub-heuristics (i) 2 and (i) 3), considering the edge deleted digraphs
(sub-heuristic (ii) 0) and strongly connected components (sub-heuristic (iii) 0),
and not picking sub-heuristic (iv) 2 leads to significantly shorter running time
and larger compression on average (see Table 8.2 and Table 8.3 for results). A
limitation in the significance analysis is the different skewness of the data and the
dependency between the sub-heuristics, e.g. a good optimality criterion choice
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Table 4.1: Performance results for algorithm CI employing the heuristics leading
to the largest compression among all 109 considered heuristics on a set of ex-
ample digraph models (for example descriptions see Table 8.1 in the appendix).
Shown are the size of the expression tree of the expanded Kirchhoff polynomial
|ΓE(κ(G))|, the size of the compressed expression tree |ΓCI (κ(G))|, the heuris-
tic H producing the compression result, the compression calculated as the ratio
|ΓE(κ(G))|
|ΓCI (κ(G))| , and the average running time in seconds obtained from 10 runs

(HC4 and COXD were run only once) of KirchPy on a Dell laptop with Intel
i-7 CPU@2.10GHz and 8GB RAM.

G |ΓE(κ(G))| |ΓCI (κ(G))| H Compression Time (s)

COLE1 157 46 2012 3.4 0.09
AMPAR 211 63 2102 3.3 0.07
MDH 1, 270 141 2001 9.0 0.27
ACTMYO 3, 561 142 3003 25.1 0.19
KNF33 15, 553 940 3114 16.5 1.41
SHPIL 45, 601 786 2204 58.0 1.58
GR 65, 742 1, 280 2102 51.4 1.63
PHO5 640, 513 4, 691 3215 136.5 10.61
RND 967, 681 3, 281 1011 294.9 7.53
TF 38, 746, 801 1, 191 2002 32, 533 1.84
HC4 679, 477, 249 333, 599 1001 2, 036 1, 797

COXD
367,647, 474,

647, 060, 221 89, 532 1010 4.1e12 661

cannot remedy a bad edge subset choice. Thus we cannot conclude that a given
heuristic, e.g. H = 3002, always leads to fast running time and good compression.

The more complex models were run only once using only the connectivity-
informed heuristics and algorithm CI due to time and memory considerations.
The results for the heuristics leading to the largest compression can be seen in
Table 4.1. There we observe that different heuristics are optimal for different
problem instances and thus we cannot determine a single heuristic that would
give largest compression.

An important result that can be seen in Table 4.1 is that the compressed form
is significantly shorter than the number of arborescences, which becomes more
obvious for larger digraphs. Therefore, the number of arborescences is not a hard
bound for Kirchhoff polynomial generation, but rather the property of algebraic
compressibility. It is an open problem how to determine the compressibility of a
digraph. However, we can get an impression by looking at the results for HC4 and
COXD. COXD is a significantly more complex and larger model than HC4 but
its compression is much higher. If we look at the topology of the corresponding
digraphs we observe that COXD has a lower density of 0.13 and only 14 out of 117
reversible edges, while HC4 has a higher density of 0.25 and 56 out of 60 reversible
edges. These observations are not surprising since it is difficult to uncover strong
connectivity and domination during the digraph reduction procedure in dense
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digraphs when many reversible edges are present and it is simpler to break open
cycles in digraphs with low density and many unidirectional edges.

4.4 Discussion

The symbolic analysis of steady-state Laplacian models of biological systems
amounts to the analysis of expressions of Kirchhoff polynomials. For applications,
however, the manipulation of such expressions frequently becomes impractical for
even relatively small model instances because the size of Kirchhoff polynomials
frequently grows (super) exponentially with the size of their corresponding di-
graphs.

We developed a framework for the efficient manipulation of expressions of Kirch-
hoff polynomials without their explicit generation but by working directly with
their corresponding digraphs. Namely, we first prime decompose all digraphs in
an expression and determine the prime digraphs giving rise to equal Kirchhoff
polynomials. This then allows us to form a coarse-grained variant of the expres-
sion which is suitable for symbolic simplification. The resulting coarse-grained
representation permits the manipulation of otherwise symbolically intractable ex-
pressions of Kirchhoff polynomials. It also helps establish a structure-function
relationship between a model and its steady-state response by identifying which
reactions do not partake in the expression due to algebraic simplification and, in
some cases, which reactions participate in it due to irreducibility. A limitation of
the theory is that the presented Kirchhoff polynomial equality conditions are not
simultaneously necessary and sufficient, such that we cannot, in general, guaran-
tee that we have identified all digraphs giving rise to equal Kirchhoff polynomials
in a coarse-grained expression.

It is curious that there is available theory establishing when two undirected
graphs have isomorphic Kirchhoff polynomials (Bogner & Weinzierl, 2010), which
is a more general property than Kirchhoff polynomial equality, but we are not
aware of equivalent Kirchhoff polynomial isomorphism theory for digraphs. For
the purpose of manipulation also less general conditions than isomorphism could
be practically useful. For example, a necessary and sufficient condition for Kirch-
hoff polynomial equality of digraphs derived from a common digraph through edge
deletion and edge contraction would apply to a large set of practically relevant
expressions.

We introduced two algorithms, a recursive one CR and an iterative one CI ,
to explicitly generate individual Kirchhoff polynomials, once the coarse-grained
expression is simplified. The algorithms are inspired by algebraic simplification
of polynomials but operate on the corresponding digraphs. They produce com-
pressed Kirchhoff polynomials which are algebraically equivalent to their fully
expanded counterparts. Since maximum compression appears to be a hard prob-
lem, the algorithms employ greedy heuristics. We demonstrated the practical
utility of the algorithms, and especially of CI , to generate the Kirchhoff polyno-
mials of a wide range of Laplacian models from literature. The large compression
outcomes affirm the finding from Chapter 3 that Kirchhoff polynomial genera-
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tion is dependent on digraph connectivity and not on the (super) exponentially
growing number of arborescences. We observed that compression is instance and
heuristic specific. This calls for a more in-depth characterisation of Kirchhoff
polynomial compressibility based on digraph connectivity and an understanding
of how to appropriately choose heuristics. Choosing appropriate and efficiently
running heuristics is also a difficult challenge, which could be facilitated by the re-
cent advances in strong connectivity and 2-connectivity (Georgiadis et al., 2015c,
2017).

It is important to note that additional properties not accounted for by the
generation algorithms could help increase compression, and decrease running time
and memory requirements. One such property is digraph symmetry. For example,
we generated the Kirchhoff polynomial of HC4, the four dimensional hypercube
digraph rooted at a vertex, because due to symmetry all its rooted Kirchhoff
polynomials are isomorphic and can be obtained from each other through a simple
change of variables.

The presented manipulation and generation theory and algorithms are imple-
mented in the Python package KirchPy. We believe that KirchPy, together with
the theoretical insights into manipulation and generation of Kirchhoff polynomi-
als, would allow modelling efforts to catch up with the ever more comprehensive
experimental data by promoting the construction and analysis of larger Laplacian
models.
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5
Differential Dose-Response in
Laplacian Models of Biological
Systems

5.1 Introduction

Steady-state dose-response curves are a classical and ubiquitous tool to study
input-output relationships in biochemical systems. They relate the dose of a bio-
chemically active agent such as a ligand, enzyme, drug, or toxicant to a biochem-
ical, physiological, or even population-level response this agent triggers, such as
receptor activation in a cell, concentration of a chemical in a body compartment,
or mortality (Tallarida & Jacob, 2012). Experimentally obtained dose-response
curves often have a sigmoid shape and their standard analysis involves the fitting
of an empirical model, such as the probit model or the Hill equation to retrieve
the main characteristics of the dose-response relation as illustrated in Figure 5.1a.
Characteristics of central interest are the baseline and maximal responses, as well
as, the dose that produces a response halfway between baseline and maximum
to measure the potency of the biochemically active agent, depending on the con-
text denoted as effective concentration (EC50), inhibitory concentration (IC50),
or infectious dose (ID50).

Relevant information in basic science and applications is often obtained by
comparing dose-response curves. One can, for example, compare how dose af-
fects different system responses to find an optimal trade-off between therapeutic
efficiency and toxicity via the therapeutic index (TI) (Muller & Milton, 2012).
Often, it is of interest to understand how perturbations such as mutations, drugs,
or “natural” variations due to ligands with different affinities affect dose-response
relations. We focus on this aspect and use differential response (differential for
short) to refer to the relative differences between a reference and a perturbed
dose-response curve. The differential can be an experimental tool to probe the
underlying functioning of a biological system, in particular, to identify mecha-
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nisms guiding the system’s steady-state behaviour. Differential responses are also
exploited in natural systems. For example, membrane receptors in mammalian
type I interferon signalling can recognize various ligands that are structurally
similar but have different binding affinities to the receptor, and reliably trigger
appropriate differential (anti-viral or anti-proliferative) responses (Schreiber &
Piehler, 2015).

The differential between sigmoid dose-response curves is easily captured by
shifts in baseline response, maximal response, and quantities such as the EC50,
but other dose-response relationships are also common. A prominent example are
biphasic dose-response curves with low dose stimulation and high dose inhibition,
so-called hormetic curves, which have received renewed attention (Calabrese &
Baldwin, 2003; Mattson, 2008; Di Veroli et al., 2015). However, it is not estab-
lished how a sigmoid curve can be compared to a hormetic one, or more generally
how dose-response curves of any shape can be compared with each other (see
Figure 5.1a).

In addition, relating the observed effects to biochemical mechanisms is a key
challenge. Mathematical models in dose-response analysis are mostly empirical
(for data interpolation to estimate the characteristics described above), and not
mechanistic in the sense of incorporating relationships between biochemical en-
tities that (are hypothesized to) give rise to the experimental data. Specifically,
there exists no comprehensive mechanistic model-based theory to describe differ-
ential responses, despite their fundamental nature and importance in all fields
of biology. The lack of mechanistic models, however, is not surprising: many
relevant biological network models are non-linear and they cannot be analysed
symbolically for non-trivial network sizes to derive design principles, such that
differential effects can only be characterized through simulations, which in turn
depend on frequently unknown network structures and parameter values.

To tackle such limitations and to extract general principles of biological systems,
several parameter-free methods have been developed. For example, Chemical
Reaction Network Theory aims to obtain a qualitative understanding of biological
systems by determining what their capabilities in terms of number of steady-states
are, solely by examining their reaction network (model) structure (Conradi et al.,
2007; Craciun & Pantea, 2008). With respect to differential responses, however,
we are interested in quantitative features (e.g., shifts in EC50), for which these
approaches are not directly applicable.

Instead, we concentrate on Laplacian models introduced in Section 2.1, for
which steady-state symbolic derivations are possible in principle. Recall that
Laplacian models are deterministic (ordinary differential equation, or linear al-
gebraic for the steady-state) models of reactions endowed exclusively with zero-
and first-order mass-action kinetics. They represent molecular state transitions
but cannot account explicitly for binding events and non-linear kinetics (unless
the kinetics do not depend on any of the species in the Laplacian model). Despite
these limitations, Laplacian models have been invaluable for understanding en-
zyme kinetics, for example, via the systematic enumeration of patterns on reaction
graphs dating back to King & Altman (1956). Recently, Laplacian models have
received renewed interest after introducing mathematical rigour into the classical
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Figure 5.1: Relations between sigmoid reference (red) and perturbed (blue and
orange) dose-response curves with exemplary experimental data (circles) and
fitted empirical models (lines). (a) When perturbations preserve the shape of
the dose-response curve (blue vs. red), the effect of a perturbation can be
quantified by the shifts in baseline response and maximal response, and by
the difference in the dose required for half-maximal response; such shifts are
indicated by blue arrows. Corresponding measures are not defined when the
perturbation yields a hormetic curve (orange) or for the general comparison of
non-sigmoid dose response curves. (b) Definition of the differential response as
the length of displacement of a reference dose-response curve A (red, dashed)
to a perturbed dose-response curve B (blue, solid), generated by functions fα

and fβ , respectively, both with n critical points ε
{α,β}
1...n . The curves are related

through a map M that preserves the order of critical points and segments as
well as the proportion of response h ∈ [0, 1] in each pair of mapped segments
(corresponding points indicated by black arrows). The signed projections of the
differential on the dose and response axes are denoted as πd(h) and πR(h) and
shown in green.

framework (Mirzaev & Gunawardena, 2013; Gunawardena, 2014) and providing
multiple promising applications of the theory (Thomson & Gunawardena, 2009;
Ahsendorf et al., 2014; Estrada et al., 2016). In particular, Gunawardena (2012)
showed that time-scale separation analysis across many biological areas such as
enzyme kinetics, G-protein coupled receptors, and gene regulation can be com-
bined into a single linear graph-theoretic framework. It connects the symbolic
derivation of steady-state expressions for Laplacian models to combinatorial ob-
jects on graphs, namely rooted directed spanning trees (arborescences). This
relation between structure and function makes Laplacian models appealing for
extracting general principles of the steady-state differential responses.

Although symbolic steady-state derivations are possible for Laplacian systems,
their current practical application, for example in pharmacology, is limited be-
cause the length/size of the steady-state expressions increases exponentially with
model size. One approach to circumvent this problem is to assume that the system
is at equilibrium to simplify derivations. However, for systems far from equilib-
rium, such as cell signalling pathways and eukaryotic gene regulation Estrada
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5 Differential Dose-Response in Laplacian Models of Biological Systems

et al. (2016), the equilibrium assumption does not hold and the weaker steady-
state assumption has to be considered—making even apparently “small” systems
practically intractable.

Here, we develop a comprehensive theory and practically scalable computa-
tional methods for studying differential steady-state dose-response relationships
to pinpoint the mechanisms leading to experimentally observed behaviours. First,
we extend the classic comparison of sigmoid dose-response curves and formally de-
fine a general notion of the differential. In the framework of Laplacian models, we
exploit the developments from Chapters 3 and 4 to address challenges such as to
determine the reactions that affect differential responses, to identify equivalence
classes of networks, and to reliably reject hypothetical models without needing to
know parameter values. Specifically, the theory helps determine which reactions
take part in the differential and how perturbations (such as variation of parameter
values, deletions and additions of states and reactions) affect the differential. This
is possible for practical applications because we do not actually need to derive
complete steady-state expressions for quantitative symbolic analysis since our ef-
ficient algorithms for generation and manipulation of Kirchhoff polynomials from
Chapter 4 produce compact, simplified steady-state expressions. We illustrate
the application of the framework for insulin signalling, covering aspects such as
model building and analysis, model rejection, model reduction, and (numerical)
bounds on differential dose-response relations.

5.2 Formalizing the Steady-State Differential Response

Comparing general dose-response curves is not established in the biological litera-
ture and it is particularly ambiguous how comparison should be performed when
non-monotone curves are involved (see Figure 5.1a). Here we provide a formal
definition of the differential response that generalizes over dose-response curves of
different functional form (sigmoid or multiphasic) and their characteristics such
as maximal response and dose for half-maximal activation.

We define the differential response as the length of displacement between a point
on a reference dose-response curve A and a corresponding point on a perturbed
dose-response curve B. A mapM relates points from monotone segments of both
curves that have the same “local” characteristics to each other (see Figure 5.1b).
It is evident that a closed form of the map M cannot be obtained in the general
case. However, when functional relations between dose and response originate
from the steady-state expressions of Laplacian models, the map can be analytically
determined.

Briefly, the dose-response curves are generated by functions Rα(d) and Rβ(d)
for reference and perturbed version, respectively (see Section 8.3.1 in the appendix
for formal specifications). To segment the dose-response curves along the dose co-
ordinate, we identify critical points of the respective responses such as suprema,
infima, and extrema denoted by εi (omission of superscript indicates application
to both curves). To provide the required generalization (also see Fig. 5.1b), we
construct the map M (and correspondingly the mapping of segments) such that
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it preserves the order of critical points and segments without omitting any of
them, and that it preserves the proportion of response in each pair of mapped
segments. To achieve the latter, we relate the doses that have the same propor-
tion h (h ∈ [0, 1]) of response between the minimal and maximal response in any
given segment, as determined by the responses at the critical points that enclose
the segment. This allows us to define the signed projections of the dose differ-
ential πd(h) and of the response differential πR(h), which have clear biological
interpretations, as:

πd (h) := log10

dα

dβ
and πR (h) := Rα −Rβ ,

with respective doses d and responses R. Note that the dose differential is ex-
pressed in log scale to easily identify fold differences in the dose.

5.3 Differential Laplacian Systems

To derive general expressions for the dose (πd) and response (πR) dimensions of
the differential, we need to define dose, response, and perturbation in Laplacian
models, leading to the notion of differential Laplacian systems.

Here, we assume that the dose variable affects one or more reactions proportion-
ally, which can be interpreted as an input changing the rate constant gradually, or
as an input species with constant concentration binding to the educt of the reac-
tion; for example, the effect of a ligand with constant external concentration that
binds to a receptor incorporated in this way via the law of mass-action. Formally,
the input dose variable d partakes in the mathematical expressions labeling w of
the edges of the system’s digraph G, I(G) := {ed,1, . . . , ed,w}. We call members
of the set I(G) dose edges of G and their labels are expressions proportional to
the input dose variable d:

`(ed,i) = gi(p)d,

where gi(p) are functions of the parameters in the corresponding edge label but
they do not contain d (see Figure 5.2a for an example in which we assume that
the dose affects receptor-ligand binding).

In our analysis, the response R is a linear combination of the steady-state
concentrations at chosen output vertices (such as phosphorylated receptor-ligand
complex RLp in Figure 5.2a). The q species eliciting the response are associated
with a set of output vertices O(G) := {v1, . . . , vq} (O(G) for open systems). Then
if we use Equation (2.5) to derive general expressions for the steady-state response
for closed and open systems using Kirchhoff polynomials κ(G), we obtain:

RO(G) =

∑
vi∈O(G) aiκvi(G)

κ(G)
xt and RO(G) =

∑
vi∈O(G) aiκvi(G)

κv∅(G)
,

where ai ≥ 0 designates the weight given to the steady-state concentration associ-
ated with vertex vi. This implies that steady-state dose-response curves of Lapla-
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Figure 5.2: Differential analysis for a simple insulin receptor activation model
(corresponding to the general receptor tyrosine kinase activation model from
Figure 2.1a). (a) Digraph for the differential system. The dose edge is marked
by a dashed arrow, red symbols correspond to differential parameters (those
with different values in the reference and perturbed system), doubly-encircled
vertices mark the output vertices. (b) Tree scheme for a general digraphG show-
ing how to obtain the relevant digraphs participating in the coefficients ki of the
dose-response relationship in closed systems (for reference and perturbed sys-
tems through the digraph operations rooting, deletion, and contraction. Note
that there are also additional terms contained in the steady-state coefficients.
(c) The tree scheme for decomposition of the insulin receptor activation model.
Gray-filled vertices denote that the digraphs are rooted at them, different edge
color in the leaves of the tree mark the prime components (same color means
same prime component also among different digraph leaves), black edges (when
present) are not part of any prime component.

cian models are rational functions of the dose variable, for example, RO(G)(d).

Perturbations are any changes in the model structure (additions and deletions
of species and reactions), parameters (different values in the reference and per-
turbed model), number and position of the edges affected by the input vari-
able, number and position of the output vertices, and parametrization of the
output function. We capture these perturbations by defining two Laplacian sys-
tems for a reference (α) and a perturbed (β) condition, each of which consists
of a digraph G, a set of parameters p (from G’s labels), a set of dose edges I
(whose labels contain the dose variable d), and a set of output vertices O the
concentrations associated to which are weighted by a to obtain the observed re-
sponse R. Formally, a steady-state Laplacian differential system is then the tuple
D =

(
(Gα, pα, Iα, Oα, aα), (Gβ , pβ , Iβ , Oβ , aβ)

)
.

In Figure 5.2a we use our example receptor tyrosine activation model from
Figure 2.1a to define a first differential system D . Let the receptor R transition to
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its ligand-bound state RL upon activation by a ligand with constant concentration
d. We account for the dose variable d in the transition rate by changing the label
of edge vRvRL to r1d. To construct a differential Laplacian system, we consider
a reference system with digraph topology as the example digraph G, dose edge
ed = vRvRL, i.e. I = {ed} with `(ed) = r1d, a single output vertex O = {vRLp}
weighted by 1, and parameters p = {r1, r2, r3, r4}. The perturbed system is
identical to the reference one, with the exception of the values of parameters r1 and
r2, which we will denote as rα1 , rα2 (rβ1 and rβ2 ) in the reference (perturbed) system.
These differential parameters correspond to stimulation of the system with two
different ligands that have different affinities to the receptor R. Since reference
and perturbed system are identical except for their differential parameters, we can
illustrate the differential system by a single digraph and highlight the differential
parameters as shown in Figure 5.2a.

5.4 Symbolic Derivation of the Differential

For tractability, we are first interested in deriving analytical expressions for the
differential of systems with a constant input that influences exactly one edge
proportionally (I(G) = {ed} and `(ed) = g(p)d) to model, for example, a ligand
binding once to a receptor.

To express the steady-state responseR for closed and open systems explicitly as
a function of the dose variable d, we apply the deletion-contraction property from
Proposition 2.5.2 to partition the set of arborescences from the numerator and de-
nominator of the corresponding rational function into two categories—those that
contain the dose d in one of their labels and those that do not. This is equivalent
to factoring out the edge labels from the monomials in the corresponding Kirch-
hoff polynomial that contain the dose variable d. After simplification, we obtain
the general form of dose-response expressions for closed and open systems with a
digraph G:

RO(d) =
k1 + k2d

k3 + k4d
, where (5.1)

for closed systems: for open systems:
k1 = xt

∑
vi∈O(G) aviκvi(G\ed), k1 =

∑
vi∈O(G) aviκvi(G\ed),

k2 = xtg(p)
∑
vi∈O(G) aviκvi(G/ed), k2 = g(p)

∑
vi∈O(G) aviκvi(G/ed),

k3 = κ(G\ed), k3 = κv∅(G\ed),
k4 = g(p)κ(G/ed), k4 = g(p)κv∅(G/ed).

We call ki, i ∈ {1, 2, 3, 4} steady-state coefficients although they are symbolic
expressions involving parameters and Kirchhoff polynomials of specific digraphs
obtained from the initial digraph G by applying edge deletions, edge contractions,
and digraph rooting. The coefficients k might be zero if arborescences do not exist
in the respective digraphs. For example, when k2 = k4 = 0 or when k1 = k3 = 0,
the response does not depend on the dose.
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5 Differential Dose-Response in Laplacian Models of Biological Systems

How to obtain the relevant digraphs participating in the coefficients for closed
systems can be seen in the tree scheme in Figure 5.2b (the tree scheme for open
systems is shown in Figure 8.3 in the appendix) and an application to the example
differential system in Figure 5.2c. With only one edge containing the dose d,
the numerator and denominator have at most first degree in d and thus the tree
schemes in Figure 5.2b,c have four leaves. Note that the tree scheme is the same for
the reference and perturbed systems, except for the differential parameters. The
coefficients for the example are k1 = xtκ(rtRLp(G)\ed), k2 = xtr1κ(rtRLp(G)/ed),
k3 = κ(G\ed), and k4 = r1κ(G/ed). By generating the Kirchhoff polynomials in
the respective digraphs, we obtain:

k1 = 0, k2 = r1r3, k3 = r4 (r2 + r3) , and k4 = r1 (r3 + r4) .

To analyse the signed projections πd and πR, we derive the map M (see Sec-
tion 8.3.2 in the appendix) and recognize that the perturbed and reference dose-
response curves are parametrized through the proportion variable h, which leads
to:

πd = log10

kα3 k
β
4

kβ3 k
α
4

and πR (h) = h

(
kα1
kα3
− kβ1

kβ3

)
+ (1− h)

(
kα2
kα4
− kβ2

kβ4

)
.

(5.2)
The signed dose projection of the differential does not depend on h, in contrast
to the response projection. In practice, we are often interested in the response
projections that summarize the shift in the response for the maximum and the
minimum of the dose-response in the corresponding segment, which depending on
whether the segments are monotonically increasing or decreasing correspond to
h = 0 and h = 1:

πR (h = 0) =
kα2
kα4
− kβ2

kβ4
and πR (h = 1) =

kα1
kα3
− kβ1

kβ3
.

For the example differential system, we find that:

πd = log10

rβ1
rα1

rα2 + r3

rβ2 + r3

and πR (h) = 0,

where the response component of the differential vanishes because k1 = 0 and
because the differential parameters r1 in k2 and k4 cancel each other. Also, the
dose differential is independent of the rate constant r4.

The example illustrates that, by deriving the general form of the signed pro-
jections of the differential πd and πR, we establish a direct connection between
the structure of the differential system and its function. More generally, the
steady-state expressions and projections of the differential in Laplacian models
are algebraic expressions of Kirchhoff polynomials. It is a central task of the
analysis to determine their constituent variables (reactions) and the effect of each
variable (reaction). This is not trivial because some expressions might simplify, in
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particular, for fractions of Kirchhoff polynomials as above. The full simplification
of an algebraic expression translates to a necessary and sufficient condition for a
variable (reaction) to influence the expression of interest. As a consequence, we
can define equivalence classes of differential systems that have differing structure,
but the same functional expressions with respect to their simplified differential or
steady-state. However, it is a major challenge to efficiently generate and manip-
ulate Kirchhoff polynomials due to the exponentially growing number of arbores-
cences with increasing size of the model digraphs. This problem is reduced by the
developed algorithms in Chapter 3 and Chapter 4 that allow for the factorization
and compressed generation of Kirchhoff polynomials, and for the manipulation of
algebraic expressions without explicit generation of the Kirchhoff polynomials.

5.5 Properties of the Differential

Remember that we consider closed and open systems with strongly connected
digraphsG, and thus systems with prime (irreducible) Kirchhoff polynomials. The
steady-state expressions for closed systems are always irreducible fractions because
the denominator contains the Kirchhoff polynomial of the strongly connected
G. By contrast, the denominator of the steady-state expression in open systems
contains the strongly connected G rooted at the environment vertex v∅ which
is obtained by deleting all synthesis edges si. These digraph rooting operations
can yield digraphs with reducible Kirchhoff polynomials. Formally, we call an
edge e ∈ E(G) a prime bridge if the edge deleted digraph G \ e has more non-
trivial prime factors than the original digraph G. Hence, the Kirchhoff polynomial
corresponding to rtv∅(G) is non-trivially factorisable when any si is a prime bridge
during the sequential deletion of si (s1 might not be a prime bridge in G but in
G \ s2 . . . \ sn). Likewise, the numerator of the steady-state expression for open
systems consists of the linear combination of rooted polynomials, each of which
could be factorisable. In this case, there could exist reactions whose alteration
(of rate) does not affect the steady-state. Thereby, in open systems there exist
equivalence classes of models with different digraphs G but the same steady-state
expressions. A necessary and sufficient condition for a reaction to take part in the
steady-state expression is that it is part of a prime component that is not shared
between the numerator and denominator.

The dose projection of the differential πd for general systems with a single
dose edge depends on the Kirchhoff polynomials contained in the coefficients k3

and k4 but not on k1 and k2 (Equation (5.2)). It is therefore independent of
the choice of output vertices in O, of the vertex weights α for the reference and
perturbed system, and of the total conserved amount xt in closed systems (the
synthesis reactions si in open systems). The dose differential can be simplified
to the logarithm of an irreducible fraction by obtaining the prime factorizations
of the numerator and denominator and dividing them by the greatest common
divisor gcd(kα3 k

β
4 , k

β
3 k

α
4 ) with the manipulation tools from Chapter 4. Then the

necessary and sufficient condition for a reaction to participate in πd is to be part
of a prime component of the relevant digraphs that is different in the reference
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and perturbed system, and not the same in the dose-edge deleted and dose-edge
contracted digraphs of the same condition. To illustrate these points, consider πd
for closed systems:

πd = log10

κ(Gα\eαd )gβ(pβ)κ(Gβ/eβd )

κ(Gβ\eβd )gα(pα)κ(Gα/eαd )
.

The polynomials κ(G\ed) are factorisable if and only if ed is a prime bridge.
Edge contraction for κ(G/ed) could also lead to an increase of prime factors if
any of the deleted edges during the procedure is a prime bridge. We will call an
edge whose contraction increases the number of prime factors a prime contraction
bridge. Hence, κ(G/ed) is factorisable when ed is a prime contraction bridge. The
factor g(p) is prime since it is the label of a single edge. Overall, thus, if the dose
differential is reducible depends exclusively on the perturbation, the connectivity
of the dose edge ed (in Gα and Gβ), and the connectivity of the edges in ed’s
immediate neighbourhood. Note that the reducibility characterization of πd for
open systems is analogous but includes an additional dependency on the location
and connectivity of the synthesis edges in Gα and Gβ .

The response projection of the differential πR in single-dose systems is a sum
of ratios dependent on all coefficients ki, includes the conserved xt in each ratio
for closed systems, and the synthesis reactions in open systems (Equation (5.2)).
However, it does not depend on the dose edge label function g(p) because it always
cancels in k2

k4
(for both reference and perturbed coefficients). For illustration, let

us focus on the response differential for closed systems when h = 0:

πR (h = 0) =

(∑
vi∈Oα(G) a

α
viκvi(G

α/eαd )

κ(Gα/eαd )
−
∑
vi∈Oβ(G) a

β
viκvi(G

β/eβd )

κ(Gβ/eβd )

)
xt.

To simplify the expression, first, the common factors between k2 and k4 are can-
celed (keeping in mind that k2 is a linear combination of prime factorized Kirchhoff
polynomials) to obtain k2 and k4. The response differential can be further reduced

if gcd(k4
α
, k4

β
) 6= 1 by combining the fractions under a common denominator.

Note that the response differential could be zero due to the minus sign. The
characterization of the response differential in the general case for h not fixed and
for open systems is analogous.

When either k1 or k2 is zero, the response differential πR has a simpler form
but the dose differential πd is not affected. Note again that the differential can be
degenerate or undefined. The differential is degenerate when k1 = k2 = 0 since
the steady-state function R(d) is always zero, and it is undefined when k3 or k4

is zero since the steady-state function is either constant or unbounded.

5.6 Analysing the Insulin Receptor Life-Cycle

To illustrate the applications of the theory, we will extend the example model
stepwise to a previously published model for insulin receptor signalling (Sedaghat
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et al., 2002). Insulin receptor trafficking/recycling is a complex process and it is
particularly important to find which reactions and species are essential in order to
formulate an appropriate abstraction to model signalling. Again, for simplicity,
we define the differential system by assuming that the reference and the per-
turbed model differ only in the values of a subset of parameters—the differential
parameters—and that all other elements are identical.

We extend the example model (Figure 5.2) with two states: internalized phos-
phorylated ligand-bound receptor RLpi and internalized receptor Ri (Figure 5.3).
They can be reached by reversible reactions from their non-internalized (mem-
brane) counterparts RLp and R to represent endocytosis and receptor recycling,
and RLpi can be dephosphorylated to R by an irreversible reaction. We as-
sume two output species in the reference and perturbed system, the phosphory-
lated ligand-bound receptors, such that O(G) = {RLpi, RLp} with unit weights
(aRLpi = aRLp = 1).

The resulting differential system is what we call a basic signalling system. It
is a differential system with a closed digraph that contains a reversible reaction
for which the forward and reverse rates differ between the reference and per-
turbed model, and for which the forward rate is affected by the dose variable
d. More precisely, we have a digraph G with I(G) = {eon}, `(eon) = gon(p)d,
and `(eoff ) = goff(p). Also, reference and perturbed model have no structural
differences, they differ only by the functions gon(p) and goff(p) (and the parame-
ters contained in them). In such basic signalling models the dose edge contracted
digraph G/eon is the same for the reference and perturbed system, therefore, its
Kirchhoff polynomial always cancels in the dose differential fraction. The dose
differential for closed systems (results and definitions are analogous for open sys-
tems) is:

πd = log10

κ(Gα\eon)

κ(Gβ\eon)

gβon(pβ)

gαon(pα)
.

The response projection of the differential for h = 0 will always be zero under the

stated assumptions since
kα2
kα4

=
kβ2
kβ4

. When h = 1, the response projection is not

affected by the assumptions for basic signalling systems.

Although the digraph of the extended system contains more states and reactions
and the steady-state expression is more complicated (see Section 8.3.2.2 in the
appendix), the differential is identical to that of our initial example without en-
docytosis because the newly added reactions take part in prime components that
do not contain differential parameters and therefore cancel out (see Figure 5.3).
The initial and the extended system belong to the same equivalence class with
respect to their differential. The equivalence class is defined by structural prop-
erties of the differential system and the applied perturbation, namely, by which
prime components are present and do not cancel out.

The concept of equivalence classes has direct applications for model selection
and experimental design. For example, assume that we have experimental ev-
idence that changes in the rate constant of a reaction such as r4, in both the
reference and perturbed model, affect the dose differential. If this reaction does
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Figure 5.3: Tree scheme for a model extending the differential system from Fig-
ure 5.2a with internalized species RLpi and Ri. Note that only digraphs be-
longing to non-zero coefficients are shown.

not take part in the dose differential expression of the equivalence class of models
we are studying (as for the equivalence class for insulin signalling defined above),
we can directly reject all members of the equivalence class because they are in-
compatible with the experimental observation.

Conversely, assume we know our current model is incompatible with the data
on differential signalling, and we need to find model extensions that remedy this
limitation. For example, when we are interested in the long-term effects of insulin
receptor trafficking, we need to account for receptor synthesis and degradation.
This converts the model from a closed system to an open system. Let us consider
a model extension in which the non-internalized free receptor R is synthesized and
degraded. Then, however, the differential is not defined because the steady-state
coefficient k4 is zero. Figure 5.4a shows that the contraction of the dose edge
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Figure 5.4: Extended insulin model with receptor degradation (open system).
(a) The dose and response differential for the system with synthesis and degra-
dation of membrane-bound receptor R (for reference and perturbed digraph)
is not defined since the steady-state coefficient k4 = 0 (the contained digraph
is disconnected and therefore does not contain any in-arborescences). (b) Tree
scheme for a differential system containing synthesis and degradation of the
internalized receptor Ri. Digraphs with no in-arborescences are not shown.

eliminates the degradation edge er10 and, additionally, the rooting at the environ-
ment vertex v∅ eliminates the synthesis edge er11 ; this results in a disconnected
digraph with no in-arborescences in k4. Hence, we can reject this extension just
based on structural considerations.

Let us consider adding only the synthesis and degradation reactions for Ri as
a more biologically plausible way to capture receptor trafficking (Figure 5.4b).
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5 Differential Dose-Response in Laplacian Models of Biological Systems

but the differential is still identical to that of the initial example model from
Figure 2.1; the extended model belongs to the same equivalence class due to
cancellation of prime factors that do not contain differential parameters in both
reference and perturbed model (see Figure 5.4b).

A logical next question is what second perturbation to design (or how to change
the first perturbation) in order to differentiate between models in the same equiv-
alence class. In other words, we want to divide the class into smaller equivalence
classes, and ultimately identify a single model that represents the biological pro-
cess. More specifically, a second perturbation could change the prime factors, for
example, by adding or deleting new species and reactions, or by changing the
input edge. We illustrate the theory’s capabilities by deciding which reaction rate
constant to alter in the perturbed system. For example, we could experimentally
perturb r8 and r5 such that we have the largest effect in the dose differential. For
the steady-state coefficient k3 from Figure 5.4b, we observe that r8 is alone in a
prime component while r5 has three more reaction constants in the same prime
component. This means that, if we perturb r8, we will obtain a factor in the dose

differential corresponding to
kα3
kβ3

=
rα8
rβ8

rα2 +r3

rβ2 +r3
where our perturbation will have a

multiplicative effect on the dose differential. On the other hand, if we perturb r5

we obtain
kα3
kβ3

=
r4(r6+r7)+rα5 r7

r4(r6+r7)+rβ5 r7

rα2 +r3

rβ2 +r3
, where the perturbation is dampened by the

other reaction rates—the change in the dose differential upon this perturbation
might become experimentally indistinguishable. Hence, perturbing elements of
smaller factors has a more direct effect on the observed dose differential, and a
corresponding experimental design is more likely to help determining whether the
model under consideration is appropriate.

5.7 Extension: Numerical Analysis

The symbolic analysis can be augmented by numerical methods when quantita-
tive prior knowledge or experimental data is available. Here, we consider the
case when parameter values or bounds on those values are known (or can be esti-
mated). Known parameter values (or ratios of parameter values) can be directly
incorporated to simplify the symbolic expressions. If parameter values are un-
certain, but we have knowledge on plausible intervals of parameter values, these
intervals form the box in parameter space I that accounts for prior knowledge
on the parameters. By bounding the range of the differential projections πd and
πR over this box I, we can determine the capacity of the model to produce a dif-
ferential of a given (observed) magnitude and thereby assess if the model agrees
with the observations.

Formally, let us denote the range of a differential projection to be the interval
D = (a, b) (Dπd for the dose and DπR for the response projection), where a, b ∈ R
and a ≤ π(pα, pβ) ≤ b, pα, pβ ∈ I. We want to determine outer bounds â and

b̂ of D over the parameter box I, where D̂ = (â, b̂) : â ≤ a and b̂ ≥ b, which
tightly enclose the set of all possible magnitudes of the differential projections. In
systems with a single dose edge, with edge labels that contain rational expressions,
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5.7 Extension: Numerical Analysis

and regarding all parameters as variables, bounding the differential translates to
finding the global minimum and maximum of a multivariate rational function.

In general, finding global optima of multivariate rational functions is NP-hard
(Jibetean & de Klerk, 2006). However, there exist several numerical methods
that give certificates for global optimality or find bounds based on polynomial
optimization, such as fractional programming (Frenk & Schaible, 2009), interval
arithmetic (Moore & Bierbaum, 1979), and Bernstein expansion of the numerator
and denominator of rational functions (Narkawicz et al., 2012). Here, we focus
on Bernstein expansions because multivariate polynomials expressed in Bernstein
form possess the interval enclosing property according to which the range of a
polynomial over an interval can be bounded by control points derived from their
Bernstein coefficients. This property has recently been extended to bound the
range of multivariate rational functions over an interval box (Narkawicz et al.,
2012). The Bernstein expansion method is implemented in the Kodiak package
(Smith et al., 2015). In Smith et al. (2015) it was demonstrated that the method
produces tight outer bounds for a dose differential expression containing 12 free
variables.

To illustrate the approach for the dose differential of the example model from
Figure 5.2a, we assume that xt = 1 nM, parameters lie in a parameter box I
defined by r1, r2, r3, r4 ∈ [1e-5, 1] with units per second (s−1), and that we have

experimentally determined the ratios of differential parameters as
rα1
rβ1

= 100 and

rα2
rβ2

= 0.01 With Kodiak we find the bounds D̂πd = (−4,−2). Additionally, one

can check how the bounds of the differential change when a parameter is altered;
we call the resulting plots profile differential bounds. For our example, we fix each
of the free parameters taking part in the differential, namely rβ2 and r3, for every
value in their interval of definition, and calculate the bounds of the differential
expression range (see Figure 5.5a). This analysis shows the capacity of individual
parameters to control and constrain the possible magnitude of the differential. In
Figure 5.5a one can see that, no matter what the value of the other free parameter
is, rβ2 can significantly change the lower bound of the differential for values smaller
than approximately 1e-2 and for higher values it starts decreasing the upper
bound. Such analysis can also be used for model rejection. For example, if the
observed differential is outside the calculated bounds one can reliably reject the
model and the parameter box I under consideration since the observed differential
cannot be reproduced for any parametrisation in I. Further, the profile differential
bounds analysis can show how to confine I such that all considered parameter
values are consistent with the observed magnitude of the differential.

The non-linear differential expressions’ algebraic structures also imply that not
every differential value is equally likely to occur when we sample parameter values
uniformly from I. Examples for the resulting distributions of dose differentials
are shown in Figure 5.5a, b. This non-uniformity of the differential can be inter-
preted as parametric robustness because random changes of parameters may not
lead to random magnitudes of the differential. On the other hand, these results
imply that the differential system induces an important structural prior on the
behaviour—system structures (and parameter intervals) define what magnitude
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Figure 5.5: Numerical analysis of the example model from Figure 5.2a. (a) Pro-
file bounds (blue – upper outer bound, green – lower outer bound) superimposed
on the profile differential distribution (density) for the free parameters rβ2 and
r3. (b) Marginal probability distribution of the dose differential magnitude.
Densities were obtained from uniform samples of the parameter box I defined

by r1, r2, r3, r4 ∈ [1e-5, 1] in units s−1, assuming xt = 1 nM,
rα1

r
β
1

= 100, and

rα2

r
β
2

= 0.01.

of the differential can be expected, and this prior information could be exploited
for more detailed model selection against experimental data.

5.8 Extension: Two Dose Edges

To extend the framework to cases in which hormesis is possible, we consider that
the input dose acts proportionally and simultaneously on two edges, i.e. I(G) =
{ed,1, ed,2}, `(ed,1) = g1(p)d, and `(ed,2) = g2(p)d. To derive the general form
of dose-response expressions for closed and open systems, we apply the deletion-
contraction formula to partition the set of arborescences from the numerator and
denominator of the response function R into four categories—those containing no
input edges, those containing ed,1 but not ed,2, those containing ed,2 but not ed,1,
and those containing both ed,1 and ed,2. After simplification, we obtain:

RO(d) =
k1 + k23d+ k4d

2

k5 + k67d+ k8d2
, (5.3)

where k23 := k2 + k3 and k67 := k6 + k7 (see Section 8.3.3 in the appendix for
all details). For two dose edges, the numerator and denominator polynomials in
the dose d can be at most of degree two; for an input acting on w edges simul-
taneously, these polynomials are at most of degree w. However, the arborescence
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partitioning determines the digraphs contained in the coefficients k of the poly-
nomials (see, for example, the tree scheme in Figure 8.4 from the appendix) and
the exponential increase of the number of relevant digraphs with number of dose
edges (2w digraphs) is one of the main causes for complexity of systems with
multiple inputs.

Depending on the coefficients ki, two or three critical points define a sigmoid or
a biphasic/hormetic dose-response relationship, respectively. A necessary and suf-
ficient condition for a biphasic dose-response function, which we call the Hormesis
condition, is:

(k67 = 0 ∧ k23 6= 0) ∨
(
k67 6= 0 ∧ U ≥ 0∧

(
k23

k67
<
k4

k8
≤ k1

k5
∨ k23

k67
<
k1

k5
<
k4

k8
∨ k4

k8
≤ k1

k5
<
k23

k67
∨ k1

k5
<
k4

k8
<
k23

k67

))
.

where U = (k1k8−k4k5)2 +(k1k67 − k5k23) (k4k67 − k8k23). Because the values of
the coefficients ki are not known in general, the number of critical points cannot
be determined unambiguously, and we need to distinguish cases depending on
the number of segments in A (σα) and B (σβ) that are mapped to each other to
derive the signed projections πd and πR (see Section 8.3.3 from the appendix for
details).

The projections of the differential have a more complicated form (for example,
the expressions are not necessarily rational functions since they involve square
roots) and there are multiple conditions to be considered, but the expressions
are symbolic and (more involved) symbolic analysis with efficient methods for the
generation and manipulation of Kirchhoff polynomials is applicable. For example,
general properties of the differentials in systems with two dose edges are: (i) in
contrast to systems with a single dose edge, the dose differential πd depends on
the choice of output vertices and their weights; (ii) for closed systems, πd does
not depend on the conserved xt, but potentially on the synthesis reactions and
the proportion variable h; (iii) the response differential πR depends on all eight
partitions of the set of arborescences of G, and it includes xt in closed systems;
and (iv) the differential can also be degenerate or undefined, e.g. when U < 0.

To illustrate these concepts, we consider a more detailed model for insulin re-
ceptor trafficking that includes a second dose edge through binding of a second
ligand molecule to the receptor as well as the relevant reactions and internal-
ized species shown in Figure 5.6a. The model has been proposed as a realistic
approximation of insulin signalling in Sedaghat et al. (2002). Assume that the
receptor species on the cell surface that are bound by a single ligand molecule
are our outputs of interest (O = {vRL, vRLp}) and we stimulate the cell with two
ligands that differ in their affinity to the receptor (ligand α with reaction rate

constants rα1 , rα2 , rα12, rα13, and ligand β with rβ1 , rβ2 , rβ12, rβ13). In this scenario, it
is possible to use the Hormesis condition to find parametrizations such that the
reference dose-response curve (for α) is sigmoidal, whereas the perturbed curve
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Figure 5.6: Extended insulin model with two dose edges. (a) Digraph of the
model for receptor trafficking from Sedaghat et al. (2002) with notation as in
Figure 5.2; differential parameters are shown in red. (b) Sigmoid reference
(dashed red) and hormetic perturbed (blue) dose-response curves. The half-
maximal response points (h = 0.5) for which the dose differential was analysed
are marked with a red and a blue dot on the reference and the first segment
of the perturbed curve, respectively. The differential parameters were fixed
to rα1 = 0.03, rα12 = 0.1, rα2 = 0.1, rα13 = 0.001, rβ1 = 0.002, rβ12 = 0.001,
rβ2 = rβ13 = 0.01. Other parameters were fixed to r9 = 0.5, r4 = r6 = r14 = 0.2,
r3 = r7 = r8 = r15 = r10 = r11 = r16 = 0.1, and r5 = 0.01. (c-d) Numerical
analysis of the two dose edge insulin model. Densities were obtained using the
fixed differential parameters from (b) and uniformly sampling the remaining
n parameters from the parameter box I = [10e-5, 1]n; note that n = 12 in
(c) and n = 11 in (d) since one additional parameter is fixed at a time. (c)
Marginal probability distribution of the dose differential magnitude. (d) Profile
differential distributions together with the inner profile bounds (blue, upper
inner bound; green, lower inner bound) for the free parameters r3 and r4.

(for β) is hormetic (Figure 5.6b; see Section 8.3.3 from the appendix for details).
Our symbolic analysis of the system shows the following: (i) the values of r9, r10,
and r11 (free receptor externalization, degradation, and synthesis, respectively)
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do not affect whether or not the response is hormetic; (ii) the first and last critical
points of the reference and perturbed curves are identical; (iii) the last critical
points depend only on the four reaction rates r3, r9, r10, and r11; (iv) the dose
component of the second critical point of the perturbed system does not depend
on r9, r10, and r11; (v) the response differential between the reference curve and
the second segment of the perturbed curve for d→∞ is always zero, independent
of the magnitude of the perturbation and of the parameter values; and (vi) both
the dose and the response differential are invariant with respect to the reaction
rate constants r9, r10, and r11.

Finally, we analyse the dose differential numerically, assuming the affinities of
the two ligands to be known, while remaining uncertain about the rest of the
reaction rate constants. Uniform sampling of the dose differential yields a few

magnitudes of variability presented by the wide inner bounds D̂πd = [−2.8, 3.1]
but a small region of most probable values illustrated by a marginal density peaked
around −0.25 (Figure 5.6c). The profile differential distributions in Figure 5.6d
show how the free parameters r3 (receptor phosphorylation) and r4 (receptor
dephosphorylation) affect the upper and lower inner bounds and the peak of the
marginal distribution, revealing their potential to control the differential.

5.9 Discussion

We developed a theory for steady-state dose-response relationships in Laplacian
models of biochemical reaction networks that is analytic, and therefore also ap-
plicable under the realistic conditions that parameter values are largely unknown.
In particular, we formalized the concept of differential responses to establish a
comprehensive parameter-free framework for analysing differential responses in
Laplacian systems. This framework helps to study system behaviours upon per-
turbations of many features of reaction networks, such as network topology, pa-
rameters, choice and number of inputs and outputs. In particular, the algebraic
and numerical methods allow us to explore the space of network topologies and
perturbations to arrive efficiently at a set of candidate models that are consistent
with prior knowledge and experimental data. For example, if it is known from
experiments that a particular perturbation leads to a significant dose differential,
we can reliably reject all potential models for which the differential expression
does not depend on the perturbed variable. Additionally, numerical bounding
of the range of the differential expressions over a predefined region in parameter
space provides us with limits for all possible differential magnitudes—we can use
this knowledge as a certificate to reliably reject models that can never reproduce
quantitative experimental data. Another application of the developed method-
ology is in experimental design, namely to determine (optimal) perturbations of
a reference system that lead to a desired differential, to invalidate a model, to
discriminate between equivalence classes of networks, or for applications such as
finding optimal (combinations of) drug targets. Note also that we did not cover all
aspects of the differential analysis framework in detail or through the application
examples; in general, every element of the differential system can be perturbed
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and labels for dose edges can be formulated in a more general form, making the
framework applicable to a wide spectrum of perturbations.

The most obvious limitation of our framework is the restriction to Laplacian
systems, that is, reaction networks with zero- and first-order chemical kinetics; it
therefore has to rely on prior, often parameter- and state-dependent simplifica-
tions for higher-order kinetics, such as those obtained via time-scale separation.
In terms of scalability, the exponential growth of the number of digraphs to be
considered for the analysis and the resulting high degree polynomials with in-
creasing number of reactions influenced by the dose is a challenge. Our examples
demonstrate that systems with up to two dose edges can be analysed efficiently
due to the linear scaling of the prime factorization algorithm and the few digraphs
that have to be considered. According to the Abel-Ruffini Theorem, general al-
gebraic solutions for the roots of polynomial equations of degree five or higher
with arbitrary coefficients—corresponding to the dose acting proportionally on
five or more edges—do not exist. However, depending on the particular digraph
structure and form of the label expressions, such cases, or cases with labels that
are non-linear functions of the dose, could be analytically tractable if the poly-
nomials simplify to a lower degree. Similarly, obtaining exact bounds might be
feasible for simple differential expressions with few variables and convex proper-
ties, but it is computationally costly to determine the exact bounds of arbitrary
multivariate rational functions. In practice, therefore, bounding methods provide
us with inner or outer bounds, which do not guarantee reliable model rejection.
Because bounding approaches are often employed in control theory (Walter et al.,
1996) and methods are being improved, for example, for bounding the range of
rational functions in more complicated parameter spaces using Bernstein polyno-
mials (Titi et al., 2015; Smith et al., 2015), these limitations could be reduced
substantially.

Extensions of the framework could further build on the central insight that
prime factors and components (and their similarity in perturbed digraphs) are the
units, the very characterization, of the differential response function in steady-
state Laplacian models. For example, perturbations that result from additions
and deletions of vertices and edges in certain parts of both the reference and
perturbed digraph may never have an effect on the differential if they belong to
a prime component that always cancels in the differential expression. In general,
the positions (connectivity) of additions and deletions within the digraph and the
size distribution of the induced prime components play an important role in the
change of the differential upon structural perturbations. This could be exploited
to develop a notion of structural robustness of the differential to account for how
the properties of the differential change when edges and vertices are (randomly)
added or removed. We also note that many of the graph theoretical notions
defined here subsume graph theoretical concepts such as distributions of sizes of
SCCs, strong bridges, and strong articulation points that are actively studied
in computer science; for example, efficient algorithms for their characterization
(Italiano et al., 2012; Georgiadis et al., 2015a,b; Firmani et al., 2015) could help
extending the scope of our framework.

In terms of applications, we envisage our framework to be most useful for the
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systematic study of mechanisms underlying hormesis, a phenomenon in toxicology
and cell signalling that receives increasing attention. For example, empirical evi-
dence favoured hormetic over threshold models for dose-response relationships in a
large-scale yeast anticancer drug screen (Calabrese et al., 2008) and hormetic phe-
nomena are frequently observed in stress responses and their relations to ageing
(Gems & Partridge, 2008). Corresponding theoretical work has only (re-)started
very recently. One example study uses simple models of interacting linear path-
ways in cell signalling to show that non-monotonic dose-response relationships can
arise through non-obvious pathway interactions, and that the network structure
imposes fundamental constraints on options for pharmacological treatment (van
Wijk et al., 2015). Our analysis of the insulin signalling network demonstrates
first steps in a direction we believe to become increasingly important and that
is enabled by our framework: a systematic analysis of hormesis in biochemical
reaction networks despite prevailing uncertainties on the networks’ quantitative
features.
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6
A Minimal Model of Differential Type I
Interferon Signalling

6.1 Introduction

A central property of cytokine signalling is the capacity of individual receptors to
recognise different ligands and trigger the appropriate cellular responses (Moraga
et al., 2014). Type I interferons (IFNs) are a prominent cytokine family displaying
such functional plasticity. In humans, a total of 17 structurally similar interferon
ligands bind to a common heterodimeric receptor composed of the subunits IF-
NAR1 and IFNAR2, thus leading to the assembly of a ternary receptor-ligand
complex (De Weerd & Nguyen, 2012; Schreiber & Piehler, 2015). Ternary com-
plex formation initiates the activation of various effector proteins, and particularly
the Janus kinase/signal transducer and activator of transcription (JAK/STAT)
signalling cascade, which ultimately elicit differential antiviral, immunomodula-
tory, and antiproliferative (apoptosis and cell cycle arrest) activities (Ivashkiv &
Donlin, 2014; Schreiber & Piehler, 2015). The differential activities are deter-
mined by interferon concentration, binding affinity to the receptor subunits, and
duration of stimulation (Kalie et al., 2008; De Weerd & Nguyen, 2012; Schreiber &
Piehler, 2015). Importantly, they are exemplified by the observation that ligands
with vastly differing affinities, i.e. low affinity IFNα2 and high affinity IFNβ, trig-
ger similar early signalling events leading to nearly equipotent antiviral responses,
while during late signalling IFNβ induces a much stronger antiproliferative effect
than IFNα2 (Jaitin et al., 2006; Piehler et al., 2012).

Due to their important activities, interferons serve as a first line of defence
against pathogens and malignancies (Hertzog & Williams, 2013; Schneider et al.,
2014), and have found therapeutic application in treating multiple sclerosis, can-
cer, and hepatitis (Borden et al., 2007). It is essential to understand which molec-
ular mechanisms govern the observed differential responses in order to extract
general principles about cytokines’ functional plasticity and design more effective
therapies. An array of recent experimental studies have provided deep insight
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into the probable major mechanisms of differential antiviral and antiproliferative
signalling. It has been shown that thresholds in the number of activated ternary
receptor-ligand complexes dictate the differential interferon activities (Kalie et al.,
2008; Levin et al., 2011). Besides, the data indicates that the stability and abun-
dance of ternary complexes is determined by (i) interferon affinity to each of the
receptor subunits (Jaitin et al., 2006; Jaks et al., 2007), (ii) receptor trafficking
including endocytosis, recycling, and degradation (Marchetti et al., 2006; Claudi-
non et al., 2007; Marijanovic et al., 2007), (iii) late negative expression feedback
interfering with ternary complex assembly, specifically ubiquitin-specific protease
18 (USP18) binding to the cytosolic domain of IFNAR2 (Francois-Newton et al.,
2012; Wilmes et al., 2015), and (iv) surface receptor number varying among cells
due to stochastic gene expression (Moraga et al., 2009; Levin et al., 2011). It is
hypothesized that the combination of these main determinants can explain differ-
ential IFN activities (Piehler et al., 2012; Schreiber & Piehler, 2015).

Previous mathematical modelling efforts of the type I interferon system have
addressed the kinetic behaviour of IFNα signalling leading to accelerated antivi-
ral response (Maiwald et al., 2010) and the inherent stochasticity in IFN signal
transduction (Rand et al., 2012). Recently, bistability at the level of early STAT
signalling has been theoretically detected using tools from Chemical Reaction
Network Theory (Otero-Muras et al., 2016), which presents a possible hypothesis
for the observed threshold behaviour.

Many important aspects of differential signalling, for which modelling efforts
can markedly contribute, still remain uninvestigated. For instance, it is not clear
if the mechanisms hypothesized to control interferon ternary complex stability
are sufficient to achieve the observed population differential activities and how
they functionally fit together. Formal elucidation of the essential determinants
of differential signalling would provide vital insight into the functional plasticity
of interferon signalling. However, such an analysis is challenged by the high
topological and parametric uncertainty, as well as, cell-to-cell variability inherent
to the interferon system.

In this chapter we develop a framework to evaluate the various posed hypotheses
and find the minimal sufficient model constituents which can explain the differ-
ential responses as observed in the IFNα2 vs. IFNβ dose-response curves for
antiviral and antiproliferative activities in WISH cells from Jaitin et al. (2006).
Our framework accounts for (i) the cell-to-cell variability in IFNAR2 number by
explicitly considering its distribution, (ii) parametric uncertainty by performing
Bayesian parameter inference to determine the posterior parameter distribution,
and (iii) uncertainty in model topology by exploring an ensemble of possible mod-
els through Bayesian model comparison.

More precisely, we consider the empirical IFNAR2 receptor distribution in a
population of cells prior to interferon stimulation. We transform this distribution
with a ternary complex stability (TCS) submodel to obtain the distribution of
active ternary complexes in the population. Then, with regards to an activity
specific threshold, i.e. one threshold for antiviral and one for antiproliferative ac-
tivity, we determine the proportion of alive cells in the population. Particularly,
in line with the observations from Levin et al. (2011), cells stay alive if they have
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a sufficient number of active ternary complexes to trigger downstream signalling
and counteract virus infection, or have an insufficient number of active ternary
complexes to trigger apoptosis. Thus, depending on the population-wide recep-
tor distribution, TCS submodel, and activity thresholds we obtain a model for
generating population-level dose-response curves that can be compared to exper-
imentally derived ones displaying differential responses. The described model can
be classified as a threshold model (Cox, 1987; Viswanathan et al., 2002) and a
generalised non-linear model (Lane, 1996). What is particular is the formulation
of the TCS submodel as a (steady-state) differential Laplacian model as intro-
duced in Chapter 5. It allows us to symbolically derive the expressions for the
differential responses on the population level (in the sense of Chapter 5) for mod-
els with one and two dose edges, and to provide an explicit likelihood function for
the model.

We study an ensemble of 290 models in which the TCS submodels comprise
all biologically feasible combinations of the aforementioned hypothetical determi-
nants of ternary complex stability. We rank those models using Bayesian model
comparison, which naturally implements Ockham’s razor permitting the selection
of a minimal, least complex model reproducing the data sufficiently well. The
top ranking model provides strong evidence that receptor assembly, receptor en-
docytosis and recycling, and USP18 inhibition with signalling originating from
both the cell surface and endosomes are the minimal sufficient mechanisms to
reproduce the experimental dose-response data. Additionally, we use Bayesian
parameter inference to infer the posterior probability over the parameter space
with respect to data for the considered models. The posterior distribution for the
top model hints that fast irreversible ternary complex phosphorylation could be
central to establishing the differential response.

6.2 Modelling Framework

We develop a modelling framework to study how the mechanisms affecting ternary
complex stability differentially trigger key activities in the interferon signalling
pathway. Specifically, by differential activity we understand the difference in an-
tiviral and antiproliferative dose-response behaviour of populations of cells treated
with IFNα2 and IFNβ ligands. For conciseness we denote IFNα2 and IFNβ, as α
and β, and antiviral and antiproliferative activities, as AV and AP , respectively.
Also, by writing χ, χ ∈ {α, β} we mean either the ligand α or the ligand β and by
ω, ω ∈ {AV,AP} we denote either the antiviral or the antiproliferative activity.

We look for the minimal sufficient determinants of differential signalling and for
that reason we use only the essential theoretical tools allowing to account for the
major experimental observations. As a result the modelling framework consists
of three main parts:

1. A collection of TCS submodels which are steady-state Laplacian models.
They represent different hypothetical mechanisms dictating the stability of
the active ternary complex.
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2. An intracellular signalling cascade empirically modelled as a threshold sens-
ing mechanism of the active ternary complex concentration which results
in a life/death event for a single cell.

3. A population-level model aggregating the life/death responses of single cells
with heterogeneous number of receptors on the cell surface.

The resulting population models differ by their parameter values and TCS
mechanisms. They can be compared and their parameters can be inferred through
Bayesian model comparison and parameter inference by defining a likelihood
function relating experimentally obtained dose-response curves to dose-response
curves produced by the population model.

6.2.1 Ternary Complex Stability (TCS) Submodels

We examine receptor trafficking, assembly, and inhibition mechanisms with strong
experimental evidence in controlling ternary complex stability. Pertinent ques-
tions are to model these mechanisms in a minimal, yet adequate way to explain
the observations, and to combine them in order to form an ensemble of TCS
submodels to analyse.

6.2.1.1 Modelling receptor assembly, trafficking, and inhibition

We focus on three main mechanisms controlling the stability of signalling inter-
feron receptors – (i) ligand-induced ternary complex assembly on the cell sur-
face, (ii) ternary complex endocytosis including receptor recycling and endosomal
degradation, and (iii) inhibition of the free IFNAR2 receptor by USP18. We
assume that interferon ligand concentration is constant and notice that all mech-
anisms of interest have IFNAR2 at their core (see Section 8.4.1 in the appendix
for details). Thus we choose to describe the mechanisms as state transitions of IF-
NAR2 (R2 for short), and consider IFNAR1 (with concentration R1) and USP18
(denoted as U with concentration u) implicitly. Formally, we represent the reac-
tions in each mechanism with (pseudo) first-order mass-action kinetics and also
include a zero-order mass-action term to account for R2’s synthesis. For some
mechanisms we construct multiple models of differing complexity, i.e. with dif-
ferent level of detail and parametrisation, with the aim to arrive at minimal but
adequate representations. For instance, we build multiple variants of the ligand-
induced ternary complex assembly mechanism – several detailed ones including
intermediate states to obtain the ternary complex and a crude one containing a
direct transition from R2 to the active ternary complex. We call each such vari-
ant of a mechanism a component. All different components which we consider are
described in Section 8.4.1 in the appendix.

6.2.1.2 Hypothesis space generation

The set of all reactions we consider are presented in the form of a master model in
Figure 6.1. We combine these reactions through the components they constitute in
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Figure 6.1: A master model for ternary complex stability regulation containing
all reactions under consideration. Individual TCS submodel hypotheses are bi-
ologically meaningful subsets of the master model. Black arrows indicate basal
synthesis and degradation reactions, red arrows – ligand-induced ternary com-
plex assembly on the cell surface, blue arrows – inhibition of IFNAR2 by USP18
on the cell surface, and green arrows – ternary complex endocytosis along with
ternary complex disassembly, endosomal degradation, receptor recycling, and
inhibition inside endosomes. Dashed arrows denote degradation reactions, dou-
bly encircled vertices represent species hypothesized to have signalling abilities.
Superscripts indicate which parameters differ between interferon activities (su-
perscript ω) and ligand types (superscript χ). The ternary complex is denoted
as TC, IFNAR2 as R2, the interferon ligand as L and its concentration with
d, USP18 as U and its concentration as u, and IFNAR1’s concentration as R1.
The letter p indicates a phosphorylated state and the letter i – an internalised
state.

all possible biologically meaningful ways to obtain an ensemble of TCS submodels
– our hypothesis space. When building the submodel ensemble we need to take
into account biological feasibility. Namely, that some components can exist on
their own or in combination with other components, e.g. a cell surface component
is a meaningful model by itself but it can also be combined with an endocytic
component. Other components require the presence of specific components, e.g.
an endocytic component is not biologically meaningful by itself but requires a
cell surface component. There are also components incompatible with certain
other components, e.g. it is nonsensical to combine components modelling the
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6 A Minimal Model of Differential Type I Interferon Signalling

same mechanism but on different level of detail. Thus the master model itself
is not part of the hypothesis space since it contains all components, even those
of the same mechanism with different level of detail. The last ingredient when
generating the hypothesis space is the choice of signalling species. We regard
the phosphorylated states TCp, R2Lp, R2p, and TCpi, denoting respectively the
phosphorylated ternary complex, the IFNAR2-ligand complex, the free IFNAR2,
and the internalised ternary complex, as able to trigger downstream signalling
with the same strength. Since there is experimental evidence that TCp is capable
of signalling we include it in all models. Depending on which other species are
present in a given combination of components, we consider the cases in which
each of them, each pair of them, and all of them simultaneously are signalling
competent. Finally, combining the components following the rules and assigning
the signalling species we obtain the hypothesis space. It consists of a collection
of 290 TCS submodels.

The generated TCS submodels are open Laplacian models with one, two, or
three dose edges. We make the assumption that their steady-states are relevant
for the stability of the signalling species in line with Kalie et al. (2008). We can
express their steady-states for a given set of signalling species O as:

ρO(d) =



k1 + k2d

k3 + k4d
, for single dose-edge submodels,

k1 + k23d+ k4d
2

k5 + k67d+ k8d2
, for double dose-edge submodels,

k1 + k234d+ k567d
2 + k8d

3

k9 + k101112d+ k131415d2 + k16d3
, for triple dose-edge submodels,

(6.1)
where ki are the steady-state coefficients as defined in Chapter 5.

All 290 TCS submodels in the ensemble we generate have k1 = 0. The rea-
son, which can also be observed in the master model, is that when deriving the
numerator of any submodel steady-state expression for any of the output species
TCp, TCpi, R2p, or R2Lp there does not exist an arborescence spanning vertex
R2 and simultaneously containing zero dose-edges.

We consider four different parametrisations of every submodel to account for
the ligand types and activities which define differential signalling. We assume for
simplicity that the differences between the submodels for α and β in AV and AP
are only parametric and not topological. Thereby, each TCS submodel can be
expressed as a quadruple of ligand and activity specific steady-states:(

ρO(d, kαAV ), ρO(d, kβAV ), ρO(d, kαAP ), ρO(d, kβAP )
)
,

where the superscripts indicate the ligand and activity specific parametrisations.
The ligand specific parametrisations differ by ligand affinity towards the receptor
subunits and activity specific ones reflect the fact that AV and AP activities are
separated in time – AV activity happens shortly after interferon stimulation while
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AP activity requires longer continuous stimulation which establishes expression
feedbacks, particularly USP18 expression.

6.2.1.3 Incorporating initial receptor concentration

Experimental measurements of the free cell surface receptor R2 in unstimulated
cells can readily be incorporated in the TCS steady-state expressions for a digraph
model of interest G. Let r0 be that quantified initial receptor concentration and
consider the unstimulated digraph submodel GU containing only the species and
reactions present prior to stimulation with the interferon ligand. The unstimu-
lated model in our case is the basal IFNAR2 synthesis and degradation mechanism

∅
rs−⇀↽−
rd

R2. Then we can derive the steady-state concentration of the measured

species in the unstimulated submodel as:

ρ{R2} =
κvR2

(GU )

κv∅(GU )
= r0.

Next, we notice that we only consider submodels containing a single synthesis
reaction, i.e. ∅ rs−→R2 which we denote as the edge es. Hence, the Kirchhoff
polynomial from the numerator of any submodel’s steady-state can be expressed
as κv(G) = `(es)κv(G/es) since all arborescences it represents contain es as the
only edge spanning the environmental vertex v∅. The Kirchhoff polynomial from
the denominator never contains the synthesis rate due to the rooting operation
at the environment vertex. Thus the synthesis rate (the label of the synthesis
reaction) in the unstimulated submodel can be expressed as:

`(es) =
κv∅(GU )

κvR2
(GU/es)

r0 ⇒ rs = rdr0.

Assuming the synthesis rate does not change after interferon stimulation, we
can represent the steady-state of the stimulated submodels in terms of the initial
measured IFNAR2 surface concentration r0. For example, for single dose-edge
submodels:

ρO(d;K, r0) =
k
`(es)←rd
2 d

k3 + k4d
r0, (6.2)

where `(es) ← rd denotes a relabelling operation replacing the label of the syn-
thesis edge es by the degradation rate constant rd in the corresponding steady-
state coefficient. Analogous relabelling applies to submodels with double and
triple dose-edges. For conciseness we denote the relabelled steady-state coeffi-

cients as Ki = k
`(es)←rd
i and the set of all steady-state coefficients, including the

relabelled coefficients from the numerator and the coefficients from the denomi-
nator as K. Note that by writing ρO(d;K) we mean the dose-response expres-
sion with applied edge relabelling operations but excluding the measured r0, i.e.

ρO(d;K) = ρO(d;K,r0)
r0

.
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6.2.2 Single-Cell Threshold Model

We assume, in line with Levin et al. (2011), that threshold sensing mechanisms
in the steady-state magnitude of the cumulative signal ρO(d;K, r0) originating
from the TCS submodel determine the life/death fate of a single cell. For type I
interferon signalling two threshold values are of main relevance:

τAV – a positive antiviral threshold, under which a cell does not express antiviral
genes and cannot cope with viral infections which ultimately leads to its
death, and above which a cell expresses antiviral genes thus remaining alive
by counteracting the viral infection.

τAP – a positive antiproliferative threshold, under which a cell is alive, but above
which apoptosis is triggered leading to cell death.

The thresholds serve as an abstraction of downstream JAK-STAT signalling,
the ensuing gene expression, and the resulting antiviral and antiproliferative re-
sponses. A concrete mechanism implementing the threshold response could be
bistability in early JAK-STAT signalling as hypothesized by Otero-Muras et al.
(2016).

Let yAV (d) and yAP (d) be the binary variables describing the 1–life/0–death
state of a cell with respect to the antiviral and antiproliferative activities of inter-
feron, respectively. Formally, we can consider the cumulative signal ρO(d;K, r0)
as a latent variable and define the binary variables as:

yAV (d) =

{
1 if ρO(d;K, r0) > τAV

0 if ρO(d;K, r0) ≤ τAV , yAP (d) =

{
1 if ρO(d;K, r0) ≤ τAP
0 if ρO(d;K, r0) > τAP .

In Chapter 5 we defined the differential for continuous dose-response curves
but it can also be derived for step dose-response functions. Let us denote by
y(d) and τ a binary variable and its threshold without specifying the interferon
activity. Then the dose differential is the difference between the doses for which
the reference α and the perturbed β system, yα(d) and yβ(d), reach the threshold
τ .

Namely, for single dose-edge submodels ρO(d;K, r0) = K2d
k3+k4d

r0 = τ ⇒ d =
k3

k4τ−K2r0
leading to:

πd = log10

kα3

kβ3

Kβ
2

r0
τ − k

β
4

Kα
2

r0
τ − kα4

.

We observe that the dose differential expression of the binary variable for single
dose-edge submodels has the steady-state coefficient K2 weighted by the ratio of
the measured pre-stimulation surface receptor concentration r0 and a threshold
value (antiviral or antiproliferative). It differs form the differential of the latent
variable ρO(d;K, r0) shown in Chapter 5 since it incorporates K2 and is identical
to it only in the trivial case when K2 = 0 or r0 = 0. The response differential
πR is 1 between the doses for which the response reaches the threshold and 0
otherwise.
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The differential for the double dose-edge case can also be derived (see Sec-
tion 8.4.2 from the appendix) but the one for three dose-edges, though symboli-
cally derivable is tedious to analyse.

6.2.3 Population Threshold Model

Dose-response relations observed on the population level might be misleading
for interpretation from the viewpoint of single-cell models because of cell-to-cell
variation leading to non-trivial aggregation of single-cell effects. It has been shown
in Moraga et al. (2009); Levin et al. (2011) that there exists single-cell variation
in interferon receptor levels which is reproducible, maintained, due to stochastic
expression, and key in determining the interferon signalling outcome. Therefore,
we extend the single-cell model to a population model assuming that the main
heterogeneous element in the cell population is the ratio between R2’s synthesis
and degradation rate constants. Its variability is indirectly expressed through the
variability of the measured cell surface R2 number in unstimulated cells, r0.

We model the distribution of r0 in a cell population as the random variable
R0 having a log-normal distribution with a location parameter µ and a scale
parameter σ:

R0 ∼ Log-N (µ, σ).

Note that the choice of the distribution for R0 is not limiting for the analysis.
Other choices of distributions taking only positive values are also possible. For
example, the Gamma distribution has been used to model the distribution of copy
numbers of proteins (Friedman et al., 2006).

Recalling Equation 6.2, we can see that the dose d and the steady-state coef-
ficients K are scalars, and r0 is a particular realisation of the random variable
R0. Hence we can regard the signal from the TCS submodel ρO(d;K, r0) as a
particular realisation of a random variable, which we call PO, obtained by trans-
forming R0 by the scalar quantity ρO(d;K). In general, the product between a
scalar s and a log-normal random variable with a location parameter µ and a
scale parameter σ is log-normally distributed with a location parameter µ + ln s
and the same scale parameter. Thus PO also follows the log-normal distribution,
although with a location parameter different from that of R0, namely:

PO ∼ Log-N (µ+ ln ρO(d;K), σ) . (6.3)

In other words, as depicted in Figure 6.2, the TCS submodel’s topology and
parameters, expressed through the steady-state coefficients and values of the dose
variable, transform R2’s measured distribution to the distribution of the signalling
species abundance within the population.

Analogously to the single-cell model, the total number of activated species PO
serves as a latent random variable rendering a dichotomous 1-life/0-death cell
response. We model this response by the Bernoulli random variable Yi for the
i-th cell in the population and according to the antiviral and antiproliferative
thresholds τAV and τAP . The probability of survival for an individual cell in
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Figure 6.2: Population threshold model. (a) The distribution of the measured
initial concentration of R2 within a cell population, expressed through the prob-
ability density function of the random variable R0 is transformed by a TCS sub-
model ρO(d;K) to obtain (b) the steady-state population variation in the active
signalling species modelled by the random variable P0. A threshold value τ op-
erating on P0 determines the life/death fate of cells in the population. (c) The
expected proportion of alive cells R(d) resulting from treatment with varying
doses of interferon presents an experimentally testable dose-response relation-
ship.

the population can then be expressed through the cumulative distribution func-
tion (CDF) of PO for antiviral and apoptotic activities as:

Pr
(
Y χAVi = 1 | µ, σ, τAV , d,KχAV , O

)
= 1− Φ

 ln τAV

ρO(d;KχAV )
− µ

σ

 ,

Pr
(
Y χAPi = 1 | µ, σ, τAP , d,KχAP , O

)
= Φ

 ln τAP

ρO(d;KχAP )
− µ

σ

 ,

where the CDF of PO is expressed through Φ(.), the CDF of the standard normal
distribution.

We assume that the life/death fates Yi of single cells for a fixed interferon dose
in a population of n cells are independent and identically distributed, thus the
number of surviving cells in the population for a fixed ligand type and activity can
be described by the binomially distributed random variable Z, Z =

∑n
i=1 Yi. The

expected proportion of alive cells in the population is then equal to the probability
of a single cell being alive:

R(d) =
E[Z]

n
= Pr (Yi = 1 | µ, σ, τ,K, d,O) , (6.4)

The resulting model of interferon response reminds of the Probit model, but it
is also quite different mainly due to the non-linear TCS submodel.

6.2.3.1 Population differential response

The population differential response can be derived from R(d), the expected frac-
tion of living cells for the AV and AP activities.
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We take the first derivative of R(d) to determine the critical points of the
population dose-response relation obtaining:

DdRAP (d) = −DdRAV (d) =
−k3

d(k3 + k4d)σ
√

2πe

(
ln

(k3+k4d)τ
ω

K2d
−µ

)2
2σ2

,

where Dd denotes the first derivative with respect to the dose and τω ∈
{τAV , τAP }. The first derivative is never zero for non-trivial dose-response
relationships and thus R(d) defines a sigmoid curve which has only two critical
points for both the antiviral and the antiproliferative threshold:

EAV =

{
ε1 = (0, 0) , ε2 =

(
∞, 1− Φ

(
ln k4τ

AV

K2
− µ

σ

))}
,

EAP =

{
ε1 = (0, 1) , ε2 =

(
∞,Φ

(
ln k4τ

AP

K2
− µ

σ

))}
.

Now we can derive the dose and the response differential as described in Chap-
ter 5. The dose differential πd has the form:

πd(h) = log10

kαω3

kβω3

Kβω
2 η1

(
τω, µ, σ, h,

kβω4

Kβω
2

)
− kβω4

Kαω
2 η1

(
τω, µ, σ, h,

kαω4

Kαω
2

)
− kαω4

, with

η1

(
τω, µ, σ, h,

kχω4

Kχω
2

)
=

1

τω
e

µ−σ
√

2 erfc−1

(1−h) erfc

µ−ln
k
χω
4 τω

K
χω
2

σ
√

2



,

where we call η1(.) the population receptor function for single dose-edge models,
erfc (.) is the complementary error function and erfc−1 (.) is its inverse.

We can also express the response differential as:

πR(h) =



(1− h)

Φ

 ln
k
βAV
4 τAV

K
βAV
2

−µ

σ

− Φ

 ln
kαAV4 τAV

KαAV2

−µ

σ

 , for AV,

(1− h)

Φ

 ln
kαAP4 τAP

KαAP2

−µ

σ

− Φ

 ln
k
βAP
4 τAP

K
βAP
2

−µ

σ

 , for AP.

Despite the complicated form of differential expressions we can easily isolate
the effect of the TCS submodels on the population differential. We notice that
two population models with identical parameters h,τω,µ, and σ have the same
response differential when they have the same ratio of steady-state coefficients
kχω4

Kχω
2

, and have the same dose differential when they have the same response
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differential and the same expression
kαω3

kβω3

Kβω
2 cβ−kβω4

Kαω
2 cα−kαω4

where cχ is the population

receptor function regarded as a symbol.
The derivation of the differential for two dose edges can be found in Section 8.4.2

from the appendix, while that for three dose edges, although analytically deriv-
able, is more difficult to interpret.

6.2.3.2 The single-cell differential is a limiting case of the population differential.

The single-cell and the population dose differential expressions have a similar form
in which ratio r0

τ corresponds to the population receptor function η(.). To check
if the population differential reduces to the single-cell differential, we consider a
limiting case initial receptor distribution R0 with mean r0 and variance approach-
ing zero. The arithmetic mean and variance of a log-normal distribution can be

expressed through the location and scale parameters as E[R0] = eµ+
1
2σ

2

= r0 and

limσ→0 Var[R0] = (eσ
2 − 1)(E[R0])2 = 0, leading to µ = ln r0 and σ → 0. It can

be seen that plugging the resulting µ and σ in the population receptor function

we recover η
(

ln r0, σ → 0, h,
kχ4
Kχ

2

)
= r0

τ and thus the single-cell dose differential

is indeed a limiting case of the population dose differential. Analogously, it can
be shown that the population double dose-edge dose differential reduces to the
corresponding single-cell dose differential.

6.2.4 Bayesian Parameter Inference and Model Comparison

To apply Bayesian parameter inference and model comparison, as introduced in
Chapter 2, we need to define the data of interest, the likelihood function, and the
prior knowledge about the interferon system.

6.2.4.1 Data

Receptor-ligand interaction rate constants. In the presented TCS submodels we
incorporate experimentally obtained kinetic constants for ligand-receptor interac-
tions taken from Gavutis et al. (2006) and Jaks et al. (2007). The specific values
and units of the constants can be found in Table 6.1.

Cell-to-cell variation of IFNAR2 receptor numbers. We parametrise the log-
normally distributed random variable R0 with an empirical IFNAR2 distribution
for a population of unstimulated cells taken from Levin et al. (2011).

The raw distribution data originates from FACS measurements which we trans-
form to receptor number per cell (number/cell). To do that we use the formula
r0 = f

F , where f denotes the measured florescence and F is the florescence corre-
sponding to a single receptor. We set F = 7 under the assumption that there are
on average around 500 IFNAR2 receptor subunits per cell in WISH cells (Piehler
et al., 2012).

Receptors can also be regarded in terms of concentration (e.g. nM) or density
(e.g. number/m2) but it has been established for most purposes to express them in
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Table 6.1: Experimentally measured association and dissociation rate constants
for IFNα2 and IFNβ binding to IFNAR1 (2D binding on the cell surface of
IFNAR2-L to IFNAR1) and IFNAR2 (3D binding of L to IFNAR2) from
Gavutis et al. (2006) and Jaks et al. (2007). Descriptions of the rate con-
stants can be found in Section 8.4.1 from the appendix and also in the master
model from Figure 6.1. Note that we consider these parameters as fixed and do
not account for their variation.

Parameter
χ

Units Description
α β

rχ1 = rχ3 0.003 0.01 1
nM s

3D association rate constant for the
binding of L to IFNAR2

rχ2 = rχ4 0.015 0.001 1
s

dissociation rate constant of L-IFNAR2

rχ5 16.5 16.5 m2

nmol s

2D association rate constant for the
binding of L-IFNAR2 to IFNAR1

rχ6 0.4 0.01 1
s

dissociation rate constant of L-
IFNAR2-IFNAR1

number/cell as a positive continuous quantity (Lauffenburger & Linderman, 1993).
For our purpose the number of active receptors is relevant since it determines the
strength of downstream signalling. The experimental data is best fitted to a log-
normal distribution with a location parameter µ = 6.18 and a scale parameter
σ = 0.42.

Dose-response curves. We use population-level antiviral and antiproliferative
dose-response data in WISH cells resulting from IFNα and IFNβ treatment taken
from Jaitin et al. (2006). The data comprise four dose-response datasets corre-
sponding to the four ligand-activity conditions – αAV , βAV , αAP , βAP . The
interferon dose in each of them is measured in nM and the response is measured
in arbitrary units of cell density proportional to the number of living cells. We
normalise the data such that when no cells are alive the response is 0 and when
all cells are alive the response is 1, and intermediate responses correspond to
a proportion of alive cells. During the normalisation special attention is given
to the AP dose-response curves since only about 60% of the cells are able to
respond to high interferon concentration and trigger antiproliferative response
(Levin et al., 2011). For a given interferon dose each of the four datasets pro-
vides a mean response and standard deviation calculated from six independent
experiments. Thus to reverse engineer the individual experimental outcomes we
took six random samples from a normal distribution parametrised by the corre-
sponding aggregate data. Additionally, we assume that there are n̂ = 2500 cells
in each experiment (Marijanovic et al., 2007). From the normalised proportions
of alive cells and total number of cells we obtain the number of alive cells in each
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of experiment, which we express in the form:

Ẑχω =
{(
d̂χωi , ẑχωi

)}mχω
i=1

,

where ẑχωi is the number of alive cells in a single experiment correspond-

ing to the dose d̂χω1 when ligand χ was used and activity ω was measured.
There are mχω measurements in total per ligand type and activity. By
Ẑ = {ẐαAV , ẐβAV , ẐαAP , ẐβAP } we denote the dose-response data across
the two ligand types and two activities.

6.2.4.2 Likelihood function

Recall that we model the number of alive cells in a population under specific
ligand and activity conditions with the binomial random variable Zχω. Then the
probability to obtain ẑχ,ω alive cells in a population of n̂ cells for AV and AP
activities is given by:

Pr
(
ZχAV = ẑχAVi | µ, σ, τAV ,KχAV , d̂χAVi , O, n̂

)
=

(
n̂

ẑχAVi

)1− Φ

 ln τAV

ρO(d̂χAVi ,KχAV )
− µ

σ

ẑχAVi

Φ

 ln τAV

ρO(d̂χAVi ,KχAV )
− µ

σ

n̂−ẑχAVi

,

Pr
(
ZχAP = ẑχAPi | µ, σ, τAP ,KχAP , d̂χAPi , O, n̂

)
=

(
n̂

ẑχAPi

)
Φ

 ln τAP

ρO(d̂χAPi ,KχAP )
− µ

σ

ẑχAPi
1− Φ

 ln τAP

ρO(d̂χAPi ,KχAP )
− µ

σ

n̂−ẑχAPi

.

We assume that the individual measurements for the same and different ligand
doses, ligand types, and activities are independent and identically distributed.
The likelihood of the dose-response data Ẑ for a given model can then be written
as:

L(θ) = Pr(Ẑ | θ, θ′) =∏
ω∈{AV,AP}

∏
χ∈{α,β}

mχω∏
i=1

Pr
(
Zχ,ω = ẑχ,ωi | µ, σ, τω,Kχω, d̂χωi , O, n̂

)
,

where L(.) is the likelihood function, θ′ is the set of fixed parameters – µ,σ,O,n̂,
and the reaction rate constants taking part in the dose response coefficients K
which are shown in Table 6.1, and θ ∈ Ω is the set of free parameters over the
continuous parameter space Ω consisting of activity dependent thresholds and
the unknown reaction rate constants from Kχω listed in Table 8.4 in Section 8.4.3
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from the appendix.

The binomial coefficients in the likelihood function can be safely discarded since
they are constant and do not alter the parameter inference and model comparison
problems. We also, by convention, work with the negative log likelihood during
the inference and comparison process.

Likelihood regularisation. The dose-response measurements normalized to the
interval [0, 1] do not represent genuine proportion data. Measurement errors and
unaccounted-for variation in the total number of cells n̂ among experiments give
rise to too big variation of measurements close to the proportions 0 and 1. Thus
the available data does not fully exhibit the expected for proportion data het-
eroscedasticity originating from ceiling and floor effects. This observation has to
be reckoned with since the developed model is by nature heteroscedastic and thus
“stiff” close to the floor 0 and ceiling 1 proportions. Not accounting for this effect
could lead to biased inference and numerical artefacts.

To aid the inference process we regularise the ligand and activity dependent

functions F (d) = Φ
(

ln τ
ρO(d;K)

−µ
σ

)
comprising the likelihood. More precisely, we

introduce an unknown parameter γ which decides how to scale F (d) to obtain
F (d), such that optimal floor and ceiling values with regards to the available data
are chosen:

F (d) = γ + (1− 2γ)F (d),

where the parameter γ is to be estimated together with all other free parameters.
Having completed the inference process we regard the estimated most probable
new floor and ceiling values with regards to the data as corresponding to propor-
tion 0 and 1. Thus we revert F (d) back to F (d) in our models but scale the data
as:

ẑχωi = −γ + (1 + 2γ)ẑχωi .

This regularisation generates a data normalisation which mitigates the effect of
data not being genuinely proportional. A consequence is that some data points
have values below the proportion of 0 and above the proportion of 1.

6.2.4.3 Parameter and model priors.

We assume all models are equally probable prior to considering the experimental
data. We regard each model’s free parameters as log-uniformly distributed to
express our ignorance about their order of magnitude. We incorporate available
prior information to fix the minimum and maximum values, a and b, correspond-
ingly, of some parameters and for the rest we set a wide interval of definition
over several orders of magnitude as shown in Table 8.4, Section 8.4.3 from the
appendix. Additionally, we work with log10 of the parameters and assume that
their distributions are independent and identically distributed.
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6.3 Results

6.3.1 Model Comparison

To rank the generated 290 models through Bayesian model comparison, as in-
troduced in Chapter 2, we first identify the parameter point with the highest
likelihood within each model’s parameter space using the global optimization
toolbox MEIGO (Egea et al., 2014), from which we initiate the exploration of
the high-likelihood regions with HYPERSPACE (Zamora-Sillero et al., 2011) – a
Matlab package to sample high-dimensional parameter spaces. As the threshold
defining the high-likelihood regions we use the maximum likelihood of a model
providing a poor fit to the data, and this value is orders of magnitude lower than
the maximum likelihood achieved by the top ranking models. Having uniformly
sampled the high likelihood regions of the parameter space we apply the estimator
presented in Equation (2.7) to obtain an approximation of the evidence integral
required for the calculation of Bayes factors and posterior model probabilities.
The resulting ranking for the top 10 models is shown in Table 6.2.

The ranking from Table 6.2 reveals a top model with a TCS submodel (also see
Figure 6.3) consisting of a cell surface component, an endocytosis component, and
an inhibition component. The model contains 16 free parameters, and the inhibi-
tion and endocytosis components are the least detailed in their class hinting at the
minimality of the model. More precisely, the inhibition component includes only
the binding of USP18 to the cell surface R2 and the endocytosis component does
not have an inhibitory element. The cell-surface component is detailed indicating

Table 6.2: Ranking of the candidate models determined through Bayesian model
comparison. The top 10 models out of the 290 models in the ensemble are
shown, each with its specific TCS Laplacian submodel defined through its sub-
model components and signalling species, posterior probability, Bayes factor
calculated with respect to the highest ranking model, and number of free pa-
rameters. The standard deviation of the estimator, as defined in Equation (2.8),
is not shown since it is negligibly small and does not have an effect on the rank-
ing, posterior model probabilities, and Bayes factors.

Rank
TCS submodel Posterior Bayes No. free

components signalling species probability factor params
1 S,I,E TCp,R2p,TCpi approx. 1.0 – 16
2 S,I1,E TCp,R2Lp,R2p,TCpi 3.5e-43 97.7 16
3 S,E TCp,R2p,TCpi 8.6e-67 152.1 12
4 S,E TCp,R2Lp,R2p,TCpi 2.7e-73 167.1 12
5 S,I1,E TCp,R2p,TCpi 9.1e-92 209.6 16
6 Sω,EI,EIrS TCp,R2p 2.3e-106 243.2 18
7 S,I,EI,EIrI TCp,R2p,TCpi 3.2e-108 247.5 18
8 Sω,I1,E TCp,R2p,TCpi 2.6e-117 268.4 17
9 S,EI,EIrS TCp,R2p,TCpi 1.9e-119 273.4 17
10 Sω,E TCp,R2p 3.5e-121 277.3 13
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Figure 6.3: Reaction scheme of the differential TCS submodel belonging to the
highest ranking model.

the importance of the different receptor assembly stages, but does not incorporate
activity dependence of R1. Thus, overall, the model complies with the hypothesis
that receptor assembly, together with endocytosis, and USP18 inhibition are the
minimal sufficient ingredients to reproduce the observed differential dose-response
data (Schreiber & Piehler, 2015). Furthermore, signalling in the model happens
through, both, species on the cell surface and within the endosomal compart-
ment, pointing at the hypothesized importance of receptors signalling from the
endosome (Schreiber & Piehler, 2015).

A striking result is the large posterior probability of the top ranking model of
almost 1, especially in comparison to the low posterior probability of the second
ranking model which is topologically similar and has the same number of free
parameters. The greater topological complexity of the second model could be
a reason for this discrepancy. Namely, its additional reactions in I1 and more
signalling species might make it more functionally constrained and thus having a
smaller volume of its parameter space with high likelihood. However, caution has
also to be given to the difficulty of approximating the high-dimensional evidence
integral since the obtained two million samples might give a rough approximation.

The third and fourth ranking models present a curious result – they do not
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6 A Minimal Model of Differential Type I Interferon Signalling

incorporate an inhibitory component. Thus the only parameters differentiating
between the AV and the AP activities are the threshold parameters τAV and τAP .
These simple models contain only 12 free parameters, granting them high ranking
through the Bayesian framework. However, although they feature a notewor-
thy differential mechanism explaining the experimental dose-response data, they
would surely lead to inadequate results when additional data is incorporated, e.g.
such showing that perturbations in USP18 greatly affect the differential (Francois-
Newton et al., 2012).

6.3.2 Parameter Inference

To numerically obtain samples from the posterior and determine the posterior
parameter distribution we employ DRAM – a Matlab toolbox implementing an
adaptive Metropolis-Hastings MCMC algorithm with delayed rejection introduced
in Haario et al. (2006). The efficiency of the DRAM algorithm has previously
been shown on a variety of examples, and especially for high-dimensional poste-
riors with correlated components that we expect to see for our models with high
parameter uncertainty.

We focus on the highest ranking model and obtain 20 million samples to re-
construct its posterior probability distribution. The resulting well mixed chains
supply us with one dimensional marginal parameter distributions which can be
seen in Figure 6.4, as well as, with two dimensional densities which are presented
in Figure 6.5. From these results we see that the distributions for some param-
eters are peaked around a single value, while for others they are more spread
out. Specifically, the threshold parameters τAV and τAP are peaked around the
upper and lower boundary of their intervals of definition and thus correspond to
the biologically feasible 10 and 100 receptors. The regularisation parameter γ is
strongly peaked around the value 0.056 and indicates the small scaling needed
to be incorporated to account for the non-proportionality properties of the dose-
response data. The concentration of IFNAR1, R1, is highly peaked around a
value corresponding to approximately 80 thousand receptor units which is much
more than the physiological expression of the receptor amounting to a couple of
hundred units. We do not expect this parameter’s value to have a strict inter-
pretation since IFNAR1’s variability and activity dependence are not explicitly
incorporated in the model. It, however, shows that this omission does not have
a strong effect on the minimal sufficient determinants of interferon differential
signalling. Further, the low value of r8 indicating slow dephosphorylation of R2p
presents an interesting observation worthwhile to be experimentally tested.

A hypothesis to explain the similar antiviral activity of interferons with vastly
different receptor binding affinities is that the endocytosis rate, in our case r9,
should significantly exceed the IFNAR1 unbinding rate rχ6 , so that the α vs β
affinity difference cannot exert its differential effect (Schreiber & Piehler, 2015).
We observe a similar effect between the irreversible phosphorylation of the ternary
complex TC with reaction rate constant r7 and the off-rate constant rχ6 , namely
r7 >> rχ6 . However, we do not observe the same relation between the inter-

nalisation rate constant r9 and rχ6 but rβ6 < r7 < rα6 . This does not reject the
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Figure 6.4: Marginal posterior probability densities for the 16 free parameters of
the highest ranking model. Note that the posterior distributions are presented
in log space but log10 was omitted in front of the parameters for visual clarity.
The most probable values, distribution means, and standard deviations can be
found in Table 8.5 from the appendix.

hypothesis for fast internalisation, but rather demonstrates that fast irreversible
phosphorylation could also serve the purpose to decrease the differential for the
AV activity.

The group of parameters q,r10, and r15 shows high covariance (see Figure 6.5).
It is composed by reactions outgoing from the species R2i. Their uncertainty
leads to lack of identifiability, which highlights them as candidates for experimen-
tal measurement. A second group of parameters, uAV r11,r12, and r19 consisting
of reactions incoming to and outgoing from the species R2U also exhibits correla-
tion and occupies a large high-posterior region. Their identification also requires
subsequent experimental measurements. It is worth to note that uAV r11 has a
small value as is expected for the AV activity time-scale when USP18’s expres-
sion has not yet culminated, and uAP r11, expressed through the proportionality
parameter su, is orders of magnitude higher hinting at the strong effect of UPS18
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6 A Minimal Model of Differential Type I Interferon Signalling

expression for the differential response. Finally, we note that the degradation of
cell-surface species, with rate constant rd, is slower than the degradation from the
endocytic component (r14 and r15) which is also biologically feasible.

The posterior parameter distribution was sampled to obtain a predictive enve-
lope for the proportion of alive cells Rω(d) in a population when α and β ligands
are employed and the responses are the AV and AP activities. The results are
shown in Figure 6.6 and indicate that the top model successfully reproduces all
features of the dose-response data with very little variation.

6.3.3 Symbolic Derivation of the Differential

The top ranking model has two dose edges and thus its population-level differential
response can be derived symbolically. Recalling the derivations from Section 8.4.2,
we study the expressions of Kirchhoff polynomials that define the dependence of
the population differential on the TCS submodel parameters. Namely, the expres-
sion isolating the effect of the TCS model on the population response differential

2

2.2

τ
A
P

-1.3

-1.2

γ

-1.5

-0.5

R
1

2

4

q

-2

2

r
1
0

-5

5

r
1
2

-4.6

-4.2

r
1
4

-4

0

r
1
5

-5

5

r
1
9

-5

5

r
7

-5

-4.98

r
8

-3

-1

r
9

-5

-4.98

r
d

0

4

s
u

0.6 1

τ
AV

-5

5

u
A
V
r
1
1

2 2.2

τ
AP

-1.3 -1.2

γ

-1.5 -0.5

R1

2 4

q

-2 2

r10

-5 5

r12

-4.6 -4.2

r14

-4 0

r15

-5 5

r19

-5 5

r7

-5 -4.98

r8

-3 -1

r9

-5 -4.98

rd

0 4

su

Figure 6.5: Two dimensional marginal posterior probability densities for the 16
free parameters of the highest ranking model. Note that the posterior distribu-
tions are presented in log space but log10 was omitted in front of the parameters
for visual clarity. Low densities are represented by blue colour and high densities
with yellow.

92



6.3 Results

0

0.2

0.4

0.6

0.8

1

R
(d
)A

V

10-5 10-4 10-3 10-2 10-1 100 101 102 103

dose d

0

0.2

0.4

0.6

0.8

1

R
(d
)A

P

Figure 6.6: Predictive dose-response envelopes for the top ranking model con-
trasted to dose-response data from Jaitin et al. (2006). Results in the upper
panel are for antiviral activity (AV ) and in the lower panel for antiprolifera-
tive activity (AP ). Red colour designates dose-response for IFNβ and blue for
IFNα2. Circles represent samples from an experimentally determined aggregate
dose-response data as introduced in Section 6.2.4.1, and solid curves represent
predicted mean response. Note that the 95% posterior regions which indicate
the prediction uncertainty are coloured in grey but are barely visible.

for the top model reads:

kχω8

Kχω
4

=
FχK8

Fχk4R1r
χ
5 r7rd(R1r

χ
5 + rd)

,

where FχωK8
and Fχωk4 are irreducible expressions which can be seen in Section 8.4.4.

We see that the parameters R1, rχ5 , r7, and rd, respectively denoting the concen-
tration of IFNAR1, the 2D association rate constant for the binding between
L-IFNAR2 and IFNAR1, the ternary complex phosphorylation rate, and the cell
surface receptor degradation rate, are present as single factors in the expression
and thereby perturbations in their values have potentially a strong effect on the re-
sponse differential. Further, we determine that important parameters such as the
interferon-IFNAR2 binding and unbinding rate constants rχ3 and rχ4 , the USP18
related reaction rate constants uωr11, r12, and r19, as well as, r8, the irreversible
dephosphorylation of R2p are not present in the expression which implies that
perturbing them does not affect the population response differential.

The effect of the TCS submodel on the population-level dose differential is
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defined by the response differential expression which we already derived and the
expression:

Kβω
4 cβω − kβω8

Kαω
4 cαω − kαω8

kαω67 −Kαω
23 c

αω ±
√

(kαω67 −Kαω
23 c

αω)2 + 4kαω5 (Kαω
4 cαω − kαω8 )

kβω67 −Kβω
23 c

βω ±
√

(kβω67 −Kβω
23 c

βω)2 + 4kβω5 (Kβω
4 cβω − kβω8 )

=

rβ3
rα3
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cβωF βk4R1r

β
5 r7rd(R1r

β
5 + rd)− F βK8

)
(
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) ·

·
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where kχω5 ,FχK23
, and Fχωk67 are expressions defined in Section 8.4.4 in the appendix.

It is evident that the values of the interferon-IFNAR2 binding reaction constant
rχ3 have a large effect on the differential since it is a multiplicative factor of the
whole expression. However, the expression is more involved and depends on all
model parameters. Thus it is not straightforward to understand the effects of
individual parameters on the differential, such as the activity specific values of
the USP18 inhibition rate constant uωr11 which should drive the larger differential
in the AP activity.

6.4 Discussion

In this chapter we presented a modelling framework tailored to type I interferon
signalling. It has the aim to identify the minimal sufficient combination of mech-
anisms reproducing experimental IFNα2 vs IFNβ population-level dose-response
curves for antiviral and antiproliferative activities. The framework accounts for
the uncertainty in the combinations of mechanisms capable of generating the ob-
served differential by considering an ensemble of hypothetical models and ranking
them through Bayesian model comparison. It further addresses the problem that
many kinetic rate constants in interferon signalling are unknown by performing
Bayesian parameter inference to quantify this inherent parameter uncertainty.
Each model from the ensemble is a simple multi-scale model consisting of three
parts whose importance in determining the differential response has been experi-
mentally demonstrated. The first part concerns the different hypothetical controls
of the active ternary complex stability and is thus the main distinction between
the models from the ensemble. Said stability can be affected by interferon-induced
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receptor assembly, receptor internalisation and recycling, as well as receptor in-
hibition mechanisms, and is modelled by a steady-state Laplacian system which
determines the amount of signal propagated through the interferon pathway. The
second part abstracts the downstream signalling cascade through an activity spe-
cific threshold in the number of active ternary complexes which renders a cell
dead or alive. The third part accounts for the cell-to-cell variability of the num-
ber of IFNAR2 receptor subunits in a population of cells. It serves to extend the
single-cell models to population-level models capable to relate interferon dose to
the proportion of living cells in a population resulting from antiviral or antipro-
liferative interferon activity.

A particular strength of the resulting models is that an analytical formula for
their likelihood functions can be derived, obviating the need to obtain approxi-
mations when applying Bayesian inference methods. Hence, we are able to rank
the models using standard Bayesian model comparison and determine the ternary
complex stability regulation hypothesis for which the data provides largest evi-
dence. Our results indicate that there is a large evidence for the mechanisms of de-
tailed cell-surface receptor assembly, simple endocytosis and recycling, and simple
USP18 inhibition, with signalling originating from the cell surface and endosomal
compartments, comprise the minimal sufficient combination of mechanisms able
to explain the experimentally observed differential responses. This finding agrees
with the state-of-the-art hypothesis of interferon differential signalling (Schreiber
& Piehler, 2015). Still, in light of the difficulty of approximating the evidence
integral required for the comparison, models with lower evidence should not be
completely dismissed but ideally also analysed.

The availability of the likelihood function also facilitates Bayesian parameter in-
ference. The parameter posterior distribution for the top ranking model pinpoints
groups of unidentifiable free parameters, namely those associated to reactions con-
taining the species R2U and R2i. It also provides an alternative to the hypothesis
that fast ternary complex endocytosis equalizes the IFNα2 and IFNβ responses
in antiviral signalling (Schreiber & Piehler, 2015), which is that fast irreversible
phosphorylation of the ternary complex could serve the same purpose.

Additionally, the dose and response differential expressions explicating the re-
lationship between system perturbations and the resulting relative difference be-
tween dose-response curves (as introduced in Chapter 5) can also be derived for
the population models. Their population form is more complicated than that of
their single-cell counterparts but is still amenable to symbolic analysis. Specifi-
cally, it reveals the effect of individual parameters on the dose differential, such as
the large effect of the IFNAR2-interferon association constant, and which param-
eters might and which ones do not affect the response differential, thus generating
candidate hypotheses for experimental validation.

Possible extensions of the current framework with the aim to obtain more quan-
titative understanding of differential signalling is to explicitly consider the cell-to-
cell variability of IFNAR1 and the activity specific thresholds, and to incorporate
the uncertainty of the fixed parameters. This would require the availability of
adequate experimental data, complicate the analysis, and might not lead to sig-
nificantly different insights, but could adjust the biologically infeasible values we
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currently obtain for IFNAR1’s steady-state concentration. Another possible ex-
tension is to increase the size of the model space by considering more ternary
complex stability submodels. Note, however, that we generate all combinations
of submodel components to define our submodel space which leads to a combina-
torial explosion in the number of submodels, prompting that a different approach
is necessary when accounting for more submodel components.

The dose-response data has a central role in the model comparison and pa-
rameter inference processes. The typical data, however, constitutes cell density
measurements with only approximate knowledge on the total number of cells in
each experiment. Thus the data cannot reliably be transformed into proportional
as is required in our framework. This is not a major limitation since we regularise
the likelihood to account for this effect but precise knowledge on the number of
cells in each experiment could improve our inference procedure. Further, affinity
and dose-response data for different natural and mutant interferon ligands could
be used to test the predictability of the top ranking model.

The modelling framework offers qualitative understanding of the sufficient
mechanisms giving rise to the observed differential activities, compare differ-
ent model hypotheses, and connect receptor stability to population responses.
However, to quantitatively understand the dynamics of the differential signalling
phenomenon and to incorporate time-course data we need to build detailed
dynamical models. The minimal model could serve as the backbone in the
development of such models. It is important to note that the detailed dynamical
models could achieve quantitative understanding on the single-cell level, however,
their analysis would suffer from the lack of analytical tractability, more involved
model comparison and parameter inference, as well as computationally expensive
incorporation of cell heterogeneity.
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7
Concluding Remarks and Outlook

This thesis introduced theory and methods to study the effect of perturbations on
structure-function relationships in the domain of steady-state Laplacian models of
biological systems. We approached this fundamental question from the viewpoint
of algebraic graph theory and highlighted the deep connection between digraph
connectivity and relative responses resulting from model perturbations. Impor-
tantly, we accounted for challenging properties of biological systems and data
leading to heterogeneity, topological and parametric uncertainty, and complex-
ity of the developed models, simultaneously keeping a grasp on their analytical
tractability.

In Chapter 3 we laid the theoretical foundation for the rest of the chapters
in the thesis by uncovering an important property of the main object of interest
for the structure-function mapping in Laplacian models, namely prime factorisa-
tion of Kirchhoff polynomials. We exploited the strong connectivity and vertex
domination concepts to propose an efficient decomposition algorithm taking as
an input a digraph G and producing digraph components that are prime factors
of the Kirchhoff polynomial corresponding to G. Due to the important role of
Kirchhoff polynomials in a wide spectrum of scientific disciplines we believe that
the prime factorisation algorithm would find applications also in other fields of
science. Interestingly, we noticed that by reversing the decomposition rules to
composition rules we can hierarchically construct digraphs with innumerable ar-
borescences which can be factorised in linear time. We called the class of such
digraphs – practically enumerable (PE) – but did not provide its characterisa-
tion. Thereby, a logical next step would be to study properties like information
transmission on PE digraphs and determine if there are real-life networks with
such or similar topology. Another sensible extension is to derive a similar factori-
sation relevant for the transient phase derivations of Laplacian models. However,
it would involve working with cycles and paths on a phase graph in the sense of
Chou (1993) which might require a different insight and set of theoretical tools.

In Chapter 4 we exploited the factorisation theory to devise methods to manip-
ulate and generate expressions of Kirchhoff polynomials that dramatically ease
the handling of larger and more complicated steady-state Laplacian models. We
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derived criteria for Kirchhoff polynomial equality which allowed us to formu-
late a coarse-grained representation for an expression of Kirchhoff polynomials
thereby making its simplification manageable by standard symbolic algebra tools.
A weakness of the manipulation method is that it cannot, in general, certify
that all digraphs with equal Kirchhoff polynomials have been identified since the
developed criteria are not simultaneously necessary and sufficient. Thus, an im-
portant next step would be to find sufficient and necessary conditions for Kirchhoff
polynomials equality. One such condition is Kirchhoff polynomial isomorphism
which, to the best of our knowledge, is not developed for digraphs. Unfortu-
nately, finding digraphs with isomorphic Kirchhoff polynomials appears to be a
more complicated and computationally expensive problem than the already de-
veloped Kirchhoff polynomial isomorphism theory for undirected graphs, which is
equivalent in complexity to the graph isomorphism problem (Bogner & Weinzierl,
2010; Raghavendra Rao & Jayalal Sarma, 2011). Regarding the explicit genera-
tion of Kirchhoff polynomials, we proposed two heuristic algorithms that perform
sequential Kirchhoff polynomial simplification steps through the corresponding
digraphs and output compressed Kirchhoff polynomials. The algorithm employ-
ing the change of variables technique works well in practice even for some of
the largest Laplacian models of biological systems we found in literature having
quadrillions of arborescences, namely the catalytic cycle of PGHS (Goltsov et al.,
2010). Thus we explicitly demonstrated that connectivity properties, rather than
the (super) exponentially growing number of arborescences, determine if Kirch-
hoff polynomials can be manipulated and generated. The generation algorithms
can be further improved by accounting for digraph symmetry or by using more ef-
ficient connectivity-informed heuristics incorporating the recent developments in
strong connectivity and 2-connectivity (Georgiadis et al., 2015c, 2017). Further,
Kirchhoff polynomial isomorphism can also find application in the compressed
generation of Kirchhoff polynomials by generating the polynomial for only one
digraph in an isomorphism class and obtaining the rest of the Kirchhoff polyno-
mials through a simple change of variables. However, the central questions of how
to measure Kirchhoff polynomial compressibility, and more importantly, how to
maximally compress Kirchhoff polynomials, remain open.

In Chapter 5, armed with the theory and methods devised by the previous chap-
ters, we proceeded to formally define the notion of differential response as the dif-
ference between a reference and a perturbed dose-response curve, and investigate
how it is affected by perturbations in steady-state Laplacian models. Besides, our
definition of differential response accounts for non-sigmoid dose-response curves
which are also frequently observed (Mattson & Calabrese, 2009). The developed
theory is analytic. Thereby, it can determine the differential response capabil-
ities of a given Laplacian model in the context of unknown parameters, solely
from its topology. The main insight brought by the theory is that in steady-state
Laplacian models prime digraph components and their relation to exerted per-
turbations are the determinants of the differential response. It is curious that
reactions and species with important roles in a model, i.e. whose deletion signif-
icantly affects the differential, subsume the graph theoretical concepts of strong
bridges and strong articulation points (Italiano et al., 2012). Thus we expect our
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theory further to benefit from the algorithmic developments in graph theory and
computer science. We demonstrated on a set of insulin signalling model examples
how these structural insights allow us to deeply understand the effect of vari-
ous perturbations, explore the space of possible model topologies, reliably reject
models whose differential responses do not comply with desired perturbations,
and design perturbations of interest. An important limitation of the theory is
that analytical power gets lost for models containing five or more dose edges due
to analytical intractability of polynomials of fifth and higher degree. For that
reason, developments for high number of dose edges have no alternative but to
employ numerical methods. In this chapter we incorporated numerical methods
for another reason – to bound the range of the differential. Bounding plays an
important role to determine the possible differential magnitude when knowledge
on the parameters, that is intervals of definition, is available. Reliable bounding
of multivariate rational functions is difficult, but fortunately methods like those
based on Bernstein polynomials (Titi et al., 2015) are efficient and currently un-
der active research. A natural extension of the theory is to study the differential
response in cascades of steady-state Laplacian models. Perturbation of cascades
is of profound importance to cell signalling and their analysis thorough the tools
of Laplacian systems could reveal important insights into the roles of the different
cascade layers.

Finally, in Chapter 6 we developed a modelling framework to elucidate the min-
imal sufficient combination of mechanisms that can explain experimental data on
how “natural” perturbations, that is ligands with different affinities, trigger dif-
ferential responses in the type I interferon signalling pathway. The framework
serves as a testbed to study the topological and parameter uncertainty inherent
to cell signalling by employing Bayesian model comparison and parameter infer-
ence. More precisely, it infers the parameters and compares different simple multi-
scale models incorporating a steady-state Laplacian model of interferon ternary
complex stability, a threshold abstracting downstream signalling and subsequent
life/death cell fates, and the population variation of the receptor IFNAR2. The
primary difference between the resulting models is their ternary complex stabil-
ity (TCS) submodels. We investigated 290 TCS submodels comprising different
combinations of stability control mechanisms and signalling species for whose sig-
nificance in differential signalling there is experimental evidence. Namely, the
mechanisms are receptor assembly on the cell surface, receptor endocytosis and
recycling, and receptor inhibition by the USP18 factor. Our results indicate that
these three mechanisms along with signalling from the cell surface and the en-
dosomal compartment are the minimal sufficient constituents capable to explain
the dose-response data we used. A strong advantage of the framework, in com-
parison to other threshold models such as (Viswanathan et al., 2002), is that
various mechanistic hypotheses constructed as steady-state Laplacian models can
be tested benefiting from the theory and tools for model structure to function
mapping developed in the previous chapters. More precisely, Laplacian models
with undesired functional properties can be efficiently spotted solely on the basis
of their topology and, consequently, unpromising submodels can be easily dis-
carded. Another remarkable characteristic of the framework is that it accounts
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7 Concluding Remarks and Outlook

for cell-to-cell-variability, and topological and parameter uncertainty, while at the
same time preserves the analytical tractability of the differential response expres-
sions and the likelihood function. This feature allows to understand in-depth how
perturbations on single-cell level translate to differences in population response.
Limitations of the present framework include all limitations of the differential
Laplacian system such as the analytical intractability of systems with more than
a small number of dose-edges. An additional limitation is the combinatorial ex-
plosion of possible TCS submodels since currently we consider all combinations
of mechanisms. This problem can be remedied by assigning submodels to equiv-
alence classes depending on their steady-state and differential expressions, and
discarding impossible models on the basis of topological properties as previously
mentioned. A paths for future development includes the investigation of how
hormetic responses of single-cells translate to population activities. We would
also like to emphasize the generality of the framework and its direct extensibility
to other signalling pathways exhibiting threshold behaviour in the concentration
of active receptor species.

In conclusion, we believe that the developed theory and analysis toolbox for
Laplacian models would prove useful in the study of biological systems, especially
in light of uncertainty and structure to function mapping under perturbations, and
in applications to analytically investigate the core mechanisms behind complex
biological processes.
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8
Appendix

8.1 Supplement to Chapter 2

8.1.1 Omitted Proofs

8.1.1.1 Proofs from 3.2 Primality of Components

For a directed path P and vertices x, y ∈ P appearing on P in this order, we
define a slice P[x : y] as the sub-path of P having x as a starting vertex and y as
an ending vertex. Similarly, for a directed cycle C and u, v ∈ C, we define a slice
C[u : v] as the directed path from u to v using the edges of the cycle C.

Lemma 3.2.6. Let G be a digraph as in Theorem 3.2.5. For any edge wu of G
such that u,w 6= v, there exists a simple directed cycle C containing wu, such that
C has at least two independent vertices, and w is one of those.

Proof. Strong connectivity of G \ {v} implies the existence of a simple directed
path from u to w. This path and the edge wu form a directed cycle C′ containing
edge wu. By Menger’s Theorem, there are two directed vertex-disjoint paths
P1,P2 from the root v to vertex w. The paths are not necessarily disjoint with C′.
Let us denote, in reverse order on the cycle C′, starting from w, all intersections
c1, c2, . . . , ck of C′ with P1 or P2. Assume, without loss of generality, that ck ∈ P1.
We construct the cycle C = P1[ck : w] ∪ C′[w : ck]. Observe that P2 is vertex-
disjoint with P1, and with C′[w : ck], since all intersections with C are between
ck and w. Thus, P2 is an independent path for w with respect to C. Similarly,
P1[v : ck] is an independent path for ck with respect to C.

Lemma 3.2.7. Let G be a digraph as in Theorem 3.2.5, and let V1 and V2 be
an arbitrary (non-trivial) partition of the vertices V \ {v}. There exists a simple
directed cycle having an independent vertex from V1 and an independent vertex
from V2.

Proof. Since G \ {v} is strongly connected, there exists an edge wu with u ∈ V1

and w ∈ V2. By Lemma 3.2.6, there is a cycle C and a vertex x such that x and
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w are independent from C. Without loss of generality, we can assume that there
are no independent vertices on C between w and x (as we can always pick x to be
closer to w). If x ∈ V1, C satisfies the statement of the Lemma and we are done.
Assume therefore that x ∈ V2 from now on.

Let P1 and P2 be the independent paths of w and x, respectively. Since w is
not dominating u, there exists a v-u path P omitting w. We can assume that P
intersects C, as otherwise P is an independent path for u, and the Lemma follows.
Moreover, P must intersect C[x : w], as otherwise the first intersection z of P with
C is an independent vertex (with P[v : z] its independent path) that lies between
w and x, a contradiction.

Let y be the last intersection of P with C[x : w]. We show that after y, P does
not intersect P1 nor P2. Assume for contradiction that P[y : u] intersects path
P1 or P2, and let y′ be the last such intersection. Let ū be the first intersection
of P[y′ : u] with C. Observe that ū always exists (it is, at the latest, the vertex
u), and that, by our definition of y and y′, ū ∈ C[w : x] \ {x}. Let i ∈ {1, 2} be
the index of the path such that y′ ∈ Pi. Observe that Pi[v : y′] ∪ P[y′ : ū] is an
independent path from C and thus ū is an independent vertex between w and x
(note that ū 6= w), a contradiction.

Let s0 = u, s1, s2, . . . , sk be all the intersection vertices of P[y : u] and C[w :
x]\{w, x}. We now iteratively define the sequence c0, c1, c2, . . . , c2d as follows. We
set c0 = u and c1 = s1. Then, for every ` = 1, 2, . . ., we do: If sk ∈ C[w : c2`−1],
then we set c2` = sk and terminate the creation of the sequence. Else, let si be
the value of c2`−1, and we set c2` = sj , where j is the largest j ≥ i such that
sj ∈ C[w : si]. Note that it is possible that c2` = c2`−1. We also set c2`+1 = sj+1.
Observe that c2d = sk. Now, one of the following two cases happen:

c2d ∈ V1: Consider a cycle C′ = C[c2d : y]∪P[y : c2d]. Observe that C[w : c2d]∪P1

is an independent path for c2d, and P2 is an independent path for x (with
respect to C′), and the Lemma follows.

c2i ∈ V2 and c2i−2 ∈ V1 for some i: Consider a cycle C′′ = P[c2i−1 : c2i−2] ∪
C[c2i−2 : c2i−1]. Observe that C[w : c2i−2] ∪ P1 is an independent path for
c2i−2, and P[c2i+1 : c2i] ∪ C[c2i+2 : c2i+1] ∪ P[c2i+3 : c2i+2] ∪ . . . ∪ C[c2d :
c2d−1] ∪ P[y : c2d] ∪ C[x : y] ∪ P2 is an independent path for c2i (with
respect to C′′), and the Lemma follows.

Theorem 3.2.5. Let G be a digraph rooted at v, such that G[V (G) \ {v}] is
strongly connected, and G has no non-trivial dominators. Then κ(G) is prime.

Proof. As in the proof of Theorem 3.2.4, assume that κ(G) = P ·Q, and P and Q
are nontrivial factors. Let V1 and V2 be the set of vertices with incoming edges in
var(P ) and var(Q), respectively. Due to Lemma 3.2.3, V1 and V2 define a partition
of V \ {v}.

Let us choose C and two vertices x, y according to the statement of Lemma 3.2.7,
with Px being an independent path of a vertex x ∈ V1, and Py being an indepen-
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8.1 Supplement to Chapter 2

dent path of a vertex y ∈ V2. Also, let ex and ey be the edges from C ending at
x and y, respectively.

Thus, (C \ {ex}) ∪ Px is a simple path from v to x and there exists an ar-
borescence Ax containing this path as a subdigraph. Respectively, there exists an
arborescence Ay with path (C \{ey})∪Py as a subdigraph. Thus, the polynomial
P has to contain a monomial corresponding to Ax[V1] and Ay[V1], and the poly-
nomial Q has to contain a monomial corresponding to Ax[V2] and Ay[V2]. Thus,
there exists a monomial in the product of P and Q which corresponds to the set
of edges A = Ay[V1]∪Ax[V2]. However, C ⊆ A, and that contradicts the definition
of an arborescence, since A has to be acyclic.

8.1.1.2 Proofs from 3.3 Decomposition

We start with the following two observations that relate the unrooted Kirchhoff
polynomial κ(G) and its rooted version κv(G):

Proposition 8.1.1.

κ(G) =
∑
v∈V

κv(G) and κv(G) = κ(rtv(G)).

The next observation comes from the fact that in order to construct an arbores-
cence in a digraph, it is necessary and sufficient to pick exactly one incoming edge
for each vertex except the root.

Proposition 8.1.2. For an arbitrary G, v ∈ V (G), and {v1, v2, . . . , vn−1} =
V (G) \ {v}:

κv(G) =
∑

e1∈in(v1),
...,

en−1∈in(vn−1)

[{e1, . . . , en−1} is acyclic] · `(e1) · . . . · `(en−1), (8.1)

where [.] denotes the characteristic function.

Theorem 3.3.2. Let G[V1], G[V2], . . . , G[Vk] be all strongly connected components
of a connected digraph G. If G has exactly one initial component, then

κ(G) = κ(Ĝ[V1]) · κ(Ĝ[V2]) · . . . · κ(Ĝ[Vk]). (3.1)

Proof. W.l.o.g. we can assume that G[V1] is the only initial component of G.
Thus κ(G) =

∑
v∈V1

κv(G) and it is enough to show that for any v ∈ V1:

κv(G) = κv(Ĝ[V1]) · κ(Ĝ[V2]) · . . . · κ(Ĝ[Vk]). (8.2)

Let us set Vi = {vi1, vi2, . . . , vini} for i = 2, . . . , k and V1 = {v1
1 , v

1
2 , . . . , v

1
n1−1} ∪

{v}. Additionally, we denote by ui the auxiliary vertex of Ĝ[Vi] (for i = 2, . . . , k).
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Observe that for i = 2, . . . , k each Ĝ[Vi] is rooted at ui. Thus we can rewrite the
right side of Equation (8.2) as:1

κv(Ĝ[V1]) · κ(Ĝ[V2]) · . . . · κ(Ĝ[Vk]) =

= κv(Ĝ[V1]) · κu2
(Ĝ[V2]) · . . . · κuk(Ĝ[Vk])

Prop. 8.1.2
=

=


∑

e11∈in(v11),
...,

e1n1−1∈in(v1n1−1)

[{e1
1, . . . , e

1
n1−1} is acyclic] · `(e1

1) · . . . · `(e1
n1−1)

 ·

·


∑

e21∈in(v21),
...,

e2n2
∈in(v2n2

)

[{e2
1, . . . , e

2
n2
} is acyclic] · `(e2

1) · . . . · `(e2
n2

)

 · . . .

. . . ·


∑

ek1∈in(vk1 ),
...,

eknk
∈in(vknk

)

[{ek1 , . . . , eknk} is acyclic] · `(ek1) · . . . · `(eknk)

 =

=
∑

e11∈in(v11),
...,

e1n1−1∈in(v1n1−1)

. . .
∑

ek1∈in(vk1 ),
...,

eknk
∈in(vknk

)

(
[{e1

1, . . . , e
1
n1−1} is acyclic]·. . .·[{ek1 , . . . , eknk} is acyclic]·

·
(
`(e1

1) · . . . · `(e1
n1−1)

)
· . . . ·

(
`(ek1) · . . . · `(ekik)

) )
. (8.3)

Since {v1, v2, . . . , vn−1} = V (G) \ {v} = (V1 \ {v}) ∪ V2 ∪ . . . ∪ Vk =
{v1

1 , . . . , v
1
n1−1, . . . , v

k
1 , . . . , v

k
nk
}, both Equation (8.1) and Equation (8.3) are

summing over the same ranges (in a permuted order). Thus it is enough to prove
that

{e1, . . . , en−1} is acyclic in G

iff(
{e1

1, . . . , e
1
n1−1} is acyclic in G[V1]

)
and

(
{ek1 , . . . , eknk} is acyclic in G[Vk]

)
,

1For any x ∈ Vi, Ĝ[Vi] preserves the labels of its incoming edges from the rest of G, thus we
can safely write in(x) without explicitly specifying the digraph.
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8.1 Supplement to Chapter 2

where {e1
1, . . . , e

1
n1−1}, . . . , {ek1 , . . . , eknk} is the partitioning of {e1, e2, . . . , en−1} by

the strongly connected component to which the target vertex belongs. However,
it is enough to notice that any cycle in G can only span vertices from a single
strongly connected component.

Theorem 3.3.3. Let G be a digraph rooted at v and let u be an arbitrarily picked
vertex of G. Denote D = domG(u). Then

κ(G) = κ(rtu(G[D])) · κ(G(D → u)). (3.2)

Proof. Observe that (3.2) is equivalent to:

κv(G) = κu(G[D]) · κv(G(D → u)).

Let us denoteD\{u} = {v1, v2, . . . , vi−1}, and let V \D\{v} = {vi+1, . . . , vn−1}.
Thus, V = {v1, . . . , vi−1, u, vi+1, . . . , vn−1, v}.

Observe, that in G there are no edges going from any vertex from V \D to any
vertex from D\{u}, as otherwise u would not dominate said vertices. If we denote
for short in1(u) = inG(u) (all incoming edges to u) and in2(u) = inG(D→u)(u)
(edges incoming from V \D), we have that in2(u) ⊆ in1(u). Thus:

κv(G(D → u)) =
∑

ei∈in2(u)

∑
ei+1∈in(vi+1),

...,
en−1∈in(vn−1)

[{ei, . . . , en−1} is acyclic] · `(ei) . . . `(en−1).

Observe that any arborescence of G rooted at v cannot use an edge from in1(u)\
in2(u), as that would create disconnected digraph (as any path going from v to
D has to go through u). Thus:

κv(G) =
∑

e1∈in(v1),
...,

ei−1∈in(vi−1)

∑
ei∈in2(u)

∑
ei+1∈in(vi+1)

...,
en−1∈in(vn−1)

[{e1, . . . , en−1} is acyclic]·`(e1) . . . `(en−1).

Additionally, in G[D], all vertices from D \ {u} have the same incoming edges
as in G (as taking induced subdigraph removes edges coming from outside, but
there were no such edges). Thus by Proposition 8.1.2:

κu(G[D]) =
∑

e1∈in(v1),
...

ei−1∈in(vi−1)

[{e1, . . . , ei−1} is acyclic] · `(e1) · . . . · `(ei−1).

Thus, it is enough to prove that, for ei ∈ in2(u), e1 ∈ in(v1), . . . , ei−1 ∈
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in(vi−1), ei+1 ∈ in(vi+1), . . . , en−1 ∈ in(vn−1):

{e1, . . . , en−1} is acyclic in G

iff(
{e1, . . . , ei−1} is acyclic in rtu(G[D])

)
and(

{ei, . . . , en−1} is acyclic in G(D → u)
)
.

To prove it in one direction, observe that any cycle in G[D] remains a cycle in
G. Similarly, any cycle in G(D → u) remains a cycle in G. To prove it in the
other direction, observe that any cycle in G (with constrains on ei ∈ in2(u)) either
spans vertices only from D \ {u} thus remains a cycle in G[D], or spans at least
one vertex from G\ (D \{u}). In the latter case, the digraph remains cyclic when
contracting whole D into u.

Theorem 3.3.5. If G is rooted at v, then any H being a factor obtained by the
application of rule (3.3) has the following property: all factors of H obtained by
applying (3.1) are prime.

Proof. Let H be a digraph obtained through the application of rule (3.3), that is

H = rtu
(
G(domG(u1)→ u1; . . . ; domG(ui)→ ui)[{u, u1, . . . , ui}]

)
.

First, observe that in digraph F = rtu(G[domG(u)]) the domination relation
between vertices (with respect to vertex u) is the same as is in G (with respect
to vertex v). Thus, as we have that

H = F (domG(u1)→ u1; . . . ; domG(ui)→ ui),

there are no non-trivial dominance relations in H.
What is now left to prove is that for any strongly connected component Vj 6= {u}

of H, the digraph Ĥ[Vj ] has no non-trivial dominators (with respect to vaux, its
root). However, for any vertex w ∈ Vj and for any path going from u to w in H,

there is a path from vaux to w in Ĥ[Vj ] corresponding to the suffix of the former

one. Thus, if there is any vertex w′ dominating (non-trivially) w in Ĥ[Vj ], then
w′ dominates (non-trivially) w in H, a contradiction.

8.1.2 Pseudocode for the Prime Decomposition Algorithm

The pseudocode of the prime decomposition algorithm through SCCs and domi-
nator relations is presented in Algorithm 1.
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Algorithm 1 Digraph decomposition corresponding to Kirchhoff polynomial
prime factorization.

1: function SCCFactors(G)
2: Factors← []
3: for all S ∈ SCCs(G) do . strongly connected components
4: H← G[S] . induced component
5: if ∃vu ∈ E(G) : v 6∈ S ∧ u ∈ S then . non-initial SCC
6: H.addVertex(vaux)
7: for all vu ∈ E(G) : v 6∈ S ∧ u ∈ S do
8: H.addEdge(vauxu)
9: end for

10: end if
11: Factors.append(H)
12: end for
13: return Factors
14: end function
15:

16: function DominationFactors(G)
17: if ¬isRooted(G) then . G has to be rooted
18: return [G]
19: end if
20: T← DominatorTree(G,getRoot(G))
21: Factors← []
22: H← G . copy of G
23: for u ∈ postorder(T) do
24: S← T.successors(u)
25: Factors.append(MakeRooted(H[S ∪ {u}], u))
26: H.contract(S, u) . contract all of S into u
27: end for
28: return Factors
29: end function
30:

31: function GetPrimeDecomposition(G)
32: Factors← []
33: for all G1 ∈ SCCFactors(G) do
34: for all G2 ∈ DominationFactors(G1) do
35: for all G3 ∈ SCCFactors(G2) do
36: Factors.append(G3)
37: end for
38: end for
39: end for
40: return Factors
41: end function
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8.2 Supplement to Chapter 3

8.2.1 Omitted Proofs and Derivations

Theorem 4.2.1. Let G be a prime digraph, then each edge in G participates in
at least one arborescence.

Proof. For this proof we consider out-arborescences.
The theorem statement is equivalent to the statement that there are no nuisance

edge, or formally @e ∈ E(G) such that arb(G/e) = ∅. Let e = uv be such that
arb(G/e) = ∅ and let us investigate the two classes of prime digraphs:

� G is strongly connected.
A digraph with no arborescences (G/e) from this class is either disconnected
or has more than one initial SCC. Normal edge contraction, by itself, cannot
disconnect a connected digraph or introduce a new initial SCC in a strongly
connected G. However, edge contraction (w.r.t. out-arborescences) addi-
tionally deletes in-coming edges to v, which we call wiv. Deleting wiv
cannot disconnect G since there exist paths from v to wi (not including
wiv) due to strong connectivity. Deleting wiv also cannot lead to more
than one initial SCC but only new terminal SCCs (wi could become part
of a new terminal SCC when wi connects back to v only through wiv).
Therefore, arb(G/e) 6= ∅.

� G is a digraph rooted at vaux, such that G[V (G)\{vaux}] is strongly
connected and G has no non-trivial dominators.
Notice that the edges vauxui, where ui ∈ V (G) \ {vaux}, always partic-
ipate in at least one arborescence of G since there exists at least one
arborescence A rooted at ui in the strongly connected G[V (G) \ {vaux}]
and, further, adding vauxui to A produces an arborescence of G. Also,
notice that in this class of prime digraphs (apart from the trivial case
when the digraph is a single edge) vaux always connects to at least two
different vertices, e.g. u1, u2 ∈ V (G) \ {vaux}. If it connected to a single
one, e.g. u1, u1 would dominate V (G) \ {vaux, u1} and thus we have non-
trivial domination.Therefore, e cannot be any of vauxui. Thus let e = uv,
u, v ∈ V (G) \ {vaux}. Again, this means that contracting e either discon-
nects G or creates more than one initial SCC in it (currently the only one is
vaux). Edge contraction (w.r.t. out-arborescences) deletes in-coming edges
to v, which we call wiv. Deleting wiv cannot disconnect G since there exists
a path from v to wi due to the strong connectivity of G[V (G)\{vaux}] and
if any wi happens to be vaux there exists an alternative path to v from
vaux due to the structure of this class prime digraphs. More precisely, vaux
connects to at least two vertices from V (G) \ {vaux} and if u1 = v then a
path through vauxu2 to u1 exists due to strong connectivity. Deleting wiv
also cannot create more than one initial SCC but only terminal SCCs. In
G[V (G) \ {vaux}], as before, some or all of wi could become part of new
terminal SCCs when wi connects back to v only through wiv. When v = ui
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and vauxui is one of the edges deleted during the contraction there would
still be a single initial SCC vaux. Therefore, arb(G/e) 6= ∅.

Theorem 4.2.6. Two prime digraphs G and H are λ-isomorphic iff the edge sets
of their line digraphs are equal, i.e. G 'λ H ⇔ E(L (G)) = E(L (H)).

Proof. The proof follows from Aigner (1967), Theorem 2, which states that there
is a one-to-one correspondence between the set of all digraphs with at most one
vertex of out-degree zero and at most one vertex of in-degree zero and no isolated
vertices, and the set of all line digraphs. Prime digraphs are either strongly con-
nected or have a single vertex of in-degree zero when considering out-arborescences
(and a single vertex of out-degree zero for in-arborescences). Therefore, there is
a one-to-one correspondence between prime digraphs and the set of all line di-
graphs. This means λ-isomorphic prime digraphs bijectively map to the same line
digraph (defined by the set of its edges).

Identity 4.2.8.
∂κ(G)

∂`(e)
= κ(G/e).

Derivation.

∂κ(G)

∂`(e)
=

∂

∂`(e)
(κ(G \ e) + `(e)κ(G/e)) =

=
∂

∂`(e)
κ(G \ e) +

∂

∂`(e)
(`(e)κ(G/e)) = κ(G/e).

�
Identity 4.2.10. Let the prime factorisation of the Kirchhoff polynomials κ(G)
and κ(H) be κ(G) =

∏n
i=1 κ(Pi) and κ(H) =

∏m
j=1 κ(Qj), then:

∂

∂`(e)

κ(G)

κ(H)
=

∏n
i=2 κ(Pi)

κ(Q1)2
∏m
j=2 κ(Qj)

(κ(P1/e)κ(Q1)− κ(P1)κ(Q1/e)) ,

where P1 and Q1 are the prime components of G and H, correspondingly, con-
taining e.

Derivation.

∂

∂e

κ(G)

κ(H)
=
κ(P1/e)

∏n
i=2 κ(Pi)

∏m
j=1 κ(Qj)− κ(Q1/e)

∏n
i=1 κ(Pi)

∏m
j=2 κ(Qj)

[
∏m
j=1 κ(Qj)]2

=

∏n
i=2 κ(Pi)

∏m
j=2 κ(Qj)

[
∏m
j=1 κ(Qj)]2

(κ(P1/e)κ(Q1)− κ(P1)κ(Q1/e))

=

∏n
i=2 κ(Pi)

κ(Q1)2
∏m
j=2 κ(Qj)

(κ(P1/e)κ(Q1)− κ(P1)κ(Q1/e)) .

�
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Identity 4.2.11. ∫
κ(G)d`(e) = `(e)κ(G`(e)←

`(e)
2 ) + C,

where C is the integration constant and `(e)← `(e)
2 denotes a relabelling operation

replacing the label of e by the same label divided by two, e.g. if the old label was
`(e) = r1 the new would be `(e) = r1

2 .

Derivation.∫
κ(G)d`(e) =

∫
(κ(G \ e) + `(e)κ(G/e))d`(e) =

=

∫
κ(G \ e)d`(e) +

∫
`(e)κ(G/e)d`(e) =

= `(e)κ(G\e)+C1+κ(G/e)

∫
`(e)d`(e) = `(e)κ(G\e)+C1+

`(e)2

2
κ(G/e)+C2 =

= `(e)

(
κ(G \ e) +

`(e)

2
κ(G/e)

)
+ C1 + C2 = `(e)κ(G`(e)←

`(e)
2 ) + C.

�
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8.2.2 Pseudocode for the Kirchhoff Polynomial Generation
Algorithms

Algorithm 2 Recursive compressed generation of Kirchhoff polynomials through
prime decomposition and edge deletion-contraction.

1: function CR(G)
2: if κ(G) == 0 then
3: return 0
4: end if
5: if |V (G)| ≤ 2 then
6: return GenKirchPolBaseCase(G)
7: end if
8: F← []
9: for all primeComponent ∈ GetPrimeDecomposition(G) do

10: H← GenKirchPolInPrimeComponent(primeComponent)
11: F.append(H)
12: end for
13: return Multiply(F) . n-ary multiplication
14: end function
15:

16: function GenKirchPolInPrimeComponent(G)
17: if |V (G)| ≤ 2 then
18: return GenKirchPolBaseCase(G)
19: end if
20: e← GetEdgeForDelContr(G)
21: kirchPolEdgeDelDigraph← CR(G \ e)
22: kirchPolEdge← GenKirchPolBaseCase(e)
23: kirchPolEdgeContrDigraph← CR(G/e)
24: return Add(kirchPolEdgeDelDigraph,

Multiply(kirchPolEdge, kirchPolEdgeContrDigraph))
25: end function
26:

27: function GenKirchPolBaseCase(G)
28: if κ(G) == 0 then
29: return 0
30: end if
31: if |V (G)| == 1 then
32: return 1
33: end if
34: F← []
35: for all e ∈ E(G) do
36: F.append(`(e))
37: end for
38: return Add(F) . n-ary addition
39: end function
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Algorithm 3 Iterative compressed generation of Kirchhoff polynomials through
prime decomposition, edge deletion-contraction, and change of variables.

1: function CI(G)
2: G.pointer← startPointer . every digraph has a unique pointer
3: (P,R)← GenImplicitKirchPol(G)
4: Q← Queue()
5: Q.enqueue(startPointer)
6: result← []
7: while Q not empty do
8: currPointer← Q.dequeue()
9: currExpr← R.retrieveExpression(currPointer) . currExpr is an

expression tree
10: result.append((currPointer,Assemble(P,R,Q, currExpr))) . pass Q by

reference
11: end while
12: return result
13: end function
14:

15: function Assemble(P,R, Q, currExpr)
16: if currExpr is Multiply or Add then
17: newChildren← []
18: for all childExpr ∈ currExpr.children do
19: newChildren.append(Assemble(P,R,Q, childExpr))
20: end for
21: currExpr.children← newChildren
22: else if currExpr is a pointer then
23: if ∃i : currExpr == Pi,0.pointer then
24: Q.enqueue(currExpr)
25: else if ∃p and j : p ∈ Pj,1 and currExpr == p then
26: currExpr← Pj,0.pointer
27: else
28: newExpr← R.retrieveExpression(currExpr)
29: return Assemble(P,R, Q, newExpr)
30: end if
31: end if
32: return currExpr
33: end function
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Algorithm 3 Continued.

34: function GenImplicitKirchPol(G)
35: Q← Queue()
36: Q.enqueue(G)
37: (P,R)← ([], []) . P remembers already processed digraphs and R holds

the results
38: while Q not empty do
39: H← Q.dequeue()
40: primeComps← GetPrimeDecomposition(H)
41: if H not prime OR κ(H) == 0 OR κ(H) == 1 then
42: pointers← GetPointers(primeComps) . list of primeComps’s

pointers; returns 0 or 1 if κ(H) == 0 or κ(H) == 1, respectively; calls base
case labelsum

43: expr←Multiply(pointers)
44: R.append((H.pointer, expr))
45: end if
46: if κ(H) 6= 0 AND κ(H) 6= 1 then
47: for all D ∈ primeComponents do
48: if |V (D)| ≤ 2 then . base case
49: R.append((D.pointer,GenKirchPolBaseCase(D)))
50: else
51: if ∃ i: EQL(D,Pi,0) then . EQL() tests Kirchhoff

polynomial equality
52: Pi,1.append(D.pointer)
53: else . digraph not investigated yet
54: P.append((D, []))
55: e← GetEdgeForDelContr(D)
56: (DDelE,E,DContrE)← (D \ e,

GenKirchPolBaseCase(e),D/e)
57: expr←Add(DDelE.pointer,

Multiply(E, DContrE.pointer))
58: R.append((D.pointer, expr))
59: Q.enqueue(DDelE,DContrE)
60: end if
61: end if
62: end for
63: end if
64: end while
65: P ← RemoveUnmatchedDigarphs(P )
66: return (P,R)
67: end function
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8.2.3 Descriptions of Used Heuristics and Laplacian Models.

Box 8.1 Heuristics.

i.) Edges E′(G):

0. A single randomly selected edge e, E′(G) = {e}.

1. All edges, E′(G) = E(G).

2. Edges participating in the longest simple cycle.

3. The |E(G)|/n, n = 3 edges participating in the largest number of
simple cycles.

ii.) Branch:

0. Edge deleted digraph, G \ e.

1. Edge contracted digraph, G/e.

2. Edge deleted and edge contracted digraph, (G \ e,G/e).

iii.) Components:

0. Strongly connected components.

1. Prime components.

iv.) Optimality criterion:

0. Largest number of components.

1. Largest component (in terms of number of vertices) is smallest.

2. Largest component (in terms of number of edges) is smallest.

3. Smallest total complexity (number of arborescences) of the compo-
nents.

4. Smallest total complexity with the largest (same) number of com-
ponents.

5. Largest number of components with the (same) smallest total com-
plexity.
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Table 8.1: A collection of example digraph models, ordered by their complexity
(number of arborescences). Shown are the digraph aliases (under G), number
of vertices |V |, number of edges |E|, number of arborescences |arb(G)|, and a
short description for each digraph.

G |V | |E| |arb(G)| Description

COLE1 6 10 26 Kinetic scheme of the ColE1 replication control
mechanism from Shin et al. (2000).

AMPAR 7 14 30 Schematic diagram of the AMPA receptor traf-
ficking model from Nakano et al. (2010).

MDH 9 18 141 Proposed kinetic mechanism for the reaction
cycle of M.methylotrophus methanol dehydro-
genase (MDH) with ammonium as activator
from Hothi et al. (2005).

ACTMYO 10 20 356 State diagram detailing the interaction of actin
and myosin from Sachse et al. (2003).

KNF33 9 24 1, 728 Three by three classical KNF (Koshland,
Nemethy, and Filmer) model for allosteric reg-
ulation of enzymes (Koshland Jr et al., 1966).

SHPIL 10 26 4, 560 Model describing early IL-6 induced signaling.
Model M0 from Dittrich et al. (2012).

GR 13 32 5, 057 Scheme for the catalytic mechanism of glu-
tathione reductase (GR) from Pannala et al.
(2013).

PHO5 12 35 53, 376 Regulation of yeast PHO5 gene from Ah-
sendorf et al. (2014).

RND 14 36 69, 120 Random Ter-Ter mechanism from Garcia-
Sevilla et al. (2010).

TF 25 49 1, 549, 872 Largest strongly connected component of the
transcription factor network of Saccharomyces
cerevisiae from Jeong & Berman (2008).

HC4 16 60 42, 467, 328 Four dimensional hypercube digraph rooted at
a vertex (the specific rooting does not mat-
ter due to symmetry). It represents a generic
transcription regulation model for a gene with
promoter containing four transcription factor
binding sites (Estrada et al., 2016).

COXD 30 117 12, 254, 915,
821, 568, 674

COX rooted at the environment vertex, i.e.
rt∅(COX), which is the digraph in the denom-
inator of the steady-state expression for COX.

COX 30 118 24, 509, 831,
643, 137, 316

Scheme of the catalytic cycle of PGHS consid-
ering inhibition by NSAID from Goltsov et al.
(2010).

115



8 Appendix

8.2.4 Additional Results

Table 8.2: Significance levels (p-values) of the different choices of sub-heuristics
for the running time results of algorithm CI on the less complex set of Lapla-
cian model examples. The non-parametric Kruskal-Wallis H-test was applied
along with post hoc pair comparisons using the Wilcoxon signed-rank test to
determine whether the samples originate from the same distribution.

Test
(i) Edges (ii) Branch (iii) Components (iv) Optimality

pair p-value pair p-value pair p-value pair p-value

Kruskal-
Wallis
H-test

– 1.37e-88 – 2.91e-14 – 1.30e-16 – 1.14e-19

W
il

co
x
on

si
gn

ed
-r

an
k

te
st

(1,2) 3.87e-55 (0,1) 5.39e-07 (0, 1) 5.50e-72 (0,1) 7.35e-01
(1,3) 4.10e-58 (0,2) 1.64e-34 (0, 2) 4.94e-03
(2,3) 3.38e-28 (1,2) 4.08e-09 (0, 3) 8.47e-21

(0,4) 4.99e-17
(0,5) 5.30e-20
(1,2) 2.60e-03
(1,3) 6.47e-20
(1,4) 1.19e-14
(1,5) 3.59e-19
(2,3) 3.59e-28
(2,4) 3.39e-23
(2,5) 1.26e-27
(3,4) 4.61e-10
(3,5) 1.44e-02
(4,5) 5.38e-07
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Table 8.3: Significance levels (p-values) of the different choices of sub-heuristics
for the compression results of algorithm CI on the less complex set of Laplacian
model examples.

Test
(i) Edges (ii) Branch (iii) Components (iv) Optimality

pair p-value pair p-value pair p-value pair p-value

Kruskal-
Wallis
H-test

– 4.15e-05 – 4.55e-33 – 1.01e-01 – 2.13e-02

W
il

co
x
on

si
gn

ed
-r

an
k

te
st

(1,2) 9.08e-07 (0,1) 9.41e-18 (0,1) 1.78e-04 (0,1) 7.75e-01
(1,3) 4.47e-08 (0,2) 9.03e-01 (0,2) 4.87e-01
(2,3) 5.14e-02 (1,2) 8.67e-36 (0,3) 1.77e-03

(0,4) 4.61e-01
(0,5) 7.73e-02
(1,2) 2.85e-02
(1,3) 8.33e-03
(1,4) 5.49e-01
(1,5) 2.01e-01
(2,3) 2.35e-10
(2,4) 7.08e-01
(2,5) 5.21e-05
(3,4) 7.52e-08
(3,5) 8.66e-04
(4,5) 8.69e-05
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Figure 8.1: Comparison of the normalised running time and compression dis-
tributions on the set of less complex examples for algorithm CR grouped by
the different choices of each sub-heuristic - edges, branch, components, and
optimality criterion.
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Figure 8.2: Scatter plots of run-
ning time versus compression ob-
tained with each of the two algo-
rithms CR (left column) and CI
(right column) on the collection
of less complex examples. Each
row corresponds to a Laplacian
model example and the examples
are sorted by increasing digraph
complexity. Blue points represent
performance results for each of the
108 connectivity-informed heuris-
tics and red points mark the re-
sults for the 20 runs of the un-
informed random heuristic H =
0 ∗ ∗∗.
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8.3 Supplement to Chapter 4

8.3.1 Formalizing the Steady-State Differential Response

Our formal definition of the differential comprises: (i) a metric space (X,µ), in
which X = {χ1, . . . , χn} is the set of all possible dose-response tuples χi :=
(di, Ri), where di ≥ 0 denotes the dose components, Ri ≥ 0 the response compo-
nents, and µ : X × X → R≥0 is a distance measure, (ii) a pair of steady-state
dose-response sets (A,B), where A ⊂ X and B ⊂ X, and (iii) a mapM : A 7→ B.

The differential is expressed through distances between points on two dose-
response curves A and B, i.e. µ : A × B → R≥0 and it is a function of the
correspondence coordinate defined by M. Let us assume, w.l.o.g., that A is the
reference curve and B is the perturbed one. We will use the superscripts α and
β to denote the specific dissimilar (parametric and structural) features of the
systems generating A and B, correspondingly. Further, when we do not explicitly
specify α or β we refer to both identifiers at the same time.

We assume that the dose-response sets are generated by functions R : R≥0 →
R≥0, that are continuous, smooth, available in closed form, and bounded on the
interval d ∈ [0,∞) (unbounded responses are not biologically feasible). We denote
the functions generating A and B as Rα(.) and Rβ(.), respectively, to account for
the differential structure of the underlying models. Formally,

A := {(di, Ri)|Ri = Rα(di; p
α)} and B := {(di, Ri)|Ri = Rβ(di; p

β)},

where pα and pβ are the sets of parameters contained in the functions generating
A and B. We call the parameters that differ between pα and pβ differential
parameters.

Assume that Rα(.) and Rβ(.) have, respectively, n and m critical points
(suprema, infima, extrema, and stationary points of inflection that are identified
by the functions’ first derivatives) and denote them by εi ∈ E , where E is the set
of all critical points for the relevant function (Eα ⊂ A and Eβ ⊂ B) and i is their

index (i ∈ {1, . . . , n} for εαi and i ∈ {1, . . . ,m} for eβi ). Due to the functional
relation between dose and response and by considering any two or more identical
critical points as a single one, the critical points follow a strict total order in their
dose component dεi (e.g. for A, dε1 < . . . < dεn), which we use to define a strict
total order of the critical points (e.g. for A, ε1 < . . . < εn).

From the boundedness requirement on R(.) it follows that the first and the last
critical points are reached when the dose goes to zero and infinity, respectively.
The intermediate critical points are defined by doses for which the first derivative
of R(.) is zero. Thus the critical points of Rα(.) are:

εα1 :=

(
0, lim
d→0
Rα(d; p)

)
, εαi := {(dεi ,Rα(dεi ; p))|DdRα(dεi ; p) = 0} , and

εαn :=

(
∞, lim

d→∞
Rα(d; p)

)
,
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where i ∈ {2, . . . , n− 1} indexes the intermediate critical points and Dd denotes
the first derivative with respect to the dose variable d.

The critical points of Rα(.) partition its domain into n− 1 monotone segments
σj , j ∈ {1, . . . , n− 1}. Each segment is defined by two consecutive critical points:

σαj :=
{

(d,Rα(d; p))|d ∈
(
dεαj , dεαj+1

)}
.

Let us denote the set of all segments as Σ. The definitions of critical points and
segments for Rβ(.) are analogous.

To derive a map M that preserves the order (and succession, i.e. no critical
point is missed out) of critical points and segments let us assume, w.l.o.g., that
Rα(.) has less or equal critical points than Rβ(.) (n ≤ m). Then, we define M
to map all critical points of Rα(.) to all possible n consecutive critical points of
Rβ(.), which induces the mapping of the segments, namely:

M(i; Eα, Eβ) :


εα1 7→ εβi
εα2 7→ εβi+1

...

εαn 7→ εβi+n−1

and M(i; Σα,Σβ) :


σα1 7→ σβi
σα2 7→ σβi+1

...

σαn−1 7→ σβi+n−2

,

where i ∈ {1, 2, . . . , 1 +m− n}. Notice that in the case when n = m the map is
bijective and it does not depend on the index i = 1.

To preserve the proportion of response in each pair of mapped segments σαi 7→
σβj , the mapping should relate the doses having the same proportion h (h ∈ [0, 1])
of response between the minimal and maximal response in the segment, which
are determined by the response components of the critical points that enclose
it. Let this intra-segmental mapping be determined by the proportional response
function ζ(h;x, y). Then, formally:

MR(σ
α
i , σ

β
j ) : ζ

(
h; Rεαi , Rεαi+1

)
7→ ζ

(
h; Rεβj

, Rεβj+1

)
,

where the subscript in MR indicates that the definition is only for the response
component of the mapping.

The proportional response function ζ has to parametrize the response compo-
nent of a monotone segment in a dose-response curve. The following two defini-
tions satisfy this requirement:

ζ1(h;x, y) :=

{
hx+ (1− h)y, if x 6= y

x, when x = y
,

and

ζ2(h;x, y) :=


hx+ (1− h)y, if x > y

(1− h)x+ hy, if x < y

x, when x = y

,
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which are simplifications, respectively, of:

ζ1(h;x, y) :=
1

2

((
1 +

x− y
|x− y|

)
h+

(
1− x− y
|x− y|

)
(1− h)

)
|x− y|+ min (x, y)

and

ζ2(h;x, y) := h |x− y|+ min (x, y) ,

where h ∈ [0, 1] is the correspondence variable and x and y are the response
coordinates (corresponding to dose coordinates dx and dy, dx < dy) defining a
segment σ. Note also that we are not interested in the case when x = y in a
segment since it leads to a trivial differential expression.

The differences between these very similar definitions become evident when one
of the mapped segments is monotonically increasing and the other one is monoton-
ically decreasing; otherwise the definitions are identical up to the parametrisation
of h. In the main text, we chose to use ζ1, hence, calling it only ζ, due to the sim-
pler expressions it yields in our subsequent derivations. Note that ζ1(0;x, y) = y
and ζ1(1;x, y) = x, which means that for h = 1 the response coordinates of
smaller dose coordinates are mapped to each other while for h = 0 the mapping
is between the response coordinates of larger dose coordinates.

Once the mapping of the response component is determined within a pair of
corresponding segments, the mapping of their dose components can be recovered
from the dose-response relation:

Md(σ
α
i , σ

β
j ) : dσαi ,h 7→ dσβj ,h

,

where dσαi ,h is the solution of Rα(dσαi ,h; p) = ζ
(
h; Rεαi , Rεαi+1

)
in the interval(

dεαi , dεαi+1

)
. The doses dσβi ,h

are derived analogously.

The last ingredient to the formalization of the differential is the definition of µ.
Instead of the Euclidean distance between the tuples χα ∈ A and χβ ∈ B mapped
through M : χα 7→ χβ , we take into account that in dose-response analysis the
dose is often plotted in log scale to identify fold differences in the dose variable.
Formally, the differential is expressed as (also see Figure 5.1b):

µ
(
χα, χβ

)
:=

√
πd (χα, χβ)

2
+ πR (χα, χβ)

2
,

where

πd
(
χα, χβ

)
:= log10

dα

dβ
and πR

(
χα, χβ

)
:= Rα − Rβ .

8.3.2 Differential Response for a Single Dose Edge

Figure 8.3 shows the tree scheme for generation of the steady-state coefficients for
open systems.
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G

k1 k2 k3 k4

numerator denominator

rtvi(G)

rtvi(G) \ ed rtvi(G)/ed

rtv∅(G)

rtv∅(G) \ ed rtv∅(G)/ed

Figure 8.3: Tree scheme for a general digraph G for obtaining the relevant di-
graphs participating in the coefficients ki of the dose-response relationship in
open systems (for reference and perturbed systems) through the digraph oper-
ations rooting, deletion, and contraction. Note that there are also additional
terms contained in the coefficients

.

8.3.2.1 Differential mapping

To derive the differential response for the defined dose-response relations first we
have to determine the map M. We derive the mapping for dose-response curves
A and B both generated by functions of the form of Equation (5.1).

The steady-state function RO(d) does not have extrema when varying the dose
d since the first derivative is nowhere zero (apart from infinity and the dose
independent case when k2k3 = k1k4). There are only two critical points and the
dose-response curve is a sigmoid. The critical points are:

E =

{
ε1 =

(
0,
k1

k3

)
, ε2 =

(
∞, k2

k4

)}
.

There exists only one segment defined between the dose components of ε1 and
ε2, which we call σ. Every dose-response vector in this segment from A is mapped
to its counterpart in B when employing the differential parameters and possibly
different digraph topology.

The mapping for the response component in the segment σ is:

MR(σα, σβ) : ζ

(
h;
kα1
kα3
,
kα2
kα4

)
7→ ζ

(
h;
kβ1

kβ3
,
kβ2

kβ4

)
,

where the superscripts α and β indicate that the coefficients k have been obtained
from the reference or perturbed system, respectively. Remember that we have only
fixed |Iα| = |Iβ |, all other features of the reference and perturbed systems can be
arbitrary.

The mapping of the dose component in the segment σ, Md(σ
α, σβ) : dσα,h 7→

dσβ ,h, where dσα,h and dσβ ,h are obtained by solving R(dσ,h; p) = ζ
(
h; k1k3 ,

k2
k4

)
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for dσ,h in the reference and perturbed dose-response system, correspondingly. In
general,

dσ,h =
k1 − ζ

(
h; k1k3 ,

k2
k4

)
k3

ζ
(
h; k1k3 ,

k2
k4

)
k4 − k2

,which reduces to dσ,h =

{
1−h
h

k3
k4

if k1
k3
6= k2

k4
,

not defined if k1
k3

= k2
k4
.

(8.4)

Ignoring the trivial case when k1
k3

= k2
k4

, the dose and the response mappings
read:

Md(σ
α, σβ) :

1− h
h

kα3
kα4
7→ 1− h

h

kβ3

kβ4
and

MR(σα, σβ) : h
kα1
kα3

+ (1− h)
kα2
kα4
7→ h

kβ1

kβ3
+ (1− h)

kβ2

kβ4
.

8.3.2.2 Steady-state expressions for the investigated models

The steady-state expression for the reference and perturbed systems before plug-
ging in the differential parameters for the example from Figure 5.3 is:

RO(d) =
r1r3r9 (r5 + r6 + r7) d

(r2 + r3) (r8 + r9) (r4 (r6 + r7) + r5r7) +
+ r1 (r5 (r3r9 + r7 (r3 + r9)) + r9 (r3 + r4) (r6 + r7)) d

xt.

The steady-state expression for the example from Figure 5.4b reads:

RO(d) =
r1 (r3r5r9r11 + r3 (r6 + r7) r9r11) d

r8r10 (r2 + r3) (r4 (r6 + r7) + r5r7) + r1r3r5r7r10d
.

8.3.3 Differential Response for Two Dose Edges

We consider the case in which the input dose acts proportionally and simultane-
ously on two edges, i.e. I(G) = {ed,1, ed,2}, `(ed,1) = g1(p)d, and `(ed,2) = g2(p)d.

8.3.3.1 General form of the dose-response.

We apply the deletion-contraction formula to partition the set of arborescences
from the numerator and denominator of the response function R into four cate-
gories – those containing no input edges, those containing ed,1 but not ed,2, those
containing ed,2 but not ed,1, and those containing both ed,1 and ed,2. Simplify-
ing, we obtain the general form of dose-response expressions for closed and open
systems:

RO(d) =
k1 + k23d+ k4d

2

k5 + k67d+ k8d2
, (8.5)
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where k23 := k2 + k3 and k67 := k6 + k7, RO(d) is bounded (the degree of the
numerator is not higher than the degree of the denominator) and of second degree,
and the coefficients are:

for closed systems
k1 = xt

∑
vi∈O(G) aviκvi(G\ed,1\ed,2),

k2 = xtg2(p)
∑
vi∈O(G) aviκvi(G\ed,1/ed,2),

k3 = xtg1(p)
∑
vi∈O(G) aviκvi(G/ed,1\ed,2),

k4 = xtg1(p)g2(p)
∑
vi∈O(G) aviκvi(G/ed,1/ed,2),

k5 = κ(G\ed,1\ed,2),
k6 = g2(p)κ(G\ed,1/ed,2),
k7 = g1(p)κ(G/ed,1\ed,2),
k8 = g1(p)g2(p)κ(G/ed,1/ed,2),

for open systems
k1 =

∑
vi∈O(G) aviκvi(G\ed,1\ed,2),

k2 = g2(p)
∑
vi∈O(G) aviκvi(G\ed,1/ed,2),

k3 = g1(p)
∑
vi∈O(G) aviκvi(G/ed,1\ed,2),

k4 = g1(p)g2(p)
∑
vi∈O(G) aviκvi(G/ed,1/ed,2),

k5 = κv∅(G\ed,1\ed,2),
k6 = g2(p)κv∅(G\ed,1/ed,2),
k7 = g1(p)κv∅(G/ed,1\ed,2),
k8 = g1(p)g2(p)κv∅(G/ed,1/ed,2)

The arborescence partitioning determines the digraphs contained in the coeffi-
cients k, which can be seen in the tree scheme from Figure 8.4. The numerator
and denominator polynomials in the dose variable d can be at most of degree two,
where the highest degree corresponds to arborescences containing both ed,1 and
ed,2. We see that even though the degree of the polynomials grows by one, the
number of digraphs to consider grows exponentially. In the general case, for an
input acting on w edges simultaneously, the numerator and denominator are at
most of degree w and the digraphs giving rise to the coefficients of the polynomials
are 2w and, therefore, the tree scheme has 2w+1 leaves. Again, it could happen
that arborescences do not exist for some digraphs resulting to simpler, trivial, or
unbounded dose-response relationships.

8.3.3.2 Differential mapping.

We derive the mapping M for the reference and perturbed dose-response curves
A and B, both being generated by functions having the form of Equation 8.5.

We are interested in deriving conditions guaranteeing positivity of an extremum
and thus ensuring that Hormesis is present. The steady-state response function
RO(d) could have, in principle, at most two extrema when varying the dose vari-
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able since its first derivative can become zero for two values of d.

Dd
k1 + k23d+ k4d

2

k5 + k67d+ k8d2
= 0⇔

k5k23 − k1k67 + 2(k4k5 − k1k8)d+ (k4k67 − k8k23)d2

(k5 + k67d+ k8d2)2
= 0.

The denominator of the condition is never zero for positive doses d and kis leading
to non-degenerate systems (not all kis being zero). The doses for which the
numerator equals zero are the ones corresponding to extrema in the dose response,
namely:

d(1,2)
ε =

k1k8 − k4k5 ±
√
U

k4k67 − k8k23
,

where U = (k1k8 − k4k5)2 + (k1k67 − k5k23) (k4k67 − k8k23) and k4k67 6= k8k23.

Of interest are only the positive real roots since they are the extrema of the
dose response relationships we study. The two roots can never be positive at the
same time for non-negative values of the coefficients ki. This fact becomes clear
after employing Vieta’s formulas for second degree polynomials and requiring that
the sum and the product of the roots are positive, namely:

d(1) + d(2) =
−2(k4k5 − k1k8)

k4k67 − k8k23
> 0 ∧ d(1)d(2) =

k5k23 − k1k67

k4k67 − k8k23
> 0,

which is equivalent to:(
k23

k67
<
k4

k8
<
k1

k5
∨ k1

k5
<
k4

k8
<
k23

k67

)
∧
(
k1

k5
<
k1

k5
<
k4

k8
∨ k4

k8
<
k23

k67
<
k1

k5

)
.

It is evident that for non-negative coefficients ki there exists no solution for the
logical expression of the set of inequalities. More precisely, according to Vietta’s
formula sum condition the ratio k4

k8
needs to have a value between the ratios k1

k5

and k23
k67

, and according to Vietta’s product condition k4
k8

has to be either the
largest or the smallest among the ratios. The two conditions can clearly not
hold simultaneously and thus the two roots cannot be positive at the same time.
However, we still need to derive the conditions for which a root is positive. All
these considerations are important when deciding which extrema to include and
how to order them when deriving the differential.

To derive criteria for the positivity of the real roots, d(1,2) > 0 (d(1,2) = 0 is not
of interest since 0 < d <∞) and U ≥ 0 needs to hold, i.e.:(

k23

k67
<
k4

k8
<
k1

k5
±
√
U

k5k8
∨ k1

k5
±
√
U

k5k8
<
k4

k8
<
k23

k67

)
∧ U ≥ 0.

However, the condition k23
k67

< k4
k8
< k1

k5
−
√
U

k5k8
never holds. To see why, we can
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restructure its inequalities to the equivalent form:

k23

k67
<
k4

k8
∧
√(

k1

k5
− k4

k8

)2

+

(
k1

k5

k67

k8
− k23

k8

)(
k4

k8

k67

k5
− k23

k5

)
<
k1

k5
− k4

k8

and realize that the condition holds iff k4
k8
< k1

k5
and

(
k1
k5
k67
k8
− k23

k8

)(
k4
k8
k67
k5
− k23

k5

)
<

0 (but U ≥ 0). This is equivalent to:

k23

k67
<
k4

k8
<
k1

k5
∧
(
k1

k5
<
k23

k67
<
k4

k8
∨ k4

k8
<
k23

k67
<
k1

k5

)
,

and obviously never holds for the definition of the steady-state coefficients. The

condition k1
k5

+
√
U

k5k8
< k4

k8
< k23

k67
can be analogously shown false.

The remaining root positivity conditions can be put in a simpler form, for

example k23
k67

< k4
k8
< k1

k5
+
√
U

k5k8
is equivalent to:

k23

k67
<
k4

k8
∧ k4

k8
− k1

k5
<

√(
k1

k5
− k4

k8

)2

+

(
k1

k5

k67

k8
− k23

k8

)(
k4

k8

k67

k5
− k23

k5

)
,

where the second inequality always holds when k4
k8
≤ k1

k5
. When k1

k5
< k4

k8
the

inequality holds if
(
k1
k5
k67
k8
− k23

k8

)(
k4
k8
k67
k5
− k23

k5

)
> 0, i.e. if k23

k67
< k1

k5
(keeping in

mind we are in the case when k23
k67

< k4
k8

). This is equivalent to:

k23

k67
<
k4

k8
≤ k1

k5
∨ k23

k67
<
k1

k5
<
k4

k8
.

Analogous analysis can be applied to k1
k5
−
√
U

k5k8
< k4

k8
< k23

k67
to obtain the

equivalent form:
k4

k8
≤ k1

k5
<
k23

k67
∨ k1

k5
<
k4

k8
<
k23

k67
.

When k23
k67

= k4
k8

(k67 6= 0) but k1
k5
6= k4

k8
, the root is

dε =
k1k67 − k5k23

2(k4k5 − k1k8)
,

which is positive for k23
k67

< k1
k5

< k4
k8
∨ k4

k8
< k1

k5
< k23

k67
. The conditions are

never satisfied due to incompatibility with k23
k67

= k4
k8

and k1
k5
6= k4

k8
. Also, when

k1
k5

= k23
k67

= k4
k8

(k67 6= 0) the first derivative is constant (not dependent of the
input variable). In these cases Hormesis cannot be present.

When k67 = 0 and k23 6= 0 (which is not possible in closed systems but only
open ones), d(1)d(2) = −k5k8 > 0 is never satisfied and it is, again, not possible to

127



8 Appendix

have two positive roots. In this case the roots are:

d(1,2)
ε =

k1k8 − k4k5 ±
√

(k1k8 − k4k5)2 + k5k8k2
23

−k8k23
.

The criteria for a positive root are:

k1

k5
±
√
U

k5k8
<
k4

k8
,

and it can be shown that k1
k5
−
√
U

k5k8
< k4

k8
is always valid and k1

k5
+
√
U

k5k8
< k4

k8
is

never valid. Hormesis will always be present since one root is always positive and
real (U ≥ 0 and for all positive steady-state coefficients).

In the case when k67 = k23 = 0, the steady-state response function RO(d) has
no non-trivial extrema, and thus can never generate a hormetic dose-response.

We summarize the derived necessary and sufficient conditions for having a pos-
itive extremum of the dose-response function, which we call Hormesis condition
as:

(k67 = 0 ∧ k23 6= 0) ∨
(
k67 6= 0 ∧ U ≥ 0∧

(
k23

k67
<
k4

k8
≤ k1

k5
∨ k23

k67
<
k1

k5
<
k4

k8
∨ k4

k8
≤ k1

k5
<
k23

k67
∨ k1

k5
<
k4

k8
<
k23

k67

))
.

(8.6)

If the inequalities for the respective conditions on the coefficients k23 and k67

are not satisfied or when k23 = k67 = 0, the model is not capable of generating
hormetic dose-response curves. Note that even when the hormesis conditions are
satisfied the biphasic behaviour might be weak and experimentally not evident.

Combining the critical points at zero and infinite dose with the positive ex-
tremum we obtain a set of critical points E :

E =

{
ε1 =

(
0,
k1

k5

)
, ε2 =

(
k1k8 − k4k5 ±

√
U

k4k67 − k8k23
,
k23k67 − 2(k1k8 + k4k5)± 2

√
U

k2
67 − 4k5k8

)
,

ε3 =

(
∞, k4

k8

)}
,

where the sign in front of
√
U in ε2 depends on the steady-state coefficients:

k67 = 0 ∧ k23 6= 0∧ : −,
k67 6= 0 ∧

(
k23
k67

< k4
k8
≤ k1

k5
∨ k23

k67
< k1

k5
< k4

k8

)
: +,

k67 6= 0 ∧
(
k4
k8
≤ k1

k5
< k23

k67
∨ k1

k5
< k4

k8
< k23

k67

)
: −.
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When the Hormesis conditions are satisfied all three critical points are relevant
(depending on the conditions, the roots with the appropriate sign have to be
selected), thus each dose-response curve has two segments – σ1 (defined by ε1 and
ε2) and σ2 (defined by ε2 and ε3). When the Hormesis conditions do not hold, we
consider only ε1 and ε3 which define the single segment σ. In general, the values
of the coefficients ki are not known and the number of critical points cannot
be determined unambiguously. Thus, three cases, depending on the number of
segments in the reference and perturbed curves (A and B) mapped to each other,
need to be considered (assuming, w.l.o.g., that A has less or equal critical points
than B), namely:

Case 1: Hormesis conditions hold neither for A nor for B.
Hence, the single segment σα of A is mapped to the single segment σβ of
B, i.e. n = m = 2:

M(i = 1; Eα, Eβ) :

{
εα1 7→ εβ1
εα3 7→ εβ3

, M(i = 1; Σα,Σβ) : σα 7→ σβ .

Case 2: Hormesis conditions do not hold for A but hold for B.
Hence, the single segment σα of A is mapped to the two segments σβ1 and

σβ2 of B, i.e. n = 2 and m = 3:

M(i = 1; Eα, Eβ) :

{
εα1 7→ εβ1
εα2 7→ εβ2

, M(i = 2; Eα, Eβ) :

{
εα1 7→ εβ2
εα2 7→ εβ3

,

M(i = 1; Σα,Σβ) : σα1 7→ σβ1 , M(i = 2; Σα,Σβ) : σα1 7→ σβ2 .

Case 3: Hormesis conditions hold for both A and B.
Hence, the two segments σα1 and σα2 of A are mapped to the two segments

σβ1 and σβ2 of B, i.e. n = m = 3:

M(i = 1; Eα, Eβ) :


εα1 7→ εβ1
εα2 7→ εβ2
εα3 7→ εβ3

, M(i = 1; Σα,Σβ) :

{
σα1 7→ σβ1
σα2 7→ σβ2

.

The respective response component of the segment mapping in all three cases
is obtained by plugging in the appropriate arguments in the proportion function.
The derivation of the dose component is, however, more involved since it includes
the solution of R(dσ,h; p) = ζ (h;x, y) for dσ,h when the differential parameters,
differential structure, and the appropriate segment are considered. Thus, in the
general case, the parametrised dose component inside a segment (h 6= 0, 1) reads:

k1 + k23d+ k4d
2

k5 + k67d+ k8d2
= ζ (h;x, y)⇔

k1 − k5ζ (h;x, y) + (k23 − k67ζ (h;x, y))d+ (k4 − k8ζ (h;x, y))d2 = 0⇔
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d
(1,2)
σ,h =

k67ζ (h;x, y)− k23 ±
√
W (h;x, y)

2 (k4 − k8ζ (h;x, y))
,

whereW (h;x, y) = (k67ζ (h;x, y)− k23)
2−4 (k1 − k5ζ (h;x, y)) (k4 − k8ζ (h;x, y)),

d
(1)
σ,h is the root with +

√
W (h;x, y) and d

(1)
σ,h with −

√
W (h;x, y).

When deriving the projections of the differential the relevant solution should
be be positive for all h ∈ (0, 1) and belong to the dose interval of definition of
the desired segment σ (defined by the doses corresponding to x and y) when
W (h;x, y) ≥ 0. Root positivity leads to:

k23

k67
∓
√
W (h;x, y)

k67
> ζ (h;x, y) >

k4

k8
∨ k23

k67
∓
√
W (h;x, y)

k67
< ζ (h;x, y) <

k4

k8
.

8.3.3.3 Projections of the differential.

Depending on the particular mapped segments σαi and σβj , the signed projections
πd and πR have the general form:

πd (h) = log10

kβ4 − kβ8 ζ
(
h;xβ , yβ

)
kα4 − kα8 ζ (h;xα, yα)

kα67ζ (h;xα, yα)− kα23 ±
√
W β(h;xα, yα)

kβ67ζ (h;xβ , yβ)− kβ23 ±
√
W β(h;xβ , yβ)

and

πR (h) = ζ (h;xα, yα)− ζ
(
h;xβ , yβ

)
.

Note that when h = 0 or h = 1 the dose differential is derived by mapping the
dose components of the respective extrema.

In particular, the differential expression are different with respect to the number
of segments in each dose-response curve:

Case 1: The conditions for positivity of the dose component solutions for all
h ∈ (0, 1) when W (h; k1k5 ,

k4
k8

) ≥ 0 can be reduced to:

k23

k67
+

√
W (h; k1k5 ,

k4
k8

)

k67
> h

k1

k5
+ (1− h)

k4

k8
>
k4

k8
∨

k23

k67
−

√
W (h; k1k5 ,

k4
k8

)

k67
< h

k1

k5
+ (1− h)

k4

k8
<
k4

k8
,

which correspond to the non-hormesis conditions k4
k8
≤ k23

k67
≤ k1

k5
and k1

k5
≤

k23
k67
≤ k4

k8
, and the roots d

(2)
σ,h and d

(1)
σ,h, respectively.

To see why, let us show that k23
k67
−
√
W (h;

k1
k5
,
k4
k8

)

k67
> ζ

(
h; k1k5 ,

k4
k8

)
> k4

k8
never
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holds. We rearrange the inequality to:

k23

k67
− ζ

(
h;
k1

k5
,
k4

k8

)
>√√√√(k23

k67
− ζ

(
h;
k1

k5
,
k4

k8

))2

− 4

(
k1 − k5ζ

(
h; k1k5 ,

k4
k8

))(
k4 − k8ζ

(
h; k1k5 ,

k4
k8

))
k2

67

,

and notice that due to the non-hormesis, k4
k8

< ζ
(
h; k1k5 ,

k4
k8

)
< k1

k5
, which

means the inequality never holds since(
k1 − k5ζ

(
h;
k1

k5
,
k4

k8

))(
k4 − k8ζ

(
h;
k1

k5
,
k4

k8

))
< 0.

The considerations are analogous for the other inequality in the positivity
condition. This simplification shows that, depending on which positivity
condition is met after α and β specifics are applied, only one root is relevant
for the differential.

Now, ignoring the trivial case when k1
k5

= k4
k8

for any differential structure
and value of the differential parameters, the dose and the response mappings
read:

Md(σ
α, σβ) : d

(1,2),α
σ,h 7→ d

(1,2),β
σ,h

and

MR(σα, σβ) : h
kα1
kα5

+ (1− h)
kα4
kα8
7→ h

kβ1

kβ5
+ (1− h)

kβ4

kβ8
.

In this case, we have already expressed the relevant critical points through
the dose-response coefficients. Thus we can write the differential as:

πd (h) = log10

kβ8
kα8

kβ4 k
β
5 − kβ1 kβ8

kα4 k
α
5 − kα1 kα8

kα5 k
α
8

(
−kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)
)

+ kα67 (hkα1 k
α
8 + (1− h)kα4 k

α
5 )

kβ5 k
β
8

(
−kβ23 ±

√
W (h;

kβ1
kβ5
,
kβ4
kβ8

)

)
+ kβ67

(
hkβ1 k

β
8 + (1− h)kβ4 k

β
5

)
and

πR (h) = h

(
kα1
kα5
− kβ1

kβ5

)
+ (1− h)

(
kα4
kα8
− kβ4

kβ8

)
.

Note that the sign in front of the square root can be determined only by
the positivity conditions, i.e. if it is not known which one is satisfied for A
and B all combinations have to be considered.
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Case 2: The dose and response projections of the differential for the different
segment mappings are:

πd (h; i = 1) = log10

kβ4 − kβ8 ζ
(
h;

kβ1
kβ5
,Rβε2

)
kα4 − kα8 ζ

(
h;

kα1
kα5
,
kα4
kα8

)
kα67ζ

(
h;

kα1
kα5
,
kα4
kα8

)
− kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)

kβ67ζ
(
h;

kβ1
kβ5
,Rβε2

)
− kβ23 ±

√
W (h;

kβ1
kβ5
,Rβε2)

and

πR (h; i = 1) = ζ

(
h;
kα1
kα5
,
kα4
kα8

)
− ζ

(
h;
kβ1

kβ5
,Rβε2

)
.

πd (h; i = 2) = log10

kβ4 − kβ8 ζ
(
h;Rβε2 ,

kβ4
kβ8

)
kα4 − kα8 ζ

(
h;

kα1
kα5
,
kα4
kα8

)
kα67ζ

(
h;

kα1
kα5
,
kα4
kα8

)
− kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)

kβ67ζ
(
h;Rβε2 , k

β
4

kβ8

)
− kβ23 ±

√
W (h;Rβε2 , k

β
4

kβ8
)

and

πR (h, i = 2) = ζ

(
h;
kα1
kα5
,
kα4
kα8

)
− ζ

(
h;Rβε2 ,

kβ4

kβ8

)
.

Choosing the relevant root from d
(1,2)
σ,h when deriving the dose differential

depends on the hormesis conditions and the particular dose-response seg-
ment (the root need to be in the dose domain of the segment).

Case 3: The dose and response projections of the differential for the correspond-
ing segments are:

πd (h) =



log10

kβ4−k
β
8 ζ

(
h;
k
β
1

k
β
5

,Rβε2

)
kα4−kα8 ζ

(
h;
kα1
kα5
,Rαε2

) kα67ζ
(
h;
kα1
kα5
,Rαε2

)
−kα23±

√
W (h;

kα1
kα5
,Rαε2 )

kβ67ζ

(
h;
k
β
1

k
β
5

,Rβε2

)
−kβ23±

√
W (h;

k
β
1

k
β
5

,Rβε2 )

log10

kβ4−k
β
8 ζ

(
h;Rβε2 ,

k
β
4

k
β
8

)
kα4−kα8 ζ

(
h;Rαε2 ,

kα4
kα8

) kα67ζ
(
h;Rαε2 ,

kα4
kα8

)
−kα23±

√
W (h;Rαε2 ,

kα4
kα8

)

kβ67ζ

(
h;Rβε2 ,

k
β
4

k
β
8

)
−kβ23±

√
W (h;Rβε2 ,

k
β
4

k
β
8

)

,

and
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πR (h) =

 ζ
(
h;

kα1
kα5
,Rαε2

)
− ζ

(
h;

kβ1
kβ5
,Rβε2

)
ζ
(
h;Rαε2 ,

kα4
kα8

)
− ζ

(
h;Rβε2 ,

kβ4
kβ8

) .

Again, when choosing the appropriate root from d
(1,2)
σ,h it has to be accounted

for the hormesis conditions and the relevant segment.

It is evident that the obtained projections of the differential have a more com-
plicated form than in the case for a single dose edge. Also, multiple conditions
depending on the ratios between the dose-response coefficients have to be con-
sidered. However, the expressions are symbolic and symbolic analysis can be
applied.

8.3.4 Two Dose Edge Example: Insulin Receptor Trafficking

For the analysis of the detailed model for insulin receptor trafficking from
Sedaghat et al. (2002) (Figure 5.6a), we assume that we measure the singly ligand-
bound receptor species on the cell surface, RL and RLp, thus O = {vRL, vRLp},
and obtain two dose-response curves by stimulating the system with two ligands
that differ in their affinity to the receptor— ligand α with reaction rate constants
rα1 , rα2 , rα12, rα13, and ligand β with rβ1 , rβ2 , rβ12, rβ13. Suppose that the dose-response
curve for α (reference) is sigmoidal and the curve for β (perturbed) is hormetic
(biphasic) (differential as in Case 2 ). We aim to derive the dose differential
between the reference curve and the first segment of the perturbed curve at
h = 0.5, as well as, the response differential between the reference curve and the
second segment of the perturbed curve at d→∞, i.e. h = 0.

8.3.4.1 Steady-state coefficients.

For conciseness, we analyse the steady-state coefficients in polynomial form
instead of digraph form:
k1 = 0,
k23 = r1r9r11((r3 + r4)(r6 + r7) + r5r7)(r13(r15 + r16) + r14r16),
k4 = r1(r6 + r7)r9r11 r12 r14r16,
k5 = (r2 + r3)r8r10(r4(r6 + r7) + r5r7)(r13(r15 + r16) + r14r16),
k67 = r10((r2 + r3)(r6 + r7)r8 r12 r14r16 + r1r3r5r7(r13(r15 + r16) + r14r16)),
k8 = r1r3(r6 + r7)r10 r12 r14r16,

where the differential parameters are marked in red.

Due to k1 = 0, the only non-hormesis condition holding for the reference curve

α is k1
k5

= 0 ≤ kα23
kα67
≤ kα4

kα8
and the only hormesis condition holding for the perturbed

curve β is k1
k5

= 0 <
kβ4
kβ8

<
kβ23
kβ67

. This indicates that the perturbation should flip the

inequality sign between the non-zero steady-state coefficient ratios. Also noting
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that
kα4
kα8

=
kβ4
kβ8

, these conditions enforce the following condition on the parameters:

rα1 r3((r3 + r4)(r6 + r7) + r5r7)(rα13(r15 + r16) + r14r16)

(rα2 + r3)(r6 + r7)r8rα12r14r16 + rα1 r3r5r7(rα13(r15 + r16) + r14r16)
≤ 1

<
rβ1 r3((r3 + r4)(r6 + r7) + r5r7)(rβ13(r15 + r16) + r14r16)

(rβ2 + r3)(r6 + r7)r8r
β
12r14r16 + rβ1 r3r5r7(rβ13(r15 + r16) + r14r16)

. (8.7)

This implies that the values of r9, r10, and r11 (free receptor externalisation,
degradation, and synthesis, respectively) do not affect whether or not the response
is hormetic.

8.3.4.2 Differential mapping.

We derive the two critical points of the non-hormetic reference curve as:

Eα =

{
εα1 = (0, 0) , εα2 =

(
∞, r9r11

r3r10

)}
.

When deriving the second critical point of the perturbed hormetic curve we com-
ply with the hormesis condition by choosing the root that contains −

√
U , leading

to:

Eβ =

{
εβ1 = (0, 0) , εβ2 =


rβ13(r15 + r16) + r14r16

rβ12r14r16(r6 + r7)

rβ12r14r16r8(rβ2 + r3)(r4(r6 + r7) + r5r7) +
√
U

rβ1 r3(r3 + r4)(rβ13(r15 + r16) + r14r16)− rβ12r14r16r8(rβ2 + r3)
,

r11r
β
1 r9(rβ13(r15 + r16) + r14r16)

r10

(r7(r3 + r4 + r5) + r6(r3 + r4))
(
rβ12r14r16r8(rβ2 + r3)(r6 + r7)

+ rβ1 r3r5r7(rβ13(r15 + r16) + r14r16)
)
− 2(r6 + r7)

√
U

− 2rβ12r14r16r8(rβ2 + r3)(r6 + r7)(r4(r6 + r7) + r5r7)(
rβ12r14r16r8(rβ2 + r3)(r6 + r7) + rβ1 r3r5r7

(
rβ13(r15 + r16)

+r14r16

))2

− 4rβ12r14r16r
β
1 r3r8(rβ2 + r3)(r6 + r7)

(
rβ13(r15 + r16)

+ r14r16

)
(r4(r6 + r7) + r5r7)


,

εβ3 =

(
∞, r9r11

r3r10

)}
,
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where U denotes U with squared factors taken out of the square root and has the
form:

U = rβ12r14r16r3r8(rβ2 + r3)(r4(r6 + r7) + r5r7)

(
− rβ12r14r16r8(rβ2 + r3)(r6 + r7)

+ rβ1 (r3 + r4)(rβ13(r15 + r16) + r14r16)(r7(r3 + r4 + r5) + r6(r3 + r4))

)
.

This leads to the following observations: (i) the first and last critical points of
the reference and perturbed curves are identical; (ii) the last critical points depend
only on the four reaction rates r3, r9, r10, and r11; and (iii) the dose component

of the second critical point of the perturbed system εβ2 does not depend on r9,
r10, and r11.

8.3.4.3 Dose and response differentials.

It is straightforward to see that the response differential between the reference
curve and the second segment of the perturbed curve at d → ∞ is always zero,
independent of the magnitude of the perturbation and of the reaction constants’
values:

πR (h = 0, i = 2) = ζ

(
h = 0; 0,

kα4
kα8

)
− ζ

(
h = 0;Rβε2 ,

kβ4

kβ8

)
=
r9r11

r3r10
− r9r11

r3r10
= 0.

The expressions in the previous section also allow us to identify feasible pertur-
bations to alter the dose-response behaviour. For example. if we were to design
a new perturbation, different from applying a ligand with modified affinity, that
again leads to a hormetic perturbed dose-response, but to a non-zero response
differential, it has to target parameters r9, r11,r3, or r10. However, since hormesis
is not affected by r9, r11, and r10, r3 needs to be perturbed.

To find the dose differential between the reference curve and the first segment
of the perturbed curve with h = 0.5, we need to select the appropriate roots

from d
(1,2)
σ,h . The relevant root for the reference curve is d

(1)
σ,h since it corresponds

to non-hormesis condition k1
k5
≤ k23

k67
≤ k4

k8
. Furthermore, when choosing the

relevant root, there are two cases of interest: (i) when the roots have different
signs we take the larger (positive) root, and (ii) when the two roots are posi-
tive we consider the smaller root, which corresponds to the first segment of the
hormetic curve. According to the Vietta’s formulas, the roots have different signs

when
−kβ5 ζ(h;x,y)

kβ4−k
β
8 ζ(h;x,y)

< 0, which translates to kβ4 − kβ8 ζ (h;x, y) > 0, indicating

that the relevant larger root is d
(1)
σ,h. Accordingly, both roots are positive when

−k
β
23−k

β
67ζ(h;x,y)

kβ4−k
β
8 ζ(h;x,y)

> 0 and
−kβ5 ζ(h;x,y)

kβ4−k
β
8 ζ(h;x,y)

> 0, implying kβ4 − kβ8 ζ (h;x, y) < 0 and

kβ23 − kβ67ζ (h;x, y) > 0. This satisfies the hormesis condition and settles the

smaller positive root to be d
(1)
σ,h again.
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Thus, we select the root d
(1)
σ,h for the reference and the perturbed curve, which

gives:

πd

(
h =

1

2
; i = 1

)
= log10

2kβ4 − kβ8Rβε2
kα4 k

α
8

kα4 k
α
67 − 2kα23k

α
8 + 2kα8

√
W ( 1

2 ; 0,
kα4
kα8

)

kβ67Rβε2 − 2kβ23 + 2
√
W ( 1

2 ; 0,Rβε2)
,

with W ( 1
2 ; 0, y) =

(
k67y

2 − k23

)2

+ k5y (2k4 − k8y).

After substituting the steady-state coefficients, we find the symbolic expression
for the dose differential. By looking at the greatest common divisor of the separate
terms in the numerator and denominator of the expression, again the reaction rate
constants r9, r10, and r11 cross out. Therefore, both the dose and the response
differential are invariant with respect to these parameters.
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8.4 Supplement to Chapter 5
8.4.1 Ternary Complex Stability (TCS) Submodel Components
Below are presented and described the reactions we consider. The reactions are
grouped by the mechanisms and the components they comprise.
Basal IFNAR2 synthesis and degradation.

∅
rs−⇀↽−
rd

R2

IFNAR2 (R2) basal synthesis and degradation reactions. They
represent the unstimulated system and are part of every re-
ceptor trafficking submodel. Thus their participation in every
submodel is implied and not explicitly stated. We assume that
the reactions originate from an intracellular compartment dif-
ferent from the later described compartments harbouring the
internalised ternary complexes and the receptors dissociated
from them.

Ligand-induced ternary complex assembly on the cell surface.

R2

d rχ3−−−⇀↽−−−
rχ4

R2L

R2L
Rω1 rχ5−−−−⇀↽−−−−
rχ6

TC

TC
r7−→TCp

R2Lp
Rω1 rχ5−−−−⇀↽−−−−
rχ6

TCp

R2p
d rχ3−−−⇀↽−−−
rχ4

R2Lp

R2p
r8−→R2

R2p
rd−→∅

R2L
rd−→∅

R2Lp
rd−→∅

TC
rd−→∅

Component id: Sω

Two-step ligand-induced ternary complex assembly and acti-
vation as reviewed in Schreiber & Piehler (2015). Usually, the
ligand binding affinity to IFNAR2 is high and to IFNAR1 it is
low. Thus, interferon ligands (denoted by L and having con-
stant concentration d) predominantly bind to IFNAR2 to form
the binary complex R2L. Then, IFNAR1 (with concentration
R1) is recruited on the membrane to form the ternary complex
TC. TC is irreversibly phosphorylated to obtain the active
ternary complex TCp. Signalling from the active TCp stops
upon dissociation of IFNAR1. However, as hypothesized in
Moraga et al. (2009), dissociated binary complexes, here R2Lp,
might continue signalling. We account for IFNAR1’s dynamics
implicitly by modelling its binding as a pseudo-first order reac-
tion in which R1 takes a value depending on the type of activity
ω. Note that we assume the concentration of R1 is only activity
specific but not ligand specific. This consideration is required
to isolate mechanisms causing the α vs β differential since free
ligand specific parameters would allow to trivially reproduce
it. Further, ligand dependent discrepancies in IFNAR1 levels
might be secondary and caused by the mechanisms controlling
ternary complex stability. Also, in the modelling framework
we account for the cell-to-cell variability of IFNAR2 but not
IFNAR1. Note that r3 and r4 are the 3D association and dis-
sociation rate constants of the extracellular ligand to IFNAR2
and are thus ligand specific, which is indicated by the depen-
dence on χ. The constants r5 and r6 are also ligand specific
but describe the 2D association and dissociation rate of the
IFNAR2-L binary complex to the free IFNAR1 receptor both
located on the cell membrane. We also assume that all species
in this component have the same degradation rate constant
apart from TCp to whose degradation we refer later.
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Component id: S
This component contains the same reactions as component Sω

but not the dependence of R1 on ω.

R2

d rχ3−−−⇀↽−−−
rχ4

R2L

R2L
Rω1 rχ5−−−−⇀↽−−−−
rχ6

TC

TC
r7−→TCp

R2Lp
Rω1 rχ5−−−−⇀↽−−−−
rχ6

TCp

R2Lp
r8−→R2

R2L
rd−→∅

R2Lp
rd−→∅

TC
rd−→∅

Component id: Sω1
This component differs from Sω with regards to the assumption
that R2Lp dephosphorylates and dissociates from the ligand at
a single step to obtain free R2.

Component id: S1

This component contains the same reactions as component Sω1
but not the dependence of R1 on ω.

R2

d rχ3−−−⇀↽−−−
rχ4

R2L

R2L
Rω1 rχ5−−−−⇀↽−−−−
rχ6

TCp

R2L
rd−→∅

Component id: Sω2
This component assumes a simple two state activation of the
ternary complex – first, binding of R2 to the ligand L to obtain
R2L and subsequent binding to R1 which directly results to the
active ternary complex TCp.

Component id: S2

This component contains the same reactions as component Sω2
but not the dependence of R1 on ω.

R2

d rχ1−−−⇀↽−−−
rχ2

TCp

Component id: S3

Direct ternary complex activation represented by a single ab-
stract reaction. We assume that ternary complex assembly
happens fast after IFNAR2 binds to the ligand and rχ1 =
rχ3 , r

χ
2 = rχ4 . With this component we test whether the crud-

est ternary complex assembly mechanism has the capacity to
explain the observed differential responses.
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TCp
r13−−→∅

Component id: dTCp
Degradation of the active ternary complex. It is part of the
ternary complex assembly mechanisms whenever TCp inter-
nalisation in not present.

Inhibition by USP18.

R2
uω r11−−−−⇀↽−−−−
r12

R2U

R2U
r19−−→∅

Component id: I
USP18 serves as a late negative expression feedback which in-
hibits ternary complex formation by binding to the cytoplas-
mic domain of IFNAR2 (Francois-Newton et al., 2012; Wilmes
et al., 2015). We denote USP18 by U and assume its concentra-
tion, u, is activity specific. More precisely, u’s concentration is
low during early signalling events leading to AV and high dur-
ing late signalling events leading to AP (Schreiber & Piehler,
2015). We assume that IFNAR2 bound to USP18 (species
R2U) is possibly degraded with a different rate than the free
R2.

R2L
uω r11−−−−⇀↽−−−−
r12

R2LU

R2LU
r19−−→∅

Component id: I1
This component contains all reactions from component I plus
inhibition reactions for the ligand bound IFNAR2 state R2L
and a degradation reaction of the inhibited state R2LU . The
component can be combined with any surface component apart
from component S3 since it does not contain and intermediate
state leading to ternary complex assembly and activation which
is to be inhibited.

R2U
d rχ3−−−⇀↽−−−
rχ4

R2LU

Component id: I2
This component contains all reactions from component I1 plus
ligand association and dissociation of the USP18 bound recep-
tor. We assume extracellular ligand affinity to IFNAR2 is not
affected by intracellular USP18 binding. The component can
also be combined with all surface components apart from S3.
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Ternary complex endocytosis, receptor recycling, endosomal degradation.

TCp
r9−→TCpi

R2i
r10−−→R2

R2i
q rχ1−−−⇀↽−−−
rχ2

TCpi

TCpi
r14−−→∅

R2i
r15−−→∅

Component id: E
Activated ternary complex endocytosis, recycling, and degra-
dation. The activated ternary complex is internalised as TCpi
and the free endosomal IFNAR2 receptor R2i can recycle to the
cell surface. We model ternary complex assembly and disassem-
bly in the endosomal compartment, analogously to component
S3, as a one-step reaction. The one-step assembly is a rea-
sonable approximation in the context of the small surface area
and volume of individual endosomes which has the capacity to
highly concentrate the receptors and lead to instant 2D interac-
tions, e.g. between endosomal IFNAR2-L and IFNAR1. Addi-
tionally, we assume a constant ligand concentration q as can be
expected in the constant environment within early endosomes
(Villaseñor et al., 2015; Schreiber & Piehler, 2015). Endocyto-
sis leads to degradation of R2i and TCpi and it is also possible
that TCpi continues signalling in early endosomes (Marchetti
et al., 2006; Claudinon et al., 2007; Marijanovic et al., 2007).

R2i
uω r11−−−−⇀↽−−−−
r12

R2Ui

R2Ui
r18−−→∅

Component id: EI
Includes the reactions from E plus USP18 inhibition of the free
endocytosed IFNAR2 and degradation of the inhibited species.

R2Ui
r16−−→R2U

Component id: EIrI
Endocytosed USP18-bound receptor recycling to the cell sur-
face.

R2Ui
r17−−→R2

Component id: EIrS
Endocytosed USP18-bound receptor recycling to the cell sur-
face relevant for submodels which do not incorporate USP18
inhibition at the cell surface.

8.4.2 Two Dose Edge Differential

Single cell threshold model. Analogously to the single dose-edge case we derive
the double dose-edge dose differential to be:

πd = log10

Kβ
4

r0
τ − k

β
8

Kα
4

r0
τ − kα8

kα67 −Kα
23

r0
τ ±

√
(kα67 −Kα

23
r0
τ )2 + 4kα5 (Kα

4
r0
τ − kα8 )

kβ67 −Kβ
23

r0
τ ±

√
(kβ67 −Kβ

23
r0
τ )2 + 4kβ5 (Kβ

4
r0
τ − k

β
8 )
.

Note that hormetic behaviour is possible and thus there could be up to four
relevant dose differential expressions.
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Population threshold model. We take the first derivative of R(d) to determine
the critical points of the population dose-response relation.

DdRAP (d) = −DdRAV (d) =

−K23k5 − 2K4k5d+ (K23k8 −K4k67)d2

d(K23 +K4d)(k5 + k67d+ k8d2)σ
√

2πe

(
ln

(k5+k67d+k8d
2)τ

K23d+K4d
2 −µ

)2
2σ2

.

We observe that the numerators of the first derivatives of the population model
and of the TCS submodel have identical roots. This indicates the population
model and the TCS submodel have the same critical points. As will become clear
later, the experimentally obtained population dose-response curves are sigmoid,
which suggests that the TCS submodel’s dose-response curves should also be
sigmoid. Lack of hormesis in the TCS submodel is expressed through the condition
K4

k8
> K23

k67
and leads to two critical points:

EAV =

{
ε1 = (0, 0) , ε2 =

(
∞, 1− Φ

(
ln k8τ

AV

K4
− µ

σ

))}
,

EAP =

{
ε1 = (0, 1) , ε2 =

(
∞,Φ

(
ln k8τ

AP

K4
− µ

σ

))}
.

With only two critical points the dose differential for two-dose edge models has
the form:

πd = log10

Kβ
4 η

χω
2 − kβ8

Kα
4 η

χω
2 − kα8

kα67 −Kα
23η

χω
2 ±

√
(kα67 −Kα

23η
χω
2 )2 + 4kα5 (Kα

4 η
χω
2 − kα8 )

kβ67 −Kβ
23η

χω
2 ±

√
(kβ67 −Kβ

23η
χω
2 )2 + 4kβ5 (Kβ

4 η
χω
2 − kβ8 )

,

where ηχω2 is a concise notation for the population receptor function for double
dose-edge models:

η2

(
τω, µ, σ, h,

kχω8

Kχω
4

)
=

1

τω
e

µ−σ
√

2 erfc−1

(1−h) erfc

µ−ln
k
χω
8 τω

K
χω
4

σ
√

2



.

We can also express the response differential as:

πR(h) =



(1− h)

Φ

 ln
k
βAV
8 τAV

K
βAV
4

−µ

σ

− Φ

 ln
kαAV8 τAV

KαAV4

−µ

σ

 , for AV,

(1− h)

Φ

 ln
kαAP8 τAP

KαAP4

−µ

σ

− Φ

 ln
k
βAP
8 τAP

K
βAP
4

−µ

σ

 , for AP.
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Again, in spite of the complicated form of differential expressions we can iso-
late the effect of the TCS submodels on the population differential. Precisely,
two models have the same response differential when they have equal reduced

ratios
kχω8

Kχω
4

and have the same dose differential when they have the equal response

differential along with equal expressions

Kβω
4 cβω − kβω8

Kαω
4 cαω − kαω8

kαω67 −Kαω
23 c

αω ±
√

(kαω67 −Kαω
23 c

αω)2 + 4kαω5 (Kαω
4 cαω − kαω8 )

kβω67 −Kβω
23 c

βω ±
√

(kβω67 −Kβω
23 c

βω)2 + 4kβω5 (Kβω
4 cβω − kβω8 )

,

for a fixed activity and where cχ is regarded as a symbol.
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8.4.3 Parameter Prior Information

Table 8.4: Free model parameters and their intervals of definition. Presented are
the logarithm of the minimal and maximal bound, denoted as a and b corre-
spondingly, the units, and a short description for each estimated parameter.

log10 a log10 b Units Notes

γ −10 −1 –

On the basis of the available data we assume
that the new floor and ceiling values could max-
imally differ by 10% from the current ones.

τAV 0 1 number
Few active receptors can trigger AV response
(Levin et al., 2011).

τAP 2 3 number
Most receptors have to be active to trigger AP
response (Levin et al., 2011).

RAV1 −6 0 nmol
m2

The minimum and the maximum RAV1 con-
centrations correspond to approximately 1 and
6e5 receptors for assumed cell surface area of

1e-9 m2

cell (Puck et al., 1956).

sR1 −2 0 nmol
m2

A scaling constant defined through RAP1 =
RAV1 sR1

and enforcing RAV1 ≥ RAP1 as experi-
mentally observed (Schreiber & Piehler, 2015).

R1 −6 0 nmol
m2

Activity independent IFNAR1 concentration.

q 2 4 nM

Assuming early endosome volume of 8.2e-18
litres (Howe, 2005) and approx. 1 to 100 in-
terferon ligands per endosome.

uAV r11 −6 6 1
s

The product of USP18’s concentration resulting
from the AV activity and the rate constant r11

are regarded as a single rate constant with a
wide interval of definition.

su 0 3 1
s

A scaling constant defined through uAP r11 =
uAV r11su and enforcing uAV r11 ≤ uAP r11 as
experimentally observed (Schreiber & Piehler,
2015)

rd,r7,r8,r9,

−5 5 1
s

Parameters with a wide interval of definition.
r10,r12,r13,

r14,r15,r16,

r17,r18,r19
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8.4.4 Supplementary Results

Table 8.5: The most probable values (MPV), means, standard deviations, and
intervals of definition (in logarithmic scale) of the marginal posterior distribu-
tions for the 16 free parameters belonging to the highest ranking model. The
minimal and maximal bound of the parameter interval of definition are denoted
as a and b, correspondingly. Parameter units are shown in Table 8.4.

log10MPV log10Mean log10Std. dev. log10 a log10 b

γ −1.247 −1.247 0.003 −10 −1
τAV 0.999 0.951 0.040 0 1
τAP 2.000 2.009 0.010 2 3
R1 −0.869 −0.866 0.045 −6 0
q 3.024 3.000 0.577 2 4
uAV r11 −3.997 −2.473 1.792 −5 5
su 2.999 2.581 0.296 0 3
rd −5.000 −4.999 0.001 −5 5
r7 4.363 2.385 1.541 −5 5
r8 −5.000 −4.999 0.001 −5 5
r9 −1.959 −1.906 0.063 −5 5
r10 0.243 0.301 0.581 −5 5
r12 1.241 2.475 1.790 −5 5
r14 −4.366 −4.374 0.010 −5 5
r15 −1.931 −1.933 0.579 −5 5
r19 −2.493 −2.468 1.796 −5 5
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Omitted expressions. Symbolic expression for the factors omitted from the
derivation of the dose and response population differentials for the top ranking
model:

FχK23
= (qrχ1 r14+(r10+r15)(r14+rχ2 ))rχ4 r

χ
6 +(qrχ1 +r10+r15)r9(rχ4 +R1r

χ
5 +rd)(r8+rd)

+ (qrχ1 r14 + (r10 + r15)(r14 + rχ2 ))(rχ4 +R1r
χ
5 + rd)(r8 + rd),

Fχk4 = qrχ1 (r14+r9)+(r10+r15)(r14+rχ2 +r9),

Fχωk67 = (r12 + r19)(
(qrχ1 r14+(r10+r15)(r14+rχ2 ))rd(r

χ
6 +r7+rd)(r8+rd)(R1r

χ
5 r9+(rχ6 +r9)(rχ4 +rd))+

+R1r
χ
5

(
(qrχ1 r14 + (r10 + r15)(r14 + rχ2 ))rd(r8 + rd)(R1r

χ
5 r9 + (rχ6 + r9)(rχ4 + rd))+

+ r7

(
r14(qrχ1 + r10 + r15)(r9(rχ4 +R1r

χ
5 + rd)(r8 + rd) + rχ6 rd(r

χ
4 + r8 + rd))+

+ rχ2 (r15r9(rχ4 +R1r
χ
5 + rd)(r8 + rd) + (r10 + r15)rχ6 rd(r

χ
4 + r8 + rd))

)))
+

+ (qrχ1 r14 + (r10 + r15)(r14 + rχ2 ))(R1r
χ
5 r9 + (rχ6 + r9)rd)

(
R1r

χ
5 (r7 + rd)+

+ (rχ4 + rd)(r
χ
6 + r7 + rd)

)
(r12rd + r19(rd + uωr11)),

FχK8
= (qrχ1 r14 + (r10 + r15)(r14 + rχ2 ))rd(r

χ
6 + r7 + rd)(R1r

χ
5 r9 + (rχ6 + r9)rd)+

+R1r
χ
5

(
r14(qrχ1 + r10 + r15)(r7 + rd)(R1r

χ
5 r9 + (rχ6 + r9)rd)+

+rχ2 ((r10+r15)rd(R1r
χ
5 r9+(rχ6 +r9)rd)+r7(R1r15r

χ
5 r9+(r10r

χ
6 +r15(rχ6 +r9))rd))

)
,

kχω5 = (r8 + rd)(qr
χ
1 r14 + (r10 + r15)(r14 + rχ2 ))(R1r

χ
5 r9 + (rχ6 + r9)(rχ4 + rd))·

· (R1r
χ
5 (r7 + rd) + (rχ4 + rd)(r

χ
6 + r7 + rd))(r12rd + r19(rd + uωr11)).
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Smith, A. P., Muñoz, C. A., Narkawicz, A. J., & Markevicius, M. (2015). Kodiak:
An Implementation Framework for Branch and Bound Algorithms .

Sunn̊aker, M., Zamora-Sillero, E., Dechant, R., Ludwig, C., Busetto, A. G., Wag-
ner, A., & Stelling, J. (2013). Automatic Generation of Predictive Dynamic
Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism.
Science Signaling 6, ra41–ra41.

Sunn̊aker, M. A. (2013). Computational Methods for Automated Construction
and Analysis of Dynamical Models of Biochemical Systems. Ph.D. thesis, Diss.,
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