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Abstract Properties of risk measures for extreme risks have become an im-
portant topic of research. In the present paper we discuss sub- and superad-
ditivity of quantile based risk measures and show how multivariate extreme
value theory yields the ideal modeling environment. Numerous examples and
counter-examples highlight the applicability of the main results obtained.
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1 Introduction

In Embrechts et al. (2002), the following example was worked out. Suppose
X1, X2 are independent random variables (rvs) each with a Pareto distribution
function (df)

P(Xi > x) = x−1/2, x ≥ 1,
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i.e., the Xi’s have infinite mean. Consider X = X1 + X2 and let α ∈ (0, 1), then

F−1
X1+X2

(α) > F−1
X1

(α) + F−1
X2

(α), (1.1)

i.e., quantiles act superadditively. This rather trivial example has far-reaching
consequences in finance, where the Xi’s correspond to profits or losses, over
a given fixed (holding) period, in particular markets/instruments. A quantile
of such a fixed period position is referred to as Value-at-Risk (VaR); see also
Definition 2.1 below. Hence Eq. 1.1 can be rewritten as

VaRα(X1 + X2) > VaRα(X1) + VaRα(X2). (1.2)

The above example (Eq. 1.1) and its numerous generalizations form an impor-
tant topic of research in Quantitative Risk Management (QRM) as for instance
discussed in McNeil et al. (2005), Chapter 6. It also has important conse-
quences within (re)insurance when modeling catastrophic risks; see Ibragimov
et al. (2008).

Understanding the practical relevance of situations where Eq. 1.2 holds,
or indeed where subadditivity (“≤” in Eq. 1.2) holds are crucial within the
regulatory framework (so-called Basel I and II) of financial institutions; see
Chapter 1 in McNeil et al. (2005) and the references therein. Indeed, under
the Basel II framework, the quantile risk measure VaRα(X) corresponds to
regulatory (risk) capital that a financial institution has to hold in order to be
able to carry the risky position X on its books. Furthermore, the quantity

Dα(X1, X2) = VaRα(X1 + X2) − VaRα(X1) − VaRα(X2)

can be seen as a measure of diversification. Alternatively, the quantity

Cα(X1, X2) = VaRα(X1 + X2)

VaRα(X1) + VaRα(X2)

is referred to as a measure of concentration within the Basel II framework.
Consequently, a deeper understanding concerning the possible values of either
Dα(X1, X2) and Cα(X1, X2) across a wide family of dfs relevant for QRM
practice is important.

This paper presents several results on this topic for arbitrary dimensions
n ≥ 2 and dependence structures, and this within the unifying framework
of multivariate extreme value theory (MEVT). The MEVT approach to the
above problems is by no means new. We found however that a summary of
these results keeping financial applications in mind would be highly useful.
Through many concrete examples and counter-examples we show that care
has to be taken concerning possible constraints/properties of the dfs of the
underlying risk factors. In a wider context of QRM, these same techniques are
becoming increasingly important in the analysis of high risk scenarios, see for
instance Balkema and Embrechts (2007), and therefore will become part of the
standard toolkit of QRM.
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The paper is organized as follows. Section 2 recalls the basic notion of
multivariate regular variation and its link to questions like Eq. 1.1. In Section 3
we discuss three examples where Eq. 1.1 may or may not hold, stressing
in particular the important difference between one-sided and two-sided risk
dfs. For positive rvs, Section 4 uses the notion of spectral measure to derive
additivity-type results under general portfolio assumptions. Sections 5 and 6
study the link with tail dependence concepts, whereas Section 7 concludes.

2 Value-at-Risk and multivariate regular variation

In this section we introduce multivariate regular variation, which provides
a natural framework to discuss diversification of a portfolio under the risk
measure VaR. Throughout the paper, we use the language of MEVT. For
the latter, several approaches exist, like the more geometric one as presented
in Balkema and Embrechts (2007) or Barbe (2003). In these contributions,
the geometry of the level sets of the underlying multivariate densities plays
a crucial role. We choose to base our discussion on the notion of spectral
measure and MEVT results in this context. Part IV in Balkema and Embrechts
(2007) compares some of the different approaches and highlights these in the
context of high-threshold exceedances, which is akin to VaR estimation.

Definition 2.1 (Value-at-Risk) Let X be a rv with df F. The Value-at-Risk
with respect to the level α ∈ (0, 1) is defined as the generalized inverse of F,
VaRα(X) = F←(α) = inf {x ∈ R | F(x) ≥ α}.

In all relevant situations, α is typically close to 1. We say that VaR is
asymptotically subadditive for X1, . . . , Xn, if

lim
α↗1

VaRα

(
n∑

i=1

Xi

)

n∑
i=1

VaRα(Xi)

≤ 1, (2.1)

provided the limit exists. VaR is called asymptotically superadditive for
X1, . . . , Xn if “≥” in Eq. 2.1 holds. We assume the reader to be familiar
with univariate EVT and in particular univariate regular variation; see for
instance Embrechts et al. (1997) for an introduction. The following definition
introduces multivariate regular variation and also the limiting constant q, which
is of main interest in this paper; standard textbooks on multivariate EVT
are for instance Resnick (1987, 2007), Beirlant et al. (2004), de Haan and
Ferreira (2006) and Balkema and Embrechts (2007). A brief and very readable
introduction to the field is found in Mikosch (2004).
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Definition 2.2 (Multivariate regular variation) A random vector X = (X1, . . . ,

Xn)
′ is multivariate regularly varying with index −β < 0, if there exists a proba-

bility measure μ, a measurable function b: (0, ∞) → (0, ∞) with lim
t→∞ b(t) = ∞

and a scalar q = q(b) > 0 such that for all r > 0,

lim
t→∞ t P

(
‖X‖ > rb(t),

X
‖X‖ ∈ G

)
= qr−βμ(G),

for any Borel set G ⊂ ℵn−1
‖·‖ = {

x = (x1, . . . , xn)
′ ∈ Rn | ‖x‖ = 1

}
. We write X ∈

MRVn(−β).

The definition of multivariate regular variation is independent of the explicit
choice of the norm ‖ · ‖ on Rn. This comes from the fact that all norms on Rn

are equivalent; see Lemma 2.1 in Hult and Lindskog (2002) for details. Note
that the limiting constant q depends on the index −β < 0 and on the norm ‖ · ‖
chosen.

The goal of this paper is to analyze the properties of the limiting constant q
for random vectors X with identically distributed marginals (this assumption
can be relaxed using change of norms techniques; see Section 4) and with a
dependence structure within the framework of multivariate regular variation.
It follows from Definition 2.2 that for X = (X1, . . . , Xn)

′ ∈ MRVn(−β), β > 0,

q(β, ‖ · ‖) = lim
x→∞

P(‖X‖ > x)

P(X1 > x)
> 0;

see Barbe et al. (2006), formula (9) and Remark 1 in Resnick (2004). An
interesting choice of norm is the l1-norm ‖ · ‖1 on Rn+, to study the sum
X1 + . . . + Xn of n risky positions. However, also more general loss functions,
say �, are considered in practice.

Lemma 2.3 Let X = (X1, . . . , Xn)
′ ∈ MRVn(−β), β > 0, with identically dis-

tributed marginals. If for a measurable function � : Rn → R,

lim
x→∞

P(�(X) > x)

P(X1 > x)
= q� ∈ (0, ∞), (2.2)

then

lim
α↗1

VaRα(�(X))

VaRα(X1)
= q1/β

� .

Proof Consider F�(x) = P(�(X) ≤ x) and F(x) = P(X1 ≤ x). Using Eq. 2.2
and the regular variation properties of X1, one shows that

lim
α↗1

F←
� (α)

F←(α)
= lim

x→∞
x

F←(F�(x))
= q1/β

� .

The details are straightforward and therefore omitted. �
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Remark 2.4 Equation 2.2 holds for example if �(X) = ‖X‖, where ‖ · ‖ is a
norm on Rn or if �(X) = ∑n

i=1 Xi for X1, . . . , Xn i.i.d.; see Barbe et al. (2006),
formula (9) and Embrechts et al. (1997), Corollary 1.3.2, respectively.

3 Three examples

Many examples show that VaR properties for rvs with doubly infinite support
are not easy to handle, particularly in the case of infinite mean models; see for
instance Nešlehová et al. (2006), Chavez-Demoulin et al. (2006), Ibragimov
and Walden (2007). To illustrate this, we give three basic examples:

Example 3.1 For n ≥ 2, let X1, . . . , Xn be i.i.d. rvs, regularly varying with index
−β < 0. In this case, it is well-known that asymptotic subadditivity holds if and
only if β ≥ 1. This follows from Lemma 2.3, yielding

lim
α↗1

VaRα

(
n∑

i=1

Xi

)

n∑
i=1

VaRα(Xi)

= n1/β−1 > 1, for β < 1,

because the limiting constant q� in Eq. 2.2 is equal to n for �(X) = ∑n
i=1 Xi;

see Corollary 1.3.2 in Embrechts et al. (1997).

When allowing for dependence, one has to be more careful when analyzing
additivity properties of VaR; see for instance Example 6.4, Fig. 4 below. As
shown in Balkema and Embrechts (2007) and Barbe (2003), for distributions
with a density, these questions are closely linked with the properties of the level
sets. In the next example, we consider elliptically distributed random vectors.

Definition 3.2 (Elliptical distribution) A random vector X has an elliptical
distribution with mean μ ∈ Rn and dispersion matrix �, if there exist R, A and

U satisfying X d= μ + RAU, with

a) R ≥ 0, a non-negative rv;
b) U uniformly distributed on the unit sphere ℵn−1

‖·‖2
= {z ∈ Rn, ‖z‖2 = 1},

independent of R, and
c) A ∈ Rn×n with AA′ = �.

Example 3.3 Theorem 6.8 in McNeil et al. (2005) states that for X =
(X1, . . . , Xn)

′ elliptically distributed, we have for all α ∈ [ 1
2 , 1),

VaRα

(
n∑

i=1

Xi

)
≤

n∑
i=1

VaRα(Xi).
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That is, in the elliptical world, subadditivity of VaR holds true for finite and
infinite mean models.

What is the reason for this discrepancy between Example 3.1 and Example
3.3 ? For β > 1 (finite mean case) the asymptotic VaR is subadditive in both
models. However, for β < 1, we are in the infinite mean regime and the
asymptotic VaR behaves very differently in the models analyzed. The reason
for this difference is connected with the behavior of the joint df (or more
precisely, the spectral measure; see Section 4) and can not be explained by the
marginal dfs alone. We will discuss risk aggregation in the light of dependence
structures describing interdependencies in the joint tail(s) of the distribution.

In Example 3.3 we learned that subadditivity of VaR holds for every
elliptical distribution. However, asymptotic subadditivity of VaR fails for
infinite mean models as soon as we weaken the influence of the negative tails
by restricting for example to the positive quadrant of the elliptical distribution
(Fig. 1).

Example 3.4 Let X = RAU be a bivariate elliptical random vector with R ∈
RV−β, β > 0,

A =
(

1 0
�

√
1 − �2

)
,

and U uniformly distributed on the unit sphere ℵ1
‖·‖2

, i.e., U = (cos W, sin W)′,
with W ∼ Unif(−π, π). We are interested in the behavior of X = (X1, X2)

′,
restricted to the positive quadrant. We thus consider X̃ = (X̃1, X̃2)

′ = X|{X ≥
0}, where the inequality has to be interpreted componentwise. We consider

Fig. 1 The limiting constant q
in Eq. 3.1 as a function of �

for different values of β.
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q(β, ‖ · ‖1) as a function of β and �. Using the Dominated Convergence
Theorem in the last step below, we get

q(β, �)= lim
x→∞

P(X̃1 + X̃2 > x)

P(X̃1 > x)

= lim
x→∞

P
(

R
(
(1+�) cos W+√

1 − �2 sin W
)

> x
∣∣W ∈ [− arcsin �, π/2]

)
P (R cos W > x|W ∈ [− arcsin �, π/2])

= lim
x→∞

∫ π/2
− arcsin �

P
(

R > x/
(
(1 + �) cos w + √

1 − �2 sin w
))

dw∫ π/2
− arcsin �

P (R > x/ cos w) dw

=
∫ π/2
− arcsin �

(
(1 + �) cos w + √

1 − �2 sin w
)β

dw∫ π/2
− arcsin �

cosβ w dw
. (3.1)

Proposition 3.5 Let q(β, �) be defined as in Example 3.4, then

a) for all � ∈ [−1, 1], q(β, �) ≤ 2β if β ≥ 1 and q(β, �) ≥ 2β if β ≤ 1;
b) lim�→−1 q(β, �) = 1 + β, and
c) lim�→1 q(β, �) = 2β .

Proof Define for f ∈ Lβ([−π/2, π/2]),

ζβ( f ) =
⎛
⎝ π/2∫

−α

f β(w) dw

⎞
⎠

1/β

,

with a fixed α = arcsin � ∈ [−π/2, π/2] and 0 < β < ∞. From Eq. 3.1 and some
standard trigonometric transformations we get

q(β, sin α)1/β = ζβ (cos(·) + sin(α + ·))
ζβ (cos(·)) .

Applying Minkowski’s inequality for β ≥ 1, we have

q(β, sin α)1/β ≤ 1 + ζβ (sin(α + ·))
ζβ (cos(·)) = 2 for β ≥ 1.

For β ≤ 1, the “≤” turns into a “≥” by Theorem 198 in Hardy et al. (1934). This
proves part a). Part b) follows from Eq. 3.1 and part c) is a consequence of the
comonotonicity of X1 and X2 or can be calculated explicitly using Eq. 3.1. �

By part a) of Proposition 3.5 the following corollary follows from
Lemma 2.3:
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Corollary 3.6 Let X ∈ MRV2(−β), β > 0, be an elliptical random vector as in
Example 3.4, and X̃ the random vector X restricted to the positive quadrant,
then VaR is asymptotically subadditive for X̃ if β ≥ 1 and asymptotically
superadditive if β ≤ 1.

The three examples elaborated in this section show that, besides the depen-
dence structure and the tail behavior of the marginal dfs, it is also important to
differentiate between rvs with one-sided and two-sided support.

For the infinite mean multivariate t-distribution, subadditivity of VaR holds
due to the dependence properties in the upper left and lower right corner. High
values of one risk are compensated by low values of the other risk, turning VaR
into a coherent risk measure for such infinite mean models. Of course this has
important consequences in risk management. Risk managers should be aware
of this property for elliptical distributions, particularly when the compensation
of high losses by high gains turns out to be an inappropriate characteristic of
the considered risk class.

4 Spectral measures for positive rvs

In the following we consider multivariate regularly varying Rn+-valued random
vectors. Operations between vectors should be interpreted componentwise.
Let ‖ · ‖ : Rn → R+ be an arbitrary norm. Denote the positive part of the unit
sphere with respect to the norm ‖ · ‖ by ℵn−1

+,‖·‖ = {z ∈ Rn+ | ‖z‖ = 1}. Note that
we write ℵn−1

+,‖·‖ for the positive part of ℵn−1
‖·‖ . For Rn+-valued random vectors

X, Theorem 1 in Resnick (2004) or Theorem 6.1 in Resnick (2007) states that
multivariate regular variation of X in the sense of Definition 2.2 is equivalent
to the existence of a Radon measure νβ such that

lim
t→∞ t P(X/b(t) ∈ B) = νβ(B),

for all B ⊂ [0, ∞]n \ {0} relatively compact with νβ(∂ B) = 0. The term Radon
means that νβ is finite for all compact subsets of [0, ∞]n \ {0}. Resnick (2007)
calls νβ the limit measure and, after normalization of the marginal dfs, ν1 is
referred to as the exponent measure in de Haan and Ferreira (2006). Choosing

B = {
z ∈ [0, ∞]n | ‖z‖ > r, z/‖z‖ ∈ G

}
,

for r > 0 and a Borel set G ∈ ℵn−1
+,‖·‖, we get from Definition 2.2,

q(β, ‖ · ‖)r−βμ(G) = νβ

{
z ∈ [0, ∞]n | ‖z‖ > r, z/‖z‖ ∈ G

}
.

For β = 1 and r = 1, this defines the spectral measure S‖·‖ by

S‖·‖(G) = ν1
{
z ∈ [0, ∞]n | ‖z‖ > 1, z/‖z‖ ∈ G

}
.

Following Barbe et al. (2006), we have q(β, ‖·‖)=ν1
{
z∈[0, ∞]n |‖z1/β‖>1

}
,

and therefore the following theorem.



Multivariate extremes and the aggregation of dependent risks... 115

Theorem 4.1 Let X ∈ MRVn(−β), β > 0, be a Rn+-valued random vector with
identically distributed marginals, then

q(β, ‖ · ‖) = lim
x→∞

P(‖X‖ > x)

P(X1 > x)
=

∫
ℵn−1

+,‖·‖
‖z1/β‖β S‖·‖(dz).

Proof Barbe et al. (2006) give an explicit proof when ‖ · ‖ is the l1-norm in Rn.
The same proof holds true for general norms in Rn, as was certainly noticed by
these authors. We therefore refrain from giving the details. �

Theorem 4.1 shows that β = 1 plays an important role in this context.
Regardless of our choice of the norm, we have q(β = 1, ‖ · ‖) = S‖·‖(ℵn−1

+,‖·‖).
If we consider the l1-norm, we can give the following result.

Corollary 4.2 Let X ∈ MRVn(−β), β > 0, be a Rn+-valued random vector with
identically distributed marginals. Let ‖ · ‖1 be the l1-norm in Rn, then

n ≤ q(β, ‖ · ‖1) ≤ nβ, for β ≥ 1,

n ≥ q(β, ‖ · ‖1) ≥ nβ, for β ≤ 1.

Proof Proposition 2.2 in Barbe et al. (2006) states that q(β, ‖ · ‖1) is increasing
in β. Further, q(1, ‖ · ‖1) = S‖·‖1

(ℵn−1
+,‖·‖1

) = n, because S‖·‖1/n is a probability
measure. This proves the LHS of the statements. For the RHS, consider the
functional

ζ̃β( f ) =
(∫

ℵn−1
+,‖·‖1

f β(z) S‖·‖1(dz)

)1/β

,

for non-negative functions f ∈ Lβ
(ℵn−1

+,‖·‖1
, S‖·‖1

)
. Note that for β ≥ 1, by

Minkowski’s inequality (note the slight abuse of notation),

(q(β, ‖ · ‖1))
1/β = ζ̃β

(
n∑

i=1

z1/β

i

)
≤

n∑
i=1

ζ̃β

(
z1/β

i

)
=

n∑
i=1

(∫
ℵn−1

+,‖·‖1

zi S‖·‖1(dz)

)1/β

=n.

For β ≤ 1 the “≤” turns into a “≥” by Theorem 198 in Hardy et al. (1934). �

Theorem 4.3 Let X ∈ MRVn(−β), β > 0, be a Rn+-valued random vector with
identically distributed marginals, then VaRα is asymptotically subadditive for X
if β ≥ 1 and asymptotically superadditive if β ≤ 1.

Proof Lemma 2.3 and Corollary 4.2 yield the result. �

Asymptotic subadditivity for bivariate regularly varying random vectors
with β ≥ 1 has already been proven in Daníelsson et al. (2005), Proposition 1.
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Remark 4.4 Note that all components of X in Theorem 4.3 need to be pos-
itive. If this assumption is not fulfilled, subadditivity also for infinite mean
models may occur, for example for elliptical distributed random vectors; see
Example 3.3.

The norm ‖z‖1 = |z1| + · · · + |zn| is a natural choice, because it allows for
the study of sums of dependent, positive risks and in particular for an analysis
of the additivity properties of VaR; see Theorem 4.3. Sometimes however,
spectral measures with respect to other norms are chosen; for instance in
Stărică (1999) and Hult and Lindskog (2002), the spectral measure with respect
to ‖ · ‖2 and ‖ · ‖∞, respectively, is more convenient in their context.

Also when one deals with elliptical types of distributions, where (after a
linear transformation of X) the spectral measure with respect to the Euclidean
norm ‖ · ‖2 is uniformly distributed on ℵn−1

‖·‖2
, a change of measure could be

appropriate. It is thus important to express the spectral measure with respect to
one norm in terms of the spectral measure with respect to another norm. This
can always be done; see for instance formula (8.38) in Beirlant et al. (2004),
which we formulate in the following lemma.

Lemma 4.5 Let S‖·‖ and S‖·‖′ be the spectral measure with respect to the norms
‖ · ‖ and ‖ · ‖′, respectively, then

S‖·‖(G) =
∫

ℵn−1
+,‖·‖′

1{z/‖z‖∈G}‖z‖ S‖·‖′(dz),

for any Borel set G ⊂ ℵn−1
+,‖·‖.

We call a Rn+-valued multivariate regularly varying random vector asymp-
totically independent, if the spectral measure S‖·‖ is concentrated on the points
ei/‖ei‖, i = 1, . . . , n, with ei the ith basis vector of the canonical basis in
Rn; it is called asymptotically fully dependent, if the spectral measure S‖·‖ is
concentrated on 1/‖1‖, with 1 = (1, . . . , 1)′; see Resnick (2004). Note that by
Lemma 4.5 asymptotic independence as well as asymptotic full dependence is
well-defined.

Proposition 4.6 Let X ∈ MRVn(−β), β >0, be an asymptotically independent
Rn+-valued random vector with identically distributed marginals, then q(β,

‖ · ‖)=∑n
i=1 ‖ei‖β and in particular, if ‖ei‖=1 for all i=1, . . . , n, q(β, ‖·‖)=n.

Proof Theorem 4.1 yields

q(β, ‖ · ‖) =
n∑

i=1

‖ (ei/‖ei‖)1/β ‖β S‖·‖(ei/‖ei‖) =
n∑

i=1

‖ei‖β−1S‖·‖(ei/‖ei‖),

with S‖·‖(ei/‖ei‖) = ‖ei‖S‖·‖1(ei) = ‖ei‖, by Lemma 4.5 and because S‖·‖1/n is a
probability measure. �
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This proposition generalizes Lemma 2.1 in Davis and Resnick (1996) to
arbitrary norms; see also Lemma 3.1 in Jessen and Mikosch (2006), where the
result from Davis and Resnick (1996) is generalized to rvs with doubly infinite
support.

Proposition 4.7 Let X ∈ MRVn(−β), β > 0, be an asymptotically fully de-
pendent Rn+-valued random vector with identically distributed marginals, then
q(β, ‖ · ‖) = ‖1‖β .

Proof Theorem 4.1 yields

q(β, ‖ · ‖) = ‖ (1/‖1‖)1/β ‖β S‖·‖(1/‖1‖) = ‖1‖β−1S‖·‖(1/‖1‖),
with S‖·‖(1/‖1‖) = ‖1/n‖S‖·‖1(1/n) = ‖1‖, by Lemma 4.5 and because S‖·‖1/n
is a probability measure. �

Proposition 4.8 Let X ∈ MRVn(−β), β > 0, be a Rn+-valued random vector
with identically distributed marginals. Let S‖·‖∞ be the spectral measure with
respect to ‖ · ‖∞, the maximum-norm in Rn, then

q(β, ‖ · ‖∞) = S‖·‖∞
(ℵn−1

+,‖·‖∞

) =
∫

ℵn−1
+,‖·‖

n∨
i=1

zi S‖·‖(dz).

Proof Note that ‖z1/β‖β
∞ = 1 on ℵn−1

+,‖·‖∞ , for all β > 0. Hence, the first equality
follows from Theorem 4.1. Using Lemma 4.5 the second equality follows. �

The following well-known result characterizes asymptotic independence
and full dependence.

Corollary 4.9 Let X ∈ MRVn(−β), β > 0, be a Rn+-valued random vector with
identically distributed marginals, then

i) X is asymptotically independent if and only if∫
ℵn−1

+,‖·‖

n∨
i=1

zi S‖·‖(dz) = n.

ii) X is asymptotically fully dependent if and only if∫
ℵn−1

+,‖·‖

n∨
i=1

zi S‖·‖(dz) = 1.

Proof The “⇒”-part is straightforward from the definition of asymptotic
independence and full dependence, but also a consequence of Propositions
4.6, 4.7 and 4.8. For the converse, see Beirlant et al. (2004), Section 8.2.7. �

By Proposition 4.8 and Corollary 4.9, it suffices to evaluate q(β, ‖ · ‖∞) in
order to test for asymptotic independence and full dependence, respectively.
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5 Tail dependence and asymptotic independence

In Sections 5 and 6, we will discuss further examples and counter-examples
for subadditivity of VaR. We restrict ourselves to the bivariate case and only
sums of rvs are considered. Since the marginal dfs have equal asymptotic
behavior in the different infinite mean models in Examples 3.1 and 3.3, the
asymptotic VaR behavior for the sum of the risks must follow from the
different dependence structures (copulas, spectral measures). We exemplify
this issue through the notions of asymptotic dependence coefficients in the
(four) tails of the underlying bivariate distribution.

Definition 5.1 Let (X1, X2)
′ be a bivariate random vector, with marginal dfs

FX1 and FX2 . The positive upper (λ+
u ), positive lower (λ+

l ), negative upper (λ−
u )

and negative lower (λ−
l ) tail dependence coefficients are defined as

λ+
u = lim

α↗1
P

(
X2 > F←

X2
(α)|X1 > F←

X1
(α)

)
,

λ+
l = lim

α↘0
P

(
X2 ≤ F←

X2
(α)|X1 ≤ F←

X1
(α)

)
,

λ−
u = lim

α↗1
P

(
X2 > F←

X2
(α)|X1 ≤ F←

X1
(1 − α)

)
,

λ−
l = lim

α↘0
P

(
X2 ≤ F←

X2
(α)|X1 > F←

X1
(1 − α)

)
,

provided the limits exist in [0, 1].

A sufficient condition for the existence of the tail dependence coefficient
is bivariate regular variation of ( f (X1), f (X2))

′ for some strictly increasing
transformation f ; see Mikosch (2006) and references therein for weaker
conditions on (X1, X2)

′.
Note that for (X1, X2)

′ ∈ MRV2(−β), β > 0, a R2+-valued random vector
with identically distributed marginals, we have

λ+
u = lim

x→∞ P(X2 >x|X1 >x)=2− lim
x→∞

P(max(X1, X2)>x)

P(X1 > x)
=2−q(β, ‖ · ‖∞),

and hence by Proposition 4.8, λ+
u = 2 − S‖·‖∞(ℵ1

+,‖·‖∞).

Proposition 5.2 Let (X1, X2)
′ ∈ MRV2(−β), β > 0, be a R2+-valued random

vector with identically distributed marginals, then

λ+
u = 0 ⇐⇒ (X1, X2)

′ asymptotically independent.

Proof By Proposition 4.8 and Corollary 4.9, asymptotic independence of the
random vector (X1, X2)

′ is equivalent to 2 = q(β, ‖ · ‖∞). This is equivalent to
λ+

u = 0. �

Remark 5.3 The concept of positive tail dependence is well-known and often
used in risk management, in particular for describing so-called spillover events;
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see for instance Straetmans (1998). However, negative tail dependence λ−
u , λ−

l ,
i.e., the probability that high values of X1 are compensated by low values of
X2 and vice versa, did not draw risk managers’ attention so far. We will see its
importance in the sequel. High negative tail dependence might not always be
reasonable in reality. If it is not appropriate that high losses are compensated
by high gains with positive probability, then more conservative models should
be considered. Recently Zhang (2008) introduced negative tail dependence in
order to define a novel dependence measure called total tail dependence, which
is a (2 × 2)–matrix with components λ+

u , λ+
l , λ−

u , λ−
l .

The tail dependence coefficients do not depend on the marginal dfs and thus
can be written in terms of the corresponding copulas.

Proposition 5.4 Let FX1 and FX2 from Definition 5.1 be continuous dfs and C
the corresponding copula, then

λ+
u = lim

α↗1

1 − 2α + C(α, α)

1 − α
, (5.1)

λ+
l = lim

α↘0

C(α, α)

α
, (5.2)

λ−
u = 1 − lim

α↗1

C(1 − α, α)

1 − α
, (5.3)

λ−
l = 1 − lim

α↘0

C(1 − α, α)

α
. (5.4)

Proof See for instance Joe (1997), Section 2.1.10 or McNeil et al. (2005),
Section 5.2.3 for the proof of Eqs. 5.1 and 5.2. The proof of Eqs. 5.3 and 5.4
is completely analogous. �

In the case of regularly varying elliptical distributions, the four tail depen-
dence coefficients can be calculated explicitly.

Proposition 5.5 Let X d= μ + RAU be a bivariate elliptically distributed regu-
larly varying random vector with index −β < 0, as defined in Definition 3.2,
then

λ+
u = λ+

l =
∫ π/2

a+ cosβ t dt∫ π/2
0 cosβ t dt

, (5.5)

λ−
u = λ−

l =
∫ π/2

a− cosβ t dt∫ π/2
0 cosβ t dt

, (5.6)

with a+ = (π/2 − arcsin �)/2, a− = (π/2 + arcsin �)/2, and where � = σ12/√
σ11σ22 with (σij)1≤i, j≤2 = � = AA′.
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Proof Equation 5.5 has been proven in Hult and Lindskog (2002). By consid-
ering the map X �→ DX, with

D =
(

0 −1
1 0

)
,

Eq. 5.6 follows from Eq. 5.5. �

Even for rvs with a positive linear correlation coefficient, λ−
u can be sig-

nificantly larger than zero. Another important consequence of the previous
proposition is that there exists no elliptical distribution without negative tail
dependence and with heavy (i.e., regularly varying) tails, provided � < 1.

Remark 5.6 The class of Archimedean copulas contains several dependence
structures important for practical purposes; see Nelsen (2007) Section 4.1, for
a definition of an Archimedean copula and further results. An interesting
connection between Archimedean copulas and so-called l1-norm symmetric
distributions is established by Nešlehová and McNeil (2008). One can show
that bivariate dfs with continuous marginals and with certain Archimedean
copulas (e.g., with strict generator; see Nelsen 2007) have no negative tail
dependence, that is λ−

u = λ−
l = 0. Therefore, they stand in violent contrast to

elliptical distributions, where (unless in the comonotonic case) λ−
u and λ−

l are
always positive.

For every elliptical copula one can always find a (strict) Archimedean
copula with the same positive upper tail dependence coefficient λ+

u . However,
the asymptotic VaRs behave very differently; see also Embrechts et al. (2008).
We hence conclude that the positive upper tail dependence coefficient in an
infinite mean model is not able to explain the sub-/superadditive behavior
of VaR.

In the next section we show that a crucial role is indeed played by λ−
u and λ−

l
whenever X1 and X2 have doubly infinite support.

6 Tail dependence and subadditivity

The simplest model incorporating independence as well as co- and counter-
monotonicity is the Fréchet family. Therefore, we combine the independent
copula C0,0(u, v) = uv, the comonotonic copula C1,0(u, v) = u ∧ v = min(u, v)

and the countermonotonic copula C0,1(u, v) = (u + v − 1)+; see Nelsen (2007),
Exercise 2.4. Let Cp1,p2 be a convex combination of these copulas,

Cp1,p2(u, v) = p1(u ∧ v) + p2(u + v − 1)+ + (1 − p1 − p2)uv, (6.1)

for p1 ∈ [0, 1] and p2 ∈ [0, 1 − p1]. The copula family Cp1,p2 is referred to as
the Fréchet family. Let X1, X2 be two identically distributed regularly varying
rvs with index −β < 0 and with marginal df Fβ (i.e., Fβ(x) = x−β L(x), with
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L slowly varying) and copula Cp1,p2 . The bivariate df of (X1, X2)
′ is then

given by

FX1,X2(x1, x2) = Cp1,p2(Fβ(x1), Fβ(x2)). (6.2)

In Fig. 2 we give a typical random sample from the copula Cp1,p2 in Eq. 6.1 and
the bivariate df in Eq. 6.2.

In the following, we only look at symmetric marginals, i.e., where X d= −X.
In order to investigate subadditivity properties of VaR for the df Eq. 6.2, we
consider q� as a function of p1, p2 and with �(X) = X1 + X2,

q�(β, (p1, p2)) = lim
x→∞

P(X1 + X2 > x)

P(X1 > x)
.

In the symmetric case, q� can be calculated explicitly.

Proposition 6.1 Let (X1, X2)
′ be a bivariate random vector defined by Eq. 6.2

with identically distributed, symmetric, regularly varying marginals with index
−β < 0, then

q�(β, (p1, p2)) = 2β p1 + 2(1 − p1 − p2).

Proof Due to the linearity of Eq. 6.1 it is sufficient to check the independent,
the comonotonic and the countermonotic case separately. For X1, X2 inde-
pendent, we have q�(β, (0, 0)) = 2, which does not depend on β. For X1, X2

comonotonic and X1
d= X2, we have X1 = X2 P-a.s. and hence q�(β, (1, 0)) =

limx→∞(x/2)−β/x−β = 2β . For X1, X2 countermonotonic and X1
d= X2, we

have X1 = −X2 P-a.s. and hence q�(β, (0, 1)) = 0. �
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Fig. 2 Left panel: 500 realizations of the copula Cp1,p2 in Eq. 6.1 with parameters p1 = p2 = 0.1.
Right panel: the realizations are transformed according to Eq. 6.2 where Fβ is a t distribution with
6 degrees of freedom.
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Note that the positive upper tail dependence coefficient of the model Eq. 6.2
is given by

λ+
u = lim

u↗1

1 − 2u + C(u, u)

1 − u
= p1.

Equivalently, we have λ+
l = p1 and λ−

u = λ−
l = p2. Thus, we have the following

corollary.

Corollary 6.2 Let (X1, X2)
′ be a bivariate random vector with a copula from

the Fréchet family defined by Eq. 6.1 and identically distributed, symmetric,
regularly varying marginals with index −β < 0, then q�(β, (λ+

u , λ−
u )) = 2βλ+

u +
2(1 − λ+

u − λ−
u ), with λ+

u , λ−
u ≥ 0 and λ+

u + λ−
u ≤ 1.

If β ≥ 1, then of course, asymptotic subadditivity always holds. This follows
from the fact that q�(β, (λ+

u , λ−
u )) = 2βλ+

u + 2(1 − λ+
u − λ−

u ) ≤ 2β(λ+
u + (1 −

λ+
u − λ−

u )) ≤ 2β , together with Lemma 2.3, yielding that

lim
α↗1

VaRα(X1 + X2)

VaRα(X1) + VaRα(X2)
≤ 1.

In the case β < 1, q�(β, (λ+
u , λ−

u )) can be smaller or larger than 2β , thus
depending on the values λ+

u , λ−
u , subadditivity may hold or fail. To analyze

this infinite mean model in more detail, we exclude the trivial case λ+
u = 1 and

introduce the relative negative tail dependence coefficient

γ = λ−
u

1 − λ+
u

.

Because λ+
u + λ−

u is always smaller than 1, γ takes values only in [0, 1]
and is interpreted as the amount of negative tail dependence, relative to the
possible maximal negative tail dependence coefficient 1 − λ+

u . We then have
the following theorem.

Theorem 6.3 Let (X1, X2)
′ be a bivariate random vector with a copula from

the Fréchet family defined by Eq. 6.1 with p1 < 1 and identically distributed,
symmetric, regularly varying marginals with index −β < 0. Then asymptotic
subadditivity of VaR holds if and only if γ ≥ 1 − 2β−1.

Proof This follows immediately from Corollary 6.2 and Lemma 2.3. �

Theorem 6.3 provides a simple criterion for asymptotic subadditivity in the
case of the Fréchet family model Eq. 6.2. Only for sufficiently small values
of γ superadditivity occurs. For large values of γ subadditivity always holds.
The interpretation of this behavior is that if the negative tail dependence
coefficient is sufficiently large, then positive extreme values in one coordinate
are compensated by negative extreme values in the other coordinate. This
effect can be so strong that we obtain asymptotic subadditivity. In Fig. 3, we
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Fig. 3 This figure shows the
impact of negative tail
dependence on subadditivity
properties of VaR for infinite
mean models. Inside of the
hatched area subadditivity
holds, whereas outside
superadditivity holds.
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Several authors mention the substantial influence of the transition from
a finite to an infinite mean model on the additivity properties of VaR; see
for instance Nešlehová et al. (2006), Embrechts et al. (2008), Ibragimov and
Walden (2007) and Jang and Jho (2007). An early statement in the finance
literature that diversification does not in general reduce its effects on the
dispersion of the portfolio return is found already in 1972 in Fama and Miller
(1972); these authors based their conclusion on properties of Lévy-stable dfs.

Theorem 6.3 also shows that β = 1 plays a fundamental role for independent
rvs and more generally if (in the Fréchet model) the relative negative tail
dependence coefficient γ is 0. However, as soon as γ > 0, it is likely that high
losses are compensated by high gains and therefore the transition from sub- to
superadditivity will be located at β strictly smaller than 1; see again Fig. 3.

Theorem 6.3 of course does not hold in general (outside the Fréchet family
model). However, it gives first insight in the still open problem of the char-
acterization of asymptotic sub- and superadditivity in an infinite mean model.
A more in depth analysis would presumably need to be based on properties
of the level sets of the densities. Consider as an example a bivariate distrib-
ution with identical tν marginals and a t4-copula with dependence parameter
� = 0. This is an example from the so-called class of meta-t4-distributions.
McNeil et al. (2005), Paragraph 5.1.3 contains a general definition of meta-
distributions, as well as a discussion of applications to risk management. A
simulation with 105 realizations then shows that the transition from sub- to
superadditivity is located at a value ν0 in the interval (0.8, 0.9), significantly
below 1. If Theorem 6.3 would hold in general, it would indicate a (theoretical)
transition located at ν0 = log2(1 − γ ) + 1 ≈ 0.877 ∈ (0.8, 0.9), in agreement
with our empirical result. This simulation-based statement we have included
for illustrative purposes, because to the best of our knowledge one does not
have a satisfactory explanation for this anomaly at the moment.
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In Section 3, we mentioned that in an infinite mean model sub- as well
as superadditivity of VaR may occur in a completely arbitrary (or somewhat
chaotic) way. In the following example we construct such an (artificial) model.

Example 6.4 Corollary 6.2 shows that there exist bivariate rvs where the
positive upper tail dependence coefficient is not the main driver leading to
sub- or superadditivity of VaR.

Indeed, by choosing β = 1/2 (infinite mean model) and for instance

p1 = λ+
u , (6.3)

p2 = (
1 − λ+

u

)
sin2

(
4π

λ+
u

1 − λ+
u

)
, (6.4)

the plot of q�(β, λ+
u ) in Fig. 4 clearly shows that there is no obvious connection

between the positive upper tail dependence coefficient and subadditivity of
VaR. Asymptotic subadditivity occurs if and only if q�(β = 1/2, λ+

u ) ≤ √
2

(horizontal line). One can always choose p2 = λ−
u such that for an arbitrary

value of λ+
u < 1, q�(β, λ+

u ) is greater or smaller than
√

2. Sub- as well as
superadditivity occurs in a completely arbitrary way.

Note that in Theorem 6.3 we assume the rvs to have doubly infinite support.
We give an explicit counter-example, when this assumption is not fulfilled.

Example 6.5 Let X1, X2 be two countermonotonic (i.e., γ = 1) Pareto distrib-
uted rvs with marginal dfs

FX1(x) = FX2(x) = 1 − x−1/2, x ≥ 1.

Using countermonotonicity of X1 and X2, we deduce that the df of X1 + X2

for all x ≥ 8 is

FX1+X2(x) =
√

1 + 4(1 − √
1 + x)/x ;

Fig. 4 q�(β, λ+
u ) as a

function of λ+
u for the Fréchet

family copula Eq. 6.1 with
parameters p1 and p2 from
Eqs. 6.3 and 6.4, respectively.
Subadditivity occurs below
the horizontal line,
superadditivity above.
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see for instance Strassburger and Pfeifer (2005), Lemma 5.1. Hence,

FX1+X2(x) = 1 − 2x−1/2 + O
(
x−3/2

)
, x → ∞,

and therefore

lim
x→∞

P(X1 + X2 > x)

P(X1 > x)
= 2.

Thus, by Lemma 2.3, asymptotic subadditivity does not hold.

For X
′
1, X

′
2

i.i.d.∼ Pareto(1/2), for x ≥ 2,

FX ′
1+X ′

2
(x) = 1 − 2

√
x − 1

x
.

Hence,

FX ′
1+X ′

2
(x) = 1 − 2x−1/2 + O

(
x−3/2

)
, x → ∞,

and therefore X1 + X2 in Example 6.5 and X
′
1 + X

′
2 are tail-equivalent.

Hence, full diversification in the sense of countermonotonicity is as bad
as independence (and therefore worse than no diversification in the sense
of comonotonicity). For infinite mean models, diversification clearly goes
the wrong way. More generally, we have the following proposition; see for
instance Davis and Resnick (1996), Lemma 2.1 or Albrecher et al. (2006),
Corollary 3.2.

Proposition 6.6 Let X1, X2 > 0 be two identically distributed regularly vary-
ing rvs with index −β < 0 and with λ+

u = 0, i.e., such that X1, X2 are tail-
independent in the positive upper tail, then

lim
x→∞

P(X1 + X2 > x)

P(X1 > x)
= 2.

This proposition is indeed a special case of Proposition 4.6. It has the
nice interpretation that the sum of tail-independent (in the positive upper
tail) rvs behaves asymptotically as if the summands were independent.
According to the above remarks, Proposition 6.6 yields the following result.
Let X1, X2, X

′
1, X

′
2 > 0 be identically distributed regularly varying rvs with

X1, X2 countermonotonic and X
′
1, X

′
2 independent, then VaRα(X1 + X2) ∼

VaRα(X
′
1 + X

′
2), for α → 1. That is, the VaR of the sum of highly “diversified”

positive rvs is asymptotically equal to the VaR of the sum of independent rvs
for α large.

7 Conclusion

Under the current regulatory guidelines for banking and insurance, risk di-
versification, concentration and aggregation play a prominent role. Within and
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between “nice” risk categories, with elliptical dfs, say, these concepts are easily
modeled and particular solutions can be readily worked out. However, for
skew, heavy-tailed risk rvs, diversification and aggregation have to be handled
with care.

In this paper we show that the interplay between existence, non-existence of
a finite moment, one- or two-sidedness and symmetry versus asymmetry of the
underlying risk dfs have to be carefully balanced in order to be able to conclude
sub- or superadditivity of quantile based risk measures like Value-at-Risk.

We have highlighted in the paper that MEVT offers the canonical language
for analyzing from an asymptotic point of view questions of the above type
for heavy-tailed dfs. That answers to these questions are relevant for practice
can for instance be seen in applied publications like Moscadelli (2004) and Aas
et al. (2007). Though we obtained a better understanding of the diversification-
concentration-aggregation issue for VaR, many questions still remain unsolved
and further research is no doubt needed, especially for two-sided skew rvs.
For two-sided rvs the sum operator is not a norm but only a so-called gauge
function and this makes their analysis much more delicate; see for instance
Balkema and Embrechts (2007) for details on MEVT in this context.

The following recent preprint came to our attention during the refereeing
process, Mainik and Rüschendorf (2008), in which statistical estimation proce-
dures for problems presented in Section 4 are discussed.

Acknowledgements The authors would like to thank Johanna Nešlehová and two anonymous
referees for their useful comments.
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Stărică, C.: Multivariate extremes for models with constant conditional correlations. J. Empir.

Finance 6, 515–553 (1999)
Zhang, M.-H.: Modelling total tail dependence along diagonals. Insur. Math. Econ. 42, 73–80

(2008)


