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Abstract. Stainless steel is a complex material and has properties that make it difficult to use in 

deep drawing processes. Because of its scattering material properties a robust process is difficult 

to achieve, resulting in the necessity to constantly adjust the drawing process. In order to produce 

parts at constantly high quality and to minimize scrap production, an intelligent control system, 

the Q-Guard system is implemented in production, covering the whole process chain from raw 

material to the finished part. This control system is presented in this contribution, with the main 

focus on the process control. This system is based on numeric simulations as well as material 

data, the process settings and draw-in measurements, all of them acquired in-line in production. 

Part of the data is used for a feedforward control for immediate good parts production, part of 

the data, like the draw-in, measured with an optical measurement system after the first draw, is 

used in a feedback loop. The layout of the process control and results from production runs will 

also be shown in this work. 

1.  Introduction 

Cost pressure in modern industry forces companies to utilize all possibilities to increase efficiency and 

reduce production cost. This goal in mind, the Q-Guard system was developed and implemented in 

production. This system is based on robust process design combined with the in-line acquisition of all 

relevant parameters and a process control of the forming process. Therefore each part has its own unique 

set of data and can be identified through a marker for continuous retraceability. In order to improve 

process design for new products, all data recorded in production are stored in a database for later use. 

Due to the complex shapes modern processes are extremely sensitive to even small variations of the 

process parameters (e.g. material, friction conditions) [1]. This is especially evident in the forming of 

metastable stainless steels, since their Martensite forming behavior has a big impact on the process and 

http://www.inspire.ethz.ch/divisions/inspire_ivp/index
http://www.ivp.ethz.ch/
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http://creativecommons.org/licenses/by/3.0
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part quality. For such processes, standard methods like six sigma to improve process robustness and 

quality in production also meet their limits [2]. For these reasons a process control is a viable approach 

to achieve a robust process and reduce scrap production. In the case of deep drawing processes, such a 

control system can be integrated in the stamping line to adjust the blank holder force [3]. 

In the past, several attempts to control deep drawing processes were undertaken. Griesbach [4] was 

investigating the material flow under the blank holder in order to control the process. Also Bräunlich 

[5] and Yun [6] used the draw-in to control the process. These works used the curve shapes of the draw-

in during the process rather than the final value after forming. First tests of systems, which use not only 

the draw-in but also material data and other parameters were done by Neumann [7]. 

2.  The Q-Guard approach 

The aim of the Q-Guard system is not only to set up a process control, but also to link product and 

process design to production. This way a-priori knowledge from process design and numeric simulations 

can be used to set up the process control. Stochastic simulations of the process are used to generate 

metamodels that describe the process behavior and can be used in the control system. 

 
Figure 1: idea of the Q-Guard system 

In the production line, all relevant parameters from the raw material to the finished part are measured 

in-line. Material properties, sheet thickness, lubrication, process settings (blank holder forces, drawing 

velocity …) and tool temperature are acquired and used in a feed-forward control. The draw-in is 

measured after the first draw and used for a feedback loop. In the feed-forward control, the metamodels 

are directly evaluated using optimization algorithms. This is also possible in the feedback loop, as a 

second approach, the metamodels can be used for the design of the controller. In order to have a complete 

retraceability, all blanks are marked with a unique identification number in a datamatrix code after 

cutting, using an inkjet printer. After destacking in the press line, the code is scanned and all data read 

from a database. The blank holder forces of the drawing press are then adapted by the feed-forward 

control based on the measured data.  

All acquired data are stored in a database (One part = one dataset) and available for the layout of 

future processes, in order to design processes based on real world data, or for follow-up checks of 

produced parts e.g. in case of complaints. 

The process that is analyzed and controlled in this work is the deep drawing of kitchen sinks at Franke 

AG in Switzerland. These sinks are produced in a two-step deep drawing process, but only the first 

drawing step is controlled and thus closely investigated. The sinks made from stainless steel 1.4301 with 

a thickness of 0.8 mm, the material coming from different suppliers (Posco and AST). 
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3.  Virtual Process  

The underlying metamodel, based on numeric simulations, is crucial for the applicability of the Q-Guard 

approach. Hence several aspects must be treated carefully to achieve optimum accuracy of the virtual 

process. The material model has to be optimized, taking into account all possible effects of the material. 

Since the parts are made from metastable stainless steel, especially Martensite forming has to be 

considered. Friction behavior is based on strip drawing tests done at the institute and evaluated using 

the draw-in measured from a 3d scan of some manufactured parts. Numeric simulations are done in 

AutoForm using AutoForm Sigma. The metamodels are then generated using the AutoForm data. The 

metamodels are not only used for the process control, they are also evaluated regarding sensitivities of 

the process and process robustness. 

3.1.  Material modelling 

Since the Martensite volume of the material generated during deep drawing is crucial for the forming 

behaviour of the material, the full Hänsel model including temperature dependency was implemented 

(equation 3.1). In this model, AHS, BHS, m, and n are the standard parameters for a Hockett-Sherby 

approximation,  is the strain, K is a correction coefficient for the temperature, T is the temperature, Tref 

is the reference temperature - in our case 80°C, kf is a coefficient to account for Martensite related 

hardening and Vm is the Martensite volume. 

 

    '1
ntotal m

f HS HS HS ref f Mk B B A e K T T k V                 
  

 3.1 

 

In order to achieve optimal simulation results, separate material models for both material suppliers 

were generated. The results for AST and Posco material are shown in Figure 2 and Figure 3. The base 

yield curve for each material was measured at 80° C, where no Martensite is formed. There is a clearly 

visible difference in the yield curves for the two materials. The Posco material reaches much higher 

stresses, although both materials start at the same yield stress. 

 
Figure 2: yield curves for AST steel (blue: 0° C, green: 20° 

C, red: 200° C) 

 
Figure 3: yield curves for Posco steel (blue: 0° C, green: 

20° C, red: 200° C) 

Another difference between the two materials is in the r-values. The 45° r-value for AST is 1.18, for 

Posco it is 1.33. These results depict one big problem in the process design for stainless steels. Since 

even materials with the same specifications can differ considerably, problems in production will occur, 

because the process design is optimized based on one specific material model. Very often the process 

windows are not large enough to tolerate such scatter of the material properties. 

3.2.  Friction modelling 

One big influence on the accuracy of the numeric simulation is the tribology. In this work coulomb 

friction is used.The friction setting in the simulation is based on strip drawing tests at the institute. These 
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tests are done at different temperature levels. To account for the heating up of the tools in production. 

At room temperature a friction coefficient of  = 0.07 was measured and used in the numeric simulation. 

The simulation results are validated with the 3d scanned geometries of real parts. The draw-in contour 

of the simulated part is compared to the corresponding real part. These contours matched very well, 

indicating a correct friction coefficient was used in the simulations. In the AutoForm Sigma simulations 

 was varied from 0.05 to 0.12. 

3.3.  Numeric simulations 

The material model and the friction data are used to set up the nominal simulation of the part. To get an 

idea how the part behaves, several quality criteria are checked (thinning, wrinkling, max. failure, etc.). 

It has to be noted, that in this project we are only considering the first deep-drawing operation. Therefore 

we are looking to have an optimal first step to ensure good parts after the second draw. 

 
Figure 4: nominal simulation - thinning 

 
Figure 5: nominal simulation - wrinkling 

In Figure 4 thinning is shown, which is not a very critical criterion, as long as the stretching in the 

bottom of the sink is sufficient. With a minimum of 6% stretching, this is reached everywhere. The 

wrinkling in Figure 5 seems to be critical, but all wrinkles can be removed in the second step.  

Using the nominal simulation, an AutoForm Sigma run is done. Seven parameters are varied (Table 

1), where the tensile strength is defined as depending from the yield strength. In Sigma, 100 simulations 

are done to generate data for the required metamodels reproducing the process behaviour. 

Table 1. Variation parameters for the AutoForm Sigma run. 

Parameter Minimum Maximum 

Total press force until 70 mm 2 000 kN 4 200 kN 

Total press force from 90 mm 1 500 kN 3 000 kN 

Friction coefficient 0.05 0.12 

Blank position (y-direction) -15 mm +15 mm 

Yield strength 239 MPa 289 MPa 

     Tensile strength (dep. from yield strength) 710 MPa 810 MPa 

Mean r-values (+/- 10 %) 0.975 1.192 

3.4.  Metamodeling 

For each selected quality criterion a separate metamodel is calculated. These quality criteria are 

 Max. failure in the bottom corners 

 Thinning in the bottom corners 

 Potential wrinkling in the side walls 

 Shear in the inlet corners 

Using these metamodels, correlation maps are calculated to visualize the process behaviour and to 

show correlations between the draw-in and the selected quality criteria. This way, the locations where 

the draw-in has to be acquired in-line are chosen. Figure 6 shows the correlation maps of two quality 
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criteria, thinning in the top right corner of the bottom and wrinkling in the sidewall at the spout. These 

diagrams show a clear correlation of the two quality criteria to the corners of the deep drawn part. Green 

stands for a correlation of 1, red means 0. For the correlation maps positive or negative correlations do 

not make a difference. Interestingly, the wrinkling at the sidewall is not so much influenced by the draw-

in at the adjacent corner, but by the three other corners. 

  
Figure 6: correlation of draw-in to selected quality criteria (in the pink areas); left: thinning, right: potential wrinkling 

A detailed sensitivity analysis to understand process behaviour is done usinge graphs as shown in 

Figure 7. Such diagrams are plotted for all process parameters and quality critera. The bar color in the 

graph shows the level of correlation (Table 2). In these diagrams, the correlation/sensitivity can also be 

negative.  

Table 2. Correlation levels in the bar plots, the levels 

apply for positive and negative values. 

Colour Correlation From  To 

Red insufficient 0 0.7 

Orange low  > 0.7 0.75 

Yellow good > 0.75 0.8 

Green high > 0.8 1 

In Figure 7 the correlation of the thinning criterion in the top rigth corner is shown. This quality 

criterion has a very low correlation to the friction and the total press force (Ftot-until100beforeBDC 

and Ftot-from80beforeBDC). On the other side, it is highly correlated to some of the locations of the 

draw-in measurement (S1, S2, S4). In Figure 7, MF stands for MaxFailure, TH for thinning and 

PotWR for potential wrinkling at specific locations of the part. 

 
Figure 7: sensitivities of process parameters, quality criteria and draw-in positions to the thinning in one of the corners  

Process flow 
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By using these correlation diagrams the position of the draw-in measurement is selected and the 

behaviour of the control system is validated. More details of the metamodeling approach that is used in 

this project, can be found in the work of Harsch et al [8].   

4.  Hardware 

Several measurement systems are integrated into the production line (blanking and stamping) at Franke. 

The setup of the Q-Guard system is shown in Figure 8. In the blanking line the sheet thickness and the 

material data are acquired and each blank is marked. In the press line, the blanks are scanned and the 

corresponding data loaded into the process control. Additionally all process settings (lubrication, forces, 

velocity, etc.) are read into the process control. After the first deep drawing step, the optical draw-in 

measurement takes place. 

 
Figure 8: hardware setup of the Q-Guard system in the production line. 

In the end, one region of finished part can be scanned (not entirely in-line though) using an optical 

measurement system. This way production can be linked to the simulation results. The modular Q-Guard 

software is the link between the blanking line, the press line, the database and the numeric simulations. 

4.1.  Material data 

In the blanking line, the measurement of material data takes place. To measure the sheet thickness, laser 

triangulation sensors are used, which are mounted on a c-shaped mounting. The material properties are 

acquired by eddy-current. The properties measured are the yield strength, tensile strength, uniform 

elongation, breaking elongation and the grain size. More information about the eddy-current 

measurement system integrated into the blanking line at Franke AG can be found in a paper from 

IDDRG2013 in Zurich [10]. 

4.2.  Draw-in Measurement 

After the first draw, the part is re-lubricated on the inside. During this operation the optical draw-in 

measurement is done. While the robot holds the part on the lubrication station (Figure 9), an image from 

a camera mounted above the part is taken and evaluated. The measurement system itself consists of a 

camera (resolution 2750 x 2200 pixels) plus lens (focus length = 25 mm) and an illumination system, 

both of which are mounted on a frame made of aluminum profiles. The camera is connected to a 

computer through TCP/IP. It is triggered through the robot and in return triggers the illumination when 

taking a picture. To increase measuring accuracy the system uses four flashlights in a square shaped 

arrangement as an additional illumination to shorten exposure time. This way any movement of the part 

and/or the camera through vibrations is frozen resulting in sharper edges in the image. The focal plane 
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of the camera is at the flange of the part for the same reason. The measurement system works in a way 

that the deviation of a measured part’s contour in relation to a reference part is calculated (Figure 10). 

Since the part is slightly moved by the robot arm when lifting it, the software has to calculate the distance 

and rotation of each part compared to the reference part. This deviation has to be compensated during 

image processing.  

 
Figure 9: a part in the lubrication station 

 
Figure 10: zoom in on the bottom left corner 

The data acquisition software can either be integrated into the Q-Guard environment or used as a 

stand-alone program, according to the modular approach of the Q-Guard system. 

4.3.  Marking and scanning 

In the blanking line, each blank is marked with a unique identifier using a Hitachi inkjet printer. This 

allows for a complete retraceability of each blank. The identifier is printed on the blank as characters as 

well as a datamatrix code. In the database a complete dataset for each blank is stored. After the blanking 

line this dataset consists of the order number, material batch number from the supplier, the mechanical 

properties and the thickness. After destacking in the press line, a datamatrix scanner reads the blank 

identifier and acceses the data from the database. Together with the tool temperature, the lubrication and 

the press settings, these data are used for the feed forward control. After the part is manufactured, the 

new data including the draw-in results are added to the database. 

5.  Process Control 

The layout of the process control is shown in Figure 11. The generated virtual knowledge from numeric 

simulations is used in both parts of the control system, the feed forward control and the feedback loop. 

 
Figure 11: layout of the process control 

In order to test the control system, first experiments were performed. Based on the machine settings 

for good parts, the settings were changed and the control system had to adapt the settings back to the 

optimum. In a first run, a simple PI-controller was used, that was designed using the metamodels from 

numeric simulations (Figure 12). In a second attempt a direct optimization of the metamodels was used 
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(Figure 13). Both algorithms worked well, especially the optimization algorithm found the optimum 

settings very fast, it was slightly overshooting though. After 4 parts, the controller reached a steady state. 

 
Figure 12: simple controller based on metamodel. 

 
Figure 13: direct optimization of metamodel 

6.  Conclusions 

The in-line acquisition of all relevant parameters works very well in production and a control system, 

capable of finding the optimum settings for the investigated process can be implemented based on 

numeric simulations and in-line measured data. 
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