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Abstract Event cameras are bio-inspired vision sensors
that output pixel-level brightness changes instead of stan-
dard intensity frames. They offer significant advantages over
standard cameras, namely a very high dynamic range, no
motion blur, and a latency in the order of microseconds.
However, because the output is composed of a sequence
of asynchronous events rather than actual intensity images,
traditional vision algorithms cannot be applied, so that a
paradigm shift is needed.We introduce the problem of event-
based multi-view stereo (EMVS) for event cameras and pro-
pose a solution to it. Unlike traditional MVSmethods, which
address the problem of estimating dense 3D structure from
a set of known viewpoints, EMVS estimates semi-dense 3D
structure from an event camera with known trajectory. Our
EMVS solution elegantly exploits two inherent properties of
an event camera: (1) its ability to respond to scene edges—
which naturally provide semi-dense geometric information
without any pre-processing operation—and (2) the fact that
it provides continuous measurements as the sensor moves.
Despite its simplicity (it can be implemented in a few lines of
code), our algorithm is able to produce accurate, semi-dense
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depthmaps,without requiring any explicit data association or
intensity estimation. We successfully validate our method on
both synthetic and real data. Our method is computationally
very efficient and runs in real-time on a CPU.

Keywords Multi-view stereo · Event cameras · Event-based
vision · 3D reconstruction

Multimedia Material

A supplemental video for this work is available at https://
youtu.be/EFpZcpd9XJ0

1 Introduction

An event camera, such as the dynamic vision sensor
(DVS) (Lichtsteiner et al. 2008), works very differently from
a traditional camera. It has independent pixels that only
send information (called “events”) in presence of brightness
changes in the scene at the time they occur. Thus, the out-
put is not an intensity image but a stream of asynchronous
events at microsecond resolution, where each event consists
of its space–time coordinates and the sign of the brightness
change (i.e., no intensity). Since events are caused by bright-
ness changes over time, an event camera naturally responds
to edges in the scene in presence of relative motion.

Event cameras have numerous advantages over standard
cameras: a latency in the order of microseconds, low power
consumption, and a very high dynamic range (130 dB com-
pared to 60 dB of standard cameras). These properties make
the sensors ideal in all those applications where fast response
and high efficiency are crucial and also in scenes with wide
variations of illumination. Additionally, since information
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is only sent in presence of brightness changes, the sensor
removes all the inherent redundancy of standard cameras,
thus requiring a very low data rate (KB vs MB). However,
since event cameras became commercially available only
recently (Lichtsteiner et al. 2008), little related work exists,
and, because their output is significantly different from that
of standard cameras, traditional vision algorithms cannot be
applied, which calls for new methods to process the data
from these novel cameras, and therefore be able to unlock
their potential.

1.1 Contribution

In this paper, we address the problem of structure estimation
(i.e., 3D reconstruction) with a single event camera by intro-
ducing the concept of event-basedmulti-view stereo (EMVS)
(Sect. 4), and we propose an algorithm to solve this problem.

Our approach (Sects. 5 –7) follows a space-sweep (Collins
1996) voting and maximization strategy to estimate semi-
dense depth maps at selected viewpoints, and then we merge
the depth maps to build larger 3D models. We evaluate the
method on both synthetic and real data (Sect. 8). The results
are analyzed and compared with ground truth, showing the
successful performance of our approach.

This paper is based on our previous work (Rebecq et al.
2016), which we extend in several ways:

– We provide a justification of the choice of perspective
sampling of space by analyzing the operation of event
back-projection (Sect. 6).

– We show how event back-projection can be efficiently
implemented and parallelized using homographies to
enable real-time performance, and we quantify the com-
putational performance of our method (Sect. 7).

– We improve structure estimation bymeans of simple pro-
cessing techniques, such as bilinear voting in the disparity
space image (Sect. 7.1) and median filtering of the semi-
dense depth map (Sect. 5.2.5).

– We include additional experiments (Sect. 8), showing the
applicability of our method.

2 Event Cameras and Applications

Event cameras are biologically inspired sensors that present a
new paradigm on the way that dynamic visual information is
acquired and processed. Each pixel of an event camera oper-
ates independently from the rest, continuously monitoring
its intensity level and transmitting only information about
brightness changes of given size (“events”) whenever they
occur, asynchronously, with microsecond resolution. Specif-
ically, if L(u, t)

.= log I (u, t) is the logarithmic brightness
or intensity at pixel u = (x, y)� in the image plane, an

Fig. 1 The event camera “eDVS” produced by iniLabs (https://inilabs.
com/products/)

event camera such as the DVS (Lichtsteiner et al. 2008) (see
Fig. 1) generates an event ek

.= 〈xk, yk, tk, pk〉 if the change
in logarithmic brightness at pixel uk = (xk, yk)� reaches a
threshold C (typically 10–15% relative brightness change):

ΔL(uk, tk)
.= L(uk, tk) − L(uk, tk − Δt) = pkC, (1)

where tk is the timestamp of the event, Δt is the time since
the previous event at the same pixel uk , and pk = ±1 is the
polarity of the event (the sign of the brightness change). A
comparison between the outputs of a standard and an event
camera is shown in Fig. 2.

Therefore, visual information is no longer acquired based
on an external clock (e.g., global shutter); instead, each pixel
has its own sampling rate, based on the visual input: event
cameras are data-driven sensors. This different paradigm of
acquiring visual information, i.e., reporting temporal con-
trast, offers significant advantages over that of standard
cameras, namely redundancy removal, a very high dynamic
range, no motion blur, and a latency in the order of microsec-
onds. However, new computer vision algorithms that exploit
the high temporal resolution and the asynchronous nature of
the sensor are required to cope with this unfamiliar represen-
tation of the visual information.

Event cameras find applications in real-time interaction
systems such as robotics or wearable electronics (Delbruck
2016), where operation under uncontrolled lighting condi-
tions, latency, and power are important. Event cameras have
been used for object tracking (Delbruck and Lichtsteiner
2007; Drazen et al. 2011; Delbruck and Lang 2013), surveil-
lance and monitoring (Litzenberger et al. 2006; Piatkowska
et al. 2012), object recognition (Wiesmann et al. 2012;
Orchard et al. 2015; Lagorce et al. 2016) and gesture control
(Lee et al. 2014). They have also been used for stereo depth
estimation (Rogister et al. 2012; Piatkowska et al. 2013)
(see also related work in Sect. 3), 3D panoramic imaging
(Schraml et al. 2015), structured light 3D scanning (Matsuda
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Fig. 2 Comparison of the output of a standard camera and an event
camera (DVS) when viewing a spinning disk with a black circle. The
standard camera outputs frames at a fixed rate, thus sending redundant
information when no motion is present in the scene. In contrast, event
cameras are data-driven sensors that output pixel-level brightness

changes with microsecond latency. Therefore, they do not suffer from
motion blur and produce no output if there is no visual change in
the scene. An animated version can be found here: https://youtu.be/
LauQ6LWTkxM

et al. 2015), optical flow estimation (Benosman et al. 2012,
2014; Rueckauer and Delbruck 2016; Bardow et al. 2016),
high dynamic range (HDR) image reconstruction (Cook et al.
2011; Reinbacher et al. 2016), mosaicing (Kim et al. 2014)
and video compression (Brandli et al. 2014a). In ego-motion
estimation, event cameras have been used for pose track-
ing (Weikersdorfer and Conradt 2012; Mueggler et al. 2014;
Gallego et al. 2017), and visual odometry and simultane-
ous localization and mapping (SLAM) (Weikersdorfer et al.
2013; Censi and Scaramuzza 2014; Kueng et al. 2016; Kim
et al. 2016; Rebecq et al. 2017). Event-based vision is a
growing field of research, and many more applications are
expected to appear as event cameras become widely spread.

3 Related Work on Event-Based Depth Estimation

Themajority ofworks on event-based depth estimation tackle
the 3D reconstruction problem by using two or more event
cameras that are rigidly attached (i.e., with a fixed baseline)
and share a common clock. These methods follow a two-step
approach: first they solve the event correspondence problem
across image planes and then triangulate the location of the
3D point. Events are matched in twoways: either using tradi-
tional stereo methods on artificial frames generated by accu-
mulating events over time (Schraml et al. 2010; Kogler et al.
2011b), or exploiting simultaneity and temporal correlations
of the events across sensors (Kogler et al. 2011a; Rogister
et al. 2012; Lee et al. 2012; Camunas-Mesa et al. 2014).

The event-based depth estimation problem thatwe address
is entirely different: (1) we consider a single camera and (2)
we do not require simultaneous event observations.

Depth estimation from a single event camera is more
challenging because we cannot exploit temporal correlation

between events across multiple image planes. Notwithstand-
ing, we show that a single event camera suffices to estimate
depth, and, moreover, that we are able to do it without solv-
ing the data association problem, as opposed to event-based
stereo-reconstruction methods.

Since the publication of our monocular event-based depth
estimation method (Rebecq et al. 2016), another solution
has been proposed in (Kim et al. 2016). Their method is
part of a pipeline that uses three filters operating in paral-
lel to jointly estimate the motion of the event camera, a 3D
map of the scene, and the intensity image. Their depth esti-
mation approach requires using an additional quantity—the
intensity image—to solve for data association (events corre-
sponding to the same 3D point have the same image intensity
under the Lambertian hypothesis). Intensity estimation and
depth regularization are carried out using dedicated hardware
(a GPU) to achieve real-time performance. In contrast, our
approach (Rebecq et al. 2016) leverages directly the sparsity
of the event stream to perform 3D reconstruction (it does
not need to recover the intensity image to estimate depth),
and is computationally efficient, running in real-time on the
CPU. In our most recent article (Rebecq et al. 2017), we
address the problem of parallel tracking and mapping with
an event camera; notably, we show how the 3D reconstruc-
tion method proposed in the present paper can be combined
with an event-based pose tracking algorithm to yield both
trajectory estimates as well as semi-dense 3D maps.

4 The Event-Based Multi-View Stereo Problem

MVS with traditional cameras addresses the problem of 3D
structure estimation from a collection of images taken from
known viewpoints (Szeliski 2010) of an intrinsically cali-
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brated camera. Our event-based MVS (EMVS) shares the
same goal; however, there are some key differences:

1. TraditionalMVS algorithmswork on full images, so they
cannot be applied to the stream of asynchronous events
provided by the sensor. EMVSmust take into account the
sparse and asynchronous nature of the events.

2. Because event cameras do not output data if both the sen-
sor and the scene are static, any event-driven algorithm,
such as EMVS, requires the sensor to be moved in order
to acquire visual content. In traditional MVS, the camera
does not need to be in motion to acquire visual content.

3. Because events are caused by intensity edges, the natural
output of EMVS is a semi-dense 3D map, as opposed to
the dense maps of traditional MVS.

Hence, the EMVS problem consists of obtaining the 3D
reconstruction of a scene from the sparse asynchronous
streams of events acquired by moving event cameras with
known viewpoints. Without loss of generality, it suffices to
consider the case of one event camera.

To solve the EMVS problem, classical MVS approaches
cannot be directly applied since they work on intensity
images. Nevertheless, our event-based approach builds upon
previous works on traditionalMVS (Seitz et al. 2006). In par-
ticular, we follow (in Sect. 5) the solving strategy of scene
space MVS methods (Seitz et al. 2006), which consist of
two main steps: computing an aggregated consistency score
in a discretized volume of interest [the disparity space image
(DSI)] bywarping imagemeasurements, and then finding 3D
structure information in this volume. The term DSI (Szeliski
andGolland 1999) is interchangeably used to refer to the pro-
jective sampling of the volume (i.e., discretized volume) or to
the scalar function defined in it (i.e., the score). Just by con-
sidering the way that visual information is provided, we can
point out two key differences between the DSI approaches in
MVS and EMVS:

1. In classical MVS, the DSI is densely populated using
pixel intensities. In EMVS, the DSImay have holes (vox-
els with no score value), since warped events are also
sparse.

2. In classical MVS, scene objects are obtained by finding
an optimal surface in the DSI. By contrast, in EMVS,
finding semi-dense structures (e.g., points, curves) is a
better match to the sparsity of the DSI.

5 Event-Based Space-Sweep Method

Ourmethod to solve the EMVS problem is similar to Collin’s
space-sweep approach forMVS (Collins 1996), which shows
how sparsity can be leveraged to estimate 3D structures with-

out the need for explicit data association or photometric
information.We generalize the space-sweep approach for the
case of a moving event camera by building a virtual camera’s
DSI (Szeliski and Golland 1999) containing only geometric
information of edges and finding 3D points in it.

First, we review the classical space-sweep method for
standard cameras (Sect. 5.1), and then we describe our gen-
eralization to a moving event camera (Sect. 5.2), showing
that the continuous stream of events produced by the sensor
is specially relevant to recover 3D structure.

5.1 Classical Space-Sweep Method

In contrast to most classical MVS methods, which rely
on pixel intensity values, the space-sweep method (Collins
1996) relies solely on binary edge images (e.g., Canny) of
the scene from different viewpoints.

Thus, it leverages the sparsity or semi-density of the view-
point dependent edge maps to determine 3D structure.

More specifically, the method consists of three steps: (1)
warping (i.e., back-projecting) image features as rays through
aDSI, (2) recording the number of rays that pass through each
DSI voxel, and (3) determining whether or not a 3D point is
present in each voxel. The DSI score measures the geometric
consistency of edges in a very simple way: each pixel of a
warped edge-map onto the DSI votes for the presence or
absence of an edge. Then, the DSI score is thresholded to
determine the scene points that most likely explain the image
edges.

5.2 Event-Based Space-Sweep Method

In this section, we extend the space-sweep algorithm in
Sect. 5.1 to solveEMVS.Notice that the streamof events pro-
vided by event cameras is an ideal input to the space-sweep
algorithm because (1) event cameras naturally highlight
edges in hardware, and (2) edges trigger events from many
consecutive viewpoints rather than a few sparse ones (cf.
Fig. 3).

Next we detail the three steps of the event-based space-
sweep method: back-projection (Sect. 5.2.1), ray-counting
(Sect. 5.2.2), and determining the presence of scene structure
(Sect. 5.2.3). Then, we also discuss how tomerge depthmaps
from multiple viewpoints (Sect. 5.2.4), and how to improve
the quality of the reconstruction with simple post-processing
techniques (Sect. 5.2.5).

5.2.1 Feature-Viewing Rays by Event Back-Projection

Let us formally define an event ek = (xk, yk, tk, pk) as a
tuple containing the pixel position (xk , yk), timestamp tk , and
polarity pk (i.e., sign) of the brightness change.We extend the
space-sweep method to the event-based paradigm by using
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(a) (b)

Fig. 3 Comparison of the back-projection step in classical space-
sweep and event-based space-sweep. This is a 2D illustration with the
scene consisting of two points. aClassical (frame-based) Space-Sweep:
only a fixed number of views is available. Two points of an edgemap are
visible in each image. The intersections of rays obtained by backproject-
ing the image points are used as evidence for detection of scene features

(object points).bEvent-Based Space-Sweep: as the event sensormoves,
events are triggered on the sensor. To each observed event corresponds
a ray (through back-projection), that spans the possible 3D-structure
locations. The areas of high ray density correspond to the locations of
the two points, and are progressively discovered as the sensor moves.

the event stream {ek} output by the event camera as the input
point-like features that are warped into the DSI. Each event
ek is back-projected according to the viewpoint of the event
camera at time tk , which is known according to the assump-
tions of MVS.

From a geometric point of view, we compare the back-
projection step in the classical frame-based and the event-
based settings usingFig. 3.Observe that in frame-basedMVS
the number of viewpoints is small compared to that in the
highly sampled trajectory of the event camera (at times {tk}).
This higher abundance of measurements and viewpoints in
the event-based setting generates many more viewing rays
than in frame-based MVS, and therefore, it facilitates the
detection of scene points by analyzing the regions of high
ray density.

A major advantage of our method is that no explicit data
association is needed. This is the main difference between
our method and existing event-based depth estimation meth-
ods (Sect. 3). While other works essentially attempt to
estimate depth by first solving the stereo correspondence
problem in the image plane (using frames of accumulated
events (Schraml et al. 2010; Kogler et al. 2011a), recon-
structed intensity (Kim et al. 2016), temporal correlation of
events (Kogler et al. 2011b; Rogister et al. 2012; Lee et al.
2012; Camunas-Mesa et al. 2014), etc.), our method works
directly in 3D space.

This is illustrated in Fig. 3b: there is no need to associate
an event to a particular 3D point to be able to recover its 3D
location.

5.2.2 Volumetric Ray Counting. Creating the Disparity
Space Image (DSI)

In the second step of space-sweep, we discretize the volume
containing the 3D scene and count the number of viewing
rays passing through each voxel using a DSI. To allow for
the reconstruction of large scenes in a scalable way, we split

RV

Fig. 4 TheDSI ray counter is centered at a virtual camera in a reference
viewpoint (RV) and its shape is adapted to the perspective projection.
Every incoming viewing ray from a back-projected event (in red) votes
for all the DSI voxels (in light blue) which it traverses (Color figure
online)

the 3D volume containing the scene into smaller 3D volumes
along the trajectory of the event camera, compute local 3D
reconstructions, and then merge them, as will be explained
in Sect. 5.2.4.

For now, let us focus on computing a local 3D reconstruc-
tion of the scene from a subset of events. For this task, we
create a virtual camera located at a reference viewpoint that
is chosen among those event camera viewpoints associated
to the subset of events, and then define a DSI in a volume
V adapted to the field of view and perspective projection of
the event camera, as illustrated in Fig. 4 [see (Szeliski and
Golland 1999)]. The DSI is defined by the event camera pix-
els and a number Nz of depth planes {Zi }Nz

i=1, i.e., it has size
w × h × Nz , where w and h are the width and height of
the event camera, respectively. The score stored in the DSI

f (X) : V ⊂ R
3 → R

+ (2)

is the number of back-projected viewing rays passing
through each voxel with center X = (X,Y, Z)�, as
shown in Fig. 4. We show in Sect. 7.1 how to effi-
ciently compute the ray-voxel intersections using a two-step
approach, allowing for real-time performance on a single
CPU.

123



Int J Comput Vis (2018) 126:1394–1414 1399

Fig. 5 a Scene with the event camera moving above three textured
planes located at different depths (close, middle, far). We build the ray
density DSI f (X) as described in Sect. 5.2.2 and show the effect of slic-
ing it at different depths, b–d, as simulating a plane sweeping through

the DSI. When the sweeping plane coincides with an object plane, the
latter appears very sharp while the rest of the scene is “out of focus”.
a Image at virtual camera. b DSI slice at close depth. c DSI slice at
middle depth. d DSI slice at far depth

Fig. 6 Our method builds the ray density DSI (a), from which a confi-
dence map (b) and a semi-dense depth map (c) are extracted in a virtual
camera. The semi-dense depth map gives a point cloud of scene edges

(d). Same dataset as in Fig. 5. a Ray density DSI f (X). b Confidence
map. c Semi-dense depth map. d 3D point cloud

5.2.3 Detection of Scene Structure by Maximization of Ray
Density

In the third step of space-sweep, we obtain a semi-dense
depth map in the virtual camera by determining whether or
not a 3D point is present in each DSI voxel. The decision is
taken based on the ray density function stored in the DSI,
f (X).
Rephrasing the assumption of the space-sweep method

(Collins 1996), scene points are likely to occur at regions
where several viewing rays nearly intersect (see Fig. 3b),
which correspond to regions of high ray density.Hence, scene
points are likely to occur at local maxima of the ray density
function. Figure 5 shows an example of slicing the DSI in
Fig. 6a, from a real dataset, at different depth planes; the
presence of local maxima of the ray density function is evi-
denced by the in-focus areas. Additionally, Fig. 7 shows the
emergence of high ray-density regions in the DSI as the sen-
sor moves and more events are observed.

We detect the local maxima of the DSI f (X) follow-
ing a two-step procedure: we first generate a dense depth
map Z∗(x, y) in the virtual camera and an associated confi-
dence map c(x, y) by recording the location and magnitude
of the best local maximum of the DSI f (X (x),Y (y), Z∗) =:
c(x, y) along the row of voxels in the viewing ray of each
pixel (x, y). Then, we select the most confident pixels in the

depth map by thresholding the confidence map, yielding a
semi-dense depth map (Fig. 6c). We use Adaptive Gaussian
Thresholding: a pixel (x, y) is selected if c(x, y) > T (x, y),
with T (x, y) = c(x, y) ∗ Gσ (x, y) − C . In practice, we
use a 5 × 5 neighborhood in Gσ and C = −10. The
adaptive approach yields better results than global thresh-
olding (Collins 1996). A summary of the main elements of
our DSI approach is given in Fig. 6.

5.2.4 Merging Depth Maps from Multiple Reference
Viewpoints

So far, we have shown how to reconstruct the structure of
scene corresponding to a subset of the events around a ref-
erence view. As pointed out in Sect. 5.2.2, motivated by a
scalable design, this operation is carried out on subsets of
the event stream, thus recovering semi-dense depth maps of
the scene at multiple key reference views. More specifically,
we select a new key reference view as soon as the distance
to the previous key reference view exceeds a certain percent-
age of the mean scene depth (typically a number between 15
and 40%), and use the subset of events until the next key ref-
erence view to estimate the corresponding semi-dense depth
map of the scene. The depth maps are then converted to point
clouds, cleaned from isolated points (those whose number of
neighbors within a given radius is less than a threshold) and
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Fig. 7 Evolution of theDSI as the event cameramoves. Figure a shows
apreviewof the scene,while figuresb–e show the successive projections
of the DSI along its three axes (top-left inset: front view, top-right inset:
side-view, bottom-left inset: top-view). As more events are observed,

areas of high ray density (in red) start appearing and the uncertainty in
depth decreases in all directions. In this example, the DSI is sampled
uniformly in inverse depth (Color figure online)

merged into a global point cloud using the known positions
of the virtual cameras. Other depth map fusion strategies
could be implemented. However, such a research topic is
out of the scope of this paper. In practice, our approach
shows compelling large-scale 3D reconstruction results even
without the need for complex fusion methods or regulariza-
tion.

5.2.5 Map Cleaning

To further enhance the quality of the 3D reconstruction, we
use a median filter on the semi-dense depth maps obtained
in Sect. 5.2.3. Specifically, we consider only the converged
pixels, i.e., the remaining pixels after the Adaptive Gaus-
sian Thresholding, as input to the median filter. This allows
removing outliers while preserving depth discontinuities.

Additionally, we also apply a radius filter (Rusu and
Cousins 2011) to the final point cloud, which discards the
points whose number of neighbors within a given radius
is less than a threshold. This helps remove isolated points,
which are most likely outliers.

6 Sampling the DSI: Uniform Versus Projective

In this section we justify our choice of using a projective
sampling of the DSI volume, i.e., a projective voxel grid,
instead of using a uniform sampling [as originally proposed
in (Collins 1996)]. The reader who is not interested in this
explanation can jump to Sect. 7.

We compare both sampling strategies (uniform and pro-
jective) by means of a simple experiment in 2D, illustrated
in Fig. 8, and support the comparison by means of well-
grounded mathematical results.

Let us consider a 2D scene consisting of a moving event
camera and a few set of points with large contrast so that they
generate events (Fig. 8a).

For simplicity, and since our method does need the event
polarity, wemodel the event camera as a sensor that outputs a
binary value describing whether a scene point is visible by a

specific camera pixel. This is only an approximate model; for
example, an event camera moving forward towards a point
in the center of the image plane would not trigger events
(since the brightness of this pixel does not change), but in
this model we consider that for every visible scene point an
event is generated at each camera pose. Nevertheless, this is a
good geometric model that provides insight into the EMVS
problem and our proposed solution. We use this model to
compute the DSI ray density function on a region of the
X Z space, and sample it in two different ways: (1) using
a uniform grid along both X and depth Z axes (i.e., on a
Cartesian grid), as shown in Fig. 8b, and (2) using a projective
grid (as in Fig. 4) that mimics the perspective operation of a
camera located somewhere along the event camera trajectory,
as shown in Fig. 8a. Approach (1) corresponds to the one
originally proposed in (Collins 1996). We are interested in
comparing the effect of both sampling strategies on the shape
and size of the rays, more correctly “cones”, obtained by
back-projecting events, that is, we consider that pixels are
not just points but have a finite extent.

6.1 Shape of the Back-Projected Rays

First, let us analyze the shape, i.e., ignoring the finite extent
of the pixel. Later, wewill analyze the effect of the finite pixel
size on the back-projection operation to create the DSI. The
ray back-projected from a point u in the camera is a line in
Euclidean space. Using calibrated coordinates, and assuming
that P = (R|t) is the projection matrix of the camera, the ray
is given by the line joining two points (Hartley andZisserman
2003, p.162): the optical center of the cameraC = −R�t and
the point at infinity (D�, 0)�, with D = R�u, projecting on
u. A point on the ray has Euclidean coordinates

X = ρD + C. (3)

These are the parametric equations of the line, with depth
parameter ρ. The uniform sampling strategy preserves the
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(a) (b)

(d)(c)

Fig. 8 Illustration of uniform versus projective sampling of the DSI
using a 2D example. Ray density plots are pseudo-colored, from dark
blue (small density) to red (high density). Figure generated with 50
camera poses, a camera FOV of 75◦, and image resolution of 100 pixels
(along the camera’s X axis). The voxel grid has a resolution of 240
pixels (along the X axis) and 240 depth planes. a 2D scene geometry
featuring five points, the camera trajectory (in green) and optical axis

direction (in red), and the projective voxel grid (in blue). b Ray density
in Euclidean space (uniform voxel grid). The width of each ray grows
with the depth. c Ray density using projective voxel grid, equispaced in
depth (voxel vertical index). The width of each ray is constant along the
depth. d Ray density using projective voxel grid, equispaced in inverse
depth (voxel vertical index). As in Fig. 8c, the width of each ray is
constant along the depth (Color figure online)

straight nature of the back-projected rays, as shown inFig. 8b.
In contrast, the rays are no longer straight in the case of the
projective sampling (Fig. 8c). In the projectively sampled
space, a Euclidean point X .= (X,Y, Z)� is described by
coordinates

Xp =
(
X

Z
,
Y

Z
, Z

)�
.= (x, y, Z)�. (4)

Letting C = (Ci ) and D = (Di ), i = 1, . . . , 3, we com-
bine (3) and (4) to obtain the parametric equations

Xp =
(

ρD1 + C1

ρD3 + C3
,
ρD2 + C2

ρD3 + C3
, ρD3 + C3

)�
. (5)

Let us show that (5) explains the curved shapes of back-
projected rays observed in Fig. 8c. For depth values ρ 	 1,
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thepoints on the ray follow the curveXp ≈ (D1/D3, D2/D3,

0)� + ρ (0, 0, D3)
�, which is a line with direction vector

(0, 0, D3), i.e., a line parallel to the Z -axis. This is observed
in the top part of Fig. 8c. For small depth values (ρ → 0), the
points on the ray approach the optical center of the camera,
as expected, Xp ≈ (C1/C3,C2/C3,C3)

�, so we look at the
way that they approach this point by computing the tangent:

dXp

dρ
(5)=

(
D1C3 − D3C1

(ρD3 + C3)2
,
D2C3 − D3C2

(ρD3 + C3)2
, D3

)�
. (6)

The plots in Fig. 8c where generated with a moving camera
with C3 � D3, and so, for small depth values, dXp/dρ ≈
((−C1/(D3ρ

2),−C2/(D3ρ
2), D3)

�. In the 2D example
(only considering X and Z coordinates), as ρ → 0 the
tangent is dominantly along the X axis, which agrees with
Fig. 8c. In summary, when going from zero to infinite depth,
the tangent changes from being parallel to the X axis to being
parallel to the Z axis, and so, the tangent varies (smoothly)
between these two directions, as shown in the curved shapes
of Fig. 8c.

Finally, consider what happens when the DSI is sam-
pled projectively and equispaced in inverse depth instead of
depth: the curved shapes analyzed in Fig. 8c become almost
straight, as shown in Fig. 8d. This is similar to the effect
of representing the function y = ex in logarithmic scale:
log(y) becomes a line. The curve represented by the X and
Z coordinates of (5) is the parametric curve (x(r), r), with
x(r) = D1/D3 + (C1 − (C3D1)/D3)r−1 and the change of
variables r = ρD3 + C3. Thus, x(r) is a line when using
the parameter r−1 = (ρD3+C3)

−1, which is approximately
inverse depth. Fig. 8d was generated with C3 � D3, and so
the ray (x(r), r) is indeed almost straight when the Z axis is
given in inverse depth.

6.2 Size of the Back-Projected Cones

We now consider that pixels have a non-zero area and study
how a back-projected event contributes to the DSI depending
on the sampling scheme.

A pixel collects the light in a fixed, small angle around
a given direction. This angle correspond to different object
sizes depending on the distance of the object to the camera.
This idea is roughly expressed by the formula of the area A
of a sphere patch seen by a central solid angle Ω: A = Ωr2,
where r is the radius of the sphere. Thus, the same pixel
angle Ω covers an area A at a distance r and an area four-
times larger 4A at double the distance 2r . Hence, the back-
projection of a pixel into space generates a cone whose base
area A grows quadratically with the distance to the camera.

In a uniform sampling of the DSI, where all voxels have
the same size, a pixel back-projects into a cone that will
cover more voxels the farther they are from the camera. In

contrast, using a projective sampling of the DSI, we com-
pensate for the perspective effect of the camera by making
the size of the voxel increase with the distance of the voxel
to the virtual camera defining the projective grid, so that a
pixel back-projected into space will cover always roughly
the same number of voxels: one. This comparison can be
observed in Fig. 8b, c. In Fig. 8b we can identify the cones,
whose apexes lie on the event camera trajectory. In Fig. 8c,
the cones are represented by curves of approximately con-
stant width (perpendicular to the depth axis). This constant
width is also appreciated in Fig. 8d, where the cones become
“cylinders”.

Let us mathematically support the previous statements.
Fig. 8a illustrates the geometry of the projective sampling
considered. The projective DSI is defined by a virtual camera
with projection matrix Pv = (I|0), in calibrated coordinates.
At the time of the current event e = (u, v, t, p), the event
camera is described by projection matrix Pe = (R|t). The
pixel where the event has been triggered is back-projected
into points of the form (4) in the projective DSI. Each depth
plane Z = Zi induces a planar homography between the
image plane of the event camera and the image plane of the
virtual camera, by mapping the event coordinates (u, v)� to
the first two coordinates of (4), (x, y)�. We use this planar
homography to measure the area in the virtual camera (i.e.,
the area perpendicular to the depth axis in the projective grid)
that is due to the pixel that triggered the event. The relation
between the area elements in both cameras is given by the
determinant of the Jacobian of the homography:

dxdy = det

(
∂(x, y)

∂(u, v)

)
dudv. (7)

The planar homography HZi : (u, v) �→ (x, y) from the
event camera to the virtual camera, induced by the plane Z =
Zi (with coordinates π = (e�

3 ,−Zi )
�, e3 = (0, 0, 1)�), is

given by the inverse of the homogeneous matrix [see (24)]

H−1
Zi

∼ R + 1

Zi
te�

3 . (8)

The Jacobian in (7) can be computed applying Result 2 in
the Appendix to (8) and the fact that the Jacobian of HZi is
the inverse of the Jacobian of H−1

Zi
:

det

(
∂(x, y)

∂(u, v)

)
=

(
Z ′
i

Zi

)3 (
1 − Cz

Zi

)−1

, (9)

where Z ′
i is the depth of the point X ∈ π with respect to the

event camera Pe, and Cz is the third coordinate of the optical
center of Pe. Therefore, the conversion factor between areas
in the image planes is a function of the ratio of depths of
the scene point with respect to both cameras and the ratio
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of depths Cz/Zi . Assuming that the scene point is equally
far away from both cameras (i.e., Z ′

i ≈ Zi ) and that the
amount of forward motion of the event camera is negligible
compared to Zi , Cz � Zi , the conversion factor (9) in (7)
becomes approximately 1, that is, a pixel maps to an area
(perpendicular to the depth axis) of 1 pixel in the projective
grid; this is the area of a cross-section of a voxel, hence for
each depth plane Z = Zi , a pixel in the event camera votes
for 1 voxel in the projective grid.

To summarize, we have shown that the projective sam-
pling of the DSI is a better choice than the uniform sampling
because a back-projected event will vote for approximately
one grid cell per depth plane instead of multiple cells (in case
of uniform sampling) whose number would grow quadrati-
cally with depth. This property (area conversion factor ≈ 1)
is not only advantageous when creating the DSI (only one
vote needed per depth plane), but also when extracting the
scene edges from it. Indeed, areas at different depth planes of
the virtual camera are comparable when using the projective
DSI, thus enabling the use of a fixed-size adaptive-threshold
mask in all depth planes to extract clusters of high ray den-
sity along the viewing rays of the virtual camera. In contrast,
with a uniform voxel grid, the size of the clusters depends
on the depth, which means that the mask size of the adap-
tive threshold itself would have to be dependent on the depth
plane.
Remark The previous analysis used calibrated coordinates.
If, instead, we use pixel coordinates, with Kv and Ke being
the intrinsic parameter matrices of the DSI virtual camera
and the event camera, respectively, it is easy to show, using
an argument on how area elements transform (7), that (9)
will become

det

(
∂(x, y)pixel
∂(u, v)pixel

)
= det(Kv)

det(Ke)

(
Z ′
i

Zi

)3 (
1 − Cz

Zi

)−1

, (10)

that is, the ratio of the focal lengths of the cameras can be
used to modify the number of voxels that each event votes
for. However, a typical design choice is det(Kv) = det(Ke)
so that such a number is 1, as analyzed above.

Other compelling reasons to choose a local projective DSI
over a global, uniform DSI are that: (1) for a given amount
of memory, it is better to maintain a local map since it allows
for higher resolution, and (2) for some applications, such as
visual odometry (without loop closure), it suffices to provide
a local 3D map.

7 Algorithmic Considerations for Real-Time
Performance

The goal of this section is twofold: (1) describe the two-
step approach that is used to accelerate computations and (2)

Algorithm 1 Efficient event back-projection
Goal: back-project events positions {(u j , v j )} to the projective DSI.
Input: a projective DSI defined by a virtual camera P = (I|0) and Nz
depth planes Z = Zi ; points {(u j , v j )} at the current location of the
event camera Pe = (R|t). Procedure:
1. Map points from the event camera to the virtual camera via a canon-

ical plane Z = Z0, according to homography HZ0 (see (8)), and
store the transferred points {(x j (Z0), y j (Z0))} with full precision.

2. For each depth plane Z = Zi :

(a) Map points from the event camera to the virtual camera via
the plane Z = Zi using the homography hi0 ≡ HZiH

−1
Z0

on
the stored points: (x j (Zi ), y j (Zi )) = hi0((x j (Z0), y j (Z0))).
See (15).

(b) Vote for the DSI voxels at positions {(x j (Zi ), y j (Zi ), Zi )}.

Fig. 9 Efficient event back-projection in Algorithm 1. An event with
coordinates (u, v) is mapped onto the depth plane Z = Zi of the pro-
jective DSI in two steps: first, it is mapped to the depth plane Z = Z0
via HZ0 and then it is mapped to Z = Zi via the similarity HZiH

−1
Z0

in (15). In the figure, the notation xi = x(Zi ) and yi = y(Zi ) is used
for brevity

quantitativelymeasure the computational performance of the
method (e.g., in number of events processed per second).

7.1 Efficient Event Back-Projection onto the DSI

Following (Collins 1996),we populate theDSI using a space-
sweep strategy. However, our approach differs from his in the
fact that we use a projective DSI instead of a uniform one
and we keep the entire DSI in memory, not just a slice of it,
for later processing.

The approach is summarized in Algorithm 1. The main
idea behind the approach is that to compute the back-
projection locations corresponding to the depth plane Z = Zi

it is more efficient to do it in two steps (back-projecting via a
depth plane Z = Z0 and then modifying the point locations
to take into account the change in Z value) than it is to apply
the homography to the original points. This is illustrated in
Fig. 9.

The homography to transfer points from the event camera
to points on the virtual camera of the DSI via a plane Z0 is
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HZ0 , used in step 1 of Algorithm 1:

(x(Z0), y(Z0), 1)
� ∼ HZ0(u, v, 1)�, (11)

where we explicitly wrote the dependency of the transferred
point (x(Z0), y(Z0)) with respect to the plane used Z = Z0.
Points transferred via another plane, Z = Zi , can be written
in terms of the points transferred using Z = Z0 as follows:

(x(Zi ), y(Zi ), 1)
� ∼ HZiH

−1
Z0

(x(Z0), y(Z0), 1)
�, (12)

where the homography HZiH
−1
Z0

has a very simple structure: a
similaritywithout rotation. Let us show this. Using thematrix
inversion lemma on the first term of

HZiH
−1
Z0

(8)=
(
R + 1

Zi
te�

3

)−1 (
R + 1

Z0
te�

3

)
, (13)

and the equation of the optical center of the event camera,
(Cx ,Cy,Cz)

� .= C = −R�t, we obtain

HZiH
−1
Z0

∼ I + Z0 − Zi

Z0(Zi − Cz)
Ce�

3 . (14)

Dividing the homogeneous matrix (14) by its last entry and
writing (12) in expanded form gives

x(Zi ) = Z0

Zi
δ x(Z0) + 1

Zi
(1 − δ)Cx ,

y(Zi ) = Z0

Zi
δ y(Z0) + 1

Zi
(1 − δ)Cy,

(15)

where δ = (Zi − Z0)/(Z0 − Cz). Hence, the transforma-
tion HZiH

−1
Z0

in (15) is very simple and fast to compute. This
is the advantage of the two-step approach. These equations
are similar to the equations in (Collins 1996), except for the
additional multiplicative factors Z0/Zi and 1/Zi .

Accumulating votes in the DSI (line 2b of Algorithm 1)
is a process known as forward mapping in image pro-
cessing (Wolberg 1990, ch. 3), and it can be done in
different ways. The simplest one is nearest neighbor: point
(x j (Zi ), y j (Zi ))votes for a single cell of the depth plane Z =
Zi . A better strategy because it mitigates the grid discretiza-
tion effect is bilinear voting: point (x j (Zi ), y j (Zi )) votes for
its four nearest cells on the depth plane Z = Zi , splitting the
vote according to the distances of (x j (Zi ), y j (Zi )) to the
integer cell locations, similarly to bilinear interpolation.

7.2 Computational Performance of the Method

The algorithm can be parallelized in amulti-core architecture
by making each thread work on a different group of depth
planes so that there are no race conditions during voting.

The two-step approach in Algorithm 1 is efficient if events
are processed in groups or batches. Theoretically, each event
has a different camera pose Pe(t), but using a different pose
to process each event would make any algorithm terribly
inefficient. For example, just the simple operation of pose
interpolation along the camera trajectory becomes an expen-
sive operation when it is done at the event rate (in the order
of 105–106 events/s). In practice, it is sensible to assume that
events, which have microsecond resolution, can be grouped
in time so that they are assigned the same camera pose
and processed together (i.e., they share the same homog-
raphy HZ0 , which is the most expensive part to compute).
We typically use batches containing a small, fixed number of
events (typically, 256 events). The corresponding time inter-
val depends on the event rate (hence the camera motion), but
it is typically very small (in the order of 1ms or less).

The number of operations required to compute the DSI
grows linearly with the number of depth planes in the voxel
grid. Moreover, as explained in Sect. 6.2, for the choice
det(Kv) = det(Ke), the complexity does not depend on the
spatial resolution of the depth planes, because in that case
only one vote is necessary per depth plane.

Finally, for an efficient implementation with real cameras,
it is a good practice to use a look-up-table of undistorted
calibrated coordinates (u, v) of the event camera and to use
SIMD instructions for matrix multiplications in Algorithm 1.

Quantitative Evaluation We measured the speed of our
implementation on a Lenovo W541 laptop computer con-
taining an Intel Core i7-4810MQ @2.80 GHz quad-core
processor, and a scene recorded in a typical office environ-
ment (similar to the first row in Fig. 15) with the DAVIS
camera (240 × 180 resolution). The event rate in the scene
varied between 250,000 and 900,000 events/s. We used 100
depth planes in the voxel grid, and a batch size of 256 events.
On a single core, our implementation can process on average
1.2million events/s (which is higher than themaximumevent
rate in the scene, thus running faster than real-time), and on
average 4.7 million events/s with the multi-core implemen-
tation (using 4 cores).

8 Experiments

We now evaluate the performance of our event-based space
sweep method, on both synthetic and real datasets.

8.1 Synthetic Data

Wegenerated three synthetic datasetswith ground truth infor-
mation by means of an event camera simulator (Mueggler
et al. 2017). We set the spatial resolution to 240 × 180
pixels, as that of commercial event sensors. The datasets
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Fig. 10 Synthetic experiments: estimated semi-dense depth maps
overlayed over screenshots of the scene, in three datasets a–c. Depth
is colored, from close (red) to far (yellow). Our EMVS algorithm suc-
cessfully recovers most edges, even without regularization or outlier

filtering. d Relative depth error as a number of depth planes Nz , in
all three datasets: Dunes (blue), 3 planes (red), and 3 walls (green). a
Dunes. b 3 planes. c 3 walls. d Depth error (Color figure online)

Table 1 Depth estimation accuracy in the synthetic datasets (Nz =
100)

Dunes 3 Planes 3 Walls

Depth range (m) 3.00 1.30 7.60

Mean error (m) 0.14 0.15 0.52

Relative error (%) 4.63 11.31 6.86

also contain intensity images along the event camera view-
points. However, these are not used in our EMVS algorithm;
they are solely shown to aid the visualization of the semi-
dense depth maps obtained with our method. The datasets
exhibit various depth profiles and motions: Dunes consists
of a smooth surface (two dunes) and a translating and rotat-
ing camera in two degrees of freedom (DOF), 3 planes shows
three planes at different depths (i.e., discontinuous depth pro-
file with occlusions) and a linear camera motion; finally, 3
walls shows a room with three walls (i.e., a smooth depth
profile with sharp transitions) and a general, 6-DOF camera
motion.

Our EMVS algorithmwas executed on each dataset. First,
we evaluated the sensitivity of our method with respect to
the number of depth planes Nz used to sample the DSI. In
this experiment, the planes in the DSI were equispaced in
depth (as opposed to inverse depth) since it provided bet-
ter results in scenes with finite depth variations. Fig. 10d
shows, as a function of Nz , the relative depth error, which
is defined as the mean depth error (between the estimated
depth map and the ground truth) divided by the depth range
of the scene. As expected, the error decreases with Nz ,
but it stagnates for moderate values of Nz . Hence, from
then on, we fixed Nz = 100 depth planes. Table 1 reports
the mean depth error of the estimated 3D points, as well
as the relative depth error for all three datasets. Depth
errors are small, in the order of 10% or less, showing the
good performance of our EMVS algorithm and its ability
to handle occlusions and a variety of surfaces and camera
motions.

8.2 Real Data

We also evaluated the performance of our EMVS algorithm
on datasets from a DAVIS sensor (Brandli et al. 2014b).
The DAVIS outputs, in addition to the event stream, inten-
sity frames as those of a standard camera, at low frame rate
(24 Hz).1 However, our EMVS algorithm does not use the
frames; they are displayed here only to illustrate the semi-
dense results of the method.

We considered two methods to provide our EMVS algo-
rithmwith camera pose information: amotorized linear slider
or a visual odometry algorithm on the DAVIS frames. We
used the motorized slider to analyze the performance in con-
trolled experiments (since it guarantees very accurate pose
information) and a visual odometry algorithm [SVO (Forster
et al. 2014)] to show the applicability of our method in hand-
held (i.e., unconstrained) 6-DOF motions.

8.2.1 High Dynamic Range and High-Speed Experiments

In this section, we show that our EMVS algorithm is able to
recover accurate semi-dense structure in two challenging sce-
narios, namely (1) high-dynamic-range (HDR) illumination
conditions and (2) high-speed motion. For this, we place the
DAVIS on the motorized linear slider, facing a textured wall
at a known constant depth from the sensor. In both exper-
iments, we measure the accuracy of our semi-dense maps
against ground truth and demonstrate compelling depth esti-
mation accuracy, in the order of 5% of relative error, which
is very good, especially considering the low resolution of the
sensor (only 240 × 180 pixels). In order to provide a fair
measurement of the raw accuracy of our approach, we did

1 The DAVIS comprises both a frame camera and an event sensor
(DVS) in the same pixel array of size 240 × 180. The frames may
be used to simplify intrinsic camera calibration, by applying standard
algorithms (Zhang 2000). Otherwise, tailored event-based algorithms,
such as (Mueggler et al. 2014), may be applied.
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Fig. 11 HDR experiment: top: scene and illumination setups, with the
DAVIS on themotorized linear slider (a) and a lamp (b). Sample frames
show under- and over-exposed levels in HDR illumination (b). By con-
trast, the events (overlayed on the frames) are unaffected, due to the high

dynamic range of the event sensor. Bottom: reconstructed point clouds.
a Constant illumination setup. Events on a frame. b HDR illumination
setup. Events on a frame. c Constant illum. 3D points: front and top
views. d HDR illum. 3D points: front and top views

Table 2 Depth estimation accuracy in the HDR experiment (no post-
processing)

Illumination Close (distance: 23.1 cm) Far (distance: 58.5 cm)

Mean
error (cm)

Relative
error (%)

Mean
error (cm)

Relative
error (%)

Constant 1.22 5.29 2.01 4.33

HDR 1.21 5.25 1.87 3.44

not perform any additional post-processing or map cleaning
(Sect. 5.2.5) for these quantitative experiments.

High Dynamic Range Experiment We recorded two
datasets under the same acquisition conditions except for illu-
mination (Fig. 11): first with constant illumination through-
out the scene and, second, with a powerful lamp illuminating
only half of the scene. In the latter case, a standard camera
cannot cope with the wide intensity variation in the middle
of the scene since some areas of the images are under-
exposed while others are over-exposed. We performed the
HDR experiment with two different wall distances (close
and far).

The results of our EMVS algorithm are given in Fig. 11
and Table 2. Observe that the quality of the reconstruction is
unaffected by the illumination conditions. In both cases, the
EMVSmethod has a very high accuracy (mean relative error
≈ 5%), and also in spite of the low spatial resolution of the
sensor or the lack of regularization. Moreover, observe that
the accuracy is not affected by the illumination conditions.

Hence, we unlocked the high-dynamic range capabilities of
the sensor to demonstrate successful HDR depth estimation.

High-Speed Experiment To show that we can exploit the
high-speed capabilities of the event sensor for 3D reconstruc-
tion, we recorded a dataset with the DAVIS at 40.5 cm from
thewall andmoving at 0.45ms. This translated into an appar-
ent speed of 376 pixels/s in the image plane, which caused
motion blur in the DAVIS frames (Fig. 12). The motion blur
makes the images unintelligible. By contrast, the high tem-
poral resolution of the event stream still accurately captures
the edge information of the scene. Our EMVS method pro-
duced a 3D reconstruction with a mean depth error of 1.26
cm and a relative error of 4.84 %. The accuracy is consistent
with that of previous experiments (≈ 5%), thus supporting
the remarkable performance of our method and its capability
to exploit the high-speed characteristics of the event sensor.

8.2.2 Three-Dimensional Scenes

All previous experiments were carried out with nearest-
neighbor DSI voting (Sect. 7.1), and lacked structure post-
processing (no median or radius filters were applied). The
following experimentswere performedwith bilinearDSI vot-
ing and structure post-processing (Sect. 5.2.5).

Figures 13 and 14 show some results obtained by our
EMVS method on non-flat scenes. We show both the semi-
dense point cloud and its projection on a frame (for better
understanding). To ease the visualization, depth is colored
from red (close) to blue (far).
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Fig. 12 High-speed experiment. Frame and the events from the DAVIS at 376 pixels/s. The frame suffers from motion blur, while the events do
not, thus preserving the visual content. a Frame (motion blur). b Events (Δt = 2ms). c Frame and events
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Fig. 13 Desk dataset: scene with objects and occlusions. a Side view. b Front view. c Projection on a frame
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Fig. 14 Boxes dataset: large-scale semi-dense 3D reconstruction with a hand-held DAVIS. a Side view. b Top view. c Projection on a frame

In Fig. 13, the DAVIS was moved in front of a scene con-
taining various objects with different shapes and at different
depths. In spite of the large occlusions of the distant objects,
generated by the foreground objects, our EMVS algorithm
was able to recover the structure of the scene reliably. Fig-
ure 14 shows the result of our EMVS algorithm on a larger
scale dataset. The sensor was hand-held moved in a big room
featuring various textured boxes. Multiple local point clouds
were estimated along the trajectory, which were then merged
into a global, large-scale 3D reconstruction.

Finally, Fig. 15 shows qualitative results of our approach
in various natural environments (both indoors and outdoors)
and depth ranges. For each scene, we moved the event cam-
era in a circular fashion, in order to generate events from

edges in all directions. We used a visual odometry algo-
rithm (Forster et al. 2014) on the DAVIS frames to estimate
the camera motion, and used linear interpolation to provide
the camera pose for each event. The DSI was sampled uni-
formly in inverse depth (as in Fig. 8d) to cope with large
depth variations, using between 100 and 150 depth planes.
Theminimumandmaximumdepth valueswere setmanually,
differently for each experiment to adapt better to the depth
range in the scene. We used a median filter of size 15 pixels
in the semi-dense depth maps. Then, in the point clouds, we
used a radius filter of size equal to 5% of the mean scene
depth, and a minimum number of neighbors of N = 4 to
remove isolated points.
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Fig. 15 Semi-dense 3D reconstructions of several scenes with a hand-held DAVIS. a Scene, b events (positive and negative), c semi-dense depth
map, pseudo-colored from red (close) to blue (far), d point cloud (Color figure online)

123



Int J Comput Vis (2018) 126:1394–1414 1409

Fig. 16 Effect of a dynamic scene: the same scene and cameramotions
were used to create the 3D reconstructions shown in Fig. 16a, b. How-
ever, in Fig. 16b, a hand was continuously waived in front of the sensor,
generating a large number of outlier events. Nonetheless, our algorithm
is barely affected and both 3D reconstructions are similarly good. a
Static scene. From left to right: Preview image; Preview of the events;

3D reconstruction (front view and side view). b Dynamic scene with
hand continuously waving in front of the sensor. Apart from a small
number of outlier 3D points generated by the moving hand (circled in
red), our algorithm is able to reconstruct the scene as well as in the static
case

8.2.3 Effect of Dynamic Objects

In this section, we show that the proposed method is robust
to the presence of moving objects in the scene. In Fig. 16,
we compare two 3D reconstructions obtained by our method,
with and without the presence of a moving, occluding object
in front of the sensor, and show that they are qualitatively
equivalent. Indeed, themoving object does not generate votes
with a spatial persistence in the DSI, and so the votes are
treated as noise and are filtered out by the Adaptive Gaussian
Thresholding. In both cases, the length of the sequence of
events used for reconstruction was the same, and the camera
motion was very similar.

8.2.4 Effect of Light Changes

Due to the fact that the event camera reacts to light changes,
one might think that strong temporal light changes would
perturb the performance of the algorithm. In Fig. 17, we
show that this is not the case, e.g., the proposed approach is
robust to strong light changes. The reason of this robustness
is twofold: (1) the sensor itself, thanks to its high dynamic
range, is to a large extent invariant to illumination condi-
tions (Fig. 17b), and (2) strong light changes generate a burst
of events across the whole sensor, which results in simply
adding a constant offset to the DSI, which does not affect the
adaptive thresholding step.

9 Discussion

This work has focused on multi view stereo with a single
moving event camera. Our goal was to show that 3D recon-
struction with a single event camera is possible, and that
we do not need to solve the data association problem or
estimate image intensity. The results showed that (1) the
method provides accurate results, being able to unlock the
capabilities of the sensor in challenging scenarios (HDR and
high-speed) where standard cameras fail, (2) the method can
handle inaccurate poses (the experiments with poses pro-
vided by a frame-based visual odometry algorithm show
visually appealing results, which suggests that the method is
robust to pose uncertainty), and (3) the method is computa-
tionally efficient and can run on the CPU, without additional
dedicated hardware.

The applicability of multi view stereo depends on the
availability of pose information, which in the experiments
was provided by an external tracking algorithm or system.
However, this is not a limitation, since the method can be
used in combination with an event-based motion estimation
algorithm, as shown in (Rebecq et al. 2017), thus removing
the need for an external pose estimator.

The major limitation of the proposed approach is that it
provides depth values on a discrete set, thus the resolution is
limited by the number of depth planes used, Nz . The compu-
tational complexity of the method is linear in the number of
depth planes, O(Nz), while the discretization error is propor-
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Fig. 17 Effect of strong light changes: despite switching off the light
in the middle of the sequence (Fig. 17b), the obtained 3D reconstruc-
tion remains unaffected and of high quality (Fig. 17c). a Preview of the
scene. b Visualization of frames from a standard camera, compared to

the events. Top row: light ON; Bottom row: light OFF. The events are
unaffected by the strong light change. c From left to right: Top view,
side view, and perspective view of the reconstructed 3D scene

tional to 1/Nz . Hence, there is an accuracy vs. computation
effort tradeoff. However, increasing Nz does not improve the
total accuracy, as shown in Fig. 10d, since the accuracy also
depends on the triangulation uncertainty. The discretization
effect has also an undesirable influence when merging point
clouds from different keyframes: the same 3D point may be
extracted from two different DSIs, but the 3D positions may
not agree since they are rounded to the position of the center
of a voxel. A continuous formulation, in the form of depth
filters (Vogiatzis and Hernández 2011; Pizzoli et al. 2014),
where depth can have any positive real value, would be more
desirable, and it is a line of future work.

Investigating methods to regularize semi-dense depth
maps is also interesting and of large applicability since semi-
dense depth maps are used not only in our method but also in

state-of-the-art visual odometry algorithms for standard cam-
eras, such as LSD-SLAM(Engel et al. 2014) andDSO (Engel
et al. 2017). We showed how simple processing techniques,
such as median filtering, are effective tools to improve the
quality of the reconstructions, but more principled methods
would also be desirable.

10 Conclusion

We introduced the EMVS problem, and provided a simple
and elegant solution to it that exploits the natural strengths of
the sensor, and runs in real-time on a CPU. We validated our
algorithmon both synthetic and real data, for variousmotions
and scenes, showing very accurate 3D reconstructions (rela-
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tive depth error of 5%) in spite of the low resolution of the
sensor and the high amount of noise typical of event cam-
eras. We believe this work is a major step towards building
3D reconstruction algorithms robust to speed (the events do
not suffer from motion blur), and HDR illumination. This
paper further highlights the potential of event cameras and
the astounding possibilities it opens to computer vision.
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A Relation of Area Elements due to a 2D
Homography

This section provides a useful result on how a 2D transfor-
mation given by a homography affects the area element.

Result 1 (Jacobian of a Homography) Let H be a 2D homog-
raphy transforming points x .= (x, y, 1)� to points x′ .=
(x ′, y′, 1)� in homogeneous coordinates: x′ ∼ Hx, where ∼
means equality up to a non-zero scale factor. The determi-

nant of the Jacobian of the transformation (x, y)
H�→ (x ′, y′)

(in Euclidean coordinates),

J
.= ∂(x ′, y′)

∂(x, y)
=

(
∂x ′
∂x

∂x ′
∂y

∂y′
∂x

∂y′
∂y

)
(16)

is

det(J) = det(H)

(e�
3 Hx)3

, (17)

where e3 = (0, 0, 1)� is the 3-rd vector of the canonical
basis in R3.

The determinant of the Jacobian (17) provides the relation
between the area elements in (x, y) and in (x ′, y′) according
to the geometric transformation given by the homography H,

d A′ .= dx ′dy′ = det(J) dxdy = det(J) d A, (18)

as illustrated in Fig. 18.

Fig. 18 Result 1. A homography H maps points to points and lines to
lines. Area elements are transformed according to d A′ = |J|d A, where
J is the Jacobian of the homography H

Proof Let H = (hi j ) be the homogeneous matrix of the
homography, and let h�

3
.= e�

3 H be its third row. Writing
out explicitly the transformed variables

x ′ = h11x + h12y + h13
h31x + h32y + h33

, y′ = h21x + h22y + h23
h31x + h32y + h33

,

(19)

we may compute the four elements of the Jacobian matrix
(17):

J = 1

h�
3 x

(
h11 − x ′h31 h12 − x ′h32
h21 − y′h31 h22 − y′h32

)
(20)

Next, we compute the determinant of this matrix. Noting that
(h11 − x ′h31)(h22 − y′h32) − (h12 − x ′h32)(h21 − y′h31) =
x′ ·((He1)×(He2)) is a mixed product in terms of the first two
columns ofH, with e1 = (1, 0, 0)� and e2 = (0, 1, 0)�, gives

det (J) = 1

(h�
3 x)2

x′ · ((He1) × (He2)) . (21)

Substitutingx′ = Hx/(h�
3 x) in themixed productx′·((He1)×

(He2)) = det
(
x′,He1,He2

)
and using the properties of the

determinant, det (Hx,He1,He2) = det(H) det (x, e1, e2) =
det(H), gives the desired result (17):

det (J)
(21)= det (Hx,He1,He2)

(h�
3 x)3

= det(H)

(e�
3 Hx)3

. (22)

��

A.1 Planar Homography

Next, we particularize the previous general Result 1 to the
case of a planar homography induced by a plane in space.

Let us consider (1) two finite cameras (i.e., whose optical
centers are not at infinity) with projection matrices given by
P = (I|0) and P′ = (R|t) in calibrated coordinates, and (2)
a plane not passing through the optical centers of the cam-
eras, with homogeneous coordinates π = (a, b, c, d)� =
(n�, d)�, where n is the unit normal to the plane. The opti-
cal centers of P and P′ are 0 and C = −R�t, respectively.
The planar homography from the image plane of P to the
image plane of P′ via the plane π , such that x′ ∼ Hx, is

Hπ (P,P′) ∼ R − 1

d
tn� = R

(
I + 1

d
Cn�

)
, (23)

where I is the identity matrix.
The planar homography from P′ to P via the plane π is

given by the inverse of (23):

Hπ (P′,P) = H−1
π (P,P′) ∼

(
I − 1

d + n�C
Cn�

)
R�. (24)
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Fig. 19 Result 2.Relation of area elements inducedby aplanar homog-
raphy: d A′ = |J|d A, whereJ is the Jacobian of the planar homography,
and Z , Z ′ are the depths of the scene point X with respect to the two
cameras, respectively

Result 2 (Jacobian of a Planar Homography) For a planar
homography (23), Result 1 becomes

det (J) =
(
Z

Z ′

)3 (
1 + C · n

d

)
, (25)

where Z and Z ′ are the depths of the point X ∈ π , projecting
on x and x′, with respect to cameras P and P′, respectively.
This is illustrated in Fig. 19.

Proof Let us compute the numerator and denominator
of (17). Applying det(R) = 1 = det(I) and the matrix deter-
minant lemma to (23) gives

det(H) = det(R) det

(
I + 1

d
Cn�

)
= 1 + 1

d
n�C. (26)

A point X .= (X,Y, Z)� lies on the plane π if it satisfies

n�X + d = 0. (27)

The point X expressed in the frame of P′ becomes

(X ′,Y ′, Z ′)� .= X′ = RX + t = R(X − C). (28)

Since xZ = (x, y, 1)�Z = X and

HX
(23)= R

(
X + X · n

d
C

)
(27)= R(X − C)

(28)= X′, (29)

the denominator of (17) is given in terms of e�
3 Hx

(29)=
e�
3 X′/Z . Substituting this result and (26) in (17) gives (25).

��
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