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Abstract The brittle fragmentation of spheres is stu-
died numerically by a 3D Discrete Element Model.
Large scale computer simulations are performed with
models that consist of agglomerates of many spheri-
cal particles, interconnected by beam-truss elements.
We focus on a detailed description of the fragmenta-
tion process and study several fragmentation mecha-
nisms involved. The evolution of meridional cracks is
studied in detail. These cracks are found to initiate in
the inside of the specimen with quasi-periodic angu-
lar distribution and give a broad peak in the fragment
mass distribution for large fragments that can be fitted
by a two-parameter Weibull distribution. The results
prove to be independent of the degree of disorder in the
model, but mean fragment sizes scale with velocity.
Our results reproduce many experimental observations
of fragment shapes, impact energy dependence or mass
distribution, and significantly improve the understan-
ding of the fragmentation process for impact fracture
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since we have full access to the failure conditions and
evolution.
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1 Introduction

Fragmentation is ubiquitous in nature and can be found
on all scales. Technologically we make strong use of
fragmentation for example in industrial comminution
processes where the focus lies on the specific reduction
of material to preferred sizes, minimizing the necessary
energy and amount of nano-toxic powder production.
Therefore, predicting the resulting fragment mass dis-
tributions, understanding the underlying fragmentation
mechanisms and scaling relations is an important field
of research that has attracted the attention of resear-
chers over the last decades. Fragmentation of single
brittle spheres has been studied experimentally and
numerically to understand the elementary fragmenta-
tion processes that govern comminution. Experiments
from the 60 s analyzed the fragment mass and size dis-
tributions (Arbiter et al. 1969; Gilvarry and Bergstrom
1961; Gilvarry and Bergstrom 1962) with the striking
observation, that the mass distribution in the range of
small fragments follows a power law with exponents
that are universal with respect to material or the way
energy is imparted to the system. Later it was found
that the exponents depend on the dimensionality of the
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106 F. K. Wittel et al.

object (Turcotte 1986). These findings were confirmed
by numerical simulations, mainly based on Discrete
Element Models (DEM) (Åström et al. 2000; Diehl et al.
2000; Kun and Herrmann 1996a,b). For large frag-
ment masses, deviation from the power-law distribu-
tion could be modelled by an exponential cut-off, and
by using a bi-linear or Weibull distribution (Antonyuk
et al. 2006; Potapov and Campbell 1996; Cheong et al.
2004; Lu et al. 2002; Meibom and Balslev 1996; Odder-
shede 1993). It is an every day experience that frag-
mentation is only obtained above a certain material
dependent energy input. Numerical simulation could
prove a phase transition at a critical energy with the
fragmentation regime above and the fracture or dama-
ged regime below a critical point (Behera et al. 2005;
Kun and Herrmann 1999; Thornton et al. 1999). The
fragmentation process itself became accessible with the
availability of high speed cameras (Andrews and Kim
1998, 1999; Antonyuk et al. 2006; Chau et al. 2000;
Majzoub and Chaudhri 2000; Salman et al. 2002; Schu-
bert et al. 2005; Tomas et al 1999; Wu et al. 2004). Below
the critical point only slight damage could be obser-
ved, while above the specimen breaks into a small
number of fragments of the shape of wedges, formed
by meridional fracture planes, and additional cone-
shaped fragments at the specimen-target contact point.
By meridional we mean along a meridian, or other
words from south to north or small to large z values.
Way above the critical point, oblique fracture planes
develop, that further fragment the wedge shaped frag-
ments.

Today the mechanisms involved in the initiation and
propagation of single cracks are fairly well understood,
and statistical models have been successfully applied
to describe macroscopic fragmentation (Åström 2006;
Herrmann and Roux 1990). However, when it comes to
complex fragmentation processes with instable dyna-
mic growth of many competing cracks in the three-
dimensional space (3D), much less is understood.
Today model sizes become possible that allow for 3D
simulations with many thousand particles and interac-
tion forces that are more realistic than simple central
potentials. These give a good refined insight of what is
really happening inside the system, and how the pre-
dicted outcome of the fragmentation process depends
on system properties. Numerical simulations can reco-
ver some of these findings, but while 2D models are
incapable of reproducing the meridional fracture planes
(Behera et al. 2005; Khanal et al. 2004; Kun and Herr-

mann 1999; Potapov et al. 1995; Potapov and Campbell
1997; Thornton et al. 1996), 3D simulations were res-
tricted to relatively small systems, and could not study
the mechanisms that initiate and drive meridional frac-
ture planes (Potapov and Campbell 1996; Thornton
et al. 1999). (Arbiter et al. 1969) argued, based on high
speed photographs that fracture initiates from the per-
iphery of the contact disc between the specimen and
the plane, due to the circumferential tension induced
by a highly compressed cone driven into the specimen.
However, their experiments did not allow access to the
internal damage developed inside the specimen during
impact. Using transparent acrylic resin, (Majzoub and
Chaudhri 2000; Schönert 2004) observed damage ini-
tiation at the border of the contact disc, but plastic
flow and material imperfections complicated the ana-
lysis. Therefore, meridional crack initiation and pro-
pagation is not fully clarified, although the resulting
wedge-shaped fragments are observed for a variety of
materials and impact conditions (Arbiter et al. 1969;
Khanal et al. 2004; Majzoub and Chaudhri 2000; Wu
et al. 2004).

In this paper we present 3D Discrete Element simu-
lations of brittle solid spheres impacting a hard planar
target. We focus our attention on the processes invol-
ved in the initiation and development of fragmentation
mechanisms and how they lead to different regimes in
the resulting fragment mass distributions. Our results
can reproduce experimental observations on fragment
shapes, scaling of impact energy dependence and mass
distributions, significantly improving our understan-
ding of the fragmentation process in impact fracture
due to the time evolution of the fragmentation process
and stress field involved being fully accessible.

2 Model description

Discrete Element Models (DEM) were first employed
by (Cundall and Strack 1979) to study rock mecha-
nics and failure in particular. Today they are applied
to quasi-static, impact or explosive loading, employing
elementary particles of different shapes and density,
connected by different rheological cohesive, massless
elements (Bićanić 2004). Newton’s equations govern
the translational and rotational motion of the elements.
Torques and forces can arise either from particle-
particle interactions, from the cohesive elements, by
interaction with boundaries like elastic or rigid walls or
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Mechanisms in impact fragmentation 107

volumetric forces. In this work a 3D implementation of
DEM is employed, that represents the solid by an agglo-
meration of spheres of two different sizes. The sphere
centres are connected by beam-truss elements that can
elongate, shear, bend and torque. The total force and
moment acting on an element is composed of contact
forces from sphere-sphere contacts, Fc = Fov + Fdiss,
and the stretching and bending forces Fb = Felo + Q
and moments Mb transmitted by intact beams.

The contact force is calculated as a Hertz contact by
the overlapping distance ξ of spheres, by the Young’s
modulus of particle E p, their Poisson ratio ν p and radii
Ri , R j . In detail, the force on element j in the position
ri j relative to element i (see Fig. 1a) is given by

�Fov
j = 4

3

E p
√

Reff

(1 − ν2)
ξ

3/2
ij r ′

ij, (1)

with the overlapping distance ξ = Ri + R j − |ri j |
as the sphere deformation, 1/Ref f = 1/Ri + 1/R j and
r ′

i j = ri j/|ri j |. The additional terms of the contact force
include damping and friction forces and torques that
are included the same way as described in (Pöschel
and Schwager 2005). The contact interaction between
particles and boundaries is identical to particle-particle

Fig. 1 a Overlap interaction between two elements. b Beam
deformation in the beam x−y plane, showing the resulting ben-
ding, shear forces and torques

contact, only with ξ = Ri − rip, where rip is the
distance between the particle centre and the plane.

The 3D beam elements used are an extension of
the 2D case of Euler–Bernoulli beams. In 3D the total
deformation of a beam is calculated by the superpo-
sition of elongation, bending and shearing in two dif-
ferent planes and torsion. The force acting on element
j connected to element i due to the elongation ε of the
connecting beam is given by

�Felo
j = −Eb Abεr ′

i j , (2)

with beam stiffness Eb, ε = (|ri j | − l0)/ l0, with the
initial length of the beam l0 and the beam cross section
Ab defined by the initial elements positions during the
model construction. The flexural forces and moments
transmitted by a beam are calculated from the change
in the elements orientations on each beam end relative
to the body-fixed èb

x − èb
y − èb

z coordinate system of
the beam. Figure 1b shows a typical deformation due
to a rotation of both ends of the beam relative to the
èb

z -axis, with èb
x oriented in the direction of r ′

i j . Given
the angular orientations θ z

i , θ z
j , the bending force and

moment Qz,b
j , Mz,b

j for the elastic deformation of the
beam is given by

�Qz,b
j = 3Eb I

(
θ z

i +θ z
j

)

L2 èb
y,

�Mz,b
j = Eb I

(θ z
i −θ z

j )

L èb
y +

( �Qz,b
j × ∣∣�ri j

∣∣ èb
x

)
,

(3)

with the moment of inertia I . Corresponding equations
are employed for rotations around èb

y , and the forces
and moments are superimposed while additional tor-
sion moments are added for a relative rotation of the
elements around èb

x ,

�Mx .b
j = −Gb I tor

(
θ x

j − θ x
i

)

L
èb

x , (4)

with Gb and I tor representing the elasticity and moment
of inertia of the beams for torsion, respectively. The
element forces and moments are superimposed in the
global coordinate system.

To explicitly model damage, fracture and failure of
the solid, beam elements are allowed to fail by a brea-
king rule that takes breaking due to stretching and ben-
ding of a beam into account (Herrmann et al. 1989),
namely
(

ε

εth

)2

+ max
(|θi | ,

∣∣θ j
∣∣)

θth
≥ 1, (5)
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108 F. K. Wittel et al.

with the longitudinal strain ε = �l/ l0 and the general
rotation angles θi and θ j of the beam ends and using
εth and θth as the respective threshold values. Note that
Eq. 5 has the form of the von Mises plasticity criterion.
The threshold values are taken randomly for each beam,
according to the Weibull distributions

P(εth) = k
ε0

(
εth
ε0

)k−1
exp

(
−

(
εth
ε0

)k
)

,

P(θth) = k
θ0

(
θth
θ0

)k−1
exp

(
−

(
θth
θ0

)k
)

.

(6)

Here k, εo and θo are model parameters, controlling the
width of the distributions and the average values for εth

and θth respectively. Low disorder is obtained by using
large k values, large disorder by small k.

The time evolution of the system is followed solving
the equations of motion for the translation and rotation
of all elements using a 6th-order Gear predictor-
corrector algorithm. The dynamics of the particle rota-
tions is described using quaternions (Rapaport 2004).
Thebreaking rulesareevaluated ineach time increment.
Thebeambreaking is irreversible, andbrokenbeamsare
excluded from the model for consecutive time steps.

2.1 Model construction and calibration

In order to avoid artefacts arising from the system topo-
logy, like anisotropy, leading to non uniform wave pro-
pagation or preferred crack paths, special attention is
given to the model construction. We first start using
27000 spherical elements that are initially placed on a
large regular cubic lattice but with random velocities to
randomize the system. The elements are bi-disperse in
size with equal portions of Dmin = 0.95Dmax . After
some randomization time, a central potential, located in
the centre of the simulation box, is imposed to compact
the elements. The system is evolved until all particle
velocities are reduced to nearly zero due to small dissi-
pative forces. We end up with a random, nearly spheri-
cal agglomerate of particles that now get connected by
beam-truss elements through a Delaunay triangulation.
Note that not only contacting particles are connected.
We examined the topology by looking at the angular
correlations with neighbors and found no proof with
respect to crystallization. After the elements are initia-
ted, their Young’s modulus is slowly increased while
the centripetal gravitational field is decreased, leading
to an expansion of the system. Finally the bond lengths

and orientations are reset so that no initial residual
stresses are present in the system and the system is trim-
med to the desired shape by element removal. The beam
lattice is equivalent to a material discretisation using a
dual Voronoi tessellation of the domain (Bolander and
Sukumar 2005; Lilliu and Van Mier 2003; Yip et al.
2006). The microscopic properties like the elastic and
failure properties of elements and bonds are calibrated
to obtain the desired macroscopic Young’s modulus,
Poisson’s ratio and strength (values see Table 1).

The trimmed spherical specimen is located close
to a plate and an impact velocity vi in the negative
z-direction is assigned to the system. The computation
continues until no breaking activity is registered for
50 µs.

For comparative reasons we calculate the evolution
of the stress field by an explicit Finite Element (FE)
analysis with ABAQUS. The FE model consists of axi-
symmetric, linear 4-node elements, using the macro-
scopic properties measured on the DEM sample before
(see Table 1). Symmetry boundary conditions are defi-
ned along the central axis of the particle and rigid
ground plate. Figure 2a compares the shock wave of the
impact using our DEM and the FEM simulation. Note
that the measured wave velocity of both simulations is
consistent with the analytical values (see Table 1). The
time evolution of the elastic energy in the system was
found to be in excellent agreement as well.

3 Mechanisms in impact fragmentation

An important step in manipulating fragmentation
processes is identifying and understanding the different
fragmentation mechanisms in their order of occurrence
(Fig. 3a–d) and with increasing impact energy
(Fig. 6a–f). The first damage mechanism observed is
diffuse damage in a region approximately D/4 from
the target plane (see Fig. 3a). The diffusive damage
occurs due to a bi-axial stress state in the x−y plane (see
Fig. 2b), superimposed by compressive stress directed
z-wards (Andrews and Kim 1998).

As time evolves, meridional cracks form. Their ori-
gin is explored in Fig. 4a, where positions and temporal
evolution of the broken bonds are plotted in side and
top view, showing well defined meridional crack planes
that grow from the inside towards the lateral and upper
free surfaces. To understand the angular separation of
the crack planes, the angular distribution of the broken
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Mechanisms in impact fragmentation 109

Table 1 Typical model
properties of the DEM
model e.g. calibrated on a
(16 × 8 × 8) mm3 sized
sample in quasi-static
tensile and compressive
tests

Particles
Stiffness E p 3 GPa
Diameter D1 0.5 mm
Density ρ 3 t/m3

Beams
Stiffness Eb/Gb 6 GPa
Average length L 0.5 mm
Diameter D 0.5 mm
Strain threshold ε0 0.02 –
Bending threshold θ0 3 ◦
Shape parameter κ 0.3 –
Hard plate
Stiffness Ew 70 GPa
Interaction
Friction coefficient µ 1 –
Damping coefficient γn 0.25 s−1

Friction coefficient γt 0.05 s−1

System
Time increment �t 1e–8 s
Number of particles N p 22013 –
Number of beams N b 135948 –
Solid fraction 0.65
Sphere diameter D 16 mm
Macroscopic properties DEM
System stiffness E 7.4 ± 0.5 GPa
Poisson’s ratio ν 0.2 –
Density ρ 1920 kg/m3

System strength σc 110 MPa
DEM FEM

Comparison
p-Wave speed 2210 ± 100 2270 ± 20 m/s
Contact time 31.4 31.4 µs

bonds for different times are plotted in Fig. 4b by using
g(θ ) as the probability of finding two broken bonds as a
function of the angular separation θ in the x−y plane.
The peaks in g(θ ) clearly indicate meridional planes.
For the velocity shown in Fig. 4, meridional cracks are
separated by an average angle of about 60◦, and they
become evident approx. 14 µs after impact.

For various realizations and materials, the position
of the meridional cracks changed, but not their ave-
rage angular separation, even though for strong disor-
der (Eq. 6), a larger amount of uncorrelated damage
occurs. From the FE calculations and the damage orien-
tation correlation plot (Fig. 4b) no crack orientation
is preferred inside of the undamaged biaxial tensile
zone. However, many micro cracks weaken this zone,
decreasing its effective stiffness. Around the weake-
ned core, the material is intact and under high circum-
ferential tensile stress. Inside this ring shaped zone,
we observe the onset of the meridional cracks when
we back-trace them. With increasing impact velocity,

the angular separation of crack planes decreases and
thus more wedge-shaped fragments form. Obviously
this effect can not be explained by arguments based
on quasi-static stress analysis. However the observa-
tion can be explained in the spirit of Mott’s fragmen-
tation theory for expanding rings (Mott 1946). Once a
meridional crack forms, stress is released in the neigh-
bourhood and the stress release fronts spread with a
constant velocity leading to a decreasing probability
for fracture in neighbouring regions. However in the
stressed regions, the strains still increase due to the
external loading, and the fracture probability along with
it. The average size of the wedge shaped fragments
therefore is determined by the relationship between
the rate at which cracks nucleate and the velocity of
the stress release wave. The higher the strain rate, the
higher the crack nucleation rate and the more meri-
dional cracks are formed. Measurements of the strain
rate at arbitrary positions inside the bi-axially loaded
zone showed a clear correlation between impact
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Fig. 2 Cross sections of the
half sphere. a Shock-wave
propagation obtained from
DEM and FEM simulations
for vi = 117 m/s. Elements
are coloured according to
their acceleration
magnitude. b Stress fields
from the continuum model.
The left side shows the
shear stresses in global
coordinates from 0 to
400 MPa (black to white)
while on the right side,
circumferential stresses in
spherical coordinates are
given, ranging from 0 to
130 MPa (black to white).
Note the direction of impact
corresponds to the
meridional direction

velocity and strain rate. Even though a compact sphere
and not a ring is fragmented, meridional cracks ini-
tiate in a highly stressed ring shaped region and Mott’s
theory can qualitatively explain the decrease of angu-
lar separation of wedge shaped fragments with increa-
sing impact velocity. If enough energy is accessible,
some of the meridional plane cracks propagate out- and
upwards, fragmenting the sample into wedge shaped
fragments like “orange slices”.

As the sphere moves further towards the plate, a ring
of broken bonds forms by shear failure at the border
of the contact disc (see Figs. 2b, 3). When the sample
begins to detach from the plate, a cone has been formed
by a ring crack that propagated from the surface to the
inside of the material at approximately 45◦. The resul-
ting cone shaped fragments have a smaller rebound
velocity than other fragments due to dissipated elastic
energy by fracture, as can be seen in (Fig. 3d).

If the imparted energy is high enough, oblique plane
cracks, also called secondary cracks may still fragment
the large fragments further (see Fig. 5a). These secon-
dary cracks are similar to oblique cracks observed in 2D

simulations (Behera et al. 2005; Potapov et al. 1995).
Figure 5 compares the crack patterns obtained from a
2D DEM simulation that uses polygonal particles. Note
that in 2D simulations, we observe an unnatural stron-
gly fragmented cone of numerous single element frag-
ments and meridional cracks can of course not form.

4 Scaling regimes in fragmentation

For practical applications of comminution processes,
the amount of energy necessary to fragment a mate-
rial is an important parameter. By varying the impact
energy, in fragmentation simulations and experiments
two distinct regimes can be identified: below a criti-
cal energy fracture and damage takes place (Andrews
and Kim 1998; Gilvarry and Bergstrom 1962; Thornton
et al. 1999), while above fragments form. Figure 6a–f
shows examples of final crack patterns after impact
with increasing impact energy. For smaller impact ener-
gies it is possible to observe meridional cracks that
reach the sample surface above the contact point, but a
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Fig. 3 Simulation
snapshots of vertical
meridional cuts, showing
broken bonds (dark colour).
a Diffuse damage due to
bi-axial stress state. b
Formation of a ring of
broken bonds by shear
failure. c Theses broken
bonds evolve into cracks
that propagate inside the
sample. d Detachment of
the lower fragments

large piece with cracks remains (Fig. 6a, b). As the ini-
tial energy increases, some of the meridional cracks are
the first ones to reach the top free surface of the sphere,
fragmenting the material into typically two to four frag-
ments of wedge shape (Fig. 6c). Therefore meridional
cracks are called primary cracks. As described ear-
lier, increasing energy leads to secondary oblique plane
cracks that further fragment the orange slice shaped
fragments (Fig. 6d–f). The shape and number of large
fragments simulated for smaller impact energies, as
well as the location and orientation of oblique secon-
dary cracks for larger energies, are in good agreement
with experiments (Khanal et al. 2004; Schubert et al.
2005; Wu et al. 2004).

For velocities smaller then the threshold velocity
vth , the sample is damaged by the impact but not frag-
mented. In particular, in 2D simulations a continuous
phase transition from the damaged to the fragmented
state was found (Behera et al. 2005; Kun and Herr-
mann 1999). Analogous to their analysis, the final state
of the system is analyzed by measuring the mass of
the two largest fragments, as well as the average frag-
ment size. Note that the average mass M2/M1, with
Mk = 


N f
i Mk

i − Mk
max excludes the largest fragment.

We can see in Fig. 7a that below the threshold value
vth = 115 m/s the largest fragment in our system has
almost the total mass of the system with the second
largest one being consequently nearly zero. Hence, the
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Fig. 4 a Broken bonds
coloured according to the
time of failure. b Angular
distribution functions of
broken bonds (x−y
projection) as a function of
the angular separation
(vi = 120 m/s)

Fig. 5 a 3D DEM
simulation at vi = 140 m/s
exemplifying the secondary
cracks compared to b 2D
simulations using polygons
as elementary particles
(Behera et al. 2005)

system was only damaged and not fragmented. For v >

vth the mass of the largest fragment rapidly decreases
and the second largest and average fragment masses
increase, showing a maximum at 117.5 m/s for our sys-
tem. This is in very good qualitative agreement with
fragmentation simulations on different geometries and
loading situations (Behera et al. 2005; Kun and Herr-
mann 1999; Wittel et al. 2005), indicating that 3D

fragmentation simulations also show this phase tran-
sition from damage to fragmented state.

4.1 Fragment mass distributions

Technologically the fragment mass distributions are the
most important outcome of fragmentation processes.
Experimental and numerical fragmentation studies
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Mechanisms in impact fragmentation 113

Fig. 6 Final crack patterns
for different initial
velocities. Elements are
projected to their initial
positions for clearer view of
the crack patterns. Intact
bonds are coloured
according to the final
fragment they belong, while
gray dots are added at the
positions of broken beams
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Fig. 7 a Scaling of masses.
First, second largest and
average fragment mass as a
function of the impact
velocity. b Fragment mass
distribution for different
initial velocities. The
straight line corresponds to
a power-law with exponent
τ = −1.9

Fig. 8 a Fragment size
distribution weighted by
mass for initial velocities.
b Fragment mass
distribution for
v = 122.5 m/s and different
disorder in the bond
breaking thresholds. The
solid lines correspond to a
power law with an
exponential cut-off for
lower masses and the
Weibull distribution for
large masses (Eq. 8)

show that the mass distributions follow a power law in
the range of small fragments, with a universal exponent
depending on the fragmentation mechanisms. The mass
distribution for large fragments can be represented by
an exponential cut-off of the power law. The fragment
mass distribution is usually given in terms of F(m),
that expresses the probability density of finding a frag-
ment with mass m between m and m + �m, with m
being the fragment mass normalized by the total sys-
tem mass Mtot . The fragment mass distributions for
our 3D simulations are shown in Fig. 7b for different
impact velocities vi averaging over 36 realizations. If
vi < vth , F(m) has a peak at low fragment masses cor-
responding to very small fragments. However the pro-
nounced isolated peaks near the total mass of the system
correspond to the large damaged, but still unfragmen-
ted system (see also Fig. 6a, b). Note that fragments at
intermediate mass range are not present in the damage
regime. Around and above vth , F(m) exhibits a power
law dependence F(m) ∼ m−τ for intermediate masses,
(dashed line in Fig. 7b) with τ = 1.9 ± 0.2 (Linna et al.

2005; Turcotte 1986). However a local maximum can
be observed for large fragments, indicating that they are
formed by mechanisms that are distinct from the ones
forming small fragments. The primary cracks show an
angular distribution with an average separation bet-
ween 45–60◦ resulting in fragment masses in the order
of 10% of Mtot . This corresponds to the range of masses
that present the broad peak in the fragment mass dis-
tribution.

To give a better representation of the large frag-
ments, the cumulative size distribution of the fragments
weighted by mass, Q3 is studied in Fig. 8a. Q3 is cal-
culated by summing the mass of all fragments smaller
than a given size s, which is estimated as the diame-
ter of a sphere with identical mass. Note that the values
are normalized by the sample diameter D. The shape of
the size distribution for large fragments can be descri-
bed by a two-parameter Weibull distribution, namely
Q3(s) = 1 − exp[−(s/sc)

ks] (dashed line in Fig. 8a,
with sc = 0.75 and ks = 5.8). The Weibull distribution
seems suitable, since it has been empirically found to
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describe many fracture experiments for brittle mate-
rials (Lu et al. 2002). For increasing impact velocity
vi , the average fragment size decreases, which is also
in agreement with experimental findings by (Antonyuk
et al. 2006; Cheong et al. 2004).

No dependence of the fragment mass distribution
with respect to material disorder (k in Eq. 6) was obser-
ved (see Fig. 8b). This is in agreement with observations
on the universality of the fragment size distribution
with respect to the breaking probability distribution
(Åström et al. 2000). For the fragment mass distribution
of (v ∼ vth) two distinct regimes can be identified (see
Fig. 8b). For m < 1/40 (approx. 550 elements), F(m)

can be well described by the form

F(m) ∼ (1 − β)m−τ exp

(−m

�m0

)
+ β exp

(−m

�m1

)
,

(7)

recently proposed by (Åström et al. 2004/2006). The
first term is associated to branching-merging processes
due to crack tip instabilities, while the second one ori-
ginates from the Poissonian nucleation processes of the
first dominating cracks. The parameter β expresses the
relative importance of the two processes.

Furthermore, the scaling exponent τ only depends
on the dimensionality of the system. The local maxi-
mum for the large m can again be described by a two-
parameter Weibull distribution

F(m) ∼
(

kl

�ml

) (
m

�ml

)kl−1

· exp

(
−

(
m

�ml

)kl
)

, (8)

as discussed above. In Fig. 8b, Eqs. (7), (8) are plotted
separately with a dashed line, corresponding to a fit with
values of m0 = 0.001 ± 0.001, m1 = 0.004 ± 0.001,
ml = 0.3 ± 0.02 and kl = 1.9 ± 0.1. The good qua-
lity of the fit allows for an estimate of the exponent
of the power-law distribution in the small fragment
mass range to be τ = 2.2 ± 0.2. This composed mass
distribution function is not observed for 2D simula-
tions (Behera et al. 2005; Kun and Herrmann 1999)
or 3D simulations of shell fragmentation (Wittel et al.
2004/2005), where obviously meridional cracks are not
present.

5 Conclusions

We showed the importance of the use of 3D simu-
lations for fragmentation processes by using a DEM

simulation with 3D beam-truss elements for the particle
cohesion. Due to this computationally more laborious
approach, one is able to obtain a more realistic picture
of the fragmentation processes, the evolution of frag-
mentation mechanisms and their consequences for the
fragment mass distribution. To rationalize arguments
for the fracture initiation, continuum solutions for the
stress field were utilized. It was shown that 2D repre-
sentations for fragmenting systems are not capable of
capturing fragmentation by meridional cracks, which
is the primary cracking mechanism. We showed that
micro cracks form inside the sample in a region above
the compressive cone long time before they are experi-
mentally observed from the outside, if at all. They coa-
lesce to initiate fracture in meridional fracture planes,
resulting in a small number of large wedge shaped
fragments. An explanation for the decrease in their
angular separation could be found in the Mott frag-
mentation model. The resulting fragment mass distri-
bution is described by a power law regime for small
fragments and a broad peak for large fragments that
can be fitted by a two-parameter Weibull distribution,
in agreement with experimental results (Antonyuk et al.
2006; Cheong et al. 2004; Lu et al. 2002; Salman et al.
2002). Even though the results are valid for materials
with various disorders, they are limited to the class of
brittle, disordered media; however extensions to frag-
mentation with ductile materials are in progress. Ano-
ther class of interesting questions deal with the problem
of size effects, the influence of multi-disperse particles
or the stiffness contrast of particles and beam-elements.
For technological applications studies on the influence
of target geometries and the optimization potential to
obtain desired fragment size distributions or to reduce
impact energies are of broad interest.
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