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Abstract The plastic strain rate plays a central role in
macroscopic models on elasto-viscoplasticity. In order
to discuss the concept behind this quantity, we propose,
first, a kinetic toy model to describe the dynamics of
sliding layers representative of plastic deformation of
single crystalline metals. The dynamic variable is given
by the distribution function of relative strains between
adjacent layers, and the plastic strain rate emerges as
the average hopping rate between energy wells. We
demonstrate the behavior of this model under different
deformations and how it captures the elastic-to-plastic
transition. Second, the kinetic toy model is reduced to a
closed evolution equation for the average of the relative
strain, allowing us to make a direct link to macroscopic
theories. It is shown that the constitutive relation for
the plastic strain rate does not only depend on the
stress, but also on the macroscopic applied deformation
rate, contrary to common practice.
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Introduction

In macroscopic approaches of plasticity theory, the
distinction between the initial state of deformation, cur-
rent state, and intermediate stress-free state, reached
from the current state upon cessation of the applied
stress, is at the heart of all efforts (Besseling and van
der Giessen 1993). Different formulations of plasticity
exist depending on whether a static yielding criterion is
invoked. In the absence of such, a measure for the elas-
tic part of deformation is used as the dynamic “struc-
tural” variable of the material. For this variable, one
invents irreversible dynamics in order to account for the
rate-dependent plasticity (Boyce et al. 1988; Tervoort
et al. 1998; Hütter and Tervoort 2008b), based on the
seminal work of Leonov (1976). While the elastic left
Cauchy–Green tensor is the most common choice for
the dynamic variable, it has been argued recently that
the elastic part of the deformation gradient F, Fe, is a
more suitable dynamic variable in an Eulerian formu-
lation when dealing with general anisotropic materials
(Hütter and Tervoort 2008a, b, c). In a macroscopic
flow field v(r), the evolution equation can be written
in the form (see also Rubin (1994, 1996) for a similar
approach)

D
Dt

Fe = (
κ − κp) · Fe , (1)

with the material derivative D/Dt = ∂/∂t + v · ∇ and
the transposed velocity gradient κ = (∇v)T . The sym-
bol κp stands for the so-called plastic deformation gra-
dient, for which a constitutive relation is required. In
purely macroscopic theories of crystalline metals, slip
systems, indexed with i, with slip directions si and slip
plane normal ni capture the key modes of deformation.
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If γ̇p,i denotes the rate of plastic deformation in slip
system i, the generic ansatz for the plastic deformation
gradient tensor is given by

κp =
∑

i

γ̇p,isi ⊗ ni , (2)

where the summation runs over all active slip systems
(Asaro 1983). In the absence of detailed dislocation
dynamics, it is usually assumed that γ̇p,i depends on
the state of deformation through the Cauchy stress ten-
sor σ . Particularly, γ̇p,i ∝ τ k

i with resolved shear stress
τi = si · σ · ni on glide system i (Asaro 1983; Pan and
Rice 1983). If the dynamics of dislocations are included
in the full set of evolution equations, the dislocation
densities enter into γ̇p,i as well (Asaro 1983; Hutchinson
1976; Pan and Rice 1983; Estrin 1996; Tabourot et al.
1997; Schulze and Vöhringer 2001). The evolution
equation (Eq. 1) for the elastic part of the deformation
gradient can, in principle, be used to describe both the
elasto-viscoplasticity of solids and the viscoelasticity of
liquids, depending on the constitutive relation for κp.
The main difference is that, in elasto-viscoplasticity, the
plastic deformation gradient is a strong function of the
applied stress, leading to a rather abrupt change from
solid- to fluid-like behavior.

Our primary interest is in discussing some issues
about the emergence of plastic deformation upon in-
creasing the stress level, i.e., about the background be-
hind a macroscopic theory as described above in Eq. 1.

To that end, we restrict ourselves to shear deformations
in the xy-plane exclusively,

κ =
⎛

⎝
0 γ̇m 0
0 0 0
0 0 0

⎞

⎠ , Fe =
⎛

⎝
1 Fe

xy 0
0 1 0
0 0 1

⎞

⎠ , (3a)

with shear rate γ̇m; the subscript “m” is used for later
convenience to indicate that this is a “macroscopic”
shear rate. The evolution equation (Eq. 1) implies that
κp is of the same tensorial form as κ , with γ̇m replaced
by γ̇p. In view of Eq. 2, this means that we consider
situations with only a single slip system active, with s
and n being the x- and y-directions, respectively. For
these circumstances, Eq. 1 reduces to

D
Dt

Fe
xy = γ̇m − γ̇p , (3b)

with γ̇p the plastic strain rate. In this special case,
the task of modeling consists in finding a constitutive
relation for γ̇p.

The top part of Fig. 1 shows schematically different
levels of description of crystalline metals, from left to
right: single atoms, dislocation lines and slip planes,
elasticity and plasticity with deformation tensors, and
the continuum material. For comparison, possible dif-
ferent levels of description for polymeric liquids are
depicted as well: chains as composed of atoms, bead-
spring chain with (usually purely entropic) springs,
Maxwell model with a conformation tensor, and the
continuum description (Bird et al. 1987; Larson 1999).

Fig. 1 Schematic
representation of the multiple
levels of description of
crystalline metals and
polymers
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In order to discuss the meaning of the plastic strain rate
γ̇p, it is useful to relate the macroscopic description to
one of the more fine-grained ones. For example, it has
been shown that γ̇p is related to the time-correlation of
the fluctuations in the deformation gradient if the latter
is expressed in terms of the rapidly moving microscopic
constituent particles (Hütter and Tervoort 2008c). Con-
versely, one can choose to link γ̇p to the dynamics of
dislocations (Orowan 1934; Von Polanyi 1934; Taylor
1934), as done to explain work-hardening by moving
mutually interacting dislocations (Kocks 1976; Mecking
and Kocks 1981; Kuhlmann-Wilsdorf 1985; Kocks and
Mecking 2003). The link between the dislocation
picture and a macroscopic description is established
through the Orowan relation (Asaro 1983; El-Azab
2000; Groma et al. 2003; Arsenlis et al. 2004). Here,
in contrast, we follow an alternative route. Namely, we
study the dynamics of sliding layers, with the important
main advantage that this will allow us eventually to
connect in a direct and clean fashion to the macroscopic
modeling approaches as the one specified in Eq. 1.
Specifically, we introduce a kinetic toy model that en-
compasses both the elastic deformation and the aspect
of plastic flow in the deformation of crystalline metals,
thereby also enabling the modeling of the elastic-to-
plastic transition.

The manuscript is organized as follows: After formu-
lating the kinetic toy model in the section “Formulation
of the kinetic toy model,” we illustrate with certain
examples the predictions for the model under steady
and transient conditions in the section “Model predic-
tions.” In the section “Reduction to a closed first-
moment description,” the kinetic model is then reduced
to a closed-form evolution equation for the average
strain, which can be identified with the component Fe

xy
in Eq. 3. In the section “Discussion,” the results are
discussed and the relation of the proposed kinetic toy
model to the concept of dislocations is illustrated.

Formulation of the kinetic toy model

The most fundamental ingredient for the model pre-
sented here is that there is an energetically favored con-
figuration, the system can be driven out of by external
action to fall into an other equivalent favorable config-
uration. “Equivalent” here means that the energetics
around all favorable configurations look identical, and
the rate of transition is the only measure of non-elastic
(i.e., plastic) deformation. This scenario is realized in
single-crystalline metals in the most pure form. For
this case, the toy model can be used to describe the
microscopic kinetics of crystal plasticity by sliding lay-

ers. However, despite the repeated mention of metal
plasticity throughout the paper, one must keep in mind
that this application of the model is not exclusive. For
example, it is possible that the model is applicable to
the motion of defects that cause amorphous solid poly-
mers to behave viscoplastically, a point on which we
will comment in the “Discussion” section. Regardless
of the specific application, it can be said that, in gen-
eral, the (resolved) shear stress is the cause of plastic
deformation (Callister 2000; Haasen 1978). Therefore,
we will restrict ourselves to shear deformations in the
following.

Let us consider a stack of crystal layers. The instan-
taneous arrangement within that stack can be captured
by the relative shear strains between any two adjacent
layers, γ . Two adjacent layers interact by a potential
�(γ ) that reflects the periodicity of the crystal and its
preferred equilibrium structure. More precisely, for two
layers displaced by γ with respect to each other, �(γ )

summarizes all microscopic interaction energies within
the volume V of one crystal unit cell, divided by V,
i.e., � has units of an energy density. By definition, the
energy minimum shall occur for γ = 0, corresponding
to the equilibrium crystal structure. Due to the crystal
symmetry, the potential � is symmetric around γ = 0.
The periodicity is denoted by � > 0, while, for later
convenience, �� = [−�/2, �/2] is introduced to denote
the γ interval, which is bound on both sides by the
location of the maximum in �. A prototype example
for � is

�(γ ) = �0

2

(
1 + cos

(
2π

γ + �/2

�

))
, (4)

which vanishes at γ = 0 and has a maximum of �0 at
γ = ±�/2.

The time-dependent distribution function of the
strains is denoted by p(γ, t), and will serve as the
dynamic variable in the proposed kinetic theory model
for crystal plasticity. However, we begin with discussing
the dynamics of the strain variable γ itself, which must
account for the following effects. Under the application
of a small shear stress, the material deforms elasti-
cally, i.e., the deformation is recoverable. Here, “small
shear stress” implies that the barriers between wells
in the periodic potential �(γ ) cannot be surmounted.
Upon exerting a large enough shear stress, however,
the energetic hindrance is overcome and the crystal
planes begin to move relative to each other into the
next energy well, i.e., plastic irreversible flow sets in.
In addition, one must account for the fact that a layer
within a single crystalline grain is made of a large
number of microscopic particles, and hence, the layer as
an entity experiences irregular thermal motion at finite
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temperature. After neglecting inertia of the sliding lay-
ers, the evolution of γ can thus be described by the sto-
chastic differential equation (Gardiner 1985; Öttinger
1996)

dγ = 1

η̂

(
σ0 − ∂�

∂γ

)
dt + √

2DdWt , (5)

where η̂ is a friction coefficient. The prefactor
√

2D
in the noise term represents the strength of fluctua-
tions, with dWt as the random increment of a stochastic
Wiener process with statistical averages 〈dWt〉 = 0 and
〈dWtdWt′ 〉 = δ(t − t′)dt. In addition to the force due to
the symmetric crystal potential, an “external” parame-
ter σ0 has been introduced, in order to represent the
driving of the system out of equilibrium by the applied
stress.

While, as a result of the applied stress, the transition
of γ from one energy well to another one in the periodic
energy landscape signifies plastic flow, the cessation
of that stress will prevent γ from going back to the
original well. There are two possibilities to interpret
γ and to use the evolution equation (Eq. 5). Either
γ is taken as the total strain, or it is interpreted as
measuring that part of the strain that is recovered upon
cessation of the applied stress, i.e., capturing the rela-
tive distance between the current state and the closest
stress-free reference state. In our model, we adopt the
latter interpretation, which is represented in Eq. 5 by
requiring that γ can only take values in the previously
defined domain �� , and by imposing periodic boundary
conditions. However, this necessitates keeping track of
the rate of transitions between different wells in the
energy landscape, on which we will comment further
below.

The stochastic differential equation (Eq. 5) can
equivalently be represented in terms of the Fokker–
Planck equation for the time-dependent probability
distribution function p(γ, t) (Gardiner 1985; Öttinger
1996),

∂p
∂t

= − ∂ j
∂γ

, (6a)

with the probability current

j = 1

η̂

(
σ0 − ∂�

∂γ

)
p − D

∂p
∂γ

, (6b)

where it has been assumed that the diffusion coefficient
D does not depend on γ . Requiring that the distribu-
tion of strains at equilibrium in the absence of external
driving (σ0 = 0) be given by the Boltzmann distribu-
tion, peq(γ ) = N−1 exp (−�(γ )/θ) with the thermal en-
ergy per crystal unit cell θ = kBT/V and normalization
constant N , leads to the fluctuation–dissipation relation

between the friction and diffusion coefficients (Kubo
1966; Kubo et al. 1985)

D = θ/η̂ . (7)

In analogy to Eq. 5, Eq. 6 must be solved on the interval
�� with periodic boundary conditions.

With the Fokker–Planck equation (Eq. 6) for the
evolution of the distribution function p(γ, t), we are
in the position to give a transparent interpretation of
the transition between the different energy wells. Ac-
cording to Eqs. 5 and 6, due to the driving parameter
σ0 > 0 (σ0 < 0), γ has a tendency to cross the boundary
of the interval �� more often in the positive (negative)
direction, which is represented on the level of the dis-
tribution function as a non-vanishing current density j
at the domain boundary, j(−�/2) = j(�/2) 	= 0. Upon
leaving the interval �� at one end and entering at the
other end by way of the periodic boundary conditions,
a shift between adjacent layers by one lattice unit has
occurred, representative of plastic flow. Therefore, a
meaningful definition of the plastic strain rate γ̇p is
given by the probability current density at the boundary
of the γ -domain multiplied by �,

γ̇p ≡ � j(γ = �/2) , (8)

both in stationary and transient situations. It serves
as a counter for how many sliding events take place
per unit time, which is needed in order to relate to
the macroscopic applied shear rate, as discussed in the
section “Model predictions.”

While the periodicity is a crucial ingredient in the
proposed model, it is to be clearly distinguished from
seemingly similar approaches in the rheology literature.
For example, in the reptation model of polymer rheol-
ogy or in the description of axisymmetric rigid particles,
the distribution function of an orientation vector of
unit length is studied (Bird et al. 1987; Larson 1999;
Öttinger 1996; Kröger 2005). There, the mathematical
requirement of periodicity represents the identification
of states that are identical in every respect. However,
in the model proposed here, the periodicity represents
the notion of equivalent (reference) states, that differ
by intermediate hopping events, highlighting the need
to have access to the average transition rate by way of
Eq. 8, i.e., to the plastic rate of deformation.

In order to study the mechanical behavior of the
kinetic toy model, a proper definition of the shear stress
must be established. To achieve that goal, one can
proceed by taking the definition of the shear stress σ ,
i.e., by considering forces across a test plane parallel to
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the crystal planes, and then looking at their components
parallel to the plane. As a result, one finds

σ ≡
〈
∂�

∂γ

〉
, (9)

in analogy to Kramers-type expressions in polymer
kinetic theory. We mention in passing that the expres-
sion Eq. 9 for the shear stress can also be derived by
invoking nonequilibrium thermodynamics techniques,
e.g., Beris and Edwards (1994), Grmela and Öttinger
(1997), Öttinger and Grmela (1997), Öttinger (2005).
There, it is recognized that the expression for the stress
tensor and the dynamics of the structural variables,
here p(γ, t), are two closely related model ingredients.
The identification (Eq. 9) is also supported by con-
tinuum approaches to finite elasticity. Evaluating the
general expression for the Cauchy stress tensor for
finite elasticity in pure shear deformation (Truesdell
and Noll 1992), the shear stress is found to be given by
the derivative of the specific energy density with respect
to the shear strain.

With the aid of the diffusion equation (Eq. 6), the
shear stress (Eq. 9) for general transient situations can
be written in the form

σ = σ0 − η̂γ̇m , (10a)

with the macroscopic shear rate defined as

γ̇m = d
dt

〈γ 〉 + γ̇p . (10b)

This definition of γ̇m represents the decomposition of
the macroscopic shear rate into, first, the rate of av-
erage deformation with γ ∈ �� and, second, the shear
rate due to irreversible sliding by entire lattice units.
Correspondingly, one should note the difference in the
definitions of d 〈γ 〉 /dt and γ̇p given in terms of a usual
average over the interval �� and an unconventional
current density across the domain boundary, respec-
tively. The derivation of γ̇p from the kinetic model is
a major result of the paper, as it describes the transition
rate between equivalent discrete reference states. Note
that, according to Eq. 10a, the formal driving parameter
σ0 can be expressed purely in terms of macroscopically
measurable quantities, namely, the macroscopic shear
rate γ̇m and the shear stress σ .

Two specific points are noteworthy. First, the def-
initions of the shear stress (Eq. 9) and, particularly,
the macroscopic shear rate (Eq. 10b) are supported
by a description that does not consider the reduced
space γ ∈ �� together with the periodicity condition
on p(γ, t), but rather discusses the unbound γ -domain
and distinguishes different reference states (Öttinger,
unpublished manuscript). Second, and even more im-

portantly, Eq. 10b agrees with Eq. 3b, since the average
elastic strain 〈γ 〉 is identical to the component Fe

xy of the
macroscopic deformation gradient. However, for given
γ̇m, Eq. 10b is rather a physical relation between two
functionals of the distribution function p(γ, t), namely
between 〈γ 〉 and γ̇p. The interpretation of Eq. 10b as
a (closed) evolution equation for 〈γ 〉 is only possible
after a reduction step is performed; see the section
“Reduction to a closed first-moment description.”

Model predictions

Stationary situations

The stationary solution to the diffusion equation
(Eq. 6) can be determined for constant driving para-
meter σ0. Using the abbreviation �̃(γ ; σ0) = (�(γ ) −
σ0γ )/θ , one finds

p(γ ; σ0) = 1

N (σ0)
e−�̃(γ ;σ0)

×
[

1 − c(σ0)

∫ γ

−�/2
e�̃(γ ′;σ0)dγ ′

]
, (11a)

with normalization constant N such that∫ �/2
−�/2 p(γ )dγ = 1, and c independent of γ . From

the periodicity condition p(−�/2; σ0) = p(�/2; σ0),
one obtains

c(σ0) = 1 − e−�σ0/θ

∫ �/2
−�/2 e�̃(γ ′;σ0)dγ ′ . (11b)

As the probability current j for the stationary solution
(Eq. 11) assumes the form jst = Dc/N and in view of
the plastic strain rate (Eq. 8), the expression Eq. 11b
can be used to discuss the relation between the station-
ary plastic strain rate γ̇p,st and the driving parameter
σ0. We get γ̇p,st = 0 for σ0 = 0, and find that γ̇p,st and
σ0 have the same signs otherwise. In other words, as
soon as σ0 	= 0, there is some degree of plastic defor-
mation. Depending on the circumstances, this plastic
deformation may be negligible or dominant, as will be
shown in the examples below. This discussion of the
stationary state illustrates that the plastic deformation
is captured in the model indirectly through the rate
of hopping from one periodic image to the next. We
point out that the expression for jst with c(σ0) given
by Eq. 11b is very similar to the famous escape rate
calculated by Kramers (1940). Furthermore, it can be
shown that γ̇p,st(σ0) is well described by a hyperbolic
sine, γ̇p,st ∝ sinh (�σ0/(2θ)), under the condition that
the distribution pst(γ ) be well localized around the
minimum of �(γ ). If σ0 is proportional to the stress
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σ in a certain range of deformation rates, as is the
case for the results shown in Fig. 2, then this result
is in accord with the relation γ̇p,st = γ̇ E

p,0 sinh(σ/σ E
0 ) of

Eyring between the steady state shear rate γ̇p,st and
the shear stress σ (Krausz and Eyring 1975), for an
appropriate choice of the constants γ̇ E

p,0 and σ E
0 .

In order to illustrate the mechanical response both
in stationary and transient conditions in the remainder
of this paper, specific choices are made for the inter-
action potential �(γ ) and the other parameters of the
model. The γ interval is chosen as �� = [−0.5, 0.5]
(i.e., � = 1), and for the interaction potential between
the crystal layers, we assume Eq. 4 with �0/θ = 10.
The energy and time scales are fixed by θ = 1 and η̂ =
1, respectively. For these values, the simulations have
shown that the distribution function is well localized
for σ0 ≤ 20, which is essential for the interpretation of
the kinetic theory model. Well localized states distant
from the domain boundary in conjunction with a low-
probability current across the boundary corresponds to

(a)

(b)

Fig. 2 a Steady state behavior of the model Eq. 6 as a function of
the driving parameter σ0: average strain 〈γ 〉 (solid), shear stress
σ (long dashed), plastic strain rate γ̇p (dashed-dotted). b Steady
state shear stress σ as a function of plastic strain rate γ̇p (solid
line), with the dots representing the fit to the Eyring relation

occasional hopping events between different equivalent
states. In the following, we thus report results for σ0 ≤
20.

For the stationary states according to Eq. 11, the
results for 〈γ 〉, σ , and γ̇m = γ̇p are plotted in Fig. 2.
Since the relation between 〈γ 〉 and σ0 is almost linear
up to 〈γ 〉 = 10%, the stress–strain relation σ(〈γ 〉) is
easily read from Fig. 2a by scaling the σ0-axis appro-
priately, leaving the shape of the shear stress curve
almost unchanged. Figure 2b shows the shear stress σ

as a function of the macroscopic strain rate γ̇m = γ̇p

with a finite slope of σ at γ̇p = 0. This stress–strain rate
relation corresponds qualitatively to the experimental
data for single-crystalline metals (see, e.g., Andrade
and Henderson 1951). If read as γ̇p(σ ), these data rep-
resent the stationary states of a creep test, indicative of
soft yielding at σ 
 10. In order to connect to phenom-
enological relations frequently used in the literature,
the flow curve σ(γ̇p) has been fitted with the follow-
ing two functions. First, the Eyring relation mentioned
previously, which has also been used to characterize
experimental data (e.g., see Gantchenko et al. 2008),
was found to represent the model prediction well, as
expected, see Fig. 2b. However, the second, more com-
mon choice, γ̇p ∼ σ k, as applied, e.g., in Asaro (1983);
Pan and Rice (1983), is inadequate to represent the
behavior of the kinetic toy model.

Transient situations

Transient situations are examined by solving the diffu-
sion equation (Eq. 6) numerically. In particular, pre-
scribing the macroscopic shear rate γ̇m (Eq. 10b) as the
control parameter requires a self-consistent solution
strategy, since γ̇m depends on the solution p(γ, t) itself.
Figure 3 shows the response of the system under a
constant macroscopic shear rate γ̇m = 1.5 over the time
interval [0, 0.2]. The results in terms of 〈γ 〉, σ , and
γ̇p represent the main features of experimental curves
(Schmid and Boas 1935; Callister 2000; Haasen 1978).
In the early stages (t < 0.02), one has γ̇m = d 〈γ 〉 /dt
and the stress builds up accordingly. As time progresses
(0.02 < t < 0.1), one observes a smooth onset of yield-
ing, i.e., the average 〈γ 〉 saturates and plastic slip sets
in until γ̇m = γ̇p, followed by an extended easy glide
regime. The similarity in the time-dependence of σ

and 〈γ 〉 is expressed in their ratio, which changes only
slightly over the course of time, from σ/ 〈γ 〉 
 175 to
σ/ 〈γ 〉 
 150.

Oscillatory deformations with imposed macroscopic
shear rate γ̇m = γ̇m,0 cos (2π t/t0) have been studied for
different maximum shear rates γ̇m,0 and cycle times
t0. In order to interpret the results, we recall that
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Fig. 3 Transient behavior of the model Eq. 6 at constant macro-
scopic strain rate γ̇m = 1.5 as a function of time t: average strain
〈γ 〉 (solid), shear stress σ (short-dashed), plastic strain rate γ̇p
(long-dashed). For comparison, the behavior of the closed first-
moment equation is shown (dotted)

the characteristic diffusion time is unity for the above
choice of parameters, and the maximum strain is given
by γmax = γ̇m,0t0/(2π). Figure 4 shows that, even for a
cycle time equal to the characteristic diffusion time, the
hysteresis is small if the maximum strain does not allow
for escape into another energy well, i.e., γmax � �/2.
In contrast, for γ̇m,0 = 3, one observes γmax 
 �/2, and
hence, plastic slip occurs with substantial hysteresis.
When increasing γ̇m,0 further (not shown here), the
stress levels reached during the cycle increase only
weakly with increasing strain rate, in accord with Fig. 2
and with corresponding systematic experimental stud-
ies (Estrin et al. 1996). Figure 5 shows two simulations
with the same maximum strain rate but different cycle
times, such that γmax � �/2 and γmax 
 �/2, respec-
tively. While the former conditions lead to (close to)
reversible deformation, the latter bring about large

Fig. 4 Shear stress as a function of macroscopic strain γm =∫ t
0 γ̇mdt of the model Eq. 6 under cyclic loading with imposed

macroscopic shear rate γ̇m = γ̇m,0 cos (2π t/t0) for t0 = 1. Solid
line, γ̇m,0 = 0.3; dashed line, γ̇m,0 = 3. For comparison, the be-
havior of the closed first-moment equation is shown (dotted)

Fig. 5 Shear stress as a function of macroscopic strain γm =∫ t
0 γ̇mdt of the model Eq. 6 under cyclic loading with imposed

macroscopic shear rate γ̇m = γ̇m,0 cos (2π t/t0) for γ̇m,0 = 3. Solid
line, t0 = 0.1; dashed line, t0 = 1. For comparison, the behavior of
the closed first-moment equation is shown (dotted)

plastic deformations. Upon increasing t0 further (not
shown here), the stress levels reached during the cycle
increase only weakly with increasing cycle time, again
in accord with experimental studies (Estrin et al. 1996).

Reduction to a closed first-moment description

The kinetic toy model discussed above shall now be
reduced to a closed-form evolution equation for the
average elastic strain, 〈γ 〉. In order to interpret Eq. 10b
as an evolution equation for 〈γ 〉 for given γ̇m, one needs
to close the equation by expressing the plastic strain
rate γ̇p defined in Eq. 8 in terms of 〈γ 〉 and γ̇m. To that
end, in turn, it is necessary to choose an approximation
to the true distribution function that is parametrized
by the average 〈γ 〉. As we have seen when discussing
the stationary states of the full kinetic model in the
section “Stationary situations,” 〈γ 〉 can be mapped to
σ0. Therefore, the stationary distribution in Eq. 11 can
be parameterized effectively by 〈γ 〉. Conclusively, an
attractive procedure towards finding a closed evolution
equation for the average elastic strain consists in using
the manifold of stationary states as approximate dis-
tribution functions for transient situations. This ansatz
for the approximate distribution function can also be
motivated by the maximum entropy principle (Ilg et al.
2002, 2003; Gorban and Karlin 2005), also known as
a quasi-equilibrium approach or generalized canonical
ensemble, as shown in the following.

We start with defining the entropy S of the distribu-
tion p(γ ) as

S[p] = −kB

∫ �/2

−�/2
p(γ ) ln

[
p(γ )/p0

]
dγ , (12a)
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with the Boltzmann constant kB and p0 a constant to
make the argument of the logarithm dimensionless.
According to the maximum entropy principle, S must
be maximized under certain constraints. In the present
case, those constraints include having control of the
average energy E, of the normalization N, and most im-
portantly, for studying out-of-equilibrium plastic flow,
also of the average 〈γ 〉,

E[p] =
∫ �/2

−�/2
�(γ ) p(γ )dγ , (12b)

N[p] =
∫ �/2

−�/2
p(γ )dγ = 1 , (12c)

γ̄ [p] =
∫ �/2

−�/2
γ p(γ )dγ = 〈γ 〉 . (12d)

Using the technique of Lagrange parameters to max-
imize S under the conditions E, N, and γ̄ leads to
a solution that is proportional to exp(−�̃(γ ; α)) with
�̃ defined prior to Eq. 11. Since this solution is not
periodic for α 	= 0, we use the same construction as in
relation to Eq. 11 to arrive at

p(γ ; α)= 1

N (α)
e−�̃(γ ;α)

[
1−c(α)

∫ γ

−�/2
e�̃(γ ′;α)dγ ′

]
, (13)

with the function c defined in Eq. 11b.
In other words, the maximum entropy principle leads

to a form of the distribution function that collapses
with the true distribution function under stationary
conditions. In view of Fig. 2a for the stationary solution
and upon replacing σ0 by α, it is thus clear that the
parameter α can be used to control the average 〈γ 〉,
and vice versa. This, in turn, means that, by employ-
ing the approximation Eq. 13, one can determine α =
α(〈γ 〉), and hence, also c = c(〈γ 〉), N = N (〈γ 〉), and
σ = σ(〈γ 〉). As a final step for bringing Eq. 10b into the
form of a closed evolution equation for 〈γ 〉, we express
the plastic strain rate (Eq. 8) as

γ̇p(γ̇m, 〈γ 〉) = �

N (α)

(
γ̇m + σ − α

η̂

)
e−�̃(−�/2;α)

+�Dc(α)

N (α)
, (14)

where we have made use of the relation Eq. 10a for
σ0. This form of γ̇p can indeed be expressed exclusively
in terms of γ̇m and 〈γ 〉 after invoking the relations
α = α(〈γ 〉) and σ = σ(〈γ 〉). Note that the second term
on the right-hand side (r.h.s.) of Eq. 14 has the same
form as what was discussed in relation to the stationary
states in the section “Stationary situations.” Therefore,
the first term on the r.h.s. is present only in transient

situations and vanishes for α = σ + η̂γ̇m, which is equal
to σ0.

The behavior of the reduced 〈γ 〉 description
(Eqs. 10b and 14) can be discussed in two parts. First,
the stationary behavior must collapse with the full
kinetic toy model of the section “Formulation of the
kinetic toy model” since the parametrized approximate
distribution function (Eq. 13) is identical to the exact
stationary solution of the full kinetic model. Second,
we address the transient behavior of the reduced de-
scription. The dotted lines in Figs. 3–5 show clearly
that the reduced description compares well with the
full kinetic model. Certainly, all stationary data must
coincide between the two descriptions; however, also
in the transient situations, the form Eq. 13 seems to
be a reasonable approximation to the true distribution
function.

The dependence of the plastic strain rate γ̇p on the
(total) strain rate γ̇m warrants special attention. In
macroscopic theories of elasto-viscoplasticity (Boyce
et al. 1988; Tervoort et al. 1998; Hütter and Tervoort
2008b), it is assumed that the plastic deformation gradi-
ent κp depends on the state of deformation through the
Cauchy stress tensor, but a dependence on the velocity
gradient κ is usually absent. The reduction of the simple
kinetic toy model above to a closed evolution equation
for 〈γ 〉 indicates that this point may have to be recon-
sidered. The effect of γ̇m on the plastic rate γ̇p is also
demonstrated in Fig. 6. Not only is there a hysteresis
in the γ̇p(σ )-relation for the full kinetic toy model, but
also for the reduced description, the plastic strain rate
is not a function of the stress (or average strain) only.
Conversely, when neglecting the first term on the r.h.s.

Fig. 6 Plastic strain rate γ̇p as a function of shear stress σ

during cyclic loading with imposed macroscopic shear rate γ̇m =
γ̇m,0 cos (2π t/t0) for γ̇m,0 = 3 and t0 = 0.1. Solid line, full p(γ )-
description; dotted line, 〈γ 〉-model; gray line, 〈γ 〉-model with
neglect of the first term on the r.h.s. of Eq. 14
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of Eq. 14, i.e., neglecting the γ̇m-dependence of γ̇p as
done in common approaches in the literature (see the
section “Introduction”), there is no hysteresis in the
relation γ̇p(σ ), as shown by the gray curve in Fig. 6.

Discussion

The kinetic toy model introduced above accounts
for both elastic (reversible) and plastic (irreversible)
dynamics in the deformation of crystalline metals.
Particularly, we focus on the conceptual question of
how the irreversible plastic deformation emerges from
the microscopic kinetics. The distinct origin of elastic
and plastic rates of deformation has been clearly high-
lighted. Specifically, the periodicity in strain space rep-
resents the indistinguishability of reference states. The
rate of transition between equivalent discrete reference
states is captured by the plastic strain rate γ̇p in Eq. 8, as
derived from the kinetic model, which is a major result
of the paper. The mechanical response has been stud-
ied under stationary, start-up, and cyclic deformations.
Particularly, Eyring’s well-known result for stationary
flows is recovered from the detailed kinetic toy model,
while, notably, the latter allows one to also examine
transient situations in detail. Furthermore, the kinetic
toy model for the distribution of strains, p(γ ), has been
reduced to a closed evolution equation for the average
strain 〈γ 〉. Doing so, we have shown that the plastic
strain rate does not only depend on the shear stress, but
also on the applied macroscopic shear rate. This hints
at the possibility that, in tensorial models for elasto-
viscoplasticity, the plastic deformation gradient κp de-
pends both on the Cauchy stress σ and on the velocity
gradient κ . Such possibilities must be on trial in future
modeling efforts by using nonequilibrium thermody-
namics techniques (Öttinger 2005; Hütter and Tervoort
2008b). From an experimental perspective, the exam-
ination of the relation γ̇p(σ ) under cyclic deformation
should show fingerprints of such explicit effect of the
applied shear rate.

The model, in both its full and reduced form, relates
to more macroscopic descriptions of rate-dependent
plasticity in three ways, similar to the use of the bead-
spring model in polymeric theory in conjunction with
the hydrodynamic equations (Bird et al. 1987; Larson
1999; Öttinger 1996; Kröger 2005). Firstly, the shear
stress σ (Eq. 9) enters into the momentum balance, and
secondly, the driving parameter σ0 can be expressed
purely in terms of the macroscopic quantities velocity
gradient γ̇m and shear stress σ , according to Eq. 10a
(see also Öttinger, unpublished manuscript). Thirdly,
the average 〈γ 〉 can be interpreted as the elastic part

of the macroscopic deformation gradient (Boyce et al.
1988; Tervoort et al. 1998; Hütter and Tervoort 2008b),
the relaxation of which is here resolved in terms of the
kinetic model.

The kinetic toy model was designed to describe the
physics of sliding crystal layers, and interesting conclu-
sions have been derived from it. We wish to comment
only briefly on how this model can be related to the pic-
ture of dislocations (Orowan 1934; Von Polanyi 1934;
Taylor 1934). For reasons of simplification, we restrict
ourselves to straight parallel dislocation lines. Since
dislocation lines are made of a large number of atoms,
as an entity, they feel the thermal Brownian motion.
Therefore, the above toy model can be interpreted
as describing the motion of a single dislocation line
through the regular lattice. By a scaling argument it
can be shown that the macroscopically observed strain
γmacro is related to the microscopic strain around the
single dislocation γdisl through γmacro ∝ ργdisl with ρ

the area density of dislocations. This relation between
the kinetic toy model and the dislocation dynamics
represents a modified form of the well-known Orowan
relation (Asaro 1983; El-Azab 2000; Groma et al. 2003;
Arsenlis et al. 2004). It is needless to say that such ar-
guments must fall short of explaining strain-hardening
due to the mutual interaction of dislocations, which
notably was not the goal of this contribution. To aid
in this respect, we envision that the techniques from
nonequilibrium thermodynamics with the correspond-
ing systematic coarse-graining techniques are useful.

It is well possible that not only materials with almost-
perfect crystalline order, as metallic single crystals, can
be described by the kinetic toy model. Speculations in
this direction are supported by the fact that we found
approximately a hyperbolic sine relation between the
plastic strain rate and the applied stress in steady states
(see Fig. 2b), which is in accord with the description of
Eyring and with experimental data on amorphous solid
polymers (Bauwens-Crowet et al. 1969; Ward 1983).
In this respect, it seems that the conclusions drawn
in this paper are relevant whenever (1) rare hopping
events occur under an applied mechanical load and (2)
the favored microscopic configurations before and after
each transition are very similar, i.e., “equivalent.”
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