The Effect of Culture on Energy Efficient Vehicle Ownership

M. Filippini, T. Wekhof

Working Paper 17/278
November 2017

Economics Working Paper Series
The Effect of Culture on Energy Efficient Vehicle Ownership

Massimo Filippinia,b, Tobias Wekhofa

aCentre of Economic Research (CER-ETH), ETH Zürich, Switzerland
bUniversità della Svizzera Italiana, Lugano, Switzerland

Last revision: November 7, 2017

Abstract

Does culture affect consumer preferences for fuel efficient vehicles? Switzerland’s citizens share all major institutions but belong to multiple population groups which differ by culture or language across distinct geographical locations. This unique setting allows separation of the effect of culture on institutions and on individual consumer preferences. We set up a spatial fuzzy Regression Discontinuity Design (RDD) at the internal French/German language border to estimate the effect of culture on preferences for energy efficient design and control for local policies. A within-country analysis on the municipality level provides a natural experiment because institutions relevant to economic development are shared by the whole population, whereas culture is heterogeneous. Our results indicate that in French speaking regions of Switzerland the share of energy efficient vehicles is 5.5 percentage points higher than in German speaking regions. In addition, we find that popular votes on environmental issues receive a significantly higher share of approval in the French speaking regions, indicating that they place a higher value on the environment.

Keywords: Culture, Transportation, Energy Efficiency, Spatial RDD, Car Choice

JEL Classification Codes: Q2, Q4, R4, Z10

* Corresponding author

Address: CER-ETH, Zürichbergstrasse 18, 8092 Zürich, Switzerland.
Phone: +41 44 633 80 78. <twekhof@ethz.ch>
1 Introduction

In the context of increasing attention to energy efficiency in environmental economics, there is evidence that economic incentives are not the only motivation for consumers’ decisions on energy saving. A growing literature suggests that culture is an important factor in economic decision making, for instance in explaining saving rates (Guiso et al., 2006) or pursuing business relations (Ahern et al., 2015). Following (Guiso et al., 2006), we define culture as "customary beliefs and values that ethnic, religious, and social groups transmit fairly unchanged from generation to generation". We believe there is strong evidence that culture also influences environmental decisions: in this study, we document differentiated patterns of energy efficient vehicle ownership in Switzerland and propose that culture is one important explanatory factor. Switzerland’s citizens share all major institutions but belong to multiple population groups which differ by culture or language across distinct geographical locations. This unique setting allows us to separate the effect of culture on institutions and on individual consumer preferences.

The role of culture is increasingly present in the economics literature: Bisin and Verdier (2001) suggest that culture has a direct impact on individual preferences and both Fehr and Hoff (2011) and Hoff and Stiglitz (2016) advocate the use of culture as an endogenous determinant of economic preferences. The application of culture can be observed in major economic fields: Guiso et al. (2006) suggest that "cultural variables are as important as economic variables in understanding cross-country differences in national savings rates"; Ahern et al. (2015) find that "the volume of cross-border mergers is lower when countries are more culturally distant" [in trust, hierarchy and individualism] and Guiso et al. (2009) propose that cultural similarities between countries affect trust which increases bilateral trade and direct investments. Giannetti and Yafeh (2012) argue that banks require higher interest rates to culturally distant borrowers and require more frequently third-party guarantees; Atkin (2016) suggests that cultural preferences for traditional foods can constrain caloric intake and contribute to malnutrition among migrants.
The objective of this paper is to analyze the impact of culture on consumer preferences for energy efficient cars. To do this, we can hardly rely on a cross-country comparison. In fact, with the use of cross-country data it is difficult to identify the effect of culture, since culture is often used to explain the structure of institutions, which, in return, determine economic differences between societies. For instance, Alesina and Giuliano (2015) argue that culture and institutions are both complements and interact in their impact on economic development. From an empirical point of view, it is important to use an identification strategy that allows us to disentangle the impact of culture from the impact of institutions on the adoption of energy efficient vehicles. Such an identification strategy would be to analyze the behavior of consumers with different cultural backgrounds that live in the same region.

This paper will develop an analysis of several cultural groups within one country, where most political and other institutions are homogeneous and therefore the variation in their impact is limited. A within-country analysis provides a natural experiment because institutions relevant to economic development are shared by the whole population, whereas culture is heterogeneous. The analysis will also take into account the impact of local (cantonal) norms and institutions on fuel efficient vehicles and provide an estimator for the impact of culture, robust to regional specific effects.

In environmental economics, culture is not explicitly mentioned as in the literature presented above: Turrentine and Kurani (2007) suggest, using interviews, that the value of fuel economy goes beyond cost saving and has a symbolic value to consumers. Furthermore, Sexton and Sexton (2014) find evidence for willingness to pay for a hybrid vehicle as a status symbol. Goldberg and Verboven (2001) suggest that consumers have a home bias for domestically produced cars and Knight (1999) finds evidence that consumers prefer to buy cars of domestic origin because of cultural affinities. Schindler and Holbrook (2003) propose that childhood conditioning influences consumer preferences for cars. In addition, there exists a literature on "ideological" influences on consumer decisions: Brounen and Kok (2011) find that green party voters are more likely to adopt energy labels for the cars they purchase.

\[1^{1}\text{Switzerland's regional administration is organized in 26 Cantons}\]
housing market and Costa and Kahn (2013) suggest that nudging on electricity consumption is two to four times more effective with liberals than with conservatives. Kahn (2007) shows that the sales of hybrid and fuel efficient vehicles depend on the share of green party members, which are used as a proxy for environmentalism. Gallagher and Muehlegger (2011) confirm those results by taking Sierra Club membership as a proxy for environmentalism. Quantitative analysis of cultural preferences, as defined by Guiso et al. (2006), for cars in general, and with respect to the role of energy efficiency in particular, has received little attention up to now.

The empirical identification of the impact of culture on the adoption of energy efficient cars is based on a regression discontinuity approach. Specifically, to estimate the effect of culture on vehicle choice and culture on environmentalism, independently of institutions, we will conduct a spatial Fuzzy Regression Discontinuity Design (RDD) at the internal Swiss language border. Several studies have used language as a proxy for variation in culture and as a determinant of economic outcomes, e.g. Fearon (2003), Desmet et al. (2012), Chen (2013) or Falk et al. (2017). In a similar setting, and using a RDD approach, Eugster et al. (2011) describe the effect of culture on the demand for social insurance in Switzerland via differences in popular voting results, Egger and Lassmann (2015) show the effect of culture on international trade at the internal Swiss language border, and Gentili et al. (2017) analyze the effect of culture on decision making concerning elderly care.

Our results show that the population living in the French speaking parts of Switzerland owns a higher share of fuel efficient cars than the German speaking population. The difference in fuel efficiency is the result of different vehicle characteristics, mainly curb weight, number of diesel engines and replacement rate. Moreover, popular votes on environmental issues receive a higher share of approval in the French speaking part of Switzerland, indicating a different level of concern for the environment.

The paper is organized as following: the next section explains how language can be used as a proxy for culture in Switzerland. Section 3 provides the empirical strategy used in our analysis and evaluates the necessary conditions. In section 4 we explain the data used for vehicle and municipality characteristics. Our main
results are presented and analyzed in section 5. In the final section we will present the conclusions, followed by an appendix containing robustness checks and graphs.

2 Languages as a proxy for culture

The literature strongly suggests that language can be used as a proxy for culture: Parsons et al. (1965) define culture as a "set of symbols of communication" which means that language is a medium for culture and at the same time an identifier of a specific culture. In linguistics, the meaning of language goes beyond that of a medium for culture: it also shapes the speaker’s cognition of the world, making it an active constituent of a culture according to the concept of "Linguistic Relativity" (Whorf, 1997). In the economics literature, Chen (2013) explains differences in saving rates in Switzerland by the linguistic structure of the German and French language.

Switzerland consists of four language groups (German, French, Italian and Romansh) each of which occupy a distinct geographical area of the Swiss territory. According to the 2000 census, 72.5% of the population is German speaking, 21% French, 4.3% Italian and 0.6% Romansh, with a total population of ~ 8 million. Figure 1 depicts the distribution of the main language per municipality according to the 2000 census (data from the Swiss Federal Statistical Office (BFS)). The map shows a clear spatial separation of the German and French speaking municipalities, where the red line depicts the language border, the so-called "Röstigraben". Italian and Romansh-speaking areas are separated by the Alps from the German speaking part of Switzerland. In the empirical analysis of this paper, we consider the language border between the German speaking and the French speaking municipalities. We exclude the language border between the Italian/Romansh speaking areas and the German speaking regions because the Alps represent an important

\[2\] A comparison with language data collected and merged from four microcensuses from 2011-2015 shows no significant change in the spatial distribution of the native language. Therefore, the spatial distribution of people speaking Italian, French, German or Romansh remains constant over time. We choose to use the language data from the census of the year 2000, because the microcensuses omit a small number of very small municipalities.
natural barrier between the language regions. In contrast, the German-French language border is not defined by geographical obstacles: the language border runs along the North-South axis of Switzerland, whereas the major geographical obstacle in Switzerland, the Alps, follow the East-West axis.

![Languages in Switzerland](source:BFS Census 2000)

The Swiss Confederation was founded in 1291 when the Central Swiss Cantons succeeded from the German Empire and was successively enlarged over the following centuries. Modern Switzerland dates back to 1848, when the Swiss Constitution established a Federal State composed of 26 Cantons: 18 German speaking, four French speaking, three bilingual (German-French), one trilingual (Graubünden with German, Italian and Romansh).

In order to visualize the spatial distribution of French speakers in Switzerland, we plot the share of French speakers per municipality and the distance per municipality to the language border in Figure 2: as expected, municipalities located in the French regions show a high share of French speakers. Although there are no natural obstacles at the German-French language border, the share of native French
speakers at the border is very high, which results in a clear cut language-border (see Figure 2).

![Graph showing share of French speakers in relation to distance to language border.]

Figure 2: Share of French speakers in relation to distance to language border (in 2010)

Source: MOFIS/TARGA dataset

Assimilation and integration processes ensure a dominance of the respective culture in its realm. The persistence of the respective native language in each region indicates that aside from the native population, immigrants either come from the same language area (France or Germany) or adopt the dominant native language in the second generation. In addition, Novembre et al. (2008) found that genetic markers between people living in the French and Germanic area of Switzerland show a higher variation between than within those regions, which indicates that individuals are more likely to start a family with a partner of their own language.
group. In this context, we can assume that language is a proxy for culture: values, beliefs and attitudes are transmitted within groups, which are defined by their common native language.

3 Empirical Strategy

From the econometric point of view, the impact of culture on the adoption of energy efficient cars is analyzed using two approaches, a panel regression and a RDD. First, we conduct a linear panel regression analysis using the basic version of the Mundlak correction (Mundlak, 1978) to correct for time-invariant unobserved heterogeneity. We use the following model:

$$Y_{it} = \beta_0 + \beta_1 language_i + \beta_2 X_{it} + \beta_3 \bar{X_i} + \epsilon_{it}$$

where Y is the share of energy efficient cars in municipality i in year t. "language" is the share of French speakers in the year 2000, X_{it} is a set of socio-economic variables at the municipality level containing the share of cars by French producers, income per capita, population density, elevation and a dummy for urban areas. $\bar{X_i}$ is the average over time of X_{it} (naturally, elevation is constant over time).

Second, we adopt a spatial fuzzy RDD using the distance of each municipality to the language border. Of course, the RDD is our preferred identification strategy. In this setting at the proximity of the language border, a regression on efficient vehicle ownership and language will show the average treatment effect of culture. We use a fuzzy RDD because unlike in a sharp RDD, and as shown in Figure 2, the probability of treatment (speaking French) does not change from zero to one but rather from 0.04 to 0.85, with small differences in each municipality.

An important step in the application of this approach is to first visually analyze the level of discontinuity of the dependent variable, the share of energy efficient cars at the proximity of the language border. The level of energy efficiency of a car can be measured by different indicators, such as CO$_2$ emissions, fuel efficiency or...
a system of energy labels. In Switzerland, the government has introduced energy efficiency labels for cars that are relative to curb weight, and where A- and B-labels represent the most energy efficient cars. In our study, we consider this label system as the most informative variable for the Swiss consumers. Therefore, the dependent variable in eq (1) is the share of A- and B-label vehicles. In Figure 3, we represent the distribution of municipalities with their share of cars with an A- or B-label and can see a discontinuity at the language border. This observation is confirmed in Figure 6 (Appendix), where we represent the distributions of municipalities with their values for average CO$_2$ emissions and average fuel consumption per car.

Figure 3: Share of A and B labels in relation to distance to language border (in 2010)

Source: MOFIS/TARGA dataset

The empirical analysis is based on the estimation of a regression that uses only data within a selected bandwidth above or below the cut-point. In this context,
the choice of bandwidth is crucial and has to trade off between opposing criteria: a larger bandwidth contains more precision-increasing observations, whereas a smaller bandwidth minimizes bias.

In order to use a RDD approach, three conditions should be fulfilled (Lee and Lemieux, 2010). First, the running variable to determine the discontinuity must be continuous. In this case the running variable is the distance to the language border in km, which is continuous. Second, agents should not be able to precisely control whether they receive the treatment or not. This condition is fulfilled in our setting, since the native language is not a choice an individual can make and native language is used as a proxy for culture. Third, covariates must be balanced at the discontinuity or vary smoothly. Importantly, there should be no discontinuous change at the language border in order to have no correlation of the covariates with the treatment.

The classical and most important explanatory variables used in the empirical literature to explain the demand for cars are income per capita, population density, topography, fuel prices and policy measures such as fuel economy standards and subsidies. Johansson and Schipper (1997) find that income, fuel price, population density and national fuel economy standards have a positive impact on the adoption of fuel efficient vehicles. Small and Van Dender (2007) obtained similar results, although income shows no statistical significance. Similarly, Klier et al. (2010) and Beresteau and Li (2011) estimate the volume of hybrid car sales in the US by using standard economic variables which reflect price sensitivity. Both studies find a positive impact of fuel price on fuel intensity. In addition, Beresteau and Li (2011) suggest a lower price sensitivity of high income consumers, a positive impact of large households with children as well as consumers living in urban areas on the sales volume of hybrid vehicles. More recent findings by Heutel and Muehlegger (2015) confirm earlier results. Moreover, Allcott and Knittel (2017) conclude after two experimental studies that imperfect information and inattention do not explain consumer choices with respect to fuel economy. For Switzerland, we can also assume that geographical differences such as altitude could also play a role. Some of these proposed variables could show variation at the regional level,
whereas others not. For instance, fuel economy standards do not differ within Switzerland, and the price for cars, the price for fuel and the quality of the public transportation system are generally homogeneous at the regional level.

As discussed previously, in a RDD, those factors have to be independent of the treatment variable (culture) in order to isolate its effect. Therefore, we examine, using figures and computing statistics, the variation at the language border of the most important explanatory variables. Figure 7 (Appendix) shows that in 2010 most of the socio-economic covariates do not show a discontinuity except altitude. Even if we can observe a slight mean difference in the population density, the variance in this variable is high, which suggests that the mean difference (and thus the discontinuity) is not significant. The share of cars by French producers does not show a discontinuity at the language border, which implies that the French speaking population does not have a preference for French cars. Altitude does show a difference at the language border, this difference however is not sustained throughout all Switzerland.

Table 1 compares the mean difference of outcome variable, treatment and controls at a narrow range of 25km from the language border with a t-test for the year 2010. The results confirm the intuition given by the graphs in the figures 2, 3, 6 and 7 (Appendix), that outcome and treatment change discontinuously whereas most of the controls do not. The difference between the French and German speaking regions is evaluated using Welch’s t-test and a non-parametric, sharp RDD (using the driving distance to the language border as running variable). In comparison to the t-test, the RDD is more restrictive: while the difference in language and the share of labels remain significant under the RDD, the difference in CO$_2$ emissions, fuel economy and the share of French cars does not. Municipality elevation does show a significant difference at a bandwidth of 25km, throughout the entire dataset there are however not two clearcut groups as with language. Moreover, Filippini et al. (2015) showed that elevation is associated with higher fuel consumption.

3With our choice of bandwidth we closely follow Eugster et al. (2011)
which means in our context that omiting elevation from the model would lead to an overestimation of the effect of culture.
Table 1: Variables for 2010, 25km range of language border

<table>
<thead>
<tr>
<th>Variable</th>
<th>mean French</th>
<th>mean German</th>
<th>Difference</th>
<th>RDD Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share French</td>
<td>0.87</td>
<td>0.03</td>
<td>0.84***</td>
<td>0.71***</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.06)</td>
<td></td>
<td>(0.02)</td>
</tr>
<tr>
<td>Share A- and B-Label</td>
<td>0.24</td>
<td>0.18</td>
<td>0.06***</td>
<td>0.04***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.04)</td>
<td></td>
<td>(0.01)</td>
</tr>
<tr>
<td>Median CO(_2) Emissions</td>
<td>177.97</td>
<td>184.35</td>
<td>-6.38***</td>
<td>-1.37</td>
</tr>
<tr>
<td></td>
<td>(6.95)</td>
<td>(7.97)</td>
<td></td>
<td>(1.67)</td>
</tr>
<tr>
<td>Median Fuel Econ.</td>
<td>7.3</td>
<td>7.58</td>
<td>-0.28***</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>(0.3)</td>
<td>(0.36)</td>
<td></td>
<td>(0.07)</td>
</tr>
<tr>
<td>Income/Capita</td>
<td>23.2</td>
<td>23.84</td>
<td>-0.64</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(3.22)</td>
<td>(4.68)</td>
<td></td>
<td>(1.02)</td>
</tr>
<tr>
<td>Population Density</td>
<td>2.59</td>
<td>3.34</td>
<td>-0.75</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>(4.39)</td>
<td>(5.46)</td>
<td></td>
<td>(1.41)</td>
</tr>
<tr>
<td>Elevation</td>
<td>814.26</td>
<td>657.73</td>
<td>156.53***</td>
<td>207.48***</td>
</tr>
<tr>
<td></td>
<td>(310.76)</td>
<td>(351.03)</td>
<td></td>
<td>(67.55)</td>
</tr>
<tr>
<td>Quality Pub. Transport</td>
<td>0.16</td>
<td>0.16</td>
<td>0</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.36)</td>
<td></td>
<td>(0.08)</td>
</tr>
<tr>
<td>Share Urban</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.08)</td>
<td></td>
<td>(0.03)</td>
</tr>
<tr>
<td>Share French Cars</td>
<td>0.2</td>
<td>0.18</td>
<td>0.02***</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td></td>
<td>(0.02)</td>
</tr>
<tr>
<td>Green-Party 2011</td>
<td>9.76</td>
<td>10.46</td>
<td>-0.7</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>(4.01)</td>
<td>(4.52)</td>
<td></td>
<td>(1.1)</td>
</tr>
<tr>
<td>Green-Party 2015</td>
<td>8.75</td>
<td>8.95</td>
<td>-0.2</td>
<td>-0.63</td>
</tr>
<tr>
<td></td>
<td>(3.61)</td>
<td>(4.01)</td>
<td></td>
<td>(1.05)</td>
</tr>
</tbody>
</table>

The RDD was implemented with the package rdrobust, using a sharp, non-parametric design with a bandwidth of 25km and a uniform kernel.

\(N_{Total}: 317, N_{French}: 151, N_{German}: 166\)

Standard deviations/errors in paranthesis:

\(**: p < 0.01, **: p < 0.05, *: p < 0.10\)

Source: MOFIS/TARGA dataset and BFS
The map in Figure 4 highlights the area at a distance of 25km from the language border. Not all municipalities at the language border are highlighted in the map because the relevant measure is the street distance to the border. Some municipalities, even though they are located at the border, are in mountainous regions which means that their driving distance to the next municipality exceeds 25km.

![Map showing share of A and B label vehicles, 25 km from language border (in 2010)](image)

Figure 4: Share of A and B label vehicles, 25 km from language border (in 2010)

The language border is marked in red

Source: MOFIS/TARGA dataset

In the fuzzy RDD we estimate a standard cross section model and add the distance of each municipality to the language border as well as the interaction term of language and distance. In a second step, we subsequently decrease the bandwidth (i.e. distance to the language border) in order to minimize the effect of structural factors other than language. Both models use a 2SLS approach to implement the fuzzy RDD. In the first stage, we use a dummy indicating whether the municipality is located in the French-speaking region, as an instrument for the percentage of French-speakers. The second stage of the cross section fuzzy RDD is specified as follows:
\[Y_i = \beta_0 + \beta_1 \text{language}_i + \beta_2 F_{i,fr} + \beta_3 F^2_{i,fr} + \beta_4 F_{i,ger} \\
+ \beta_5 F^2_{i,ger} + \beta_6 X_i + \epsilon_i \] (2)

where \(Y \) is the share of A and B-labeled vehicles in municipality \(i \). "language" is the share of French-speakers, \(F_i \) is the distance of the municipality to the language border for French speaking municipalities or for German speaking ones (this specifications allows for different slopes on either side of the language border). \(F \) is a \(j \)-th degree polynomial of the distance to the language border. \(X_i \) contains a set of socio-economic variables at the municipality level: the share of cars by French producers, income per capita, population density, elevation and a dummy for urban areas.
4 Data Description

For the analysis, we use data on individual vehicle registration in Switzerland from 2008 to 2012, the share of French native speakers per municipality, the distance of each municipality to the language border and a set of covariates. Information on the share of energy efficient vehicles (cars with A and B labels, CO$_2$ emissions and level of fuel efficiency) at the municipality level has been obtained from a data set created at the Center for Energy Policy and Economics at the ETH Zurich.

We use income data from the Swiss Federal Tax Administration on the direct federal tax. As income we use the total taxable net revenue per municipality for natural persons, measured in thousand CHF. In addition to natural persons. Population data was obtained from the BFS, using the balance of permanent residents by districts and municipalities, where the population for each year is the mean of the population at the beginning and at the end of the year, measured in 1000s of inhabitants. The area of each municipality was obtained from the areal statistics of Switzerland 2004/09 from the BFS and is measured in ha. Altitude is measured in meters above sea level and depicts the median value per municipality, obtained from the BFS. Data on the quality of Public Transportation in 2010 was obtained from the Federal Office for Spatial Development (ARE). Results from the 2011 federal election were obtained from the BFS and are given in percentage points. The language statistics contain the number of native speakers of each language per municipality, according to the census of the year 2000. The data was obtained from the BFS and municipality mergers were performed retroactively.

In order to measure the distance of each municipality to the language border, we use a matrix of street distances between all Swiss municipalities (from center to

4 Relevant information about this dataset can be found, together with further information, in Alberini et al. (2015).

5 Between Jan 1. 2000 and Jan 1. 2017, several municipalities were merged in Switzerland. Details about the mergers can be found at the BFS under ”Amtliches Gemeindeverzeichnis der Schweiz”. In the income, population and area datasets, the mergers were performed retroactively by aggregating the concerned municipalities and assigning them a new municipality code.
center), originating from Search.ch. Similarly to Eugster et al. (2011) the municipalities were attributed to a single language group (French or non-French): we determined a total of 29 French speaking municipalities constituting the border towns to the German speaking region. Since those municipalities constitute the language border, the distance of a border-municipality \(i \) to the language border \(F \) is \(F_i = 0 \). In a second step, we calculate the distance of all other municipalities to the nearest border town (center to center) and multiply the distance by \((-1)\) if the municipality is located in the French region. As a result, French municipalities either have a distance of zero if they constitute the border or a negative distance. German speaking municipalities have a positive distance to the language border. As the distance data dates from the year 2010, we took into account municipality mergers until Jan 1st 2017 by taking the average distance of the municipalities concerned by mergers.

\(^6\)The dataset was kindly provided by Beatrix Eugster and Raffael Lalive (University of St. Gallen and Lausanne) and corresponds to the data used in Eugster et al. (2011)
As described previously, we omit the Italian speaking cantons of Tessin and Graubünden in order to compare two distinct language groups, French- and German-speaking. The final dataset contains data on 1836 municipalities from 2008 to 2012 (9171 observations). 87 municipalities were omitted from the dataset due to missing values. In the RDD we will select all municipalities located within a distance of 25 km to the language border: the RDD sample contains 353 municipalities which are in the cantons Bern, Fribourg, Solothurn, Basel-Landschaft, Vaud, Valais, Neuchatel and Jura. Some cantons imposed a label policy in order to promote energy efficient labels. Among the previously mentioned cantons this concerns the canton of Fribourg, however the language border runs through the canton of Fribourg, which means that a possible effect of the label policy would not manifest itself in the magnitude of the language treatment.

5 Results

In Table 2 we report the estimation results from the basic regression model. These indicate a strong relationship between culture and the share of vehicles with A and B labels. All model specifications include year- and canton Fixed Effects. Therefore, this specification should be able to control for any Cantonal policy measures. Column (1) shows the model without any covariates, results under this specification are less robust than with covariates, as in column (2) and (3), which suggest that the covariates control for a source of unobserved heterogeneity. In column (4) we show the model with the Mundlak correction that controls for time-invariant unobserved heterogeneity. The estimator for language does not change significantly with the Mundlak extension, which suggests that the treatment effect is neither correlated with the covariates nor any time-invariant unobserved heterogeneity. Furthermore, a reduction of the sample to the three bilingual Cantons in column (5) (Bern, Fribourg and Valais) shows no change in the treatment effect either.

Table 3 presents the results of the influence of language on vehicle choice, obtained using a fuzzy RDD. All model specifications include Canton Fixed Effects. Therefore, this specification should be able to control for any Cantonal policy
measures. In column (1) we use the entire sample with a quadratic polynomial, column (2) restricts the estimation to the three bilingual cantons, with little effect on the results. Further, in column (3) to (5), we use different bandwidths and in columns (4) and (5), we use a linear model instead of a second degree polynomial. Column (5) also includes covariates (income per capita, population density, elevation, share of French cars and an urban dummy), which do not significantly influence the result compared to column (4). The estimation results for each year suggest a strong effect of culture on efficient vehicle choice. Throughout the period from 2008 to 2012, the effect of culture appears to increase every year. With increasing distance the effect increases throughout all years and the standard errors of the coefficient decrease.\(^7\)

As expected, the *language* coefficient decreases and the standard error increases as the bandwidth becomes more narrow. Therefore a simple estimation using the entire Swiss dataset would overestimate the effect of language, due to unobserved heterogeneity which is eliminated with the RDD. Overall, the treatment effect of language is of a magnitude of about 5.5 percentage points. Compared to the total mean difference at the language border of 6.2 percentage points\(^8\), cultural preferences account for 88% of the difference between the two regions.

The magnitude of the results is comparable to several policies on fuel efficiency: Huse and Lucinda (2014) find that in Sweden a rebate of SEK 10,000 (about USD 1200) for energy efficient vehicles increases their market share by 5.5 percentage points. Beresteau and Li (2011) show that a US federal income tax deduction of up to USD 2000 for hybrids explains 5% of sales. Gallagher and Muehlegger (2011) find that a 1000 tax incentive for hybrid vehicles increases sales by 3% if the incentive is allocated on federal income taxes and a 45% increase in case of a sales tax rebate; Chandra et al. (2010) associates a 34% increase in sales with a CAD 1000 sales tax rebate on hybrids in Canada. Moreover, Gallagher and Muehlegger (2011) propose that an additional 100$ of annual fuel savings, associated with hybrids, results in 13% more hybrid sales, a 10% gasoline price increase leads

\(^7\)note that the effect of the bandwidth is non-linear

\(^8\)In the French speaking part of Switzerland, the mean share of A- and B-labels per municipality is 24.6% in 2010, in the German speaking part it is 18.4%
to a 8.6% increase in hybrid sales. Bento et al. (2009) suggest that the impact of a 25 cent gasoline price increase has only a marginal impact on fuel economy: 0.08% increase of mileage per gallon in the short-run (1 year) and a 0.16% increase in the long-run (10 years), mostly through the increased scrapping of old and inefficient vehicles.

Table 2: Panel Model, Energy Label

<table>
<thead>
<tr>
<th>Share of A- and B-label vehicles</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>11,006</td>
<td>11,006</td>
<td>9,171</td>
<td>9,171</td>
<td>2,640</td>
</tr>
<tr>
<td>R²</td>
<td>0.746</td>
<td>0.769</td>
<td>0.772</td>
<td>0.774</td>
<td>0.826</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Variant Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mundlak Correction</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sample</td>
<td>all CH</td>
<td>all CH</td>
<td>all CH</td>
<td>all CH</td>
<td>*Bilingual</td>
</tr>
</tbody>
</table>

*Bilingual Cantons: Bern, Valais and Fribourg
Canton-time dummies and Controls in all models
Municipality clustered standard errors in parentheses

***: p < 0.01, **: p < 0.05, *: p < 0.10
<table>
<thead>
<tr>
<th>Year</th>
<th>Share of French</th>
<th>Share of English</th>
<th>Share of German</th>
<th>Share of Italian</th>
<th>Share of Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>0.031***</td>
<td>0.039***</td>
<td>0.054***</td>
<td>0.047***</td>
<td>0.047***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.011)</td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td></td>
<td>1.833</td>
<td>528</td>
<td>749</td>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>0.573</td>
<td>0.675</td>
<td>0.601</td>
<td>0.624</td>
<td>0.687</td>
</tr>
<tr>
<td>2009</td>
<td>0.038***</td>
<td>0.046***</td>
<td>0.065***</td>
<td>0.054***</td>
<td>0.051***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.013)</td>
<td>(0.012)</td>
<td>(0.011)</td>
</tr>
<tr>
<td></td>
<td>1.833</td>
<td>528</td>
<td>749</td>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>0.552</td>
<td>0.617</td>
<td>0.554</td>
<td>0.585</td>
<td>0.680</td>
</tr>
<tr>
<td>2010</td>
<td>0.039***</td>
<td>0.045***</td>
<td>0.068***</td>
<td>0.054***</td>
<td>0.053***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.014)</td>
<td>(0.013)</td>
<td>(0.011)</td>
</tr>
<tr>
<td></td>
<td>1.835</td>
<td>528</td>
<td>751</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>0.542</td>
<td>0.587</td>
<td>0.522</td>
<td>0.555</td>
<td>0.697</td>
</tr>
<tr>
<td>2011</td>
<td>0.043***</td>
<td>0.048***</td>
<td>0.083***</td>
<td>0.063***</td>
<td>0.060***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.011)</td>
</tr>
<tr>
<td></td>
<td>1.835</td>
<td>528</td>
<td>751</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>0.515</td>
<td>0.549</td>
<td>0.478</td>
<td>0.522</td>
<td>0.675</td>
</tr>
<tr>
<td>2012</td>
<td>0.034***</td>
<td>0.036***</td>
<td>0.074***</td>
<td>0.054***</td>
<td>0.052***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.016)</td>
<td>(0.015)</td>
<td>(0.012)</td>
</tr>
<tr>
<td></td>
<td>1.835</td>
<td>528</td>
<td>751</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>0.496</td>
<td>0.437</td>
<td>0.480</td>
<td>0.645</td>
</tr>
</tbody>
</table>

Bandwidth: all CH, *Bilingual, 50 km, 25 km, 25 km
Polynomial: Quadratic, Quadratic, Quadratic, Linear, Linear
Covariates: No, No, No, No, Yes

*Bilingual Cantons: Bern, Valais and Fribourg
Canton FE and control variables in all models
Heteroskedasticity: Robust standard errors in parentheses
***: p < 0.01, **: p < 0.05, *: p < 0.10

We believe that the specific element of culture which influences consumer preferences for energy efficient vehicles can be found in people's concern for the environment. Similarly to Eugster et al. (2011), we use popular voting outcomes to depict people's underlying values. Popular votes in Switzerland are held on a regular basis and allow the entire population to vote on propositions initiated by their fellow countrymen. A graphical representation of the voting outcomes shows the same discontinuity at the language border as previously shown for the energy labels. In Figure 5 we present the outcome of the six most recent popular votes on
environmental issues in Switzerland. All graphs indicate that voters in the French speaking regions are more favorable to environmental issues than their German speaking counterparts9.

9We use results of six popular votes, obtained from the Swiss Federal Office of Statistics (BFS):

- Initiative for non-genetically modified food ("für Lebensmittel aus gentechnikfreier Landwirtschaft"), Nov. 27th 2005; accepted with 55.7\% (participation 42.24\%). The initiative bans genetically modified food in Switzerland for the following five years.

- Building Society Initiative ("Bauspar Initiative"), March 11th 2012, rejected with 44.2\% (participation 44.99\%). Tax credit for Energy Efficient buildings and renovations.

- Initiative against food speculation ("Keine Spekulation mit Nahrungsmitteln!"), Feb. 28th 2016, rejected with 40.1\% (participation 62.91\%).

- Green Economy ("Grüne Wirtschaft"), Sept. 25th 2016, rejected with 36.4\% (participation 43\%). The initiative proposed an amendment to the constitution in order to reduce the Swiss resource and energy consumption until 2050.

- Initiative against nuclear energy ("Atomausstiegsinitiative"), Nov. 27th 2016, rejected with 45.8\% (participation 45.38\%). The initiative proposed to reduce the lifetime for existing nuclear energy plants and ban new ones.

- Energy Strategy 2050 ("Energiedeal 2050"), May 21st 2017, accepted with 58.2\%, (participation 42.89\%). The initiative combines several measures to reduce energy consumption, increase energy efficiency and support renewable energy production.
Figure 5: Voting outcomes for environmental popular initiatives

Source: BFS
6 Conclusions

In this paper, we analyze to which extent culture, expressed through native language, affects consumer preferences for fuel efficient vehicles. Our results support theoretical models from the literature which suggest that consumer choices are influenced directly by culture, independently of institutions (see Atkin, 2016, Bisin and Verdier, 2001, Guiso et al., 2006). In the context of a growing literature on the influence of culture in economics, our study adds a cultural dimension to the environmental economics literature by suggesting that there is a clear effect of culture on environmental decision making and more specifically on efficient vehicle choice. Moreover, our observations on voting outcomes allow us to argue that consumers’ concern for the environment is the major channel through which culture affects energy efficient vehicle preferences. Concerns for the environment in turn have been identified by the literature as a factor for energy efficient vehicle choice ((Gallagher and Muehlegger, 2011, Kahn, 2007)). In Switzerland, unique conditions allow for a natural experiment to estimate the direct effect of culture on consumer preferences: several culturally distinct groups, expressed via different native languages, live in the same country and share most institutions. In order to estimate the treatment effect of culture, we used a dataset containing all registered vehicles in Switzerland for 2008 to 2012. We aggregated the data at a municipality level and added socio-economic variables, the share of French speakers and the distance from each municipality to the language border. In order to estimate the effect of culture on efficient vehicle choice, we perform a spatial fuzzy RDD at the internal Swiss language border.

Results indicate that culture accounts for a difference of about 5.5 percentage points, 88% of the total difference, in the amount energy efficient vehicles between the French speaking regions of Switzerland and their German speaking counterparts. Since the efficiency labels control for curb weight, the results imply that French-speaking consumers, given a type of vehicle, would prefer the more efficient vehicles. In addition, the difference in fuel efficiency between the language regions is not due to a preference for German/French car brands as we control for this variable (in addition, we control for all vehicle brands in the individual linear
probability model). The magnitude of our results correspond to the effect of standard rebate policies for energy efficient vehicles documented in the literature. In addition, we find that popular votes on environmental issues receive a significantly higher share of approval in the French speaking regions, indicating that they place a higher value on the environment.

For policy makers this result has two implications: first, to introduce additional policy measures, such as marketing, which address culture as a factor. Second, to direct traditional economic policy efforts to groups where the potential outcome is higher. Switzerland is organized as a federal state where the cantons have a large autonomy and can decide on most environmental policies themselves. Since the French speaking population is more sensitive to environmental concern, policy makers could use other channels to target environmental goals, mainly by trying to directly influence consumer preferences via marketing and campaigning. In contrast, the German speaking part of Switzerland, which shows a lower concern for the environment, could be addressed with more traditional monetary incentives.
7 Appendix

7.1 Robustness Checks

In order to further analyze the robustness of our results, we conduct the same fuzzy RDD using as a dependent variable CO₂ emissions and mean fuel consumption. Further, we also apply a non-parametric fuzzy RDD. Finally, we decided to exploit the individual data and estimate a probit model. In this case, we are interested to know the impact of culture on the probability that an energy efficient car is adopted. Of course, one downside of this approach is that the explanatory variables are not measured at the individual but at the municipality level. However, we believe that this model represents a valid robustness check.

In Tables 4 and 5 we present the results of a panel fuzzy RDD using as dependent variables the mean CO₂ emissions and mean fuel consumption of a municipality’s car fleet. Results are similar to the results reported in Table 3 and suggest that CO₂ emissions and fuel consumption follow the same trend as the distribution of A- and B-labels, although the effect is less significant than with the labels. The underlying reason is that labels do not measure absolute emissions and consumption but are relative to the curb weight.

Table 6 shows the results of a non-parametric fuzzy RDD using a uniform Kernel density estimation with a first order polynomial local linear regression. In order to determine the optimal bandwidth of the RDD, we use the non-parametric procedure by Calonico et al. (2014) and Calonico et al. (2015), which yields an optimal bandwidth of 15.85km. Results confirm the sign of the treatment effect, found using the parametric RDD. However, we believe that in our case, the parametric approach is more appropriate because the error terms of our parametric estimations follow a normal distribution.

Table 7 shows a fuzzy RDD using individual data from 2010 (linear probability model). Results indicate that the probability of choosing an energy efficient car is higher in the French speaking regions and persists as we approach the language border. In column (5) of table 4 we introduce control variables, including vehicle brand, which does not have a large effect on the language estimate. This implies
that the measured effect of language does not depend on consumer preferences for certain brands.

Table 4: RDD CO2 - 2nd Stage

<table>
<thead>
<tr>
<th>Year</th>
<th>Share French</th>
<th>Observations</th>
<th>R²</th>
<th>Coefficients</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>-7.257***</td>
<td>1,833</td>
<td>0.534</td>
<td>-7.913***</td>
<td>0.459</td>
</tr>
<tr>
<td></td>
<td>(1.260)</td>
<td>(1.466)</td>
<td>(2.133)</td>
<td>(2.035)</td>
<td>(1.893)</td>
</tr>
<tr>
<td></td>
<td>-5.413**</td>
<td>-5.358***</td>
<td>-5.316***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>-7.416***</td>
<td>1,833</td>
<td>0.546</td>
<td>-7.857***</td>
<td>0.453</td>
</tr>
<tr>
<td></td>
<td>(1.245)</td>
<td>(1.484)</td>
<td>(2.053)</td>
<td>(1.913)</td>
<td>(1.806)</td>
</tr>
<tr>
<td></td>
<td>-5.771***</td>
<td>-5.254***</td>
<td>-5.011***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>-6.696***</td>
<td>1,835</td>
<td>0.539</td>
<td>-6.896***</td>
<td>0.442</td>
</tr>
<tr>
<td></td>
<td>(1.401)</td>
<td>(1.677)</td>
<td>(2.287)</td>
<td>(2.174)</td>
<td>(1.803)</td>
</tr>
<tr>
<td></td>
<td>-5.947***</td>
<td>-4.708**</td>
<td>-4.814***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>-7.044***</td>
<td>1,835</td>
<td>0.528</td>
<td>-6.852***</td>
<td>0.444</td>
</tr>
<tr>
<td></td>
<td>(1.329)</td>
<td>(1.532)</td>
<td>(2.243)</td>
<td>(2.064)</td>
<td>(1.650)</td>
</tr>
<tr>
<td></td>
<td>-7.929***</td>
<td>-5.055**</td>
<td>-5.011***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>-6.766***</td>
<td>1,835</td>
<td>0.508</td>
<td>-6.600***</td>
<td>0.447</td>
</tr>
<tr>
<td></td>
<td>(1.286)</td>
<td>(1.561)</td>
<td>(2.431)</td>
<td>(2.220)</td>
<td>(1.896)</td>
</tr>
<tr>
<td></td>
<td>-7.704***</td>
<td>-5.316**</td>
<td>-5.316***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bandwidth: all CH | *Bilingual: Bern, Valais and Fribourg
Polynomial: Quadratic, Quadratic, Quadratic, Linear, Linear
Covariates: No, No, No, Yes

*: p < 0.10, **: p < 0.05, ***: p < 0.01

Heteroskedasticity: Robust standard errors in parentheses
Table 5: RDD Fuel Economy - 2nd Stage

<table>
<thead>
<tr>
<th>Year</th>
<th>Share French</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>-0.309***</td>
<td>-0.336***</td>
<td>-0.232**</td>
<td>-0.236***</td>
<td>-0.232***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.062)</td>
<td>(0.091)</td>
<td>(0.086)</td>
<td>(0.078)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>1,833</td>
<td>528</td>
<td>749</td>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.554</td>
<td>0.469</td>
<td>0.488</td>
<td>0.447</td>
<td>0.587</td>
</tr>
<tr>
<td>2009</td>
<td>-0.315***</td>
<td>-0.355***</td>
<td>-0.296***</td>
<td>-0.268***</td>
<td>-0.259***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.065)</td>
<td>(0.091)</td>
<td>(0.085)</td>
<td>(0.078)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>1,833</td>
<td>528</td>
<td>749</td>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.555</td>
<td>0.445</td>
<td>0.489</td>
<td>0.438</td>
<td>0.598</td>
</tr>
<tr>
<td>2010</td>
<td>-0.300***</td>
<td>-0.322***</td>
<td>-0.299***</td>
<td>-0.231***</td>
<td>-0.239***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.070)</td>
<td>(0.099)</td>
<td>(0.094)</td>
<td>(0.079)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>1,835</td>
<td>528</td>
<td>751</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.530</td>
<td>0.423</td>
<td>0.439</td>
<td>0.372</td>
<td>0.571</td>
</tr>
<tr>
<td>2011</td>
<td>-0.271***</td>
<td>-0.264***</td>
<td>-0.303***</td>
<td>-0.198**</td>
<td>-0.197***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.065)</td>
<td>(0.095)</td>
<td>(0.089)</td>
<td>(0.071)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>1,835</td>
<td>528</td>
<td>751</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.488</td>
<td>0.395</td>
<td>0.404</td>
<td>0.356</td>
<td>0.581</td>
</tr>
<tr>
<td>2012</td>
<td>-0.251***</td>
<td>-0.253***</td>
<td>-0.305***</td>
<td>-0.211**</td>
<td>-0.216***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.065)</td>
<td>(0.103)</td>
<td>(0.093)</td>
<td>(0.081)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>1,835</td>
<td>528</td>
<td>751</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.473</td>
<td>0.384</td>
<td>0.384</td>
<td>0.362</td>
<td>0.562</td>
</tr>
</tbody>
</table>

Bandwidth: all CH, *Bilingual

Polynomial: Quadratic, Quadratic, Quadratic, Linear, Linear

Covariates: No, No, No, Yes

*Bilingual Cantons: Bern, Valais and Fribourg
Canton FE and control variables in all models
Heteroskedasticity: Robust standard errors in parentheses
***: p < 0.01, **: p < 0.05, *: p < 0.10
Table 6: Non-parametric fuzzy RDD

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD Estimate</td>
<td>0.070***</td>
<td>0.080***</td>
<td>0.060***</td>
<td>0.053***</td>
<td>0.039*</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.014)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Observations</td>
<td>565</td>
<td>179</td>
<td>329</td>
<td>179</td>
<td>135</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>all CH</td>
<td>*Bilingual</td>
<td>50 km</td>
<td>25 km</td>
<td>**15.85 km</td>
</tr>
</tbody>
</table>

Data from 2010; *Bilingual Cantons: Bern, Valais and Fribourg
**Optimal bandwidth using the stata package rdrobust
Standard errors in parentheses, uniform kernel
***: p < 0.01, **: p < 0.05, *: p < 0.10

Table 7: Linear Probability RDD with Individual Data

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-or B-Label Vehicle</td>
<td>0.039***</td>
<td>0.081***</td>
<td>0.092***</td>
<td>0.052***</td>
<td>0.047***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.019)</td>
<td>(0.015)</td>
<td>(0.010)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,767,790</td>
<td>821,242</td>
<td>1,232,560</td>
<td>496,567</td>
<td>378,896</td>
</tr>
<tr>
<td>R²</td>
<td>0.28</td>
<td>0.30</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>all CH</td>
<td>*Bilingual</td>
<td>50 km</td>
<td>25 km</td>
<td>25 km</td>
</tr>
<tr>
<td>Polynomial</td>
<td>Cubic</td>
<td>Cubic</td>
<td>Quadratic</td>
<td>Linear</td>
<td>Linear</td>
</tr>
<tr>
<td>Covariates</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Bilingual Cantons: Bern, Valais and Fribourg
Data from 2010; Canton FEin all models, covariates include car brand
Municipality clustered standard errors in parentheses
***: p < 0.01, **: p < 0.05, *: p < 0.10
7.2 Graphs

Figure 6: CO$_2$ Emissions and Fuel Efficiency (in 2010)
Source: BFS and ARE
Figure 7: Mean Population Density, Income per Capita and Altitude (in 2010)
Source: BFS and ARE
8 References

33

Working Papers of the Center of Economic Research at ETH Zurich

(PDF-files of the Working Papers can be downloaded at www.cer.ethz.ch/research/working-papers.html).

17/278 M. Filippini, T. Wekhof
The Effect of Culture on Energy Efficient Vehicle Ownership

17/277 L. Bretschger, A. Pattakou
As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon

17/276 J. Blasch, M. Filippini, N. Kumar A. Martinez.Cruz
Narrowing the energy efficiency gap: The impact of educational programs, online support tools and energy-related investment literacy

17/275 M. Filippini, W. Greene, N. Kumar, A. Martinez.Cruz
A note on the different interpretation of the correlation parameters in the Bivariate Probit and the Recursive Bivariate Probit

17/274 D. Basin, H. Gersbach, A. Mamageishvili, L. Schmid and O. Tejada
Election Security and Economics: It’s all about Eve

17/273 J. Abrell, M. Kosch and S. Rausch
The Economic Cost of Carbon Abatement with Renewable Energy Policies

17/272 H. Gersbach and O. Tejada
Semi-Flexible Majority Rules for Public Good Provision

17/271 D. Cerruti, A. Alberini, J. Linn
Charging Drivers by the Pound: The Effects of the UK Vehicle Tax System

17/270 H. Gersbach, P. Muller, O. Tejada
A Dynamic Model of Electoral Competition with Costly Policy Changes

17/269 J. Blasch, N. Boogen, M. Filippini, N. Kumar
The role of energy and investment literacy for residential electricity demand and end-use efficiency

17/268 H. Gersbach, M.-C. Riekhof
Technology Treaties and Climate Change

17/267 Christos Karydas
The inter-temporal dimension to knowledge spillovers: any non-environmental reason to support clean innovation?

17/266 Christos Karydas, Lin Zhang
Green tax reform, endogenous innovation and the growth dividend
17/265 Daniel Harenberg, Stefano Marelli, Bruno Sudret, Viktor Winschel
Uncertainty Quantification and Global Sensitivity Analysis for Economic Models

16/264 Marie-Catherine Riekhof
The Insurance Premium in the Interest Rates of Interlinked Loans in a Small-scale Fishery

16/263 Julie Ing
Adverse selection, commitment and exhaustible resource taxation

16/262 Jan Abrell, Sebastian Rausch, and Giacomo A. Schwarz
Social Equity Concerns and Differentiated Environmental Taxes

16/261 D. Ilic, J.C. Mollet
Voluntary Corporate Climate Initiatives and Regulatory Loom: Batten Down the Hatches

16/260 L. Bretschger
Is the Environment Compatible with Growth? Adopting an Integrated Framework

16/259 V. Grossmann, A. Schaefer, T. Steger, and B. Fuchs
Reversal of Migration Flows: A Fresh Look at the German Reunification

16/258 V. Britz, H. Gersbach, and H. Haller
Deposit Insurance in General Equilibrium

16/257 A. Alberini, M. Bareit, M. Filippini, and A. Martinez-Cruz
The Impact of Emissions-Based Taxes on the Retirement of Used and Inefficient Vehicles: The Case of Switzerland

16/256 H. Gersbach
Co-voting Democracy

16/255 H. Gersbach and O. Tejada
A Reform Dilemma in Polarized Democracies

16/254 M.-C. Riekhof and J. Broecker
Does the Adverse Announcement Effect of Climate Policy Matter? - A Dynamic General Equilibrium Analysis

16/253 A. Martinez-Cruz
Handling excess zeros in count models for recreation demand analysis without apology

16/252 M.-C. Riekhof and F. Noack
Informal Credit Markets, Common-pool Resources and Education
16/251 M. Filippini, T. Geissmann, and W. Greene
Persistent and Transient Cost Efficiency - An Application to the Swiss Hydropower Sector

16/250 L. Bretschger and A. Schaefer
Dirty history versus clean expectations: Can energy policies provide momentum for growth?

16/249 J. Blasch, M. Filippini, and N. Kumar
Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances

16/248 V. Britz
Destroying Surplus and Buying Time in Unanimity Bargaining

16/247 N. Boogen, S. Datta, and M. Filippini
Demand-side management by electric utilities in Switzerland: Analyzing its impact on residential electricity demand

16/246 L. Bretschger
Equity and the Convergence of Nationally Determined Climate Policies

16/245 A. Alberini and M. Bareit
The Effect of Registration Taxes on New Car Sales and Emissions: Evidence from Switzerland

16/244 J. Daubanes and J. C. Rochet
The Rise of NGO Activism

16/243 J. Abrell, Sebastian Rausch, and H. Yonezawa
Higher Price, Lower Costs? Minimum Prices in the EU Emissions Trading Scheme

16/242 M. Glachant, J. Ing, and J.P. Nicolai
The incentives to North-South transfer of climate-mitigation technologies with trade in polluting goods

16/241 A. Schaefer
Survival to Adulthood and the Growth Drag of Pollution

16/240 K. Prettner and A. Schaefer
Higher education and the fall and rise of inequality

16/239 L. Bretschger and S. Valente
Productivity Gaps and Tax Policies Under Asymmetric Trade

16/238 J. Abrell and H. Weigt
Combining Energy Networks