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Abstract

A distributed system consists of several autonomous devices that are ca-
pable of performing certain (computational) tasks and that have a means
to communicate with each other. A computer network system, such as the
Internet, is a prototypical example of a distributed system. While a dis-
tributed system has many advantages over a single computational unit, e.g.,
the combined computational power of all entities of a distributed system typ-
ically exceeds the power of any single computational device considerably, the
decentralized nature of distributed systems also poses significant challenges.

In this thesis, two fundamental problems of distributed systems are stud-
ied. The first part of this thesis focuses on the problem of computing global
functions that depend on the state of all devices in the system. Since each
device stores only a small part of the state of the entire system, interaction
between the devices is required in order compute such functions. If the band-
width of the communication channels is bounded, it may not be an efficient
solution to simply encode the state of each entity and forward this infor-
mation to a single participant in the system, which could then compute the
result of the function locally. Instead, the devices may attempt to aggregate
the data received from other devices in the system and use this informa-
tion to compute partial solutions of the global function. Such aggregation
techniques may greatly reduce the bandwidth consumption when computing
global functions in a distributed manner. The goal is to gain a deeper under-
standing of the complexity of computing global functions using in-network
aggregation.

In the second part of this thesis, we consider the problem that several
distributed applications and protocols require that all computational devices
maintain a common notion of time, but the devices do not have access to a
global timer. If each device possesses its own clock, the different clock rates
of these clocks necessitate the use of a clock synchronization algorithm whose
purpose is to compensate for the clock drifts by exchanging timing informa-
tion and adjusting the clock values according to the received information.
Synchronizing clocks is a challenging task mainly due to the uncontrollable
and potentially varying message delays, which render it impossible for the
devices to determine how accurate the timing information is that they re-
ceive from other devices. The objective is thus to analyze the feasible degree
of synchronization, which not only depends on the message delays and the
clock drift rates, but also on other parameters such as the frequency of com-
munication.





Zusammenfassung

Ein verteiltes System besteht aus mehreren autonomen Komponenten, die
Berechnungen ausführen und untereinander kommunizieren können. Ein
Computernetzwerk, wie z.B. das Internet, ist ein prototypisches verteiltes
System. Verteilte Systeme bieten viele Vorzüge gegenüber einer einzelnen,
zentralen Recheneinheit. So übertrifft beispielsweise die gemeinsame Rechen-
leistung aller Komponenten eines verteilten Systems typischerweise die Leis-
tung einer einzelnen Recheneinheit beträchtlich. Im Gegenzug bringt die
Tatsache, dass alle Komponenten des verteilten Systems dezentral agieren,
erhebliche Herausforderungen mit sich.

In dieser Dissertation betrachten wir zwei fundamentale Probleme in
verteilten Systemen. Der erste Teil der Arbeit untersucht, wie man glo-
bale Funktionen, die vom Zustand des gesamten Systems abhängen, verteilt
berechnen kann. Da jede Komponente nur einen kleinen Teil des Gesamtzu-
stands des Systems kennt, ist Interaktion zwischen den einzelnen Komponen-
ten notwendig, um solche Funktionen zu berechnen. Wenn die Bandbreite
der Kommunikationskanäle beschränkt ist, dann ist es jedoch häufig inef-
fizient, den Zustand jeder einzelnen Komponente zu einer zentralen Stelle zu
senden, welche anschliessend die Funktion lokal berechnen kann. Ein besserer
Ansatz ist es stattdessen, Informationen über die Zustände der Komponen-
ten zu aggregieren und mit diesen Aggregaten die Funktion zu berechnen,
was den Bandbreitenbedarf markant reduzieren kann. Im ersten Teil dieser
Arbeit ist das Ziel ein tieferes Verständnis der Komplexität der Berechnung
globaler Funktionen mittels Aggregationstechniken zu erlangen.

Der zweite Teil dieser Dissertation befasst sich mit dem Problem, dass
viele verteilte Anwendungen und Protokolle eine gemeinsame Vorstellung
aller Komponenten des Systems von der momentanen Zeit voraussetzen. Auf-
grund der dezentralen Natur verteilter Systeme ist nicht immer möglich, oder
erwünscht, dass hierfür eine zentrale (exakte) Uhr herangezogen wird. Wenn
jede Komponente eine eigene Uhr besitzt, dann bedarf es eines Uhrensyn-
chronisationsalgorithmus, um das Auseinanderdriften der Uhrenwerte auf-
grund unterschiedlicher Uhrenraten auszugleichen. Diese Kompensation er-
folgt durch das Austauschen von Information über die lokal gemessene Zeit
und das allfällige Korrigieren der eigenen Uhrzeit gemäss den empfangenen
Werten. Uhrensynchronisation ist ein schwieriges Problem, da die variablen
Nachrichtenverzögerungen ein präzises Bestimmen der genauen Uhrzeit an-
derer Komponenten verunmöglichen. Wir beantworten die Frage, was der
bestmögliche Grad an Synchronisation ist, der in einem verteilten System er-
reicht werden kann. Dies hängt nicht nur von den Nachrichtenverzögerungen
ab, sondern auch von weiteren Parametern, wie z.B. der Häufigkeit, mit der
kommuniziert wird.
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Chapter 1

Introduction

1.1 Distributed Computing

OVER the course of the last few decades, we witnessed a remarkable
paradigm shift in computing: While in the past computational tasks were
fed into monolithic high-capacity mainframe computers, nowadays workloads
are often distributed among a large group of less powerful computational
devices. In order to transfer jobs between these machines, they must be in-
terconnected, forming a computer network system. The advantages of using
such a computer network instead of a single mainframe are manifold. First,
mainframes are highly expensive, often even more so than many less efficient
computers together. Second, even if the machines of a computer network are
less powerful and the jobs must be transferred between them, which costs
time and thus lowers the throughput of the system, a computer network can
nevertheless outperform any single mainframe if a sufficiently large number
of computers are able to share the workload. Third, a computer network
is more fault-tolerant as the failure of a single machine does not bring the
entire system to a halt. Once the mainframe ceases to operate, no more tasks
can be processed until the mainframe is either repaired or replaced. Finally,
a computer network is typically extensible and thus more scalable. If the
capacity of the network is no longer sufficient to handle all tasks within a
given time-frame, it is usually fairly simple to integrate new machines into
the network at a low cost in order to increase the capacity. However, if the
mainframe does no longer offer the needed computational power, it must
be replaced by a more powerful (and more expensive) machine. Thus, it
comes as no surprise that computer networks managed to supersede main-
frame computers and are now the preferred solution for various purposes.
In the following, we briefly highlight the potential of computer networks by
discussing a few examples of applications that can only be tackled through
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the joint force of numerous interconnected computational devices.

The largest and most prominent computer network is clearly the Inter-
net. The millions of machines connected to the Internet together exhibit a
vast and unprecedented computational power, and there is a growing number
of projects striving to harness this power in order to solve computationally
intense tasks. A widely popular project is SETI@home (Search for Extra-
Terrestrial Intelligence)1 whose objective is to detect extra-terrestrial radio
signals using observational data from a radio telescope. Millions of volun-
teers have installed the SETI@home software on their computers since the
project started in 1999, and hundreds of thousands of computers perma-
nently use their idle time to analyze chunks of data that they received from
the SETI@home servers in search of signals that cannot be ascribed to noise.
In 2008, the computational power of these machines combined exceeded 500
TFLOPS (5 ·1014 floating point operations per second).2 The Berkeley Open
Infrastructure for Network Computing (BOINC)3 software, which has origi-
nally been developed for the SETI@home project, is now used for many other
purposes in a variety of fields. For example, the goal of the Rosetta@home4

project is to predict protein structures and design new proteins to fight a
wide range of diseases. Another topic of major concern is climate change.
The climateprediction.net5 project is dedicated to investigating and reducing
uncertainties in climate modeling.

Every single computer in the Internet can be regarded as a tiny part
of a large system, i.e., the Internet is a system whose constituent parts are
distributed all over the world. We call a system consisting of numerous com-
putational devices that are distributed, but have a means to communicate,
a distributed system. While a computer network such as the Internet can be
considered the prototypical distributed system, there are many distributed
systems that distinguish themselves from the Internet in various ways. For
example, other systems may have different means to exchange information:
In contrast to the Internet where most communication is wired, the sensor
nodes of a wireless sensor network use their radio transceivers to communicate
over wireless channels. Furthermore, a distributed system is not necessarily a
network of computers. Note that a computer itself is a distributed system as,
e.g., the workload must be distributed efficiently among the single cores of a
multi-core processor in order to achieve maximum performance. Finally, it
has to be pointed out that distributed systems do not only occur in the world
of computer science. For example, the human brain can also be considered
a distributed system in which neurons convey information to other cells.

All distributed systems have in common that they are able to cope with

1See http://setiathome.berkeley.edu/.
2See http://boincstats.com/.
3See http://boinc.berkeley.edu/.
4See http://boinc.bakerlab.org/rosetta/.
5See http://climateprediction.net/.
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tasks that exceed the capacity of any single part of the system by using the
communication channels to share the workload. The concept of leveraging
the resources of the participants of a distributed system in order to solve
a computational problem is called distributed computing. Finding the most
efficient way to solve a problem distributively is the primary objective in
distributed computing. This is a challenging endeavor since the knowledge
of each participant of a distributed system is always restricted to its own
local state and the information it received from other participants, i.e., each
participant only has a partial view of the entire system. The fact that the
state of the system is distributed itself is one of the key characteristics of a
distributed system.

If there is a centralized authority in the system that is, to some extent,
aware of the state of all other participants or even has control over the entire
system (such as the SETI@home servers that centrally manage and distribute
chunks of data to all other computers), then the complexity of handling the
distributed system is minimized. However, similar to the approach with a
single mainframe computer, in this scenario we again have a single point of
failure, which ought to be avoided. In a system where all entities are of equal
importance, the loss of a single entity can easily be absorbed as its tasks can
be redistributed among the other entities. We call a distributed system in
which all participants are equivalent a decentralized system or a decentralized
network. Due to their fault-tolerance and resilience it is worthwhile to study
such networks and, given that all participants are of equal value and thus
the state of such systems is completely distributed, also most demanding to
analyze problems in decentralized networks.

Distributing computing has undoubtedly become a significant branch of
computer science. There is a plethora of challenging problems in distributed
computing, some of which merely occur in specific distributed systems while
others can be encountered in many distributed systems. In this thesis, we are
concerned with two fundamental problems of decentralized systems, which
are briefly introduced in the following section.

1.2 Aggregation and Synchronization

The focus of this thesis lies on two elementary problems in distributed com-
puting. The first part of this thesis deals with computing aggregate functions
in a distributed manner, and the second part is concerned with the problem
of synchronizing clocks in distributed systems.

1.2.1 Distributed Aggregation

As mentioned before, there is an enormous number of distributed applica-
tions for a wide range of purposes. The applications discussed so far have
in common that a centralized entity directly communicates with all other
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participants and single-handedly generates and distributes all computational
tasks. In other words, the centralized authority basically knows the entire
state of the system. In general, computational tasks or new data may oc-
cur anywhere in a distributed system. For example, in a banking system a
server may handle a monetary transaction causing the adjustment of some
values in one or more databases. These changes do not entail any updates
to other uninvolved databases, e.g., databases of the same bank in other
cities or countries. In such a distributed system, each database stores only a
(small) part of all information stored in the network and thus it merely has
a partial view of the global state of the system at any point in time. In order
to get information on the global state of the system, several databases must
be queried. Another example is a wireless sensor network that, e.g., moni-
tors the outdoor conditions in some area. Each sensor node stores its own
measurements and acquiring for example the average over all measurements
requires the nodes to gather the measured data.

Any function whose input is a set or a multiset, i.e., a set that may have
duplicate entries, of values is called an aggregate function. For example, the
sum or the maximum/minimum of all values in a given set are simple aggre-
gate functions. The problem of distributed aggregation is defined as follows.
Given a multiset S of data, which is arbitrarily distributed among the par-
ticipants of a distributed system, and a specific aggregate function f , the
goal is to compute f(S). Apart from the fact that the data is distributed,
which forces the participants to exchange information in order to compute
the aggregate function, another factor that merits attention is that each par-
ticipant may only be able to communicate directly with a subset of all other
participants, incurring the need for some form of routing infrastructure.6 The
problem of routing is discussed in Chapter 3.

Given a routing infrastructure, a simple solution for any aggregate func-
tion f is to forward all data to a single participant or to a specific data
sink, which will compute the result locally once it has received all data in
the network. The crucial drawback of this solution is that it may be highly
inefficient. For example, if a participant holds a fraction ϕ1 of all data items
and computes the average µ1 of these data items, while another participant
holds the remaining fraction ϕ2 = 1 − ϕ1 of all data items and the average
value of its partial set is µ2, then exchanging ϕi and µi suffices to compute
the average µ of all data items, since µ = ϕ1µ1 + ϕ2µ2. This solution clearly
outperforms the simple solution where all data items are exchanged. Thus,
the goal is to derive the most efficient distributed algorithms for a variety
of aggregate functions independent of both the distribution of data and the
given network structure.

6For example, since the transmission range of a sensor node in a wireless sensor net-
work is limited, it is unlikely that all nodes can exchange information directly.
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1.2.2 Clock Synchronization

There is a wide range of tasks in distributed systems requiring its partici-
pants to maintain a common notion of time. For example, if each participant
in a monitoring system adds a timestamp to recorded events, it is desir-
able for the sake of consistency that any two events that occur at the same
time but are registered by two distinct participants obtain roughly the same
timestamp. Moreover, the participants may regularly communicate at spe-
cific times, which is only possible if there is consensus on the current time.
Thus, in order to maintain consistency and enable time-based coordination,
it is imperative that the local clocks of all participants deviate as little as
possible.

Given that all clocks have a certain drift, it is necessary to use a clock
synchronization algorithm, otherwise the clocks will continually drift apart.
The goal of a clock synchronization algorithm is thus to counterbalance the
clock drifts by adjusting the local clock values appropriately to ensure that all
clocks in the distributed system remain synchronized as closely as possible.
The main difficulty arises from the fact that the exchanged messages may
be delayed arbitrarily. If a participant p receives a message containing the
clock value of another participant, p cannot determine whether the obtained
clock value is quite accurate, i.e., the message arrived quickly, or if the clock
value is “outdated” due to a large message delay. This uncertainty has severe
ramifications: It is generally impossible to determine exactly how much the
clock values deviate from each other and therefore also to synchronize the
clocks perfectly. Hence, the objective is to study the limitations to the degree
of synchronization that can be achieved, and to derive a clock synchronization
algorithm that guarantees the best possible accuracy while being light-weight
in the sense that the message overhead is small.

The formal model of a distributed system that is used throughout this
thesis is introduced in the following section.

1.3 Computational Model

In order to ensure that all techniques and results discussed in this thesis are
broadly applicable, the model must capture the most basic commonalities
of distributed systems. All distributed systems have in common that they
consist of independent devices, each of which is capable of communicating
with some other devices in the system. We model a distributed system as
a graph G = (V, E) consisting of a set V of nodes (or vertices) and a set E
of edges, which are unordered pairs of nodes. Each node v ∈ V represents a
computational device and an edge {v, w} ∈ E, where v, w ∈ V , implies that
the computational devices v and w share a communication channel, i.e., they
can communicate directly. The cardinality of V is denoted by |V | = n. In the
following, since our model is based on graph theory, we will predominantly
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use the terms “node” and “edge” instead of “computational device” and
“communication channel”. Naturally, if {v, w} /∈ E, then the nodes v and
w cannot communicate directly. However, if there is a node u such that
{v, u} ∈ E and {u, w} ∈ E, then v and w can communicate via node u, i.e.,
u can forward a message from v to w (or from w to v). We always assume
that the graph G is connected, i.e., all nodes can communicate with all other
nodes over certain paths. Moreover, all communication links are assumed
to be bidirectional, which means that messages can traverse edges in both
directions.7

For each node v, its neighborhood Nv consists of all nodes that share an
edge with v. More formally, for all nodes v, its neighborhood is the set

Nv := {u ∈ V | {v, u} ∈ E}.

By definition, node v can communicate directly with node w if and only
if w ∈ Nv. A node w ∈ Nv is referred to as a neighbor or neighboring node
of v. The size of the neighborhood of v, i.e., the number of adjacent nodes,
is commonly referred to as the degree of v and denoted by δ(v) := |Nv|.
The degree ∆(G) of the graph G is defined as the largest degree of all nodes
v ∈ V :

∆(G) := max
v∈V

{δ(v)}.

The distance d(v, w) between two nodes v and w is defined as the length
of a shortest path between v and w. The formal definition of distance is given
by:

d(v, w) :=

(
0 if v = w

1 + minu∈Nv{d(u, w)} else

The diameter D(G) of the graph G is the largest distance, in other words,
the length of a longest shortest path between any two nodes:

D(G) := max
v,w∈V

{d(u, v)}.

Throughout this thesis, the diameter D(G) of the considered graph G
is of central importance. Intuitively, the diameter of a graph measures how
many times a message needs to be forwarded at most until it arrives at
the intended recipient. Instead of writing ∆(G) and D(G), we simply write
∆ and D, respectively, since it is always clear from the context that these
measures refer to a given graph G.

All nodes communicate by exchanging messages with their neighbors.
Communication is assumed to be asynchronous in the sense that the mes-
sage delays may be variable. In contrast to the conventional definition of
asynchronous communication, which merely assumes that messages arrive

7In graph theoretical terms, we are only concerned with simple and undirected graphs.
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“eventually”, we explicitly bound the delays by defining that each message
may be delayed by any value in the range [0, T ] for a certain parameter T .
A received message can trigger some local computation and also cause the
recipient itself to send messages to some of its neighbors. The parameter T
subsumes the time it takes to perform the local computation that precedes
the sending of the message, the maximum time during which a message can
be in transit, and also the time it may take at most for the recipient to pro-
cess the message. This general definition of T allows us to define that local
computations require no time. Although the bound T is fixed, it is unknown
to the nodes and thus cannot be used in an algorithm. Unless otherwise
mentioned, all communication is assumed to be reliable, which means that
no message is lost after it has been sent, and that every message sent from
v to w arrives unaltered at node w after at most T time. Furthermore, the
nodes are always operational, i.e., they never fail, and they behave exactly
as specified by the algorithm.

Apart from its input, each node v can also store some local variables or
partial results, which may have been obtained through exchanging messages
with neighboring nodes. It is assumed that each node v knows all its neigh-
bors w ∈ Nv and is able to distinguish them, i.e., v knows for each received
message which neighbor sent it, and v can distinctly send a message only to
a specific neighbor. For example, unique identifiers, which are attached to
every message, can be used for this purpose. If there is a separate, identi-
fiable communication channel for each neighbor, we can dispense with the
use of unique identifiers as v can observe from which channel it received any
particular message (and send a response through the same channel). Thus,
when processing a message from a specific neighbor w ∈ Nv, the algorithm
executed at v can make use of the information that w is the sender.

The following section provides a few mathematical formulae that are use-
ful in the analysis of the proposed algorithms.

1.4 Mathematical Preliminaries

The goal for each discussed problem is to devise algorithms that solve it
as optimally as possible. Since we focus on asymptotic complexities, the
results are often stated using the “big oh notation”: For any two functions
f and g we write f(n) ∈ O(g(n)) if there are constants c and n0 such that
|f(n)| ≤ c|g(n)| for all n ≥ n0. This means that the asymptotic growth of f
is upper bounded by the growth of g. The related asymptotic notations such
as the “big omega notation” etc., are also used in this thesis. For a formal
definition of these notations, the reader is referred to the standard textbooks.

An algorithm that uses randomization, i.e., an algorithm whose actions
are not only determined by the initial conditions, but also by the outcome
of random “coin tosses”, is called a randomized algorithm, and an algorithm
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that does not use randomization is called a deterministic algorithm. Since the
output of a randomized algorithm depends on the outcome of probabilistic
events, the correct result may only be obtained with a certain probability. A
randomized algorithm with this property is called a Monte Carlo algorithm.
If the result is guaranteed to be correct, but the cost to compute it is only
bounded with a certain probability, the algorithm is called a Las Vegas algo-
rithm. Of course, a Monte Carlo algorithm is only useful if the probability
that it succeeds to find the correct solution is large. Similarly, a Las Vegas
algorithm is only practical if we have a high probability that the cost to find
the right solution is within reasonable bounds. The notion of high probabil-
ity is formalized as follows: If the input size of a problem is n, we say that
an event X occurs with high probability (w.h.p.) if the probability that X
happens is at least 1− 1/nλ, where λ ≥ 1 is a constant that is a parameter
in the algorithm or in the analysis. This means that the probability that
the algorithm fails tends rapidly to zero as the input size of the problem
increases.

In order to analyze randomized algorithm, basic statistical tools are often
required. The probability that a random variable deviates from the expected
value can be bounded using Markov’s inequality:

Theorem 1.1 (Markov’s Inequality). For any random variable X, it holds
for any α > 0 that

P[|X| ≥ α] ≤ E[|X|]
α

.

Given the variance σ2 of a random variable, Chebyshev’s inequality gives
a more precise bound on the deviation from the expected value:

Theorem 1.2 (Chebyshev’s Inequality). Let X be a random variable with
finite variance σ2. It holds for any α > 0 that

P[|X − E[X]| ≥ α] ≤ σ2

α2
.

Since we often encounter independent identically distributed Bernoulli
trials X1, . . . , Xn, we can use Chernoff bounds in order to bound the proba-
bility that X =

Pn
i=1 Xi deviates from E[X] by δE[X] for a given δ > 0. In

the following, both the lower and the upper tail are given.

Theorem 1.3 (Chernoff Bound (Lower Tail)). Let X1, . . . , Xn be indepen-
dent Bernoulli variables and let X =

Pn
i=1 Xi denote the sum of the Xi. For

any δ ∈ (0, 1], it holds that

P[X < (1− δ)E[X]] <

„
e−δ

(1− δ)(1−δ)

«E[X]

< e−E[X]δ2/2.
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Theorem 1.4 (Chernoff Bound (Upper Tail)). Let X1, . . . , Xn be indepen-
dent Bernoulli variables and let X =

Pn
i=1 Xi denote the sum of the Xi. For

any δ > 0, it holds that

P[X > (1 + δ)E[X]] <

„
eδ

(1 + δ)(1+δ)

«E[X]

.

Moreover, for any δ ∈ (0, 2e− 1) it holds that

P[X > (1 + δ)E[X]] < e−E[X]δ2/4.

We further use the following fact, which bounds the probability that
X =

Pn
i=1 Xi is greater than a specific constant z.

Fact 1.5. Let X1, . . . , Xn be independent Bernoulli variables with P[Xi =
1] = p and let X =

Pn
i=1 Xi denote the sum of the Xi. For any z ≥ 0, it

holds that

P[X ≥ z] =

nX
i=z

 
n

i

!
pi(1− p)n−i ≤

 
n

z

!
pz.

The intuition behind the expression
`

n
z

´
pz is that it gives the probability

that the event associated with probability p occurs z times out of n indepen-
dent trials without specifying which event occurred in the remaining n − z
trials.

The following combinatorial inequality will also be useful.

Fact 1.6. For integers n ≥ k ≥ 1, we have that“n

k

”k

≤

 
n

k

!
≤
“en

k

”k

.

This inequality lower and upper bounds the number of k-element subsets
of a set containing n elements.





Part I

Aggregation





Chapter 2

Distributed Aggregation:

An Introduction

2.1 Motivation

REGARDLESS of whether data is stored at a single place or distributed on
a network, the stored data is only useful if it is easily accessible. Typically,
the host of the data places it into a suitable data structure or database
for efficient storage and retrieval. There has been a lot of work dedicated to
designing tools that enable users to conveniently interact with databases. We
can distinguish between two basic forms of interaction, the first is to query
the database and the second is to modify the stored data by either adding,
changing, or deleting an entry in the database. We are only concerned with
the first form of interaction, i.e., our aim is to acquire information about the
state of the system, and we omit any discussion on how data is introduced
into the system.

For relational database management systems (RDBMS), the interac-
tive and programming language SQL has become a standard tool for both
database inquiry and manipulation. Although it is quite an old language,
the first version was developed in the early 1970s, it is still widely popular,
probably due to its simple command language that can be used not only to
query and manipulate the database, but also to perform management and
administrative functions. SQL offers several built-in aggregate functions such
as:

• MAX: Compute the maximum element of some data set.

• MIN: Compute the minimum element of some data set.

• COUNT: Compute the number of elements in some data set.
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• SUM: Compute the sum of all values in some data set.

• AVG: Compute the average of all values in some data set.

• VAR: Compute the variance of all values in some data set.

For example, assuming that the purpose of a distributed system is to
monitor the temperatures in some area and these measurements are stored
in the data set Temperature in a table of measurements called Measurement,
the following SQL query would return the (current) average temperature:

SELECT AVG(Temperature)
FROM Measurement

Of course, there are many other relevant aggregate functions. Apart
from the aforementioned functions, we will also study the following aggregate
functions:1

• RANK(x): Compute the rank of a given element x in some data set.

• MEDIAN: Compute the median element of some data set.

• SMALLEST(k): Given a parameter k, compute the kth smallest element
of some data set.

• LARGEST(k): Given a parameter k, compute the kth largest element of
some data set.

• DISTINCT: Compute the number of distinct elements in some data set.

• MODE: Compute the element that occurs most often in some data set.

The rank of an element in a given data set S is its position in S if the
elements are arranged in ascending order. In other words, the kth smallest
element of a data set has rank k. Given an element x, the function RANK

returns the rank of this element in the data set. If the element x occurs more
than once in the data set, the rank is defined as the position of x if all but
one copies of x are removed. If x does not occur in the considered data set,
we define that the function returns zero.

The function SMALLEST finds an element of a given rank, hence SMALLEST

is the inverse function of RANK, i.e., x = SMALLEST(RANK(x)) and k =
RANK(SMALLEST(k)).2

1Note that not all of these functions exist in the standard SQL toolkit, but many
of them may be realized through a combination of existing commands. For the sake of
simplicity, we assume that all of these functions are part of the SQL language.

2A minor blemish is that SMALLEST(k) is not defined for all k ∈ {1, . . . , N}, where
N denotes the total number of elements, if S contains duplicates. Alternatively, we
could assign a different rank to each element and define that RANK(x) returns the range
[k, k+p−1] if there are k−1 smaller elements than x and x occurs p times in S. However,
in this case SMALLEST is technically not the inverse function of RANK.
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These functions can be used, e.g., in order to restrict the set of consid-
ered elements. As an example, it may be desirable to compute the average
temperature of the ten lowest temperatures:

SELECT AVG(Temperature)
FROM Measurement
WHERE RANK(Temperature) <= 10

More importantly, ranking information can be used to compute order
statistics. A prominent example of an order statistic is the median. If the
size N of the data set is odd, the median is defined as the element for which
(N − 1)/2 elements in the given data set are smaller and (N − 1)/2 elements
are larger. If N is even, the two elements with ranks N/2 and N/2 + 1
are both considered median elements throughout this thesis.3 The median
is primarily useful for skewed distribution, where it is a better indicator
for central tendency than the average value.4 The median is further less
susceptible to (small) changes in the data set than the mean value and also
more robust against perturbation caused by outliers.

If the number of elements N is known, the median can be found by com-
puting the (N/2)th smallest element. Moreover, computing the kth largest
element and the (N − k + 1)th smallest element is equivalent. Hence it fol-
lows that it suffices to be able to compute the function SMALLEST efficiently.
It is further straightforward how to use this aggregate function to compute
percentiles: The tenth percentile, e.g., can be found by applying the function
SMALLEST(0.1·N). Note that the function SMALLEST may also be preferable to
RANK when restricting the resulting data set to elements of a particular rank:
Assume, as in the example given above, that the result set is to be restricted
to the elements whose rank is at most R. Instead of computing the rank of
each element in order to determine whether it belongs to the result set, it
may be beneficial to compute the element x = SMALLEST(R) beforehand and
then test for each element x′ if x′ ≺ x, where ≺ is the binary relation that
defines the order of the elements. Due to the great number of fundamental
statistics that can be computing using the aggregate function SMALLEST, an
entire chapter (Chapter 4) is devoted to the analysis of algorithmic bounds
to compute it distributively.

Generally, the given data set may contain multiple copies of its elements.
In SQL, the keyword “DISTINCT” eliminates all duplicate entries in the
data set, thereby enabling the computation of aggregates on a duplicate-free
input set. For example, the number of different temperature measurements
can be evaluated as follows:

3Sometimes the mean of these two elements is considered the median of the data set.
4A well-known example is the distribution of income: As in many countries a few

people earn considerably more money than most people, the median of all salaries is a
much better indicator for the economic wealth of society than the average income.
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SELECT COUNT(DISTINCT Temperature)
FROM Measurement

Note that the function DISTINCT is equivalent to the SQL operation
“COUNT DISTINCT”. Determining the number of distinct elements is a
fundamental problem in databases [24, 62]. Although we will focus our at-
tention on computing this function, it will also be pointed out how the de-
scribed technique can be used to determine, e.g., the sum or the average of
all distinct elements in the data set.

Instead of ignoring duplicates, we may be interested in determining the
frequencies of elements. In particular, it may be desirable to find the el-
ement that occurs more often than all other elements. The element with
the highest frequency is commonly referred to as the mode. Apparently, the
function MODE, which determines the most frequent element, can also be used
to compute the second most frequent element in the given data set by simply
excluding the previously computed most frequent element and applying the
function to the reduced set again.

All functions mentioned, and combinations thereof, cover a wide range
of reasonable aggregation queries.5 Similarly to how SQL is used to query
databases, it would be desirable to have a tool that provides aggregation
support for distributed systems where all data items are scattered among the
different entities of the system. In order to build a distributed aggregation
tool where queries are sent through the distributed system and the result
of the query is returned to the machine that issued the query, distributed
algorithms for all offered aggregate functions are required. These algorithms
ought to be as efficient as possible, which means that they must require
little resources, such as bandwidth, and the inquiring machine must obtain
the response to the query as quickly as possible. Thus, the objective of
the following chapters is to provide expedient algorithms and to analytically
prove bounds on their quality.

Before delving into the study of distributed aggregation algorithms, we
must clarify how quality is measured by defining an appropriate measure of
complexity. Moreover, since all discussed aggregate functions are tradition-
ally categorized into three classes, these classes are also introduced first.

2.2 Model and Definitions

Given a specific aggregate function f and a multiset S := {x1, . . . , xN} con-
sisting of N elements, where all elements xi, i ∈ {1, . . . , N}, of the multiset
S are distributed arbitrarily among the n nodes of a network graph G, the
objective of distributed aggregation is to compute f(S).

5The reader is encouraged to think of a natural aggregation (single value result) query
that cannot be formulated by a combination of these aggregate functions.
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Let X denote the domain of all elements, i.e., each element xi ∈ S is
chosen from the set X. We are only concerned with aggregate functions that
map the input set to a single value. The range may either be the real numbers
R (the function COUNT, e.g., returns the number of elements), or also X (e.g.,
the function MAX returns the largest element in S).6 Computing functions
such as MAX or MEDIAN is only feasible if there is total order on the elements
of X. We assume that there is always a total order on the elements and
that, given a total order relation ≺, the nodes know for any two elements
x, x′ ∈ X whether x ≺ x′ or x′ ≺ x. Since aggregate functions such as SUM

or AVG require that the elements be numeric values, we can assume for these
functions that X = R and thus the traditional smaller-or-equal relation on
real numbers can be used.

As mentioned in Section 1.3, the graph G can be any connected, undi-
rected graph consisting of n nodes, which means that the proposed algorithms
for certain aggregation functions f must operate efficiently regardless of both
the structure of the graph G and the given multiset S. Naturally, there are
aggregate functions that can be computed more easily than others. This
observation is true not only for distributed aggregation, but also when all
data is stored in a single database. In order to quantify the difficulty of com-
puting different aggregate functions, the database community has classified
aggregate functions into three categories [23]. Since we adhere to their cate-
gorization throughout this thesis, the three categories are now introduced.

Aggregate functions belonging to the first class are called distributive.
Given a partition S1, . . . ,S` of S,7 a distributive aggregate function f has
the property that the aggregates f(S1), . . . , f(S`) can be used to compute
f(S). Formally, distributive aggregate functions are defined as follows.

Definition 2.1 (Distributive Aggregate Function). Let S be a multiset and
let S1, . . . ,S` be a partition of S. An aggregate function f is called distribu-
tive if there is an aggregate function g such that f(S) = g(f(S1), . . . , f(S`)).

As the name suggests, distributive aggregate functions can easily be
computed distributively since partial solutions can be combined by means
of a function g. Distributive aggregate functions are for example COUNT,
MAX, MIN, SUM, and RANK. Apart from COUNT and RANK, it holds for these
functions that the function g that joins the partial aggregates together is
the same as the function f .8 For the aggregate function COUNT the func-
tion g is simply the aggregate function SUM. If we only consider the multi-
sets S ′1, . . . ,S ′r that contain element x, the rank of x in S is RANK(x,S) =
SUM(RANK(x,S ′1),. . . ,RANK(x,S ′r))−r + 1.

6Of course, it is also possible that X ⊆ R.
7S1, . . . ,S` is a partition of S if Si ∩Sj = ∅ for all i, j ∈ {1, . . . , `}, where i 6= j, and

S =
S`

i=1 Si.
8For example, MAX(S) = MAX(MAX(S1),. . . ,MAX(S`)).
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The second class of aggregate functions consists of the functions that can
be computed by combining distributive aggregate functions. If f(S) can be
derived from the results of distributive aggregate functions for any multiset
S, then f is referred to as an algebraic aggregate function.

Definition 2.2 (Algebraic Aggregate Function). An aggregate function f
is called algebraic, if it can be computed with a fixed number of distributive
aggregate functions.

The function AVG, which computes the average of all elements in S, is an
algebraic aggregate function. Once SUM and COUNT have been computed, we
get the average value by simply dividing these values. The function VAR is
an algebraic aggregate function as well.

Algebraic aggregate functions are by definition not (much) harder to com-
pute than distributive aggregate functions. In both cases it is possible to ex-
ploit the fact that sub-aggregates can be merged into the desired aggregate
value. The third class distinguishes itself quite clearly from the other classes
in this regard. An aggregate function is said to be holistic if it is not possible
to combine sub-aggregates.

Definition 2.3 (Holistic Aggregate Function). An aggregate function f is
called holistic, if there is no constant bound on the size of the storage needed
to describe a sub-aggregate.

Intuitively, a holistic aggregate function is a function that can only be
computed by looking at each element individually. Since all functions that
cannot be computed by combining sub-aggregates are considered holistic, the
classification of aggregate functions into these three categories is exhaustive.
The remaining aggregate functions, i.e., MEDIAN, SMALLEST(k), LARGEST(k),
DISTINCT, and MODE, all belong to this class. As mentioned before, since
SMALLEST(k) = LARGEST(N−k+1) and SMALLEST(N/2) = MEDIAN, computing
SMALLEST is at least as hard as determining MEDIAN or LARGEST. It thus suffices
to derive algorithms for the function SMALLEST, which can also be used to
compute the other two aggregate functions. In contrast, the two functions
DISTINCT and MODE require different techniques as we will see in Chapter 5.
The fact that sub-aggregates cannot be used directly to compute the final
aggregate entails that holistic functions are considerably more difficult to
compute than distributive and algebraic aggregate functions.

For any given distributed aggregation problem, no constraint is imposed
on the magnitude of the elements in S. However, the maximum size of any
single message is restricted: A message may contain solely a constant number
of elements—this constant does not depend on the size of the elements—and
also at most O(log n + log N) arbitrary additional bits. Recall that n and
N denote the number of nodes and the number of elements, respectively.
These additional bits may be used, e.g., to include (a constant number of)
unique node identifiers in the sent messages, which requires O(log n) bits. It
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is reasonable to assume that a message may further contain O(log N) bits as
otherwise not even the result of the simple aggregate function COUNT can be
sent in one message.

In order to constrain the bandwidth consumption, not only the maximum
message size but also the number of messages that a node can send in a certain
time interval must be bounded. If there is no such limitation, a node may
send an unbounded number of messages in an arbitrarily short period of time.
For this reason, we define that any node v can only transmit one, but not
necessarily the same message to each neighbor, and then v is forced to wait
for one time unit before it is allowed to send the next batch of messages to
any subset of its neighbors. Note that these “waiting times” entail that the
message exchange can be considered to proceed in communication rounds.

There are several measures of efficiency of a distributed algorithm. In
the first part of this thesis, the main goal is to minimize the time required
to compute any of the introduced aggregate functions. For this purpose, we
analyze the time complexity of our proposed algorithms. The time complex-
ity of a distributed algorithm in an asynchronous model of computation is
defined as follows:

Definition 2.4 (Time Complexity). The time complexity of a distributed
algorithm is the number of time units from the start of the execution to its
completion in the worst case for every legal input and every execution scenario
on any graph G.

In distributed aggregation, the input is simply the distribution of elements
on the nodes of the graph G. Recall that any single message is in transit
for up to T time units, but it also may arrive instantaneously, i.e., after zero
time. Since T is a constant that merely re-scales the results linearly, we use
the normalized bound T := 1 for ease of presentation. Hence, in the following
any message may be delayed by any value in the range [0, 1].

For some algorithms we will also state the message complexity, which is
the number of messages that need to be sent in the worst case in order to
compute the result:

Definition 2.5 (Message Complexity). The message complexity of a dis-
tributed algorithm is the number of messages exchanged in the worst case for
every legal input and every execution scenario on any graph G.

In the following chapter, we start our analysis of distributed aggregation
by discussing how aggregate functions that are either algebraic or distributive
can be computed efficiently in a distributed manner.





Chapter 3

Algebraic and Distributive

Aggregate Functions

ALGEBRAIC and distributive aggregate functions can be computed easily
given the aggregates of a partition of the entire data set S. The main question
is how a node striving to compute an aggregate function can obtain such sub-
aggregates. Evidently, since each node initially knows only its own elements,
the nodes must communicate and thereby exchange aggregates of their own
elements, and of other elements, in order to compute the final aggregate.

A node v, whose own elements are stored in the multiset Sv, may attempt
to compute the desired aggregate value as follows. Whenever a message con-
taining an aggregate value f(S′) of some multiset S′ is received, v simply
broadcasts the sub-aggregate f(Sv ∪ S′) = g(f(Sv), f(S′)) to its neighbors.
This scheme is flawed for the following reasons. If the graph G contains cy-
cles, a sub-aggregate may repeatedly pass a single node over different paths,
which entails that a false aggregate value is computed because its elements
Sv are included several times. For example, when computing the sum of all
elements, we clearly do not obtain the correct result if the same element is
added more than once. If the recipient of a sub-aggregate knows or is able
to detect that its own elements have already been included in the obtained
aggregate, this problem can be circumvented. Note that storing the infor-
mation whose local elements have already been included in each message is
not an acceptable solution: Given that there are n nodes, and in general the
elements of each node may or may not be included in a message, the required
maximum message size is at least n bits, which is prohibitory as, apart from
a constant number of elements, a message may contain solely O(log n) ad-
ditional bits as defined in Section 2.2. Apparently, for idempotent aggregate
functions, such as MAX and MIN, storing this information is not necessary since
the repeated application of the aggregate function cannot falsify the result.
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The second problem, which also affects idempotent functions, is termination
detection, i.e., the nodes must be able to determine whether or not the re-
ceived aggregate value is the final aggregate. As we will see in the following,
if a spanning tree is used as a simple routing infrastructure on top of the
underlying graph G, these problems can be solved quite elegantly.

3.1 Spanning Tree Construction

A spanning tree TG = (VT , ET ) of a graph G = (V, E) is a tree, i.e., a cycle-
free graph, that is a subgraph of G for which it holds that VT := V and for
all v ∈ V there is at least one edge e ∈ ET such that v ∈ e. In other words,
TG is a tree that spans all nodes of G. Since a spanning tree does not contain
any cycles, there is exactly one simple path from each node to every other
node in TG, which renders it an ideal routing infrastructure for our purposes.

Given an arbitrary graph G, the objective is thus to build a spanning
tree, which can then be used to route information when computing aggregate
functions. Once the spanning tree is constructed, messages are only sent
over the edges of the spanning tree. As mentioned before, the diameter D
of G determines how long it takes at most for any two nodes to exchange
information. In order to guarantee that this upper bound is not increased
significantly when restricting the information exchange to the edges of the
spanning tree TG, the ratio between the diameter D(TG) of the spanning tree
and D ought to be as small as possible. A natural choice for a spanning tree
is a breadth first search (BFS) spanning tree, which is defined as follows. A
BFS spanning tree TG is a spanning tree for which it holds that there is a
node v′ such that the single path in TG from v′ to any other node w is a
shortest path from v′ to w in G. The nice property of a BFS spanning tree
is that its diameter is at most twice as large as the diameter of the original
graph G. Figure 3.1 illustrates that an arbitrary spanning tree of a graph G
may have a much larger diameter than a BFS spanning tree.

A BFS spanning tree can be constructed by using a (distributed) shortest
path algorithm, which computes shortest paths from a dedicated, but arbi-
trary node v′ ∈ V to all other nodes. A well-known shortest path algorithm
is the Bellman-Ford algorithm [6, 20], which is referred to as algorithm Atree

in the following. For the sake of simplicity, it is assumed that a single node
v′ initiates the algorithm.1 The Bellman-Ford algorithm computes shortest
paths to this particular node v′, inducing a BFS spanning tree. For this pur-
pose, each node v stores the current distance dv to v′ and the current parent
pv, which is the node that is currently known to be the next closer node to
v′. Initially, for all nodes v ∈ V \ {v′} the distance is unknown and thus set
to dv := ∞, and pv is undefined.

1Otherwise, a leader election algorithm may be used to determine such a node v′.
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v'

(a)

v'

(b)

Figure 3.1: The diameter of the BFS spanning tree in Figure (a) is 5, which
is less than 2D = 6. Figure (b) shows that the diameter of an arbitrary
spanning tree can be up to n− 1 = 7.

Node v′, for which dv′ := 0, initiates the construction of the spanning
tree by sending dv′ + 1 = 1 to its neighbors. The idea behind the algorithm
is that whenever a node v receives a message containing a value dw lower
than dv from a node w, it can reduce its distance to v′ in the tree if w is
chosen as its parent. After updating pv to w and setting dv := dw, the other
neighbors are informed that their distance to v′ is dw +1 = dv +1 via v. The
steps of algorithm Atree are summarized in Algorithm 3.1.

The following theorem states that algorithm Atree is correct, i.e., Atree

computes a BFS spanning tree; moreover, it gives upper bounds on the time
and message complexity of Atree.

Theorem 3.1. Algorithm Atree computes a BFS spanning tree. The time
complexity of Atree is O(D) and the message complexity is O(n|E|).

Proof. The time complexity is proved by induction. We claim that after at
most i time units, each node v at distance i to v′ stores the value dv = i for
all i ∈ {0, . . . , D}. For any node v at distance at most i, this implies that
its parent pv is part of a shortest path between v′ and v as desired. Node
v′ stores 0 at time 0 and there is no other node at zero distance. We can
thus assume that our claim holds for all nodes at a distance of at most i′.
A node v at distance i′ + 1 has a neighbor whose distance to v′ is i′, which,
according to the induction hypothesis, knows that its distance is i′ by time
i′ and sends i′ + 1 to its neighbors. Thus, after at most one time unit, i.e.,
by time i′ + 1, node v receives and stores the value i′ + 1, which proves the
claim.

Since at the latest at time D the last nodes are informed about their
distance to v′, the last messages are sent not later than at time D. These
messages arrive at the latest at time D+1 ∈ O(D), which proves the claimed
bound on the time complexity.
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Algorithm 3.1 Atree: Node v received a message containing dw from node
w ∈ Nv.

1: if dw < dv then
2: dv := dw

3: pv := w
4: send dv + 1 to all u ∈ Nv \ {w}
5: end if

Since each node except v′ has exactly one parent, the constructed graph
is a spanning tree and given that each parent is part of a shortest path, the
spanning tree is a BFS spanning tree rooted at v′. Hence it follows that the
algorithm is correct.

The message complexity follows from the observation that each node v
can reduce its variable dv at most n− 1 times, each time it sends a message
to all its neighbors. In total, the message complexity is thus upper bounded
by
P

v∈V (n− 1)δ(v) ∈ O(n|E|).

Once the spanning tree construction is complete, it can be used to route
aggregate values. If most aggregation queries originate from the same node
v, then v should be chosen as the node initiating the algorithm in order to
ensure that the shortest paths to v are used. However, if all nodes are equally
likely to issue queries, no node can be singled out as a suitable initiator. This
is not crucial since the direct path from a node u to any other node w on
any BFS spanning tree is at most twice as long as a shortest path from u to
w on the original graph G as mentioned before.

While the time complexity of algorithm Atree is optimal if a single node
initiates the algorithm,2 its shortcoming is that the nodes do not know when
the construction of the spanning tree is complete because the nodes do not
have an upper bound on the message delay. For this purpose, an adequate ter-
mination detection algorithm can be run in parallel. Detecting termination
in this context is quite tricky because the termination detection algorithm
must also involve some sort of message propagation through the network.
Naturally, the constructed tree can be used to route such messages, but one
has to be careful since the tree may change while the algorithm tries to de-
tect termination. The termination detection will succeed, however, once the
construction is complete, which is certainly the case after at most D time. Al-
ternatively, another shortest path algorithm that either detects termination
automatically or can be adapted easily to incorporate termination detection
may be employed. An example of such an algorithm is Dijkstra’s shortest
path algorithm [15]. The algorithm operates in phases, at the end of each
phase i ∈ {1, . . . , D}, the partial spanning tree contains exactly all the nodes

2It clearly takes at least D time in the worst case to construct a spanning tree because
it may already take D time to simply propagate a message to all nodes.
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that are within distance at most i to v′. In order to add the nodes at distance
i + 1 to the spanning tree in phase i + 1, a discover message, initiated by v′,
is sent along the edges of the already constructed spanning tree. The leaves
of this tree, i.e., the nodes at distance i, can then inquire their neighbors
whether they are already part of the spanning tree. Any neighbor that is
not part of the tree is a node at distance i + 1 and is added to the tree
by accepting any inquiring node as its parent. Once each leaf has received
a response from all its neighbors, a response is forwarded back towards v′,
which considers phase i + 1 complete as soon as it has received a response
from each of its neighbors.

Note that if the responses contain the information whether a new node
has been added in the current phase or not, v′ can determine easily at the end
of a phase whether or not another phase is required: Once no more nodes
have been added to the spanning tree in a certain phase, its construction
must be complete and termination has been detected. The disadvantage of
this algorithm is that each phase i costs O(i) time because messages are sent
back and forth along the partially constructed tree, which implies that the
time complexity is O(D2). Thus, Dijkstra’s algorithm is substantially slower
in the worst case.

If a spanning tree has to be constructed only once, the increased time
complexity may not be an issue. In this case, it might be desirable to use
an algorithm such as Dijkstra’s shortest path algorithm. The same spanning
tree can be used if the graph G is static, i.e., if the structure of G does not
change. Consequently, it is advisable to use algorithm Atree if the spanning
tree has to be constructed repeatedly due to frequent topological changes
of G, e.g., caused by arriving (or departing) nodes or link discoveries (or
failures). Since the focus is solely on how to efficiently compute aggregates
on a particular (static) graph G, the problem of determining if or when a
new spanning tree has to be constructed is not further discussed. For the
sake of simplicity, it is assumed in the following that G does not change—at
least for the entire duration of the aggregation process—and that any BFS
spanning tree TG on which messages can be routed has been pre-computed.

3.2 Aggregation on the Spanning Tree

Since all messages must be sent strictly over edges of the spanning tree TG =
(V, ET ), each node v may only communicate with a neighbor w ∈ Nv if the
edge {v, w} is an edge of the spanning tree. Let Nv(TG) ⊆ Nv denote the
set of v’s neighbors that v is allowed to communicate with directly, i.e.,

Nv(TG) := {w ∈ Nv | {v, w} ∈ ET }.
As any algorithm to compute distributive aggregate functions can also

be used to compute algebraic aggregate functions, we focus on the computa-
tion of distributive aggregate functions first and then describe how the same
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Algorithm 3.2 Adist: Node v received a message COMPUTE(f) from node
w ∈ Nv.
1: pv := w
2: Cv := Nv(TG)/{w}
3: if Cv 6= ∅ then
4: send COMPUTE(f) to all u ∈ Cv

5: wait until f(S1), . . . , f(S`) received from all u ∈ Cv (` = |Cv|)
6: send g(f(S1), . . . , f(S`), f(Sv)) to pv

7: else
8: send f(Sv) to pv

9: end if

technique can be applied to algebraic aggregate functions. It is assumed that
each node knows the accompanying function g that allows the combination
of sub-aggregates for each distributive aggregate function f . The proposed
algorithm, denoted by Adist, operates as follows. If a node v′ wants to com-
pute an aggregate f(S), for a distributive aggregate function f , v′ initiates
the process by sending a message COMPUTE(f) to its neighbors in the span-
ning tree. Upon receiving such a message from a node w, the recipient v sets
its temporary parent variable pv to w and considers all other neighbors in
the spanning tree its (temporary) children Cv. Afterwards, v forwards this
message to all nodes in Cv, which will set v to be their current parent etc.
For the sake of simplicity, we assume that there is just one aggregation re-
quest in the network. It is easy to see that several concurrent requests can
also be served if each node stores separate parent/children relations for each
request, which can be deleted after the corresponding aggregation task has
been completed. A node v that does not have any children to forward the
message COMPUTE(f) to (i.e., whose set Cv is empty) applies the aggre-
gate function f to its set of elements Sv and returns the result to its parent
pw. Once a parent w has received its children’s aggregates f(S1), . . . , f(S`),
where ` := |Cw| ≥ 1, it computes the aggregate f(Sw) of its own elements
and forwards g(f(S1), . . . , f(Ss), f(Sw)), which is, by definition, exactly the
aggregate function value of all elements S1∪. . .∪S`∪Sw in the subtree rooted
at w, to its parent. Upon receiving the aggregates from all its children, the
node v′ that initiated the process can then compute f(S) by applying the
function g to the sub-aggregates (including the aggregate value of its own
elements). The entire algorithm Adist is given in Algorithm 3.2.

Since all elements are added exactly once, algorithm Adist computes the
correct aggregate value. The following theorem bounds its time complexity.

Theorem 3.2. Given a BFS spanning tree TG of the network graph G of di-
ameter D, the time complexity of algorithm Adist to compute any distributive
aggregate function is O(D).
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Proof. Let v′ be the node that starts the aggregation. If the maximum
distance from v′ to any other node on the spanning tree is Dv′ , then it takes
at most Dv′ time until the message COMPUTE(f) reaches all the leaves of
the spanning tree. Once the leaves receive the message, they compute the
aggregate value of their local elements and send it to their respective parent.
Thus, after at most Dv′ +1 time, each node at distance Dv′ −1 can compute
the aggregate value using the received sub-aggregates and its own elements
and send this value to its parent. Inductively, after at most Dv′ + i time, any
node at distance Dv′− i has received the sub-aggregates from all its children.
Thus, the algorithm terminates after at most 2Dv′ time. The maximum
distance Dv′ is upper bounded by D(TG), the diameter of the spanning tree.
Since TG is a BFS spanning tree, it holds that D(TG) ≤ 2D. Hence it follows
that the time complexity is upper bounded by 4D ∈ O(D).

Note that the message complexity is 2(n − 1) ∈ O(n) as exactly two
messages are sent over each edge of the spanning tree TG.

If the goal is to compute an algebraic aggregate functions, such as
AVERAGE, algorithm Adist can be adapted as follows. Let [f1, . . . , fc] be the
distributive aggregate functions required to compute an algebraic aggregate
function fa.3 As c is a constant by definition, each node v can pack the ag-
gregate values [f1(S), . . . , fc(S)], where S is the set of elements in the subtree
rooted at v, into a single message, which incurs only a constant increase of the
message size. The only required modification of algorithm Adist is that each
function fi has to be handled separately and each result is put into the same
message that is forwarded to the current parent. The node initiating the
aggregation can then compute the aggregate function fa by combining the
aggregate values f1(S), . . . , fc(S). Since the algorithm essentially remains
the same, the time complexity does not change.

One might wonder if there is a more efficient way to compute aggregates.
The following theorem states that in general this is not possible, implying
that Adist is asymptotically optimal, i.e., its time complexity is optimal up
to a constant factor.

Theorem 3.3. Any algorithm A that computes f(S) for any aggregate func-
tion f , where the elements of S are distributed on a graph G of diameter D,
has a time complexity of Ω(D).

Proof. Consider two nodes v and w at distance d(v, w) = D. If v wants to
compute f(S), it can only do so if it receives some information from w. Since
it takes at least D time in the worst case until v receives the first message
from w, the claimed time complexity follows.

The technique to start the aggregation process at the leaves of a spanning
tree and forward partial aggregates towards a particular node is well-known

3For example, for the function AVERAGE this set is [SUM,COUNT].
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(see, e.g., [49]) and commonly referred to as a convergecast operation. In a
convergecast the sub-aggregates are computed in the network itself, as op-
posed to centrally collecting the elements individually in order to compute
the aggregate. Whenever partial aggregation results are computed in the
network, we speak of in-network aggregation. Convergecast is a prototypical
in-network aggregation technique, which is used in various systems to com-
pute algebraic and distributive aggregation functions. For example, there are
several data aggregation systems for wireless sensor networks based on this
simple principle [39, 64, 65].

Algebraic and distributive aggregate functions can also be computed using
other approaches. Astrolabe [61], a monitoring and management system
for distributed applications based on peer-to-peer technology, uses gossiping
techniques to compute the desired aggregates.

All practical systems have in common that they merely implement alge-
braic and distributive aggregate functions. To the best of our knowledge,
there is no system that incorporates support for holistic aggregation queries.
As discussed in the previous chapter, there are several important holistic
aggregate functions, and it is essential to understand how to compute them
efficiently. The goal of the following chapters is thus to shed light on the
complexity of computing some of the most prominent examples of holistic
aggregate functions in a distributed manner.



Chapter 4

Distributed Selection

FINDING the kth smallest element among a set of N elements is a classic
problem which has been extensively studied in the past approximately 30
years, both in a distributed and a non-distributed setting. The problem
of finding the median, i.e., the element for which half of all elements are
smaller and the other half is larger, is a special case of the k-selection problem
which has also received a lot of attention. Blum et al. [9] proposed the first
deterministic sequential algorithm that, given an array of size N , computes
the kth smallest element in O(N) time. Their algorithm partitions the N
elements into roughly N/5 groups of 5 elements and determines the median
element of each group. The median of these N/5 medians is then computed
recursively. While this median of medians is not necessarily the median
among all N elements, it still partitions all elements well enough in that at
least (roughly) 30% of all elements are smaller, and also at least 30% are
larger. Thus, at least 30% of all elements can be excluded and the algorithm
can be applied recursively to the remaining elements. A careful analysis
of this algorithm reveals that only O(N) operations are required in total.
Subsequently, Schönhage et al. [57] developed an algorithm requiring fewer
comparisons in the worst case.

As far as distributed k-selection is concerned, a rich collection of algo-
rithms has been amassed for various models over the years. A lot of work
focused on special graphs such as stars and complete graphs [41, 52, 54, 56].
The small graph consisting of two connected nodes where each node knows
half of all N elements has also been studied and algorithms with a time com-
plexity of O(log N) have been presented [13, 40, 51]. It has been shown that
this result is tight for deterministic algorithms in a restricted model [51].
For the sake of simplicity, it is often assumed that each node holds exactly
one element, i.e., n = N , when considering more general graphs consisting
of n nodes. In the following, all results are given with respect to this sim-
plified model. Frederickson [21] proposed algorithms for rings, meshes, and
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also complete binary trees whose time complexities are O(n), O(
√

n), and
O(log3 n), respectively. Several algorithms, both of deterministic [44, 46, 58]
and probabilistic nature [53, 55, 58], have also been devised for arbitrary
connected graphs. For some of these deterministic algorithms it is assumed
that all elements are numeric and that the elements can be represented us-
ing O(log n) bits. In this case, simply applying binary search results in a
time complexity of O(D log xmax) ⊆ O(D log n), where xmax denotes the
largest numeric element [46]. By exponentially increasing the initial guess
of xk = 1, i.e., the kth smallest element is assumed to be 1, and then ap-
plying binary search once the guess becomes too large, the solution can be
found in O(D log xk) ⊆ O(D log n) time [44]. Of course, it is desirable to
find the kth smallest element efficiently without restricting the domain of the
elements. The only non-restrictive deterministic k-selection algorithm for
general graphs with a sublinear time complexity in the number of nodes is
due to Shrira et al. [58]. Their adaptation of the classic sequential algorithm
by Blum et al. for a distributed setting has a worst-case running time of
O(Dn0.9114). In the same work, a randomized algorithm for general graphs
is presented. The algorithm simply inquires a random node for its element
and uses this guess to narrow down the number of elements that may still
be the kth smallest element. The expected time complexity of this algorithm
is shown to be O(D log n). It has also been studied how gossiping can be
used for distributed k-selection: Kempe et al. [29] proposed a gossip-based
algorithm that, with probability at least 1 − ε, computes the kth smallest
element within O((log n+ log 1

ε
)(log n+ log log 1

ε
)) rounds of communication

on a complete graph. If the number of elements N is much larger than the
number of nodes, the problem can be reduced to the problem where each
node has exactly one element in O(D log log min{k, N − k + 1}) expected
time using the algorithm proposed by Santoro et al. [53, 55]. However, their
algorithm depends on a particular distribution of the elements on the nodes.
Patt-Shamir [46] showed that the median can be approximated very effi-
ciently, again subject to the constraint that each element can be uniquely
encoded using O(log n) bits.

In this chapter, we shed some new light on the problem of distributed
selection. In particular, we show that distributed selection is strictly harder
than convergecast by proving a lower bound of Ω(D logD n) on the time com-
plexity in Section 4.2. This result formally confirms the preconception that
k-selection cannot be supported by a simple convergecast operation. In ad-
dition, in Section 4.1.1, a novel Las Vegas algorithm is presented whose time
complexity is O(D logD n) with high probability. Given the lower bound of
Ω(D logD n), it follows that the time complexity of this algorithm is asymp-
totically optimal. As a third result, in Section 4.1.2, the algorithm is deran-
domized, yielding a deterministic distributed selection algorithm with a time
complexity of O(D log2

D n), which constitutes a substantial improvement over
prior art.
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4.1 Algorithms

Throughout this chapter, it is assumed that each node vi holds exactly one
element xi, i.e., S = {x1, . . . , xn}. Note that this simplification is only
introduced for ease of presentation. The proposed algorithms can easily be
generalized to the case where both the cardinality and the distribution of
the elements of S among the n nodes are arbitrary. Recall that it is further
assumed that the network graph G is static and that a BFS spanning tree
TG has been computed beforehand. Finally, we assume that all nodes know
the diameter D of the graph. This assumption is not critical as the diameter
can be computed in O(D) time. Without loss of generality, we can assume
that all elements xi are unique. If two elements xi and xj were equal, node
identifiers, for example, could be used as tiebreakers.

As both proposed algorithms are iterative in that they continuously re-
duce the set of elements that may be the kth smallest element in S, we need to
distinguish between nodes holding elements that are still of interest from the
other nodes. Henceforth, the nodes whose elements may be the kth smallest
element are referred to as candidate nodes or candidates. The reduction of
the search space by a certain factor is called a phase of the algorithm. The
number of candidate nodes in phase i is denoted by n(i). This pattern is quite
natural for k-selection and used in all other proposed algorithms, including
the non-distributed algorithms. The best known deterministic distributed
algorithm for general graphs uses the well-known median-of-median tech-
nique, resulting in a time complexity of O(Dn0.9114) for a constant group
size. A straightforward modification of this algorithm in which the group
size in each phase i is set to O(

√
n(i)) results in a much better time com-

plexity. It can be shown that the time complexity of this variant of the
algorithm is bounded by O(D(log n)log log n+O(1)). However, since our pro-
posed algorithm is substantially better, we will dispense with the analysis of
this median-of-median-based algorithm. Due to the more complex nature of
the deterministic algorithm, the proposed randomized algorithm is discussed
first.

4.1.1 Randomized Algorithm

While it is somewhat intricate to compute the kth smallest element efficiently
and deterministically, it is remarkably simple to come up with a fast random-
ized algorithm. An apparent solution, proposed by Shrira et al. [58], is to
choose a node randomly and take its element as an initial guess. After com-
puting the number of nodes with smaller and larger elements, it is likely
that a considerable fraction of all nodes no longer need to be considered. By
iterating this procedure on the remaining candidate nodes, the kth smallest
element can be found quickly for all k.

A node can be chosen randomly using the following scheme: A message
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indicating that a random element is to be selected is sent along a random
path in the spanning tree starting at the node v initiating the aggregation.
If v is a candidate and it has ` children v1, . . . , v`, where child vi is the
root of a subtree with ni candidate nodes including itself, v chooses its own
element with probability 1/(1 +

P`
j=1 nj). Otherwise, it sends a message to

one of its children. The message is forwarded to node vi with probability
ni/(1 +

P`
j=1 nj) for all i ∈ {1, . . . , `}. Naturally, if v is not a candidate, it

cannot choose its own element. In this case, v forwards the message to vi

with probability ni/
P`

j=1 nj for all i ∈ {1, . . . , `}. Any recipient of such a
message proceeds in the same manner until one candidate chooses its own
element and sends this element to the initiating node. It is easy to see
that this scheme selects a node uniformly at random and that it requires at
most 4D time because the times to reach any node and to report back are
both bounded by 2D since the distance between any two nodes in the BFS
spanning tree TG is at most 2D. Note that after each phase the probabilities
change as they depend on the altered number of candidate nodes remaining
in each subtree. However, having determined the new interval in which the
solution must lie, the number of nodes satisfying the new predicate in all
subtrees can again be computed in 4D time.

This straightforward procedure yields an algorithm that finds the kth

smallest element in O(D log n) expected time as O(log n) phases suffice in
expectation to narrow down the number of candidates to a small constant.
It can even be shown that the time required is O(D log n) with high proba-
bility.1 The key observation to improve this algorithm is that picking a node
randomly always takes O(D) time, therefore several random elements ought
to be chosen in a single phase in order to further reduce the number of can-
didate nodes [31]. The method to select a single random element can easily
be modified to enable the selection of several random elements by including
the number of needed random elements in the request message. A node re-
ceiving such a message locally determines whether its own element is chosen,
and also how many random elements each of its children’s subtrees must
provide. Subsequently, it forwards the requests to all of its children whose
subtrees must provide at least one random element. Note that all random
elements can be found in 2D time independent of the requested number of
random elements, but due to the restriction that only a constant number of
elements can be packed into a single message, it is likely that not all elements
can propagate back to the node v that initiated the aggregation in 2D time.
However, all elements still arrive at node v in O(D) time if the number of
random elements is upper bounded by O(D).

Pseudo-code for the algorithm Asel
rnd which determines the kth smallest

element by making use of a larger number of random elements is given in

1Recall that with high probability means with probability at least 1 − 1
nλ for a pa-

rameter λ ≥ 1.
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Algorithm 4.1 Asel
rnd: Compute the kth smallest element using r random

elements in each phase.

1: xmin := −∞; xmax := ∞
2: repeat
3: {x1, . . . , xr} := getRandomElementsInRange(r, (xmin, xmax))
4: x0 := xmin; xr+1 := xmax

5: for i := 1, . . . , r + 1 in parallel do
6: ci := countElementsInRange((xi−1, xi])
7: end for
8: j := min

n
` ∈ {1, . . . , r + 1} |

P`
i=1 ci ≥ k

o
9: if

Pj
i=1 ci = k then

10: k := 0
11: else
12: k := k −

Pj−1
i=1 ci

13: end if
14: xmin := xj−1; xmax := xj

15: until cj ≤ r or k = 0
16: if k = 0 then
17: return xj

18: else
19: {x1, . . . , xs} := getElementsInRange((xmin, xmax))
20: return xk

21: end if

Algorithm 4.1. The algorithm Asel
rnd uses two parameters, the number of ran-

dom elements r considered in each phase, and the position of interest k. The
function getRandomElementsInRange collects r random elements in a given
range (xmin, xmax). As mentioned before, this operation includes in a first
step the counting of nodes whose elements lie in the specified interval. Once
the number of candidate nodes in each subtree has been determined, the r
random elements are selected and reported back to the initiator v. Hence,
this function call overall takes O(D + r) time. After acquiring the random
elements, which are ordered such that x1 ≺ . . . ≺ xr, the number of elements
ci in the intervals (xi−1, xi] are counted using the function countElementsIn-
Range. All these counting requests can be sent one after the other, thus there
is no need to wait for one single counting operation to complete. By counting
the nodes in each interval in parallel, the time complexity of this operation
is again O(D + r). Afterwards, the interval (xj−1, xj) in which the desired
element is to be found is determined and k is updated accordingly. These
steps are repeated until the solution is found, i.e., k = 0, or the interval
contains at most r elements, in which case all elements can be collected in
O(D + r) time and the solution can be computed locally.
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It is evident that the number of iterations determines the overall time
complexity as each operation can be performed in O(D) time provided that
r ∈ O(D). The following lemma states how many phases are required in
order to find the solution with high probability.

Lemma 4.1. If the diameter of G is D ≥ 2 and r := d8λDe, where λ ≥ 1,
then algorithm Asel

rnd determines the kth smallest element in less than 4 logD n
phases w.h.p.

Proof. First, we compute an upper bound on the probability that after any
phase i the kth smallest element is in a fraction of size at least c log D

D
times

the size of the fraction after phase i − 1 for a suitable constant c, i.e.,
n(i) ≥ n(i−1) c log D

D
.2 Let x̂1 ≺ . . . ≺ x̂n denote the total order of all ele-

ments. The size n(i) is determined by the smallest element larger than x̂k

and the largest element smaller than x̂k that are chosen randomly in phase i.
Assume that there are at least b c log D

2D
n(i−1)c candidates whose elements are

larger than x̂k after phase i−1. In this case, the probability that none of the
elements x̂k+1, . . . , x̂k+b c log D

2D
n(i−1)c are among the r = d8λDe random ele-

ments, which implies that there are at least b c log D
2D

n(i−1)c candidates whose
elements are larger than x̂k after phase i, is 

1−
b c log D

2D
n(i−1)c

n(i−1)

!d8λDe

.

Apparently, there are less than b c log D
2D

n(i−1)c candidates whose elements

are larger than x̂k after phase i if there are already less than b c log D
2D

n(i−1)c
such candidates after phase i − 1. The same argument holds for the prob-
ability that there are at least b c log D

2D
n(i−1)c candidates whose elements are

smaller than x̂k after phase i and thus, by virtue of a union-bound argument,
we have that

p := P
»
n(i) ≥ n(i−1) c log D

D

–
≤ 2

 
1−

b c log D
2D

n(i−1)c
n(i−1)

!d8λDe

< 2

 
1−

c log D
2D

n(i−1) − 1

n(i−1)

!8λD

< 2

„
1− 4λc log D − 1

8λD

«8λD

≤ 2e−4λc log D+1. (4.1)

We used the fact that r = d8λDe < n(i−1) as otherwise the algorithm
would simply collect all remaining elements in phase i. We call phase i suc-
cessful if n(i) < n(i−1) c log D

D
. By setting c := 6

5
, less than 3 logD n successful

2Note that the base of the logarithm is always 2 unless otherwise noted.
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phases are required to find x̂k as it holds for all D ≥ 1 that
`

c log D
D

´3
< 1

D

for this choice of c.

Let the random variable U(τ) denote the number of unsuccessful phases
out of τ phases in total. The probability that τ := 4 logD n phases do not
suffice is therefore at most

P[U(τ) ≥ logD n] =

τX
i=logD n

 
τ

i

!
pi(1− p)τ−i

τ=4 logD n

≤

 
4 logD n

logD n

!
plogD n (4.2)

(4.1)
< (4e)logD n

“
2e−4λc log D+1

”logD n

(4.3)

=
“
e−(4λc log D−2−ln 8)

”logD n

<

„
1

Dλ

«logD n

=
1

nλ
.

Inequality (4.2) follow immediately from Fact 1.5, and Inequality (4.3)
holds due to Fact 1.6. The last inequality holds because 4λc ln D

ln 2
− 2− ln 8 >

λ ln D for c = 6
5

and D ≥ 2. Hence, with high probability, the algorithm
terminates after less than 4 logD n phases.

As the number of phases is O(logD n) with high probability, we immedi-
ately get the following result.

Theorem 4.2. If the diameter of G is D ≥ 2 and r := d8λDe, where λ ≥ 1,
the time complexity of algorithm Asel

rnd is O(D logD n) w.h.p.

This algorithm is considerably faster than the algorithm selecting only
a single random element in each phase. In Section 4.2, we prove that no
deterministic or probabilistic algorithm can be better asymptotically, i.e.,
algorithm Asel

rnd is asymptotically optimal.

4.1.2 Deterministic Algorithm

The difficulty of deterministic iterative algorithms for k-selection lies in the
selection of elements that provably lead to a reduction of the search space
in each phase. Once these elements have been found, the reduced set of
candidate nodes can be determined in the same way as in the randomized al-
gorithm. Therefore, the only difference between the two algorithms is the way
these elements are chosen. While the function getRandomElementsInRange
performs this task in the randomized algorithm Asel

rnd, a suitable counterpart
for the deterministic algorithm, referred to as Asel

det, has to be derived.
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A simple idea to go about this problem is to start sending up elements
from the leaves of the spanning tree, accumulating the elements from all
children at the inner nodes, and then forwarding a selection of at most q
elements to the parent. If an inner node vi receives q elements from each of
its δ(vi) − 1 children in the spanning tree, the q elements that partition all
(δ(vi)−1)q nodes into q+1 segments of approximately equal size ought to be
found and forwarded. However, in order to find these elements, the number
of elements in each segment has to be counted starting at the leaves. Since
this counting has to be repeated in each step along the path to the root, it
takes O(D(D + ∆q)) time to find a useful partitioning into q + 1 roughly
equally sized segments. This approach suffers from several drawbacks: It
takesO(D2) time just to find a partitioning, and the time complexity depends
on the structure of the spanning tree.

The proposed algorithm Asel
det solves these issues in the following manner.

In any phase i, the algorithm splits the entire graph into O(
√

D) groups, each
of size O(n(i)/

√
D). Recursively, in each of those groups a particular node

initiates the same partitioning into O(
√

D) groups as long as the group size
is larger than O(

√
D). Groups of size at most O(

√
D) simply report all their

elements to the node that initiated the grouping at this recursion level. Once
such an initiating node v has received all O(

√
D) elements from each of the

O(
√

D) groups it created, it sorts those O(D) elements, and subsequently
issues a request to count the nodes in each of the O(D) intervals induced by
the received elements. Assume that all the groups created by node v together
contain n

(i)
v nodes in phase i. The intervals can locally be merged intoO(

√
D)

intervals such that each interval contains at most O(n
(i)
v /

√
D) nodes. These

O(
√

D) elements are recursively sent back to the node that created the group
to which node v belongs. Upon receiving the O(D) elements from its O(

√
D)

groups and counting the number of nodes in each interval, the root can
initiate phase i + 1 for which it holds that n(i+1) ∈ O(n(i)/

√
D) [31]. The

procedure getPartitionInRange that computes this partitioning is given in
Algorithm 4.2.

We will now study each part of the function getPartitionInRange in
greater detail. In a first step, groups are created using the function cre-
ateGroups. This operation additionally determines the number of remaining
candidate nodes in each subtree in phase i by accumulating the updated coun-
ters starting at the leaves of the tree: The leaf nodes return 0 if their elements
do not satisfy the predicate of the current phase, and 1 otherwise. Simulta-
neously, the groups are built using the following procedure. Any inner node
v with children v1, . . . , vp whose subtrees contain n

(i)
1 , . . . , n

(i)
p candidates in

phase i creates groups g1, . . . , gz, where gj ⊆ {1, . . . , p} for all j ∈ {1, . . . , z},S
j∈{1,...,z} gj = {1, . . . , p}, and gj ∩ gm = ∅ for all j, m ∈ {1, . . . , z}. The

size of a group gj is defined as s(gj) :=
P

c∈gj
n

(i)
c . The groups are created

such that s(gj) ≤ n(i)/
√

D for all j, and z is minimal. Unless the size of each
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Algorithm 4.2 getPartitionInRange(q, (xmin, xmax)): Compute m ≤ q ele-
ments that appropriately partition all elements in the range (xmin, xmax).

1: n′ := countElementsInRange((xmin, xmax))
2: if n′ > q then
3: {v1, . . . , v`} := createGroups(q, (xmin, xmax))
4: for i := 1, . . . , ` in parallel do
5: {xi1, . . . , xim} := getPartitionInRange(q, (xmin, xmax)) from vi

6: end for
7: X :=

S
i=1,...,`{xi1, . . . , xim}

8: {x1, . . . , xs} := sort(X )
9: x0 := xmin; xs+1 := xmax

10: for i := 1, . . . , s + 1 in parallel do
11: ci := countElementsInRange((xi−1, xi])
12: end for
13: {x′1, . . . , x′m} := reduce({x1, . . . , xs}, {c1, . . . , cs+1})
14: else
15: {x′1, . . . , x′m} := getElementsInRange((xmin, xmax))
16: end if
17: return {x′1, . . . , x′m}

group is exactly bn(i)/
√

Dc, node v adds itself to any group whose size is less
than bn(i)/

√
Dc if its element is still of interest. If v cannot join any group,

it becomes the single element of an additional group. Node v selects for each
group gj , with the exception of one group g′ ∈ {g1, . . . , gz}, a leader which
is any node vm where m ∈ gj (or possibly v itself if it joined this group).
The group g′, for which it must hold that s′ := s(g′) < bn(i)/

√
Dc, is the

incomplete group which might increase in size further up the spanning tree.3

For this purpose, s′ is propagated to the parent of v indicating that there is
a group of size s′ that can be enlarged. If the size of each group happens
to be exactly bn(i)/

√
Dc, node v sends s′ = 0 to its parent, which signifies

that all the nodes in this subtree are already perfectly matched. Note that,
while inner nodes can act as relay nodes for group communication, any edge
is used strictly by at most one group. Subsequently, all nodes are informed
about their group membership. Once the root is reached, the incomplete
group becomes a complete group since it cannot be enlarged anymore, and
a leader is selected for this group as well. All the selected leaders v1, . . . , v`

report to the root, which concludes the operation createGroups.

Figure 4.1 depicts an example where node v creates three groups. Node
v1 becomes the leader of the first group, node v declares itself the leader of

3Note that any group containing less than bn(i)/
√

Dc nodes may be selected as the
incomplete group. This decision does not have an impact on the asymptotic time com-
plexity of the algorithm.
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Figure 4.1: The maximum group size in phase i of this example is

bn(i)/
√

Dc = 28. The first group g1 consists only of the incomplete group
rooted at v1, while g2 consists of the two incomplete groups rooted at v2 and
v3. Node v joins g2 and becomes its leader. Information about the incomplete
group g′ rooted at v4 is forwarded to the parent of v.

the second group, and the third group, which consists of nine candidates, is
the incomplete group, which might be merged with other incomplete groups
by the parent of v.

Once these groups are set up, getPartitionInRange is called recursively
at each leader vi ∈ {v1, . . . , v`} in order to further partition the groups. The
return value of this function call at a particular node vi is a subset of the
elements stored at candidate nodes belonging to the group of which vi is
the leader. If its group consists of at most q candidates, all elements are re-
turned to the node that issued this request for a further partitioning. If the
group is larger, the resulting sets of the recursive calls are accumulated and
sorted using the function sort. Afterwards, the function countElementsIn-
Range counts the number of elements belonging to candidate nodes that are
part of this group for each induced interval. Subsequently, the function reduce
merges adjacent intervals as long as each interval contains at most n

(i)
v /

√
D

elements, and the reduced set of elements {x′1, . . . , x′m} ⊂ {x1, . . . , xs+1}
inducing these new intervals is returned. The following lemma bounds the
number of elements returned and the number of elements in each interval.

Lemma 4.3. If q := 2
√

D, getPartitionInRange executed at any leader v in
phase i returns a set of m ≤ q elements which induce intervals containing at
most n

(i)
v /

√
D elements each.

Proof. We will prove the lemma by induction. Both claims are obviously true
if the group of node v is of size at most q = 2

√
D. Assume now that the group
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contains more than q candidates, and that, by the induction hypothesis, both
claims hold for all ` returned sets of elements. Let n

(i)
vj denote the number

of elements in the group of which node vj is the leader in phase i. As any
interval (xj−1, xj ], for j ∈ {1, . . . , s + 1}, contains elements from at most
one interval from each of the ` groups, we have that the total number of
elements in this interval is bounded by

P`
j=1 n

(i)
vj /

√
D ≤ n

(i)
v /

√
D. If two

adjacent intervals together contain less than n
(i)
v /

√
D elements, they are

combined into one interval. Let z denote the number of intervals after the
intervals have been merged. Once no more intervals can be merged, any two
consecutive segments contain more than n

(i)
v /

√
D elements and it therefore

holds that 2n
(i)
v = 2

P`
j=1 n

(i)
vj > (z − 1)n

(i)
v /

√
D. Hence it follows that

z < 2
√

D + 1. As the values xmin and xmax define the entire considered
interval, m = z − 1 elements are required to specify the boundaries of the z
intervals, which concludes the proof.

The root uses the elements returned by getPartitionInRange to narrow
down the range of potential candidates as described in Section 4.1.1. Algo-
rithm Asel

det takes two parameters, the number q of requested elements and
the value k. We are now in the position to prove the following theorem.

Theorem 4.4. If the diameter of G is D ≥ 2 and q := 2
√

D, the time
complexity of algorithm Asel

det is O
`
D log2

D n
´
.

Proof. It follows from Lemma 4.3 that n(i+1) ≤ n(i)/
√

D, thus the number
of phases is bounded by O(logD n). The groups can be created in O(D)
time. The only other non-local operations are the collection of the sets from
all subgroups and the counting of all elements in each interval within the
entire group. Since the number of groups is upper bounded by 2

√
D and

each group returns at most 2
√

D elements according to Lemma 4.3, at most
4D elements have to be collected at the initiating node, which can be done
in O(D) time. Consequently, the number of elements in each interval can
also be counted in O(D) time. Let T : N → N where T (n) denotes the
time complexity of getPartitionInRange if there are n candidate nodes. We
have that T (n) ≤ T (n/

√
D) + cD for a suitable constant c, implying that

T (n) ∈ O(D logD n). The time complexity ofAsel
det is therefore upper bounded

by O(D log2
D n).

For many networks this running time is strictly below the time required
to collect all elements at one node. In fact, if D ∈ Ω(nc) for a constant c ≤ 1,
the time complexity of Asel

det is O(D) and thus asymptotically the same as
the complexity of a simple convergecast.
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4.2 Lower Bound

In this section, a lower bound on the time complexity for generic distributed
selection algorithms is proved which shows that the time complexity of the
simple randomized k-selection algorithm of Section 4.1.1 is asymptotically
optimal for most values of k. Informally, we call a selection algorithm generic
if it does not exploit the structure of the element space except for using the
fact that there is a global order on all the elements. Formally, this means
that the only access to the structure of the element space is by means of
the comparison function. Equivalently, we can assume that all elements
assigned to the nodes are fixed but that the ordering of elements belonging to
different nodes is determined by an adversary and initially not known to the
nodes. A simpler synchronous communication model where time is divided
into rounds and in every round each node can send a message to each of
its neighbors is used for the lower bound. Note that since the synchronous
model is more restrictive than the asynchronous model, a lower bound for
the synchronous model directly carries over to the asynchronous model. We
show that if in any round only B ≥ 1 elements can be transmitted over any
edge, such an algorithm needs at least Ω(D logD n) rounds to find the median
with reasonable probability. A lower bound for finding an element with an
arbitrary rank k can then be derived by using a simple reduction.

The lower bound is proved in two steps. First, we prove a lower bound
of Ω(logB n

´
on the time complexity for protocols between two nodes where

each node starts with half of the elements. In a second step, a graph T (D)
for every diameter D ≥ 3 is constructed such that every median algorithm
on T (D) can be simulated by two nodes to compute the median in a two-
party protocol. For the sake of simplicity, the lower bound is proved for
deterministic algorithms. Yao’s principle [63] can then be applied in order
to obtain a lower bound for randomized algorithms.

Let u and v denote the two nodes in a two-party protocol. Furthermore,
let u0 ≺ u1 ≺ · · · ≺ uN−1 and v0 ≺ v1 ≺ · · · ≺ vN−1 be the elements
stored by u and v, respectively, where N ≥ 1 and ≺ denotes the global order
according to which the median is to be found. The two sets of elements are
denoted by Su := {u0, . . . , uN−1} and Sv := {v0, . . . , vN−1} in the following.
Without loss of generality, it can be assumed that no element occurs twice,
i.e., there is a total of 2N distinct elements. Each message M = (S, Z)
between the two nodes is further assumed to contain a set S of at most B
elements and some arbitrary additional information Z. If M is a message
from u to v, then Z can be everything that can be computed from the results
of the comparisons between all the elements u has seen so far, as well as all
the additional information u has received so far. The only restriction on Z
is that it cannot be used to transmit information about additional elements.
We call a protocol between u and v that only sends messages of the form
M = (S, Z) as described above a generic two-party protocol.
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Figure 4.2: The 2N elements minus the two medians are assigned to u and
v according to ` = log N independent Bernoulli variables Y0, . . . , Y`−1. One
of the two medians is assigned to u and the other to v.

Of course, the time needed to compute the median in the above model
depends on how the 2N elements are distributed among u and v. Therefore,
this distribution or, equivalently, the outcome of comparisons between ele-
ments ui ∈ Su and vj ∈ Sv, needs to be determined first. The general idea is
the following. N different distributions of elements are constructed (i.e., N
different orders between the elements in Su and Sv) in such a way that the
N distributions result in N different median elements. If the distribution is
chosen uniformly at random from these N distributions, then the probability
to reduce the number of possible distributions in each communication round
by more than a factor of λB is exponentially small in λ [31].

For simplicity, assume that N = 2` is a power of 2. Let Y0, . . . , Y`−1 ∼
Bernoulli(1/2) be ` independent Bernoulli variables, i.e., all Yi take values
0 or 1 with equal probability. The distribution of the 2N elements among
u and v is determined by the values of Y0, . . . , Y`−1. If Y`−1 = 0, the N/2
smallest of the 2N elements are assigned to u and the N/2 largest elements
are assigned to v. If Y`−1 = 1, it is the other way round. In the same
way, the value of Y`−2 determines the assignment of the smallest and largest
N/4 of the remaining elements: If Y`−2 = 0, u gets the elements with ranks
N/2 + 1, . . . , 3N/4 and v gets the elements with ranks 5N/4 + 1, . . . , 3N/2
among all 2N elements. The remaining elements are recursively assigned
in the same way depending on the values of Y`−3, . . . , Y0 until only the two
elements with ranks N and N + 1 (i.e., the two median elements) remain.
The element with rank N is assigned to u and the element with rank N +1 is
assigned to v. See Figure 4.2 for an illustration of this distribution process.
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Formally, the resulting global order can be defined as follows. Let uα be
an element of u and let vβ be an element assigned to v. Recall that uα is the
(α + 1)th smallest element of u and that vβ is the (β + 1)th smallest element
of v. Let α`−1 . . . α0 and β`−1 . . . β0 be the binary representations of α and
β, i.e., α =

P`−1
i=0 αi2

i and β =
P`−1

i=0 βi2
i. Assume that there is an index i

for which αi = Yi or βi 6= Yi. Let i∗ be the largest such index. If Yi∗ = 0,
it holds that uα ≺ vβ , whereas if Yi∗ = 1, we have that vβ ≺ uα. If there is
no index i for which αi = Yi or βi 6= Yi, then uα ≺ vβ . In this case, uα and
vβ are the elements with ranks N and N + 1 among all 2N elements, i.e.,
uα and vβ are the median elements. Since the median elements uα and vβ

are exactly those elements for which αi 6= βi = Yi for all i ∈ {0, . . . , ` − 1},
it immediately follows that finding the median is equivalent to determining
the values of Yi for all i.

Let A be a deterministic, generic two-party algorithm between u and v
that computes the median. Consider the state of u and v after the first t
rounds of an execution of A. Let Suv(t) ⊆ Su and Svu(t) ⊆ Sv be the sets
of elements that u and v have sent to each other in the first t rounds. After
t rounds, everything u and v can locally compute has to be a function of
the results of comparisons between elements in Su ∪ Svu(t) and of compar-
isons between elements in Sv ∪ Suv(t), respectively. Note that except for
the elements themselves, everything u and v can send to each other can be
computed from comparisons between elements within these two sets. Let us
therefore define the combined state stateu,v(t) of u and v at time t as the
partial order induced by comparing all pairs of elements in Su ∪ Svu(t) and
by comparing all pairs of elements in Sv ∪ Suv(t). Since knowledge of the
median implies that the values of Yi for all i are also known, it follows that if
u and v know the median after t rounds, the values of all Yi can be computed
as a function of stateu,v(t). For an element uα ∈ Su let

I(uα) := max
˘
i ∈ {0, . . . , `− 1}

˛̨
Yi = αi

¯
,

where αi is defined as above. If there is no i for which Yi = αi, we define
that I(uα) := −1. Similarly, for an element vβ ∈ Sv let

J(vβ) := max
˘
j ∈ {0, . . . , `− 1}

˛̨
Yj 6= βj

¯
.

Again, we define that J(vβ) := −1 if Yj = βj for all j. The following
lemma quantifies how much can be deduced about the values of the random
variables Yi from a given combined state stateu,v(t).

Lemma 4.5. Let I∗(t) := minuα∈Suv(t) I(uα), J∗(t) := minvβ∈Svu(t) J(vβ),
and H∗(t) := min{I∗(t), J∗(t)}. The combined state stateu,v(t) of u and v
at time t is statistically independent of Yi for i < H∗(t).

Proof. We prove that stateu,v(t) can be computed if Yi is known for all
H∗(t) ≤ i ≤ ` − 1. The lemma then follows because the random variables
Y0, . . . , Y`−1 are independent.
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In order to prove that stateu,v(t) can be computed from the values of
Yi for i ≥ H∗(t), it has to be shown that the results of all comparisons
between two elements in Su∪Svu(t) and between two elements in Sv∪Suv(t)
can be deduced from the knowledge of these Yi. For this purpose, consider
an element uα ∈ Su and an element vβ ∈ Svu(t). Assume that there is
an index i for which αi = Yi or βi 6= Yi and let i∗ be the largest index
for which this holds. In this case, we have that uα ≺ vβ if Yi∗ = 0 and
vβ ≺ uα if Yi∗ = 1, i.e., the outcome of the comparison between uα and vβ

is determined by the value of Yi∗ . However, by the definition of J(vβ), we
have i∗ ≥ J(vβ) ≥ J∗(t) ≥ H∗(t). If there is no index i for which αi = Yi or
βi 6= Yi, then H∗(t) = −1 and the lemma trivially holds. Symmetrically, it
can be shown that every comparison between two elements in Sv ∪ Suv(t) is
determined by the value of a variable Yi′ with i′ ≥ H∗(t) if H∗(t) ≥ 0, which
concludes the proof.

Based on Lemma 4.5, we are able to prove a lower bound on the complex-
ity to find the element of rank k by means of a generic two-party protocol in
the case where each node starts with N elements.

Theorem 4.6. Let h := min{k, 2N−k}. Every, possibly randomized, generic
two-party protocol needs at least Ω(logB h) rounds to find the element with
rank k in expectation and with probability at least 1− 1/hδ for any constant
δ < 1/2.

Proof. For simplicity, assume that B is a power of 2. In a first step, the
lower bound to find the median, i.e., k = N , is proved. For the state after t
rounds, let again I∗(t) = minuα∈Suv(t) I(uα), J∗(t) = minvβ∈Svu(t) J(vβ),
and H∗(t) = min{I∗(t), J∗(t)} as defined above. Initially, it holds that
H∗(0) = `. Assume that a given protocol A needs T rounds to find
the median, i.e., H∗(T ) = 0. The progress of round t is defined as
progress(t) := H∗(t)−H∗(t−1). In the following, we show that the progress
of every round is at best geometrically distributed:

∀t : P
ˆ
progress(t) ≥ ξ

˜
≤ 2B

2ξ
. (4.4)

Consider stateu,v(t − 1) and stateu,v(t). By the definition of H∗(t),
in round t, either one of the B elements uα that u sends to v satisfies
I(uα) = H∗(t) or one of the B elements vβ that v sends to u satisfies
J(vβ) = H∗(t). If I(uα) = H∗(t), the (`−H∗(t))-highest priority bits of the
base-2 representation of α equal YH∗ , . . . , Y`−1. Similarly, if I(vβ) = H∗(t),
the (` −H∗(t))-highest priority bits of the base-2 representation of β equal
the complements of YH∗ , . . . , Y`−1. Therefore, at least one of the 2B elements
sent in round t contains all information about the values of Yi for i ≥ H∗(t).
Since the combined state stateu,v(t− 1) after round t− 1 is independent of
the random variables Yi for H∗(t) ≤ i < H∗(t− 1) according to Lemma 4.5,
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the probability that H∗(t) ≤ H∗(t − 1) − ξ is at most 2B/2ξ, which proves
Inequality (4.4).

Let Pt :=
Pt

i=1 progress(t). If A finds the median in T rounds, we have
that PT = `. For any t 6= t′, the random variables progress(t) and progress(t′)
are not independent. However, according to Lemma 4.5 and the above ob-
servation, it is possible to upper bound the random variables progress(t) by
independent random variables Zt where P[Zt = log 2B + i − 1] = 1/2i for
i ≥ 1. That is, independent random variables Zt can be defined such that
progress(t) ≤ Zt, and for which

∀t : P
ˆ
Zt ≥ ξ

˜
≤ 2B

2ξ
. (4.5)

The probability that the number of rounds T to compute the median is
at most some value τ can be upper bounded by using a generalized Chernoff-
type argument:

P[T ≤ τ ] = P

"
τX

t=1

progress(t) ≥ `

#

≤ P

"
τX

t=1

Zt ≥ `

#
γ>0
= P

h
eγ·

Pτ
t=1 Zt ≥ eγ·`

i
≤

E
h
eγ·

Pτ
t=1 Zt

i
eγ·` =

E
ˆQτ

t=1 eγ·Zt
˜

eγ·` (4.6)

=

Qτ
t=1 E

ˆ
eγ·Zt

˜
eγ·` (4.7)

=
1

eγ·` ·
τY

t=1

∞X
ξ=0

P[Zt = ξ] · eγ·ξ

=
1

eγ·` ·
τY

t=1

 
P[Zt ≥ 0] +

∞X
ξ=1

P[Zt ≥ ξ] ·
“
eγ·ξ − eγ·(ξ−1)

”!

≤ 1

eγ·` ·

 
1 +

log(2B)X
ξ=1

“
eγ·ξ − eγ·(ξ−1)

”

+
∞X

ξ=log(2B)+1

2B

2ξ
·
“
eγ·ξ − eγ·(ξ−1)

”!τ

(4.8)

=
1

eγ·` ·

 
eγ·log(2B) +

∞X
ξ=log(2B)+1

2B

2ξ
· eγ·ξ ·

„
1− 1

eγ

«!τ

.
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Inequality (4.6) is obtained by applying Markov’s inequality (Theo-
rem 1.1), Equation (4.7) follows from the independence of different Zt, and
Inequality (4.8) is a consequence of Inequality (4.5). By setting γ := ln(

√
2)

we obtain

P[T ≤ τ ] ≤ 1

2`/2
·
„√

2B +
2
√

2B

2−
√

2
·
„

1− 1√
2

««τ

=
(8B)τ/2

2`/2
.

If we set τ := log8B(N)/c for a constant c > 1, we get that

P
»
T ≤ 1

3c
· log2B(N)

–
B≥1

≤ P
»
T ≤ log8B(N)

c

–
≤ (8B)1/2·log8B(N)/c

2log(N)/2

=
1

N
1−1/c

2

,

which proves the claimed lower bound for finding the median by means of a
deterministic algorithm. The lower bound for randomized algorithms follows
immediately from Yao’s principle. Note that the lower bound for randomized
algorithms could also be proved directly in exactly the same way as the de-
terministic lower bound. However, this would require to include randomness
in all the definitions.

In order to obtain the lower bound for selecting an element with arbitrary
rank k < N , we show that finding the element with rank k < N is at least
as hard as finding the median if both nodes start with k instead of N values.
For this purpose, elements u1, . . . , uk and v1, . . . , vk are assigned to u and v
as described above in such a way that finding the median of the 2k elements
is difficult. The remaining elements are assigned such that ui ≺ uj , ui ≺ vj ,
vi ≺ uj , and vi ≺ vj for all i ≤ k and j > k. If k > N , we get the lower bound
by lower bounding the time to find the kth smallest element with respect to
the complementary order relation.

Based on the above lower bound for generic two-party protocols, a lower
bound for generic selection algorithms on general graphs can be proved. In
the following, we again assume that every node possesses one element and
that the objective is to find the kth smallest of these n elements. In every
round, every node can send B elements to each of its neighbors. The proof
of the following theorem shows how to reduce the problem on general graphs
to the two-party problem.
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Theorem 4.7. For every n ≥ 3 there is a graph G(D) of diameter D con-
sisting of n nodes such that Ω(D logD min{k, n − k}) rounds are needed to
find the kth smallest element in expectation and with probability at least
1/(min{k, n − k})δ for every constant δ < 1/2. In particular, finding the
median requires at least Ω(D logD n) time.

Proof. It can certainly be assumed that n ∈ ω(D) since even finding the
median of three values requires Ω(D) rounds. Without loss of generality, we
can also assume that k ≤ n/2.4

For the sake of simplicity, assume that n − D is an odd number. Let
N := (n − D + 1)/2. The graph G(D) is defined as follows: G(D) consists
of two nodes u and v that are connected by a path of length D − 2 (i.e.,
this path contains D − 1 nodes including u and v). In addition, there are
nodes u0, . . . , uN−1 and v0, . . . , vN−1 such that ui is connected to u and vi is
connected to v for all i ∈ {0, . . . , N − 1}. Assume that only the leaf nodes ui

and vi for i ∈ {0, . . . , N−1} hold elements and that the goal is to find the kth

smallest of these 2N elements. We can simply assign “dummy elements” that
are larger than these 2N elements to all other nodes. Since only the leaves
start with an element, it can further be assumed that all leaves u0, . . . , uN−1

send their elements to u and all leaves v0, . . . , vN−1 send their elements to v
in the first round as this is the only possible useful communication. Thereby
the problem reduces to finding the kth smallest element of 2N elements on a
path of length D−2 where initially each of the two end nodes u and v of the
path holds N elements. The graph G(D) and the reduction is depicted in
Figure 4.3. Note that the leaf nodes ui and vi of G(D) do not need to further
participate in a distributed selection protocol since u and v know everything
their respective leaves know and can locally simulate all actions of their leaf
nodes.

Let w be any node on the path and let Mw(t) be a message that w sends
in round t. Since we consider deterministic algorithms and because only u
and v initially hold elements, Mw(t) can be computed when knowing the
elements that u and v sent to their neighbors in rounds prior to t. In fact,
since information needs time d(w, w′) to be transmitted from a node w to
a node w′, Mw(t) can be computed when knowing all elements u sends in
rounds prior to t − d(u, w) + 1 and all elements v sends in rounds prior to
t − d(v, w) + 1. In particular, u and v can compute their own messages
of round t when knowing the elements sent by v and u in rounds prior to
t− (D − 2) + 1, respectively.

Consider the following alternative model: A round lasts D−2 time units.
In every round, u and v can send a message containing D− 2 elements to all
other nodes of the path (they need to send the same message to all nodes).
According to the above observation, u and v can send all messages and locally

4For k > n/2, the theorem follows by symmetry.
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Figure 4.3: The graph G(D) is depicted in Figure (a). Once u has received
the elements from the nodes u0, . . . , uN−1 and v has obtained the elements
from the nodes v0, . . . , vN−1, the problem reduces to finding the kth smallest
element among these 2N elements stored by u and v, where the distance
between u and v is d(u, v) = D − 2, see Figure (b).

compute all communication on the path of rounds r for (i − 1) · (D − 2) <
r ≤ i · (D − 2) in round i of the alternative model. Thus, if it takes r
rounds in the original model to find the kth smallest element, then it takes
i ∈ Θ(r/D) rounds in the alternative model. Apparently, the time needed in
the alternative model is exactly the time needed by a two-party protocol if
every round lasts D−2 time units and if in every round D−2 elements can be
transmitted. Since n ∈ ω(D) and therefore 2N = n(1 − o(1)), Theorem 4.6
can be applied, which implies that the time complexity in the alternative
model is Ω(logD min{k, n − k}). Hence it follows that the time complexity
in the original model is lower bounded by Ω(D logD min{k, n− k}).

Not only the algorithms but also the lower bound can be generalized
to the more general setting where each node holds an arbitrary number of
elements. If the total number of elements in the system is N ≥ n, we then
obtain a lower bound of Ω(D logD min{k, N − k}) on the time complexity to
find the kth smallest element.

This result demonstrates that there are holistic functions that can be
computed quite efficiently in a distributed manner, albeit not as efficiently as
algebraic and distributive aggregate functions. Distributed k-selection is thus
not a truly holistic function in the sense that there are solutions that find the
kth smallest element more efficiently than by simply gathering all elements
at one place. Unfortunately, as the following chapter reveals, this is not true
for other relevant holistic functions. Since the time complexity to compute
these functions is large, one must resort to approximation algorithms.





Chapter 5

Holistic Aggregate Functions

Beyond Selection

SINCE the frequency of elements plays a pivotal role in this chapter, we
abandon the assumption that xi 6= xj for all xi, xj ∈ S. Moreover, each
node may hold any number of elements. Thus, we again consider the general
setting where all |S| = N elements are arbitrarily distributed among the n
nodes and where each element may occur multiple times.

We introduce the following notation: Let φi be the frequency of element
xi in S for all xi ∈ X, and let σ denote the number of distinct elements in S.
For any given multiset S the elements are ordered in decreasing order of their
frequency, i.e., we have that φ1 ≥ φ2 ≥ . . . ≥ φσ. The frequency moments of
S are defined as follows.

Definition 5.1 (Frequency Moments). The `th frequency moment F` of a
multiset S containing φi elements of type xi ∈ X is defined as F` =

Pσ
i=1 φ`

i .

Observe that σ = F0 is exactly the number of distinct elements in the
multiset, and F1 =

Pσ
i=1 φi = N is the total number of elements. Hence, F0

is the result of the aggregate function DISTINCT and F1 is the result of COUNT.
While COUNT can be computed easily and efficiently as shown in Section 3.2,
the complexity of computing the number of distinct elements has not been
discussed yet. Note that DISTINCT is simply the duplicate insensitive version
of COUNT as computing the number of distinct elements is the same as COUNT
without counting any element more than once.

Unfortunately, a simple reduction from the set disjointness problem re-
veals that in general the exact solution of DISTINCT cannot be computed
efficiently: If two nodes hold N/2 unique elements each, a well-known com-
munication complexity result states that the two nodes must send Ω(N) bits
in order to determine whether or not the two sets are disjoint even when
using randomization [28, 32, 50]. If an algorithm is able to determine the
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number of distinct elements in this scenario by communicating o(N) bits,
the result implies that the two sets are disjoint if and only if the number
of distinct elements is N . Thus, such an algorithm would also solve the set
disjointness problem by sending o(N) bits, which entails that Ω(N) bits need
to be exchanged in order to compute DISTINCT [46]. Given an upper bound
on the message size of b bits, this bit complexity implies a lower bound on the
time complexity of Ω(N/b). Fortunately, while there is no efficient algorithm
to find the exact solution, an accurate estimate can be computed efficiently
as we will see in Section 5.1.

Naturally, one might also be interested in the complexity of computing the
frequency moments F` for ` ≥ 2. In a streaming model, where a single entity
processes all elements sequentially and only one pass through all elements is
allowed, the problem of minimizing the space complexity, i.e., the number of
bits that this entity must store locally in order to approximate the frequency
moments F` as accurately as possible, is well understood. For any ` 6= 1,
computing a constant-factor approximation of F` deterministically requires
Ω(N) space, and any randomized algorithm that computes the exact solution
also has a space complexity of Ω(N) [1]. These negative results entail that
one can only hope to approximate F` well using randomization. While F0

and F2 can be approximated using little space, it has been shown in a series
of contributions that in order to obtain an estimate F̂` that differs from F`

merely by a constant factor requires Ω(N1−2/`) space for any ` > 2 [1, 3, 11].
This result has been complemented by algorithms that compute an estimate
F̂` for which it holds that |F̂`−F`| ≤ εF` with constant probability and have
a space complexity of Õ(N1−2/`) for any ` > 2 and a constant ε > 0 [7, 27].1

In the second part of this chapter, the time complexity to compute the
element that occurs most often is studied. This element is commonly referred
to as the mode. Note that the frequency moment F∞, which is usually defined
as F∞ := lim`→∞(F`)

1/` = max1≤i≤σ φi = φ1, is the frequency of the mode.
In the streaming model, the above result states that approximating F∞ re-
quires to store Ω(N) bits. In our distributed computing model, a lower bound
to compute F∞ follows again by reduction from the set disjointness problem:
If an algorithm computes F∞ by exchanging o(N) bits, it also solves the set
disjointness problem by sending o(N) bits as the sets are disjoint if and only
if F∞ = 1. Thus, the time complexity of a distributed algorithm to compute
F∞ is lower bounded by Ω(N/b). Apparently, any algorithm that determines
the mode x1 must also have a time complexity of Ω(N/b), as the frequency
F∞ of the mode can be computed trivially by counting the number of occur-
rences of x1 in O(D) time, independent of N , once the mode x1 is known.
In fact, given that it may take D time to route the solution to the node that
is interested in the mode, the time complexity is also lower bounded by D,
which implies that the time complexity is Ω(N/b + D). Unfortunately, while

1Naturally, the space complexity depends on the constant ε.
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the number of distinct elements can be approximated accurately and effi-
ciently, any approximation algorithm that computes the aggregate function
MODE and that returns an element whose frequency is at most a constant times
smaller than the true mode has a time complexity of Ω(N/b) as we will see
in Section 5.2.5. Given this result for arbitrary distributions of the elements,
one can only hope to get an efficient algorithm for specific distributions. In
Section 5.2, upper and lower bounds on the time complexity of computing
the mode are derived that take the frequency distribution of the elements
into account. The proposed algorithm has the interesting property that it
requires estimates for both F0—the algorithm presented in Section 5.1 can
be used for this purpose—and the second frequency moment F2, which must
also be approximated in a distributed fashion.

5.1 Number of Distinct Elements

The most basic approach to approximate the number of distinct elements is to
acquire a sufficiently large random sample of all elements and use this sample
to compute an approximation. The database (and statistics) community
proposed numerous sampling-based estimators of F0 of an attribute in a
relation.2 Since the size of the required sample depends on the distribution
of the elements, there has been a lot of work on designing more (space)
efficient algorithms that achieve a low approximation ratio with bounded
probability [1, 4, 19, 22]. More specifically, the goal is to compute an estimate
F̂0 that deviates from F0 by at most εF0 with probability at least 1 − δ for
two parameters ε, δ > 0. If an algorithm meets this requirement, we say that
it (ε, δ)-estimates F0.

Definition 5.2 ((ε, δ)-estimator). For any ε, δ ∈ (0, 1), a randomized algo-
rithm A (ε, δ)-estimates the correct solution y of a problem if the output of
A is a random variable Y for which it holds that

P[|Y − y| > εy] < δ.

If the elements are all chosen from a domain of size m, an algorithm can
(ε, δ)-estimate F0 by storing Θ(log m) bits.3 It has even been shown that F0

can be approximated by storing an auxiliary memory of merely O(log log m)
bits [17]. The next section shows that F0 can also be approximated accurately
and efficiently in the distributed computing model by means of a simple
randomized algorithm.

2See, e.g., [24] for a brief introduction and an empirical comparison.
3If the number of elements N is larger than m, hashing can be used to reduce the

description of the elements to O(log m) bits. Thus, the number of elements is not crucial.



52 5. HOLISTIC AGGREGATE FUNCTIONS BEYOND SELECTION

5.1.1 Algorithm

The presented algorithm AF0 is a simple adaptation of a streaming algo-
rithm [4]. All algorithms in this chapter make extensive use of random hash
functions h : X → I that map the elements to an appropriate image I. The
hash functions have in common that they map all elements to an element
in I uniformly at random, i.e., for all h taken from such a family of hash
functions H it holds that P[h(x) = i] = 1/|I| for all x ∈ X and all i ∈ I.

Algorithm AF0 uses hash functions that are injective with high prob-
ability. The number of distinct elements is clearly upper bounded by the
total number of elements N . If |I| = Nλ+2, λ ≥ 1, for all h ∈ H, then the
probability that any hash function h is injective is at least

P[h is injective] = 1 ·
„

1− 1

|I|

«
·
„

1− 2

|I|

«
· · ·
„

1− N − 1

|I|

«
≥ 1 · e−

2
|I| · e−

2·2
|I| · · · e−

2·(N−1)
|I|

= e
−N(N−1)

|I|

|I|=Nλ+2

> e
− 1

Nλ ≥ 1− 1

Nλ
.

We used that e−2y ≤ 1 − y for all y ∈ [0, 0.79 . . .) and ey ≥ 1 + y for all
y ∈ R. If the cardinality of I is Nλ+2, encoding the hash values requires λ+2
times more bits than the encoding of the N elements. Since a small constant
can be chosen for λ, any message may also contain a constant number of
hash values without increasing its size substantially. It is further assumed
that there is a known total order on the hash values, i.e., there is an order
relation ≺ such that for all i, i′ ∈ I the nodes know whether i ≺ i′ or i′ ≺ i.

The algorithm first computes two parameters s := d16/ε2e and r :=
2dlog5/2(2/δ)e + 1. Subsequently, AF0 chooses a hash function h1 ∈ H
and executes the subroutine getMinimumHashed(h1, s), which returns the
s smallest hash values of all elements in the network when all elements are
hashed using the hash function h1. This subroutine works basically the same
way as algorithm Adist (Algorithm 3.2) for the aggregate function MIN. Apart
from the fact that only the hash values are considered (and not the elements
themselves), the main difference is that getMinimumHashed does not only
return the smallest, but the s smallest values. This generalization can be
accomplished easily: If a leaf node holds more than s elements, it sends the
s smallest hash values in increasing order to its parent, otherwise it simply
sends all values. Upon receiving at least one hash value from each child, an
inner node always forwards the smallest value among the hash values of its
children and its own hash values that it has not already sent. Let i11, . . . , i1s

denote the s smallest hash values when the hash function h1 is applied. The
algorithm takes the largest among these s hash values i1s and computes an
estimate F̂

(1)
0 := s|I|/i1s. This procedure is repeated for randomly chosen
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Algorithm 5.1 AF0 : Given the parameters s and r, compute the number
of distinct elements.
1: for j := 1, . . . , r in parallel do
2: [ij1, . . . , ijs] := getMinimumHashed(hj , s)

3: F̂
(j)
0 := s|I|/ijs

4: end for
5: return median([F̂

(1)
0 , . . . , F̂

(r)
0 ])

hash functions h2, . . . , hr in parallel, i.e., after forwarding h1 and s to all
children, AF0 sends h2 in the next step and then h3 etc. Since the r com-
putations are independent, there is no need to wait for a single computation
to terminate. Once the rth computation is complete, the initiating node has
r estimates F̂

(1)
0 , . . . , F̂

(r)
0 from which it selects the (unique) median as the

final estimate F̂0. The steps of AF0 are summarized in Algorithm 5.1. It
remains to prove that AF0 (ε, δ)-estimates the number of distinct elements
F0 as desired.

5.1.2 Analysis

For the sake of simplicity, it is assumed that ε ≤ 1/2. This is not a severe
restriction as basically the same techniques can be used for any ε < 1 by
using slightly different arguments.4 The following theorem states the main
result of this section.

Theorem 5.3. If s := d16/ε2e and r := 2dlog5/2(2/δ)e + 1, algorithm

AF0 (ε, δ)-approximates the number of distinct elements F0 on any connected
graph G of diameter D. The time complexity of AF0 is

O
„

D +

„
1

ε2

«
log

„
1

δ

««
.

Proof. First, we prove that each F̂
(j)
0 lies in the range [(1− ε)F0, (1 + ε)F0]

with constant probability. If F̂
(j)
0 > (1 + ε)F0, we have that ijs < s|I|

(1+ε)F0
,

i.e., there are at least s elements that hashed to a value smaller than

s|I|
(1 + ε)F0

≤ (1− ε/2)s|I|
F0

.

The probability for each element to be hashed to a value below (1 −
ε/2)s|I|/F0 is upper bounded by (1−ε/2)s/F0. Let x1, . . . , xσ denote the σ =
F0 distinct elements that occur in S. Furthermore, let the random variable
Yi be 1 if xi is hashed to a value below (1 − ε/2)t|I|/F0 and 0 otherwise.

4Moreover, one may not wish to get an estimate that is more than 50% off the correct
value anyway.
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The random variable Y :=
PF0

i=1 Yi is the sum of these random variables
Yi. Since all Yi are independent, identically distributed (i.i.d.) Bernoulli
trials, it holds that V ar(Y ) ≤ E[Y ] ≤ (1 − ε/2)s. The probability that

F̂
(j)
0 > (1 + ε)F0 is upper bounded by the probability that Y is larger than

s. Chebyshev’s inequality (Theorem 1.2) and the fact that s ≥ 16/ε2 imply
that this probability is at most

P[Y > s] ≤ P[|Y − E[Y ]| > εs/2] ≤ (1− ε/2)s

ε2s2/4
<

4

ε2s
≤ 1

4
.

If F̂
(j)
0 < (1− ε)F0, it holds that ijs > s|I|

(1−ε)F0
, i.e., there are less than s

hash values that are smaller than

s|I|
(1− ε)F0

≤ (1 + 2ε)s|I|
F0

because ε ≤ 1/2. Let the random variable Zi be 1 if the element xi is hashed
to a value below (1 + 2ε)s|I|/F0 and 0 otherwise. The random variable Z is
defined as Z :=

PF0
i=1 Zi for which it holds that V ar(Z) ≤ E[Z] ≤ (1 + 2ε)s.

Moreover, we have that

s|I|
(1− ε)F0

≥ (1 + ε)s|I|
F0

.

Given that the probability to hash to any i ∈ I is 1/|I|, it holds that
E[Zi] ≥ (1 + ε)s/F0 − 1/|I|. By definition, we have that s ≥ 16/ε2 and
ε ≤ 1/2, and thus εs ≥ 32. This observation together with the definition
that |I| = Nλ+2 ≥ N ≥ F0 imply that

1

|I| ≤
1

F0
=

εs

F0
· 1

εs
≤ εs

32F0
.

Thus, we get that E[Z] ≥ (1 + 31/32ε)s. Since F̂
(j)
0 is smaller than

(1 − ε)F0 only if Z is smaller than s, we get the following bound on the

probability that F̂
(j)
0 is too small:

P[Z < s] ≤ P[|Z − E[Z]| > 31/32εs] ≤ (1 + 2ε)s

( 31
32

)2ε2s2
≤ 2

( 31
32

)216
<

1

7
.

Hence, the probability that F̂
(j)
0 is not within the desired range is less than

1/4 + 1/7 < 2/5. Consider the final estimate F̂0, which is the median of all

estimates F̂
(1)
0 , . . . , F̂

(r)
0 . If the median does not lie in the desired range, e.g.,

because F̂0 < (1−ε)F0, then all the smaller estimates F̂
(1)
0 , . . . , F̂

((r−1)/2)
0 are

also too small. Since all estimates are independent, the probability that all of
these (r− 1)/2 = dlog5/2(2/δ)e estimates are too small is upper bounded by

(2/5)dlog5/2(2/δ)e ≤ δ/2. The same argument also applies if F̂0 > (1 + ε)F0.
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Thus, by means of a union bound, F̂0 does not deviate from F0 by more than
εF0 with probability at least 1− δ as desired.

Let D(TG) again denote the diameter of the BFS spanning tree TG that
is used as a routing infrastructure. Each leaf v is informed about its task
to compute s hash values and forward them to its parent at the latest after
D(TG) time. Once v has sent these values, it can immediately send the s
hash values for the next hash function as the information about which hash
function is to be used next must have arrived in the meantime.5 Thus, each
leaf node has sent all requested values at the latest at time D(TG) + rs. Its
parent receives the smallest values from all its children by time D(TG) + 1
and can forward the smallest value in its subtree at time D(TG) + 2. After
D(TG) + 1+ rs time, it has forwarded all rs hash values. Inductively, we get
that the s smallest values for all r hash functions must have arrived at the
initiating node after 2D(TG) + rs ≤ 4D + rs ∈ O(D + (1/ε2) log(1/δ)) time,
which proves the claimed bound on the time complexity.

Note that an estimate F̂0 ∈ [(1− ε)F0, (1 + ε)F0] for any constant ε can
be found in O(D + log N) time w.h.p.

5.1.3 Discussion

While the exact solution for the aggregate function DISTINCT cannot be com-
puted efficiently, we saw that F0 can be approximated quite well. Instead
of counting the number of distinct elements, it may be desirable to compute
other aggregates without considering any element more than once. An ex-
ample for such an aggregate function is the sum of all distinct elements. A
reduction from the set disjointness problem and the observation that rout-
ing information may take D time again reveal that the time complexity of
the distinct summation problem is also Ω(D + N/b), which implies that one
can only approximate the correct value. A straightforward solution is to
hash each element xj , where xj is interpreted as a natural number,6 to xj

hash values i
(1)
j , . . . , i

(xj)

j . If i
(k)
j 6= i

(`)
m for all elements xj , xm ∈ S, and all

k ∈ {1, . . . , xj} and ` ∈ {1, . . . , xm}, then the number of distinct hash values
is exactly the sum of all distinct elements, which can be approximated using
algorithm AF0 . This simple approach has several drawbacks. First, the local
computations are no longer negligible as each node must compute xj hash
values for each locally stored element xj . Moreover, if xmax is the largest
element in S, the total number of hash values is at most N · xmax, which
entails that the time complexity to approximate the sum of distinct elements

5If we cannot send messages over an edge in both directions at the same time, the
algorithm can simply distribute information about all r hash functions in D(TG)+r time
first.

6If the elements are not natural numbers, an injective function can be used to map
all elements to natural numbers.



56 5. HOLISTIC AGGREGATE FUNCTIONS BEYOND SELECTION

w.h.p. is O(D + log N + log xmax). This complexity is unacceptable if xmax

is large, e.g., xmax ∈ Ω(2N ).
A solution to this problem is to use counting sketches [19], which are

bitmaps B of length ` ∈ O(log F0) ⊆ O(log N). There is a 1 in the bitmap at
position p if there is an element whose random hash value starts with p− 1
zero bits and its first 1 is at position p. The largest index in the bitmap that
stores a 1 is approximately log F0. Note that two different bitmaps B1,B2,
which are induced by two different sets of elements, can be combined easily:
If Bi[p] is the bit at position p in a Bi, then the bits of the resulting bitmap
B are simply set to B[p] := B1[p] ∨ B2[p] for all p ∈ {1, . . . , `}. Instead of
hashing each element xj to xj hash values, roughly the first log xj bits are set
to 1 immediately, as these values are set to 1 in the hashing process w.h.p.
The remaining bits are then set according to the hash values of a random
sample. It can be shown that all xj hash values can be “inserted” into the
bitmap inO(log2 xj) local computational steps [14]. By aggregatingO(log N)
of these bitmaps and choosing again the median as the final estimate, the
initiating node gets an estimate of the sum of all distinct elements that
is at most a factor 1 + O(ε) off the correct value w.h.p. in O(D + log N)
time. Apparently, this scheme offers an alternative solution to the problem
of computing the number of distinct elements. Note that it is not required
to send the entire bitmap as only the largest index that contains a 1 is used
as an estimate for log F0. Thus, it suffices to send O(log log N) bits for
each estimate.7 Given the estimate for the sum of distinct elements and an
estimate for F0, we immediately get an estimate for the average of all distinct
elements. Furthermore, by hashing each element xj to x2

j hash values, still in
polylogarithmic time, an estimate for the sum of all distinct squared elements
can be obtained. This estimate can then be used to approximate the variance
of the distinct elements.

As a final note, the median of all distinct elements can be approximated
using the technique introduced in Chapter 4. In each recursive step, the
number of distinct elements within particular intervals must be approximated
and these values determine where the median lies (with a certain probability).
Note that counting the number of distinct elements in m intervals costs
O(D + m log N) time, which entails it is best to choose only a constant
number of random elements in each phase if D ∈ O(log N). In this case, the
time complexity to approximate the median is O(log2 N) w.h.p. Naturally,
if D ≥ c · log N for a sufficiently large constant c,8 Θ(D/ log N) random
elements can be chosen in each phase, which results in a time complexity of
O(D logD/ log N N).

7An alternative approach to computing the sum of distinct elements is to use a range-
efficient algorithm to compute F0 [5, 48], where each element is hashed to a certain
interval [i1, i2] instead of hashing the elements to random hash values in a particular
domain. This technique is not further discussed.

8Of course, the integer c depends on the parameters s and r used in algorithm AF0 .
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5.2 Mode: The Most Frequent Element

As mentioned before, the time complexity to find the most frequent element
grows linearly with the number of elements. In the first section, a deter-
ministic algorithm is discussed, which is essentially asymptotically optimal.
Since the skewness of the distribution can reasonably be expected to affect
the efficiency of an algorithm to compute the mode, a randomized algorithm
is presented in the subsequent section whose time complexity depends on
the frequency distribution of the elements [30]. Skewed distributions natu-
rally arise in various contexts. For example, the frequencies of terms on web
pages, files in file-sharing networks etc., are distributed according to a power
law [10, 42, 59]. In Section 5.2.4, we illustrate that the time complexity of
the algorithm is fairly low for such distributions. Moreover, in Section 5.2.5
a lower bound is proved that takes the frequency distribution into account.

5.2.1 Deterministic Algorithm

There is a straightforward deterministic algorithm to find the mode executed
on the pre-computed spanning tree TG. Again, it is assumed that there is
a total order on all the elements, i.e., x1 � . . . � xσ for all σ = F0 distinct
elements occurring in S. The algorithm starts at the leaves of the tree which
send element-frequency pairs 〈xi, φi〉 to their parents in increasing order, with
respect to the order relation � on the elements, starting with the smallest
element that they possess. Any inner node v stores these pairs received from
its children and sums up the frequencies for each distinct element. Node v
forwards 〈xi, φi〉, where φi is the accumulated frequency of xi in the subtree
rooted at v, to its parent as soon as v has received at least one pair 〈xj , φj〉
from each of its children such that xj � xi or xj = xi. Any node v sends
〈xi, φi〉 to its parent at time t ≤ h + i where h is the height of the subtree
rooted at v. This claim clearly holds for the leaves as each leaf can send
the ith smallest element xi at the latest at time i. Inductively, a node v
thus receives at least the ith smallest element after h + i − 1 time, after
which it can forward the element including the accumulated frequency to
its parent. Observe that there is no congestion as node v has already sent
all smaller element-frequency pairs in earlier rounds. Thus, the algorithm
terminates after at most O(D + F0) time. Note that this algorithm does not
only compute the mode x1 and its frequency φ1, but also the frequencies of
all other elements.

5.2.2 Randomized Algorithm

For the sake of simplicity, we assume that the nodes know the frequency
moments F0 and F2, as well as the frequency φ1 of the mode when describing
the algorithm, which we will refer to as Amode. While an estimate of F0 can
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Algorithm 5.2 countElementsInBins(h): Given a hash function h, node v
computes and forwards the number of elements that map to −1 and 1 in its
subtree, including its own elements x1, . . . , x`.

1: c0 := |{xi ∈ {x1, . . . , x`} | h(xi) = −1}|
2: c1 := |{xi ∈ {x1, . . . , x`} | h(xi) = 1}|
3: if Nv(TG) \ {pv} = ∅ then
4: send 〈c0, c1〉 to pv

5: else
6: for all vj ∈ Nv(TG) \ {pv} in parallel do

7: 〈c(j)
0 , c

(j)
1 〉 := countElementsInBins(h)

8: end for
9: send 〈c0, c1〉+

P
vj∈Nv(TG)\{pv}〈c

(j)
0 , c

(j)
1 〉 to pv

10: end if

be computed using AF0 , an estimate of F2 can also be obtained efficiently,
and φ1 can be approximated in parallel to the computation of the mode as
we will see.

Algorithm Amode also uses hash functions, but its hash functions are not
injective: The image I of all hash functions solely consists of the two values
−1 and 1, i.e., each hash function maps every element to one of the two values
with equal probability. We can think of the mapping process as putting each
element in one of two bins. The basic idea behind algorithm Amode is the
following. Each node in the graph stores a local counter c(xi) for each of
its elements x1, . . . , x` and two counters c0 and c1. All counters are initially
set to zero. For a certain hash function h, the algorithm computes the total
number c0 and c1 of all elements that hash to −1 and 1, respectively. In
other words, the algorithm determines how many elements end up in each of
the two bins “−1” and “1”. The nodes use these values to increment each
counter c(xi) for all local elements x1, . . . , x` by the number of elements that
have been mapped to the same bin as element xi. The idea is to determine
the mode by repeating this procedure using different hash functions. Since
the mode is likely to end up in the larger bin more often than the other
elements, the counter c(x1) will increase faster than the counters of the other
elements. After a first phase, which reduces the set of candidates for the
mode, the frequency of each remaining candidate is computed separately in
a second phase. The time complexity is bounded by the time required to find
a small set of candidates and by the time to check these candidates.

We will now study each step of the algorithm in greater detail. The ini-
tiating node selects r1 hash functions h1, . . . , hr1 where hi : X → {−1, 1}.
The parameter r1 will be determined later in the analysis of the algorithm.
In the following, the number of elements that hashed to the two bins is repre-
sented as a tuple 〈c0, c1〉, where ci denotes the number of elements that have
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Algorithm 5.3 Amode: Given the parameters r1 and r2, compute the most
frequent element.

1: mode := ∅; φmode := 0
2: Phase (1):
3: for i := 1, . . . , r1 in parallel do
4: 〈c0, c1〉 := countElementsInBins(hi)
5: distribute(〈c0, c1〉)
6: end for
7: Phase (2):
8: {x1, . . . , xr2} := getPotentialModes(r2)
9: for i := 1, . . . , r2 in parallel do

10: φi := getFrequency(xi)
11: if φi > φmode then
12: mode := xi; φmode := φi

13: end if
14: end for
15: return mode

been mapped to bin i ∈ {0, 1}. These tuples are accumulated by means of
a convergecast on the spanning tree using the subroutine countElementsIn-
Bins, which is parameterized by the chosen hash function h: Once the leaves
have received information about the hash function, their elements x1, . . . , x`

are hashed and put into one of the two bins, i.e., c0 is set to the number
of elements that mapped to the first bin and c1 is set to the number of the
remaining elements. This tuple is sent to the parent node, which accumu-
lates the tuples from all its children and adds its own tuple. The resulting
tuple is forwarded recursively towards the initiating node. As in Chapter 3,
let pv denote the temporary parent for this computation, i.e., v received the
information about the hash functions from pv. Recall that Nv(TG) is the
set of v’s neighbors in the pre-constructed spanning tree TG. The sum of
two tuples 〈c′0, c′1〉 and 〈c′′0 , c′′1 〉 is defined as 〈c0, c1〉, where ci = c′i + c′′i for
i ∈ {0, 1}. This subroutine is summarized in Algorithm 5.2.

Once the root has computed the final tuple 〈c0, c1〉, this tuple is sent to
all nodes along the edges of the spanning tree. Any node that receives this
distribute message forwards it to its children and updates its local counters
according to the following rule: For all elements xi that mapped to the larger
of the two bins, its counter c(xi) is increased by |c0 − c1|. This procedure is
repeated for all other chosen hash functions h2, . . . , hr1 . Note that all steps
can be carried out in parallel for all r1 hash functions, i.e., the initiating node
can issue one of the r1 procedure calls in each communication round. Once
the r1 results have been obtained and the tuples have all been distributed,
Phase (1) of the algorithm is completed.
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In the second phase, the r2 elements—the parameter r2 will also be spec-
ified later—with the largest counters are accumulated at the root using the
procedure getPotentialModes. In this procedure, the nodes always forward
the element xi, including c(xi), if its counter is the largest among all those
whose element has not yet been sent. Moreover, an element is only forwarded
if its counter is among the r2 largest counters ever forwarded to the parent
node. Once these elements arrive at the root, the root issues a request to
count the individual frequencies of all those elements, and the element with
the largest frequency is returned as the mode. The entire algorithm is given
in Algorithm 5.3.

5.2.3 Analysis of Amode

In Phase (1), Amode executes r1 iterations, where a different hash function
hi ∈ {h1, . . . , hr1} assigns all the elements xj ∈ S to one of the two bins in
each iteration. In the first step, the number r1 of required hash functions to
substantially reduce the set of candidates for the mode is determined. The
following helper lemma will be useful.

Lemma 5.4. For i = 1, . . . , σ, let Yi be a random variable for which

Yi =

(
yi, with P = 1/2

−yi, with P = 1/2

and let all variables Y1, . . . , Yσ be independent. If Y =
Pσ

i=1 Yi and F2[Y ] =Pσ
i=1 y2

i is the second frequency moment of a set with frequencies y1, . . . , yσ,
then it holds that

P
h
Y ≥ λ

p
F2[Y ]

i
≤ e−λ2/2.

Proof.

P
h
Y ≥ λ

p
F2[Y ]

i γ>0

≤
E
ˆ
eγY

˜
eγλ

√
F2[Y ]

=

Qσ
i=1 E

ˆ
eγYi

˜
eγλ

√
F2[Y ]

(5.1)

=

Qσ
i=1

eγyi+e−γyi

2

eγλ
√

F2[Y ]
=

Qσ
i=1 cosh(γyi)

eγλ
√

F2[Y ]

≤
Qσ

i=1 eγ2y2
i /2

eγλ
√

F2[Y ]
=

eγ2 Pσ
i=1 y2

i /2

eγλ
√

F2[Y ]

≤ e−λ2/2.

Inequality (5.1) follows again from Markov’s inequality (Theorem 1.1).

Furthermore, we used that (ex + e−x)/2 = cosh(x) ≤ ex2/2. Finally, the last
step follows by setting γ := λ/

p
F2[Y ]. Note that F2[Y ] = Var(Y ).



5.2. MODE: THE MOST FREQUENT ELEMENT 61

The goal of Phase (1) is to reduce the set of elements that are potentially
the mode to a small set of size r2. The following lemma bounds the number
r1 of hash functions required to ensure that the counter of the mode is larger
than the counter of a large fraction of all elements.

Lemma 5.5. If r1 := 32d(F2/φ2
1) ln(2F0/ε)e, then it holds for all xi for

which φi < φ1/2 that c(xi) < c(x1) with probability at least 1− ε.

Proof. First, only the events where the mode x1 and the element x′ with the
maximum frequency among all elements whose frequency is less than half of
the frequency φ1 of the mode are put into different bins are considered. All
other elements are added randomly to one of the bins, and this procedure is
repeated r1 times. Alternatively, we can say that there are (σ−2)r1 elements
α1, . . . , α(σ−2)r1 that are placed randomly into the two bins. It holds thatP(σ−2)r1

i=1 α2
i < r1 · F2. Before the elements α1, . . . , αr1(σ−2) are put into

the bins, it holds that c(x1) > c(x′) + r1 · φ1/2. In order to ensure that
c(x1) > c(x′) after all elements have been placed in one of the bins, the
probability that the other elements offset this imbalance of at least r1 · φ1/2
must be small. Let the Bernoulli variable Zi indicate into which bin the
element αi is placed. In particular, if Zi = −1, the element is put into the
bin where the mode is, and if Zi = 1, the element is placed into the other
bin. By setting r1 := 8d(F2/φ2

1) ln(2F0/ε)e and applying Lemma 5.4 we get
that

P

24(σ−2)r1X
i=1

αiZi ≥ r1 · φ1/2

35 < e
−

r2
1

„
φ1
2

«2

2
P(σ−2)r1

i=1 α2
i

< e
−

r1φ2
1

8F2

≤ ε

2F0
.

In order to ensure that the elements x1 and x′ are often placed into differ-
ent bins, the number of rounds is increased to r1 := 32d(F2/φ2

1) ln(2F0/ε)e.
Let the random variable U denote the number of times that the two elements
are placed into the same bin. The Chernoff bound for the upper tail (Theo-
rem 1.4), implies that the probability that 32d(F2/φ2

1) ln(2F0/ε)e rounds do
not suffice to bound the probability of failure to ε/(2F0) because x1 and x′

are put into different bins less than 8d(F2/φ2
1) ln(2F0/ε)e times, is bounded

by

P[U > 24d(F2/φ2
1) ln(2F0/ε)e] = P

»
U >

„
1 +

1

2

«
E[U ]

–
< e−(F2/φ2

1) ln(2F0/ε)

<
ε

2F0
.
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Thus, the probability that c(x1) > c(x′) is at least 1 − ε/F0. Let Υ =
{xi : φi < φ1/2} denote the set of all elements for which we want to prove
that their counters are lower than the counter of the mode. The probability
that any element x∗ in this set has a counter larger than the mode is

P[∃x∗ ∈ Υ : c(x∗) > c(x1)] <
X
x∈Υ

P[c(x) > c(x1)] < F0 · (ε/F0) = ε,

which concludes the proof.

Given this bound on the number of hash functions, we are now in the
position to prove the following theorem.

Theorem 5.6. If r1 := 32d(F2/φ2
1) ln(2F0/ε)e and r2 := d4F2/φ2

1e, the time
complexity of Amode to compute the mode with probability at least 1 − ε on
any connected graph G of diameter D is

O
„

D +
F2

φ2
1

log
F0

ε

«
.

Proof. In Phase (1) of the algorithm, r1 hash functions are applied to all
elements and the sum of elements mapped to each bin is accumulated. Al-
gorithm Amode is similar to AF0 in that it handles all these hash functions
in parallel as opposed to computing the resulting bin sizes for each hash
function sequentially, i.e., the number of communication rounds required is
upper bounded by O(D + r1) and not O(D · r1). Each result is distributed
back down the tree in order to allow each node to update the counters of its
elements, which requires O(D) time. Hence, the time complexity of the first
phase is bounded by O(D + r1).

In Phase (2), the r2 elements with the largest counters are accumulated
at the root, and the element with the highest number of occurrences out of
this set is returned as the mode. The procedure getPotentialModes performs
this operation in O(D + r2) time, as the ith largest value arrives at the root
after at most D(TG) + i time. Naturally, the frequency of r2 elements can
also be determined in O(D + r2) time, and thus the entire phase requires
O(D + r2) time.

The parameter r2 has to be large enough to ensure that the mode is in fact
in this set of elements with high probability. Let Ῡ = {xi : φi ≥ φ1/2} be the
complement of Υ. According to Lemma 5.5, if r1 := d32(F2/φ2

1) ln(2F0/ε)e,
then the mode is in Ῡ with probability at least 1 − ε. We have that
|Ῡ|(φ1/2)2 ≤

P
xi∈Ῡ φ2

i ≤ F2, implying that |Ῡ| ≤ 4F2/φ2
1. Thus, by setting

r2 := d4F2/φ2
1e, both phases complete after O(D + (F2/φ2

1) log(F0/ε)) time,
and the mode is found with probability 1− ε.

An (ε, δ)-estimator of F2 can be computed using a mixture of the tech-
niques introduced for Adist and Amode: As in algorithm Amode, hash func-
tions that map elements to −1 and 1 are used. Instead of using two bins, a
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single value c1 is computed distributively, again using a simple convergecast,
which in the end stores c1 =

P
x∈S h1(x) for a given hash function h1. This

step is repeated for hash functions h2, . . . , hs, where s := d16/ε2e as in algo-
rithm Adist. The average of the squared values 1

s

Ps
i=1 c2

i is then chosen as an

estimate F̂2 for F2. It can be shown that E[c2
i ] = F2 and that V ar(c2

i ) = 2F 2
2

for any such counter ci [1]. Since F̂2 is the average of s independent ran-
dom variables, the variance reduces to V ar(F̂2) = 2F 2

2 /s ≤ ε2F 2
2 /8. Using

Chebyshev’s inequality (Theorem 1.2), we get that the probability that F̂2

deviates from F2 by more than εF2 is bounded by

P[|F̂2 − F2| > εF2] ≤
V ar(F̂2)

ε2F 2
2

≤ 1

8
.

As in Section 5.1, this probability can be reduced to any value δ by com-
puting O(log(1/δ)) estimates and using the median as the final estimate. The
time complexity is obviously again O(D +(1/ε2) log(1/δ)). Thus, estimators
of both F̂0 and F̂2 can be computed beforehand.

An estimator φ̂1 for φ1 can be obtained as follows. We know that after
counting the elements in the two bins for r1 = 32d(F2/φ2

1) ln(2F0/ε)e different
hash functions, the first phase of the algorithm may terminate. After each
distribution of 〈c0, c1〉 we determine the frequency φi of the element xi whose
counter is currently the largest in O(D) time and use φi as the new estimator
for φ̂1 if it exceeds the largest previously encountered frequency. The bin sizes
for another hash function are computed as long as 32d(F̂2/φ̂2

1) ln(2F̂0/ε)e < r,
where r denotes the number of hash functions that have been used so far.
Once this inequality does no longer hold, we can conclude that the algorithm
must have used a sufficient number of hash functions, as φ̂1 ≤ φ1. Note that
the algorithm does not run much longer than needed, since φ̂1 ≥ φ1/2 after
32d(F̂2/φ̂2

1) ln(2F̂0/ε)e ≥ r1 rounds with probability at least 1− ε.

5.2.4 Power Law Distributions

A widely studied distribution is the power-law distribution p(x) ∝ x−α for
some constant α > 0 [10, 42, 59]. The frequencies can be normalized so that
φi := 1/iα. The second frequency moment F2 =

Pσ
i=1 φ2

i strongly depends
on the constant α: It holds that F2 ∈ Θ(σ1−2α) for α < 1/2, F2 ∈ Θ(log σ)
for α = 1/2, and F2 ∈ Θ(1) for α > 1/2. Since φ1 = 1, the time complexity
T of Amode for power-law distributions is:

T ∈

8><>:
O
`
D + F 1−2α

0 · log(F0/ε)
´

if α < 1/2

O (D + log F0 · log(F0/ε)) if α = 1/2

O (D + log(F0/ε)) if α > 1/2

If α < 1/2, Amode needs polynomial time, whereas for α ≥ 1/2, the
mode can be found in polylogarithmic time. The mode can be determined
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in O(D + log N) time w.h.p. if α > 1/2. In this case, the asymptotic time
complexity to compute the mode (w.h.p.) is the same as the complexity
to obtain the required approximations of both the number F0 of distinct
elements and the second frequency moment F2.

5.2.5 Lower Bound

In this section, a lower bound on the time complexity to compute the mode
is proved that matches the time complexity of algorithm Amode up to loga-
rithmic factors. A lower bound on the bit complexity of a variation of the
set disjointness problem is used to prove the bound: Assume that there are
d nodes v1, . . . , vd that hold sets S1, . . . , Sd of elements whose cardinality is
|S1| = . . . = |Sd| = s, i.e., the total number of elements is N = sd. Either the
sets are pairwise disjoint or there is a single element s such that Si∩Sj = {x}
for all 1 ≤ i < j ≤ d. In a series of work it has been shown that the number of
bits that need to be exchanged in this scenario in order to find this particular
element x is at least Ω(s/ log d) = Ω(N/(d log d)) [1, 3, 11]. The following
theorem states this result.

Theorem 5.7. If each node vi ∈ {v1, . . . , vd} holds s ≥ d elements, the total
number of bits that the nodes have to communicate in order to distinguish
between the case where their sets are pairwise disjoint and the case where
they intersect in exactly one element is Ω(s/ log d). This lower bound also
holds for randomized algorithms with error probability ε < 1/2.

This theorem enables us to show that there is a graph G of diameter
D and a frequency distribution with maximum frequency φ1 and second
frequency moment F2 such that the time complexity to compute the mode
is Ω(D + F2/(φ2

1b log φ)). Recall that b denotes the number of bits that can
be transmitted in a single message.

Theorem 5.8. For any φ1, F2 ∈ N, where F2 ≥ φ2
1 > 1, there is a frequency

distribution φ1 > φ2 ≥ φ3 ≥ . . . ≥ φσ of elements whose second frequency
moment is F2 =

Pσ
i=1 φ2

i such that for every D > 1 there is a graph G of
diameter D and a distribution of the elements among the nodes of G such
that the time complexity to compute the mode is

Ω

„
D +

F2

φ2
1b log φ1

«
,

where b is the maximum number of bits that can be sent in a single message.

Proof. Setting φ2 := φ3 := . . . := φσ := 1 results in a second frequency
moment of F2 =

Pσ
i=1 φ2

i = φ2
1 + σ − 1. Let σ′ be the largest integer

σ′ ≤ σ such that σ′ − 1 is a multiple of φ1, i.e., we have that σ′ > σ − φ1.
Assume that the algorithm knows that the elements xσ′+1, . . . , xσ need not
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be considered. In this case, it remains to solve the problem for the frequency
distribution φ1, . . . , φσ′ . Note that finding the mode for this distribution
can be at most as hard as finding the mode for the frequency distribution
φ1, . . . , φσ because additional information cannot make the problem harder.
Without loss of generality, it can further be assumed that F2 ≥ 2φ2

1 since
otherwise the statement of the theorem reduces to the trivial bound of Ω(D).
This assumption implies that σ − 1 ≥ φ2

1 and thus σ′ > φ2
1 − φ1 + 1.

Let G be a star graph consisting of n = φ1 + 1 nodes, i.e., G consists
of an inner node v of degree δ(v) = φ1 and φ1 leaves v1, . . . , vφ1 . There
is a total of N = φ1 + σ′ − 1 elements; element x1 occurs φ1 times, all
other σ′−1 elements occur only once. These elements are distributed among
the φ1 leaf nodes such that every leaf node receives x1 exactly once and
(σ′ − 1)/φ1 of the other elements. Let Si be the set of elements of leaf
node vi. Since it holds that Si ∩ Sj = {x1} for any i 6= j and s ≥ d, i.e.,
1+(σ′−1)/φ1 ≥ φ1 due to the assumption that F2 ≥ 2φ2

1, Theorem 5.7 can be
applied, which states that the total number of bits the nodes v1, . . . , vφ1 have
to communicate in order to find x1 is Ω(s/ log φ1) = Ω(σ′/(φ1 log φ1)). This
reduction holds for the following reason. Any algorithm A that computes x1

can be used to solve the set disjointness problem on d nodes: If A terminates
without returning a value x1, we know that the sets S1, . . . , Sd are pairwise
disjoint. If A returns a value x1, a simple test reveals whether x1 ∈ Si for
all i ∈ {1, . . . , d} by exchanging a logarithmic number of additional bits.
The facts that σ′ > σ − φ1 and σ > φ1 imply that σ′ > σ(1 − 1/φ1), and
thus Ω(σ′/(φ1 log φ1)) = Ω(σ/(φ1 log φ1)). Hence, since at least one of the
leaf nodes has to send at least Ω(σ/(φ2

1 log φ1)) bits and each message may
contain at most b bits, the time complexity is at least Ω(σ/(φ2

1b log φ1)).
A graph G of diameter D on which the lower bound becomes Ω(D +

σ/(φ2
1b log φ1)) can be obtained by replacing each edge in G by a path of

length D/2. A lower bound on the time complexity of Ω(D+F2/(φ2
1b log φ1))

follows because σ > φ2
1 and thus F2 = φ2

1 + σ − 1 < 2σ.

The ratio between the proven upper and lower bound to compute the
mode is O(b log φ1 log(F0/ε)). Given that both φ1 and F0 are upper bounded
by N , this ratio is (only) polylogarithmic in N if b ∈ O(log N). More im-
portantly, the lower bound also reveals that the time complexity of any dis-
tributed algorithm that is able to find an element whose frequency is at most
a specific constant c > 1 lower than the frequency of the mode is linear in
N : If φ1 ∈ Θ(c), we get a lower bound of Ω(N/(bc log c)), where we used
the simple fact that F2 ≥ N . This result implies that there is no distributed
algorithm that (ε, δ)-estimates the frequency of the mode and that has a time
complexity that is substantially better than O(N) for any reasonable choice
of the maximum number of bits that can be sent in a single message.
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5.2.6 Discussion

All studied aggregate functions have in common that the result is only a
single element or value. One reason to study only such aggregate functions
is that the time complexity to acquire a particular set of k elements is in-
herently at least Ω(D + k), which implies that k must be small lest the
time complexity becomes too large. Nevertheless, one could still be inter-
ested in obtaining solutions to problems whose result is a set of elements.
A variation of the problem to compute the mode is to find a set of k ele-
ments such that the frequency φi of every element xi in this set is at least
(1− ε)φk for a parameter ε. There is an algorithm for the streaming model
that solves this problem with probability 1 − δ whose space complexity is
(roughly) O((k + F2/(εφk)2) log(N/δ)) [12]. In fact, the algorithm achieves
the stronger guarantee that every element xi whose frequency is greater than
(1 + ε)φk is in the set. The simple idea behind the algorithm is to compute
a counter c =

P
x∈S h(x) =

Pσ
i=1 h(xi)φi, where h is again a random hash

function that maps all elements to either −1 or 1. Note that the same counter
is used to estimate F2. This counter c can be used to estimate the frequency
of any element xi because

E[c · h(xi)] = E

" 
σX

j=1

h(xi)φi

!
h(xi)

#

= E[φih(xi)
2] +

σX
j=1,j 6=i

E[φjh(xj)h(xi)]

= φi.

As the variance is large, several estimates are again required in order to
get the desired result with probability 1 − δ. This algorithm can be trans-
formed into a distributed algorithm that finds the mode with basically the
same time complexity as Amode. Thus, this simple technique offers an al-
ternative solution to the problem of computing the mode. An advantage
of this algorithm over Amode is that the used hash functions must only be
pairwise independent, i.e., any two functions hi and hj are independent, but
any three or more hash functions may not be independent. Throughout this
chapter, it has been assumed that all hash functions are independent. Note,
however, that the same asymptotic results can also be proved using weaker
random hash functions [1, 4, 30]. Roughly speaking, these results indicate
that pseudorandom hash functions suffice to achieve good bounds.

While it is somewhat misleading and thus not quite appropriate to con-
sider distributed selection a holistic aggregation problem in the distributed
computation model, because efficient algorithms for this problem exist, we
found that, e.g., computing the number F0 of distinct elements proved to be
more difficult in that the time complexity to compute the correct solution
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is Ω(N/b), i.e., the straightforward strategy to simply collect all elements
locally is basically the best possible strategy.9 A problem with this property,
we might say, deserves to be called a holistic aggregate function. However,
while F0 can be approximated easily and efficiently, there are problems, such
as computing the frequency of the mode, for which any constant-factor ap-
proximation algorithm has a time complexity of Ω(N/b), which implies that
there are even harder problem classes and that referring to all of these aggre-
gation problems as holistic aggregate functions is an imprecise categorization
in the distributed computation model. Of course, one possible categorization
would be to define classes exactly according to the problems discussed in
this thesis, i.e., apart from the class of problems whose time complexity is
polylogarithmic in n or N (and linear in D), there is a class of problems that
have a time complexity of Ω̃(N) but can be approximated efficiently, and a
class for problems that (essentially) cannot even be approximated in sublin-
ear time. The interested reader is encouraged to think about ways to refine
this rudimentary categorization. This concludes our discussion of distributed
aggregation.

9Technically, since b ∈ O(log N) if n ∈ O(N), the lower bound only states that the
time complexity is Ω(N/ log N).
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Chapter 6

Clock Synchronization:

An Introduction

6.1 Motivation

COORDINATION among the participants of a distributed system is often
required in order to solve computational problems in a distributed fashion.
One of the most basic coordination primitives is time, i.e., coordination can be
achieved by establishing a common notion of time in the distributed system.
However, an intrinsic problem of distributed systems is that the participants
do not have access to global parameters. In other words, we cannot assume
that all participants have access to a global clock that provides the network
with real time information. A natural solution to this problem is to equip
each participant with its own clock according to which it may execute the
scheduled tasks. As mentioned in Section 1.2, the problem of this approach is
that clocks drift apart since they run at slightly different and potentially vari-
able clock rates, which implies that the clocks have to be synchronized from
time to time. To this end, a clock synchronization algorithm must be used to
correct the clock skews, i.e., the differences between the clock values caused
by the different clock rates. In order to detect clock skews, any clock syn-
chronization algorithm requires that timing information is exchanged among
the participants.

By exchanging synchronization messages and manipulating its clock ac-
cording to the received timing information, each participant synchronizes
its clock with all participants with which it shares a communication link.
Since these participants have communication channels to other participants,
updates on current clock values may propagate through the entire network.
This propagation ought to ensure that the clock skew between any two par-
ticipants in the network is small even if they cannot communicate directly.
Although minimizing the clock skew in the entire network is clearly desirable,
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for several distributed applications or protocols the primary requirement is
that the clocks between participants that share a communication link are
always synchronized as well as possible. A prominent example for shared
medium networks is time division multiple access (TDMA), a channel access
method that allows the participants to share the same channel by assign-
ing disjoint time slots to the participants during which they may send their
messages. Apparently, these time slots must be well synchronized in order
to avoid simultaneous transmissions. Moreover, since the participants that
are far away from each other use different channels, strong guarantees on the
degree of synchronization to their clocks are not mandatory. Examples of dis-
tributed applications that require each participant to be well synchronized
primarily with all participants in its vicinity include monitoring or tracking
applications, where some event is only registered locally in some part of the
network. The following simple example further illustrates this point. Con-
sider a wireless sensor network whose main objective is to track the movement
of a particular object (or several objects) and determine its speed along the
way. For this purpose, the sensor nodes store proximity information together
with a timestamp if the object is close. Given the recordings of the sen-
sor nodes, locally well synchronized clocks suffice to reconstruct the path of
the object even if there is a large skew between clocks of distant nodes in
the network. On the contrary, if the clock skew between near sensor nodes is
large, the movement cannot be tracked reliably.1 The same reasoning applies
to the measurement of the speed of the object. Generally, the requirement
that clocks between participants that share a communication link are well
synchronized is reasonable whenever occurrences of events are only of local
importance and do not bear any (immediate) significance for participants
that are not close-by. Of course, an ideal clock synchronization algorithm
guarantees that the clock skew between participants sharing a communica-
tion link and between any two participants is as small as possible.

Synchronizing clocks is challenging due to the variable (and uncontrol-
lable) delay between the time when synchronization messages are sent and
the time when the recipients are able to process them. If the sender of a
message attaches information about its current local time, i.e., the time on
its own clock, the recipient receives this message after it has been delayed for
an unknown time. The unknown delay renders it impossible for the recipient
to correctly determine the current time at the sender. Moreover, even if the
recipient knew exactly how long the message was in transit, it still could not
figure out the current time at the sender since the receiver does not know the
rate of progress of the sender’s clock from the moment the message was sent
until it was received. These simple observations lead to the conclusion that
synchronizing clocks perfectly is in general impossible. Given this negative

1For general distributed systems, locality refers to the ability of nodes to communicate
directly. Note that in the context of sensor networks, locality is tantamount to physical
proximity as nodes can communicate directly if and only if they are physically close.



6.1. MOTIVATION 73

result, an obvious question is how large the clock skews can become, both
between directly connected participants and between participants that do
not share a communication link, regardless of the strategy that is employed
to correct them. However, the main objective must be to find an algorithm
guaranteeing that the clock skews are as small as possible at all times. Of
course, it is desirable that the guaranteed upper bounds on the clock skews
match the lower bounds, i.e., the clock skews that cannot be prevented by
any algorithm.

Since timing information is conveyed only through message exchange and
the clocks may drift apart as long as no new information is received, the mes-
sage frequency has an impact on the achievable bounds on the clock skews.
If the algorithm may trigger synchronization messages itself, it can influence
the accuracy of the information that any participant has about the clock
values of the other participants directly. However, if the algorithm may only
attach timing information to messages that are sent by other applications,
a technique commonly referred to as “piggybacking”, the accuracy depends
on how often the other applications communicate. Naturally, the goal is to
bound the clock skews even if the information about other clock values in
the network is outdated to a certain extent. If it is possible to achieve strong
bounds on the clock skews while keeping the message frequency low, then pig-
gybacking can be employed as long as the other applications communicate
reasonably often.

Apparently, clock synchronization is a problem with many parameters in-
cluding the clock drift rates, the message delays, and the message frequency;
all of which influence the feasible degree of synchronization. There are several
optimization criteria that can be considered, such as minimizing the clock
skews between directly connected participants and participants that can only
communicate if the messages are relayed by other participants. Another de-
sirable property is that the clock synchronization algorithm ensures that the
clock values are never changed abruptly when new timing information is re-
ceived, i.e., the clocks ought to run smoothly at all times. Such a restriction
clearly inhibits the ability of a clock synchronization algorithm to react to
clock skews, which renders the problem of keeping the clocks synchronized
even harder. Moreover, the clock synchronization problem can be studied in
different models; the most prominent models are discussed in the subsequent
section.

After introducing the relevant definitions, the goal of the following chap-
ters is to provide an understanding of how the clock skew bounds depend on
the various parameters. In particular, after illustrating the difficulty of the
problem by analyzing several simple algorithms in Chapter 7, an algorithm
that achieves strong bounds on the worst-case clock skews for several models
is presented in Chapter 8, followed by a study of how much skew between
the clocks is inevitable in a worst-case scenario in Chapter 9.



74 6. CLOCK SYNCHRONIZATION: AN INTRODUCTION

6.2 Model and Definitions

As in the previous part, the distributed system is modeled as an arbitrary
connected graph G = (V, E) of diameter D, where nodes represent compu-
tational devices and edges represent bidirectional communication links. We
no longer impose the normalization that each message arrives after at most
1 time unit, i.e., it is assumed that there is a constant T > 0 such that for
any sent message the time that passes until the recipient can act upon it
may be any value in the range [0, T ]. The upper bound T is referred to as
the maximum delay in the following. While the bound T is unknown to the
algorithm, we assume that the nodes know an upper bound T̂ ∈ O(T ) on
the maximum delay. This assumption is not critical as we will point out in
Section 8.2.3.

Each node v is equipped with a hardware clock Hv whose value at real
time t is denoted by Hv(t), i.e., Hv : R+

0 → R+
0 is a strictly monotonically

increasing function. For the sake of simplicity, it is assumed that all nodes
start their clocks at real time t = 0. The value of the hardware clock of v is 0
at time 0 and Hv(t) :=

R t

0
hv(τ) dτ afterwards, where hv(τ) is the hardware

clock rate of v at time τ . The clock rates can vary over time, but there is a
constant ε ∈ (0, 1) such that the following condition holds.

∀v ∈ V ∀t : 1− ε ≤ hv(t) ≤ 1 + ε.

The parameter ε determines the largest possible clock drift between any
two hardware clocks, which is 2ε if the hardware clock rate of one clock is
1 + ε and the clock rate of the other is 1 − ε. While the exact value of ε is
unknown, it is assumed that the nodes know an upper bound ε̂ ∈ O(ε) that
is strictly smaller than 1.

We assume that no node v can manipulate its hardware clock, i.e., v can
only read its hardware clock value Hv(t) at any time t. Since the hardware
clocks cannot be modified, each node computes a logical clock value which
is based on its hardware clock and the information it received about its
neighbors’ logical clock values. Thus, each node v additionally has a logical
clock Lv, which is also a function Lv : R+

0 → R+
0 whose value is 0 at time 0

as well. The goal is to minimize the skew between the logical clocks.
As mentioned before, it is desirable that the clocks always behave nor-

mally in the sense that the logical clock values may not change dramatically
in a short time, which means that a clock synchronization algorithm must
strive to keep the logical clock rates within pre-specified bounds at all times.
Formally, for certain constants β > α > 0, the following condition must be
satisfied.

∀v ∈ V ∀t < t′ : α(t′ − t) ≤ Lv(t′)− Lv(t) ≤ β(t′ − t). (6.1)

Increasing (or lowering) the clock rates of the logical clocks allows the
nodes to correct clock skews in the network. Ideally, the logical clocks behave
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just like the hardware clocks even in the presence of clock skews, albeit
with a slightly worse clock drift than the drift of the hardware clocks, i.e.,
α ∈ 1−O(ε) and β ∈ 1+O(ε). Obviously, Condition (6.1) implies that clocks
are not allowed to run backwards. Since this condition severely restricts the
actions an algorithm can take, the simple algorithms discussed in Chapter 7
only satisfy the weaker condition that the minimum progress rate is lower
bounded by a certain α > 0, i.e., the maximum clock rate is unbounded.
This simplification allows a node to increase its clock value instantaneously
once it notices that it has fallen behind. If an algorithm is allowed to modify
the value of its clock at discrete points in time, the interpretation of Lv(t) at
times when the clock value changes has to be clarified: At any time t when
the clock value is increased, Lv(t) is defined as the value after the algorithm
has handled all events that occur at time t.2 The same definition generally
applies to all local variables that are modified at time t, also for algorithms
that do not increase the logical clock value instantaneously.

Moreover, although all clocks may continually drift away from real time,
an algorithm ought to ensure that the logical clock values are always within
a linear envelope of real time. Therefore, it is further required that any
algorithm satisfies the following condition.

∀v ∈ V ∀t : (1− ε)t ≤ Lv(t) ≤ (1 + ε)t. (6.2)

It is easy to see that a better bound on the accuracy with respect to real
time cannot be achieved in the absence of an external timer.

A clock synchronization algorithm A executed at node v specifies how the
logical clock Lv(t) of node v is adapted based on its hardware clock and the
information received from its neighbors up to time t. Ideally, an algorithm
satisfies both Condition (6.1) and Condition (6.2). Given an algorithm A,
an execution specifies the delays of all messages and also the hardware clock
rates of all nodes at each point in time when A is executed on a given graph
G. One optimization criterion is to minimize the worst-case clock skew that
can occur between any two nodes in the graph G, which is referred to as the
global skew in the following. Minimizing the worst-case clock skew between
neighboring nodes in G, which is called the local skew, is the second funda-
mental optimization criterion [18]. The formal definitions of the global and
the local skew are as follows:

Definition 6.1 (Global Skew). Given a connected graph G = (V, E) and a
clock synchronization algorithm A, the global skew is defined as

sup
E, v∈V, w∈V, t

{Lv(t)− Lw(t)} ,

where E is any execution of A on G.

2If there is more than one event at time t, the events may be handled in an arbitrary
order.
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Definition 6.2 (Local Skew). Given a connected graph G = (V, E) and a
clock synchronization algorithm A, the local skew is defined as

sup
E, v∈V, w∈Nv, t

{Lv(t)− Lw(t)} ,

where E is any execution of A on G.

As mentioned before, the goal of an algorithm A is to ensure the best
possible bounds on both the global and the local skew on any graph G.
Ideally, the algorithm guarantees strong bounds on the clock skews even if
the nodes exchange information about their current state infrequently, i.e.,
the algorithm has a low message frequency, which is formally defined as
follows.

Definition 6.3 (Message Frequency). The message frequency is the maxi-
mum number of messages that are sent in one time unit in the worst case for
every legal input and every execution scenario.

It is not only important to bound the number of sent messages, but
also how much information each message must carry. Thus, the maximum
message size also needs to be considered.

In our model, the nodes have to synchronize their clocks without access
to a source of real time. This synchronization problem is called internal
synchronization (see, e.g., [2, 26, 33]). The counterpart to this problem is ex-
ternal synchronization (see, e.g., [43, 45, 47]), where it is assumed that there
is a dedicated node that provides the network with real time information, and
the objective is to synchronize all clocks to this reference time. Although we
focus on internal synchronization, the implications of the results for external
synchronization are also discussed. Another prominent clock synchroniza-
tion problem is synchronizing clocks in the presence of faulty nodes (see, e.g.,
[16, 25, 38]). While the algorithms introduced in the following chapters do
not consider node or link failures, we will point out that simple modifications
to the algorithm discussed in Chapter 8 enable it to cope with node and link
failures as well.



Chapter 7

Simple Synchronization Algorithms

MOST work on the fundamental problem of synchronizing clocks in dis-
tributed systems primarily focuses on deriving techniques to bound the skew
that may occur between any two clocks (see, e.g., [37, 45, 47, 60]). Sur-
prisingly, while simple algorithms suffice to bound the worst-case clock skew
between any two nodes, it is considerably more challenging to come up with
algorithms guaranteeing an upper bound on the skew between the clocks of
neighboring nodes that is substantially better than the bound on the skew
between any two clocks. This is quite counterintuitive at first glance because
one would expect that it is easy to maintain a small clock skew between the
nodes that are able to exchange messages directly.

In this chapter, the bounds on the global and the local skew of a few
straightforward synchronization algorithms are discussed. These algorithms
have in common that they all satisfy Condition (6.2) and also the weak ver-
sion of Condition (6.1) that does not impose any restrictions on the maximum
clock rate (i.e., β = ∞). Thus, the algorithms ensure that the logical clock
values are always within a linear envelope of real time and the minimum
progress rate of each clock is at least a specific constant α > 0.

In order to guarantee that all nodes periodically receive updates about
their neighbor’s clock values, we assume that every node automatically trans-
mits a message containing its logical clock value to all neighboring nodes at
the latest after its hardware clock advanced by H0 > 0 since the last time
when messages were sent. For example, each node may send a message to its
neighbors whenever its hardware clock value reaches the next integer multi-
ple of H0. Of course, an algorithm may trigger the exchange of additional
messages at different times. The parameter H0 is important because it has
a direct influence on the message frequency.1

1The parameter even determines the message frequency if messages are only sent when
the hardware clock value has increased by H0 since the last message was sent.
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The simplest approach is probably to increase the logical clock value at
the hardware clock rate and set the logical clock value immediately to L if
a value L greater than the current logical clock value is received [33]. The
updated clock value L is then forwarded to all neighbors immediately. Since
the logical clock is always set to the largest known clock value, this algorithm
is referred to as Amax. Evidently, algorithm Amax satisfies Condition (6.2)
because the minimum progress rate is the minimum hardware clock rate,
which is lower bounded by 1 − ε, and no clock value is ever set to a value
that exceeds the largest known clock value, whose progress rate is upper
bounded by 1 + ε. The fact that the minimum progress rate is the hardware
clock rate implies that Condition (6.1) is also satisfied for α = 1− ε.

As mentioned before, the main problem of any synchronization algorithm
is that messages may be delayed. Let the variable Lw

v (t) denote v’s estimate
of w’s clock value at real time t. These variables Lw

v are initialized to zero
at time t = 0. If a node v receives a new estimate Lw

v = Lw
v (t) of w’s clock

value at a time t, this message may have been sent T time ago. If the clock
skew was T at the time t − T when the message was sent and the logical
clock of v increased by T until t, then the received estimate Lw

v is exactly v’s
clock value at time t. Hence, v does not have a reason to increase its clock
value although the clock skew is (still) T . Consequently, if a skew of T can
be induced between any two neighboring nodes, no node may ever receive a
clock value larger than its own and the global skew may reach DT . In fact,
Chapter 9 reveals that there is an execution of any algorithm on any graph
G of diameter D that induces a global skew of roughly DT . Not surprisingly,
this skew occurs between two nodes v and w at distance d(v, w) = D.

The following example illustrates that Amax is a poor clock synchroniza-
tion algorithm in that the clock skew between neighboring nodes can become
large. Assume that the skew between two nodes v and w is DT at a certain
time, where v is the node with the larger clock value, and that the message
delays are suddenly reduced to zero, apart from the delays of the messages
that the nodes u ∈ Nw send to w. In this scenario, all nodes except w in-
crease their clock values instantaneously to v’s clock value, which causes a
clock skew of DT between w and all of its neighbors. The local skew is thus
exactly as large as the global skew, even if ε and H0 are arbitrarily small,
i.e., the clocks drift at an arbitrarily small rate and messages are exchanged
arbitrarily often. Since w receives the update after at most T time, one
might think that the clock skew is Ω(DT ) only for a short time after which
the local skew is again reduced to a small constant. Unfortunately, the as-
sumption that this problem is transient is not true: Instead of increasing all
clock values to Lv, the message delays can be manipulated so that the skew
between w and its neighboring nodes becomes only DT /c for some c ∈ N.
Once w increases its clock value by roughly DT /c after at most T time, the
neighboring nodes may learn about clock values that are again DT /c larger
due to reduced message delays. This simple step can be repeated c times,
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i.e., the clock skew remains approximately DT /c for cT time. In particular,
by setting c := b

√
Dc, the local skew is about

√
DT for roughly

√
DT time.

The problem with algorithm Amax is that solely the neighbor with the
largest clock value is considered. This observation indicates that a node
must also take the clock values of its other neighbors into account in order
to achieve a better bound on the local skew.

7.1 Averaging Algorithm

A straightforward approach is to try to balance the clock skew between the
own clock and the clocks of the neighboring nodes. In an attempt to minimize
the maximum clock skew to some specific neighboring nodes, a node v may set
its clock to the average value of these neighbors’ clocks. Naturally, v can only
set its clock to this average value if it exceeds its own clock value, otherwise v’s
clock value would become smaller, a violation of Condition (6.1). However,
the algorithm that compares the average of the (estimated) clock values of
all neighbors to its own clock value performs poorly as the following simple
example shows. Assume that the clock of a node v always runs at the clock
rate 1 + ε and the clock of its sole neighbor w has a progress rate of 1 at all
times. Node w has n−2 other neighbors u1, . . . , un−2 that are only connected
to w and whose clocks run at a clock rate of 1 as well, i.e., the graph is a star
and w is the center node. If the message delays are always T , w receives clock
values that are T smaller than its own from all ui, i ∈ {1, . . . , n − 2}, and
vice versa. Once the clock skew between v and w reaches (n− 1)T at a time
t, node w has received a clock value from v that is at most (n − 2)T larger
than its own due to the message delay T . Since the estimates of all other
n− 2 neighbors are at least T smaller than its own clock value, the average
of the estimated clock values of all the neighbors is still smaller than w’s
own clock value, implying that w does not increase its clock at time t or any
earlier time. The global and the local skew can thus become Ω(nT ) although
the diameter of the graph is only 2. The clock skews when algorithm Amax

is used on this graph are upper bounded by O(T ) even if H0 is large as we
will see in the subsequent section.

A crucial observation is that it is not important how many neighbors
seemingly have smaller clock values, but how large the clock skew appears
to be to the neighboring node that is behind the most. Thus, instead of
computing the average of all clock values, a node only determines the values
of the two variables Λ↑

v and Λ↓
v, which are defined as follows:

Λ↑
v := max

u∈Nv

{Lu
v − Lv}

Λ↓
v := max

u∈Nv

{Lv − Lu
v}

If these variables are positive, Λ↑
v denotes v’s estimate of the largest clock
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Algorithm 7.1 Aavg: Compute the new clock value Lv after receiving Lw

from node w ∈ Nv.

1: if Lw > Lw
v then

2: Lw
v := Lw

3: Λ↑
v := maxu∈Nv{Lu

v − Lv}
4: Λ↓

v := maxu∈Nv{Lv − Lu
v}

5: if Λ↑
v > Λ↓

v then
6: Lv := Lv + (Λ↑

v − Λ↓
v)/2

7: send Lv to all u ∈ Nv

8: end if
9: end if

skew to a neighbor whose clock is ahead and Λ↓
v is v’s estimate of the largest

clock skew to a neighbor whose clock is assumed to be behind. Whenever any
node v obtains a message containing a clock value Lw from a node w ∈ Nv

that is larger than the current estimate Lw
v , the estimate Lw

v is updated,
and v determines whether the average of the largest and the smallest clock
value among its neighbors’ clock values is larger than its own clock value,
i.e., whether Λ↑

v > Λ↓
v. If the average is indeed larger, v sets its logical clock

to the average Lv + (Λ↑
v − Λ↓

v)/2 and immediately sends its new clock value
to its neighbors. This simple algorithm Aavg is given in Algorithm 7.1.

Unfortunately, while algorithm Aavg is better than the simple averaging
algorithm described before, it fails to achieve better bounds on the clock
skews than Amax. On the contrary, the skew can become substantially
larger when Aavg is executed on the simple graph Glist := (V list, Elist),
where V list = {v0, . . . , vD} and Elist = {{v0, v1}, {v1, v2}, . . . , {vD−1, vD}},
regardless of when and how often messages are exchanged.

Theorem 7.1. There is an execution of Aavg on the graph Glist of diameter
D that causes a global skew of D2T .

Proof. For all i ∈ {0, . . . , D}, define ti := i2T /ε. The message delays in the
considered execution are always T . The execution changes the progress rates
of the hardware clocks at times t1, . . . , tD as follows. For all i ∈ {0, . . . , D−1},
the hardware clock rate of vj ’s clock at any time t ∈ [ti, ti+1) is defined as:

hvj (t) :=

(
1 + ε if j > i

1 else

Since the logical clocks increase at the hardware clock rates, the logical
clock value of vi at any time t is

Lvi(t) =

(
(1 + ε)t if t < ti

εti + t else
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unless vi receives a message that causes it to set its clock to a larger value. If
no node ever decides to set its clock to a larger value, the clock skew between
vi and vi−1 at time ti is

Lvi(ti)− Lvi−1(ti) = ε(ti − ti−1) = (2i− 1)T .

Given that the hardware clock rate of both vi’s and vi−1’s clock are 1
after ti by definition, the clock skew remains (2i − 1)T . The clock skew
between vD and v0 at time tD is thus

LvD (tD)− Lv0(tD) =

DX
j=1

(2j − 1)T = D2T .

It remains to show that no node ever increases its clock value due to a
received message. Assume for the sake of contradiction that node vi is the
first node that receives a message that causes it to increase its clock value
instantaneously at a time t̄. Let L′

vi
(t̄ ) denote the clock value of vi before

the message is processed.2 Note that Lw
vi

(t̄ ) ≤ Lw(t̄ − T ) for any w ∈ Nvi

because each messages is delayed by T and the last message may have arrived
earlier than at time t̄.

As vD’s clock value is the largest at time t̄, we know that i 6= D. Moreover,
vi cannot be v0: The minimum progress rate of v1’s clock is 1 and the
execution only builds up a clock skew of T between the two nodes, which
implies that Lv1

v0(t̄ ) ≤ Lv1(t̄ − T ) ≤ Lv1(t̄ ) − T ≤ L′
v0(t̄ ). Thus, v0 cannot

receive a larger clock value than its own from v1 at time t̄, and consequently
v0 does not increase its clock value at time t̄ due to a received message. We
conclude that vi must be a node in the set {v1, . . . , vD−1}.

Since all clock values increased at their own hardware clock rate until t̄,
we further know that

Λ↑
vi

(t̄ ) = max{Lvi+1
vi (t̄ ), L

vi−1
vi (t̄ )} − L′

vi
(t̄ )

≤ max{Lvi+1(t̄− T ), Lvi−1(t̄− T )} − L′
vi

(t̄ )

= Lvi+1(t̄− T )− L′
vi

(t̄ )

and

Λ↓
vi

(t̄ ) = L′
vi

(t̄ )−min{Lvi+1
vi (t̄ ), L

vi−1
vi (t̄ )}

≥ L′
vi

(t̄ )−min{Lvi+1(t̄− T ), Lvi−1(t̄− T )}
= L′

vi
(t̄ )− Lvi−1(t̄− T ),

which implies that

Λ↑
vi

(t̄ )− Λ↓
vi

(t̄ ) ≤ Lvi+1(t̄− T ) + Lvi−1(t̄− T )− 2L′
vi

(t̄ ). (7.1)

2This variable is needed because the clock value changes at time t̄ by definition and
Lvi

(t̄ ) denotes the value after the increase as defined in Section 6.2.
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If t̄ < ti, the clock value of vi at time t̄ is L′
vi

(t̄ ) = (1 + ε)t̄, and the
estimates L

vi+1
vi (t̄ ) and L

vi−1
vi (t̄ ) are upper bounded by Lvi+1(t̄− T ) ≤ (1 +

ε)(t̄ − T ) and Lvi−1(t̄ − T ) ≤ (1 + ε)(t̄ − T ), respectively. Inequality (7.1)

states that in this case Λ↑
vi

(t̄ )− Λ↓
vi

(t̄ ) ≤ 0.
If ti ≤ t̄ < ti+1 +T , we have that L′

vi
(t̄ ) = εti + t̄. The estimate L

vi+1
vi (t̄ )

is certainly upper bounded by (1 + ε)(t̄− T ) and the estimate L
vi−1
vi (t̄− T )

is at most εti−1 + t̄− T because t̄− T ≥ ti − T > ti−1. Hence, according to
Inequality (7.1) we have that

Λ↑
vi

(t̄ )− Λ↓
vi

(t̄ )
(7.1)

≤ (1 + ε)(t̄− T ) + εti−1 + t̄− T − 2(εti + t̄ )

< ε(ti+1 − 2ti + ti−1)− 2T = 0.

The last case is that t̄ ≥ ti+1 + T . Since the clock rate of all three nodes
is 1 at any time t ≥ t̄− T , it holds that

Λ↑
vi

(t̄ )− Λ↓
vi

(t̄ )
(7.1)

≤ εti+1 + t̄− T + εti−1 + t̄− T − 2(εti + t̄ )

= ε(ti+1 − 2ti + ti−1)− 2T = 0.

We conclude that Λ↑
vi

(t̄ ) ≤ Λ↓
vi

(t̄ ) in all cases, which implies that vi does
not set its clock to a larger value at time t̄, a contradiction to the definition
of t̄.

When algorithm Aavg is used on the graph Glist, it is thus possible that
the average clock skew between neighboring nodes becomes Ω(DT ). More-
over, the nodes never increase their clock values due to received messages
at any time in the execution described in the proof, which implies that the
large clock skews remain in the network. The problem of Aavg appears to
be that the nodes do not increase their clock values quickly enough if one
neighbor lags behind. However, it is not possible to simply “ignore” this
particular neighbor, as otherwise the algorithm behaves like Amax when exe-
cuting the algorithm on the example graph Glist because each node v ∈ V list

has at most two neighbors. As we discussed before, Amax has the undesirable
property that the skew between neighboring nodes may become Ω(DT ) on
any graph G. Thus, the solution must be to use the information about the
neighbors’ clock values differently.

7.2 Blocking Algorithm

A different approach to bounding the local skew is to set the logical clock to
the maximum clock value, just like Amax, subject to the condition that the
(estimated) clock value of no neighbor is more than a specific value κ > 0
behind [36]. In other words, any node actively sets its clock to a value
that is at most κ larger than the smallest estimate of any of its neighbors’
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clock values. This rule implies that a node never increases its clock value
as long as Λ↓

v ≥ κ, i.e., any further increase is “blocked” until a received
message indicates that the node that is lagging behind the most has caught
up. Intuitively, the parameter κ must be larger than T for the following
reason. If all messages are delayed by T , a node v may erroneously assume
that a neighbor’s clock is T behind even if the skew between its own and
this neighbor’s clock is in fact zero. By setting κ to a value greater than T ,
we ensure that v still increases its clock value instantaneously upon receiving
a larger clock value from another neighbor in this situation. The algorithm
Ablock, which is based on this principle, is now discussed in detail.

7.2.1 Algorithm Ablock

As in the preceding section, the clock values increase at the hardware clock
rate in the absence of new information about the neighbors’ clock values.
Apart from the clock value Lv, each message further contains v’s estimate
Lmax

v of the largest clock value in the network, which is also initialized to 0
at time t = 0. Instead of updating the estimates Lw

v for all w ∈ Nv only if a
larger clock value Lw is received from w, all estimates Lw

v are increased at the
hardware clock rate of v as well, which means that all nodes assume that the
clock values of their neighboring nodes increase at their own hardware clock
rate. The same rule applies to the estimate Lmax

v of the largest clock value
in the network. This approach has a considerable advantage: The logical
clock value of w potentially increases by (1 + ε)H0 until it sends the next
message to v even if w never sets its clock to a larger value in this time
interval. If v only updates the estimate Lw

v when a new message is received
from w, the error in the estimate increases by (1 + ε)H0 as well. However,
the error can increase by at most 2εH0 if Lw

v is increased at v’s hardware
clock rate because the progress of v’s hardware clock in the same interval is
at least (1− ε)H0. This simple trick renders it possible to set H0 to a large
value, resulting in a low message frequency without increasing the clock skew
bounds significantly.

Upon receiving a tuple 〈Lw, Lmax
w 〉 from a neighbor w,3 node v first

updates its variable Lmax
v by setting it to Lmax

w if this value exceeds the
old value. The algorithm strives to disseminate new information about the
largest clock value in the network as quickly as possible. For this purpose, the
flag send, which indicates whether a message has to be sent to all neighbors
after the received message has been processed, is set to true if the received
estimate of the largest clock value is larger than the old estimate. Subse-
quently, Lw

v is set to the received clock value Lw if this value is greater than
the largest clock value `w

v that v has ever received from w before. Since mes-
sages that are sent later may arrive earlier due to different message delays,

3Technically, a node v might receive several messages at the same time. These mes-
sages can be processed in an arbitrary order.
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Algorithm 7.2 Ablock: Compute the new clock value Lv after receiving
〈Lw, Lmax

w 〉 from node w ∈ Nv.

1: if Lmax
w > Lmax

v then
2: send := true
3: Lmax

v := Lmax
w

4: end if
5: if Lw > `w

v then
6: Lw

v := Lw; `w
v := Lw

7: end if
8: Λ↓

v := maxu∈Nv{Lv − Lu
v}

9: Rv := min{Lmax
v − Lv, κ− Λ↓

v}
10: if Rv > 0 then
11: Lv := Lv + Rv

12: Λ↓
v := Λ↓

v + Rv

13: end if
14: if Rv > 0 or send = true then
15: send := false
16: send 〈Lv, Lmax

v 〉 to all u ∈ Nv

17: end if

this test is necessary in order to ensure that Lw
v is based on the most current

information about w’s clock value. Afterwards, the estimated clock skew Λ↓
v

to the node that is behind the most is computed. The clock value Lv is
then increased by at most Lmax

v − Lv, i.e., nodes never set their clocks to a
value larger than the estimated maximum clock value. Additionally, a node
is merely allowed to increase its clock value by at most κ−Λ↓

v, which ensures
that the clock value is increased to a value that is at most κ larger than the
estimated clock value of any neighbor. If v can increase its clock by a positive
value, Lv is set to the new value, and Λ↓

v is adjusted. Finally, a message is
sent to all neighbors if either v sets its clock to a larger value or the estimate
of the maximum clock value has increased. The steps of algorithm Ablock are
summarized in Algorithm 7.2.

In the following, we assume that messages are sent automatically when-
ever the estimate Lmax

v (instead of the hardware clock value Hv) reaches the
next integer multiple of H0. The advantage of this strategy is that it helps
to restrict the number of messages that are exchanged: If a message is sent
when Hv reaches the next multiple of H0, any node v may receive messages
from its neighbors in such an order that each message contains a larger es-
timate of the maximum clock value in the network, which causes v to send
messages to all neighbors for each received message although the differences
between these estimates may be arbitrarily small. However, all nodes only
send messages to their neighbors once for each integer multiple of H0 reached
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by Lmax
v if Lmax

v is used for this purpose.
It is worth noting that the rule that Rv can be at most κ − Λ↓

v does
not guarantee that a node never increases its clock value instantaneously if
a neighbor’s clock is κ behind; however, since any node receives a message
from each neighbor after at most T + H0/(1 − ε) time has passed since the
last message arrived at a time when Λ↓

v < κ and any instantaneous increase
Rv > 0 also causes Λ↓

v to increase by Rv, the difference between the actual
clock skew between v and the neighbor w that is behind the most and Λ↓

v can
only grow due to a faster hardware clock. Given that the minimum progress
rate is 1 − ε, the clock skew can increase by at most 2ε(T + H0/(1 − ε)).
Thus, any node v can increase its clock value instantaneously only to a value
that is less than

κ + 2ε(T + H0/(1− ε))

larger than the clock value of any of its neighbors.
As one might expect, the parameters κ and H0 have an impact on the

achievable bounds on both the global and the local skew. The dependency
between these parameters and the bounds on the clock skew are examined
next.

7.2.2 Analysis of Ablock

A node may increase its clock value quickly as long as it is not blocked. Let
Rv(t1, t2) denote the amount by which the logical clock increase exceeds the
increase of the hardware clock:

Definition 7.2. ∀t1 ≤ t2 : Rv(t1, t2) := (Lv(t2)−Lv(t1))−(Hv(t2)−Hv(t1)).

Since nodes no longer react to incoming messages as long as they are
blocked, one might fear that the global skew may again become large. For-
tunately, this is not the case if κ is sufficiently large. In fact, the following
upper bound does not only hold for algorithm Ablock, but for any algorithm
that belongs to the family A of clock synchronization algorithms with the
following properties.

1. The logical clock value of each node v always increases at a rate of at
least 1− ε.

2. Any node v increases the estimates of Lw
v and Lmax

v at its own hardware
clock rate and updates them when new information is received.

3. No node v sets its clock to a value greater than Lmax
v .

4. Any node v immediately forwards the estimate Lmax
w to all (other)

neighbors when it receives an estimate Lmax
w > Lmax

v from a node w.

5. Any node v sends 〈Lv, Lmax
v 〉 to all neighbors if Lmax

v reaches the next
integer multiple of H0, for an arbitrary parameter H0 > 0.
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6. Any node v increases its logical clock at least at the rate 1 + ε if
Lv < Lmax

v and Λ↓
v < κ0 := (1 + ε)T + 2εH0/(1 + ε).

It is easy to see that Algorithm Ablock belongs to the family A when
choosing any κ ≥ κ0 = (1+ ε)T +2εH0/(1+ ε): Obviously, algorithm Ablock

has the first five properties. Line 9 of Algorithm 7.2 states that Lv is set
either to Lmax

v or to a value such that Λ↓
v ≥ κ ≥ κ0, i.e., Ablock also has

the last property. Note that we may consider Amax to be a member of the
family A as well even if it does not store any estimates Lw

v (or computes Λ↓
v),

because Lv = Lmax
v is increased at the hardware clock rate, and both Lv and

Lmax
v are set to Lmax

w when an estimate Lmax
w greater than Lmax

v is received.
Since the minimum progress rate of each node is 1 − ε, any algorithm

A ∈ A satisfies the weak version of Condition (6.1). We define the virtual
clock

Lmax(t) := max
v∈V

{Lmax
v (t)},

which increases at a rate of at most 1 + ε when an algorithm A ∈ A is
used because the estimates Lmax

v are increased at the hardware clock rates.
Moreover, it holds that Lv(t) ≤ Lmax

v (t) at all times t because no node sets its
clock to a value larger than Lmax

v and Lv increases at the hardware clock rate
whenever Lv = Lmax

v . These observations and the fact that the minimum
logical clock rate is 1 − ε imply that any A ∈ A, and in particular Ablock,
satisfies Condition (6.2). The following theorem bounds the global skew of
any such algorithm.

Theorem 7.3. The global skew when executing any algorithm A ∈ A on any
graph G of diameter D is upper bounded by

G := (1 + ε)DT +
2ε

1 + ε
H0.

Proof. Instead of bounding the clock skew between the nodes directly, we
show that Lmax(t)−Lv(t) ≤ G for all nodes v ∈ V and times t. As Lmax(t) ≥
Lv(t) for all nodes v ∈ V at all times t, this statement proves the theorem.

For the sake of contradiction, assume that t̄ is the infimum of all times
when the clock skew between Lmax and the clock value Lv of some node
v exceeds G. Since Lmax increases continuously and since all nodes never
reduce their clock values, it holds that

Lmax(t̄ )− Lv(t̄ ) = G. (7.2)

First, assume that Λ↓
v(t̄ ) < κ0. Let L be the largest estimate of the

maximum clock value that v receives at the latest at time t̄ and that is an
integer multiple of H0, i.e., it has originally been sent due to the fifth property
of the family A.4 Moreover, let ts and tr ≤ t̄ be the times when L is first sent

4It is possible that v receives a larger estimate at a time t ≤ t̄ if the considered
algorithm A also sends messages because of other events.
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and when it is received by v, respectively.5 Since ts is the first time when L
was sent, we have that L = Lmax(ts). Assume that ts ≥ t̄ −DT . As Lmax

v

increases at least at the rate 1− ε, we get that

Lmax
v (t̄ ) ≥ L + (1− ε)(t̄− tr)

= Lmax(ts) + (1− ε)(t̄− tr)

≥ Lmax(t̄ )− (1 + ε)(t̄− ts) + (1− ε)(t̄− tr) (7.3)

(7.2)

≥ Lv(t̄ ) + G − (1 + ε)DT
> Lv(t̄ ).

Inequality (7.3) uses that the progress rate of Lmax is upper bounded by
1 + ε. The message may have been sent earlier at a time ts = t̄ − DT − γ
for a value γ ∈ (0, H0/(1 − ε)). Note that ts ≤ t̄ −DT −H0/(1 − ε) is not
possible as the progress of the hardware clock until t̄ − DT is at least H0

because the hardware clock rates are always at least 1− ε. In this case, the
fifth property states that a message must be sent at the latest at time t̄−DT ,
which, according to the fourth property, is forwarded towards v unless some
node on the path has already sent a larger estimate of the maximum clock
value earlier. Since the distance to v is upper bounded by D and the message
delays are at most T , node v would receive this message at the latest at time
t̄, contradicting the assumption that L is the largest estimate that arrives
until t̄. More generally, if hmax denotes the average clock rate of Lmax in
the interval [ts, t̄ − DT ], it holds that γhmax < H0, otherwise L is not the
largest estimate of the maximum clock value that arrives at v at the latest
at time t̄. Since tr ≤ ts + DT and thus t̄− tr ≥ γ, it holds in this case that

Lmax
v (t̄ ) ≥ L + (1− ε)(t̄− tr)

≥ Lmax(ts) + (1− ε)γ

≥ Lmax(t̄ )− (1 + ε)DT − hmaxγ + (1− ε)γ

(7.2)
= G + Lv(t̄ )− (1 + ε)DT − γ(hmax − (1− ε))

> G + Lv(t̄ )− (1 + ε)DT − 2ε

1 + ε
H0 (7.4)

= Lv(t̄ ).

Inequality (7.4) exploits that γ(hmax − (1 − ε)) = γhmax
`
1− 1−ε

hmax

´
<

2ε
1+ε

H0 for all γ ∈ (0, H0/(1 − ε)) as γhmax < H0 and hmax ≤ 1 + ε. Thus,
in both cases it holds that Lv(t̄ ) < Lmax

v (t̄ ). The sixth property states
that any logical clock increases at least at the rate 1 + ε if Λ↓

v < κ0 and
Lv < Lmax

v . Since Lmax increases at most at the clock rate 1+ε, t̄ cannot be

5Note that ts and tr are not (necessarily) the send and receive event of the same
message. The estimate L of the maximum clock value in the network may be forwarded
to v along a path of nodes.
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the infimum of all times when the clock skew between Lmax and Lv exceeds
G, a contradiction to the definition of t̄.

It remains to study the case that Λ↓
v(t̄ ) ≥ κ0. Let w ∈ Nv be any node

such that Lv(t̄ ) − Lw
v (t̄ ) ≥ κ0, and let ts denote the time when w sent the

message containing the largest clock value that v received at a time tr ≤ t̄.
It holds that Lv(tr)− Lw

v (tr) +Rv(tr, t̄ ) = Lv(t̄ )− Lw
v (t̄ ) ≥ κ0 because Lv

increases by exactly Rv(tr, t̄ ) more than the hardware clock and thus also
Rv(tr, t̄ ) more than the estimate Lw

v . Hence, since the message received at
time tr contains the clock value Lw(ts), which implies that Lw

v (tr) = Lw(ts),
we know that

Lw(ts) ≤ Lv(tr) +Rv(tr, t̄ )− κ0. (7.5)

Furthermore, it holds that

Lv(t̄ ) = Lv(tr) + (Hv(t̄ )−Hv(tr)) +Rv(tr, t̄ )

≥ Lv(tr) + (1− ε)(t̄− tr) +Rv(tr, t̄ ) (7.6)

If we assume that ts ≥ t̄− T , the skew between Lmax and Lw at time ts

is at least

Lmax(ts)− Lw(ts)
(7.5)

≥ Lmax(t̄ )− (1 + ε)(t̄− ts)− Lv(tr)

−Rv(tr, t̄ ) + κ0

(7.6)

≥ Lmax(t̄ )− Lv(t̄ ) + κ0

−(1 + ε)(t̄− ts) + (1− ε)(t̄− tr)

= Lmax(t̄ )− Lv(t̄ ) + κ0

−(1− ε)(tr − ts)− 2ε(t̄− ts)

(7.2)

≥ G + κ0 − (1 + ε)T > G.

If ts = t̄− T − γ for a value γ ∈ (0, H0/(1− ε)) as before, we again have
that hwγ < H0, where hw now denotes the average clock rate of w in the
time interval [ts, t̄− T ]. The same arguments as in the previous cases reveal
that

Lmax(t̄− T )− Lw(t̄− T ) ≥ Lmax(t̄ )− (1 + ε)T − (Lw(ts) + hwγ)

(7.5)

≥ Lmax(t̄ )− Lv(tr)−Rv(tr, t̄ )

+κ0 − (1 + ε)T − hwγ

(7.6)

≥ Lmax(t̄ )− Lv(t̄ ) + (t̄− tr)(1− ε)

+κ0 − (1 + ε)T − hwγ

t̄−tr≥γ

≥ G + κ0 − (1 + ε)T − γ(hw − (1− ε))

γhw<H0
> G + κ0 − (1 + ε)T − 2ε

1 + ε
H0 ≥ G.
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Thus, in either case the skew between Lmax and Lw exceeded G at a time
not later than t̄. This is a contradiction as Lmax(t)−Lv(t) ≤ G for all v ∈ V
at all times t < t̄ because t̄ is the infimum of all times when this bound is
violated, and Lmax(t̄ )−Lv(t̄ ) = G due to the fact that Lmax is a continuous
function.

This result implies that the same upper bound G on the global skew
applies to both Ablock and Amax. The following theorem shows that Ablock

guarantees a better bound on the local skew than Amax.

Theorem 7.4. If κ ≥ 2(1 + ε)
“
T + H0

1−ε

”
, the local skew when executing

algorithm Ablock on any graph G of diameter D is upper bounded by

κ +
8ε

κ
G
„
T +

H0

1− ε

«
.

Proof. Define that T ′ := T + H0
1−ε

. If a node receives a message from a
neighbor at time t, the next message from the same neighbor will arrive at
the latest at time t + T ′ because each node sends a message after at most
H0 time measured using its hardware clock and the hardware clock rate of
each clock is lower bounded by 1 − ε. Assume for the sake of contradiction
that there is a time t̄ and two nodes v0 and v1 such that

Lv0(t̄ )− Lv1(t̄ ) ≥ κ +
8ε

κ
GT ′. (7.7)

Define that ti := t̄ − (i − 1)T ′ for all i ∈ N. Furthermore, let i∗ be the
largest integer such that i∗ ≤ 2

κ
G. We can assume that i∗ ≥ 2, as otherwise

it holds that G < κ and the theorem follows immediately from Theorem 7.3.
As argued before, a node can increase its clock value instantaneously at
most to a value that is κ + 2ε(T + H0/(1 − ε)) = κ + 2εT ′ larger than
the clock value of any neighbor. Since the clock skew at time t̄ is at least
κ + 8ε

κ
GT ′, node v0 must have built up the additional skew of 8ε

κ
GT ′ − 2εT ′

by means of a faster hardware clock rate, i.e., v0 is blocked at least since time
t̄ − ( 8ε

κ
GT ′ − 2εT ′)/(2ε) = t̄ − ( 4

κ
G − 1)T ′ ≤ t̄ − (2i∗ − 1)T ′ = t2i∗ , which

implies that

Lv0(t) ≥ Lv0(t̄ )− (1 + ε)(t̄− t) (7.8)

for any t ∈ [t2i∗ , t̄ ].
We claim that there is a series of nodes v1, . . . , vi∗ such that for each vi,

i ∈ {1, . . . , i∗}, it holds that

Lv0(t̄ )− Lvi(ti) > iκ (7.9)

and vi is blocked at time ti, i.e., Λ↓
vi

(ti) ≥ κ. Furthermore, the distance
between v0 and vi is upper bounded by i.
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The clock skew at time t̄ between the nodes v0 and v1, for which
d(v0, v1) = 1, is greater than κ according to Inequality (7.7). Moreover,
node v1 received a message at the latest at time t̄ from v0 containing a clock
value greater than Lv0(t̄− T ′) ≥ Lv0(t̄ )− (1 + ε)T ′, which implies that

Lmax
v1 (t̄ ) > Lv0(t̄ )− (1 + ε)T ′ (7.7)

> Lv1(t̄ ) + κ− (1 + ε)T ′ > Lv1(t̄ ).

Thus, it must hold that Λ↓
v1(t1) = Λ↓

v1(t̄ ) ≥ κ, which proves the claim for
i = 1.

Assume that the claim holds for node vi, i < i∗, i.e., Λ↓
vi

(ti) ≥ κ. Let
vi+1 ∈ Nvi be the node that maximizes Λ↓

vi
(ti). We have that Lvi+1(ti+1) ≤

Lvi(ti) − κ, as otherwise vi receives a message at the latest at time ti con-
taining a clock value larger than Lvi(ti) − κ. Since vi+1 maximizes Λ↓

vi
(ti),

vi would not be blocked at time ti, a contradiction. Consequently, it holds
that

Lv0(t̄ )− Lvi+1(ti+1) ≥ Lv0(t̄ )− (Lvi(ti)− κ)
(7.9)
> (i + 1)κ. (7.10)

As d(v0, vi) ≤ i and vi+1 ∈ Nvi , it follows that d(v0, vi+1) ≤ i+1. It remains
to verify that vi+1 is blocked, i.e., that Lmax

vi+1(ti+1) > Lvi+1(ti+1). Given that
d(v0, vi+1) ≤ i+1, it takes at most (i+1)T time for a clock value from v0 to
be forwarded to vi+1, which implies that Lmax

vi+1(ti+1) ≥ Lv0(t2(i+1)). Since
i + 1 ≤ i∗ and thus t2(i+1) ≥ t2i∗ , we have that

Lmax
vi+1(ti+1) ≥ Lv0(t2(i+1))

= Lv0(t̄− (2i + 1)T ′)

(7.8)

≥ Lv0(t̄ )− (1 + ε)(2i + 1)T ′

(7.10)
> Lvi+1(ti+1) + (i + 1)κ− (1 + ε)(2i + 1)T ′

> Lvi+1(ti+1) + (2i + 1)
“κ

2
− (1 + ε)T ′

”
≥ Lvi+1(ti+1),

which proves the claim.

Since vi∗ is blocked at time ti∗ , there is a node vi∗+1 ∈ Nvi∗ for which it
holds that Lvi∗+1(ti∗+1) ≤ Lvi∗ (ti∗)− κ, implying that

Lv0(t̄ )− Lvi∗+1(ti∗+1)
(7.9)
> (i∗ + 1)κ.

The clock value of v0 at time ti∗+1 ≥ t2i∗ is at least

Lv0(ti∗+1) = Lv0(t̄− i∗T ′)
(7.8)

≥ Lv0(t̄ )− (1 + ε)i∗T ′.
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These two inequalities show that the clock skew between v0 and vi∗+1 at
time ti∗+1 is lower bounded by

Lv0(ti∗+1)− Lvi∗+1(ti∗+1) > (i∗ + 1)κ− (1 + ε)i∗T ′

> (i∗ + 1)(κ− (1 + ε)T ′)

≥ (i∗ + 1)
κ

2

>
2G
κ

κ

2
= G.

In the last inequality we used that i∗ is the largest integer that is at most
2G/κ, which implies that i∗ > 2G/κ − 1. Thus, the assumption that there
are neighboring nodes with a clock skew of at least κ + 8ε

κ
GT ′ implies that

the skew between two nodes must have been larger than G at an earlier time,
a contradiction to Theorem 7.3.

Since ε and T are unknown, κ must be set to at least 2(1+ ε̂)(T̂ +H0/(1−
ε̂)). According to Theorem 7.4 and the assumptions that ε̂ ∈ O(ε) and T̂ ∈
O(T ), the local skew is upper bounded by O(T (1 + εD) + H0/(1− ε)) when
setting κ to this minimum value. Note that this result is an improvement
over the bound of algorithm Amax as the local skew tends to O(T ) if ε and
H0 tend to zero. Recall that the local skew of Amax is Ω(DT ) independent
of both ε and H0.

7.2.3 Discussion

It is not hard to see that the analysis in the preceding section is asymptoti-
cally tight if κ is chosen as small as possible and H0 tends to zero, i.e., there
are executions that induce a local skew of Ω(T (1 + εD)) when algorithm
Ablock is used and κ ∈ Θ(T ). As we will see in Chapter 9, a global skew of
Ω(DT ) cannot be prevented. Once a global skew of Ω(DT ) has been intro-
duced into the network, the message delays are reduced to zero except for the
delays of the message sent to the node v0 with the currently smallest clock
value. The reduced message delays entail that the neighbors of v0 acquire
a clock value that is κ larger than v0’s clock value. Their neighbors in turn
have clock values that are κ larger etc., resulting in paths v0, . . . , vk in which
each node vi has a clock value that is approximately κ larger than the clock
value of vi−1 for all i ∈ {1, . . . , k}. The length of such a path is bounded by
Ω(DT /κ) = Ω(D). If the message delays are increased to T again at this
point, node vk−1 only increases its clock value at its hardware clock rate until
it receives a larger clock value from node vk−2, which has to wait for a larger
clock value from vk−3 etc. Since the message delays are T and k ∈ Ω(D),
it takes Ω(DT ) time until an update propagates from v0 to vk−1. The clock
skew between vk and vk−1 increases to Ω(T + εDT ) if during this time the
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hardware clock rate of vk is 1 + ε and the hardware clock rate of all other
nodes is 1− ε.

In practical distributed systems, the diameter D of the network is much
smaller than 1/ε. For example, if ε = 10−5, the clocks gain or lose roughly
one second per day, which is roughly the accuracy of a regular quartz clock.
Clearly, there is no practical network with a diameter of 105. If D is smaller
than 1/ε, the local skew is in fact bounded by O(T ) if Ablock is used to
synchronize the clocks, κ ∈ Θ(T ), and H0/(1 − ε̂) ∈ O(T ). However, if
the diameter and the clock drifts are sufficiently large, the skew between
neighboring nodes is dominated by the term 8ε

κ
G(T + H0/(1 − ε)), i.e., the

local skew still grows linearly with the network diameter D.
There is a simple trick to avoid this linear dependency: By setting

κ := max

(
2(1 + ε̂)

„
T̂ +

H0

1− ε̂

«
,

s
8ε̂Ĝ

„
T̂ +

H0

1− ε̂

«)
,

where Ĝ ≥ G is the estimated global skew based on ε̂ ∈ O(ε) and T̂ ∈ O(T ),
the local skew reduces to

O

 
T +

H0

1− ε
+

s
εD

„
T +

H0

1− ε

«!
.

Note that the nodes need to know the diameter D in order to compute Ĝ.
If the term H0/(1 − ε) is upper bounded by O(T ), this choice of κ ensures
that the local skew is bounded by O(T +

√
εDT ), i.e., the local skew merely

grows with the square root of the diameter D. In order to further improve
the asymptotic behavior, a more sophisticated technique is needed, which is
the subject of the following chapter.



Chapter 8

Optimal Clock Synchronization

BOTH algorithm Aavg and Ablock essentially incur large clock skews be-
tween neighboring nodes because they increase the clock values too slowly.
The problem of Aavg is that all clocks permanently run at their hardware
clock rate as long as each node v assumes that there is a neighbor whose
clock is behind more than any other neighbor’s clock is ahead, i.e., Λ↓

v ≥ Λ↑
v.

While algorithm Ablock increases the clock values as much as possible as long
as no neighbor is (assumed to be) κ or more behind, the clock value only
increases at the hardware clock rate once this threshold is reached.

The main challenge is to find an algorithm that is more aggressive, but
does not increase the clock values too quickly. Recall that algorithms that
increase the clock values too quickly, such as Amax, also incur a large local
skew. The basic strategy of the algorithm discussed in this chapter is the
following. Any node v sets its clock to the largest value that neither exceeds
the estimated maximum clock value in the network nor induces a clock skew
larger than κ to any neighbor, just as dictated by algorithm Ablock. However,
if v assumes that the clock of a neighbor is more than κ ahead, v is allowed
to further increase its clock value instantly as long as Λ↓

v ≤ 2κ. If a neighbor
is assumed to be at least 2κ behind, v is blocked until the clock skew to a
node that is ahead exceeds 2κ. In this case, v may again increase its clock
value instantly subject to the constraint that Λ↓

v ≤ 3κ etc. This technique is
more aggressive as we will see, but it also ensures that the nodes are blocked
long enough for the nodes with the smallest clock values to catch up [35].1

Surprisingly, this algorithm, henceforth referred to as Aopt, achieves a
much better bound on the local skew even if the maximum progress rate
is bounded, i.e., Aopt satisfies Condition (6.1). Moreover, the message fre-
quency can be kept low without increasing the skew bounds substantially.

1A slightly different technique, which has been proposed earlier, basically achieves the
same asymptotic bounds on the clock skews [34].
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Algorithm 8.1 Aopt: Message 〈Lw, Lmax
w 〉 received from node w ∈ Nv.

1: if Lmax
w > Lmax

v then
2: Lmax

v := Lmax
w

3: send 〈Lv, Lmax
v 〉 to all u ∈ Nv

4: end if
5: if Lw > `w

v then
6: Lw

v := Lw; `w
v := Lw

7: Λ↑
v := maxu∈Nv{Lu

v − Lv}
8: Λ↓

v := maxu∈Nv{Lv − Lu
v}

9: end if
10: setClockRate()

8.1 Algorithm

The algorithm Aopt stores the same local variables Lw
v , `w

v , for all w ∈ Nv,
and Lmax

v as algorithm Ablock, which are initialized to zero at time t = 0.
Furthermore, Lmax

v and the estimates Lw
v , for all w ∈ Nv, are still increased

at the hardware clock rate. The messages again contain both the logical
clock value Lv and the estimate Lmax

v of the largest clock value in the net-
work. As in algorithm Ablock, each node v immediately sends a message to
all neighbors whenever v obtains an estimate Lmax

w larger than Lmax
v in order

to ensure that the estimated maximum clock value is disseminated as quickly
as possible. Algorithm Aopt further computes the estimates Λ↑

v and Λ↓
v of the

skew to the clocks in its neighborhood that are ahead and behind the most,
respectively, just like Aavg. In order to satisfy Condition (6.1), the clock
value Lv can no longer be increased by a certain value instantaneously, i.e.,
Aopt can only manipulate the logical clock rate. For this purpose, the sub-
routine setClockRate is called, which adapts the logical clock rate according
to the current situation. The actions that each node v takes upon receiving
a message 〈Lw, Lmax

w 〉 from a node w are summarized in Algorithm 8.1.

The steps of the subroutine setClockRate, the key ingredient that distin-
guishes Aopt from the other algorithms, are summarized in Algorithm 8.2.
By default, the logical clock runs at the hardware clock rate as well. The sub-
routine determines if and for how long the logical clock value has to increase
more quickly than the hardware clock value (and the local variables) as fol-
lows. First, the amount Rv by which v would increase Lv if it were allowed to
increase its clock value instantaneously is computed. Roughly speaking, the
goal of the subroutine is to ensure that the clock skew to the neighbor whose
clock is assumed to be behind the most and the clock skew to the neighbor
with the largest estimated clock value are the same integer multiple of κ. The
variable Rv is the largest value that satisfies this constraint. More precisely,
if Λ↑

v ≤ sκ and Λ↓
v ≥ sκ for some s ∈ N0, v is blocked, i.e., Rv = 0. If v is
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Algorithm 8.2 setClockRate(): Adjust the logical clock rate of the clock
Lv according to the current information.

1: Rv := sup
n

R ∈ R
˛̨̨ j

Λ↑
v−R

κ

k
≥
j

Λ↓
v+R

κ

ko
2: Rv := min

˘
max

˘
κ− Λ↓

v, Rv

¯
, Lmax

v − Lv

¯
3: if Rv > 0 then
4: ρv := 1 + µ
5: HR

v := Hv + Rv
µ

(Reset ρv := 1 at time HR
v )

6: else
7: ρv := 1
8: end if

not blocked, Rv > 0 is exactly the increase of the clock value that causes v
to be blocked. Line 1 of Algorithm 8.2 is a concise formulation of this rule.
Although Aopt also strives to balance the skew to the neighbor’s clock with
the largest estimated clock value and the neighbor whose clock is assumed to
be behind the most, similarly to algorithm Aavg, the following simple exam-
ple illustrates that Aopt is more aggressive than Aavg. If Λ↑

v = Λ↓
v = sκ + κ

2

for any s ∈ N, algorithm Aopt sets Rv to κ
2
, whereas v does not increase its

clock value when algorithm Aavg is used. As in algorithm Ablock, the value
Rv may be at least κ − Λ↓

v, because a skew of κ is always tolerated, and at
most Lmax

v −Lv, since v must not increase the clock value to a value greater
than Lmax

v (see Line 2 of Algorithm 8.2).
In order to bound the increase of the logical clock, the algorithm dictates

that any node’s logical clock value may increase at most 1 + µ times faster
than its hardware clock value for a given µ > 0. If the computed increase Rv

is positive, v sets its logical clock rate multiplier ρv to 1 + µ, which ensures
that Lv(t2)−Lv(t1) = (1 + µ)(Hv(t2)−Hv(t1)) for any time interval [t1, t2]
where ρv = 1 + µ. The clock rate multiplier ρv is reset to 1 as soon as the
logical clock has made a progress that is Rv larger than the progress of the
hardware clock, i.e., ρv is set to 1 when the hardware clock value reaches
HR

v = Hv + Rv/µ. Naturally, new information can cause v to set HR
v to a

smaller or a larger value. Of course, if we do not insist on a strict upper
bound on the logical clock rate, the computed Rv can simply be added to
the logical clock value.

In the following, we assume that each node first sends a message to all of
its neighbors at time t = 0. Note that the described algorithm only causes
each node v to send a message if an estimate Lmax

w > Lmax
v is received from

a neighbor w. Since it is desirable to bound the message frequency, which is
discussed in Section 8.2.2, we again employ the rule that a message is sent
automatically whenever the estimate Lmax

v reaches the next multiple of H0.
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8.2 Analysis

First, we point out that algorithm Aopt also belongs to the family A if κ ≥
(1 + ε)T + 2εH0/(1 + ε) and µ ≥ 2ε/(1− ε). According to the description of
Aopt in the preceding section, it follows immediately that Aopt has the first
five properties. Lines 2-4 of the subroutine setClockRate (Algorithm 8.2)
state that the clock rate is at least 1 + µ times the hardware clock rate if
Λ↓

v < (1+ ε)T +2ε/(1+ ε)H0 ≤ κ and Lv < Lmax
v . Since the hardware clock

rate is at least 1 − ε and µ ≥ 2ε/(1 − ε), the logical clock rate is at least
(1+µ)(1−ε) ≥ 1+ε. This lower bound on µ is quite natural because a smaller
bound would imply that the skew between two clocks whose hardware clock
rates are 1− ε and 1 + ε may grow indefinitely. We conclude that Aopt ∈ A,
implying that Aopt satisfies Condition (6.2). Furthermore, Condition (6.1) is
satisfied for α = 1− ε and β = (1 + ε)(1 + µ).

In our analysis of the local skew, we require that the parameters κ and µ
are slightly larger. In particular, for an integer σ ≥ 2 we require that

µ ≥ 7σ
ε

1− ε
. (8.1)

We see that it suffices to set µ to roughly 14ε for any reasonable ε, i.e., the
precision of the clocks reduces by merely one order of magnitude while clock
skews are corrected. Naturally, µ can also be set to a larger value, which
entails that σ may also become larger. The number σ has an impact on
the local skew as we will see in Section 8.2.1. As far as the parameter κ is
concerned, it is required that

κ ≥ 2((1 + µ)T + H̄0), (8.2)

where
H̄0 := (2ε + µ)H0. (8.3)

The parameter H̄0 is simply introduced to abbreviate the notation. The
intuition behind this lower bound is that κ must be large enough to compen-
sate for the inaccuracy of the known clock values of the neighboring nodes
due to the maximum delay T . In order to give the algorithm a chance to
react to clock skews, the term µT is added. Obviously, the accuracy of the
information about neighboring clocks deteriorates if H0 is set to a large value.
Since clock skew can be built up at a rate of at most O(µ), the additional
skew is bounded by O(µH0). Therefore, κ must further include the term
H̄0 as defined above. The factor of two is due to the fact that any node v
might possess outdated information about both the nodes whose clocks are
ahead and the nodes whose clocks are behind. Throughout this chapter, it
is implicitly assumed that Condition (8.1) and Condition (8.2) are satisfied,
and all lemmas and the main theorem make use of this assumption.

A crucial quantity in our analysis is the amount by which the increase of
the logical clock value exceeds the minimum increase in the given interval,
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which is determined by the minimum hardware clock rate 1 − ε. For this
purpose, we introduce the following definition.

Definition 8.1. ∀t1 ≤ t2 : Iv(t1, t2) := Lv(t2)− Lv(t1)− (1− ε)(t2 − t1).

Apparently, it holds that Iv is interval additive:

∀t1 ≤ t2 ≤ t3 : Iv(t1, t2) + Iv(t2, t3) = Iv(t1, t3).

By definition of Iv, we further have that

∀t1 ≤ t2 : Iv(t1, t2) ≥ 0. (8.4)

If ρv = 1 + µ in a particular interval [t1, t2], a node increases its logical
clock value faster than its hardware clock value, i.e., Rv(t1, t2) is positive.
Since (1− ε)(t2 − t1) ≤ Hv(t2)−Hv(t1) ≤ (1 + ε)(t2 − t1), it holds that

∀t1 ≤ t2 : Rv(t1, t2) ≤ Iv(t1, t2) ≤ Rv(t1, t2) + 2ε(t2 − t1). (8.5)

Before we start our analysis of the worst-case clock skews, we prove that
algorithm Aopt has the following essential property.

Lemma 8.2. If the subroutine setClockRate is called at a node v at a time
when no message is received, both ρv and HR

v remain unchanged.

Proof. Assume that the subroutine is called at time t, and let t′ < t be the
time when the last message arrived at node v. By definition, the increase of
the logical clock value in the time interval (t′, t] exceeds the increase of the
local variables by Rv(t′, t).

If Rv(t′, t) = 0, the subroutine setClockRate must have determined at
time t′ that the logical and the hardware clock value have to increase at the
same rate. Therefore, if the subroutine setClockRate were called at time t, we
would have that Rv(t) ≤ 0 because Λ↑

v and Λ↓
v, and also Lmax

v − Lv, remain
unaltered. Thus, the logical clock rate multiplier ρv would still be set to 1
after the procedure call at time t. Moreover, HR

v is not changed at time t.

If Rv(t′, t) > 0 it holds that Λ↑
v(t) = Λ↑

v(t′) − Rv(t′, t) and Λ↓
v(t) =

Λ↓
v(t′) +Rv(t′, t). The value Rv in Line 1 of Algorithm 8.2 thus reduces by

exactly Rv(t′, t). Moreover, κ − Λ↓
v and Lmax

v − Lv also reduce by Rv(t′, t)
in Line 2, implying that Rv(t) = Rv(t′) − Rv(t′, t). If Rv(t) evaluates to
zero, i.e., Rv(t′, t) = Rv(t′), the hardware clock must have reached HR

v

and the logical clock rate multiplier has been reset to 1 by time t.2 The
logical clock rate multiplier is not set to 1 + µ, because Rv(t) ≤ 0, and
HR

v is again not changed at time t. If Rv(t) > 0, the logical clock rate

2Note that Rv(t) cannot be negative because ρv is set to 1 as soon asRv(t′, t) = Rv(t)
and no message is received in the interval (t′, t].
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multiplier is set to 1+µ until the hardware clock value reaches HR
v (t). Since

Rv(t′, t) = µ(Hv(t)−Hv(t′)), it holds that

HR
v (t) = Hv(t) +

Rv(t)

µ
= Hv(t′) +

Rv(t′, t)

µ
+

Rv(t′)−Rv(t′, t)

µ

= Hv(t′) +
Rv(t′)

µ
= HR

v (t′).

Hence, the logical clock rate multiplier remains 1+µ until the same hardware
clock time as before. We conclude that ρv and HR

v remain exactly the same
in all cases.

This property is useful in that it allows us to determine the logical clock
rate also at any time when no message is processed: We can simply assume
that the variables are updated and the subroutine setClockRate is called,
which does not cause the logical clock rate to change at any such time.

8.2.1 Clock Skew

Due to the fact that Aopt ∈ A, the same bound on the global skew holds.

Corollary 8.3. The global skew when executing algorithm Aopt on any graph
G of diameter D is upper bounded by

G = (1 + ε)T D +
2ε

1 + ε
H0.

Since the bound on the global skew is already established, we focus our
attention on the worst-case clock skew between neighboring nodes. Consider
the maximum length of a path with a given average clock skew ∆L between
the nodes of this path. The proof of the bound on the local skew relies
on the fact that linearly increasing the average clock skew ∆L results in an
exponential decrease in the length of the longest possible path that exhibits
such an average clock skew. This fact implies that the average skew on paths
of length one, i.e., between neighboring nodes, is logarithmically bounded in
the diameter D. In particular, we show that the network is always in a legal
state, which is defined as follows.

Definition 8.4 (Legal State). Given the integer σ ≥ 2, we say that a network
is in a legal state at time t, if and only if for all s ∈ N0 and all nodes v, w ∈ V
at distance

d(v, w) ≥ Cs :=
2G
κ

σ−s,

we have that

Lv(t)− Lw(t) ≤ d(v, w)

„
s +

1

2

«
κ.
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Note that Corollary 8.3 shows that any two nodes v and w at a distance of
at least C0 cannot violate the legal state condition, because Lv(t)−Lw(t) ≤
G ≤ d(v, w)κ

2
at all times t.

Two lemmas are required in order to prove the main theorem. The first
lemma itself requires a simple helper lemma, which bounds the inaccuracy
of the estimates Lw

v .

Lemma 8.5. For all nodes v ∈ V and w ∈ Nv it holds for all times t and
t′ := max{t− T , 0} that

Lw
v (t) > Lw(t′)− H̄0. (8.6)

Proof. If t ≤ T , then Lw(t′) = 0, implying that Lw
v (t) ≥ 0 > Lw(t′) − H̄0.

Thus, we can assume that t > T . Consequently, all nodes have already
received a message from all their neighbors. Let ts denote the time when w
sent the largest clock value that v received at the latest at time t, and let
tr ≤ t be the time when v received this clock value. Since v sets its estimate
to the received value at time tr, it holds that Lw

v (tr) = Lw(ts).
If ts ≥ t′, we have that

Lw
v (t) ≥ Lw

v (tr) = Lw(ts) ≥ Lw(t′) > Lw(t′)− H̄0.

If ts < t′, it must hold that Hw(t′)−Hw(ts) < H0, as otherwise w sends
a message that arrives at v at the latest at time t and that contains a larger
clock value than the clock value sent at time ts. Furthermore, Lw(t′)−Lw(ts)
is upper bounded by (1 + ε)(Hw(t′)−Hw(ts)). Consequently, it holds that

Iw(ts, t
′) = Lw(t′)− Lw(ts)− (1− ε)(t′ − ts)

≤
„

1 + µ− 1− ε

1 + ε

«
(Hw(t′)−Hw(ts))

< (µ + 2ε)H0
(8.3)
= H̄0. (8.7)

This observation and the fact that Lw
v is increased at the hardware clock

rate in the interval [tr, t] allow us to bound

Lw
v (t) ≥ Lw(ts) + (1− ε)(t− tr)

= Lw(t′)− Iw(ts, t
′)− (1− ε)(t′ − ts) + (1− ε)(t− tr)

(8.7)
> Lw(t′)− H̄0 − (1− ε)(tr − ts) + (1− ε)(t− t′)

≥ Lw(t′)− H̄0.

In the last step, we simply used that t− t′ = T and tr − ts ≤ T .

The first lemma used in the proof of the main theorem basically states
that the larger the clock skew is between two nodes v and w, the faster w
can reduce it by increasing its clock value quickly.
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Lemma 8.6. Given ξ ∈ R and s ∈ N, assume that the clock skew between
two nodes v and w at time t0 is

Lv(t0)− Lw(t0) = d(v, w)

„
s− 1

2

«
κ + ξ. (8.8)

Define t1 := t0 +
κCs−1
(1−ε)µ

+ T . If the network is in a legal state at time t0, it
follows that

Iw(t0, t1) ≥ ξ. (8.9)

Proof. Define

Ξ(t) := max
u∈V


Lv(t0)− Lu(t0)− d(v, u)

„
s− 1

2

«
κ− Iu(t0, t)

ff
.

Observe that if Ξ(t) ≤ 0 holds at any time t ≥ t0, then for node w we have
that

Iw(t0, t) ≥ Lv(t0)− Lw(t0)− d(v, w)

„
s− 1

2

«
κ = ξ.

Furthermore, Ξ(·) is monotonically decreasing, hence showing that Ξ(t) ≤ 0
for any t ≤ t1 proves the lemma. We proceed by deriving an upper bound
on Ξ(t0).

Consider any node u ∈ V . If d(v, u) ≥ C0, it holds that Lv(t0)−Lu(t0) ≤
d(v, u)κ

2
due to the legal state condition, which was satisfied at time t0.

Since s ≥ 1, it holds in this case that Lv(t0) − Lu(t0) − d(v, u)κ
2
≤ 0, i.e.,

Ξ(·) cannot become positive because of a node u at distance d(v, u) ≥ C0.
Hence, we can assume that d(v, u) < C0, i.e., there is an integer r ≥ 1 such
that d(v, u) ∈ [Cr, Cr−1). The legal state condition states that

Lv(t0)− Lu(t0)− d(v, u)

„
s− 1

2

«
κ ≤ d(v, u)(r − s + 1)κ. (8.10)

The right-hand side of this inequality is at most 0 for r < s. If r ≥ s it holds
that

d(v, u)(r − s + 1)κ < Cr−1(r − s + 1)κ

= σs−rCs−1(r − s + 1)κ

≤ κCs−1

because σ ≥ 2. Hence it follows that Ξ(t0) ≤ κCs−1.
The second step is to prove that Ξ(·) decreases at least at an average rate

of (1− ε)µ until it reaches zero. In particular, we claim that

Ξ(t) ≤ max{0, Ξ(t0)− (1− ε)µ(t− t0) + (1− ε)µT } (8.11)

for all times t ≥ t0.
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This statement is trivially true for all times t ≤ t0 + T , because in this
case we only require that Ξ(t) ≤ Ξ(t0), which follows from the fact that Ξ(·)
is monotonically decreasing. Assume for the sake of contradiction that the
claim that Inequality (8.11) holds at all times t ≥ t0 is false. Let t̄ be the
infimum of all times t ≥ t0+T when Ξ(t) > Ξ(t0)−(1−ε)µ(t−t0)+(1−ε)µT
and let u be a node that maximizes Ξ(t̄ ). Note that u 6= v because v cannot
cause the value of the function Ξ(·) to become positive due to the fact that
Iv(t0, t) ≥ 0. Since Ξ(·) is a continuous function, it holds at time t̄ that

Lv(t0)− Lu(t0)− d(v, u)

„
s− 1

2

«
κ− Iu(t0, t̄ )

= Ξ(t0)− (1− ε)µ(t̄− t0) + (1− ε)µT . (8.12)

Consider any neighbor u′ of u that is closer to v than u, i.e., the distance
between v and u′ is d(v, u′) = d(v, u)−1. By definition of t̄, Inequality (8.11)
holds for node u′ at time t′ := t̄− T ≥ t0. Thus, we have that

Lv(t0)− Lu′(t0)− d(v, u′)

„
s− 1

2

«
κ− Iu′(t0, t

′)

≤ Ξ(t0)− (1− ε)µ(t′ − t0) + (1− ε)µT
= Ξ(t0)− (1− ε)µ(t̄− t0) + 2(1− ε)µT . (8.13)

By subtracting Inequality (8.13) from Equation (8.12), we get that

Lu′(t0) + Iu′(t0, t
′)− Lu(t0)− Iu(t0, t̄ )

≥ (d(v, u)− d(v, u′))

„
s− 1

2

«
κ− (1− ε)µT

=

„
s− 1

2

«
κ− (1− ε)µT . (8.14)

Since t′ = t̄−T , Lemma 8.5 can be used in order to lower bound Lu′
u (t̄ )−

Lu(t̄ ):

Lu′
u (t̄ )− Lu(t̄ )

(8.6)
> Lu′(t

′)− H̄0 − Lu(t̄ )

= Lu′(t0) + Iu′(t0, t
′)− Lu(t0)− Iu(t0, t̄ )

−(1− ε)(t̄− t′)− H̄0

(8.14)

≥
„

s− 1

2

«
κ− (1− ε)µT − (1− ε)T − H̄0

(8.2)
> (s− 1)κ.

This bound and the fact that the estimate of the maximum clock value
is at least as large as the estimated clock value of any neighbor imply
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that Lmax
u (t̄ ) ≥ Lu′

u (t̄ ) > Lu(t̄ ) + (s − 1)κ ≥ Lu(t̄ ). Thus, according to
Lemma 8.2, the clock rate is 1 + µ unless the clock value of a neighboring
node is too small. Consider an arbitrary node u′′ ∈ Nu. The distance be-
tween v and u′′ is at most d(v, u) + 1. As u′′ did not violate the claimed
bound at time t′ = t̄− T , it holds that

Lv(t0)− Lu′′(t0)− d(v, u′′)

„
s− 1

2

«
κ− Iu′′(t0, t

′)

≤ Ξ(t0)− (1− ε)µ(t̄− t0) + 2(1− ε)µT .

By subtracting Equation (8.12), we get that

Lu(t0) + Iu(t0, t̄ )− Lu′′(t0)− Iu′′(t0, t
′)

≤ (d(v, u′′)− d(v, u))

„
s− 1

2

«
κ + (1− ε)µT

≤
„

s− 1

2

«
κ + (1− ε)µT . (8.15)

This inequality is used to upper bound Lu(t̄ )− Lu′′
u (t̄ ):

Lu(t̄ )− Lu′′
u (t̄ )

(8.6)
< Lu(t̄ )− Lu′′(t

′) + H̄0

= Lu(t0) + Iu(t0, t̄ )− Lu′′(t0)− Iu′′(t0, t
′)

+(1− ε)(t̄− t′) + H̄0

(8.15)

≤
„

s− 1

2

«
κ + (1− ε)µT + (1− ε)T + H̄0

(8.2)
< sκ.

As we argued before, it holds that Lu(t̄ ) < Lmax
u (t̄ ) because Λ↑

u(t̄ ) > 0.

Since Lu(t̄ ) < Lmax
u (t̄ ), Λ↑

u(t̄ ) > (s−1)κ, and Λ↓
u(t̄ ) ≤ Lu(t̄ )−Lu′′

u (t̄ ) < sκ,
the subroutine setClockRate would set Ru to a positive value at time t̄ and
the logical clock rate multiplier to 1+µ. Thus, according to Lemma 8.2, the
value of the logical clock rate multiplier ρvi is 1 + µ at time t̄. This result
implies that the rate of increase of Iu at time t̄ is at least (1 + µ)(1 − ε) −
(1 − ε) = (1 − ε)µ. Since the rate of Iu is at least (1 − ε)µ for any u for
which Inequality (8.12) holds, it follows that the rate of Ξ(·) at time t̄ is at
most −(1−ε)µ, contradicting the definition that t̄ is the infimum of all times

when the claim does not hold. Thus, at time t1 = t0 +
κCs−1
(1−ε)µ

+ T , it holds

that Ξ(t1) ≤ max{0, Ξ(t0)− (1−ε)µ(t1− t0)+(1−ε)µT } = 0 as desired.

The second lemma shows that the clock skew can only increase slowly
once it reaches a certain level. More precisely, for any s ∈ N, we consider the
path on which the average clock skew exceeds sκ the most. If v is the node
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with the largest and w is the node with the smallest clock value among all
nodes on this path, then v’s logical clock runs at the hardware clock rate, i.e.,
the clock skew between v and w can only grow further at a rate of at most
2ε. Moreover, the clock skew decreases if w increases its clock value quickly.
In order to abbreviate the notation, the following definition is introduced.

Definition 8.7. Given a node w ∈ V and s ∈ N, define for any time t

Ψs
w(t) := max

v∈V
{Lv(t)− Lw(t)− sκd(v, w)} ≥ 0.

Lemma 8.8. If Ψs
w(t) > 0 for all t ∈ (t0, t1], then it holds at any time

t ∈ [t0, t1] that

Ψs
w(t) ≤ 2ε(t− t0)− Iw(t0, t) +

κ

7σ
+ Ψs

w(t0). (8.16)

Proof. Since Ψs
w(·) > 0 implies that the clock skew between some nodes v

and w is at least κ > 2T > 2εT , and at most 2εT can be built up until time
T , t0 must be a point in time after T , i.e., we can assume that all nodes have
already received messages from all their neighbors.

Assume for the sake of contradiction that t̄ ∈ [t0, t1] is the infimum of
times when the claim is false, i.e., there is a node v ∈ V such that

Lv(t̄ )− Lw(t̄ )− sκd(v, w) = 2ε(t̄− t0)− Iw(t0, t̄ ) +
κ

7σ
+ Ψs

w(t0). (8.17)

Note that v 6= w and thus d(v, w) ≥ 1 because w cannot cause Ψs
w(·) to

become positive. Since d(v, w) ≥ 1, a neighbor u ∈ Nv at distance d(u, w) =
d(v, w) − 1 from w exists. Let ts denote the time when u sent the largest
clock value that v received at a time tr ≤ t̄. We need to distinguish between
the following two cases.

If ts ≥ t0, Inequality (8.16) was not violated at time ts, which allows us
to bound

Lv(t̄ )− Lu
v (t̄ ) = Lv(tr)− Lu

v (tr) +Rv(tr, t̄ )

(8.5)

≥ Lv(tr)− Lu(ts) + Iv(tr, t̄ )− 2ε(t̄− tr)

= Lv(t̄ )− Lw(t̄ )− (Lu(ts)− Lw(t̄ ))

−(1− ε)(t̄− tr)− 2ε(t̄− tr)

= Lv(t̄ )− Lw(t̄ )− (Lu(ts)− Lw(ts))

+Iw(ts, t̄ ) + (1− ε)(t̄− ts)

−(1− ε)(t̄− tr)− 2ε(t̄− tr) (8.18)

(8.16,8.17)

≥ sκ(d(v, w)− d(u, w)) + (1− ε)(tr − ts)

−Iw(t0, t̄ ) + Iw(t0, ts) + Iw(ts, t̄ )

−2ε(t̄− tr) + 2ε(t̄− t0)− 2ε(ts − t0)

= sκ + (1 + ε)(tr − ts) ≥ sκ.
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If ts < t0, note that the time difference ts − t0 is bounded because each
node sends a message to its neighbors at the latest after its hardware clock
value increased by H0, i.e., after at most H0/(1− ε) time, since it last sent a
message. If ts ≤ t0 −H0/(1 − ε) − T , another message, containing a larger
clock value, is sent at a time t′s ≤ t0 − T , which arrives at a time t′r ≤ t0,
contradicting the assumption that the message sent at time ts contains the
largest clock value that v receives from u until t̄ ≥ t0. Hence it follows that
ts > t0 −H0/(1− ε)− T and thus

t0 − tr ≤ t0 − ts <
H0

1− ε
+ T

(8.3)
<

H̄0

(1− ε)µ
+ T

(8.1)

≤ H̄0

7σε
+ T . (8.19)

The clock skew between Lu and Lw at time ts is bounded by

Lu(ts)− Lw(ts) = Lu(t0)− Lw(t0)− Iu(ts, t0) + Iw(ts, t0)

≤ sκd(u, w)− Iu(ts, t0) + Iw(ts, t0) + Ψs
w(t0)

(8.4)

≤ sκd(u, w) + Iw(ts, t0) + Ψs
w(t0). (8.20)

In this case, the estimated clock skew between v and u at time t̄ is

Lv(t̄ )− Lu
v (t̄ )

(8.18)

≥ Lv(t̄ )− Lw(t̄ )− (Lu(ts)− Lw(ts)) + Iw(ts, t̄ )

+(1− ε)(tr − ts)− 2ε(t̄− tr)

(8.17,8.20)

≥ sκ(d(v, w)− d(u, w))− Iw(t0, t̄ )− Iw(ts, t0)

+Iw(ts, t̄ ) +
κ

7σ
+ (1− ε)(tr − ts)− 2ε(t0 − tr)

(8.19)
> sκ +

κ

7σ
− 2ε

„
T +

H̄0

7σε

«
> sκ.

In the last step, we used that κ
(8.2)
> 2(µT + H̄0)

(8.1)
> 14σεT +2H̄0. Thus,

Lv(t̄ )−Lu
v (t̄ ) ≥ sκ holds in either case. Applying the same arguments to any

node u′ ∈ Nv yields that Lu′
v (t̄ ) − Lv(t̄ ) ≤ sκ, as all terms in the previous

estimates switch signs, except the term sκ because d(v, w) − d(v, u′) ≥ −1.
Since these estimate holds for any node u′, we have that Λ↑

v(t̄ ) ≤ sκ. More-
over, it holds that Λ↓

v(t̄ ) ≥ Lv(t̄ ) − Lu
v (t̄ ) ≥ sκ, which implies that Rv

evaluates to zero in Line 1 of the subroutine setClockRate (Algorithm 8.2) if
the subroutine is called at time t̄. Given that s ∈ N, we further know that
κ−Λ↓

v(t̄ ) ≤ κ(1− s) ≤ 0. Hence, Rv(t̄ ) = 0 and the logical clock rate is the
same as the hardware clock rate at time t̄ according to Lemma 8.2. Since
the minimum progress rate of any node is 1 − ε and the progress rate of v
at time t̄ is at most 1 + ε, the clock skew can only increase at the rate 2ε, a
contradiction to the assumption that t̄ is the infimum of all times when the
claim is violated, which concludes the proof.
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We are now in the position to prove the main theorem, which states that
the local skew grows logarithmically with the diameter D of the graph.

Theorem 8.9. The local skew when executing algorithm Aopt on any graph
G of diameter D is upper bounded by

κ

„‰
logσ

2G
κ

ı
+

1

2

«
.

Proof. Let G′ ≥ G be the number for which logσ
2G′
κ

=
˚
logσ

2G
κ

ˇ
. It is

convenient to assume, without loss of generality, that G′ is the bound on the
global skew because in this case Cs ∈ N for all s ∈ {0, . . . , smax}, where

smax := logσ
2G′
κ

.

By definition, a skew of more than d(v, w)
`
smax + 1

2

´
κ between the

clocks of any two nodes v and w at distance d(v, w) ≥ Csmax cannot oc-
cur as long as the network is in a legal state. Since Csmax = 1, the claimed
bound on the worst-case skew between neighboring nodes can only be vio-
lated if the network is not in a legal state. Thus, if the network is always in
a legal state, the theorem follows immediately.

Assume for the sake of contradiction that t̄ is the infimum of all times
when the network is not in a legal state. As argued before, the legal state
condition cannot be violated for s = 0 as a violation implies that the clock
skew between two nodes exceeds G′ ≥ G, a contradiction to Corollary 8.3.
Hence, two nodes v and w at distance d(v, w) ≥ Cs for some s ∈ {1, . . . , smax}
exist such that

Lv(t̄ )− Lw(t̄ ) = d(v, w)

„
s +

1

2

«
κ. (8.21)

Define t0 := t̄− κCs−1
(1−ε)µ

− T . Since κCs ≥ κ > (1− ε)µT , it holds that

t̄− t0 <
(σ + 1)

(1− ε)µ
κCs. (8.22)

If Ψs
w = 0 at some point in time in the interval [t0, t̄ ], choose the largest

t ∈ [t0, t̄ ] such that Ψs
w(t) = 0. Note that t < t̄ because at time t̄ we have

that

Ψs
w(t̄ ) ≥ Lv(t̄ )− Lw(t̄ )− sκd(v, w)

(8.21)
=

κ

2
d(v, w)

d(v,w)≥Cs

≥ κ

2
Cs > 0. (8.23)
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In this case, by applying Lemma 8.8, we get that

κ

2
Cs

(8.23)

≤ Ψs
w(t̄ )

(8.16)

≤ 2ε(t̄− t)− Iw(t, t̄ ) +
κ

7σ
(8.4)

≤ 2ε(t̄− t0) +
κ

7σ
Cs

(8.22)
< 2ε

σ + 1

(1− ε)µ
κCs +

κ

7σ
Cs.

This inequality implies that 2ε σ+1
(1−ε)µ

κCs > ( 1
2
− 1

7σ
)κCs and thus

µ <
28εσ(σ + 1)

(1− ε)(7σ − 2)

σ≥2

≤ 7σ
ε

1− ε
,

a contradiction to Condition (8.1).
Hence, it must hold that Ψs

w(t) > 0 for all t ∈ [t0, t̄ ]. Another application
of Lemma 8.8 yields that

κ

2
Cs −Ψs

w(t0)
(8.23)

≤ Ψs
w(t̄ )−Ψs

w(t0)

(8.16)

≤ 2ε(t̄− t0)− Iw(t0, t̄ ) +
κ

7σ
(8.22)
< 2ε

σ + 1

(1− ε)µ
κCs − Iw(t0, t̄ ) +

κ

7σ
.

By rearranging the terms we get that

Ψs
w(t0) >

κ

2
Cs − 2ε

σ + 1

(1− ε)µ
κCs + Iw(t0, t̄ )− κ

7σ
. (8.24)

Since t0 = t̄ − κCs−1
(1−ε)µ

− T , Lemma 8.6 can be used to lower bound

Iw(t0, t̄ ). As Iw(t0, t̄ ) ≥ ξ if there is any node u such that Lu(t0)−Lw(t0) =
d(u, w)

`
s− 1

2

´
κ + ξ, we have that

Iw(t0, t̄ )
(8.8)

≥ max
u∈V


Lu(t0)− Lw(t0)−

„
s− 1

2

«
κd(u, w)

ff
≥ Ψs

w(t0)

(8.24)
>

κ

2
Cs − 2ε

σ + 1

(1− ε)µ
κCs + Iw(t0, t̄ )− κ

7σ

≥
„

1

2
− 1

7σ

«
κCs − 2ε

σ + 1

(1− ε)µ
κCs + Iw(t0, t̄ ).

This result again implies that 2ε σ+1
(1−ε)µ

κCs > ( 1
2
− 1

7σ
)κCs, which leads to

the contradiction that µ < 7σ ε
1−ε

. Thus, the network can never leave the
legal state, which proves the claimed bound on the local skew.
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Note that this theorem also holds if each node v increases its logical
clock value by the value Rv computed in the subroutine setClockRate at
once instead of raising the logical clock rate: Theorem 8.9 is proved using
Lemma 8.6 and Lemma 8.8. Clearly, increasing the clock values instantly is
a more aggressive strategy and it is easy to see that Lemma 8.6 still holds. In
Lemma 8.8, we found that Rv = 0 if the clock skew between two nodes v and
w is sufficiently large, which implies that v increases its logical clock value
at the hardware clock rate in this situation even if the nodes are allowed to
increase the clock values instantaneously.

Since the base of the logarithm σ is the largest integer such that Inequal-
ity (8.1) holds (for a given µ ≥ 14ε/(1 − ε)), it follows that σ ∈ Θ(µ/ε).
Thus, choosing κ ∈ Θ((1 + µ)T + µH0) results in a local skew of

O
“
((1 + µ) T + µH0) logµ/ε D

”
.

When choosing µ ∈ Θ(ε̂) = Θ(ε) and H0 ∈ O(T /µ) = O(T /ε), the
local skew is upper bounded by O(T log D). Note that choosing µ ∈ Θ(ε)
entails that the maximum logical clock rate β is upper bounded by 1+O(ε).
Moreover, if the logical clock rate is allowed to be larger than the hardware
clock rate by a constant factor, i.e., µ ∈ Θ(1), and we choose H0 ∈ O(T ),
the bound on the local skew reduces to O(T log1/ε D).

8.2.2 Message Frequency & Maximum Message Size

An essential optimization criterion is the frequency of communication that
is required to sustain a certain degree of synchronization. As the virtual
clock Lmax increases at most at the rate 1 + ε, it holds at any time t that
Lmax(t) ≤ (1 + ε)t. Recall that ∆ = maxv∈V δ(v) denotes the largest node
degree in the network as defined in Section 1.3. A message is only sent
whenever the estimate of the largest clock value in the network reaches the
next multiple of H0, which implies that no node sends more than„

1 +

—
(1 + ε)t

H0

�«
∆

messages up to time t.3 Furthermore, any node sends messages at the latest
after its hardware clock advanced by H0 since the last send event. These
observations imply that the amortized message frequency, i.e., the average
number of messages sent per time unit, is bounded by Θ(∆/H0) when al-
gorithm Aopt is used. The bound on the local skew states that choosing
H0 ∈ Θ(T /µ) still results in a local skew of O(T logµ/ε D), i.e., the bound
on the worst-case clock skew between neighboring nodes increases merely by
a constant factor if the average time between send events is Θ(T /µ). Since

3The additional 1 is due to the fact that all nodes send messages at time t = 0.
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it is possible to choose µ ∈ Θ(ε), we can get an amortized message frequency
of Θ(ε∆/T ). As far as the global skew is concerned, choosing H0 ∈ Θ(T /ε)
results in worst-case clock skew of (1 + ε)DT + O(T ), which does not con-
stitute a substantial increase if the diameter D is (sufficiently) large. Thus,
assuming that ε � T , the amortized message frequency can be quite low
without increasing the asymptotic bounds on both the global and the local
skew.

However, a node v may receive up to O(G/H0) messages, all containing a
larger estimate of the maximum clock value, in an arbitrarily small period of
time. Each of these messages causes v to send messages to all its neighbors,
which means that the algorithm does not guarantee a strong upper bound
on the message frequency. Note that the estimates of the maximum clock
value are distributed quickly in this scenario, which implies that the clock
skews may be reduced at a higher rate. For this reason, one might argue
that this behavior is in fact desirable. Nevertheless, it may be required that
the message frequency is bounded at all times, which can be achieved by
forcing nodes to wait for Θ(H0) time until they send the next set of messages.
This modification ensures that the message frequency is upper bounded by
O(∆/H0). Obviously, the clock skews may increase during this idle time, and
this additional clock skew must be compensated for by adding another term in
the order of Θ(µH0) to κ. The drawback of this straightforward modification
of algorithm Aopt is that the time it takes to propagate information through
the whole network increases by O(D H0), which entails that the upper bound
on the global skew deteriorates to (1 + ε)DT +O(εD H0) because all nodes
locally increase their estimates of the maximum clock value at their hardware
clock rate. Thus, this modified algorithm provides a trade-off between the
minimum message frequency and the upper bound on the global skew that
depends on the duration of the forced idle time.

In order to bound the maximum message size, the nodes cannot exchange
the (technically unbounded) clock values themselves. Instead, nodes can
communicate the progress of their clocks since they last sent a message. Since
the progress may be an arbitrary real number in the range [H0, (1 + µ)H0],
it cannot be encoded using a bounded number of bits. However, if µ ∈ O(1),
the integer part of the progress can be encoded using O(log H0) bits, and
the error is at most εc, for a constant c ∈ N, if dc log(1/ε)e bits are used
to encode the fractional part of the progress. This error is negligible, as
the sent clock values may in fact be the real clock values in an execution
with slightly different clock rates. As far as the estimate Lmax

v of any node
v is concerned, the increase may be Θ(G), which requires O(log(T D)) bits.
This dependency on the diameter can be avoided by limiting the maximum
increase that v informs its neighbors about in a single message to O(H0).
Since the messages contain estimates of the maximum clock value that are
multiples of H0, these estimates can be encoded using O(1) bits. If the
estimate is larger than the sent value, v stores the difference and informs
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its neighbors about the remaining increase, which is still a multiple of H0,
in its subsequent messages. The intuition behind this strategy is that if v
receives an estimate of the maximum clock value that is much larger than its
own, then the estimates must have propagated quickly. In the scenario where
all messages are as slow as possible, this situation would not occur. Thus,
the estimates of the maximum clock value in the network that the nodes
with the smallest clock values receive are sufficiently large and Theorem 8.3
still holds. We conclude that algorithm Aopt can be implemented in such
a way that the maximum message size is bounded by O(log(H0/ε)). Thus,
assuming again that ε � T , the foregoing discussion reveals that H0 can
be set to a sufficiently large value such that a small number of bits need to
be sent in constant time for any practical maximum degree ∆. Naturally,
if all messages must contain globally unique node identifiers, each message
requires O(log n) additional bits.

8.2.3 Alternative Models

It is important to understand to what extent the described techniques are
applicable to other clock synchronization models. The applicability of Aopt

to other models that differ from our model in various ways are now briefly
discussed.

Throughout this part of the thesis, we assumed that estimates ε̂ and T̂ ,
where ε ≤ ε̂ ∈ O(ε) and T ≤ T̂ ∈ O(T ), are known to all nodes. Both
algorithm Ablock and Aopt require these estimates in order to set κ to an ap-
propriate value. Additionally, Aopt needs ε̂ to determine (a lower bound on)
µ. As long as the nodes know an upper bound ε̂ < 1 on the clock drift rate,
κ and µ can be set to values that are large enough to ensure that both The-
orem 8.3 and Theorem 8.9 hold. However, if ε̂ may be arbitrarily larger than
ε, we can no longer guarantee that the maximum logical clock rate is upper
bounded by 1 +O(ε).4 We will now briefly illustrate how the maximum de-
lay T can be estimated dynamically while a clock synchronization algorithm
is running. If all nodes acknowledge the reception of messages, the nodes
can simply keep track of the longest round-trip time ever measured using
their own hardware clock. The estimate T̂ of the maximum (one-way) delay
is then determined by multiplying this round-trip time by 1/(1 − ε̂), which
ensures that the computed value is at least the round-trip time measured in
real time because the hardware clock rate is lower bounded by 1− ε ≥ 1− ε̂.
Whenever a node sets its estimate to a larger value, the new value is flooded
through the network in order to ensure that all nodes (eventually) work with
the same estimate. A node that receives an estimate that is larger than its
current estimate sets T̂ to the received value and re-computes its parameters.
In order to bound the number of updates, T̂ can be rounded up to the next

4It is unlikely that this is a major issue in practice as the (maximum) clock drift of
the used hardware clocks can be measured fairly accurately.
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power of two. Thus, for any constant initial guess, there are at most log T
updates in the network.

For some distributed systems it is more adequate to define that each
message is delayed by a value in the range [T0, T0+T ], i.e., apart from a jitter
of at most T , the delay of each message is T0 � T . We can assume that the
basic delay T0 is known. It is not hard to see that the lower bounds on both
the global and the local skew still hold in this model; the only difference is
that the parameter T in the skew bounds now denotes the maximum jitter
(and no longer the maximum delay). The algorithm has to be modified
slightly in that the basic delay T0 must be added to each received clock
value, including the estimate of the maximum clock value in the network.
Due to the fact that it may take D(T0 + T ) � DT time to distribute a new
estimate of the maximum clock value to all nodes, the upper bound on the
global skew increases by an additive term in the order of O(εDT0). Thus,
the global skew is still upper bounded by O(DT ) subject to the condition
that T0 ∈ O(T /ε). As far as the local skew is concerned, Lemma 8.6 has
to be adapted because Ξ(·) now reduces merely at an amortized rate of
Ω(min{µ, T /T0}), which implies that choosing µ ∈ ω(T /T0) does not improve
the bound on the local skew anymore. However, if T ∈ Ω(εcT0) for a constant
c ∈ (0, 1), choosing µ ∈ Θ(εc) and adapting κ accordingly still results in an
asymptotically optimal local skew of O(T log1/ε D). In summary, the skew
bounds depend on the unknown part of the message delay in this model, and
we get the same asymptotic bounds on the worst-case clock skews as long as
the maximum delay is not substantially larger than the maximum jitter.

We further assumed for the sake of simplicity that all nodes start their
clocks synchronously at time t = 0, which is not a realistic assumption be-
cause all communication in our model is asynchronous and there is no cen-
tralized authority to activate the clocks. However, this assumption is not
critical for the following reason. If a single node v activates its clocks and
then floods an activation message through the network, the time that passes
until the last node activates its clock is bounded by DT . During this time,
v can only build up a skew of at most (1 + ε)DT , which is less than the
proven bound G on the global skew in case of a synchronous start. After-
wards, the clock skew can only grow further at a rate of 2ε and the nodes
with the smallest clock values continually receive messages containing larger
clock values, which suggests that the clock skew cannot become much larger
than (1 + ε)DT . In fact, it can be shown the same bound G on the global
skew holds even if the nodes cannot activate their clocks simultaneously [35].
Intuitively, the bound on the local skew also remains the same because it
takes at least Ω((T log D)/µ) time to build up a clock skew of Ω(T log D)
between two nodes v and w, and at least all clocks of nodes up to a distance
of Ω((log D)/µ) from either v or w have been activated in the meantime.
Hence, no node in v’s or w’s vicinity can be blocked because a neighbor has
not yet activated its clock.
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Since computational devices typically synchronize their operations inter-
nally based on a clock pulse, an alternative model is to assume that nodes
may only act at such clock pulses. In particular, the clock values can only be
increased by discrete values at each clock pulse and the clock value remains
unchanged until the next clock pulse. Not surprisingly, the constant idle
time between clock pulses causes only a small increase in the bounds on the
worst-case clock skews, i.e., the same asymptotic results hold in this model
as well [35].

As mentioned in Section 6.2, there is a lot of work on external clock
synchronization algorithms, where a source of real time is available and the
objective is to synchronize all clocks to this source. Let node v0 be this
source of real time, i.e., Hv0(t) = Lv0(t) = t. A simple trick allows us to use
algorithm Aopt to synchronize the clocks in this model as well. The computed
logical clock rate is always multiplied by 1/(1 + ε̂), and the local variables
are also increased at the hardware clock rate multiplied by 1/(1 + ε̂), where
ε̂ ≥ ε again denotes the estimate of ε. This rate reduction ensures that all
nodes have a clock rate that is upper bounded by 1, and thus all nodes always
strive to catch up to v0, similarly to how every node v tries to increase its
clock value to Lmax

v in the internal clock synchronization model. The main
difference is that the minimum logical clock rate is (1−ε)/(1+ ε̂) ∈ 1−O(ε),
which can easily be accounted for when determining µ and κ. Thus, the
algorithm still guarantees basically the same clock skew bounds with slightly
increased parameters µ and κ. Note that a variant of the linear envelope
condition (Condition (6.2)) holds, which states that for all nodes v and all
times t we have that (1 − O(ε))t ≤ Lv(t) ≤ t. Of course, the logical clock
values also do not deviate from real time by more than the global skew at
any point in time.

A similar technique is applicable if the linear envelope condition is re-
placed by the more stringent condition that

∀v ∈ V ∀t : min
w∈V

{Hw(t)} ≤ Lv(t) ≤ max
w∈V

{Hw(t)},

i.e., all logical clock values must always be at least as large as the smallest
hardware clock value and at most as large as the largest hardware clock value
in the network. Obviously, it also holds that (1− ε)t ≤ Lv(t) ≤ (1 + ε)t for
all v ∈ V at all times t if this condition is satisfied because the hardware
clock rates are always in the range [1 − ε, 1 + ε]. In this case, each node v
stores and sends an estimate of the maximum hardware clock value Hmax

v

instead of Lmax
v . In order to guarantee that the estimate Hmax

v does not
exceed the largest hardware clock value in the network, it is only increased
at the rate 1−ε̂

1+ε̂
hv whenever Hmax

v (t) > Hv(t). Moreover, at any time t
when Lv(t) = Hmax

v (t), the logical clock rate is the same as the rate of
progress of Hmax

v , which ensures that the logical clock value is always at
most Hmax

v . Hence, the logical clock values are always upper bounded by
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the largest hardware clock value in the network. As each node increases
its logical clock at the normal rate when Lv(t) = Hv(t), we also have that
Lv(t) ≥ minw∈V {Hw(t)}. The minimum and the maximum logical clock
rates are α = 1−ε̂

1+ε̂
(1− ε) ∈ 1−O(ε) and β = (1 + ε) 1−ε̂

1+ε̂
(1 + µ) < 1 + µ. The

parameters µ and κ can again be adapted for these progress rates, and the
bounds on the clock skews remain basically unaltered.

Finally, we briefly discuss how the algorithm can be adapted in order to
cope with node or edge failures. Since the algorithm cannot distinguish be-
tween node and edge failures, it suffices to consider edge failures. We assume
for the sake of simplicity that a failed edge does not reappear. The proposed
strategy relies on the observation that the algorithm can dynamically deter-
mine an estimate T̂ ∈ O(T ) of the maximum delay. Every node v stores
the times when it last received a message from each of its neighbors. It is
possible that a message from a neighbor w ∈ Nv is “overdue” according to v’s
hardware clock, i.e., more than (1+ ε̂)(T̂ +H0/(1− ε̂)) time has passed since
v received a message from w. This situation can occur for one of two reasons,
either w crashed or the delay is larger than estimated. In both cases, v (tem-
porarily) removes w from its set of neighbors and adjusts its logical clock rate
if necessary. If v receives the next message from w at a later point in time,
w is added to the set Nv again, T̂ and κ are updated, and the logical clock
rate is reevaluated. Subsequently, the new estimate of the maximum delay
is forwarded to all neighbors. The exclusion of w may mistakenly cause v to
increase its logical clock rate because w was the only neighbor that prevented
v from setting its logical clock rate multiplier to 1+µ. However, if v considers
the edge {v, w} to have failed for ∆T time, it increases its logical clock value
by at most ∆L = (1 + ε)(1 + µ)∆T − (1− ε)∆T = 2ε∆T + (1 + ε)µ∆T more
than the minimum progress in this time interval, i.e., the clock skew to any
neighbor grows by at most ∆L. The bound on the local skew relies on the
fact that the average clock skew of a path of a given length can only be a
specific multiple of κ. Consider any path containing v with a certain average
clock skew Λ ≥ κ. Since κ = 2((1+µ)T + H̄0), the new estimate of T causes
κ to increase by ∆κ = 2(1+µ)∆T > (2ε+(1+ε)µ)∆T = ∆L, which implies
that

Λ + ∆L

κ + ∆κ
<

Λ

κ
.

Thus, the average clock skew is at most the same multiple of κ with
respect to the new value of κ. The same argument holds if v no longer in-
creases its logical clock at the rate 1 + µ because the node u that maximizes
Λ↑

v does not respond within the expected amount of time. We conclude that
temporarily excluding nodes from the set of neighbors because they do not
respond in time does not have an impact on the clock skew bounds with
respect to the increased κ, and thus algorithm Aopt can also be used in an
environment where edges (or nodes) fail. Apparently, this simple strategy
cannot cope with temporary failures since a long-term malfunction of a com-
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munication link would cause the nodes to set T̂ to an exceedingly large value.
This problem can be tackled if the nodes have some means to detect that
they, or the links between them, must have been inoperative so that their re-
currence does not cause the nodes to increase their estimate of the maximum
delay.

In conclusion, we see that the proposed synchronization techniques are
also useful for a wide range of other models as basically the same bounds on
the clock skews are guaranteed. It remains to show that these bounds are
asymptotically optimal, i.e., there is no algorithm that achieves an asymp-
totically better bound on either the global or the local skew.





Chapter 9

Lower Bounds

THE lower bounds on both the global and the local skew are proved using
indistinguishability type arguments. Concretely, we construct indistinguish-
able executions for any given synchronization algorithmA and any graph G in
such a way that at least one of the executions causes large clock skews. Given
two executions E and Ē of an algorithm A on a graph G, let HE

v (t) and H Ē
v (t)

denote the hardware clock values of v at time t in E and Ē , respectively. The
respective logical clock values are denoted by LE

v (t) and LĒ
v (t). The following

definition formalizes the concept of indistinguishable executions.

Definition 9.1 (Indistinguishability of Executions). We call E and Ē indis-
tinguishable at node v until hardware clock time H, if v observes the same
message pattern with respect to its local time Hv in both E and Ē until its
hardware clock reaches H. More precisely, if v receives a message at a time
tr when HE

v (tr) ≤ H in E, it receives an identical message in Ē at the time t̄r

when H Ē
v (t̄r) = HE

v (tr), and vice versa. Note that in this situation v behaves

the same way in E and Ē until local time H, i.e., if HE
v (t) = H Ē

v (t̄ ) ≤ H, it

follows that LE
v (t) = LĒ

v (t̄ ) and v sends the same set of messages at times t
and t̄ in E and Ē, respectively.

Throughout this chapter, the construction of indistinguishable executions
E and Ē is based on a simple principle called shifting where both the clock
rates and the message delays are “shifted” in such a way that all events occur
at the same local times in E and Ē [37]. If it is clear from the context, we
may omit the specification of the execution in the notation and write, e.g.,
Hv(t) instead of HE

v (t).

9.1 Global Skew

In the previous chapter, we assumed that an algorithm only possesses esti-
mates of ε and T . If the estimates are inaccurate, κ is set to a value that
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is larger than necessary, which has a negative impact on the bound on the
local skew. The following theorem gives a lower bound on the global skew
that depends on the accuracy of both ε and T .

Theorem 9.2. Assume that a clock synchronization algorithm A is equipped
with initial parameters ε̂ ∈ (0, 1), and T̂ ∈ R+ such that c1T̂ ≤ T ≤ T̂
and c2ε̂ ≤ ε ≤ ε̂ for certain values c1, c2 ∈ (0, 1]. Define that % :=
min {ε, (1− c2ε̂)/c1 − 1} ∈ [−ε, ε]. If algorithm A is bound to satisfy Condi-
tion (6.2), it cannot avoid a global skew of at least

(1 + %)DT

on any graph G of diameter D.

Proof. For the sake of simplicity, we formally allow relative clock drifts of
ε + δε, where δε is infinitesimally small.1

Let v0, vD ∈ V be any two nodes at distance D. Furthermore, define that
T := c1T̂ , ε′ := c2ε̂, and T ′ := 1+%

1−ε′ T . Since % ≥ −ε′, we have that

c1T̂ = T ≤ T ′ ≤ T̂
c2ε̂ = ε′ ≤ ε ≤ ε̂.

Thus, it is possible that T ′ is the real maximum delay and ε′ is the real
maximum clock drift because both values lie in the legal range according to
the definition of c1 and c2. Assume that the maximum delay is in fact T ′

and the maximum clock drift is ε′. Consider the following two executions:

E1 : The hardware clock rates of all clocks are 1 − ε′ at all times. The
message delays are always T ′ from any node v ∈ V to any node w ∈ Nv

if d(v0, w) = d(v0, v)− 1, and 0 otherwise.

E2 : The hardware clock rates of all clocks are 1 + ε′ at all times. The
message delays are (1−ε′)

1+ε′ T
′ from node v ∈ V to node w ∈ Nv if

d(v0, w) = d(v0, v)− 1, and 0 otherwise.

Execution E1 and E2 are obviously legal executions as both the message
delays and the clock drifts are within the legal bounds. Furthermore, E1

and E2 are indistinguishable: In execution E1, if a node v sends a message
to w at local time Hv, w receives this message at a time t when Hw(t) =
Hv + (1 − ε′)T ′ if d(v0, w) = d(v0, v) − 1 and Hw(t) = Hv otherwise. Since
the clock rates are faster by a factor of (1 + ε′)/(1 − ε′) and the message
delay of any message that is sent to a node that is closer to v0 is reduced by
the same factor, the nodes receive and send the same messages at the same
hardware clock times in execution E2.

1The same result could be obtained, e.g., by replacing ε by ε−δε and proving a bound
of (1 + %−O(δε))DT .
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No node v can increase its logical clock at a rate lower than its hardware
clock rate, as otherwise it violates the linear envelope condition in execution
E1. Likewise, v cannot increase its logical clock faster than its hardware clock
because Condition (6.2) would be violated in execution E2. Thus, in both
executions it must hold that Lv(t) = Hv(t) at all times t.

Assume now that T and ε are the correct upper bounds on the maximum
delay and the maximum clock drift, respectively. Consider the following
execution:

E3 : The hardware clock rate of v ∈ V is 1+%+ D−d(v0,v)
D

δε, where 0 < δε �
|%| is infinitesimally small. At time t0 := (1+%)DT

δε
all hardware clock

rates are switched to 1 + %. If a node v sends a message at hardware
clock time Hv, the message delay is adjusted in such a way that it is
received at time t when Hw(t) = Hv+(1−ε′)T ′ if d(v0, w) = d(v0, v)−1
and Hw(t) = Hv otherwise.

Note that execution E1 and E3, and hence also E2 and E3, are indis-
tinguishable at each node v ∈ V by construction. It remains to verify
that E3 is a legal execution. Since % ∈ [−ε, ε] and a clock drift of ε + δε
is allowed, the clock drifts of all clocks are in the legal range. As far
as the message delays are concerned, we have at all times t ≤ t0 that
Hw(t)−Hv(t) = δε

D
t ∈ [0, (1+%)T ] = [0, (1− ε′)T ′] if d(v0, w) = d(v0, v)−1.

First, consider a message sent from v to w. If Hw(t) − Hv(t) = (1 − ε′)T ′,
then the message delay is set to zero, which ensures that w “sees” exactly
a difference of (1 − ε′)T ′. If Hw(t) − Hv(t) = 0, the message must be de-
layed. However, since the hardware clock rate of each node is at least 1 + %,

it takes at most (1−ε′)T ′

1+%
= T time for w to reach the hardware clock value

Hv + (1 − ε′)T ′. Thus in case of d(v0, w) = d(v0, v) − 1 the message delays
are always in the range [0, T ]. If w sends a message to v, the same argu-
ments apply, but in this case we need that the message delay is set to zero if

Hw(t)−Hv(t) = 0 and at most (1−ε′)T ′

1+%
= T if Hw(t)−Hv(t) = (1− ε′)T ′.

Note that if d(v0, w) = d(v0, v), then Hv(t) = Hw(t) as in the other two
executions, and the message delay remains zero. Finally, the message de-
lays remain in the range [0, T ] at any time t > t0, because all clocks run at
the same rate, i.e., the differences between the hardware clock values do not
change.

Since the nodes cannot distinguish between any of the three executions,
it follows that Lv(t) = Hv(t) for all nodes v ∈ V at all times t also in E3.
The skew between the clocks Lv0 and LvD in execution E3 at any time t ≥ t0
is

t0
d(v0, vD)− d(vD, vD)

D
δε = (1 + %)DT ,

which proves the stated lower bound on the global skew of any algorithm A
that satisfies Condition (6.2).
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Note that also a randomized algorithm must increase the logical and the
hardware clock at the same rate in these executions, implying that random-
ization does not help to reduce the global skew.

We can conclude from this theorem that the estimates of T and ε must
be extremely accurate in order guarantee a better bound than (1 + ε)DT .
However, even if the exact values are known, a global skew of (1 − ε)DT
cannot be prevented subject to the condition that the logical clock values
must be within a linear envelope of real time.

Corollary 9.3. Consider clock synchronization algorithms that satisfy Con-
dition (6.2). No such algorithm without knowledge of a lower bound on ε can
avoid a global skew of DT . Furthermore, no such algorithm without knowl-

edge of bounds on T stronger than T ∈
h

1−ε
1+ε

T̂ , T̂
i

can achieve a better bound

on the global skew than (1 + ε)DT .

This corollary implies that any algorithm in the family A, and in particu-
lar Aopt, is essentially optimal as far as the global skew is concerned. What is
more, it can be shown that a global skew of DT /2 cannot be prevented even if
the restriction that the algorithm must satisfy Condition (6.2) is dropped [8].
Thus, the bound on the global skew of Aopt is roughly a factor of two worse
than the bound on the global skew of any algorithm whose behavior is not
constrained by any additional conditions.

9.2 Local Skew

The proof of the lower bound on the local skew also exploits that specific
executions cannot be distinguished. The following lemma, which is a simple
variant of the lemma presented in the original work that introduced the
problem of bounding the clock skews between neighboring nodes [18], states
that for a specific execution E there is an indistinguishable execution Ē such
that the skew between two nodes v and w is larger in Ē than in E at some
point in time.

Lemma 9.4. Consider any clock synchronization algorithm A executed on
any graph G = (V, E) and two nodes v and w. If the hardware clock rates
of all nodes are always 1 and the message delays are T /2 in an execution E
that starts at a time t0 and ends at time tE := t0 + 1+ε/2

ε
d(v, w)T , there is

an execution Ē that starts at time t0 and ends at time tĒ := t0 + 1
ε
d(v, w)T

such that LE
v (tE) = LĒ

v (tĒ) and LE
w(tĒ) = LĒ

w(tĒ).

Proof. Execution Ē is defined as follows. The hardware clock rate of any
node u at all times t ∈ [t0, tĒ ] is given by:

hu = hu(t) :=

(
1 + ε

2

“
1− d(v,u)

d(v,w)

”
if d(v, u) ≤ d(v, w)

1 else
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All message delays are adjusted in such a way that for each send or
receive event of any node u at a time t in execution E the same event occurs
in execution Ē at the time t̄ ≤ tĒ for which it holds that HE

u (t) = H Ē
u (t̄ ),

i.e., execution E and Ē are indistinguishable at any node u until its hardware
clock value reaches H Ē

u (tĒ) by construction. Since the hardware clock rate
of v is 1 + ε/2 and Ē is a factor of 1 + ε/2 shorter than E , node v reaches
the same hardware clock value at the end of both executions, i.e., HE

v (tE) =

H Ē
v (tĒ). Moreover, w’s hardware clock always runs at the rate 1 in both

executions, which implies that HE
v (tĒ) = H Ē

v (tĒ). Given that the executions

are indistinguishable, it follows that LE
v (tE) = LĒ

v (tĒ) and LE
v (tĒ) = LĒ

v (tĒ)
as desired.

It has to be verified that Ē is in fact a valid execution in the sense that all
clock rates and message delays are within the legal bounds. The clock rates
lie in the interval [1, 1 + ε/2] ⊂ [1− ε, 1 + ε] and are thus in the legal range.
As far as the message delays are concerned, consider any message sent from
a node us at time ts that node ur received at time tr = ts +T /2 in execution
E . For the corresponding send and receive events at times t̄s and t̄r ≤ tĒ in
execution Ē it holds that

ts − t0 = hus · (t̄s − t0)

tr − t0 = hur · (t̄r − t0).

The message delay in execution Ē is

t̄r − t̄s = (t̄r − t0)− (t̄s − t0)

=
tr − t0

hur

− ts − t0
hus

=
hus(tr − t0)− hur (ts − t0)

hushur

=
hus(tr − t0)− hur (tr − T /2− t0)

hushur

=
T

2hus

+
(hus − hur )(t̄r − t0)

hus

. (9.1)

If either d(v, us) = d(v, ur) or both the distance from us to v and the
distance from ur to v are at least d(v, w), the hardware clocks rates of us

and ur are equal, i.e., hus = hur . In this case, the message delay t̄r − t̄s in
Ē is T /(2hus) ∈ (T /(2(1 + ε/2)), T /2] ⊂ [0, T ].

If us is closer to v and d(v, us) < d(v, w), it holds that hus − hur =
ε/(2d(v, w)).
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Figure 9.1: In Figure (a), we have that d(v, us) < d(v, ur) < d(v, w), which
implies that hus > hur > 1. Since hus > hur , the message delay increases
from T /2 in execution E to almost T towards the end of execution Ē . If
d(v, ur) < d(v, us) < d(v, w), the message delay reduces to close to zero, as
depicted in Figure (b). Note that the message delay can only be exactly zero
in execution Ē if d(v, us) = d(v, w), i.e., hus = 1.

As t̄r ≤ tĒ , we get that

0
(9.1)
< t̄r − t̄s

(9.1)
=

T
2hus

+

ε
2d(v,w)

(t̄r − t0)

hus

≤ T
2hus

+

ε
2d(v,w)

(tĒ − t0)

hus

=
T

2hus

+
T

2hus

< T .

Analogously, if ur is closer to v, we have that hus − hur = −ε/(2d(v, w))
and thus

T
(9.1)
> t̄r − t̄s

(9.1)

≥ T
2hus

−
ε

2d(v,w)
(tĒ − t0)

hus

=
T

2hus

− T
2hus

= 0.

Figure 9.1 illustrates how d(v, us) and d(v, ur) affect the message delays in
execution Ē if d(v, us) < d(v, w), d(v, ur) < d(v, w), and d(v, us) 6= d(v, ur).
Since the message delays are always in the legal range [0, T ], Ē is a legal
execution, which concludes the proof.

The concept of an extended execution will be useful in the proof of the
theorem.

Definition 9.5 (Extended Executions). Given an execution E running from
time t1 to t2, E can be extended by specifying hardware clock rates and mes-
sage delays in a time interval [t2, t3]. We will refer to this extension as an
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execution E ′ running from time t2 until time t3. Note that E ′ inherits the
state of the system at time t2, i.e., the state of all nodes and any pending
messages sent in E that did not reach their destination until time t2.

The theorem states that, for any algorithm A executed on any graph G,
the local skew is lower bounded by Ω (T logb D) where the base b depends
on α, β, and ε. Recall that α and β denote the minimum and the maximum
logical clock rate, respectively.

Theorem 9.6. Define b :=
l

4(β−α)(1+ε/2)
αε

m
. No clock synchronization algo-

rithm A can prevent a local skew of

blogb Dc+ 2

4
αT ∈ Ω

“
αT

“
1 + log(β−α)/(αε) D

””
on any graph G of diameter D.

Proof. Define D′ := bblogb Dc ≤ D and let tE denote the time when an exe-
cution E ends. We claim that for any k, where 0 ≤ k ≤ logb D′, there are
two nodes vk and wk at distance d(vk, wk) = D′/bk such that the clock skew
between these nodes at the end of an execution Ēk is

LĒk
vk

(tĒk
)− LĒk

wk
(tĒk

) ≥ k + 2

4
αd(vk, wk)T . (9.2)

Consider any two nodes v0 and w0 at distance d(v0, w0) = D′. The

execution E0 starts at time 0 and ends at time tE0 := 1+ε/2
ε

D′T . All messages
delays are T /2 and the hardware clock rates are 1. Without loss of generality,
assume that LE0

v0 (tE0) ≥ LE0
w0(tE0). According to Lemma 9.4, there is an

execution Ē0 that ends at time tĒ0 = 1
ε
d(v0, w0)T for which it holds that

LE0
v0 (tE0) = LĒ0

v0 (tĒ0) and LE
w0(tĒ0) = LĒ0

w0(tĒ0). Since the minimum clock

rate is α, we have that LE0
w0(tE0)− LE0

w0(tĒ0) ≥
α
2
d(v0, w0)T . The clock skew

between v0 and w0 at the end of execution Ē0 is thus at least

LĒ0
v0 (tĒ0)− LĒ0

w0(tĒ0) = LE0
v0 (tE0)− LE0

w0(tĒ0)

≥ LE0
v0 (tE0)− LE0

w0(tE0) +
α

2
d(v0, w0)T

≥ α

2
d(v0, w0)T ,

which proves the claim for k = 0.
Assume that the claim is true for k, where k < logb D′. Given such an

execution Ēk, we extend it by an execution Ek+1 that starts at time tĒk
and

ends at time tEk+1 := tĒk
+ 1+ε/2

ε
D′

bk+1 T . Note that Ek+1 inherits all the
messages that were still in transit at the end of execution Ēk. We simply
define that all these messages arrive when execution Ek+1 starts, i.e., at time
tĒk

. The hardware clock rate of each node is 1 and the message delays are
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always T /2 in execution Ek+1. The clock skew at time tEk+1 between the
nodes vk and wk for which Inequality (9.2) holds at time tĒk

is at least

LEk+1

vk
(tEk+1)− LEk+1

wk
(tEk+1) ≥ (LĒk

vk
(tĒk

) + α(tEk+1 − tĒk
))

−(LĒk
wk

(tĒk
) + β(tEk+1 − tĒk

))

(9.2)

≥ k + 2

4
αd(vk, wk)T

−(β − α)
1 + ε/2

ε

D′

bk+1
T

=
k + 2

4
αd(vk, wk)T

−(β − α)
1 + ε/2

ε

d(vk, wk)

b
T

≥ k + 1

4
αd(vk, wk)T .

Consequently, there must be two nodes vk+1 and wk+1 at distance
d(vk+1, wk+1) = d(vk, wk)/b = D′/bk+1 for which it holds that

LEk+1

vk+1 (tEk+1)− LEk+1

wk+1(tEk+1) ≥
k + 1

4
αd(vk+1, wk+1)T . (9.3)

We can apply Lemma 9.4 again for execution Ek+1 and get an execution

Ēk+1 of duration 1
ε
d(vk+1, wk+1)T for which it holds that LEk+1

vk+1 (tEk+1) =

LĒk+1

vk+1 (tĒk+1) and LEk+1

wk+1(tĒk+1) = LĒk+1

wk+1(tĒk+1). Let Ēk+1 be the execution

Ēk extended by Ēk+1. Since it holds that LEk+1

wk+1(tEk+1) − LEk+1

wk+1(tĒk+1
) ≥

α
2
d(vk+1, wk+1)T , the clock skew at time tĒk+1

= tĒk+1 between vk+1 and

wk+1 in execution Ēk+1 is

L
Ēk+1
vk+1 (tĒk+1

)− L
Ēk+1
wk+1(tĒk+1

) = LEk+1

vk+1 (tEk+1)− LEk+1

wk+1(tĒk+1
)

≥ LEk+1

vk+1 (tEk+1)− LEk+1

wk+1(tEk+1)

+
α

2
d(vk+1, wk+1)T

(9.3)

≥ (k + 1) + 2

4
αd(vk+1, wk+1)T ,

which proves the claim. If k = blogb Dc, the distance between the considered
nodes is 1, i.e., vk and wk are neighboring nodes. The local skew is thus at
least blogb Dc+2

4
αT .

Note that randomization again does not help as we are only concerned
with the existence of executions that cause a large local skew. In other words,
given a randomized algorithm A, an adversary may not be able to construct
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an execution that results in a large clock skew between some neighboring
nodes, but an execution of A on any graph G still exists such that the local
skew reaches blogb Dc+2

4
αT . In that sense, randomized algorithms do not have

an advantage over deterministic algorithms.
It is further important to see that the maximum clock skew among all

neighboring nodes can be Ω(T logb D) for more than a constant period of
time. The proof of Theorem 9.6 reveals that, e.g. for k = 1

2
logb D′, the

average clock skew on a path of length Θ(
√

D) is half the local skew that is
built up between two neighbors until the end of the constructed execution.
Since it takes Θ(

√
DT ) time to increase the clock skew to blogb Dc+2

4
αT ,

the maximum clock skew among all neighboring nodes is Ω(T logb D) for
Θ(
√

DT ) time. More generally, for any constant c < 1, the average clock skew
on some path, and thus also the maximum clock skew among all neighboring
nodes, is Ω( 1

c
logb D) for Θ(D1−cT ) time. Furthermore, it is evident from

the proof that Theorem 9.6 still holds if the nodes are allowed to increase
their logical clock values instantaneously, but the maximum average logical
clock rate over any time interval of length Ω(T /ε) is upper bounded by β.

If we demand that the logical clocks run roughly at the same rates as
the hardware clocks, e.g., α ∈ 1 − O(ε) and β ∈ 1 + O(ε), we get that
b ∈ O(1) and thus a lower bound of Ω(T log D), which matches the upper
bound of algorithm Aopt when µ ∈ Θ(ε) and H0 ∈ O(T /ε). Similarly, if
we allow a logical clock rate that is a constant times larger than real time,
i.e., β ∈ Θ(1), the lower bound reduces to Ω(T log1/ε D). Algorithm Aopt

guarantees an upper bound on the local skew of O(T log1/ε D) when choosing

µ ∈ Θ(1) and H0 ∈ O(T ). In both cases, we see that Aopt is asymptotically
optimal. One might wonder if a better asymptotical bound on the local skew
can be achieved if there is no constraint on the maximum logical clock rate.
Intuitively, an unbounded maximum clock rate cannot help much, because
the clock skew increases more quickly at higher rates [18]. In fact, it can be
shown that the lower bound is still Ω(T log1/ε D) [35], which implies that
there is no benefit if the algorithm is allowed to increase the logical clock
values arbitrarily fast.

Thus, algorithm Aopt guarantees upper bounds on both the global and
the local skew that are asymptotically optimal for any reasonable choice of
parameters. Moreover, the bound on the global skew is basically tight if
Condition (6.2) must be satisfied. These results and the observation that
the same asymptotic bounds hold for several other clock synchronization
models, as discussed in Section 8.2.3, suggest that the techniques used by
algorithm Aopt to bound the (worst-case) clock skews between the nodes of
a distributed system are essentially optimal. This concludes our discussion
of clock synchronization.





Chapter 10

Conclusion

DUE to the broad range of applicability of distributed systems, there is
an unprecedented and growing interest in the complexity of distributed ap-
plications. In this thesis, the complexity of two fundamental problems in
distributed systems, computing aggregate functions and synchronizing clocks
in a distributed manner, have been studied.

In the first part of this thesis, we assumed that a set of elements is scat-
tered arbitrarily among the devices of the distributed system, and the goal
is to compute the result of an aggregate function when applied to this set
of elements. While the results of aggregate functions that are either dis-
tributive or algebraic can be computed efficiently in a distributed manner by
means of a simple convergecast, more sophisticated algorithms are required
for holistic aggregate functions. Therefore, we focused mainly on holistic
functions and gained new insights into the complexity of computing a few
well-known holistic functions distributively. In particular, we proved that
the kth smallest element indeed cannot be computed as efficiently as aggre-
gate functions that are not holistic, even if the algorithm is allowed to use
randomization. On the other hand, we showed that the kth smallest element
can still be found fairly efficiently by providing both a randomized algorithm,
whose time complexity matches the proved lower bound, and a deterministic
k-selection algorithm that achieves a substantially better bound on the time
complexity than the simple algorithm that collects all elements locally. By
contrast, other holistic aggregate functions, such as finding the mode, i.e., the
most frequent element, cannot be computed efficiently by any deterministic
algorithm. What is more, there is no efficient randomized algorithm that
merely computes a constant-factor approximation of the frequency of the
mode. However, these results only hold in a worst-case scenario. We showed
that it is nonetheless possible to compute the mode quickly for distributions
of elements that are common in practice.

In general, one might wonder whether the presented techniques are pri-
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marily of theoretical interest or whether they may actually have a notable
impact on the complexity of computing aggregate functions in real networks
and thus prove to be relevant for practical applications. Apparently, a real
network may impose several additional constraints that must be considered.
In wireless sensor networks, for example, there are various problems such as
interference and transient communication links etc. that need to be handled.
Nevertheless, we hope that some of our results and techniques may eventually
find their way into several application areas, providing aggregation support
for, e.g., streaming databases or multi-core architectures.

In the second part of this thesis, we studied several techniques to bound
the skew between the clocks of the computational devices in a distributed
system. The main result is an algorithm that guarantees that the worst-
case skew between any two clocks is a function that depends linearly on the
maximum message delay and on the diameter of the network. As far as the
devices that share a direct communication channel are concerned, the worst-
case clock skew also depends linearly on the maximum message delay, but
only logarithmically on the network diameter. In light of the lower bounds
on the clock skews presented in Chapter 9, these bounds are asymptotically
optimal. Surprisingly, the algorithm achieves these bounds at a low message
frequency, even if it is not allowed to change the clock rates substantially in
order to compensate for the observed clock skews, i.e., a minute change of
the clock rate at the right time suffices to keep the clock skews essentially as
small as possible.

The practical relevance of these results are twofold. First, we showed that
clock skews can become fairly large if simple strategies, such as averaging
the clock values, are used to synchronize the clocks. These results are not
only of theoretical interest as algorithms based on such strategies will likely
perform poorly in real networks. Second, if the parameters of the proposed
algorithm are set to appropriate values, the algorithm achieves small bounds
on the clock skews also in real networks, i.e., the asymptotic results do not
hide any large constants that would render the algorithm unfit for practical
use. Moreover, we illustrated that the presented techniques can be used for
various other clock synchronization models and under different constraints.
This generality and flexibility further indicates that state-of-the-art clock
synchronization protocols could potentially be improved by applying some of
the techniques introduced in this thesis.
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