
DISS. ETH NO. 24505

Sensor-free learner models
for trait discovery and
identification in intelligent
tutoring systems

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

Severin Achill Klingler

Master of Science ETH in Computer Science, ETH Zurich
born on 05.06.1987
citizen of Gossau (SG), Switzerland

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Prof. Dr. Andreas Krause, co-examiner
Dr. Tanja Käser, co-examiner

2017

ii

Abstract

Intelligent tutoring systems (ITS) are gaining importance in education, as they can
individualize the training for each learner. The individualization relies on the stu-
dent model that infers cognitive, metacognitive or affective states of the learner
based on the history of interactions with the system. Research on student mod-
els has mainly focused on how to better model student knowledge and student
learning, but recently, models of metacognitive and affective states, as well as
automatic assessments of students, has gained interest. In this thesis, we present
data-driven models for the identification and discovery of student traits. We focus
on sensor-free models relying entirely on interaction logs.

First, we present a completely supervised pipeline for integrating automatic as-
sessment seamlessly into an ITS and apply the method to the case of develop-
mental dyscalculia (DD). We demonstrate that interaction logs provide enough
information to identify children at risk of DD with high accuracy. In addition, we
demonstrate test validity and reliability comparable to traditional assessments.
Our model is able to adapt the duration of the assessment to the individual child
and can classify a child at risk of DD with an accuracy of 91% after 11 minutes on
average.

Second, we present a semi-supervised classification pipeline that makes effective
use of unlabeled data to significantly improve model quality for detecting stu-
dent characteristics. We employ deep variational auto-encoders to learn efficient
feature embeddings that improve the performance of standard classifiers by up to
28%. We demonstrate that our method outperforms previous methods for finding
efficient feature embeddings and generalizes better to imbalanced data sets com-
pared to expert features. The method provides the ability to improve performance
on a variety of classification tasks in educational data mining.

Third, we propose an unsupervised evolutionary clustering pipeline to discover
student characteristics. Our pipeline can be used as a black box for any ITS and
is optimized to improve cluster stability over multiple training sessions in the
presence of noise. Our model selection is designed such that relevant cluster evo-
lution effects can be captured. Our method outperforms previous work regarding
clustering performance and stability on synthetic data. We demonstrate that the

iii

clustering pipeline is able to detect interesting student behavior and properties of
learning environments based on data from real-world ITS.

iv

Zusammenfassung

Intelligente Tutorensysteme (ITS) werden für die Bildung immer wichtiger, da sie
Lernenden individualisierte Trainingsmöglichkeiten bieten. Die Individualisie-
rung basiert auf dem Studentenmodell, welches mit Hilfe von Interaktionsdaten
Rückschlüsse auf die kognitiven, meta-kognitiven und emotionalen Zustände des
Lernenden bzw. der Lernenden zieht. Forschung im Bereich der Studentenmodel-
le konzentrierte sich bisher vor allem auf der Verbesserung der Repräsentation
vom Wissensstand und von Lerneffekten. In letzter Zeit wurden meta-kognitive
und emotionale Modelle sowie die automatische Beurteilung von Benutzerei-
genschaften wichtiger. Diese Dissertation beschreibt datenorientierte Modelle für
das Erkennen und Entdecken von Charakteristiken von Lernenden basierend auf
Log-Dateien.

Als erstes stellen wir eine überwachte Pipeline zum automatischen und integrier-
ten Erkennen von Benutzereigenschaften vor und wenden sie für den Fall von
Dyskalkulie an. Wir zeigen, dass Interaktionsdaten genügend Informationen ent-
halten um Kinder mit Dyskalkulie mit grosser Genauigkeit und mit einer zu Stan-
dardtests vergleichbaren Validität und Reliabilität zu erkennen. Unser Modell
passt die Dauer des Tests individuell dem Kind an und klassifiziert Kinder mit
Dyskalkulie mit einer Genauigkeit von 91% nach durchschnittlich 11 Minuten.

Zweitens stellen wir eine teilüberwachte Klassifikationspipeline vor welche Da-
ten ohne Kennsatz verwendet um die Qualität der Detektion von Benutzereigen-
schaften signifikant zu verbessern. Wir benutzen Deep Variational Autoencoder
um effiziente Datenrepräsentation zu finden, welche die Leistung von Standard-
klassifikatoren um bis zu 28% erhöht. Unsere Methode übertrifft vorherige Me-
thoden für das Finden von Datenrepräsentation und generalisiert besser auf un-
ausgeglichene Datensätze im Vergleich zu anderen Methoden.

Drittens schlagen wir eine Pipeline zur evolutionären Clusteranalyse zum Entde-
cken von Benutzereigenschaften vor. Unsere Pipeline kann als Blackbox mit jedem
ITS verwendet werden und wurde für eine verbesserte Stabilität der Cluster op-
timiert zudem erkennt unser Modelauswahlprozess Clusterentwicklungseffekte
automatisch. Auf künstlich erzeugten Daten zeigt unsere Methode eine bessere
Leistung und stabilere Resultate als vorherige Modelle. Weiter zeigen wir, dass

v

unsere Methode mit Daten von realen ITS zum Erkennen von interessanten Be-
nutzereigenschaften verwendet werden kann.

vi

Acknowledgments
First of all, I would like to thank my advisor Prof. Markus Gross who convinced
me to pursue a Ph.D. at the Computer Graphics Laboratory in the first place.
His vision to create intelligent software that truly adapts to children with spe-
cial needs sparked my interest for the exciting field of educational data mining. I
am very grateful for the opportunity to continue the research on learning environ-
ments at the lab. His unconditional support, trust, and scientific guidance were
an invaluable help throughout my Ph.D.

I am very grateful for all the support of Dr. Tanja Käser, who introduced me to
the scientific world already during my master thesis. Her extensive knowledge
about the area of tutoring systems allowed me to navigate these waters much
more efficiently. I am happily looking back to many exciting discussions with her
that challenged my ideas and allowed me to put my work into the greater context
of computer-based education. I am sincerely thankful to Dr. Barbara Solenthaler
for her enduring support, advice and scientific intuition during my Ph.D. Her
ability to ask the right questions at the right time helped me to focus my work
time and again and allowed me to stay on track.

Furthermore, I would like to thank all my collaborators for their support. Dr.
Alberto Giovanni Busetto helped me with many technical aspects of the thesis.
I am very thankful to Prof. Dr. von Aster and Dr. Juliane Kohn for the offered
expertise in study design and psychological aspects of this work. I would like to
thank Christian Vögeli, Felix Fontein and all the other coworkers at Dybuster AG,
who helped me with many technical questions and provided invaluable support
to run the study in summer 2014. I wish them all the best for their future, and I
hope their adaptive learning systems will take the world by storm.

A special thank goes to all current and former members of CGL, IGL, and DRZ.
You all made the lab a great place to work. I never worked at a place where
discussions were more open-minded and genuinely exciting and fun.

I am deeply thankful to my family and friends. You gave me the perspective and
support to go through ups and downs of this exciting time. Lastly, I am most
thankful to you, Salomé, for your unconditional love, your understanding, and
your ability to make my world a better place.

This work was supported by ETH Research Grant ETH-23 13-2.

vii

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

Introduction 1
1.1 Overview . 4
1.2 Principal Contributions . 7
1.3 Thesis outline . 10
1.4 Publications . 10

Student model landscape (related work) 13
2.1 Cognitive student models . 15

2.1.1 Hybrid models . 16
2.1.2 Student model properties . 16

2.2 Models of student characteristics and traits 17
2.2.1 Student trait identification . 18
2.2.2 Student trait discovery . 20

Data 23
3.1 Orthograph . 23
3.2 Calcularis . 25

Performance characteristics of student knowledge models 29
4.1 Investigated Models . 30

4.1.1 Bayesian Knowledge Tracing 30
4.1.2 Item Response Theory . 32
4.1.3 Latent Factor Knowledge Tracing 32

ix

Contents

4.1.4 Feature Aware Knowledge Tracing 33
4.2 Synthetic data generation . 34
4.3 Experimental Setup . 36
4.4 Results . 37

4.4.1 Error Metrics . 37
4.4.2 Model Comparison . 38
4.4.3 Parameter Influence . 42

4.5 Discussion . 44

Supervised student trait identification 49
5.1 Adaptive Classification Algorithm 50

5.1.1 Feature extraction . 51
5.1.2 Feature selection . 53
5.1.3 Probabilistic classifier . 54
5.1.4 Feature ordering . 55
5.1.5 Stopping criterion . 55

5.2 Experimental Evaluation . 56
5.2.1 Method . 56
5.2.2 Content validity . 58
5.2.3 Criterion-related validity . 59
5.2.4 Construct validity . 60
5.2.5 Reliability . 61
5.2.6 Test duration . 61

5.3 Generalization Capabilities . 62
5.3.1 Method . 63
5.3.2 Feature generalizability . 65
5.3.3 Performance on classroom data 65

5.4 Discussion . 66

Semi-supervised student trait identification 69
6.1 Background . 70

6.1.1 Auto-encoder . 71
6.1.2 Variational auto-encoder . 72

6.2 Method . 72
6.2.1 Student snapshots . 74
6.2.2 Simple student auto-encoder (S-SAE) 74
6.2.3 CNN student auto-encoder (CNN-SAE) 75
6.2.4 Feature selection . 76
6.2.5 Semi-supervised classification pipeline 76

6.3 Results . 77
6.3.1 Experimental Setup . 78
6.3.2 Implementation . 79

x

Contents

6.3.3 Network comparison . 80
6.3.4 Classification performance 81
6.3.5 Comparison to our specialized models 85
6.3.6 Robustness on sample size 85

6.4 Discussion . 86

Unsupervised student trait discovery 89
7.1 Method . 90

7.1.1 Action Sequences . 91
7.1.2 Action Processing . 91
7.1.3 Similarity Computation . 92
7.1.4 Clustering . 92
7.1.5 Model Selection . 93

7.2 Synthetic experiments . 95
7.2.1 Experimental setup . 95
7.2.2 Clustering Quality & Robustness 97
7.2.3 Stability . 99
7.2.4 Interpretability . 99

7.3 Exploratory data analysis . 102
7.3.1 Experimental Setup . 102
7.3.2 Navigation Behavior . 102
7.3.3 Input & Help-Seeking Behavior 105

7.4 Discussion . 108

Conclusion 111
8.1 Limitations & Future work . 112

Instruments 117

References 121

xi

List of Figures

1.1 Thesis overview . 6

2.1 Principle components of an ITS . 14

3.1 The intelligent tutoring system Orthograph 25
3.2 The intelligent tutoring system Calcularis 28

4.1 Bayesian knowledge tracing and Rasch model 31
4.2 Latent factor knowledge tracing and feature-aware knowledge

tracing . 33
4.3 Combined model for data sampling 35
4.4 Performance for predicting task outcomes of different student models 40
4.5 Performance for predicting knowledge states of different student

models . 41
4.6 Relative performance of student models 43
4.7 Influence of sampling parameters on model performance 45

5.1 Pipeline for supervised student trait identification 51
5.2 Features for detecting developmental dyscalculia 58
5.3 Performance for detecting developmental dyscalculia 59
5.4 Test duration for detecting developmental dyscalculia 62
5.5 Feature generalizability . 64
5.6 Test scores of misclassified children 66

6.1 Network layout of our variational auto-encoders 73
6.2 Semi-supervised classification pipeline 77
6.3 Comparions of variational auto-encoders 81
6.4 Classification performance for different feature embeddings 83
6.5 Robustness of feature embeddings 86

7.1 Overview of our clustering pipeline 91
7.2 Overview of synthetic data generation 96
7.3 Comparison of clustering methods 98
7.4 Extracting temporally stable clusters 100
7.5 Simulated examples of four types of cluster events 101

xiii

List of Figures

7.6 Navigation behavior in Orthograph 103
7.7 Analyzing the navigation behavior 104
7.8 Markov Chains for the Input Behavior and the Help-Seeking Behavior

in Orthograph and Calcularis. 105
7.9 Clusters of Input and Help-Seeking Behavior 106

xiv

List of Tables

4.1 Best and worst case performance of student models. 39

5.1 List of extracted features . 52
5.2 Analysis of convergent and divergent validity 60

6.1 Performance comparison of different feature embeddings 84

xv

List of Tables

xvi

C H A P T E R 1
Introduction

As our world is becoming increasingly complex, the amount of knowledge
we need for navigating everyday life has increased over the past decades.
For this reason, efficient methods to acquire new knowledge are necessary.
Efficient teaching, however, not only requires a deep understanding of the
subject taught but requires a thorough understanding of the diverse learn-
ing needs of students as well. Teaching and learning are greatly impacted
by the way students process information, their overall approach to learn-
ing (surface, deep, strategic) and their attitude towards knowledge in gen-
eral [Felder and Brent, 2005]. Educators, teachers, and tutors are specialized
in identifying these needs and adjusting the training of students accordingly.
Teaching decisions are as much based on the cognitive state of the learner
(e.g. student’s knowledge and skills) as they are based on the affective state
(e.g. a student’s motivation, attention, emotion) [Lepper and Chabay, 1988].
Student achievement was found to be heavily influenced by teacher-related
factors such as provided feedback, the instructional quality, class environ-
ment and challenge of goals [Hattie, 2003]. Even non-professional peer
tutoring was found to improve student achievement consistently and was
shown to improve the attitude of students towards the subject taught [Co-
hen et al., 1982]. Tutoring was found to improve mean achievement scores
by up to two standard deviations [Bloom, 1984] compared to learners that
did not receive additional tutoring.

Computer-based tutoring provides an inexpensive alternative or extension
to human tutoring. These systems provide a fear-free, engaging and play-
ful environment for students to learn. The use of technology in classroom
applications has a significant positive effect on student’s achievement and

1

Introduction

attitude [Schmid et al., 2014]. In particular, intelligent tutoring systems (ITS)
have gained importance in education over the past years. ITS are computer-
based tutors that model the learner’s psychological state to provide indi-
vidualized tutoring of students. ITS have proven to be more effective than
instructions in large groups led by a teacher or computer-based instruction
that was not based on a ITS [Ma et al., 2014]. Student learning can already be
significantly increased by employing ITS for homework support only [Van-
lehn et al., 2005]. Further, ITS have shown learning gains at least similar to
individualized human tutoring or instructions within small groups [Ma et
al., 2014; Woolf et al., 2009]. ITS prove to be robust and efficient instructional
tools improving the performance of students significantly over conventional
classes in multiple and diverse domains [Kulik and Fletcher, 2016].

Over the past decades a lot of research has been conducted in the area of
ITS to represent and model student knowledge accurately, to design effec-
tive curricula or to develop optimal instructional policies. A major com-
ponent of any ITS is the student model that infers cognitive, metacognitive
or affective states of the learner based on the interactions with the system.
The student model is used as the basis for teaching decisions within an ITS.
However, modeling cognitive, metacognitive and affective states from user
interactions events is challenging, since the way a learner interacts with an
ITS provides only partial and ambiguous information on a student’s true
state [Conati and Kardan, 2013]. In particular, Woolf et al. [2013] formulated
five grand challenges for AI in educational systems. Here we give a sum-
mary of the challenges:

1. Mentors for every learner. Learning science research shows that
people have different needs when learning. Students differ in how
they learn efficiently and how they keep engaged with a topic even
when learning challenging concepts. To support every learner,
ITS need to model the changes that occur in learners with respect
to cognitive, metacognitive and affective states. Student models
need to go beyond identifying the knowledge and skills mastered,
but should represent students holistically, e.g. their preferences,
goals, communicative competencies, behavior changes, affective
self-regulation capabilities, etc. Further, to allow for the wide adop-
tion of ITS methods need to be more generic as current student mod-
els often need to be adapted for every domain or application.

2. Learning 21st century skills. Essential skills in the 21st century in-
clude cognitive skills (such as systems thinking or critical thinking)
as well as interpersonal skills (e.g. active listening, conflict resolu-
tion) and intrapersonal skills (e.g. adaptability, self-management).

2

Today, knowledge changes at high frequencies and teachers and
learners need to constantly adapt. To prepare students for life-
long learning, technological advances are needed to develop alter-
native ways of teaching compared to the still predominant teacher-
centered instructions. Technologies that can mentor students when
solving complex and ill-structured problems are needed. Such
methods should support students exploitative behavior and creativ-
ity.

3. Interaction data to support learning. ITS provide unique types
of data sets collected from learners interacting with these systems.
Over the past decades, large repositories of interaction data have
accumulated. Data analysis should be generic and include multiple
tutoring systems, classes, and games to evaluate the general compe-
tencies of a student. Mining of these data repositories should reveal
the overall capabilities and needs of learners such as student moti-
vation, learning difficulties, problem-solving strategies and capabil-
ities for critical thinking, self-regulation and active listening. How-
ever, the effective use of these data sets to not only identify students
that need special support but to help teachers understand the dif-
ficulties of students and to improve the curriculum are challenging
goals. Efficient techniques need to draw from the fields of machine
learning and data mining and these methods need to be adapted for
the specific requirements of the educational domain.

4. Universal access to global classrooms. Global classrooms have the
potential to significantly improve the way we traditionally learn by
providing universal and inclusive access to learning resources at
any time for all students. Global access to the latest and most ef-
ficient methods for learning a particular subject as well as provid-
ing an almost unlimited supply of other students to converse with
has the potential to change how we learn. Today, massively open
online courses (MOOCs) exhibit little content individualization and
struggle from huge dropout rates. MOOCs have shown to be suc-
cessful only for learners with high levels of initial knowledge and
motivation. New techniques are needed to help students engage
in these global classrooms and to overcome language and cultural
issues. Methods for the automatic and reliable grading of student
assessments and the improvement of learning content based on pre-
vious user behavior are needed to allow global classrooms to reach
their full potential.

5. Lifelong and lifewide learning. AI technologies should allow

3

Introduction

learning over the entire life (lifelong) and across all aspects of life
(lifewide). Today learning and education are not equivalent. Edu-
cation takes place within strictly defined levels (school, college, pro-
fessional development), in specific places (institutions, work), ac-
cording to certain learning types (e.g. typical and special students).
However, mobile technology has the potential to provide ubiquitous
and seamless learning across these established boundaries. Indeed,
as advances in learning technology enable learners to gain knowl-
edge equally well outside of classrooms, boundaries between infor-
mal and formal learning can disappear. For this, we need to bet-
ter understand how learning fundamentally occurs within humans.
We need to support learners at a personal level and build upon per-
sonal strengths and interests. Virtual, AI-based characters can serve
as lifelong learning companions and teachers. These characters can
provide natural interfaces to tools that support lifelong and lifewide
learning and can store detailed profiles of learners.

In this thesis, we contribute to the first and third grand challenge. Namely,
we develop techniques to leverage interaction data from ITS to develop
methods to support teachers and student models to adapt to personality
traits and characteristics that are not ITS-specific. In this way, our data-
driven models provide insights into student learning that go beyond more
traditional students models that are concerned with modeling cognitive
states only. More specifically, we develop frameworks for the identification
of well-known student characteristics based on student interaction data. We
present two different frameworks for supervised and semi-supervised pre-
diction of student traits and evaluate these frameworks for the specific case
of developmental dyscalculia. Further, we develop a clustering pipeline to
help practitioners explore and discover new student characteristics, again
based on the interaction data of students with an ITS. This work draws from
different fields such as data mining, machine learning, learning sciences and
research on intelligent tutoring systems to expand the student models to in-
corporate student traits.

1.1 Overview

This thesis describes the data-driven development of models for student
traits and characteristics. From an initial analysis of performance character-
istics of recent student models, over supervised and semi-supervised meth-
ods for student trait identification to unsupervised methods for exploring
student characteristics.

4

1.1 Overview

Student model characteristics. We review the state-of-the-art in student
modeling with a special focus on the most common student models: models
of student knowledge and learning. We provide an in-depth analysis based
on simulated data of two recent student models that unify and expand on
previous models. We conclude that even state-of-the-art knowledge models
provide only marginal performance gains for inferring student knowledge.
This serves as the motivation to expand student models to include student
characteristics and traits that are typically not directly observable within an
intelligent tutoring system.

Models of student traits. There are three fundamental ways to incorporate
student characteristics into student models of intelligent tutoring systems
(ITS).

First, we can assess student characteristics offline in a separate test (e.g. a
pre-test before the training). The results of such a traditional assessment can
then provide parameters to configure the learning environment or the stu-
dent models. While this approach allows for very detailed and high qual-
ity student profiles, traditional assessments are often time consuming and
commonly have to be supervised by an expert, rendering them expensive in
practice. Hence, this approach does not scale and is therefore not suitable
in many cases, such as massive open online courses (MOOC), large univer-
sity courses, or widespread screenings in elementary schools to enable early
detection of learning disabilities.

Second, students can potentially be assessed based on the actions within
a tutoring system. In this scenario we use machine learning techniques to
classify student characteristics based on the observed behavior. However, it
is unclear what types of student characteristics and traits can be predicted
based on interaction data only. Compared to the first approach this method
requires only a small set of manual assessments to allow the training of the
classification method.

Third, instead of predicting the student characteristics explicitly we can im-
plicitly model them by grouping students based on a similarity measure be-
tween students. This approach has the advantage that no labeled data is
needed (which means that we do not need manual assessments), but this
approach has the disadvantage that the captured student characteristics di-
rectly depend on the similarity metric used.

Sensor-free models. In this thesis we explore the second and third ap-
proach: data-driven machine learning methods for the detection and iden-
tification of student characteristics and traits. Building predictive models of
student characteristics such as knowledge level, learning disabilities, per-

5

Introduction

Thesis overview within student model landscape

observable properties

unobservable properties

st
at

es
 (

sh
o

rt
-t

er
m

 p
ro

p
er

ti
es

)

tr
ai

ts
 (

lo
n

g-
te

rm
 p

ro
p

er
ti

es
)

Knowledge models

Analysis of
performance

characteristics

Supervised trait
identification

Semi-supervised
trait identification

Unsupervised trait discovery

expanding student models

refining

discovery instead of prediction

Figure 1.1: Conceptual overview of the thesis. We categorize student models according
to the duration of the property they model (state vs. trait) and to what degree
the modeled property can be observed (observable vs. unobservable). Based
on the analysis of performance characteristics of current cognitive student
state models we develop supervised and semi-supervised methods for detect-
ing student traits. In addition we present a unsupervised framework for the
discovery of temporally coherent student characteristic.

sonality traits or engagement is one of the big challenges in educational
data mining (see the discussion of the grand challenges for AI in educa-
tional systems at the beginning of this chapter). Such detailed student pro-
files allow for a better adaptation of the curriculum to the individual needs
and are crucial for fostering optimal learning progress. We focus on sensor-
free models relying entirely on student interaction events gathered from log
data. While sensor data (cameras, microphones, bio-sensors) allow for more
detailed information about the student, recording such personal data often
requires a specialized setup and can lead to privacy issues outside of con-
trolled user studies. Today, most intelligent tutoring systems are already
recording detailed information about all the interactions of students within
the system such as keystrokes, mouse inputs, navigational actions, perfor-
mance on tasks, etc. Therefore, sensor-free methods can be included into ex-
isting intelligent tutoring systems at relatively low cost as the relevant data
is already available, making these methods widely applicable to different
intelligent tutoring systems.

Figure 1.1 provides a conceptual overview of the work presented in this the-

6

1.2 Principal Contributions

sis. For this overview, we categorize student models according to the dura-
tion of the student property they model (state vs. trait) and to what extent
the modeled property can be observed (observable vs. unobservable). With
student states, we denote properties of a student that change or evolve rel-
atively quickly (typically within a single training session). The knowledge
of a student, for example, evolves during training with every solved task, or
the current engagement level might change depending on the question the
student is currently trying to answer. Student traits, on the other hand, de-
note longer-term properties of a student such as his or her general attitude
towards learning, potential learning disabilities, or learning styles. While
these properties can change over time as well, they typically do so only on
a much larger timescale and not within a single training session. Behavior
patterns of students (e.g. how proficient a student is with the learning envi-
ronment) typically lie somewhere in the middle of this state-trait scale.

Based on an in-depth performance analysis of recent student models that
analyses the predictive quality for observable and unobservable variables,
we first present a classification pipeline for predicting student characteristics
tailored to small sample sizes, which typically arise from controlled study
experiments. We evaluate our method for the specific case of developmental
dyscalculia. Next, we identify the need to develop semi-supervised tech-
niques as for large portions of the available data in educational data sets,
traits of students are unknown. We present a semi-supervised classification
pipeline that makes use of recent discoveries in research on neural network.
Finally, we present a clustering pipeline that allows for temporally coherent
clustering of student behavior that provides a tool to discover and observe
student behavior in ITS.

1.2 Principal Contributions

In the following we list the main contributions of the work presented in this
thesis:

• Performance characteristics of recent student models. In extension
to previous work on the analysis of student model properties [Beck
and Chang, 2007; Khajah et al., 2014b; Fancsali et al., 2013], we empir-
ically evaluate the performance characteristics of two recent student
models latent factor knowledge tracing (LFKT) [Khajah et al., 2014a]
and feature aware student knowledge tracing (FAST) [González-
Brenes et al., 2014] on synthetic data and compare them to two
standard student modeling approaches: Bayesian knowledge trac-

7

Introduction

ing (BKT) [Corbett and Anderson, 1994] and item response theory
(IRT) [Wilson and De Boeck, 2004]. By evaluating the models on
66’000 different parameter configurations, we demonstrate the rel-
ative performance gains between the models for various regions of
the parameter space.

• Generalized student sampling model. Many processes of interest in
educational data mining are not directly observable such as for ex-
ample student learning. Ground truth about latent variables enables
the experimental evaluation of various properties of a model. We
therefore propose a synthetic generative student model that encom-
passes four well-known student models. We carefully design the set
of parameter configurations to match real-world conditions. This
allows us to study model performance under different parameter
settings, and to test model robustness against violations of specific
model assumptions.

• Classification pipeline for student traits. We propose a pipeline for
integrating automatic detection of student traits directly into a tutor-
ing system. Since our pipeline, leverages standard interaction data
available from intelligent tutoring systems the costs for model build-
ing are low and the accuracy of the classifier can be continuously im-
proved as more student data is added over time. Our classifier can
be seamlessly embedded into an intelligent tutoring system (in our
experiments Calcularis [Käser et al., 2013c]), where the assessment
runs continuously and non-intrusively in the background. In addi-
tion, our method can be used as a screening tool in which case test
time can be adapted to each child individually, which reduces the
average test duration substantially.

• Extensive comparison to expert tests. One of the main challenges
of computer-based tests is to show equivalence to conventional as-
sessments in terms of accuracy, practicability, and validity [Jenkins
et al., 2007]. We therefore validate our classification pipeline for the
specific case of developmental dyscalculia (DD) (a specific learning
disability affecting the acquisition of arithmetic skills [von Aster and
Shalev, 2007a]) and compare our predictions in terms of content-
validity, criterion-related validity, construct validity and reliability
to standardized tests for detecting DD. Our results demonstrate that
we can identify children at risk of DD with a high accuracy (91% sen-
sitivity, 91% specificity) within a short time (11 minutes on average).

• Variational auto-encoders for learning data. Recently, variational
auto-encoders have outperformed other semi-supervised classifica-

8

1.2 Principal Contributions

tion approaches in computer vision [Kingma and Welling, 2014;
Rezende et al., 2014]. Inspired by these advances, we explore varia-
tional auto-encoders for student classification in the educational con-
text. We employ deep variational auto-encoders to learn efficient
feature embeddings from unlabeled student interaction data. We
optimize the architecture of two different neural networks for educa-
tional data - a simple variational auto-encoder and a convolutional
variational auto-encoder.

• Semi-supervised classification pipeline. Based on the developed
variational auto-encoders we present a complete semi-supervised
classification pipeline for student traits. We validate our framework
on a large and unlabeled data set with interaction data from more
than 7K students and measure the classification performance on two
independent small and labeled data sets with 83 and 155 students.
Our pipeline improves the classification performance (in terms of
area under the ROC curve) for standard classifiers by up to 28%
compared to completely supervised training. Additionally, our ap-
proach shows improved robustness to class imbalance compared to
other feature embedding methods. This improved robustness is es-
pecially advantageous when predicting relatively rare student con-
ditions such as developmental dyscalculia.

• Temporally coherent clustering for student characteristics. We
present a complete processing pipeline for evolutionary clustering
that can be used as a black box for any intelligent tutoring system
that records student interactions. Our pipeline uses an evolution-
ary clustering method [Xu et al., 2014] for finding temporally coher-
ent clusters. We demonstrate that temporal smoothing of clusters
has beneficial properties for extracting student behavior and groups
from educational data. Our pipeline can capture cluster evolution
events, such as merging, splitting, dissolving and forming of clus-
ters, which is crucial to understand the evolution of learning data.
To capture these events automatically, we compute the optimal clus-
ter count for each time step.

• Robust similarity measure for students. We present a robust simi-
larity measure between students based on student interaction data.
We propose to summarize student actions as Markov Chains and
demonstrate that this approach is superior to direct sequence min-
ing techniques [Bergner et al., 2014; Köck and Paramythis, 2011]
with respect to noise cancellation and the ability to identify groups
of students with similar behavior. We compute student similar-

9

Introduction

ity based on individual Markov Chains and demonstrate that the
Hellinger distance outperforms other metrics that are frequently
used in the educational data mining literature [Bergner et al., 2014;
Köck and Paramythis, 2011].

1.3 Thesis outline

This thesis is organized as follows.

• Chapter 2 gives an overview of intelligent tutoring systems and a
overview of related work on student modeling, including cogni-
tive state models, models for predicting student traits and clustering
methods.

• Chapter 3 describes the two intelligent tutoring systems that have
been used to evaluate most of our methods in this thesis.

• Chapter 4 compares performance characteristics of recent student
models using synthetic data sets and provides a discussion for po-
tential directions to improve student models. This chapter motivates
our work on expanding student models for the identification and
discovery of student traits.

• Chapter 5 describes a data-driven supervised classification pipeline
for the detection of student traits and evaluates the pipeline for the
specific case of developmental dyscalculia.

• Chapter 6 expands on the work in Chapter 5 by making use of large
unlabeled data sets to improve classification accuracy. We present a
semi-supervised classification pipeline using recent advances in the
field of deep neural networks.

• Chapter 7 describes our clustering pipeline for the discovery of stu-
dent characteristics and student behavior within intelligent tutoring
systems.

• Chapter 8 concludes this thesis by a discussion of the contributions
and an outlook to potential future work.

1.4 Publications

In the context of this thesis, the following peer-reviewed publications have
been accepted:

10

1.4 Publications

S. KLINGLER, R. WAMPFLER, T. KÄSER, B. SOLENTHALER and
M. GROSS (2017). Efficient Feature Embeddings for Student Classifi-
cation with Variational Auto-encoders. Proceedings of the International
Conference on Educational Data Mining (Wuhan, China, June 25-28, 2017),
pp. 72-79. [Best Paper Award]

S. KLINGLER, T. KÄSER, B. SOLENTHALER and M. GROSS (2016).
Temporally Coherent Clustering of Student Data. Proceedings of the
International Conference on Educational Data Mining (Raleigh, US, June
29- July 2, 2016), pp. 102-109.

S. KLINGLER, T. KÄSER, A.G. BUSETTO, B. SOLENTHALER, J.
KOHN, M. VON ASTER and M. GROSS (2016). Stealth Assessment in
ITS - A Study for Developmental Dyscalculia. Proceedings of the Inter-
national Conference on Intelligent Tutoring Systems (Zagreb, Croatia, June
6-10, 2016), pp. 79-89.

S. KLINGLER, T. KÄSER, B. SOLENTHALER and M. GROSS (2015).
On the Performance Characteristics of Latent-Factor and Knowledge
Tracing Models. Proceedings of the International Conference on Educa-
tional Data Mining (Madrid, Spain, June 26-29, 2015), pp. 37-44.

This thesis includes the contents of all above papers, but includes additional
implementation and evaluation details not present in the papers.

During the course of this thesis the following peer-reviewed publications
have been accepted that are not directly linked to the work presented in this
thesis.

T. KÄSER, S. KLINGLER, A.G. SCHWING and M. GROSS (2017).
Dynamic Bayesian Networks for Student Modeling. IEEE Transactions
on Learning Technologies.

R. SIEGFRIED, S. KLINGLER, M. GROSS, R.W. SUMNER, F. MON-
DADA and S. MAGNENAT(2017). Improved mobile robot program-
ming performance through real-time program assessment. Proceed-
ings of Innovation and Technology in Computer Science Education (Bologna,
Italy, July 3-5, 2017), pp. 341-346.

T. KÄSER, S. KLINGLER and M. GROSS (2016). When to stop? - To-
wards Universal Instructional Policies. Proceedings of Learning Analyt-
ics and Knowledge Conference (Edinburgh, United Kingdom, April 26-29,
2016), pp. 289-298. [Best Paper Award]

T. KÄSER, S. KLINGLER, A.G. SCHWING and M. GROSS (2014). Be-
yond Knowledge Tracing: Modeling Skill Topologies with Bayesian

11

Introduction

Networks. Proceedings of the International Conference on Intelligent Tu-
toring Systems (Honolulu, Hawaii, June 5-9, 2014), pp. 188-198. [Best
Paper Award]

S. MÜLLER, M. KAPADIA, S. FREY, S. KLINGLER, R.P. MANN, B.
SOLENTHALER, R.W. SUMNER and M. GROSS (2015). Statistical
Analysis of Player Behavior in Minecraft. Proceedings of Foundation of
Digital Games (Pacific Grove, CA , USA, June 21-25, 2015).

S. MÜLLER, M. KAPADIA, S. FREY, S. KLINGLER, R.P. MANN, B.
SOLENTHALER, R.W. SUMNER and M. GROSS (2015). HeapCraft
Social Tools: Understanding and Improving Player Collaboration in
Minecraft. Poster Proceedings of Foundation of Digital Games (Pacific
Grove, CA , USA, June 21-25, 2015).

S. MÜLLER, M. KAPADIA, S. FREY, S. KLINGLER, R.P. MANN,
B. SOLENTHALER, R.W. SUMNER and M. GROSS (2015).
HEAPCRAFT: Quantifying and Predicting Collaboration in
Minecraft. Artificial Intelligence and Interactive Digital Entertainment
(Santa Cruz, USA,, November 14-18, 2015), pp. 156-162 .

S. MÜLLER, B. SOLENTHALER, M. KAPADIA, S. FREY, S.
KLINGLER, R.P. MANN, R.W. SUMNER and M. GROSS (2015).
HeapCraft: Interactive Data Exploration and Visualization Tools for
Understanding and Influencing Player Behavior in Minecraft. Pro-
ceedings of Motion in Games (Paris, France, November 16-18, 2015), pp.
237-241.

S. MAGNENAT, M. BEN-ARI, S. KLINGLER, R.W. SUMNER (2015).
Enhancing Robot Programming with Visual Feedback and Aug-
mented Reality. Proceedings of Innovation and Technology in Computer
Science Education (Vilnius, Lithuania, July 6-8, 2015), pp. 153-158.

12

C H A P T E R 2
Student model landscape (related work)

Intelligent tutoring systems (ITS) have been used successfully in many dif-
ferent applications such as physics [Conati et al., 2002], algebra [Koedinger
et al., 1997] and basic arithmetic [Käser et al., 2013c; Käser et al., 2013a]. ITS
consist of four main components [Corbett et al., 1997], as displayed in Fig-
ure 2.1. Learners are interacting with a computer-based environment solv-
ing tasks provided by the system in the problem-solving environment. Student
actions are evaluated based on domain knowledge (typically provided by ex-
perts) to assess the correctness of the provided solutions. This information
along with various features from the problem-solving environment (such as
response times, time to notice an error or problem-solving strategies) are
used to update the student model (a mathematical representation of the stu-
dent). Based on the student model the pedagogical module performs teaching
decisions to optimize the learning outcome for each student. The student
model is a fundamental part of an ITS, since task selection and evaluation
of the student’s learning progress are based on this model. The quality of
the student model greatly influences the learning experience and the learn-
ing outcome of a student. In order for the pedagogical module to adapt the
learning experience to the individual needs of a student detailed information
about a student’s cognitive, metacognitive and affective state is desirable (as
discussed in Chapter 1). In addition, identifying and discovering student
traits such as learning disabilities or learner styles allows for further adap-
tion. Further, multi-modal student models can provide various insights into
the learning process and allow experts to improve the curriculum as well as
identify students that need additional support. Expanding student models

13

Student model landscape (related work)

Problem solving environment

Learner / Student

Expert

Student model

Cognitive Affective Traits

Pedagogical module

Instructional policies

Domain Knowledge / Expert model

Intelligent tutoring system (ITS)

Figure 2.1: Main components of a generic intelligent tutoring system (ITS) (figure
adapted from [Solenthaler et al., under review]). Learners are interacting
with a learning environment. These interactions are used to build a repre-
sentation of the cognitive and affective states of the student (called student
model) and can be used to identify student traits. Based on such a student
profile, the pedagogical module performs teaching decisions to provide an
optimal learning experience. Experts provide domain knowledge to assess
student solutions and build domain knowledge. Developing models of stu-
dent traits and characteristics is the focus of this thesis (dashed box).

to represent student traits will be the focus of this thesis (dashed square in
Figure 2.1).

Cognitive models of student knowledge have been the major focus in re-
search on student models. In Section 2.1 we will therefore first review the
work on modeling student knowledge as well as other cognitive states such
as models of learning progress or knowledge gaps.

As recent ITS provide more detailed user interaction data, student models
have expanded beyond modeling cognitive and affective student states to
discover and predict student behavior and student traits. We will review re-
lated work on clustering and predicting student behavior and student traits
in Section 2.2.

This chapter is intended to give a broad overview of related work in the

14

2.1 Cognitive student models

field of student modeling for intelligent tutoring systems. More specific re-
lated work to methods presented in this thesis is discussed in the respective
chapters.

2.1 Cognitive student models

Modeling student knowledge and student learning has been the major focus
in research on cognitive student models. Many popular knowledge model-
ing approaches are based on two common basic models of student learn-
ing. The first model called Bayesian Knowledge Tracing (BKT) is a special
case of a Hidden Markov model and was introduced by Corbett and Ander-
son [1994] to model student knowledge as a binary variable inferred from
binary observations. For BKT the observations consist simply of correct or
incorrect solution attempts to a particular task. The performance of the orig-
inal BKT model has been improved by using individualization techniques
such as modeling the parameters by student and skill [Pardos and Heffer-
nan, 2010a; Wang and Heffernan, 2012; Yudelson et al., 2013] or per school
class [Wang and Beck, 2013]. It has been shown that individualizing student
models to each student has a significant effect on the number of practice op-
portunities: Lee and Brunskill [2012] found that a significant amount of stu-
dents were over or under practicing skills when using a population model
(same model parameters for the entire population). In addition, student-
specific parameters provide better performance for predicting student task
outcomes, of which student-specific learning rates was found to be most im-
portant [Yudelson et al., 2013]. Clustering approaches have also proven suc-
cessful in improving the prediction accuracy of BKT [Pardos et al., 2012]. Dy-
namic Bayesian networks provide a unified framework for modeling tem-
poral stochastic processes and were used to model student performance in
various domains ranging from mathematics learning [Käser et al., 2013c;
Käser et al., 2013a] to serious games [Lester et al., 2013].

The second modeling family is Item Response Theory (IRT) [Wilson and
De Boeck, 2004]. The concept of IRT assumes that the probability of a
correct response to an item is a mathematical function of student and
item parameters. The Additive Factors Model (AFM) [Cen et al., 2007;
Cen et al., 2008] fits a learning curve to the data by applying a logistic regres-
sion. Another technique called Performance Factors Analysis (PFA) [Pavlik
et al., 2009] is based on the Rasch item response model [Fischer and Mole-
naar, 1995].

15

Student model landscape (related work)

2.1.1 Hybrid models

Recently several hybrid models have been proposed that combine the mod-
eling techniques from BKT and IRT. In [Johns and Woolf, 2006] a dynamic
mixture model has been presented to trace performance and affect simul-
taneously. The KT-IDEM model extends BKT by introducing item diffi-
culty parameters [Pardos and Heffernan, 2011]. Other work focused on in-
dividualizing the initial mastery probability of BKT by using IRT [Xu and
Mostow, 2013]. Logistic regression has also been used to integrate subskills
into BKT [Xu and Mostow, 2011]. Recently, two models have been intro-
duced which synthesize IRT and BKT. Latent Factor Knowledge Tracing
(LFKT) [Khajah et al., 2014a] individualizes the guess and slip probabilities
of BKT based on student ability and item difficulty. Feature Aware Student
Knowledge Tracing (FAST) [González-Brenes et al., 2014] generalizes the in-
dividualized guess and slip probabilities to arbitrary features.

2.1.2 Student model properties

The analysis of properties of student models such as Bayesian Knowledge
Tracing (BKT) has been an important part of research over the past years.
Practitioners and researchers employing student models in their intelligent
tutoring systems are rarely only interested in the predictive power of these
models (will a student be able to solve a particular task?), but need to inter-
pret model parameters related to student learning (e.g. how fast is a student
learning?). Beck and Chang [2007] showed that learning BKT models ex-
hibits fundamental identifiability problems, i.e., different model parameter
estimates may lead to identical predictions about student performance but
would require very different interventions based on the parameters. This
problem was addressed by using an approach that biases the model search
by Dirichlet priors to get statistically reliable improvements in predictive
performance. This work has been further extended by performing a fixed
point analysis of the solutions of the BKT learning task and by deriving con-
straints on the range of parameters that lead to unique solutions [Van de
Sande, 2013]. Furthermore, it has been shown that the parameter space of
BKT models can be reduced using clustering [Ritter et al., 2009].

Other research focused on analyzing convergence properties [Pardos and
Heffernan, 2010b] of the expectation maximization algorithm (EM) for learn-
ing BKT models and exploring parameter estimates produced by EM [Gu et
al., 2014]. It has been shown that convergence in the log likelihood space
does not necessarily mean convergence in the parameter space. Fancsali

16

2.2 Models of student characteristics and traits

et al. [2013] have studied how good BKT is at predicting the moment of
mastery. Different thresholds to assess mastery and their corresponding lag,
i.e., the number of tasks that BKT needs to assess mastery (after mastery
has already been achieved), have been investigated. Using multiple model
fitting procedures, BKT has been compared to performance factors analy-
sis (PFA) [Gong et al., 2010]. While no differences in predictive accuracy
between the models have been reported, it has been shown that for knowl-
edge tracing EM achieves significantly higher predictive accuracy than Brute
Force. Findings from other studies, however, suggest the opposite [Baker et
al., 2008; Baker et al., 2010a]. In [Beck and Xiong, 2013], upper bounds on
the predictive performance have been investigated by employing various
cheating models. It has been concluded that BKT and PFA perform close to
these limits, suggesting that other factors such as robust learning or optimal
waiting intervals should be considered to improve tutorial decision-making.
Recently, the predictive performance of the hybrid models LFKT and FAST
has been compared to BKT and IRT models using data from different intel-
ligent tutoring systems [Khajah et al., 2014b].

2.2 Models of student characteristics and traits

Building predictive models of student characteristics and traits such as
knowledge level, intelligence, learning disabilities or personality traits is
one of the big challenges in educational data mining (see discussion of the
grand challenges in Chapter 1). To overcome these challenges a large body of
work has focused on mining the data logs collected from intelligent tutoring
systems (ITS). Important topics in the area of student behavior and student
traits modeling are automatic stealth assessments (classification) and the ex-
traction of student properties (clustering).

First, stealth assessments provide an unobtrusive way for the evaluation of
student learning or the detection of student traits and characteristics by pre-
dicting student properties in the background of an ITS [Shute, 2011]. Tradi-
tional assessments are often time-consuming and have to be supervised by
an expert, rendering them expensive in practice. Hence, this approach does
not scale and is therefore not suitable in many cases, such as massive open
online courses (MOOCs), large university courses, or widespread screen-
ings in elementary schools to enable early detection of learning disabilities.
Related work on predictive models for the detection of student traits is dis-
cussed in Section 2.2.1.

Second, clustering approaches provide tools for the automatic extraction and
discovery of student properties. On the one hand, the identification of stu-

17

Student model landscape (related work)

dent abilities and behavior patterns allows us to draw conclusions about
human learning. On the other hand, the extracted properties can be used to
improve the adaptation of the underlying intelligent tutoring system (ITS).
We discuss related work on clustering data logs in ITS in Section 2.2.2.

2.2.1 Student trait identification

Previous work has investigated stand-alone automatic digital assessments,
including research on automatic scoring [Attali, 2015], item generation [Graf
and Fife, 2013] and game-based assessment [Hao et al., 2015]. Furthermore,
digital screening programs replacing traditional neuropsychological tests,
for example for dyscalculia [Butterworth, 2003] or dyslexia [Cisero et al.,
1997] have been developed. Ideally, such computer-based screening pro-
grams are seamlessly integrated into an intelligent tutoring system (ITS).
This enables not only automatic and non-intrusive assessment of students,
but also analysis and detection of student traits that allow for a better adap-
tation of the curriculum to the individual needs of learners. Despite these
advantages, only a few works have addressed such ITS with a fully inte-
grated assessment. One step in this direction are integrated behavior de-
tectors identifying students gaming the system [Baker et al., 2004], finding
wheel-spinning students [Beck and Gong, 2013] or modeling engagement,
e.g. [Beck, 2005; Arroyo and Woolf, 2005; Cooper et al., 2010]. User types
have been modeled based on observed action sequences using expert do-
main knowledge and psychological behavior theory [Cowley and Charles,
2016]. Other work combined clustering and classification approaches to de-
tect students’ mathematical characteristics [Käser et al., 2013b]. One of the
main challenges of automatic computer-based assessments is to show equiv-
alence to conventional assessment in terms of accuracy, practicability, and
validity [Jenkins et al., 2007].

In order to build such predictive models of student traits, smaller-scale and
controlled user studies are typically conducted where detailed information
about student characteristics are at hand (labeled data). However, gathering
labeled data in educational data mining is a time and cost-intensive task.
Nevertheless, the amount of available training data directly influences the
quality of predictive models. Unlabeled data, on the other hand, is readily
available in high volumes from ITS and massive open online courses. Semi-
supervised learning bridges this gap by making use of patterns in bigger
unlabeled data sets to improve predictions on smaller labeled data sets (this
is also the focus of Chapter 6). These techniques are well explored in a vari-
ety of domains and it has been shown that classifier performance can be im-

18

2.2 Models of student characteristics and traits

proved for, e.g., image classification [Kingma et al., 2014], natural language
processing [Turian et al., 2010] or acoustic modeling [Liao et al., 2013].

In the education community, semi-supervised classification has been used
employing self-training, multi-view training, and problem-specific algo-
rithms. Self-training has e.g. been applied for problem-solving perfor-
mance [Min et al., 2014] and the generation of concept maps [Jiang et
al., 2016]. In self-training, a classifier is first trained on labeled data and
is then iteratively retrained using its most confident predictions on unla-
beled data. Self-training has the disadvantage that incorrect predictions de-
crease the quality of the classifier. Multi-view training uses different data
views and has been explored with co-training [Tam et al., 2015] and tri-
training [Kostopoulos et al., 2015] for predicting prerequisite rules and stu-
dent performance, respectively. Co-training trains two classifiers on two in-
dependent feature sets (or data views) and uses the predictions of one clas-
sifier to enlarge the training set of the other classifier and vice versa [Blum
and Mitchell, 1998]. In tri-training, the predictions for which two classifiers
agree are used to improve the training set for the third classifier [Zhou and
Li, 2005]. The performance of these methods, however, largely depends on
the properties of the different data views, which are not yet fully under-
stood [Xu et al., 2013a]. Problem-specific semi-supervised algorithms have
been used to organize learning resources in the web [Labutov and Lipson,
2016], to automatically score short text answers [Jing, 2015] or for the anal-
ysis of learning objectives [Miller and Soh, 2013]. But of course, problem-
specific algorithms have the disadvantage that they cannot be directly ap-
plied to other classification tasks.

On the other hand models for representation learning automatically com-
pute efficient data representations without the need for prior expert knowl-
edge [Bengio et al., 2013]. In the past years, deep neural networks have
provided breakthroughs in understanding data in many areas, including
but not limited to computer vision, natural language processing or game
AI (most notably Atari and Go games) [LeCun et al., 2015; Silver et al., 2016;
Mnih et al., 2015]. Recently, it has been shown (outside of the education
context) that variational auto-encoders have the potential to outperform the
commonly used semi-supervised classification techniques. A variational
auto-encoder is a neural network that includes an encoder that transforms
a given input into a typically lower-dimensional or constraint representa-
tion, and a decoder that reconstructs the input based on the latent repre-
sentation [Kingma et al., 2014]. Hence, variational auto-encoders learn an
efficient feature embedding (feature representation) using unlabeled data
that can be used to improve the performance of any standard supervised
learning algorithm [Kingma et al., 2014]. This property greatly reduces the

19

Student model landscape (related work)

need for problem-specific algorithms. Moreover, variational auto-encoders
feature the advantage that the trained deep generative models are able to
produce realistic samples that allow for accurate data imputation and sim-
ulations [Rezende et al., 2014], which makes them an appealing choice for
educational data mining.

2.2.2 Student trait discovery

Clustering of sequential data is a common approach to detect similar be-
havior patterns and student characteristics. Sequential data clustering has
been successfully applied to a variety of applications such as reading com-
prehension [Peckham and McCalla, 2012], online collaboration tools [Perera
et al., 2009], table-top environments [Martinez-Maldonado et al., 2013], web
browsing [Wang and Heffernan, 2012], physics simulations [Bergner et al.,
2014] or homework assignments [Herold et al., 2013].

Beal and Cohen [2008] demonstrated that data from intelligent tutoring sys-
tems (ITS) exhibit interesting structure at different scales: from short ac-
tion sequences to long-term patterns over multiple training sessions. A
variety of different student behavior at these different scales has been
investigated over the past years. [Miller and Soh, 2013] identified stu-
dents that impose challenges for the student models and allowed to re-
train the models for these challenging students to improve model perfor-
mance. Clustering approaches allowed to detect homogenous groups of
students with similar behavior [Trivedi et al., 2011; Trivedi et al., 2012;
Käser et al., 2013b]. Extracted group information has been used to improve
post-test score prediction [Trivedi et al., 2011; Trivedi et al., 2012; Käser et
al., 2013b] and to increase the precision of student models [Pardos et al.,
2012]. Further, two different variants of an ITS have been compared to iden-
tify differences in student interactions using directed graphs [Rebolledo-
Mendez et al., 2013]. Other work studied the relation between interac-
tion patterns and the performance of students to identify patterns that
positively or negatively influence the performance [Andres et al., 2015;
Kinnebrew and Biswas, 2012]. The relation between student action se-
quences and the affective states boredom and confusion among the students
has been studied [Andres et al., 2015]. Groups of students that show interest-
ing temporal behavior have been mined from interaction data [Kinnebrew
et al., 2013]. Using state transition graphs and graph measures (such as den-
sity and centrality) self-regulated learning has been explored [Hadwin et
al., 2007]. King et al. [2007] identified different subtypes of children with
dyslexia (a learning disability).

20

2.2 Models of student characteristics and traits

Common techniques for the analysis of sequential data include sequence
mining [Agrawal and Srikant, 1995; Martinez-Maldonado et al., 2013;
Nesbit et al., 2007], differential pattern mining [Herold et al., 2013] or
Hidden Markov models (HMM) [Biswas et al., 2010; Boyer et al., 2000;
Soller and Lesgold, 2007]. Sequential pattern mining techniques have been
contextualized using piecewise linear segmentation [Kinnebrew and Biswas,
2012]. Further, pattern frequency analysis of action sequences [Andres et al.,
2015] and bootstrapped aggregated clustering [King et al., 2007] has been
used. Others have employed semi-supervised graph clustering using the
predictions from a student model as additional constraints [Miller and Soh,
2013] or used the dependent Dirichlet process mixture model for cluster-
ing with an a priori unknown number of clusters [Campbell et al., 2013].
Static clustering approaches have been used to cluster sequential data by
employing similarity measures on state sequences [Bergner et al., 2014; Des-
marais and Lemieux, 2013]. These state sequences can be aggregated into
Markov Chains modeling the state transitions [Köck and Paramythis, 2011;
Benevenuto et al., 2009]. Hidden Markov models have been employed to
extract stable groups from temporal data by joint optimization of the model
parameters and the cluster count [Li and Biswas, 2000].

While the previous work discussed above analyze student clusters at a given
point in time, a temporal analysis would allow identifying how interaction
patterns change over time and how groups of similar students evolve. Tem-
poral effects of cluster evolution have been analyzed in [Kinnebrew et al.,
2013], based on static clustering at each time step. Static approaches are sen-
sitive to noise in the data and may result in temporally inconsistent clusters.
Evolutionary clustering methods [Chakrabarti et al., 2006] address this prob-
lem as they consider multiple subsequent time steps. The temporal smooth-
ing increases the resulting cluster stability notably and allows for a better
analysis of the clusters, i.e., the student properties and interaction patterns in
our case. Recently, an evolutionary clustering approach called AFFECT [Xu
et al., 2014] has been introduced that smooths proximities of objects over
time followed by static clustering. AFFECT was shown to outperform static
clustering algorithms. Similar approaches for time series clustering have
been successfully applied in other domains such as for example clustering
of motion capture data [Li and Prakash, 2011].

21

Student model landscape (related work)

22

C H A P T E R 3
Data

In this chapter we introduce the two intelligent tutoring systems Orthograph
and Calcularis that have provided the data for most experimental results
in this thesis. Both systems have been developed at ETH Zurich and are
commercially available through Dybuster AG, Switzerland1.

3.1 Orthograph

Reading and writing skills are crucial in today’s society as written com-
munication is ubiquitous in everyday life. However, 5-17% of the popu-
lation in English- and German-speaking countries [Shaywitz, 1998; Rüsseler
et al., 2006] suffer from developmental dyslexia (DL), a specific learning dis-
ability affecting the acquisition of reading and writing skills [World Health
Organization, 1993]. Research indicates that DL is a neurological disor-
der with genetic origin [Galaburda et al., 1985; Galaburda et al., 2006;
Schulte-Körne et al., 2004; Démonet et al., 2004; Ziegler et al., 2005]. Indi-
viduals suffer from auditory difficulties in the discrimination of sounds and
the phoneme-to-grapheme mapping [Baldeweg et al., 1999], from visual im-
pairments causing visual confusion and transposition of letters [Lovegrove
et al., 1990], and motor impairments involving time estimation and coordi-
native abilities [Nicolson and Fawcett, 1990].

The computer-based multi-modal training environment Orthograph [Kast
et al., 2007; Kast et al., 2011] was developed to improve spelling learn-

1http://www.dybuster.ch

23

http://www.dybuster.ch

Data

ing focusing on students with developmental dyslexia. The training sys-
tem uses multi-modal recoding of information from letters and words into
multiple visual and auditory cues. Letters are mapped to specific colors us-
ing a multi-objective optimization, which assigns similar letters such as e.g.
’n’ and ’m’ to very distinct colors. Additionally, different letter types are
mapped to different shapes. Small letters are represented as spheres, capi-
tal letters as cylinders and umlauts as pyramids (see Figure 3.1 (c)). Finally,
a graph structure visualizes the decomposition of the word into syllables
and letters. Auditory cues are generated by synthesizing a melody based
on the type and number of letters. Multi-sensory learning stimulates differ-
ent senses and has been shown to enhance perception and facilitate memory
retrieval [Lehmann and Murray, 2005; Shams and Seitz, 2008].

Orthograph consists of three different games: Two supporting games that
help the learner train the mappings from the word to the visual cues (Color
and Graph game) and the main game, where students learn how to spell
words (Word Learning game). In the Color game (see Figure 3.1 (a)) stu-
dents learn to memorize the color of each letter. The colors of presented let-
ters are fading to white over time and students have to pick the correct color
from the list of colors. In the Graph game (see Figure 3.1 (b)) students learn
how the graph structure is representing the word decomposition into sylla-
bles and graphemes. For this learners have to reproduce the graph structure
for different words by connecting the white circles to form the correct tree
structure.

The Word Learning game (see Figure 3.1 (c)) represents the actual learning
game, where students spend most of their time during training. The word is
dictated along with a word melody (computed based on the letters, syllables
and the word length) and learners can see the color of all letters and the
graph structure of the word to spell. Learners then have to enter the correct
spelling of the word by keyboard. Erroneous input is immediately detected
and the system provides auditory and visual feedback to the student (see
highlighted sphere for letter ’ü’ in Figure 3.1 (c)). This prevents the display
of wrong spellings of entire words. Word selection is based on the student
ability and the error profile of the learner.

In Orthograph words are grouped into different modules based on the fre-
quency in the language and an estimate of the word difficulty [Baschera,
2011]. The word difficulty is estimated based on the word length, the num-
ber of silent letter pairs and the number of potential dyslexic confusions.
Students are linearly progressing through the different modules. The word
selection controller provides and adaptive learning experience by choosing
words within a module that maximize the learning gain. Learning gain is

24

3.2 Calcularis

(a) The Color game. (b) The Graph game.

(c) The Word Learning game.

Figure 3.1: Orthograph consists of three different games. The support games (Fig-
ure (a), (b)) train the visual encoding of words. In the Word Learning

game, students learn how to spell words (Figure (c)). Screenshots were taken
with permission of Dybuster AG, Switzerland.

measured as the reduction in uncertainty in the spelling of words in the
current module. Uncertainty, on the other hand, is computed as the error
entropy given a global letter confusion matrix and a local error history for
each word. A student progresses to the next module once the error entropy
falls below a certain threshold for the words in the current module.

3.2 Calcularis

In today’s society, the possession of mathematical skills is crucial as numer-
ical cognition and calculations are ubiquitous in everyday life. However,
3-6% of the population in English- and German-speaking countries [Lewis
et al., 1994; Shalev and von Aster, 2008] suffer from developmental dyscalcu-
lia (DD), a specific learning disability affecting the acquisition of arithmetic

25

Data

skills [von Aster and Shalev, 2007a]. Recent research indicates that DD is
a brain-based disorder, although environmental effects and poor teaching
might be relevant as well [Shalev, 2004]. Children with DD show deficits
in basic numerical skills such as number comparison [Landerl et al., 2004;
Butterworth, 2005], number processing [Kucian et al., 2006] and arith-
metic procedures [Ostad, 1997; Ostad, 1999]. Early identification of DD
and targeted interventions in the first years of education have been shown
to be essential for later mathematical performance [Landerl et al., 2004;
Mazzocco and Thompson, 2005].

The computer-based training environment Calcularis [Käser et al., 2013c;
Käser et al., 2013a] was specifically designed to improve mathematical abil-
ities of children with DD or difficulties in learning mathematics. The pro-
gram turns current neurocognitive theory into the design of different in-
structional games that train number representations and number under-
standing as well as arithmetic operations. All games use a special design
for numerical stimuli: auditory and visual cues such as color, form, and
topology encode different number properties. The learning environment is
fully adaptive: A student model and a controlling algorithm optimize the
ordering and selection of tasks presented to a child to provide an ideal level
of cognitive stimulation.

The games of the training environment are hierarchically structured ac-
cording to different number ranges (0-10, 0-100, 0-1000) and can be fur-
ther classified into two distinct areas. Games belonging to the first area
train the different number representations (Arabic digits, spoken word, po-
sition on a number line) and their interrelationships, as well as the con-
cepts of number understanding (cardinality, ordinality, and relativity). The
games in this area are ordered according to a neuropsychological theory on
the development of number understanding [Von Aster and Shalev, 2007b;
Dehaene and Cohen, 1995]. In the following, we describe four example
games of this area. The Landing game (Figure 3.2 (a)) asks children to in-
dicate the position of a given number on a number line. In the Ordering

game (Figure 3.2 (b)), children need to decide if a given number sequence is
sorted in ascending order. Another game is the Secret Number game (Figure
3.2 (c)). In this game, children have to guess a number in a given interval in
as few steps as possible. After each guess, they are told if the searched num-
ber is larger or smaller than the guessed number. In the Estimation game
(Figure 3.2 (d)), children need to assign a point set to a given number. The
second area focuses on training concepts and automation of arithmetic op-
erations. Children solve addition and subtraction tasks at different difficulty
levels. The difficulty of a task depends on the magnitude of the numbers in-
volved, the complexity of the task and the means allowed to solve the task.

26

3.2 Calcularis

An example game of this area is the Plus and Minus game (Figure 3.2 (e)). In
this game, children are asked to model arithmetic tasks using colored blocks
representing hundreds (red), tens (blue) and units (green). Another game
of this area, the Calculator game (Figure 3.2 (f)) asks children to perform
mental calculation.

Calcularis provides optimal learning conditions by adapting the task se-
lection to the needs of the individual child. The program models the knowl-
edge of the children using a dynamic Bayesian network representing differ-
ent mathematical skills and their relationships. These skills are connected
based on their hierarchy, i.e., two skills A and B have a directed connection
if skill A is a prerequisite for knowing skill B. For example, to be able to solve
an addition with a carry (such as ’9+5=?’) the child needs to have mastered
simple addition tasks (such as ’2+3=?’). The resulting skill net contains 100
mathematical skills that are associated with the different games of the train-
ing program. To be able to adapt to the type of errors children committed,
the program has access to a bug library storing typical error patterns. If a
child commits a specific error pattern several times, the program selects re-
mediation tasks for this error type. An example of an error pattern is the
switching of digits (’8+5=31’). Remediation games for this error type train
the Arabic notation.

All children start the training with the same game. After each solved task,
the knowledge state of the child is updated. Due to the structure of the
skill net, each child persecutes a different trajectory over the course of the
training. This variety is increased by randomly repeating less sophisticated
skills. A detailed description of the mathematical concepts and the control
algorithm can be found in [Käser et al., 2013c; Käser et al., 2013a].

27

Data

(a) In the Landing game, the position of a dis-
played number (40) has to be marked on the
number line using the red cone.

(b) In the Ordering game, the correctness of
number ordering (ascending) has to be
checked.

(c) In the Secret Number game, a hidden num-
ber has to be found by repeatedly guessing
numbers and reducing the search interval.

(d) Given an Arabic number, the correspond-
ing point cloud has to be indicated in the
Estimation game.

(e) The Plus and Minus game asks users to
model simple arithmetic operations using
blocks representing tens (blue) and ones
(green).

(f) In the Calculator game, children have to
perform mental calculations.

Figure 3.2: Examples of games in Calcularis. Screenshots were taken with permission
of Dybuster AG, Switzerland.

28

C H A P T E R 4
Performance characteristics of student
knowledge models

Student models are an integral part of any intelligent tutoring system (ITS)
because task selection and evaluation of the student’s learning progress are
based on this model. Over the last decades, much research has focused on
building more accurate models of student knowledge and learning. Most
of this work has focused on improving one of the two major student model
families: latent factor or knowledge tracing models. Recent studies investi-
gated the limits to the predictive performance of these models. Results show
that knowledge tracing and latent factor models perform close to these limits
(see Chapter 2). These findings suggest that student models should include
other factors such as robust learning or optimal waiting intervals to improve
tutorial decision making [Beck and Xiong, 2013]. To create more powerful
student models, recently, two models have been introduced that synthesize
latent factor models and knowledge tracing models. Latent Factor Knowl-
edge Tracing (LFKT) individualizes model parameters of knowledge tracing
based on student ability and item difficulty (the two most common factors in
latent factor models) [Khajah et al., 2014a]. Feature Aware Student Knowl-
edge Tracing (FAST) on the other hand generalizes LFKT by allowing indi-
vidualized model parameters based on arbitrary features [González-Brenes
et al., 2014].

In this chapter, we are interested in the properties of these recent hybrid
student modeling approaches combining latent factor and knowledge trac-
ing models. In extension to previous work and especially to [Khajah et al.,
2014b], we empirically evaluate the performance characteristics of the two

29

Performance characteristics of student knowledge models

recent hybrid models LFKT and FAST on synthetic data and compare them
to the underlying approaches of Bayesian knowledge tracing (BKT) and item
response theory (IRT). We sample from a combined student model that en-
compasses all four models. By using synthetic data generated from the com-
bined model, we show the robustness of the models under breaking model
assumptions. By evaluating the models on 66’000 different parameter con-
figurations, we rigorously explore the parameter space to demonstrate the
relative performance gain between models for various regions of the param-
eter space.

Our findings show that for the generated data sets FAST significantly out-
performs all other methods for predicting the task outcome for the majority
of the investigated parameter configurations. BKT, on the other hand, is
significantly better than FAST and LFKT at predicting the latent knowledge
state. Furthermore, we identify the influence of different properties of a data
set on model performance using regression and show best and worst case
performances of the models. Finally, we relate our findings to other stud-
ies on student model performance and highlight potential directions to im-
prove student models. These future directions serve as the main motivation
for the presented methods in the remainder of this work that will explore
techniques for the discovery and identification of student traits within ITS
(Chapter 5 to Chapter 7).

4.1 Investigated Models

In an intelligent tutoring system (ITS) a student is typically presented with
a set of tasks to learn a specific skill. For each student n, the system chooses
at time t an item i from a set of items corresponding to a particular skill. The
system then observes the answer yn,t of the student, which is assumed to be
binary for all models that we compare in this chapter. In the following, we
first present the two standard techniques to model student knowledge in the
context of ITS: Bayesian knowledge tracing and Item Response Theory. We
then briefly present the two different hybrid techniques (LFKT and FAST) to
model various latent states of the student and the tutoring environment.

4.1.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) [Corbett and Anderson, 1994] models
the knowledge acquisition of a single skill and is a special case of a Hidden

30

4.1 Investigated Models

𝑦𝑛,𝑡

students 𝑵

time steps 𝑻

𝑘𝑛,𝑡

Bayesian Knowledge Tracing

𝑑𝑖 𝑦𝑛,𝑖 𝑎𝑛

items 𝑰

students 𝑵

Rasch model

Figure 4.1: Plate notation of Bayesian knowledge tracing BKT (left) and the Rasch model
(right). In BKT task outcomes yn,t depend only on the latent knowledge state
kn,t of the student. In the Rasch model task outcomes depend on the difficulty
of the presented item di as well as the ability of the student an.

Markov Model (HMM) [Reye, 2004]. Figure 4.1, left gives the plate nota-
tion of the BKT model. BKT uses two latent states (known and unknown) to
model if a student n has mastered a particular skill kn,t at time t, and two
observable states (correct and incorrect) to represent the outcome of a partic-
ular task. Therefore, the probabilistic model can be fully described by a set
of five probabilities. The initial probability of knowing a skill a priori p(kn,0)
is denoted by pI . The transition from one knowledge state kn,t−1 to the next
state kn,t is described by the probability pL of transitioning from the unknown
latent state to the known state and the probability pF of transitioning from the
known to the unknown state:

p(kn,t) = kn,t−1(1− pF) + (1− kn,t−1)pL. (4.1)

In the case of BKT, pF is fixed at 0. Finally, the task outcomes yn,t are modeled
as

p(yn,t) = kn,t(1− pS) + (1− kn,t)pG, (4.2)

where pS denotes the slip probability, which is the probability of solving a task
incorrectly despite knowing the skill, and pG is the guess probability, which
is the probability of correctly answering a task without having mastered the
skill. Learning the parameters for a BKT model amounts to maximum like-
lihood estimation (MLE). The likelihood for the BKT model for N users and

31

Performance characteristics of student knowledge models

T observations per user is given as

p(Y | θ) =
N

∏
n=1

[
∑
K

T

∏
t=1

p(yn,t | θ, K)

]
,

where K denotes the set of latent knowledge states, θ = (pI , pL, pS, pG) the
set of model parameters and Y the observed task outcomes. As the BKT
model is a special case of a HMM, we can evaluate the likelihood very effi-
ciently using the forward algorithm [Yudelson et al., 2013]. The maximiza-
tion of the likelihood function is typically performed using brute-force grid-
search [Baker et al., 2010a], expectation maximization [Chang et al., 2006], or
gradient descent [Yudelson et al., 2013].

Prediction of the outcomes y is performed in the following way: We predict
the first observation yn,1 of student n based on the initial probability pI . We
then predict the tth observation yn,t, for t ∈ {2, . . . , T}, based on the previous
t− 1 observations.

4.1.2 Item Response Theory

Item Response Theory (IRT) [Wilson and De Boeck, 2004] models the re-
sponse of a student to an item as a function of latent student abilities an and
latent item difficulties di . The simplest form of an IRT model is the Rasch
model as depicted in Figure 4.1, right, where each student n and each item
i are treated independently. The outcome yn,t at time t is modeled using the
logistic function

p(yn,t) =
(

1 + e−(an−di)
)−1

. (4.3)

Note that di refers to the difficulty of the item presented at time t. As an
example, a student with an ability of an = di has a 50% chance of getting
the item i correct. In contrast to BKT, IRT does not model knowledge ac-
quisition, because IRT was developed for the design and analysis of testings
or questionnaires. The model parameters for the Rasch model are learned
using the expectation maximization algorithm (EM).

4.1.3 Latent Factor Knowledge Tracing

The Latent Factor Knowledge Tracing (LFKT) [Khajah et al., 2014a] model
combines BKT and IRT using a hierarchical Bayesian model as shown in

32

4.1 Investigated Models

Latent Factor Knowledge Tracing Feature Aware Knowledge Tracing

𝑑𝑖

items 𝑰

𝑘𝑛,𝑡

𝑦𝑛,𝑡

students 𝑵

time steps 𝑻

𝑎𝑛

𝑘𝑛,𝑡

𝑦𝑛,𝑡

students 𝑵
time steps 𝑻

𝑓𝑛,𝑡

features 𝑭

Figure 4.2: Plate notation of latent factor knowledge tracing (LFKT, left) and feature-
aware student knowledge tracing (FAST, right). For LFKT task outcomes
yn,t depend on student knowledge kn,t, item difficulty di and student ability
an. For FAST task outcomes yn,t depend on arbitrary features fn,t

Figure 4.2, left. Based on the BKT model, slip and guess probabilities are
individualized based on student ability and item difficulty as

pGn,t =
(

1 + e−(di−an+γG)
)−1

(4.4)

pSn,t =
(

1 + e−(an−di+γS)
)−1

, (4.5)

where γG and γS correspond to offset parameters for the guess and slip prob-
abilities. The individualized guess and slip probabilities are then used to
predict the outcome yn,t based on equation (4.2) as

p(yn,t) = kn,t(1− pSn,t) + (1− kn,t)pGn,t . (4.6)

LFKT therefore assumes that the task outcome depends on item difficulty
di, student ability an and the latent knowledge state kn,t (as shown in Figure
4.2, left). The model is fit by calculating Bayesian parameter posteriors using
Markov Chain Monte Carlo.

4.1.4 Feature Aware Knowledge Tracing

Feature Aware Student Knowledge Tracing (FAST) [González-Brenes et al.,
2014] allows for unification of BKT and IRT as well, but generalizes the in-
dividualized slip and guess probabilities to arbitrary features as shown in

33

Performance characteristics of student knowledge models

Figure 4.2, right. Given a vector of features fn,t for a student n at time t the
adapted emission probability reads as

p(yn,t) =
(

1 + e−(ω
Tfn,t)

)−1
, (4.7)

where ω is a vector of learned feature weights. To model the dependency
on the latent knowledge state kn,t, FAST uses two types of indicator features.
Features f+ are only active when a student mastered a skill and features f−

that are only active when the student has not mastered the skill. Addition-
ally, FAST can represent the item difficulties di and student abilities an from
the IRT model if a set of binary indicator functions for the items and the
students are used. If features are designed in this way, the emission proba-
bility (given in equation (4.7)) reduces to a form that explicitly depends on
knowledge state, item difficulty, and student ability (see equation (4.8)). The
parameters are fit using a variant of EM [Berg-Kirkpatrick et al., 2010].

4.2 Synthetic data generation

Synthetic data is needed to have ground truth about the underlying data
generating model, which enables the experimental evaluation of various
properties of a model. In particular, we are not only interested in the predic-
tive powers of the student models regarding the task outcomes (whether a
student will correctly answer a task). Instead, we are additionally interested
in the quality of mastery prediction for a skill (How precise is the inferred
knowledge state?), which is not possible to assess with real-world data, since
the actual knowledge state of a student cannot be observed.

The sampling procedure starts by generating N student abilities an from a
normal distribution N (0, σ). Then, it generates I item difficulties di from a
uniform distribution U (−δ, δ). Based on the initial probability pI and the
learn probability pL a sequence of knowledge states kn,0, kn,1, . . . , kn,T is sam-
pled based on (4.1) and we, therefore, simulate data from only one skill.
The time t∗ at which kn,t∗ = 1 for the first time is considered as the mo-
ment of mastery. The number of sampled knowledge states is then given
as T = t∗ + L, where L denotes the lag of the simulated mastery learning
system. For each student, we generate a random sequence of items, i.e., item
indices i. Arbitrary features from the training environment, such as answer
times, help calls, problem-solving strategy, the engagement state of the stu-
dent and gaming attempts, can have an influence on the performance of a
student. To simulate those influences in a principled way, we add a single
feature f to the data-generating model with a varying feature weight ω (and
thus varying correlation to the task outcomes yn,t).

34

4.2 Synthetic data generation

Sampling from combined model

𝑑𝑖

items 𝑰

𝑘𝑛,𝑡

𝑦𝑛,𝑡

students 𝑵

time steps 𝑻

𝑎𝑛

𝑓𝑛,𝑡

× 𝜔

Figure 4.3: Combined student model used for synthetic data generation. The model cor-
responds to LFKT with the addition of a single feature. The relative depen-
dencies of the observable nodes (solid circles) and the latent nodes (circles
with border) are shown. kn,s denotes the latent knowledge state, di the item
difficulty, an the student ability, yn,t the observation, and fn,t the feature
value.

Based on these quantities, we sample the observations yn,t from a Bernoulli
distribution with probability

p(yn,t) =
(

1 + e−(an−di−log γn,t+ω fn,t)
)−1

, (4.8)

where
γn,t = (kn,t(1− pS) + (1− kn,t)pG)

−1 − 1.

Figure 4.3 gives a graphical overview of the described sampling pro-
cedure. Our sampling model has the following nine parameters:
pI , pL, pS, pG, δ, σ, ω, I, N. The sampling procedure allows sampling of
data that exactly matches the model assumptions of all four models. To
sample BKT data we set δ = σ = ω = 0 and (4.8) simplifies to the standard
BKT formulation. By setting pS = pG = 0.5 and ω = 0 we can sample from
an IRT model. To sample from an LFKT model we set ω = 0 and for FAST
none of the parameters are restricted.

35

Performance characteristics of student knowledge models

4.3 Experimental Setup

Parameter space. We generated a vast number of parameter configura-
tions to analyze the four models. The set of parameter configurations has
been carefully designed to match real-world conditions. The BKT param-
eters (pI , pG, pS, pL) are based on parameter clusters found on real-world
data [Ritter et al., 2009]. Using a normal distribution with a standard de-
viation of 0.02, we sampled up to 30 points (depending on the cluster size)
around each cluster mean. According to common practice [Harris, 1989],
we scaled the student abilities an to have a mean of 0 and a variance of 1
and therefore σ = 1. We sampled the parameter δ (determining the range
of the item difficulties) uniformly from [0, 3] according to [Harris, 1989]. De-
spite simulating only one skill, we varied the item difficulties to account for
the fact that skill models tend to be imperfect in practice [Cen et al., 2007;
Stamper and Koedinger, 2011; Koedinger et al., 2013]. In accordance to the
item difficulties, the feature weight ω was varied uniformly across [0, 1.5].
Feature values fn,t were sampled from the uniform distribution U (−1, 1).

For every parameter configuration, we generated five folds with N = 300
simulated students. Each fold was randomly split up into two parts of an
equal number of students. The first part was used as training data and the
second part for testing. Therefore, the test data did contain unseen students
only. As we simulated data from a mastery learning environment the num-
ber of simulated tasks for each student was determined by the moment of
mastery. Based on the results on typical lag in mastery learning systems pre-
sented by Fancsali et al. [2013], we set the lag of the simulated system to
L = 4 tasks from the moment of mastery. We simulated I = 15 different
items with random item order.

In total, we generated 66′000 parameter configurations for pI , pG, pS, pL, δ, ω,
this amounts to a total evaluation time (training and test) of 1’280 hours and
1’351 hours for LFKT and FAST respectively. The evaluation time for the
BKT was 99 minutes, and all configurations were evaluated in 58 minutes
for the IRT model.

Implementation. To train BKT models, we used our custom code that
trains BKT using the Nelder-Mead simplex algorithm minimizing the log-
likelihood [Nelder and Mead, 1965]. We thoroughly tested our implemen-
tation against the BKT implementation of Yudelson et al. [2013]. The IRT
models were fit by joint maximum likelihood estimation [Meyer and Hailey,

36

4.4 Results

2012] implemented in the psychometrics library1. FAST using IRT features
was shown to be equivalent to LFKT except for the parameter estimation
procedure [Khajah et al., 2014b]. The experiments comparing the perfor-
mance of the different estimation procedures have not been conclusive to
whether one procedure is in general superior to the other [Khajah et al.,
2014b]. As this work did not investigate different parameter estimation tech-
niques, both models were trained and evaluated using the publicly available
FAST student modeling toolkit2.

4.4 Results

Using the generated data, we investigated the performance characteristics of
the four models and evaluated their predictive power and robustness under
varying parameter configurations. For our results, we generated 66′000 pa-
rameter configurations, and for each of them, we created synthetic data for
1′500 students. Note that there are many ways to characterize performance
differences among student models and we only cover a subset of these pos-
sibilities.

4.4.1 Error Metrics

The right choice of error metrics when evaluating student models has re-
cently gained increased interest in the educational data mining community.
In [Pelánek, 2014] some of the standard options for error metrics are dis-
cussed, highlighting possible issues with the accuracy and the area under
the ROC curve (AUC). Correlations between various performance metrics
and the accuracy of predicting the moment of mastering a skill have been
investigated in [Pardos and Yudelson, 2013], showing that the F-measure
(equaling to the harmonic mean of precision and recall) and the recall are
two metrics with a high correlation to the accuracy of knowledge estima-
tion. The root mean squared error (RMSE) and log-likelihood, on the other
hand, are well suited if one wants to recover the true learning parameters.
Similarly, Dhanani et al. [2014] concluded from results of 26 synthetic data
sets that RMSE is better at fitting parameters than the log-likelihood.

In line with this previous work, we investigated correlations between accu-
racy, RMSE, and F-measure across all four models. For this, all models were

1An open source Java library for measurement, available at
https://github.com/meyerjp3/psychometrics.

2http://ml-smores.github.io/fast/

37

Performance characteristics of student knowledge models

trained and evaluated on data using 66′000 different parameter configura-
tions. All metrics are strongly correlated |ρ| > 0.75, p � 0.001. Our in-
spections of the metric correlations revealed no significant differences in the
metric correlations among the different models. Thus, to a large extent the
measures capture the same characteristics for the models we considered in
this chapter. In the following, we therefore focus our analysis on the RMSE.

4.4.2 Model Comparison

Overall Performance. In a first step, we investigated the overall perfor-
mance of the models. For every parameter configuration, we calculated the
average RMSE over the five generated folds. Table 4.1 summarizes the pa-
rameters for the best and worst data set for every model when model as-
sumptions are met (see Section 4.2). Results show that all models that in-
clude a knowledge state (all except IRT) perform best if the slip probability
is low and the guess probability is high. This setting leads to a data set that
exhibits a high ratio of correct observations. IRT performs best on data that
has very distinguished item difficulties (δ is large). Notably, the best per-
formance of FAST is achieved on a data set without features (ω = 0). We
assume that this is due to the decreased complexity of the data set, com-
pared to one that exhibits high ω. Consistently, worst case data sets show
high symmetric values for guess and slip probabilities. In the case of LFTK
and FAST worst case data sets additionally do not distinguish between items
(difficulty range δ = 0) and for FAST the feature weights are low.

We then performed the non-parametric Friedman test over all parameter
configurations to assess performance differences between the models. We
found that there is a statistically significant difference in the performance of
the models (χ2(3) = 13′065, p < 0.0001). Performing a post-hoc analysis
using Scheffe’s S procedure [Scheffe, 1999] shows all model differences to be
significant at p < 0.0001 with average ranks of 1.7156, 2.3017, 2.6898 and
3.2929 for FAST, LFKT, BKT, and IRT, respectively. FAST therefore signifi-
cantly outperforms the other methods on our synthetic data sets.

In [Khajah et al., 2014b] IRT performed not significantly worse than LFKT
and FAST on four different data sets. The good performance of IRT was
attributed to the deterministic item ordering that allows IRT to infer knowl-
edge acquisition confounded with item difficulty. Our results support this
hypothesis as in our synthetic data set the items are in random order, and
IRT exhibits the worst overall performance.

Parameter Space Investigation. To gain a better understanding of the per-
formance characteristics of the different models, we analyzed their perfor-

38

4.4 Results

Table 4.1: Parameters of best and worst case data sets for each model. We only considered
data sets that meet the model assumptions. Parameters denoted with * are
fixed according to the model assumptions (see Section 4.2).

Model δ pI pL pS pG ω RMSE

BKT

Best 0.00* 0.71 0.41 0.01 0.47 0.00* 0.25

Worst 0.00* 0.10 0.12 0.50 0.49 0.00* 0.48

IRT

Best 3.00 0.10 0.08 0.50* 0.50* 0.00* 0.42

Worst 0.00 0.10 0.10 0.50* 0.50* 0.00* 0.50

LFKT

Best 0.75 0.69 0.40 0.01 0.46 0.00* 0.25

Worst 0.00 0.53 0.16 0.28 0.29 0.00* 0.51

FAST

Best 0.75 0.67 0.40 0.01 0.46 0.00 0.25

Worst 0.00 0.56 0.16 0.28 0.28 0.00 0.51

mances across the parameter space. For every pair of parameters θi and θj,
we divided the parameter configurations into bins with similar values for
θi and θj. We used five bins for each parameter (θi and θj) resulting in a to-
tal of 25 bins. The performance of each model was assessed by calculating
the mean RMSE for each bin. The significance of the observed performance
differences was computed using the Friedman test and p < 0.05.

Figure 4.4 shows the relative performance of the best model for each param-
eter pair. The models are color-coded: BKT is shown in red, IRT in green,
LFKT in yellow, and FAST in blue. The color gradient indicates the rela-
tive improvement of the winning model over the second best model, where
darker colors indicate higher values. White-colored areas indicate that there
is no significant difference between the models. The plot shows that FAST
is robust to parameter variations and outperforms the other models in vast
areas of the parameter space. In parts with small feature weights, i.e., where
the feature f shows only a low correlation with task outcomes, LFKT out-
performs FAST. When the variance δ of item difficulties di is low, BKT is the
best model. A small variance in di implies a good skill model, with all tasks
having approximately the same difficulty.

39

Performance characteristics of student knowledge models

di
ffi

cu
lty

 r
an

ge
 δ

learn
0.1 1.0

0.0

3.0
0.0 0.5

0.0

3.0
0.1 0.5

0.0

3.0
0.0 1.5

0.0

3.0
0.1 0.9

0.0

3.0

le
ar

n

slip
0.0 0.5

0.1

1.0
0.1 0.5

0.1

1.0
0.0 1.5

0.1

1.0
0.1 0.9

0.1

1.0

sl
ip

guess
0.1 0.5

0.0

0.5
0.0 1.5

0.0

0.5
0.1 0.9

0.0

0.5

gu
es

s

feature weight ω
0.0 1.5

0.1

0.5
0.1 0.9

0.1

0.5

fe
at

ur
e

w
ei

gh
t ω

initial
0.1 0.9

0.0

1.5

Figure 4.4: Best performing models (RMSE) regarding prediction of task outcomes. The
color for each bin indicates the best performing model, averaged over all other
parameters. We investigated BKT (red), IRT (green), LFKT(yellow), and
FAST(blue). White-colored bins exhibit no significant difference in model
performance. The color brightness indicates the relative improvement of the
best performing model over competing models, with dark colors referring
to higher values. FAST is robust to parameter variations and outperforms
the other models in large parts of the parameter space when predicting task
outcomes. BKT is the best model if the variance of the item difficulty is low.

40

4.4 Results

di
ffi

cu
lty

 r
an

ge
 δ

learn
0.1 1.0

0.0

3.0
0.0 0.5

0.0

3.0
0.1 0.5

0.0

3.0
0.0 1.5

0.0

3.0
0.1 0.9

0.0

3.0

le
ar

n

slip
0.0 0.5

0.1

1.0
0.1 0.5

0.1

1.0
0.0 1.5

0.1

1.0
0.1 0.9

0.1

1.0

sl
ip

guess
0.1 0.5

0.0

0.5
0.0 1.5

0.0

0.5
0.1 0.9

0.0

0.5

gu
es

s

feature weight ω
0.0 1.5

0.1

0.5
0.1 0.9

0.1

0.5

fe
at

ur
e

w
ei

gh
t ω

initial
0.1 0.9

0.0

1.5

Figure 4.5: Best performing models (RMSE) regarding prediction of knowledge states.
The color for each bin indicates the best performing model, averaged over all
other parameters. We investigated BKT (red), IRT (green), LFKT(yellow),
and FAST(blue). White-colored bins exhibit no significant difference in
model performance. The color brightness indicates the relative improvement
of the best performing model over competing models, with dark colors refer-
ring to higher values. BKT is superior to the other models in large parts of
the parameter space when predicting knowledge states.

41

Performance characteristics of student knowledge models

In contrast to Figure 4.4, where we assessed the prediction of task outcomes,
we analyzed the quality of the prediction of knowledge states kn,t using the
RMSE in Figure 4.5. Ultimately, we want to predict whether a student has
mastered a skill or not [Pardos and Yudelson, 2013; Baker et al., 2010b]. The
plot uses the same parameter pairs and color codings as Figure 4.4. Interest-
ingly, LFKT and FAST are not superior to BKT when it comes to prediction of
the latent state. The additional parameters that LFKT and FAST use, have a
direct influence on the predicted task outcomes and therefore improve per-
formance when predicting task outcomes. They have, however, no direct
influence on the latent state kn,t of the model.

Robustness. Next, we tested the robustness of the different models against
each other. We generated ideal data (meeting the model assumptions) for
all the models and then interpolated the parameter values between these
ideal cases. The classes of data sets that meet the model assumptions for the
four models are described in Section 4.2. From every class of data sets, we
selected the extreme case with the least amount of noise. In the following,
we describe these cases.

For BKT, data is generated using δ = ω = 0, assuming a perfect skill model
(all tasks have the same difficulty) and setting the influence of additional
(not captured) features to 0. Furthermore, we removed the randomness by
setting pG = pS = 0. For IRT, the extreme case data was generated us-
ing pG, pS = 0.5, ω = 0 and by additionally setting δ = 3. As LFKT is a
combination of IRT and BKT, we set the parameters to pG, pS = 0.25 and
δ = 1.5. Furthermore, we set ω = 0, again assuming no influence of not
captured features. For FAST we used the same parameters as for LFKT, but
additionally introduced a feature influence by setting ω = 1.5. We linearly
interpolated the parameter space in-between these extreme cases to assess
model robustness when model assumptions are violated. Figure 4.6 displays
the model with best RMSE in this subspace that contains the extreme (ideal)
cases, where pL and pI are averaged over the BKT parameter clusters pre-
sented in [Ritter et al., 2009]. From these results, we can see that BKT tends
to be robust to increased feature influence as long as pG, pS ≤ 0.15. If the fea-
ture weight ω > 0.75, FAST outperforms all the other classifiers. For large
differences in item difficulties and large guess and slip probabilities, LFKT
has a slight advantage over IRT.

4.4.3 Parameter Influence

To analyze the influence of the model parameters on the performance of the
student models, we used linear regression to predict the RMSE based on the

42

4.4 Results

(p
S
,p

G
,δ

)
=

 a
 *

 (
0.

5,
0.

5,
3)

ω = b * 1.5

BKT

LFKT

IRT

FAST

Best performing model under breaking assumptions

b = 0 b = 1

a = 0

a = 1

Figure 4.6: Relative model performance on ideal data sets generated by linearly interpo-
lating between parameters. The colors refer to the models BKT (red), IRT
(green), LFKT (yellow) and FAST (blue). The color gradient indicates the
relative performance as in Figure 4.4. BKT and FAST are more robust to the
invalid assumptions of our experiment than IRT and LFKT.

parameters of the sampling model. This procedure allowed us to identify
statistically significant correlations between the sampling parameters and
the performance of the models despite the high dimensionality of the pa-
rameter space.

The sampling parameters have a direct influence on the ratio of correct ob-
servations in the data, e.g., a high learning probability with low guess and
slip parameters leads to a high ratio of correct observations. Further, if the
parameters model fast learners, then the average number of tasks tends to
be low since we are simulating a mastery learning environment. The three
models IRT, LFKT and FAST which explicitly model items are sensitive to
this kind of lacking data, as by having fewer observed items per student
the estimation of item difficulty becomes more challenging. To investigate
the effect of both factors, we added the two variables correct ratio and aver-
age number of tasks as predictors to the regression model. In order to make
correlation coefficients comparable, all sampling parameters have been nor-
malized to have mean 0 and standard deviation 1.

Figure 4.7 shows the regression coefficients for all four models, with red
and green denoting statistically significant and not significant coefficients,

43

Performance characteristics of student knowledge models

respectively. The variables correct ratio and average number of tasks have the
largest influence on the RMSE. Both effects are significant and positive (re-
ducing the RMSE). A wider range of item difficulties δ has a positive in-
fluence on the performance of all models except for the BKT model. This
is expected as BKT does not account for variations in item difficulty and
thus larger variations in item difficulties are treated as noise by BKT, which
makes prediction harder. IRT, LFKT, and FAST, on the other hand, benefit
from larger variations. We assume that this is due to the better identifiabil-
ity of the effects of the different items. Interestingly, increasing the feature
range ω has no significant negative effect for the models that do not take fea-
tures into account (BKT, IRT, LFKT), but has a positive effect for FAST. The
initial probability and the learning probability have a small negative and
small positive effect on performance, respectively. While these coefficients
are partially significant, they have very small magnitude. The positive effect
of the slip probability pS for all models except BKT (the effect is not signif-
icant) is rather surprising. However, the effect of a high slip probability in
our sampling model is that it weakens the influence of the latent knowledge
state on the task outcomes. This effect could explain the positive influence
for models that estimate item difficulty since the difficulty estimates are less
convoluted with effects from the knowledge state. Further work is needed
to prove this effect.

4.5 Discussion

In this chapter, we investigated the performance characteristics of latent fac-
tor and knowledge tracing models by exploring their parameter space. To
do so, we generated a vast amount of 66’000 synthetic data sets for different
parameter configurations containing data for 1’500 students each. Synthetic
data allowed us to study the model performances under different param-
eter settings, and to test the robustness of the models against violations of
specific model assumptions.

We showed best and worst case performances for all the models and inves-
tigated the relative performance gain in various regions of the parameter
space. Our results revealed that the two recently developed models LFKT
and FAST, which synthesize item response theory and knowledge tracing,
perform better than BKT and IRT when predicting future task outcomes.
FAST even significantly outperformed LFKT if reasonable features can be
extracted from the learning environment. As the quality of features is highly
dependent on the learning environment, the choice of using FAST instead of
LFKT should be based on the specific learning environment at hand. An-

44

4.5 Discussion

Regressing RMSE of BKT

Coefficent

Predictor

−0.2 −0.1 0 0.1 0.2

difficulty range (δ)

learn (p
L
)

slip (p
S
)

guess (p
G

)

feature weight (ω)

initial (p
I
)

correctRatio

averageNumberOfTasks

Regressing RMSE of IRT

Coefficent

Predictor

−0.2 −0.1 0 0.1 0.2

difficulty range (δ)

learn (p
L
)

slip (p
S
)

guess (p
G

)

feature weight (ω)

initial (p
I
)

correctRatio

averageNumberOfTasks

Regressing RMSE of LFKT

Coefficent

Predictor

−0.2 −0.1 0 0.1 0.2

difficulty range (δ)

learn (p
L
)

slip (p
S
)

guess (p
G

)

feature weight (ω)

initial (p
I
)

correctRatio

averageNumberOfTasks

Regressing RMSE of FAST

Coefficent

Predictor

−0.2 −0.1 0 0.1 0.2

difficulty range (δ)

learn (p
L
)

slip (p
S
)

guess (p
G

)

feature weight (ω)

initial (p
I
)

correctRatio

averageNumberOfTasks

Figure 4.7: Regression coefficients to predict RMSE based on the sampling parameter
values for the models BKT, IRT, LFKT and FAST. Parameters with positive
coefficients have a negative effect on the performance and vice versa. Red
denotes significant coefficients with p < 0.001, green coefficients are not
significant.

other interesting finding is that, IRT exhibited the worst performance of all
the models, which supports the hypothesis by Khajah et al. [2014b] that ran-
dom item ordering has a negative influence on the performance of IRT mod-
els. However, more analyses are needed to investigate this effect thoroughly.
Further, we investigated the models’ abilities to predict the latent knowledge
state and demonstrated that LFKT and FAST are outperformed by BKT. We
hypothesize that this might be due to parameter identifiability issues for
LFKT and FAST in that multiple sequences of latent states are equally good
at predicting the observed task outcomes. The findings raise the question of
how to adjust the two recent methods LFKT and FAST if the aim is to predict
knowledge states; we leave this exploration for future work.

Limitations. While all sampling parameters have been carefully chosen
to match real-world conditions, we expect real-world data to exhibit more
noise and additional effects not covered by our synthetic data. Thus, the

45

Performance characteristics of student knowledge models

achieved performance can be considered an upper bound on the perfor-
mance achievable in real-world settings. The performance of BKT depends
on the quality of the underlying skill model. We have simulated imperfect
skill models by introducing item effects, but we did not take other sources
for imperfect skill models into account. Furthermore, the simulated data
consisted of a fixed set of items. For tutoring systems offering many vari-
ations of tasks, reliable estimation of item effects is challenging, which in
turn influences the performance of IRT, LFKT, and FAST. Moreover, the per-
formance of FAST is driven by feature quality, which may vary between
different tutoring systems.

Effect on learning. Despite the significant differences between the re-
cent models and BKT and IRT, the improvements are small in magnitude
across the parameter space. We show relative improvements in RMSE be-
tween models of up to 6%. The magnitude of the improvements is in line
with recent work on student models. Even recent results from Piech et
al. [2015] employing deep recurrent neural networks (named deep knowl-
edge tracing) for the prediction of task outcomes demonstrated relative per-
formance gains over standard BKT of only 9.6% on average (over different
data sets). Moreover, in a recent study comparing these deep neural net-
works to variants of knowledge tracing model the maximal improvement
when using deep knowledge tracing dropped to 3.6% [Piech et al., 2015;
Khajah et al., 2016]. The effect of small-scale improvements in the accuracy
of student models on the learning outcome has been discussed controver-
sially [Beck and Gong, 2013; Yudelson et al., 2013]. According to [Beck and
Gong, 2013], it is unclear how an improvement in accuracy on predicting
the outcome of the next task translates to better teaching decisions within an
ITS. They argue that the predictions from a student model have to be action-
able withing the ITS. In another work, Beck and Xiong [2013] investigated
the limits to the accuracy of student models on different real-world data sets.
They conclude that most of the recent student models demonstrate compa-
rable performance and are relatively close to the estimated upper bounds
on the accuracy. The primary goal of student modeling is inferring student
knowledge but as our results demonstrate improved prediction quality (of
task outcomes) is not a guarantee for more accurate detection of knowledge
states and recent models have mostly focused on task outcome prediction.

Expanding cognitive student models. For these reasons, expanding cogni-
tive student models beyond modeling current knowledge states has gained
interest recently. Efficient instructional policies based on student mod-
els have been developed that optimize teaching sequences [Muldner and
Conati, 2007; Murray et al., 2004; Clement et al., 2015; Rafferty et al., 2011;
Mandel et al., 2014]. Different policies for when-to-stop teaching a skill have

46

4.5 Discussion

been explored [Käser et al., 2016; Rollinson and Brunskill, 2015]. Other work
examined the optimal time interval between task repetitions [Pashler et al.,
2009] to account for the spacing effect (learning is greater if task opportuni-
ties are spread over time) [Pavlik and Anderson, 2005]. Further, new meth-
ods for evaluating student models have been explored that assess the quality
of student models in terms of student effort and the learning outcome using
instructional policies based on these student models [Gonzalez-Brenes and
Huang, 2015]. Other work has focused on building predictors for knowledge
retention that allow predicting future student performance after a delay of
up to 10 days [Wang and Beck, 2012]. Further, regression methods for the
detection of shallow learning (knowledge cannot be transferred to similar
tasks) have been developed that allow for personalizing interventions that
have shown to be effective for fostering deep learning [Baker et al., 2012].
Other work focused on modeling answer times based on student abilities
that has the potential to improve task selection by planning for the expected
amount of time required to solve a task [Jarušek and Pelánek, 2012].

Motivated by our findings and the various research directions on expanding
cognitive student models, we develop methods for the identification and
discovery of student characteristics and traits in the remainder of this work.
Knowledge about traits and student characteristics can serve as valuable and
actionable input to practitioners (e.g. a child with a specific learning disabil-
ity can receive special tutoring). Also, the prediction of student traits can
serve as an input to student models such as FAST (presented in this chap-
ter) to build student models that allow for better tailoring of the learning
experience to individual students.

47

Performance characteristics of student knowledge models

48

C H A P T E R 5
Supervised student trait identification

Parts of this chapter are based on the work presented in [Käser, 2014] and [Klingler,
2013]. The theoretical derivations of the models are detailed in these works.

Many interesting student characteristics and traits are often not directly ob-
servable within a learning system. However, student characteristics such
as learning disabilities, personality traits or engagement are known to in-
fluence the learning outcome of students. Pure knowledge models that do
not account for such characteristics have shown only marginal performance
improvements over the past years and the effect on the learning outcome of
such marginal improvements has been questioned (see Chapter 4 for a dis-
cussion). Automatic assessment of student characteristics such as learning
disabilities can not only help in improving these student models and in bet-
ter tailoring the learning experience to the individual student but can also
help educators and teachers to better adapt to the specific learning needs of
students. In this chapter, we present a method for the automatic, supervised
detection of student traits. We propose a pipeline for integrating automatic
assessment, i.e. detectors of student traits, directly into an intelligent tutor-
ing system (ITS). We validate our approach for the case of developmental
dyscalculia (DD) and the game-based training environment Calcularis.

Our pipeline leverages the potential of machine learning algorithms and re-
lies on log data from student interactions only. Its data-driven nature fea-
tures several advantages. First, since it builds upon a large set of student
training data, the costs for model building are low, and the accuracy of the
classifier can be continuously improved as more student data is added over
time. The test duration can be adapted to each child individually, which

49

Supervised student trait identification

reduces the average test length substantially. Second, our classifier can
be seamlessly embedded into an ITS (in our case Calcularis [Käser et al.,
2013c]), where the assessment runs continuously and non-intrusively in the
background. This integration reduces testing expenses and emotional stress
imposed on children is kept to a minimum. The embedding allows the ITS
to leverage the information from the stealth assessment during the training.
Third, our pipeline has the potential to be applied to a different ITS and be
used for the assessment of various student traits. Fourth, our method only
relies on interaction logs (no additional sensor data is needed), which allows
our pipeline to be readily integrated into a variety of ITS.

One of the main challenges of automatic computer-based assessments is to
show equivalence to conventional assessment regarding accuracy, practica-
bility, and validity [Jenkins et al., 2007]. Therefore, we extensively evaluate
the accuracy, practicability, and validity of our approach on data logs from
68 children. Our results demonstrate that we can identify children at risk
of DD with a high accuracy (91% sensitivity, 91% specificity) within a short
time (11 minutes on average). We conclude from our results that recorded
user inputs alone could potentially allow for a detailed reconstruction of
student traits and that the integration of stealth assessments may refine the
adaptation of the curriculum that ITS are currently providing.

5.1 Adaptive Classification Algorithm

Our adaptive classification is based on the training environment
Calcularis [Käser et al., 2013c] that we introduced in Section 3.2. As a
reminder, Calcularis is a computer-based system for learning mathematics
designed for children with developmental dyscalculia (DD). The program is
structured into different instructional games, which are designed based on
current neurocognitive theory. Calcularis consists of ten different games
representing 100 different skills that are essential for learning mathematics.

Our model building process consists of four steps. We first extract a large set
of candidate features and then perform feature selection based on common
similarity measures. Next, we build our adaptive classifier by first sorting
the selected features and then defining a Naive Bayes model. An overview
of the processing pipeline is shown in Figure 5.1.

50

5.1 Adaptive Classification Algorithm

𝑓1
𝑓2
⋮

𝑓𝑚

𝑓1
𝑓2
⋮

𝑓𝑛
⋮

⋮

𝑓1
𝑓𝑛
𝑓2
⋮

Y

 𝑓1 𝑓𝑛 𝑓2

Feature extraction Feature selection Probabilistic classifier Feature ordering
Training pipeline

Test pipeline
Stopping criterion Probabilistic classifier

𝑓1
𝑓𝑛
𝑓2
⋮

Y

 𝑓1 𝑓𝑛

more features

𝑃(𝑌|𝑓1, …)

Pairwise distances Clustering

Figure 5.1: Processing pipeline: Pairwise distances of features f serve as input for the
clustering. We select the representative feature per cluster and determine
an optimal feature ordering. A Naive Bayes model is trained on the selected
features. The probabilistic output of the classifier is used to adapt the test
duration to each child.

5.1.1 Feature extraction

We identified a set of recorded features that describe different mathematical
properties of the user. These features can be classified into skill- and game
dependent features, and are summarized in Table 5.1. Skill dependent features
provide information about tasks associated with a specific skill and game
dependent features provide information unique to a particular game.

Performance. The performance P for a skill measures the ratio of correctly
solved tasks for a given number of tasks. We expect children without DD to
outperform children with DD on these tasks since mathematical abilities of
children with DD are at a level comparable to the level of children without
DD of lower age [von Aster, 2000].

Answer time. Answer time AT is measured for all skills as children with DD
tend to have longer answer times compared to children without DD [Geary
et al., 1991]. They often show deficits in fact retrieval and tend to have dif-
ficulties in acquiring arithmetic procedures [Ostad, 1997] which increases
answer times for simple arithmetic tasks.

Typical mistakes. We count typical mistakes TM for a subset of games
where such a measure is meaningful. TM are extracted by matching the
erroneous result to a set of error patterns. As an example switching the dig-

51

Supervised student trait identification

Table 5.1: Extracted features and abbreviations (bold) used for the detection of develop-
mental dyscalculia.

Feature Description

Skill dependent features (extracted for specific skills)

Performance Ratio of correctly solved tasks.
Answer Time Average answer time.
Typical Mistakes Number of typical mistakes committed.

Game dependent features

Estimation Estimating the number of displayed points.
E is the ratio between number of overestimates and task count.

Secret Number Guessing a number in as few steps as possible.
S is the ratio by which the remaining search interval is reduced.

Ordering Is a number sequence ordered ascending?
O is the ratio of false positive and incorrectly solved tasks.

Landing Positioning a number on a number line.
L is the distance to the correct position of the given number).

its of the result in an arithmetic task is considered a typical mistake (e.g. 15
+ 9 = 42). The complete set of error patterns is described in [Käser et al.,
2013c].

Game dependent features. Additional game dependent features were cho-
sen related to specific games. The estimation game feature E measures the
relative number of overestimates when estimating the number of points
in a point cloud. Whether children with DD are less sensitive to differ-
ences in this number representation is not consistently supported by recent
work [Noël and Rousselle, 2011]. The feature SN for the secret number game
measures the reduction of the search interval while repeatedly guessing the
same number. This feature quantifies common problem-solving strategies
such as bisection of the search interval or linear search. The ordering game
feature O measures the ratio of false positives when assessing whether num-
bers are in ascending order. Children with DD are shown to be less efficient
when processing numbers [Landerl et al., 2004], therefore we hypothesize
that they will perform worse when comparing numbers. The landing game
feature L measures the error of the number estimate. Deficits in spatial num-
ber representation as often shown by children with DD [Kucian et al., 2011]
are obstructive to this task; thus we expect children with DD to perform
significantly worse compared to peers without DD.

52

5.1 Adaptive Classification Algorithm

5.1.2 Feature selection

Our feature extraction yields a few hundred features, each corresponding to
a set of tasks the user has to solve. Therefore, the number of features directly
influences the test duration. To limit the test duration and to remove possi-
ble correlations between features, we only use a subset of features for clas-
sification. We cluster the features into groups based on their similarity and
select one representative feature per cluster. As the different feature types
have different domains (e.g., P ∈ [0, 1], AT seconds > 0) a direct comparison
between the features is not meaningful. We therefore process the features to
make them comparable.

In a first step, we compute a similarity matrix Ki ∈ [0, 1]S×S for each fea-
ture fi, where S denotes the number of children. Therefore, Ki contains the
pairwise similarities between each pair of children regarding feature fi. We
design the matrices based on the nature of each feature and in particular
exploiting invariances of the feature types. As the basis for all kernels, we
employ a Gaussian kernel given by

Ki(s, u) = exp

(
−
∥∥ f s

i − f u
i

∥∥2

2σ2

)
(5.1)

where f s
i and f u

i denote the respective feature values for children s and u
and σ > 0. The Gaussian kernel is shift-invariant, and the projection of
the feature values for any user u have unit length Ki(u, u) = exp(0) = 1.
Furthermore, the parameter σ controls how sensitive the kernel is. For small
values of σ, the kernel matrix is close to the identity matrix, whereas for large
values the matrix tends to a uniform matrix.

For the answer time features AT we combine a Gaussian kernel with a log
transform to obtain

KAT
i (s, u) = exp

(
−
∥∥log(f s

i)− log(f u
i)
∥∥2

2σ2

)
. (5.2)

The log transform has proven useful in similar applications [Baschera et al.,
2011] and the shift-invariance is a natural requirement. For a single observed
answer time, we cannot decide whether the task was solved quickly or not.
Only when comparing to answer times of other users, such a conclusion can
be drawn.

We incorporate a cumulative beta distribution within the standard Gaussian

53

Supervised student trait identification

kernel to design the similarity matrix for the performance features P

KP
i (s, u) = exp

(∥∥betacdf(f s
i)− betacdf(f u

i))
∥∥2

2σ2

)
. (5.3)

The beta cumulative distribution function allows to emphasize differences
at the boundary of possible performance values (the performance on a task
is bounded by 0 and 1).

For the secret number SN feature, we designed an exponential kernel

KSN
i (s, u) = exp

(∥∥exp(− f s
i)− exp(− f u

i)− 2
∥∥2

2σ2

)
. (5.4)

The kernel is designed to be more sensitive to small differences for valid
guesses (inside the search interval) than for invalid guesses (outside of the
search interval).

For all other features (TM, L, O, E) we apply a standard Gaussian kernel.
Further details regarding the design of the different kernels can be found
in [Käser, 2014].

In a second step, we cluster the features using pairwise-clustering [Hofmann
and Buhmann, 1997] based on the pairwise distances dij =

∥∥Ki −Kj
∥∥

F
between all feature pairs using the Frobenius norm. We then compute
an optimal matrix T, which contains the pairwise Hamming distances be-
tween child labels, i.e., T(s, u) = 0 if s and u belong to the same group
∈ {DD, control}, with control referring to control group, and T(s, u) = 1
otherwise. For each cluster, we select one representative feature, which is
the one with the smallest distance dti = ||Ki − T||F to matrix T.

5.1.3 Probabilistic classifier

Based on the selected features, we develop a probabilistic model that adapts
the test duration to the individual child. The classification task is solved
using an adapted Naive Bayes model, which assumes conditional indepen-
dence of all the features fi given the group label Y (Y = 0 child with DD,
Y = 1 control), but was shown to perform optimally even if the inde-
pendence assumption is violated [Zhang, 2004]. Correlations between fea-
tures are low in our case (average ρ = 0.07, < 1% significant correlations at
α= 0.001) because of our feature selection step. The posterior probability of
the group label Y for a child given N observed features is proportional to

p(Y| f1, ..., fN) ∝
N

∏
i=1

p(fi|Y) · p(Y), (5.5)

54

5.1 Adaptive Classification Algorithm

where for every feature we choose the density p(fi|Y) from a set of standard
distributions that best models the data according to the Bayesian informa-
tion criterion (BIC) score. We assume a normal distribution for the features
E, SN, O, and L, and a Beta, Gamma, and Poisson distribution for P, AT, and
TM, respectively. The prior probability p(Y) is set to the estimated preva-
lence of DD [Shalev and von Aster, 2008]. Due to the independence assump-
tion, we can deal with cases where we only observe a subset of all features.
After observing the first feature f1, we can compute p(Y = 1| f1). Having
observed f2, we infer p(Y = 1| f1, f2), etc. For any threshold τ ∈ [0, 1], the
predicted group label Ŷ can then be computed as

Ŷ =

{
1 p(Y = 1| f1, ..., fn) > τ

0 otherwise.
(5.6)

5.1.4 Feature ordering

To determine the optimal ordering of the tasks in the test, we compute the
amount of group information contained in each feature. We prefer features
where the feature values differ substantially across the groups (DD and con-
trol) and are similar within the group. To assess the quality of each feature
fi, we use an unpaired t-test for a difference in means of the two indepen-
dent groups. We then order the features by sorting the calculated p-values
in ascending order, i.e., the feature with the smallest p-value is asked first.

5.1.5 Stopping criterion

The optimal point in time to stop the test is heuristically determined. Af-
ter observing the first t features, the classifier has a current belief about the
group label of a child and predicts the label based on p(Y| f1, . . . , ft) > τ

(see Equation (5.5)). Intuitively, we stop the test if observing the next feature
would not contradict our current belief about the group label. As the next
feature value ft+1 is unknown, the feature value in the training data f̂t+1 that
contradicts the model’s current belief the most is taken instead. We stop if
observing f̂t+1 is not changing the current belief, i.e., if

p(Y = 1| f1, ..., ft) > τ and p(Y = 1| f1, ..., ft, f̂t+1) >
τ

2
.

55

Supervised student trait identification

5.2 Experimental Evaluation

We experimentally evaluated our proposed method on a real-world data set
recorded during a user study with Calcularis for the specific case of develop-
mental dyscalculia (DD). We aimed at investigating the following questions:

(i) How do computer-extracted features from a game-based learning environ-
ment relate to neuropsychological findings on DD?

(ii) Can machine learning algorithms provide the same quality assessments of a
mathematics disability as standard neuropsychological tests?

To answer these questions, we assessed the validity of the proposed model,
namely the content validity to investigate question (i), and the criterion-
related and construct validities as well as the test duration for answering
question (ii).

5.2.1 Method

The experimental evaluation of our method is based on log files from 68
participants (32 DD, 36 control) of a multi-center user study conducted in
Germany and Switzerland [Von Aster et al., 2015]. The study was con-
ducted with a total of 83 participants, but since the group of children in
4th and 5th grade (15 children) consisted entirely of children with DD, this
group was excluded from all of the presented analysis in this chapter. Dur-
ing the study, children trained with Calcularis at home for five times per
week during six weeks and solved on average 1551 tasks. There were 28
participants in the 2nd grade (9 DD, 19 control) and 40 children in the 3rd

grade (23 DD, 17 control). The diagnosis of DD was based on standard-
ized neuropsychological tests [von Aster et al., 2006; Haffner et al., 2005;
Esser et al., 2008a]. In the following, we describe the participants of the en-
tire study as well as the criteria applied to diagnose DD in more detail.

Participants. During the user study, 83 children (56 females, 27 males)
trained with Calcularis. There were 47 participants with DD (34 females,
13 males) and 36 control children (22 females, 14 males) without DD. The
average age of the children in the control group was 8.08 years (SD 0.48) and
9.06 years (SD 0.80) in the group of children with DD. There were 28 children
(age M=7.97 years, SD=0.42; 21 females, 7 males, 9 children with DD, 19 con-
trol children) in 2nd grade, 40 children (age M=8.67, SD=0.66; 24 females, 16
males, 23 children with DD, 17 control children) in 3rd grade and 15 children
(age M=9.68, SD=0.73; 11 females, 4 males, all 15 children with DD) in 4th
and 5th grade. All participating children visited regular public schools and

56

5.2 Experimental Evaluation

were German-speaking. The children were required to train with Calcularis
during six weeks with a frequency of 5 sessions per week. The duration of
a single training session was 20 minutes. During the training, the input be-
havior and performance of the children was automatically recorded in log
files. The present work includes only log files from children that completed
at least 26 training sessions. The average number of tasks the participants
solved during the training period is M=1541 (SD=231), where the group of
control children solved M=1583 (SD=190) tasks on average and the children
with DD M=1506 (SD=257) tasks on average.

Diagnosis. The diagnosis of DD was based on an estimation of the IQ of
the participants as well as an assessment of their mathematical abilities. The
general intelligence was assessed using the average T-score of four sub-tests,
namely, the verbal intelligence and non-verbal intelligence subtests from
BUEGA [Esser et al., 2008a]; the ’finding commonalities’ and the mosaic
subtest from the HAWIK-IV [Esser et al., 2008b; Petermann and Petermann,
2008]. The assessment of mathematical performance, on the other hand, was
based on the average T-score of the four following sub-tests: Sub-tests for
addition and subtraction from HRT, BUEGA calculation sub-test and the
number line II sub-test of ZAREKI-R [Haffner et al., 2005; Esser et al., 2008a;
von Aster et al., 2006]. All children in the user study have been preselected
based on their IQ that ranges from 85 to 115. A DD diagnosis was made if
a participant achieved a general intelligence score of T ≥ 42 (resulting in
an estimated IQ score of ≥ 85) and a mathematical performance score of
T ≤ 40. All the instruments used for the diagnosis are described in detail in
Appendix A.

We calculated the accuracy, the specificity and the sensitivity of our model
based on the predicted and the true label of the students (either DD or con-
trol). All results were computed on unseen students in the test set. Training
and test sets were created using .632 bootstrap with resampling (B = 300).
All parameter estimates are based on maximum likelihood estimation us-
ing Nelder-Mead simplex direct search. The optimization stops when the
improvement in the likelihood is < 10−4 or after 400 iterations. Hyperpa-
rameters (parameters for kernels and features) and features (including fea-
ture ordering) were selected using nested cross-validation, employing .632
bootstrap with resampling (B = 300) on top of 10-fold cross validation. The
optimal number k∗ of clusters in the feature selection step was heuristically
determined by limiting the maximal test duration to <35 minutes. Since we
required five recorded tasks per feature (average recorded task time: 0.39
minutes), this test duration results in k∗ = 17 clusters (which leads to 85
tasks in the test).

57

Supervised student trait identification

BMBF data set [14] Classroom evaluation

children (DD/CC) 68 (32/36) 156 (8/148)
children 2nd/3rd grade 28/40 98/58
Nationality Germany, Switzerland Switzerland
Test setting Home Classroom
Standardized tests Parts of ZAREKI-R, HRT,

BUEGA
ZAREKI-R, HRT, CFT1 /
CFT20-R

Screener model Trained Reused from BMBF data set
Avg. test duration 11min 18min
Sensitivity / specificity 0.91 / 0.91 0.63 / 0.85
misclassified children 5 17

Table 2. Summary of the two data sets used for the screener evaluation.

Coefficient score
0 0.1 0.2 0.3 0.4

Fig. 2. Resulting selected features along with the corresponding skills and feature
ordering in the test. The relationship between a feature and the test score is shown on
the right, using Pearson’s correlation coe�cient (yellow) and the maximal information
coe�cient MIC (green). All relationships show high non-linear components, making
the classification task more di�cult.

five tasks per feature, which leads to 85 tasks in the test. The selected features
are listed in Figure 2. For all the features we calculated Pearson’s correlation
coe�cient ⇢2 as well as the maximal information coe�cient (MIC) [22] between
the feature and the test score. While ⇢2 is a measure for linear relationships, MIC
is a recently introduced measure that captures non-linear relationships. For most
features the relationship is highly non-linear, which prohibits the use of simple
prediction methods such as linear regression. The feature ordering gives us the
optimal task sequence in the test as listed in Figure 2.

Performance. To evaluate the performance of our classifier we used .632 boot-
strap with resampling (B = 300) using di↵erent thresholds ⌧ . In Figure 3, left,

Type/Nr. Order Skill Range

AT/1 2 Addition 2,1 TC* (’13+8=21’) 0-100
AT/2 14 Point set estimation 0-100
AT/3 4 Subtraction 3,1 TC* (’122-7=115’) 0-1000
AT/4 8 Addition 3,1 TC* (’128+4=132’) 0-1000
AT/5 15 Are numbers sorted ascending 0-100
AT/6 12 Spoken to written number 0-10
P/1 5 Spoken to written number 0-100
P/2 10 Subtraction 2,2 TC* (’56-38=18’) 0-100
P/3 1 Find neighbor numbers ±10 0-100
P/4 11 Spoken to written number 0-1000
SN/1 7 Guess a number 0-10
SN/2 13 Guess a number 0-100
TM/1 3 Subtraction 2,1 TC* (’74-9=65’) 0-100
TM/2 9 Assign spoken number to number line 0-100
TM/3 16 Addition 2,2 TC* (’23+18=41’) 0-100
TM/4 6 Subtraction 2,2 (’48-36=12’) 0-100
TM/5 17 Assign written number to number line 0-1000

* TC : with carrying / borrowing

Coefficient score
Feature relation in evaluation data

0 0.1 0.2 0.3 0.4 0.5

TM/5

TM/4

TM/3

TM/2

TM/1

SN/2

SN/1

P/4

P/3

P/2

P/1

AT/6

AT/5

AT/4

AT/3

AT/2

AT/1

Figure 5.2: Selected features and their corresponding skills and ordering in the test. The
relationship between a feature and the test score is shown on the right, us-
ing Pearson’s correlation coefficient (yellow) and the maximal information
coefficient MIC (green).

5.2.2 Content validity

The 17 features listed in Figure 5.2 were automatically selected based on
the recorded data alone. For all features, we calculated Pearson’s correla-
tion coefficient ρ2 and the maximal information coefficient (MIC) [Reshef et
al., 2011] between the feature and the test score to measure the linear and
non-linear relationships, respectively. For most features, the relationship
is highly non-linear, which prohibits the use of simple prediction methods
such as linear regression. The feature ordering yields the optimal task se-
quence in the test as listed in Figure 5.2.

The automatically selected features agree well with findings in previous
work on DD. Deficits in number comparison that are shown by children with
DD [Landerl et al., 2004] are captured by considering temporal and perfor-
mance values (AT/5, P/3). Children with DD exhibit deficits in number
processing [Cohen Kadosh et al., 2007]. Number processing skills are cap-
tured in various features and include again temporal and performance in-
formation (AT/2, AT/6, P/1, P/4). The features extracted from the number
line game (TM/2, TM/5) capture typical mistakes in spatial number repre-
sentation [Butterworth et al., 2011]. Furthermore, different problem-solving
strategies are analyzed based on the Secret Number game (SN/1, SN/2).
Finally, difficulties acquiring simple arithmetic procedures and deficits in
fact retrieval that are frequently shown by children with DD [Ostad, 1997]

58

5.2 Experimental Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False positive rate (1−specificity)

True positive rate (sensitivity)
Classifier performance

Best model

Adaptive model

Static model

Figure 5.3: Performance comparison of the classifiers using ROC curves. The adaptive
approach with reduced test duration (red) shows comparable performance to
the classifier using all features (green). Points on the curves correspond to
different probability thresholds τ at which the model decides if a child has
DD.

are captured measuring answer times for various arithmetic procedures in
AT/1, AT/3. Interestingly, no features from tasks associated with subitiz-
ing are selected, although subitizing is considered one of the basic functions
often impaired for children with DD [Landerl et al., 2004].

Most of the selected features correspond well with the type of tasks used in
standardized tests for DD such as counting, number comparison, number
representation and simple arithmetical tasks [von Aster et al., 2006]. Note
that our method makes use of some features such as typical mistakes and
problem-solving strategies that are not captured by paper tests. Further, the
type of the selected features agrees well with other computer-based screen-
ing tools that measure answer time, performance and typical mistakes on
tasks such as dot enumeration, number comparison, single digit arithmetic
(Dyscalculia Screener Digital [Butterworth, 2003]) or recognizing reading
and writing of natural numbers (DyscaliUM [Beacham and Trott, 2005]).

5.2.3 Criterion-related validity

In Figure 5.3, we compare the performance of the static and adaptive
Bayesian network model with ROC curves. In the static case (green line),
we used all features, i.e., all tasks, while in the adaptive case (red line) we

59

Supervised student trait identification

Table 5.2: Spearman correlations ρ between the probabilistic output of our screener and
various related and unrelated abilities of the study participants. Our method
shows moderate to high correlations for related concepts and weak correlations
to unrelated concepts. A description of all tests can be found in Appendix A.

Test ρ p-value

Convergent validity

Non verbal intelligence [Esser et al., 2008a] 0.44 <10−3

Cognitive competence [Asendorpf and Van Aken, 1993] 0.63 <10−7

Math anxiety test [Krinzinger et al., 2007] 0.42 <10−2

Discriminant validity

Working memory [Hasselhorn, 2012] 0.19 0.13

Verbal intelligence [Esser et al., 2008a] 0.23 0.06

Attentional performance [Zimmermann and Fimm, 2009] 0.25 0.10

Sport competence [Asendorpf and Van Aken, 1993] -0.17 0.18

Peer acceptance [Asendorpf and Van Aken, 1993] 0.08 0.51

used early test abortion based on our stopping criterion. Every point on the
curves corresponds to a different threshold τ for the probabilistic classifier.
Our best classifier (selected by cross-validation) exhibits a high sensitivity
and specificity of 0.91 for a threshold τ = 0.3 (black dot). There is no signifi-
cant decrease in performance when we stop the test early with our adaptive
model, i.e., on average, children are not misclassified more frequently. In
fact, the adaptive classifier that is based on partial data is outperforming
the static approach for a specificity in the range [0.05, 0.15]. As the features
are ordered based on how much information they carry about the group
label, it can be advantageous to neglect those with little information since
they tend to have more noisy information. Our classifier achieves a higher
sensitivity compared to the stand-alone digital screening test DyscalculiUM;
no comparison can be made with the Dyscalculia Screener Digital as it was
standardized independent of traditional tests for DD.

5.2.4 Construct validity

Construct validity of our method was assessed by correlating the proba-
bilistic output of our screener with a series of tests measuring different
cognitive aspects of all participants. The tests were chosen to measure
concepts related to DD such as non-verbal intelligence and cognitive compe-
tence as well as concepts that are not related to DD but can have an in-

60

5.2 Experimental Evaluation

fluence on the performance of students such as verbal intelligence or atten-
tional performance (more details on the employed tests can be found in Ap-
pendix A). We performed standardized tests to assess the convergent valid-
ity and the discriminant validity as listed in Table 5.2. We observed mod-
erate to high correlation coefficients for all measures capturing related cog-
nitive concepts and weak correlations to the set of tests measuring unre-
lated concepts. These results are comparable to construct validity analy-
sis of standardized neuropsychological tests that assess mathematical abil-
ities. Correlations for these tests range from 0.22 to 0.73 [Woolger, 2001;
Desoete and Grégoire, 2006].

5.2.5 Reliability

A lower bound on the test reliability is commonly measured with Cron-
bach’s alpha. It measures the interrelatedness of the items in a test. How-
ever, in our setting two assumptions underlying Cronbach’s alpha are vio-
lated. First, our test output is a non-linear function of the measurements and
second the measurements are not tau-equivalent. We therefore investigated
the split-half reliability of our proposed model. The average of all possi-
ble split-half reliabilities is equivalent to Cronbach’s alpha under some as-
sumptions [Cortina, 1993]. We repeatedly calculated the correlation between
model outputs based on random half splits until we reached convergence for
the estimate of the reliability (after 300 iterations). Splits were computed by
randomly partitioning the five tasks for every feature into two sets. All cor-
relations were corrected for the test length by using the Spearman-Brown
formula. For our test, the Spearman-Brown correction is only an approxi-
mation as the assumptions of parallel tests are not met.

We observe a reliability of 0.87. This result is comparable to other mathemat-
ical tests where a reliability in the range of 0.7 to 0.92 is reported [Desoete
and Grégoire, 2006; Esser et al., 2008a].

5.2.6 Test duration

Due to our stopping criterion, the test duration is adapted to the individual
child. Figure 5.4, shows the test duration for all children (gray) and chil-
dren with developmental dyscalculia (DD, red). On average, our adaptive
screener classifies a child as DD or control after only 11 minutes (at which
point the test is stopped). This is notably shorter than screener durations re-
ported in previous work. In comparison, the test duration of the Dyscalculia
Screener Digital is reported to be between 15 and 30 minutes [Butterworth,

61

Supervised student trait identification

5 10 15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

Test durations for children with DD

Test duration (minutes)

Children count

all children
children with DD

Figure 5.4: Test durations for all children (grey) and DD (red). Our adaptive screener
requires on average 11 test minutes to classify a child. Around 40% can be
classified already after 5 minutes.

2003]. For Higher Education, a test duration of 48 minutes was reported
using the computer-based screener for DD DyscalculiUM. With our adap-
tive screener, roughly 40% of children are already classified after five test
minutes. Our static screener test takes 26.6 minutes on average, which em-
phasizes the importance of the adaptivity. The adaptive stopping criterion
is necessary to retain classification accuracy as for 43% of the children the
initial classification changed until the stopping criterion was met.

5.3 Generalization Capabilities

ITS are used in many different settings, e.g. within a classroom, as a home-
work exercise, or self-training at home. Depending on the setting, the degree
of support from parents or teachers, the amount of distraction by peers, and
the motivation level of students is very different. Besides, there are multi-
ple different neuropsychological tests to identify students at risk of devel-
opmental dyscalculia (DD). We would like our classification pipeline and
features to be robust to different scenarios in that we would want to be able
to detect children at risk of DD in all of those scenarios.

Specifically, to allow for early identification and intervention, a widespread,
simultaneous screening of school classes would be beneficial. However,
our classification pipeline has been trained on data from children using the

62

5.3 Generalization Capabilities

learning software at home. To assess the generalization capabilities of our
developed model, we conducted an initial pilot study with ten Swiss school
classes. For this study, we created a screening tool based on the training en-
vironment Calcularis that consisted of all tasks that were found relevant
for the detection of DD in Section 5.2.

In the following, we first describe the participants of the study as well as the
criteria to diagnose DD. Second, we investigate the generalizability of our
feature set, and third, we examine the overall performance of our classifier
for this changed setting.

5.3.1 Method

Participants. In the pilot study, the performance and interactions of 156 chil-
dren (79 females, 77 males) with our screening tool were recorded. Eight par-
ticipants were diagnosed with DD (6 females, 2 males). The average age of
children without DD was 9.01 (SD 0.66) and 9.19 years (SD 0.48) in the group
of children with DD. 98 participants attended the 2nd grade(age: M=8.69,
SD=0.54; 52 females, 46 males; 3 children with DD) and 58 children attended
the 3rd grade (age: M=9.58, SD=0.41; 27 females, 31 males; 5 children with
DD). All participants visited regular public schools. The computer-based
screener was executed directly in the classroom using laptop computers or
in dedicated computer labs (depending on the availability at the school).

Diagnosis. The DD diagnosis was based on an estimation of the general intel-
ligence as well as an assessment of the mathematical performance of the chil-
dren. The general intelligence was estimated using subtests of the CFT1 [Cat-
tell et al., 1997] or the CFT20-R [Weiss, 2006] (depending on the age). The
assessment of the mathematical performance was based on the entire ZAREKI-
R test [von Aster et al., 2006] and the addition and subtraction subtests from
the HRT [Haffner et al., 2005]. A participant was diagnosed with DD if his
or her estimated IQ score was in the range 85− 115 and one of the following
conditions was true.

1. The total score achieved in ZAREKI-R was below the 10th percentile

2. The scores of specified subtests of ZAREKI-R (see [von Aster et al.,
2006] for an itemization) were below the 10th percentile

3. The total score achieved in ZAREKI-R was at or below the 25th per-
centile and the average performance of the addition and subtraction
sub-tests from HRT was at or below the 10th percentile.

63

Supervised student trait identification

Coefficient score
Feature relation in evaluation data

0 0.1 0.2 0.3 0.4 0.5

TM/5

TM/4

TM/3

TM/2

TM/1

SN/2

SN/1

P/4

P/3

P/2

P/1

AT/6

AT/5

AT/4

AT/3

AT/2

AT/1

Coefficient score
Feature relation in pilot data

0 0.1 0.2 0.3 0.4 0.5

TM/5

TM/4

TM/3

TM/2

TM/1

SN/2

SN/1

P/4

P/3

P/2

P/1

AT/6

AT/5

AT/4

AT/3

AT/2

AT/1

Figure 5.5: The relationships between our selected features and the test score are shown
for the evaluation data set (left) as well as the data set from the classroom
study (right), using Pearson’s correlation coefficient (yellow) and the maxi-
mal information coefficient MIC (green).

All children solved our computer-based screener directly in the classroom.
For this group setting, we trained our method on the data of our initial ex-
perimental evaluation (see Section 5.2). Children, therefore, had to solve 85
tasks associated with 17 selected features (detailed in Figure 5.2). The aver-
age test time of this non-adaptive screener version was 26 minutes. Due to
the group setting, children were exposed to more distraction while solving
the computer test; thus real-world testing conditions are well reflected.

We investigated the generalizability of the selected features to the changed
test settings as well as the performance of our model under these settings.
All results were obtained using the holdout method: the data set from the
initial experimental evaluation was used for training and the data set from
the pilot study for testing. All correlations were assessed using the phi coef-
ficient and Spearman’s rank correlation coefficient.

64

5.3 Generalization Capabilities

5.3.2 Feature generalizability

First, we investigated the applicability of the selected features in the class-
room setting. We compared the MIC scores obtained on the 17 selected
features to the MIC scores achieved in our initial experimental evaluation
(see Figure 5.5). In general, features extracted in the classroom setting show
lower MIC scores. We believe that this is due to the different tests that were
used for assessing DD. Investigating the relative importance of the different
feature types, we observe that in the classroom setting AT features are less
relevant which might be caused by more distraction that increases the noise
level for time measurements. These findings are in line with the lower scores
for the TM features. Investigating the number of errors users made during
the classroom study, we found that more users were committing typical mis-
takes for the features TM/3 (0.21 vs. 0.30), TM/4 (0.12 vs. 0.19), and TM/5
(0.15 vs. 0.39) compared to the evaluation data set. Again, this increased
number of typical mistakes might be attributed to the group setting leading
to more distraction.

5.3.3 Performance on classroom data

We analyzed the correlation between the screener output and the test score
obtained from the standardized math tests (see Section 5.3.1) and found
highly significant moderate correlations r = 0.43, p < 10−7 between the
two. For comparison, the correlation between ZAREKI-R and Arithmetic
of WISC-III (Wechsler Intelligence Scale for Children) [Woolger, 2001] was
found to be r = 0.64. Investigating the predictive performance of the model
we found a promising but lower sensitivity and specificity compared to the
results obtained for the evaluation data set. With changed study settings, we
achieve a sensitivity of 0.63 while keeping the specificity at 0.85 (τ = 0.01).
Thus, the extracted features and the trained classifier capture important as-
pects of DD that generalize to the changed test settings. However, the low
threshold τ = 0.01 shows that our classifier is not well calibrated. In ad-
dition, the estimated sensitivity and specificity of our classification pipeline
are not sufficient to be of practical use as a screening tool.

Investigating the predictions of misclassified students further, Figure 5.6
demonstrates that most classification errors were observed at the decision
boundary for the DD diagnosis (see Section 5.3.1 for details on the diagno-
sis). More than 90% of the misclassified children show below average math
performance according to our testing. As expected, the false positive rate de-

65

Supervised student trait identification

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

T score

Children count
Test scores of misclassified children

Critical score Uncritical scoreCritical score Uncritical score

Figure 5.6: Test scores of false negatives (yellow) and false positives (blue) children in
the pilot study. Users with a critical score (T score ≤ 37.5) are diagnosed
with DD.

creases with increasing study scores. This decrease is a desirable property,
as the children at the decision boundary are particularly challenging.

5.4 Discussion

In this chapter, we developed a fully data-driven pipeline for the automatic
detection of student traits that can be seamlessly embedded into an ITS. We
validated the method for the case of developmental dyscalculia (DD), al-
lowing for non-intrusive and unsupervised screening of children while they
are training with the ITS. The automatically selected features are covering a
broad range of different characteristics of the children and are in accordance
with the literature on DD. The classifier exhibits high sensitivity (0.91) and
specificity (0.91) and adapts the test duration to each child individually, re-
sulting in an average duration of as little as 11 minutes. Further, our method
exhibits good construct validity (high correlations to tests measuring math-
ematical abilities, low correlations to tests assessing dissimilar abilities).

These findings demonstrate that student traits can be effectively learned
from user inputs alone. This knowledge about student traits allows an ITS
to further adapt the curriculum to the specific needs of the students. While
we evaluated the proposed model only for the screening of children at risk
of DD, there is nothing inherently DD specific in the method. As such, our
framework can be applied for the unobtrusive detection of other student
traits and using different learning environments.

Limitations. Based on a pilot study with 156 children we investigated the
generalizability of the proposed model to a new test setting, where all chil-

66

5.4 Discussion

dren are assessed simultaneously in the classroom. This new setting differs
to the initial evaluation regarding two main aspects. First, this setting natu-
rally leads to more disturbances since the test environment is noisier than in
the evaluation study (where children used the system mostly at home) and
children are interacting with each other during the test. Second, children in
the pilot study solved all tasks consecutively while students in the evalua-
tion study solved the tasks over the course of several weeks as part of their
normal training with the software.

In this setting, our method exhibits significantly lower sensitivity and speci-
ficity. We found that our method can detect only about half of the children
diagnosed with DD. The decrease in performance of our model is most likely
due to the different changes of the data collection setting as well as timing
effects due to different spacing of the tasks. These differences render our
feature set less relevant for detecting DD.

To adapt our classifier to this new setting, we could re-train the model using
the new data set from the pilot study. Since DD is a relatively rare con-
dition, only 8 participants were diagnosed with DD. This small number of
students provides only insufficient information about the characteristics of
students with DD. Indeed, experiments for which we re-trained our Naive
Bayes classifier on the classroom dataset, revealed that the learned models
did not generalize to unseen students. In the next chapter, we, therefore,
explore semi-supervised methods to learn more robust features based on a
large unlabeled data set.

67

Supervised student trait identification

68

C H A P T E R 6
Semi-supervised student trait
identification

In order to build predictive models of student characteristics and traits, con-
trolled user studies are typically conducted as we have done in Chapter 5.
Such controlled studies provide detailed information about student charac-
teristics (labeled data). However, gathering labeled data in educational data
mining is a time and cost-intensive task, which most often limits the num-
ber of study participants due to time and budget constraints. The quality
of the predictive models, however, inherently depends on the number of
study participants. When building models for relatively rare conditions this
issue becomes especially pronounced as data sets from small-scale studies
can provide only a few examples of the rare condition as we demonstrated
in Chapter 5. In contrast to such controlled user studies, digital learning
environments such as intelligent tutoring systems (ITS), educational games,
learning simulations, and massive open online courses (MOOCs) produce
high volumes of data. These data sets provide rich information about stu-
dent interactions with the system but come with no or only little additional
information about the user (unlabeled data).

Semi-supervised learning bridges this gap by making use of patterns in big-
ger unlabeled data sets to improve predictions on smaller labeled data sets.
This is also the focus of this chapter. Recently, it has been shown (out-
side of the education context) that variational auto-encoders (VAE) have
the potential to outperform the commonly used semi-supervised classifica-
tion techniques. A VAE is a neural network that includes an encoder that
transforms a given input into a typically lower-dimensional representation,

69

Semi-supervised student trait identification

and a decoder that reconstructs the input based on the latent representation.
Hence, VAEs learn an efficient feature embedding (feature representation)
using unlabeled data that can be used to improve the performance of any
standard supervised learning algorithm [Kingma et al., 2014]. This property
greatly reduces the need for problem-specific algorithms. Moreover, VAEs
feature the advantage that the trained deep generative models are able to
produce realistic samples that allow for accurate data imputation and sim-
ulations [Rezende et al., 2014], which makes them an appealing choice for
educational data mining.

Inspired by these advantages, and the demonstrated superior classifier per-
formance in other domains such as computer vision [Kingma and Welling,
2014; Rezende et al., 2014], this chapter explores VAE for student classifica-
tion in the educational context. We present a complete semi-supervised clas-
sification pipeline that employs deep VAEs to extract efficient feature em-
beddings from unlabeled student data. We have optimized the architecture
of two different networks for educational data - a simple variational auto-
encoder and a convolutional variational auto-encoder. While our method
is generic and hence widely applicable, we apply the pipeline to the prob-
lem of detecting students suffering from developmental dyscalculia (DD),
as in Chapter 5. The large and unlabeled data set at hand consists of stu-
dent data of more than 7K students, and we evaluate the performance of
our pipeline on the two independent small and labeled data sets that we
presented in Chapter 5 with 83 and 155 students, respectively.

Our evaluation first compares the performance of the two networks, where
our results indicate the superiority of the convolutional VAE. We then ap-
ply different classifiers to both labeled data sets, and demonstrate not only
improvements in classification performance of up to 28% compared to other
feature extraction algorithms, but also improved robustness to class imbal-
ance when using our pipeline compared to other feature embeddings. The
improved robustness of our VAE is of particular importance for predicting
relatively rare student conditions - a challenge that is often met in educa-
tional data mining applications.

6.1 Background

In the semi-supervised classification setting, we have access to a large data
set XB without labels and a much smaller labeled data set XS with labels YS.
The idea behind semi-supervised classification is to make use of patterns in
the unlabeled data set to improve the quality of the classifier beyond what

70

6.1 Background

would be possible with the small data setXS alone. There are many different
approaches to semi-supervised classification including transductive SVMs,
graph-based methods, self-training or representation learning [Zhu, 2006].

In this chapter, we focus on learning an efficient encoding z = E(x) for
x ∈ XB of the data domain using the unlabeled data XB only. This
learned data transformation E(·) - the encoding - is then applied to the
labeled data set XS. Well-known encoders include principle component
analysis (PCA) or Kernel PCA (KPCA). PCA is a dimensionality reduction
method that finds the optimal linear transformation from an N-dimensional
to a K-dimensional space (given a mean-squared error loss). Kernel
PCA [Schölkopf et al., 1997] extends PCA allowing non-linear transforma-
tions into a K-dimensional space and has, among others, been successfully
used for novelty detection in non-linear domains [Hoffmann, 2007].

Recently, variational auto-encoders (VAE) have outperformed other semi-
supervised classification techniques on several data sets [Kingma et al.,
2014]. VAE combine variational inference networks with generative mod-
els parametrized by deep neural networks that exploit information in the
data density to find efficient lower dimensional representations (feature em-
beddings) of the data.

6.1.1 Auto-encoder

An auto-encoder or autoassociator [Bengio and others, 2009] is a neural net-
work that encodes a given input into a (typically lower dimensional) rep-
resentation such that the original input can be reconstructed approximately.
The auto-encoder consists of two parts. The encoder part of the network
takes the N-dimensional input x∈RN and computes an encoding z = E(x)
while the decoder D reconstructs the input based on the latent representa-
tion x̂ = D(z). If we train a network using the mean squared error loss and
the network consists of a single linear hidden layer of size K, e.g.

E(x) = W1x + b1 and D(z) = W2z + b2 (6.1)

for weights W1 ∈ RK×N and W2 ∈ RN×K and offsets b1 ∈ RK and b2 ∈
RN, the autoencoder behaves similar to PCA in that the network learns to
project the input into the span of the K first principle components [Bengio
and others, 2009].

For more complex networks with non-linear layers, multi-modal aspects of
the data can be learned. Auto-encoders can be used in semi-supervised clas-
sification tasks because the encoder can compute a feature representation z

71

Semi-supervised student trait identification

of the original data x. These features can then be used to train a classifier.
The learned feature embedding facilitates classification by clustering related
observations in the computed latent space.

6.1.2 Variational auto-encoder

Variational auto-encoders [Kingma et al., 2014] are generative models that
combine Bayesian inference with deep neural networks. They model the
input data x as

pθ(x|z) = f (x; z, θ) p(z) = N (z|0, I) (6.2)

where f is a likelihood function that performs a non-linear transforma-
tion with parameters θ of z by employing a deep neural network. In this
model, the exact computation of the posterior pθ(z|x) is not computation-
ally tractable. Instead, the true posterior is approximated by a distribu-
tion qφ(z|x) [Kingma and Welling, 2014]. This inference network qφ(z|x)
is parametrized as a multivariate normal distribution as

qφ(z|x) = N (z|µφ(x), diag(σ2
φ(x))), (6.3)

where µφ(x) and σ2
φ(x) denote vectors of means and variance respectively.

Both functions µφ(·) and σ2
φ(·) are represented as deep neural networks.

Hence, variational autoencoders essentially replace the deterministic en-
coder E(x) and decoder D(z) by a probabilistic encoder qφ(z|x) and decoder
pθ(x|z).

Direct maximization of the likelihood is computationally not tractable.
Therefore, a lower bound on the likelihood has been derived [Kingma and
Welling, 2014]. The learning task then amounts to maximizing this varia-
tional lower bound

Eqφ(z|x) [log pθ(x|z)]−KL
[
qφ(z|x)||p(z)

]
, (6.4)

where KL denotes the Kullback-Leibler divergence. The lower bound con-
sists of two intuitive terms. The first term is the reconstruction quality while
the second one regularizes the latent space towards the prior p(z). We per-
form optimization of this lower bound by applying a stochastic optimization
method using gradient back-propagation [Kingma and Ba, 2015].

6.2 Method

In the following, we introduce two networks. First, a simple variational
auto-encoder consisting of fully connected layers to learn feature embed-

72

6.2 Method

X

FC
 X

network connection sampling connection

FC fully connected layer CON convolutional layer LSTM recurrent LSTM

CNN student auto-encoder (CNN-SAE)

Simple student auto-encoder (S-SAE)

𝑞𝜙 𝒛 𝒙) 𝑝𝜃 𝒙 𝒛)

𝜇

𝜎
𝑧

FC

FC

X X

C
O

N

C
O

N

C
O

N

C
O

N

C
O

N

C
O

N

𝜇

𝜎
𝑧

LSTM FC

LSTM FC

𝑝𝜃 𝒙 𝒛) 𝑞𝜙 𝒛 𝒙)

FC

Legend:

Figure 6.1: Network layouts for our simple student auto-encoder (top) using only fully
connected layers and our improved CNN student auto-encoder (bottom) us-
ing convolutions for the encoder and recurrent LSTM layers for the decoder.
In contrast to standard auto-encoders, the connections to the latent space z
are sampled (red dashed arrows) from a Gaussian distribution.

dings of student data. These encoders have shown to be powerful for semi-
supervised classification [Kingma et al., 2014], and are often applied due
to their simplicity. Second, an advanced auto-encoder that combines the
advantages of VAE with the superiority of asymmetric encoders. This sec-
ond network is motivated by the fact that asymmetric auto-encoders have
shown superior performance and more meaningful feature representations
compared to simple VAE in other domains such as image synthesis [van den
Oord et al., 2016].

73

Semi-supervised student trait identification

6.2.1 Student snapshots

There are many applications where we want to predict a label yn for each
student n within an ITS based on behavioral data Xn. These labels typically
relate to external variables or properties of a student, such as age, learning
disabilities, personality traits, learner types, or the learning outcome. Simi-
lar to Bayesian Knowledge Tracing (see Section 4.1.1) we propose to model
the data Xn = {xn1, . . . , xnT} as a sequence of T observations. In contrast to
Bayesian Knowledge Tracing, we store F different feature values xnt ∈ RF

for each element in the sequence, where t denotes the tth opportunity within
a task. This approach allows us to simultaneously store data from multi-
ple tasks in xnt, e.g. xn1 stores all features for student n that were observed
during the first task opportunities. For every task in an ITS, we can extract
various features that characterize how a student n was approaching the task.
These features include performance, answer times, problem-solving strate-
gies, etc. We combine this information into a student snapshot Xn ∈ RT×F,
where T is the number of task opportunities, and F is the number of ex-
tracted features.

6.2.2 Simple student auto-encoder (S-SAE)

Our simple variational autoencoder is following the general design outlined
in Section 6.1 and is based on the student snapshot representation. For ease
of notation, we use x := vec(Xn), where vec(·) is the matrix vectorization
function to represent the student snapshot of student n.

The complete network layout is depicted in Figure 6.1, top. The encoder and
decoder networks consist of L fully connected layers that are implemented
as an affine transformation of the input followed by a non-linear activation
function β(·) as

xl = β(Wlxl−1 + bl), (6.5)

where l is the layer index and Wl and bl are a weight matrix and offset
vector of suitable dimensions. Typical choices for β(·) include tanh, rectified
linear units or sigmoid functions [Goodfellow et al., 2016]. To produce latent
samples z we sample from the normal distribution (see Equation (6.3)) using
re-parametrization [Kingma and Welling, 2014]

z = µφ(x) + σφ(x)ε, (6.6)

where ε ∼ N (0, 1), to allow for back-propagation of gradients. For pθ(x|z)
(see (6.2)) any suitable likelihood function can be used. We used a Gaus-
sian distribution for all examples in this chapter. Note that the likelihood
function is parametrized by the entire (non-linear) decoder network.

74

6.2 Method

The training of variational auto-encoders can be challenging as stochastic
optimization was found to set qφ(z|x) = p(z) in all but vanishingly rare
cases [Bowman et al., 2016], which corresponds to a local maximum that
does not use any information from x. We, therefore, add a warm-up phase
that gradually gives the regularization term in the target function more
weight:

Eqφ(z|x) [log pθ(x|z)]− α KL
[
qφ(z|x)||p(z)

]
, (6.7)

where α ∈ [0, 1] is linearly increased with the number of epochs. The warm-
up phase has been successfully used for training deep variational auto-
encoders [Sønderby et al., 2016]. Furthermore, we initialize the weights of
the dense layer computing log(σ2

φ(x)) to 0 (yielding a variance of 1 at the
beginning of the training). This was motivated by our observations that if
we employ standard random weight initialization techniques (glorot-norm,
he-norm [He et al., 2015]) we can get relatively high initial estimates for the
variance σ2

φ(x), which due to the sampling leads to very unreliable samples
z in the latent space. The large variance in sampled points in the latent space
leads to bad convergence properties of the network.

6.2.3 CNN student auto-encoder (CNN-SAE)

Following the recent findings in computer vision, we present a second,
more advanced network that typically outperforms simpler variational auto-
encoders. In [van den Oord et al., 2016], for example, these asymmetric auto-
encoders resulted in a superior reconstruction of images as well as more
meaningful feature embeddings. A specific kind of convolutional neural net-
work was combined with an auto-encoder, being able to capture low-level
pixel statistics directly and hence to extract more high-level feature embed-
dings.

Inspired by this previous work, we combine an asymmetric auto-encoder
(and a decoder that is able to capture low-level statistics) with the advan-
tages of variational auto-encoders. Figure 6.1, bottom, shows our combined
network. We employ multiple layers of one-dimensional convolutions to
parametrize the encoder qφ(z|x) (again we assume a Gaussian distribution,
see (6.3)). The distribution is parameterized as follows:

µφ(x) = Wµh + bµ

log(σ2
φ(x)) = Wσh + bσ

h = convl(x) = β(Wl ∗ convl−1(x)),

where ∗ is the convolution operator, Wl, Wµ, Wσ, bµ, bσ are weights of suit-
able dimensions, β(·) is a non-linear activation function, and l denotes the

75

Semi-supervised student trait identification

layer depth. Further, conv0(x) = x. We keep the standard variational
layer (see (6.6)) while changing the output layer to a recurrent layer using
long term short term units (LSTM). Recurrent layers have successfully been
used in auto-encoders before, e.g. in [Fabius and van Amersfoort, 2015].
LSTM were very successful for modeling temporal sequences because they
can model long and short term dependencies between time steps. Every
LSTM unit receives a copy of the sampled points in latent-space, which al-
lows the LSTM network to combine context information (point in the latent
space) with the sequence information (memory unit in the LSTM cell). Us-
ing LSTM cells the decoder pθ(x|z) assumes a Gaussian distribution and is
parametrized as follows:

µθt(z) = Wµz · lstmt(z) + bµz

log(σ2
θt(z)) = Wσz · lstmt(z) + bσz,

where µθt(z) and σ2
θt(z) are the tth components of µθ(z) and σ2

θ (z), respec-
tively, lstmt(·) denotes the tth LSTM cell and W∗ and b∗ denote suitable
weight and offset parameters.

6.2.4 Feature selection

Variational auto-encoders provide a natural way for performing feature se-
lection. The inference network qφ(z|x) infers the mean and variance for
every dimension zi. Therefore, the most informative dimension zi has the
highest KL divergence from the prior distribution p(zi) = N (0, 1) while un-
informative dimensions will have a KL divergence close to 0 [Higgins et al.,
2016]. The KL divergence of zi to p(zi) is given by

KL
[
qφ(zi|x)||p(zi)

]
= − log(σi) +

σ2
i µ2

i
2
− 1

2
, (6.8)

where µi and σi are the inferred parameter for the Gaussian distribution
qφ(zi|x). Feature selection proceeds by keeping the K dimensions zi with
the largest KL divergence.

6.2.5 Semi-supervised classification pipeline

The encoder and the decoder of the variational auto-encoder can be used in-
dependently of each other. This independence allows us to take the trained
encoder and map new data to the learned feature embedding. Figure 6.2 pro-
vides an overview of the entire pipeline for semi-supervised classification.

76

6.3 Results

Semi-supervised classification pipeline
U

n
la

b
e

le
d

d

at
a

Encoder Decoder

𝑞𝜙 𝒛 𝒙)

Logistic Regression

Naive Bayes

SVM

La
b

e
ls

use trained encoder

Fe
at

u
re

Em

b
ed

d
in

g

𝑝𝜃 𝒙 𝒛)

U
n

la
b

e
le

d

d
at

a

Encoder

𝑞𝜙 𝒛 𝒙)

La
b

e
le

d

d
at

a Feature
selection Fe

at
u

re

Em
b

ed
d

in
g

Figure 6.2: Overview of our semi-supervised classification pipeline. We train the vari-
ational auto-encoder on a large unlabeled data set. The trained encoder of
the auto-encoder can be used to transform other data sets into an expres-
sive feature embedding. Based on this feature embedding we train different
classifiers to predict the student labels.

In a first unsupervised step, we train a VAE on unlabeled data. The learned
encoder qφ(z|x) is then used to transform labeled data sets to the feature
embedding. We finally apply our feature selection step that considers the
relative importance of the latent dimensions as previously described. We
then train standard classifiers: Logistic Regression, Naive Bayes and Sup-
port Vector Machine (SVM) on the feature embeddings.

6.3 Results

We evaluated our approach for the specific example of detecting develop-
mental dyscalculia (DD), which is a learning disability affecting the acquisi-
tion of arithmetic skills [Von Aster and Shalev, 2007b]. Based on the learned
feature embedding on a large unlabeled data set the classifier performance
was measured on two independent, small and labeled data sets from con-
trolled user studies (see Chapter 5 for a detailed description of the studies).

77

Semi-supervised student trait identification

In this chapter, however, we refer to them as balanced and imbalanced data
sets since their distribution of DD and non-DD children differs: the first
study (the evaluation study described in Section 5.2.1) has approximately
50% DD, while the second study (the classroom study in Section 5.3.1) in-
cludes 5% DD which corresponds to the typical prevalence of DD.

6.3.1 Experimental Setup

All three data sets were collected from the intelligent tutoring system (ITS)
Calcularis (see Section 3.2 for details). As a reminder, Calcularis consists of
different games for training number representations and calculation. In
Chapter 5 we identified a set of games that are predictive of DD within
Calcularis. Since timing features were found to be one of the most rele-
vant indicators for detecting DD [Butterworth, 2003] and to facilitate com-
parison to other feature embedding techniques we limited our analysis to
log-normalized timing features, for which we can assume normal distribu-
tion [van der Linden, 2006]. Therefore, we evaluated our pipeline on the
subset of games from Chapter 5 for which meaningful timing features could
be extracted and sufficient samples were available in all data sets (we used
> 7000 samples for training the VAEs). Since our pipeline currently does not
handle missing data only students with complete data were included.

Timing features were extracted for the first 5 tasks in 5 different games. The
selected games involve addition tasks (adding a 2-digit number to a 1-digit
number with ten-crossing; adding two 2-digit numbers with ten-crossing),
number conversion (spoken to written numbers in the ranges 0-10 and 0-
100) and subtraction tasks (subtracting a 1-digit number from a 2-digit num-
ber with ten-crossing). For every task, we extracted the total answer time
(time between the task prompt until the answer was entered) and the re-
sponse time (time between the task prompt and the first input by the stu-
dent). Hence, each student is represented by a 50-dimensional snapshot x
(see Section 6.2).

Unlabeled data set. The unlabeled data set was extracted using live inter-
action logs from the ITS Calcularis. In total, we collected data from 7229
children. Note that we have no additional information about the children
such as DD or grade. We excluded all teacher accounts as well as log files
that were < 20KB. A single user was excluded for technical reasons. Since
every new game in Calcularis is introduced by a short video during the very
first task, we excluded this particular task for all games.

Balanced data set. The first labeled data set was introduced in Section 5.2.1.
In the following, we give a summary of the study: The data set is based on

78

6.3 Results

log files from 83 participants of a multi-center user study conducted in Ger-
many and Switzerland, where approximately half of the participants were
diagnosed with DD (47 DD, 36 control) [Von Aster et al., 2015]. During the
study, children trained with Calcularis at home for five times per week dur-
ing six weeks and solved on average 1551 tasks. There were 28 participants
in 2nd grade (9 DD, 19 control), 40 children in 3rd grade (23 DD, 17 control),
12 children in 4th grade (12 DD) and 3 children in 5th grade (3 DD). The diag-
nosis of DD was based on standardized neuropsychological tests [Von Aster
et al., 2015].

Imbalanced data set. The second labeled data set was already introduced
in Section 5.3.1. In the following, we give a summary of the study: The
data set is based on a user study conducted in the classroom of ten Swiss
elementary school classes. In total, 155 children participated, and a preva-
lence of DD of 5% could be detected (8 DD, 147 control). There were 97
children in 2nd grade (3 DD, 94 control) and 58 children in 3rd grade (5 DD,
53 control). The DD diagnosis was computed based on standardized tests
assessing the mathematical abilities of the children [von Aster et al., 2006;
Haffner et al., 2005]. During the study, children solved 85 tasks directly in the
classroom. On average, children needed 26 minutes to complete the tasks.

6.3.2 Implementation

The unlabeled data set was used to train the unsupervised VAE for extract-
ing compact feature embeddings of the data. Based on the learned data
transformations we evaluated two standard classifiers: Logistic Regression
(LR) and Naive Bayes (NB). We restricted our evaluation to simple classi-
fication models because we wanted to assess the quality of the feature em-
bedding and not the quality of the classifier. More advanced classifiers typ-
ically perform a (sometimes implicit) feature transformation as part of their
data fitting procedure. To represent at least one model that performs such
an embedding we included Support Vector Machine (SVM) in all our re-
sults. All classifier parameters were chosen according to the default values
in scikit-learn [Pedregosa and others, 2011]. Note that we have additionally
performed randomized cross-validated hyperparameter search for all clas-
sifiers, which, however, resulted in marginal improvements only. Because
of that, and to keep the model simple and especially easily reproducible, we
use the default parameter set in this work. For Logistic Regression, we used
L2 regularization with C = 1, for Naive Bayes, we used Gaussian distribu-
tions and for the SVM, RBF kernels and data point weights have been set
inversely proportional to label frequencies. All results are cross-validated

79

Semi-supervised student trait identification

using 30 randomized training-test splits on the unlabeled data (test size
5%). The classification part of the pipeline is additionally cross-validated us-
ing 300 label-stratified random training-test splits (test size 20%) to ensure
highly reproducible classification results.

Network hyperparameters were defined using the approach described
in [Bengio, 2012]. We increased the number of nodes per layer, the number
of layers and the number of epochs until a good fit of the data was achieved.
We then regularized the network using dropout [Srivastava et al., 2014] with
increasing dropout rate until the network was no longer overfitting the data.
Activation and weight initialization have been chosen according to common
standards: We employ the most common activation function, namely recti-
fied linear activation units (RELU) [LeCun et al., 2015], for all activations.
Weight initialization was performed using the method by He et al. [He et
al., 2015]. Following this procedure, the following parameters were used
for the S-SAE model: encoder and decoders used 3 layers of size 320. The
CNN-SAE model was parametrized as follows: 3 convolution layers with 64
convolution kernels and a filter length of 3. We used a single layer of LSTM
cells with 80 nodes. We used a batch size of 500 samples and batch nor-
malization and dropout (r = 0.25) at every layer. The warm-up phase (see
Section 6.2) was set to 300 epochs. Training was stopped after 1000 (S-SAE)
and 500 (CNN-SAE) epochs. The number of latent units was set to 8 in ac-
cordance with our findings on detecting students with DD from Chapter 5.
There, we used 17 features for the prediction but found that about half of the
features were sufficient to detect DD with high accuracy. When feature se-
lection was applied, we set the number of features to K=4 and thus we kept
exactly half of the latent space features. All networks were implemented us-
ing the Keras framework [Chollet, 2015] with TensorFlowTM [Abadi et al.,
2015] and optimized using Adam stochastic optimization with standard pa-
rameters according to [Kingma and Ba, 2015].

6.3.3 Network comparison

In a first experiment, we compared the feature embeddings generated by
our simple S-SAE and our asymmetric CNN-SAE with and without feature
selection. Figure 6.3 illustrates the average ROC curves of our complete
semi-supervised classification pipeline. Our feature embeddings based on
asymmetric CNN-SAE clearly outperform the ones from the simple S-SAE
on both the imbalanced and the balanced data set for Naive Bayes (NB) and
Logistic Regression (LR). For both models, feature selection improves the
area under the ROC curve (AUC) for the imbalanced data set (CNN-SAE:

80

6.3 Results

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Logistic Regression
CNN-SAE
CNN-SAE FS
S-SAE
S-SAE FS

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Naive Bayes
CNN-SAE
CNN-SAE FS
S-SAE
S-SAE FS

(a) Imbalanced data set

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Logistic Regression
CNN-SAE
CNN-SAE FS
S-SAE
S-SAE FS

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Naive Bayes
CNN-SAE
CNN-SAE FS
S-SAE
S-SAE FS

(b) Balanced data set

Figure 6.3: ROC curves for the two proposed models with and without feature selec-
tion (FS). Our asymmetric CNN-SAE outperforms the simple S-SAE con-
sistently with (blue) and without (purple) feature selection. Feature selection
improves performance only on the imbalanced data set.

LR 4.2%, NB 6.3%; S-SAE: LR 6.8%, NB: 1.6%), but has no effect for the bal-
anced data set. We believe that this is due to the ability of the classifiers to
distinguish useful features from noisy ones given enough samples. Since the
performance of the classifiers with feature selection (FS) is better or equal to
no feature selection in each experiment, we used the CNN-SAE FS model for
all further evaluations.

6.3.4 Classification performance

Our VAE models are trained to extract efficient feature embeddings of the
data. To assess the quality of these computed feature representations, we
compare the classification performance of our method to previous tech-
niques for finding efficient feature embeddings. In Figure 6.4 we compare

81

Semi-supervised student trait identification

classification performance of our method based on VAE to two well-known
methods for finding optimal feature embeddings, namely principle compo-
nent analysis (PCA, green) and Kernel PCA (KPCA, red) [Schölkopf et al.,
1997]. For comparison and as a baseline for the performance of the different
methods, we include direct classification results (gray), for which no fea-
ture embedding was computed. We used K = 8 (dimensionality of feature
embedding) for all methods. The features extracted by our pipeline com-
pare favorably to PCA and Kernel PCA showing improvements in terms of
AUC of 28% for Logistic Regression and 23% for Naive Bayes on the im-
balanced data set and an improvement of 3.75% for Logistic Regression and
7.5% for Naive Bayes on the balanced data set. By using simple classifiers,
we demonstrated that our encoder learns an effective feature embedding.
More sophisticated classifiers (such as SVM with non-linear kernels) typi-
cally proceed by first embedding the input into a specific feature space that
is different from the original space.

For the imbalanced data set the overall performance for SVM is significantly
lower for all embeddings. This result is in line with previous work [Imam
et al., 2006] showing that for imbalanced data sets, the decision boundaries
of SVMs are heavily skewed towards the minority class resulting in a pref-
erence for the majority class and thus a high miss-classification rate for the
minority class. Indeed, we found that SVM predicted only majority labels
on the imbalanced data set. For the balanced data set our feature embed-
ding shows improvements of 2.5% over alternative embeddings when using
SVM.

Further, Table 6.1 shows the performance of all feature embeddings using
three additional common classification metrics: root mean squared error
(RMSE), classification accuracy (Acc.) and area under the precision recall
curve (AUPR). We statistically compared the classification metrics of our
feature embedding to the best alternative feature embedding using an in-
dependent t-test and Bonferroni correction for multiple tests (α = 0.05). Our
feature embedding significantly outperformed alternative embeddings for
all classifiers on both the balanced and imbalanced data sets on most met-
rics. The main exception was the performance of SVM on the imbalanced
data set, which exhibited large variance for all feature embeddings and the
worst overall classification performance (compared to the other classifiers).

When comparing classification performance on the imbalanced and the bal-
anced data sets we observed that our pipeline using VAEs showed signifi-
cant performance improvements compared to other methods for finding fea-
ture embeddings. While the unlabeled and the balanced data sets stem from
an adaptive version of Calcularis, the imbalanced data was collected using

82

6.3 Results

Imbalanced data set Balanced data set
source

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Logistic Regression
Direct
PCA
Kernel PCA
CNN-SAE

Imbalanced data set Balanced data set
source

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Naive Bayes
Direct
PCA
Kernel PCA
CNN-SAE

Imbalanced data set Balanced data set
source

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

SVM
Direct
PCA
Kernel PCA
CNN-SAE

Figure 6.4: Classification performance for different feature embeddings. Our variational
auto-encoder (blue) outperforms other embeddings by up to 28% (imbal-
anced data set) and by up to 7.5% (balanced data set).

a fixed task sequence. As our method shows larger improvements on the
imbalanced data, we believe CNN-SAE learned an embedding that is robust
beyond adaptive ITS. The relative improvements of our feature embeddings
are smallest for SVM on the balanced data set. We believe that this is due to
the ability of the SVM to learn complex decision boundaries given sufficient
data. However, the ability for complex decision boundaries renders SVMs
more vulnerable to class imbalance, yielding performance at random level
on the imbalanced data set.

83

Sem
i-supervised

studenttraitidentification

Table 6.1: Comparison of our method to alternative embeddings. Our approach using a variational auto-encoder (CNN-SAE)
significantly outperforms other approaches for most cases. The best score for each metric and classifier is shown in bold.
*= statistically significant difference (t-test with Bonferroni correction, α = 0.05).

Direct PCA Kernel PCA CNN-SAE
AUC RMSE AUPR Acc. AUC RMSE AUPR Acc. AUC RMSE AUPR Acc. AUC RMSE AUPR Acc.

Imbalanced data set
Logistic Regression 0.53 0.27 0.18 0.91 0.54 0.25 0.17 0.93 0.61 0.25 0.16 0.93 0.78* 0.24* 0.28* 0.94*
Naive Bayes 0.51 0.29 0.23 0.91 0.50 0.29 0.10 0.90 0.57 0.28 0.20 0.91 0.70* 0.25* 0.24 0.93*
SVM 0.55 0.25 0.22* 0.94 0.40 0.25 0.08 0.94 0.42 0.25 0.09 0.93 0.59 0.25 0.16 0.94

Balanced data set
Logistic Regression 0.80 0.44 0.82 0.73 0.80 0.42 0.84 0.73 0.80 0.42 0.83 0.75 0.83* 0.40* 0.84 0.77
Naive Bayes 0.80 0.49 0.80 0.73 0.77 0.46 0.77 0.71 0.76 0.46 0.76 0.70 0.86* 0.38* 0.86* 0.80*
SVM 0.81 0.42 0.84* 0.75 0.79 0.43 0.81 0.73 0.80 0.43 0.83 0.73 0.83 0.40* 0.81 0.79*

84

6.3 Results

6.3.5 Comparison to our specialized models

Next, we compare our feature embeddings to the specialized Naive Bayes
classifier (S-NB) from Chapter 5. Along with the classifier, we presented
a set of features optimized for the detection of developmental dyscalculia.
The development of S-NB including the set of features was based on the
balanced data set used in this chapter. The feature selection step for S-NB
depended on the classification task in two ways: 1) the kernels used for
feature comparison were designed with the classification task in mind and
2) representative features are chosen based on information about the student
labels (see Section 5.1.2 for details). In comparison to our S-NB method,
the approach presented in this chapter relies on timing data only and the
extracted features are independent of the classification task.

We compared the performance of S-NB to our CNN-SAE model with the
best performing classifier (Logistic Regression or Naive Bayes) on both data
sets. For the balanced data set, we found an AUC of 0.94 for the specialized
model (S-NB) compared to an AUC of 0.86 for Naive Bayes using our fea-
ture embedding. On the imbalanced data set, we found an AUC of 0.67 for
S-NB compared to an AUC of 0.77 using Logistic Regression with our fea-
ture embedding. These findings demonstrate that while the feature embed-
ding extracted by the variational auto-encoder performs slightly worse on
the balanced data set (for which the S-NB was developed), classifiers using
our automatically learned feature embedding significantly outperform S-NB
by 15% on the imbalanced data set, which suggests that our VAE model au-
tomatically extracts feature embeddings that are more robust than the fea-
ture set we extracted based on the balanced data alone (see Chapter 5 for
details).

6.3.6 Robustness on sample size

Ideally, a classifier’s performance should gracefully decrease as less data
is provided. A useful feature embedding allows a classifier to generalize
well based on few labeled examples because similar samples are clustered
together in the feature embedding. We, therefore, investigated the robust-
ness of the different feature representations with respect to the training set
size. For this, we used the balanced data set where we varied the training
set size between 7 (10% of the data) and 62 (90% of the data) by random
label-stratified sub-sampling. Figure 6.5 compares the AUC of the differ-
ent feature embeddings over different sizes of the training set. In the case
of Naive Bayes and Logistic Regression, our embedding provides superior

85

Semi-supervised student trait identification

0 10 20 30 40 50 60 70
Number of training samples

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
U

C

Logistic Regression
Direct
PCA
Kernel PCA
CNN-SAE

0 10 20 30 40 50 60 70
Number of training samples

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
U

C

Naive Bayes
Direct
PCA
Kernel PCA
CNN-SAE

0 10 20 30 40 50 60 70
Number of training samples

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
U

C

SVM
Direct
PCA
Kernel PCA
CNN-SAE

Figure 6.5: Comparison of classifier performance on the balanced data for different train-
ing set sizes (moving average fitted to data points). The features automat-
ically extracted by our variational auto-encoder (blue) maintain a perfor-
mance advantage even if the training size shrinks to 7 samples (10% of the
original size).

performance for all training set sizes. For large enough data sets SVM us-
ing the raw feature data (Direct, gray) is performing as well as using our
embedding (CNN-SAE, blue). However, for smaller data sets starting at 30
samples the performance of SVM based on the raw features declines more
rapidly compared to the SVM based on our feature embedding.

6.4 Discussion

In this chapter, we adapted the recently developed variational auto-encoders
to educational data for the task of semi-supervised classification of student
characteristics. We presented a complete pipeline for semi-supervised classi-
fication that can be used with any standard classifier. We demonstrated that
extracted structures from large-scale unlabeled data sets could significantly
improve classification performance for different labeled data sets. Our find-

86

6.4 Discussion

ings show that the improvements are especially pronounced for small or
imbalanced data sets. Imbalanced data sets typically arise in educational
data mining when detecting relatively rare conditions such as learning dis-
abilities. We demonstrated that the feature embedding learned by our vari-
ational auto-encoder is more robust to new settings compared to our spe-
cialized feature set developed in Chapter 5. While we applied our method
to the particular case of detecting developmental dyscalculia, the presented
pipeline is generic and thus can be applied to any educational data set and
used for the detection of any student characteristic.

87

Semi-supervised student trait identification

88

C H A P T E R 7
Unsupervised student trait discovery

So far we have explored supervised and semi-supervised methods for the
detection of known student characteristics and student traits. Unsupervised
methods would allow us to gain new insights into student behavior and po-
tentially reveal new student characteristics. The unsupervised extraction of
student properties and traits is a central element in educational data mining.
On the one hand, the identification of student abilities and behavior patterns
allows us to draw conclusions about human learning. On the other hand, the
extracted properties and traits can be used to improve the adaptation of the
underlying intelligent tutoring system (ITS).

In this chapter, we present a complete processing pipeline for evolutionary
clustering that can be used as a black box for any ITS. We incorporate a
variation of the adaptive evolutionary clustering method (AFFECT) [Xu et
al., 2014] into our pipeline and demonstrate that temporal smoothing has
beneficial properties for extracting student behavior and groups from edu-
cational data. We propose several extensions of the original method tailored
towards learning data.

Our approach is articulated in four steps. In a first step, we extract
action sequences from ITS log data and aggregate them using Markov
Chains. We show that the Markov Chain representation of the actions
is superior to direct sequence mining techniques [Bergner et al., 2014;
Köck and Paramythis, 2011] with respect to noise cancellation and the abil-
ity to identify groups of students with similar behavior. The second step
consists of computing pairwise similarities between the Markov Chains.
While the proposed pipeline provides flexibility in the choice of similar-

89

Unsupervised student trait discovery

ity measure, the Hellinger distance outperforms other metrics that are fre-
quently used in the educational data mining literature [Bergner et al., 2014;
Köck and Paramythis, 2011]. Based on the obtained similarities, evolution-
ary clustering [Xu et al., 2014] is performed in the third step. The temporal
aspect of the student data leads to changing behavior patterns, i.e., we expect
the number of clusters and cluster sizes to change over time. Therefore, cap-
turing cluster evolution events, such as merging, splitting, dissolving and
forming of clusters, is crucial in order to analyze sequential data. To capture
these events automatically, we compute the optimal cluster count for each
time step using the AICc criterion [Hurvich and Tsai, 1989].

Using synthetic data, we demonstrate that our method exhibits a higher per-
formance and is more robust to noise than previous work [Bergner et al.,
2014; Köck and Paramythis, 2011]. We further show that our pipeline can
extract stable clusters over time and reliably detects all cluster events. In an
exploratory analysis on real-world data, we apply our pipeline to log data
from our two tutoring systems: Orthograph and Calcularis for spelling and
mathematics learning, respectively (see Chapter 3 for a description of both
systems). Finally, we present a set of visual tools that are powerful to analyze
temporal data and student clusters.

7.1 Method

Our method for student clustering is designed to address two challenges
when clustering temporal data. First, the method provides temporally con-
sistent clusters. Second, our pipeline is able to capture changes in cluster
sizes as well as in the number of clusters. Four cluster events are of partic-
ular interest in the context of educational data mining: merging, splitting,
dissolving and forming of clusters. If the behavior of students from two
different clusters becomes more similar over time, we expect the clusters to
merge (this could mark a training effect). If on the other hand the behavior
of students in a cluster sufficiently diverges clusters might split (this could
mark the development of different learning strategies). If a distinct behavior
disappears within a group of students, we assume the cluster will dissolve,
meaning students will uniformly change to other clusters. In contrast, form-
ing clusters have the potential to mark the development of distinct strategies
within students.

The resulting clustering pipeline addressing these challenges is illustrated
in Figure 7.1. The only input required are action sequences extracted from
student log data. These action sequences are transformed into Markov

90

7.1 Method

Action Sequences Action Processing Similarity Computation Clustering Model Selection

ABBCSDS…

DJJSGABB…

FGGHST…

Jensen-Shannon

Hellinger

Euclidean

Creating Markov Chains AFFECT Clustering

Figure 7.1: Overview of our clustering pipeline. Action sequences are extracted from log
data and transformed into Markov Chains per session. Pairwise similarities
between students are computed for every session. Clustering is performed
using evolutionary clustering. Finally, the AICc criterion selects the best
model.

Chains for every session, and pairwise similarities between these chains are
computed. Students are clustered based on these similarities while enforcing
temporal consistency over consequent training sessions. Finally, we com-
pute the optimal number of clusters for each training session.

7.1.1 Action Sequences

In a first step, we extract action sequences At
u = (a0, a1, . . . , an) for every

session t of a user u. To do so, we map events in the log files of an intelligent
tutoring system (ITS) to the actions ai. Typical actions within an ITS include
for example correct or wrong keyboard inputs, help calls, off-task behav-
ior or prompts for new tasks. As the particular actions depend on the ITS,
the extraction of action sequences has to be changed depending on the ITS.
However in many ITS, user interaction events are already logged as distinct
events which renders the extraction of action sequences less labor intensive.

7.1.2 Action Processing

While action sequences provide rich temporal information about the exact
ordering of actions, we expect that they exhibit a considerable amount of
noise. We therefore transform the action sequences into an aggregated rep-
resentation using Markov Chain models, similar to [Köck and Paramythis,
2011]. Markov Chains provide an aggregated view of the pairwise transition
probabilities of actions and can be fully described by these transition proba-
bilities ti,j := paj|ai

from any state ai (in our case an action) to any other state
aj. Markov Chains can be extracted using maximum likelihood estimates of
the transition probabilities ti,j.

91

Unsupervised student trait discovery

7.1.3 Similarity Computation

To cluster student behavior, a suitable similarity (or distance) measure be-
tween students has to be defined; either on the action sequences or, as in our
method, on Markov Chains. In educational data mining, popular choices
for measuring distances between action sequences are the longest common
subsequence (LCS) and the Levenshtein distance (see e.g. [Bergner et al.,
2014]). LCS measures the length of the largest set of characters that appear
in left-to-right order within the string, not necessarily at consecutive places.
The Levenshtein distance computes the number of insertions, deletions, and
replacements needed to transform one string into the other.

Instead of computing distances directly on action sequences, we can ap-
ply the computation to the aggregated values of Markov Chains. Previ-
ous work [Köck and Paramythis, 2011] has been using the Euclidean dis-
tance between the transition probabilities of two Markov Chains. A po-
tential disadvantage of the Euclidean distance is that it is not designed for
the comparison of probabilities. Therefore, we propose to use metrics that
are specifically designed for comparing probability distributions. Since the
conditional probabilities describing a Markov Chain do not form a proper
probability distribution (the entries of the transition probability matrix do
not sum up to one), we compute the expected transition probabilities us-
ing the stationary distribution over the actions and compare these expected
transition frequencies t̄i,j instead of the conditional probabilities ti,j. We use
two common metrics: the Jensen-Shannon Divergence and the Hellinger dis-
tance [Pardo, 2005] to compute the distances between the expected transition
frequencies t̄i,j of the Markov Chains. For two Markov Chains T and S, the
Jensen-Shannon Divergence is given as

dS(T, S) =
1
2 ∑

i,j
t̄i,j log(

t̄i,j

s̄i,j
) +

1
2 ∑

i,j
s̄i,j log(

s̄i,j

t̄i,j
), (7.1)

where, t̄i,j and s̄i,j denote the expected transition frequencies for Markov
Chains T and S respectively. Using the same notation the Hellinger distance
is defined as

dH(S, T) =
1√
2

√
∑
i,j
(
√

t̄i,j −
√

s̄i,j)2. (7.2)

7.1.4 Clustering

Using the measures defined above we compute a pairwise similarity matrix
Wt for every session t of the training (entries of the matrix measure how

92

7.1 Method

similar two students are during that particular training session). These sim-
ilarity matrices can then be clustered by any standard clustering method.
However, clustering students for each session individually does not make
use of the temporal information available. Recently, a method for clustering
evolutionary data has been proposed that accurately tracks the time-varying
similarities of objects over discrete time steps [Xu et al., 2014]. The method
assumes that the observed similarities Wt are a linear combination of the
true similarity between students Ψt and random noise Nt:

Wt = Ψt + Nt. (7.3)

Instead of performing clustering directly on Wt, a smoothed similarity ma-
trix Ψ̂t is proposed, given as

Ψ̂t = αtΨ̂t−1 + (1− αt)Wt, (7.4)

where αt controls the amount of smoothing applied to the observed simi-
larity matrix Wt. Under some assumptions (detailed in [Xu et al., 2014]) an
optimal choice for αt is

αt =
∑i ∑j var(nt

ij)

∑i ∑j (ψ̂
t−1
ij − ψt

ij)
2 + var(nt

ij)
. (7.5)

Hence, the optimal αt is based on a trade-off between the estimated noise in
Wt and the amount of new information that Wt contains compared to pre-
vious similarity matrices. If Wt exhibits a lot of noise, we more heavily rely
on previous observations (high αt) but if we observe large discrepancies be-
tween the previous similarity estimates and the current ones (e.g. some stu-
dents show a novel behavior) we emphasize the similarities from the current
session (low αt). Finally, we use the standard clustering algorithm K-Means
to cluster the smoothed similarity matrices Ψ̂t.

7.1.5 Model Selection

The assumption of temporal consistency in the pairwise similarities between
students does not prohibit evolution of clusters if students change their be-
havior over the course of the training. Such long-term drifts lead to growing
and shrinking of clusters eventually, and even to dissolving and forming of
clusters over time. In contrast to the original AFFECT method [Xu et al.,
2014], we, therefore, compute the optimal number of clusters in every time
step. Deciding on the number of clusters is a variant of the model selection
problem, for which various criteria exists. The Akaike information criterion

93

Unsupervised student trait discovery

(AIC) and the Bayesian information criterion (BIC) are among the most com-
mon criteria for model selection. The main difference between BIC and AIC
is that the BIC penalizes the number of clusters more strongly than AIC.
AICc corrects the AIC criteria for finite sample sizes. For our experiments,
we used AICc as it potentially reveals more clusters, which is important for
our exploratory analysis of learning data. To compute the AICc the log like-
lihood (LL) of the model is needed. According to [Pelleg and Moore, 2000],
the log likelihood for K-Means can be formulated as

LL = ∑
i

log(
Nc(i)

N
φ(xi|µc(i), σ)), (7.6)

where N denotes the number of samples, c(i) the cluster index of sample
xi and Nc(i) the number of samples in cluster c(i). The likelihood of a sam-
ple xi that was assigned to cluster c(i) can be computed using the probabil-
ity distribution φ(xi|µc(i), σ), where µc(i) denotes the centroid of the cluster
and σ the empirical variance of the data. In our case (as suggested by [Pel-
leg and Moore, 2000]), the probability distributions φ are identical spherical
Gaussians. To compute the log likelihood, we embed our data points in a
Euclidean space in which the distances between the points match the simi-
larities extracted from the action sequences. To perform this embedding, we
use the method presented in [Hofmann and Buhmann, 1997] that transforms
N objects with pairwise similarities to a D = N − 1 dimensional Euclidean
space.

An issue with this approach is that the dimensionality of the space (N − 1)
is likely to be much higher than the effective dimensionality of the data.
Hence, the likelihood computation and estimation of the number of param-
eters P would be inaccurate. Therefore, we estimate the effective dimension-
ality D̂ of our data set as the sum of eigenvalues λi of the covariance matrix
divided by the largest eigenvalue λ1 (see [Kirkpatrick, 2009]):

D̂ =
∑i λi

λ1
(7.7)

Based on this estimate, the effective number of parameters P for the K-Means
clustering is

P = (D̂ + 1)k, (7.8)

where k is equal to the number of clusters (see e.g. [Pelleg and Moore, 2000]
for a derivation). Based on the log likelihood LL and the estimated effective
dimensionality of our data D̂, we calculate the AICc as

AICc = −2LL + 2P +
2P(P + 1)
n− P− 1

. (7.9)

94

7.2 Synthetic experiments

7.2 Synthetic experiments

We analyzed the properties of our clustering algorithm using synthetic data,
and we compared the performance and stability of our method to previous
algorithms for clustering sequential educational data. Finally, we also vali-
dated our model selection step.

7.2.1 Experimental setup

We simulated student actions for 80 students over 50 sessions in a simu-
lated learning environment. Students needed to solve 20 tasks per session.
Student abilities θ and task difficulties d were simulated as part of a Rasch
model [Wilson and De Boeck, 2004]. Student abilities for all students were
sampled from a normal distribution with mean µ and variance σ. Task dif-
ficulties were sampled uniformly from the range [−3, 3] in agreement with
the common range of task difficulties [Harris, 1989]. Each task y consisted
of eight steps sj that a student had to complete to finish the task (this could
e.g. be letters of a word to spell, performing steps of a calculation or solving
a physics problem). The probability of a student correctly solving a task was
then given by the Rasch model as

p(y) = (1 + e−(θ−d))−1 (7.10)

In our simulation (in accordance with many ITS) a task was correctly solved
if all the substeps are correctly solved, which defines the probability of cor-
rectly solving a step of a task sj to be p(sj) = (p(y))

1
8 . Finally, a student

could request help at any point in time during the training. Whether the
student asked for help was sampled from a Bernoulli distribution with pH.
An overview of the described sampling procedure is given in Figure 7.2.
Based on the sampling procedure we emitted the following actions for a stu-
dent: new task, help, correct, incorrect, correction, task completed. The number
of sampled actions per student and session depended on the performance of
the student (e.g. a student who gets every step of a task correct completes
a task after eight correct actions, whereas another student who requests help
and commits an error requires more actions to complete the task).

For our experiments, we simulated student groups with different behavior.
For the chosen range of task difficulties, student abilities are found to be
normally distributed with mean µ = 0 and variance σ = 1 (see [Harris,
1989] for details). We simulated good-performing students by setting θ = 1
and bad-performing students by setting θ = −1. According to [Aleven et

95

Unsupervised student trait discovery

Emit simulated student action

Overview of synthetic data generation

emit “new task”

steps completed? help call? is step correct?

emit “help” emit “correct”

emit “incorrect”

no

no no

yes yes

yes

Student behavior sampling

Figure 7.2: Student actions (green squares) are simulated based on sampled student be-
havior (red diamonds) from a simple mastery learning system. Sampling
parameters for student behavior (red diamonds) are adjusted to simulate dif-
ferent student traits.

al., 2006], the most frequent form of help abuse are multiple consecutive
help requests. We simulated this behavior by a large probability pH = 0.2
to ask for help instead of working on the task, while normal help seeking
behavior has a smaller probability for requesting help pH = 0.05. Based
on these different properties we simulated four groups of 20 students as
follows. Group A contains bad-performing students (θ = −1) that rarely ask
for help (pH = 0.05). Group B consists of bad-performing students (θ = −1)
that frequently use the help system (pH = 0.2). Group C and D consist
of good-performing students (θ = 1) with rare (pH = 0.05) and frequent
(pH = 0.2) help requests, respectively.

Our proposed pipeline offers flexibility in the choice of the similarity mea-
sure (see Section 7.1). We used the Jensen-Shannon divergence [Pardo,
2005], the Hellinger distance [Pardo, 2005] and the Euclidean distance for
our experiments, and refer to these approaches as Ours SD, Ours HD, and
Ours EUC. To measure the influence of the different elements of the pipeline
on the overall performance, we compared the proposed method to previous
work on clustering of action sequences. The first approach [Bergner et al.,
2014] works directly on the action sequences and uses the longest common
subsequences (LCS) as similarity measure. Clustering is performed using an
agglomerative clustering. However, to be able to compare clustering results
better, we used the proposed similarity measure together with K-Means. We
refer to this pipeline as LCS KM. Similar to our method, the second approach
used for comparison [Köck and Paramythis, 2011] computes the similarities
between students using Markov Chains. Similarities are measured using the

96

7.2 Synthetic experiments

Euclidean distance and clustering is performed using K-Means. The pipeline
for this approach is denoted by MC EUC KM.

7.2.2 Clustering Quality & Robustness

In a first experiment, we computed the clustering quality of the different
approaches with increasing noise levels. The performance P was mea-
sured using the cluster agreement in comparison to the ground truth la-
bels. The different noise levels were simulated by increasing the variance
in student abilities σ for the sampling of the data. Figure 7.3 (top) illus-
trates the performance of the different approaches with increasing noise.
Note that the performance was computed using the correct cluster count
of k = 4. Our pipeline (colored in green, red, and brown) exhibits the
highest performance over all noise levels. The average agreement of our
best performing pipeline (POurs HD) is substantially higher than the aver-
age agreement of the best previous approach (PMC EUC KM), both for a low
variance (POurs HD,σ=1 = 0.82, PMC EUC KM,σ=1 = 0.53) and for noisy data
(POurs HD,σ=10 = 0.45, PMC EUC KM,σ=10 = 0.34).

To investigate these differences between the approaches, we measured their
performance over different numbers of clusters at preset noise levels. Fig-
ure 7.3 (bottom, left) illustrates the results for data with a relatively low
noise level (σ = 2), while Figure 7.3 (bottom, right) shows the clustering
quality of the different pipelines on noisy data (σ = 8). In the case of
small noise in the data, all methods exhibit the best performance for the
correct number of clusters (k = 4), which is a desirable property. The re-
sults demonstrate that using Markov Chains (PMC EUC KM,k=4 = 0.44) in-
stead of working directly on action sequences (PLCS KM,k=4 = 0.40) leads to
a higher clustering quality. A further increase in performance is achieved by
our proposed algorithm: The variations of our pipeline exhibit a substan-
tially higher clustering quality (POurs EUC,k=4 = 0.66, POurs HD,k=4 = 0.70,
POurs SD,k=4 = 0.70) than the previous work. This substantial increase in per-
formance (∆Pk=4 = 0.26 compared to MC EUC KM) is due to two changes
in the pipeline. First, the proposed pipeline uses the AFFECT method for
clustering leading to an increase in performance of ∆Pk=4 = 0.20. Sec-
ond, while MC EUC KM computes the similarity measure directly on the
transition probabilities, we use the expected transition probabilities as a ba-
sis for the similarity computations (see Section 7.1) accounting for an im-
provement in performance of ∆Pk=4 = 0.06. Within our approach, the
choice of similarity measure has only a small impact on the clustering
quality. Figure 7.3 (bottom, right) demonstrates that our proposed method

97

Unsupervised student trait discovery

LCS_KM
MC_EUC_KM
Ours_HD
Ours_SD
Ours_EUC

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Student ability variance (σ)

Clustering quality (Agreement)
Clustering performance for increasing variance

Bergner et.al.
Koeck et.al.
Ours (Hellinger)
Ours (Shannon)
Ours (Euc. Koek.)
Ours (Euclidean)

2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Cluster count

Clustering quality (Agreement)
Clustering performance at σ = 2

LCS_KM
MC_EUC_KM
Ours_HD
Ours_SD
Ours_EUC

2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Cluster count

Clustering quality (Agreement)
Clustering performance at σ = 8

Figure 7.3: Comparison of clustering methods over increasing noise levels (top) and over
different numbers of clusters for fixed noise levels σ = 2 (bottom, left) and
σ = 8 (bottom, right). Our method (Ours HD, Ours SD, Ours EUC)
shows less degradation of clustering quality (agreement with ground truth)
for increasing noise levels.

98

7.2 Synthetic experiments

is more robust to noise than previous work [Köck and Paramythis, 2011;
Bergner et al., 2014]. The best variation of our pipeline (colored in green)
still achieves a reasonable performance (POurs HD,σ=8 = 0.54). At these
noise levels, the choice of action processing (Markov Chains vs. direct pro-
cessing of action sequences) does not significantly influence performance
(PLCS KM,k=4 = 0.34, PMC EUC KM,k=4 = 0.35). The choice of the clustering
algorithm on the other hand is important. The increased performance of our
method can be attributed to the use of AFFECT for clustering: AFFECT takes
into account data from previous time steps to perform the clustering. Inter-
estingly, the pipeline using the Jensen-Shannon divergence (Ours SD) seems
less robust to noise than the other pipelines (Ours HD and Ours EUC). We
currently do not have an explanation for this effect, and further investiga-
tions into this are needed.

7.2.3 Stability

When clustering student actions over time, temporal consistency of clusters
is essential. We measured the temporal stability of our method by com-
puting the cluster size and cluster stability over the 50 simulated sessions
(see Figure 7.4 for the cluster sizes). We compared the best performing
pipeline from the first experiment (Ours HD) to the previous approaches
(LCS KM, MC EUC KM) using again k = 4 clusters. The cluster stabil-
ity ρ was computed using the bounded n-invariant variation of the split-
merge measure [Meila, 2005]. Cluster stability of our best pipeline Ours HD
(ρ = 0.002) is significantly better than the stability of previous methods
LCS KM (ρ = 0.468) and MC EUC KM (ρ = 0.425). As can be seen
from Figure 7.4 (top), our method provides a smooth temporal clustering
with stable cluster sizes over time. The clusters found by MC EUC KM (Fig-
ure 7.4 (bottom, left)) and LCS KM (Figure 7.4 (bottom, right)), on the other
hand, are unstable: cluster sizes vary significantly over time. These results
are as expected, as static clustering approaches identifying groups of stu-
dents at each point in time are very sensitive to noise. The proposed method
solves this problem by applying an evolutionary clustering algorithm and
therefore takes into account multiple time steps.

7.2.4 Interpretability

Since we are clustering student behavior over multiple sessions, we expect
the number of clusters and the cluster sizes to change over time. We expect
clusters to merge, split, dissolve and form (see Section 7.1 for details). We

99

Unsupervised student trait discovery

Cluster 0
Cluster 1
Cluster 2
Cluster 3

0 10 20 30 40
0%

20%
40%
60%
80%

100%

Cluster size
Our Pipeline (Ours_HD)

Session count

Cluster 0
Cluster 1
Cluster 2
Cluster 3

0 10 20 30 40
0%

20%
40%
60%
80%

100%

Cluster size

Session count

Pipeline MC_EUC_KM

Group D

Group B
Group C

Group A

0 10 20 30 40
0%

20%
40%
60%
80%

100%

Cluster size

Session count

Pipeline LCS_KM

Figure 7.4: Relative cluster sizes (for k = 4 clusters) over 50 simulated sessions. Our
method performs best in extracting temporally stable clusters (Ours HD)
compared to previous methods.

evaluated the Ours HD pipeline on four scenarios using synthetic data. Note
that these scenarios are artificial and are used only to demonstrate that the
pipeline can capture the described events; we will show real-world exam-
ples of these events in Section 7.3.

In the first scenario (Figure 7.5, top left), group A consisting of bad-
performing students with rare help calls (colored in dark green) merges into
group B (colored in dark blue), i.e. the students of group A also start abus-
ing the help. In our simulation, we initiate the cluster merge after t = 20
sessions and let group A completely vanish after t = 50 sessions, a behavior
that is nicely captured by our method.

The second scenario (Figure 7.5, top right) starts with only three groups (B,
C, and D), assuming that all bad-performing students frequently use the
help. Over time, the bad-performing students split into a group abusing the
help (group B, colored in dark blue) and a cluster consisting of students with
rare help calls (group A, colored in dark green), i.e. in the simulation, some
of the bad-performing students stop abusing the help over time.

100

7.2 Synthetic experiments

Cluster 0
Cluster 1
Cluster 2
Cluster 3

0 10 20 30 40
0%

20%
40%
60%
80%

100%

Cluster size
Cluster merge

Session count

Cluster 0
Cluster 1
Cluster 2
Cluster 3

0 10 20 30 40
0%

20%
40%
60%
80%

100%

Cluster size
Cluster split

Session count

Cluster 0
Cluster 1
Cluster 2
Cluster 3

0 10 20 30 40
0%

20%
40%
60%
80%

100%

Cluster size
Dissolving cluster

Session count

Cluster 0
Cluster 1
Cluster 2
Cluster 3

0 10 20 30 40
0%

20%
40%
60%
80%

100%

Cluster size
Forming cluster

Session count

Figure 7.5: Simulated examples of four types of cluster events. Our pipeline correctly
identifies cluster merges/splits as well as dissolving/forming clusters.

In the third scenario (Figure 7.5, bottom left) a dissolving cluster is simu-
lated: Over time, group B (colored in dark blue) completely dissolves and
the students are distributed to the other three clusters.

The fourth scenario (Figure 7.5, bottom right), finally, simulates a forming
cluster event. The simulation starts with only three clusters (groups A, C,
and D). With an increasing number of sessions, a fourth cluster forms (group
B, colored in dark blue) and students from the other three clusters slowly
switch to the new cluster until all the groups have equal size (after t = 50
sessions). This event is again correctly captured by our method.

The presented experiments demonstrate that the proposed pipeline is able
to reliably identify changing cluster numbers and sizes. The results also
demonstrate the validity of the model selection step of the pipeline: The
AICc correctly identifies the number of clusters for all scenarios.

101

Unsupervised student trait discovery

7.3 Exploratory data analysis

We applied our method to clustering of student interactions to data from
Orthograph and Calcularis, focusing on the identification and interpreta-
tion of cluster events.

7.3.1 Experimental Setup

The first data set contained log data from 106 students and was collected us-
ing Orthograph, the computer-based training program for elementary school
children with dyslexia [Gross and Vögeli, 2007]. To recap, Orthograph con-
sists of one main learning game, where children have to type a dictated word
(see Section 3.1 for details). The second data set contained data from 134 stu-
dents and was collected from Calcularis, an ITS for elementary school chil-
dren with difficulties in learning mathematics [Käser et al., 2013c]. As a
reminder, Calcularis consists of different games for training number repre-
sentations and calculation (see Section 3.2 for details). For all students, we
extracted the first 15 training sessions with a minimal duration of t = 5 min-
utes from each student.
All results have been computed using our pipeline Ours HD (see Sec-
tion 7.1), applying the Hellinger Distance to measure similarities between
Markov Chains of different students.

7.3.2 Navigation Behavior

In a first experiment, we extracted actions describing the Navigation Behavior
of children in Orthograph. Navigation Behavior captures all events that cause
the displayed content to change. During game play, children collect points
for correct responses as well as for time spent in the training in general.
These points can be used to buy different visual perks for the game in the
shop. Children can also analyze their performance (e.g. progress in the cur-
rent module) in the progress view. The resulting Markov chain (see Figure
7.6, left) consists of three possible states: Game, Shop, and Performance.

Figure 7.6, right, shows the relative cluster sizes for the Navigation Behav-
ior Markov Chain over the first 15 sessions of the training. The different
colors denote different clusters. At the beginning of the training (t = 0),
our pipeline detects seven different clusters, however, three of these clusters
(colored in pink, brown, and orange) die within the first three training ses-
sions. Children in these clusters spent more than 50% of their time browsing
the shop and checking their performance (orange: 46% Game, 31% Shop, 23%

102

7.3 Exploratory data analysis

Game Shop

Per-
formance

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

0 2 4 6 8 10 12 14

0%

20%

40%

60%

80%

100%

Navigation Behavior - Orthograph

Session count

Cluster size

Figure 7.6: Markov Chain for actions that capture the navigation behavior of students in
Orthograph (left) and the relative cluster sizes (right) based on these actions.

Performance; brown: 43% Game, 22% Shop, 35% Performance; pink: 40% Game,
32% Shop, 28% Performance) at the beginning of the training. We therefore
hypothesize that children in these clusters tried out and played with the dif-
ferent views before getting used to the navigation possibilities of the system.

After t = 5 time steps, a further cluster (colored in green) dissolves before
the clustering stabilizes to three main groups (colored in blue, red, and pur-
ple). These three clusters remain relatively stable until the end of the investi-
gated time frame (split-merge measure ρ = 0.06). Figure 7.7 (top) shows the
transition probabilities of the Markov Chains for the different clusters before
the clusters dissolve (after t = 3 sessions). Children in the blue cluster are
very focused on training, they spend 82% of their time in the Game. Once
in the Shop or Performance state (18% of their time) they tend to select the
following view with equal probabilities. Children in the red cluster like to
browse the shop, a behavior that is visible from the high transition probabil-
ities to the Shop state (Game→Shop: 0.41; Performance→Shop: 0.39), resulting
in 34% of the training time spent browsing the shop. The purple cluster con-
sists of children, who like to navigate to the shop and performance overview
between solving the different tasks (Game→Shop: 0.41, Game→Performance:
0.44). However, these tend to be short visits as they will return to play-
ing the game right after with high probability (Performance→Game: 0.58,
Shop→Game: 0.77). Finally, children in the green cluster tend to select the
next view randomly when playing the game. Once in the Performance state,
they have a probability of 0.30 to browse the shop right after. The analysis of
this time step illustrates that the different clusters differentiate well between
focused children not making use of the navigation possibilities (blue clus-
ter), children who frequently (but reasonably) use the different views (pur-

103

Unsupervised student trait discovery

Blue cluster

Game Shop

Game

Performance

Shop

Red cluster

Game Shop

Game

Shop

Purple cluster

Game Shop

Game

Shop

Green cluster

Game Shop

Game

Shop

Blue cluster

Game Shop

Game

Shop

Purple cluster

Game Shop

Game

Shop

Red cluster

Game Shop

Game

Shop

Session t = 3

Session t = 6

0.0 0.5 1.0

Transition probability

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Figure 7.7: Transition probabilities of the average Markov Chain for each cluster present
in session t = 3 (top) and session t = 6 (bottom) for Navigation Behavior
in Orthograph. The arrows indicate students transferring from the green
cluster to the blue and red clusters between session t = 3 and session t = 6.
Darker colors correspond to larger transition probabilities.

ple and green cluster), and distracted children who spend long amounts of
time off-task (red cluster).

After t = 6 training sessions, the green cluster dissolves and students from
this cluster change to the red and blue clusters. The transition probabili-
ties of the Markov Chains for these stable main clusters are illustrated in
Figure 7.7 (bottom). The children in the blue cluster are still focused on
training, spending 76% of their time solving tasks. However, they also
check their training progress from time to time (14% of the time spent in
the Performance state). After checking training progress, they tend to also
browse the shop (Performance→Shop: 0.27). The children in the purple clus-
ter have stopped navigating to the performance overview between different
tasks (Game→Performance: 0.17) and instead visit the shop more frequently
(Game→Performance: 0.58) and longer (35% of time spent in the Shop state).
The red cluster still consists of children who like browsing the shop, a be-
havior that is visible from the high transition probabilities to the Shop state
(Game→Shop: 0.33; Performance→Shop: 0.31). However, they also tend to

104

7.3 Exploratory data analysis

Input
Back-
space

Invalid
Input

Enter

Input Correction

Invalid
Input

Enter

Play
Music

Show
Word

Hear
Word

Input

New Task Empty Abort

Help

Regular

Input Behavior Orthograph Input Behavior Calcularis Help Seeking Behavior Orthograph

Help Seeking Behavior Calcularis

Input
Back-
space

Invalid
Input

Enter

Input Correction

Invalid
Input

Enter

Play
Music

Show
Word

Hear
Word

Input

New Task Empty Abort

Help

Regular

Input Behavior Orthograph Input Behavior Calcularis Help Seeking Behavior Orthograph

Help Seeking Behavior Calcularis

Figure 7.8: Markov Chains for the Input Behavior and the Help-Seeking Behavior
in Orthograph and Calcularis.

spend time checking their progress, resulting in 47% of the training time
spent off-task. Students from the green cluster, therefore, changed their be-
havior from frequent, but short off-task navigation to a more focused train-
ing style (change to the blue cluster) or to be completely distracted and
spend significant amounts of times off-task (change to the red cluster).

7.3.3 Input & Help-Seeking Behavior

Our method can be used as a black box for any ITS and therefore also al-
lows for comparison of behavior patterns across different ITS. The only user
input needed is the definition of possible actions. To illustrate this possibil-
ity, we extracted two different sets of actions Input Behavior and Help-Seeking
Behavior from data collected with Orthograph and with Calcularis.

Input Behavior captures all possible inputs. Implicitly these actions capture

105

Unsupervised student trait discovery

Cluster 0
Cluster 1
Cluster 2

0 2 4 6 8 10 12 14

0%

20%

40%

60%

80%

100%

Input Behavior - Orthograph

Session count

Cluster size

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

0 2 4 6 8 10 12 14

0%

20%

40%

60%

80%

100%

Input Behavior - Calcularis

Session count

Cluster size

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9

0 2 4 6 8 10 12 14

0%

20%

40%

60%

80%

100%

Help Seeking Behavior - Orthograph

Session count

Cluster size

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8

0 2 4 6 8 10 12 14

0%

20%

40%

60%

80%

100%

Help Seeking Behavior - Calcularis

Session count

Cluster size

Figure 7.9: Relative cluster sizes over the first 15 sessions based on the clustering of In-
put Behavior (left) and Help-Seeking Behavior (right) for students train-
ing with Orthograph and Calcularis.

the performance of students, as e.g. a bad-performing student is likely
to commit more mistakes. In Orthograph, children train spelling by writ-
ing words that are played back by the system. Therefore, the Input Be-
havior Markov Chain for Orthograph (see Figure 7.8) consists of four states:
Children can type a letter (Input), correct themselves by deleting a letter
(Backspace), provide invalid input such as typing a number (Invalid Input),
or submit their solution (Enter). For Calcularis, we investigated calculation
games. In these games, children need to solve different mental addition and
subtraction tasks. We again define four states for the Input Behavior Markov
Chain (see Figure 7.8): children can type a digit (Input), correct themselves
by deleting a digit (Correction), provide invalid input such as random mouse
clicks (Invalid Input), or set their answer (Enter).

Figure 7.9 shows the relative cluster sizes for the Input Behavior action set
from Orthograph over 15 training sessions. Our method identifies three sta-
ble clusters. Investigating the stationary distributions of the Markov Chains
reveals that students in the orange cluster show the highest probabilities for
committing invalid inputs over all sessions (t = 3 : 0.15; t = 7: 0.23; t = 13:

106

7.3 Exploratory data analysis

0.16). The green cluster consists of focused students who consistently pro-
duce a low percentage of invalid inputs (t = 3: 0.06; t = 7: 0.04; t = 13: 0.05).
Students in the blue cluster also tend to show low probabilities for invalid
inputs across the different sessions (t = 3: 0.11; t = 7: 0.09; t = 13: 0.08).
The orange cluster is an example of a forming cluster growing in size over
the course of the training. We hypothesize that this event marks the increas-
ing difficulty of the tasks and is caused by a downwards drift of students
from the clusters with good performing students to the clusters with stu-
dents showing worse performance. Further analysis of cluster transfers re-
veals that students indeed are never switching directly from the green (best
performance) to the orange cluster (worst performance).

For Calcularis, the Input Behavior clusters are relatively stable over the course
of the training (see Figure 7.9). There is one distinct dissolve event in the
first four sessions: the orange cluster is dissolving into the blue and green
clusters. Investigating the stationary distributions of the Markov chains of
the three clusters reveals that all clusters have a relatively low probability
for invalid inputs (t = 2: 0.17 (blue), 0.12 (orange), 0.08 (green)). However,
students belonging to the blue cluster tend to perform multiple consecutive
corrective actions in a row (Correction→Correction: 0.25 (blue), 0.13 (orange),
0.13 (green)). Students in the orange cluster are most likely to enter a valid
input after a correction (Correction→Input: 0.68 (orange), 0.57 (blue), 0.65
(green)).

In Orthograph, differences in Input Behavior are mainly expressed by the per-
centage of invalid inputs provided. We observe a more distinct picture for
Calcularis. While the invalid inputs are still an important indicator, children
also exhibit different corrective behaviors.

Help-Seeking Behavior captures the use of hints available in the training en-
vironment. In Orthograph, children can re-play the given word (Hear Word),
play the melody of the word (Play Music) and show the correct spelling of the
word (Show Word). The corresponding Markov Chain is displayed in Figure
7.8. The states New Task and Input denote the play-back of a new word and a
user input (keyboard), respectively. The development of the relative cluster
sizes for these action sequences (see Figure 7.9) reveals a surprisingly large
variance in student behavior (the clustering algorithm finds nine different
clusters in the first two training sessions). However, the diversity in stu-
dent behavior disappears through a large cluster merge after t = 3 sessions.
Investigating the transition probabilities between the different actions, we
observe that while students are experimenting with the three different help
systems at the beginning of the training, the final cluster of students gave
up on using the help functions. This drop in the frequency and diversity of

107

Unsupervised student trait discovery

help usage indicates that the help functionality provided in Orthograph is not
useful for most of the students.

Calcularis provides a limited help functionality. Children can require expla-
nations for games (Help). Furthermore, they can directly require the solution
of a task (Empty), if the task seems too difficult. Further states of the Markov
Chain (displayed in Figure 7.8) are the setting of a complete answer (Regu-
lar) and the abortion of a task (Incomplete). We again observe a large cluster
merge at the beginning of the training leading into two stable clusters. Inves-
tigating the stationary distributions of the Markov Chains of the two clusters
reveals that students in the orange cluster are more likely to perform a help
request compared to the blue cluster (t = 6: 0.03 (blue), 0.13 (orange)).

The Help-Seeking Behavior of the children is more difficult to compare across
different ITS because the available hints are very different. However, our ex-
periment shows that both learning environments do not provide ideal help
options.

7.4 Discussion

In this chapter, we presented a complete pipeline for the evolutionary clus-
tering of student behavior. This pipeline can be used as a black box for
any ITS, requiring only the extraction of action sequences as input. There-
fore, our pipeline can provide insights into user behaviors in many different
scenarios. Our pipeline can allow teachers to quickly assess the dominant
learning behaviors within a group even if the patterns of these behaviors are
not yet known. The temporal analysis further allows practitioners to assess
how certain behaviors develop over the course of the training, which can
allow for earlier targeted interventions for students at risk of dropping out
or getting lost within a course. Our clustering method can further be used
to personalize student models to specific subgroups of students.

We demonstrated that enforcing temporal coherency between consecutive
clusterings is beneficial for the detection of student behavior as well as the
stable detection of cluster events. Our method outperforms previous work
on synthetic data regarding clustering quality and stability. We applied our
pipeline to different types of action sequences collected from two different
ITS. The exploratory analysis demonstrates that our method can reveal in-
teresting properties about the behavior of students and potential deficiencies
of the learning environments.

Limitations. Data clustering in educational data mining is inherently an
exploratory endeavor in which the type, number, and characteristics of a

108

7.4 Discussion

clustering depend heavily on the insights one wants to gain or the research
questions one wants to answer. A consequence of this is that there is no sin-
gle true clustering of a data set unless the grouping is trivial. In this chap-
ter, we therefore used data from a simulated mastery learning environment
to compare our clustering pipeline to previous work. While all parameters
of our simulation have been carefully chosen based on findings from real-
world data sets, superior performance of our method on synthetic data does
not directly imply superior performance on real-world data.

109

Unsupervised student trait discovery

110

C H A P T E R 8
Conclusion

Intelligent tutoring systems have been successful in adapting the difficulty
level and selecting tasks according to the knowledge of learners in many
different applications. To provide optimal adaptivity, these systems require
detailed information about the student that is engaging with the system.
Ideally, student models provide detailed information about the cognitive,
metacognitive and affective states and traits of learners. Student models
typically infer state and trait information from interaction events, which is
challenging as interaction events provide only partial and ambiguous infor-
mation on a student’s true state [Conati and Kardan, 2013].

In this thesis, we contributed to this challenge. Namely, we developed tech-
niques to leverage interaction data from intelligent tutoring systems to build
models of student personality traits and characteristics. By focusing on stu-
dent traits, our data-driven models provide insights into student learning
that go beyond more traditional students models that are mostly concerned
with modeling cognitive states.

Since gathering data from students with accurate student profiles is a time-
and cost-intensive task, we presented two different frameworks for the pre-
diction of student traits. First, we developed a fully data-driven pipeline
for the automatic detection of student traits that can be seamlessly embed-
ded into an intelligent tutoring system (detailed in Chapter 5). We demon-
strated for the specific case of developmental dyscalculia that the outcome
of neuropsychological testings could be accurately predicted using interac-
tion events alone (sensitivity of 0.91 and specificity of 0.91). We performed
an initial pilot study with 156 children in Swiss schools, in which we applied

111

Conclusion

our method to a classroom setting where children are much easier distracted
and the data set is heavily imbalanced (only 5% of the children with develop-
mental dyscalculia). The predictions of our method still exhibited moderate
correlations to the neuropsychological assessments, but were overall worse
than on the data set from children training at home.

To improve model quality, we explored the use of unlabeled interaction data
that is typically readily available in high volumes. We therefore presented a
second framework for the detection of student traits: a semi-supervised clas-
sification pipeline that employs variational auto-encoders to make effective
use of unlabeled data (see Chapter 6 for details). Our developed variational
auto-encoders learns efficient feature embeddings that improve the perfor-
mance of standard classifiers by up to 28% compared to completely super-
vised training. Our pipeline shows improvements in classification accuracy
of 15% compared to our fully supervised method on the classroom data set.
Our method is data independent and classifier-agnostic. Hence it provides
the ability to improve performance on a variety of other classification tasks
in the field of educational data mining.

Finally, we developed a complete clustering pipeline to help practitioners
explore and discover new student characteristics from unlabeled data sets
(details can be found in Chapter 7). Our pipeline can be used as a black box
for any intelligent tutoring system, requiring only the extraction of action
sequences as input. Using synthetic data, we demonstrated that enforcing
temporal coherency between consecutive clusterings is beneficial for the de-
tection of student behavior as well as the stable detection of changes in the
number of clusters. Exploratory analysis of different action sequences from
Orthograph and Calcularis shows that our method is able to reveal interesting
properties about the behavior of students and potential deficiencies of the
learning environments.

8.1 Limitations & Future work

Woolf et al. [2013] formulated the five grand challenges for AI in educational
systems: 1) creating mentors for every learner, 2) providing learning systems
for 21st century skills, 3) making efficient use of interaction data to support
learning, 4) providing universal access to global classrooms and 5) support-
ing lifelong and life-wide learning (see Chapter 1 for more details on these
challenges). The work described in this thesis focused on advancing AI in
educational systems for the first and third challenge. While the presented
frameworks are effective in identifying and discovering student traits, we

112

8.1 Limitations & Future work

are yet far from solving these two grand challenges. In the following, we
list specific limitations of the presented work as well as directions for future
work.

Generalizability. Our frameworks for supervised and semi-supervised
classification of student traits were evaluated using data from a single
intelligent tutoring system and using a single (but well-defined) student
trait: developmental dyscalculia. While learning disabilities are an im-
portant and an interesting example of a student trait, more experiments
with different student traits would allow to refine the presented methods
and assess the generalizability of our method for the detection of other
traits. Other important student traits include learning styles [Fleming, 2001;
Butler and Gregorc, 1988], learner persistence [Tinto, 1997] or level of self-
efficacy [Bandura, 1977]. Automatic identification of these student traits has
the potential to refine intelligent tutoring systems further to meet the needs
of diverse learners.

Learning from semi-labeled data sets. Based on the feature embedding
computed by our variational auto-encoders, we demonstrated improved
classification results with simple classifiers such as Logistic Regression.
These results might indicate that variational auto-encoders learn feature em-
beddings that are interpretable by human experts. In the future, we want to
explore the learned representations and compare them to traditional cate-
gorizations of students (skills, performance, etc.). Additionally, we want to
extend our results to include additional feature types. Although we trained
our networks on comparatively small sample sizes, the presented method
scales (due to mini-batch learning) to much larger data sets (> 100K users)
allowing the training of more complex variational auto-encoders. Moreover,
the generative model pθ(x|z) that is part of any variational auto-encoder
can be used to produce realistic data samples [van den Oord et al., 2016].
Up-sampling of the minority class provides a potential way to improve
the decision boundaries for classifiers. In contrast to common up-sampling
methods such as ADASYN [He et al., 2008], sampling based on variational
auto-encoders does not require nearest neighbor computations which makes
them better applicable to small data sets. Preliminary results showed im-
provements in AUC by up-sampling based on variational auto-encoders of
2-3% compared to ADASYN.

Missing data. A common problem in educational data mining is missing
data. Missing data is caused by different factors of which some are even de-
sired properties of the intelligent tutoring system. Since intelligent tutoring
systems provide an adaptive learning experience, not all students are work-
ing on the same tasks which leads to missing information about a student’s

113

Conclusion

performance for many tasks. Further, due to student drop-out (a similar
problem to attrition in longitudinal studies), we might have systematically
missing data for certain subgroups of students (e.g. low performing stu-
dents). While our supervised classification pipeline based on a Naive Bayes
classifier is able to handle missing data, we currently only use students with
complete data for our semi-supervised classification pipeline. To the best of
our knowledge, variational auto-encoders have no natural extension to han-
dle missing data. Traditional pre-processing methods such as data imputa-
tion could be used. However, these techniques make additional assumptions
about the data generating process [Cheema, 2014]. For the future, we would
like to explore options to handle missing data directly at the network level
of variational auto-encoders.

Interpretability of clusters. While we demonstrated that the clusters found
by our clustering pipeline could reveal interesting properties about the be-
havior of students and potential deficiencies of the learning environment,
the interpretation of the clusters required the careful analysis of transition
probabilities from extracted Markov chains. Better visualization and infor-
mation summarization techniques of the characteristic behavior of students
in a particular cluster would have the potential to allow teachers and educa-
tors to use the clustering information for improving the curriculum. Textual
summaries of the important characteristics as produced by natural language
generation systems [Reiter et al., 2000] would have the potential to make
insights into student behavior accessible to non-experts in data analysis.
Potential visualization techniques include techniques from simple adapted
Sankey charts that highlight common action sequences within a group to
methods for dynamic network visualization [Xu et al., 2013b].

Clustering approach. In this thesis, we improved on clustering techniques
for action streams from intelligent tutoring systems by enforcing temporal
coherence of clusters. Our approach shows a close resemblance to Kalman
filters, which use time series of measurements to produce more accurate
variable estimates by a joint probability distribution over the variables for
each time step. Rephrasing the optimization in the framework of Kalman
filters would allow us to directly model cluster drift (by choosing an ap-
propriate state transition model, e.g. a Taylor approximation [Senesh and
Wolf, 2009]) and adapt to the reliability of different extracted Markov Chain
(e.g. transition probability estimates based on a short action sequence exhibit
larger variance) by recursive covariance estimation [Feng et al., 2014] which
would allow to include shorter sessions into the analysis (including unreli-
able data e.g. has been successfully incorporated for online learners [Minku
and Yao, 2012]). Extending the framework in this way has the potential
to produce more accurate similarity estimates between users. Similar ap-

114

8.1 Limitations & Future work

proaches have already been successfully employed for clustering sequences
from motion capture [Li and Prakash, 2011].

Closing the loop. In this thesis, we presented various methods for identify-
ing and discovering student traits and characteristics. A crucial next step is
to incorporate these methods into existing cognitive student models. Recent
student models such as the Feature Aware Student Model (FAST) or Deep
Knowledge Tracing (DKT) provide a principled way to incorporate this ad-
ditional information about the students. In the future, we would like to
evaluate the performance of such extended models on large data sets from
different learning domains and compare these extended models against the
current state-of-the art in student modeling.

Instructional policies. A large part of the research on intelligent tutoring
systems has focused on constructing student models (see Figure 2.1 for an
overview of the important student model components) to accurately pre-
dict student actions and to infer student knowledge or student traits (as in
this work). However, the development of efficient and universal instruc-
tional policies has only recently gained attention [Käser et al., 2016]. The
design of instructional policies includes the optimization of teaching se-
quences [Muldner and Conati, 2007; Murray et al., 2004; Clement et al., 2015;
Rafferty et al., 2011; Mandel et al., 2014] as well as the design of policies on
when to stop teaching a skill to avoid under or over-practicing a skill [Cen et
al., 2007; Lee and Brunskill, 2012]. In web-based learning, course sequences
and pathways through the learning content are adapted based on the
learner’s goals and previous knowledge [Brusilovsky and Vassileva, 2003;
Chen et al., 2006]. Instructional policies are therefore an important compo-
nent of any intelligent tutoring systems an we would like to explore how
optimal instructional policies are affected by student traits and how data-
driven instructional policies can be derived.

115

Conclusion

116

A P P E N D I X A
Instruments

ZAREKI-R

The mathematical abilities and performance in number processing was as-
sessed using the ZAREKI-R test [von Aster et al., 2006]. ZAREKI-R con-
sists of subtests for counting, writing numbers, mental calculation, reading
numbers, comparison of numbers and memorizing numbers. Internal test
reliability is high (α = 0.89) and the validity of the test has been assessed
using a factor analysis. Construct validity was indicated by demonstrat-
ing high correlations (r = 0.73, p < 0.05) between the total test score and
the arithmetic subtest of SAT [Santos et al., 2012; Santos and Silva, 2008;
Stein, 1994]. Furthermore, correlations between subtests of ZAREKI-R with
the arithmetic subtest of WISC-III [Woolger, 2001] were in the range of [0.22,
0.62] [Santos et al., 2012].

HRT

We assessed arithmetic performance based on the addition and subtraction
subtests of the HRT [Haffner et al., 2005]. HRT is a speed test, participants
are asked to solve as many addition (subtraction) tasks as possible within
two minutes. Tasks are ordered by difficulty. The two subtests show a high
re-test reliability (addition: rtt = 0.84, subtraction: rtt = 0.86) over a two-
weeks period. HRT exhibits a high criterion-related validity with the school
grades in mathematics (r = 0.72).

117

Instruments

BUEGA

Verbal and nonverbal intelligence as well as reading and writing perfor-
mance were assessed using BUEGA [Esser et al., 2008a]. In tasks for de-
termining verbal intelligence, participants are asked to finish sentences by
using logic (e.g. ”I play during the day, I sleep at ...”). For nonverbal intel-
ligence, a logical continuation of a matrix has to be chosen. Internal consis-
tencies for each school grade are sufficient to high (α = 0.81 to α = 0.95).

HAWIK IV

We used the HAWIK IV [Esser et al., 2008b; Petermann and Petermann,
2008] to assess speech comprehension and logical reasoning of the children.
Speech comprehension was measured using the subtest where children had
to find commonalities between two terms (i.e. ’red’ and ’blue’ are both col-
ors). Logical reasoning was measured with the mosaic subtest. In this test,
children have to replicate given patterns with cubes. Reliabilites for the sub-
tests of the HAWIK IV vary between r = .76 and r = .91.

CFT 1 and CFT 20-R

The CFT 1 [Cattell et al., 1997] and CFT 20-R [Weiss, 2006] are instances of
culture fair intelligence tests, i.e. the goal of these tests is to provide equal
opportunities for people from different social and different cultures. The
subtests of the CFT 1 and CFT 20-R assess logical reasoning with language-
and number-free tasks. In the classification subtest of the CFT 1 for example,
children are presented five images (e.g. four houses and one shoe) and have
to select the one that does not fit. For children aged up to 9;5 years, we used
the subtests 3, 4 and 5 (classification, similarities, matrices) of the CFT 1 to
estimate their general intelligence. Children older then 9;5 years solved all
subtests of part 1 of the CFT 20-R.

Harter

We assessed the self-perception of participants using two subtests ”Peer ac-
ceptance” and ”Sport competence” from the German version of the Harter
self competence test [Asendorpf and Van Aken, 1993]. The test consists of set
of Likert scaled questions for the two subtests accompanied by supporting
pictures for participants in first and second grade. The two subtests were
shown to have moderate internal reliability (α = 0.71 and α = 0.85).

118

Math anxiety

Math anxiety was assessed using the FRA test [Krinzinger et al., 2007] which
is the German translated version of the MAQ test [Thomas and Dowker,
2000]. The test measures four emotional components regarding mathemat-
ics, namely, self-perceived performance, attitude, poor-performance unhap-
piness and anxiety. The internal consistency of the test is high (between
α = 0.83 and α = 0.91).

Test of Attentional Performance (TAP)

We used the subtests ”Alertness” and ”Go/NoGo” of the computerized
TAP [Zimmermann and Fimm, 2009] to assess the attentional performance
of participants. Re-test reliabilities for the subtests are rtt = 0.61 and
rtt = 0.56, respectively.

Working memory

The working memory was assessed by the word span and backward digit
tasks of the AGTB 5-12 test [Hasselhorn, 2012]. The internal consistency of
the test varies between α = 0.67 and α = 0.99 over different age groups.
Retest reliability over a 1-2 week period was found to be in the range of
rtt = 0.66 to rtt = 0.89.

119

Instruments

120

References

[Abadi et al., 2015] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geof-
frey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Software available from tensorflow.org.

[Agrawal and Srikant, 1995] Rakesh Agrawal and Ramakrishnan Srikant. Mining
sequential patterns. In Data Engineering, pages 3–14. IEEE, 1995.

[Aleven et al., 2006] Vincent Aleven, Bruce Mclaren, Ido Roll, and Kenneth
Koedinger. Toward meta-cognitive tutoring: A model of help seeking with
a cognitive tutor. International Journal of Artificial Intelligence in Education,
16(2):101–128, 2006.

[Andres et al., 2015] Juan Miguel L Andres, Ma Mercedes T Rodrigo, Ryan S
Baker, Luc Paquette, Valerie J Shute, and Matthew Ventura. Analyzing Student
Action Sequences and Affect While Playing Physics Playground. In Interna-
tional Workshop on Affect, Meta-Affect, Data and Learning, page 24, 2015.

[Arroyo and Woolf, 2005] Ivon Arroyo and Beverly Park Woolf. Inferring learn-
ing and attitudes from a Bayesian Network of log file data. In Proceedings of the
International Conference on Artificial Intelligence in Education, pages 33–40, 2005.

References

[Asendorpf and Van Aken, 1993] Jens B Asendorpf and Marcel AG Van Aken.
Deutsche Versionen der Selbstkonzeptskalen von Harter. Zeitschrift für Entwick-
lungspsychologie und pädagogische Psychologie, 25(1):64–96, 1993.

[Attali, 2015] Yigal Attali. Reliability-Based Feature Weighting for Automated Es-
say Scoring. Applied Psychological Measurement, 39(4):303–313, 2015.

[Baker et al., 2004] R. S. Baker, A. T. Corbett, and K. R. Koedinger. Detecting Stu-
dent Misuse of Intelligent Tutoring Systems. In Proceedings of the International
Conference on Intelligent Tutoring Systems, pages 531–540, 2004.

[Baker et al., 2008] R. S. Baker, A. T. Corbett, and V. Aleven. More Accurate Stu-
dent Modeling through Contextual Estimation of Slip and Guess Probabilities
in Bayesian Knowledge Tracing. In International Conference on Intelligent Tutor-
ing Systems, pages 406–415, 2008.

[Baker et al., 2010a] R. S. Baker, A. T. Corbett, S. M. Gowda, A. Z. Wagner, B. A.
MacLaren, L. R. Kauffman, A. P. Mitchell, and S. Giguere. Contextual Slip
and Prediction of Student Performance after Use of an Intelligent Tutor. In
Proceedings of the Conference on User Modelling, Adaptation and Personalization,
pages 52–63, 2010.

[Baker et al., 2010b] Ryan SJd Baker, Adam B Goldstein, and Neil T Heffernan.
Detecting the moment of learning. In Proceedings of the International Conference
on Intelligent Tutoring Systems, pages 25–34, 2010.

[Baker et al., 2012] Ryan Baker, Sujith Gowda, Albert Corbett, and Jaclyn
Ocumpaugh. Towards automatically detecting whether student learning is
shallow. In Intelligent Tutoring Systems, pages 444–453. Springer, 2012.

[Baldeweg et al., 1999] Torsten Baldeweg, Alexandra Richardson, Sarah Watkins,
Christine Foale, and John Gruzelier. Impaired auditory frequency discrimina-
tion in dyslexia detected with mismatch evoked potentials. Annals of neurology,
45(4):495–503, 1999.

[Bandura, 1977] Albert Bandura. Self-efficacy: toward a unifying theory of be-
havioral change. Psychological review, 84(2):191, 1977.

[Baschera et al., 2011] G. M. Baschera, A. G. Busetto, S. Klingler, J. Buhmann, and
M. Gross. Modeling Engagement Dynamics in Spelling Learning. In Proceedings
of the International Conference on Artificial Intelligence in Education, pages 31–38,
2011.

[Baschera, 2011] Gian-Marco Baschera. Modeling and Evaluation of Computer-
Assisted Spelling Learning in Dyslexic Children. PhD thesis, ETH Zurich, 2011.

122

References

[Beacham and Trott, 2005] Nigel Beacham and C. Trott. Screening for dyscalculia
within HE. MSOR Connections, 5:1–4, 2005.

[Beal and Cohen, 2008] Carole R Beal and Paul R Cohen. Temporal data mining
for educational applications. In PRICAI 2008: Trends in Artificial Intelligence,
pages 66–77. Springer, 2008.

[Beck and Chang, 2007] Joseph Beck and Kai-min Chang. Identifiability: A fun-
damental problem of student modeling. User Modeling 2007, pages 137–146,
2007.

[Beck and Gong, 2013] Joseph E. Beck and Yue Gong. Wheel-spinning: Students
who fail to master a skill. In Proceedings of the International Conference on Artificial
Intelligence in Education, pages 431–440, 2013.

[Beck and Xiong, 2013] Joseph Beck and Xiaolu Xiong. Limits to accuracy: how
well can we do at student modeling? In Proceedings of the International Confer-
ence on Educational Data Mining, pages 4–11, 2013.

[Beck, 2005] Joseph E. Beck. Engagement tracing: Using response times to model
student disengagement. In Proceedings of the International Conference on Artificial
Intelligence in Education, pages 88–95, 2005.

[Benevenuto et al., 2009] Fabrı́cio Benevenuto, Tiago Rodrigues, Meeyoung Cha,
and Virgı́lio Almeida. Characterizing user behavior in online social networks.
In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement con-
ference, pages 49–62. ACM, 2009.

[Bengio and others, 2009] Yoshua Bengio et al. Learning deep architectures for
AI. Foundations and trends in Machine Learning, 2(1):1–127, 2009.

[Bengio et al., 2013] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Repre-
sentation learning: A review and new perspectives. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1798–1828, 2013.

[Bengio, 2012] Yoshua Bengio. Practical recommendations for gradient-based
training of deep architectures. In Neural networks: Tricks of the trade, pages 437–
478, 2012.

[Berg-Kirkpatrick et al., 2010] Taylor Berg-Kirkpatrick, Alexandre Bouchard-
Côté, John DeNero, and Dan Klein. Painless unsupervised learning with fea-
tures. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages 582–590.
Association for Computational Linguistics, 2010.

[Bergner et al., 2014] Yoav Bergner, Zhan Shu, and Alina A. Von Davier. Visu-
alization and Confirmatory Clustering of Sequence Data from a Simulation-

123

References

Based Assessment Task. In Proceedings of the International Conference on Educa-
tional Data Mining, pages 177–184, 2014.

[Biswas et al., 2010] Gautam Biswas, Hogyeong Jeong, John S Kinnebrew, Brian
Sulcer, and ROD ROSCOE. Measuring self-regulated learning skills through
social interactions in a teachable agent environment. Research and Practice in
Technology Enhanced Learning, 5(02):123–152, 2010.

[Bloom, 1984] Benjamin S Bloom. The 2 sigma problem: The search for methods
of group instruction as effective as one-to-one tutoring. Educational researcher,
13(6):4–16, 1984.

[Blum and Mitchell, 1998] Avrim Blum and Tom Mitchell. Combining labeled
and unlabeled data with co-training. In Proceedings of the eleventh annual con-
ference on Computational learning theory, pages 92–100. ACM, 1998.

[Bowman et al., 2016] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M
Dai, Rafal Jozefowicz, and Samy Bengio. Generating Sentences from a Contin-
uous Space. Proceedings of SIGNLL Conference on Computational Natural Language
Learning (CONLL), page 10, 2016.

[Boyer et al., 2000] Kristy Elizabeth Boyer, Robert Phillips, Amy Ingram,
Eun Young Ha, Michael Wallis, Mladen Vouk, and James Lester. Character-
izing the Effectiveness of Tutorial Dialogue with Hidden Markov Models. In
Proceedings of the International Conference on Intelligent Tutoring Systems, pages
55–64, 2000.

[Brusilovsky and Vassileva, 2003] Peter Brusilovsky and Julita Vassileva. Course
sequencing techniques for large-scale web-based education. International Jour-
nal of Continuing Engineering Education and Life Long Learning, 13(1-2):75–94,
2003.

[Butler and Gregorc, 1988] Kathleen Ann Butler and Anthony F Gregorc. It’s all
in your mind: A student’s guide to learning style. Learner’s Dimension, 1988.

[Butterworth et al., 2011] Brian Butterworth, Sashank Varma, and Diana Lauril-
lard. Dyscalculia: From brain to education. Science, 332(6033):1049–1053, 2011.

[Butterworth, 2003] Brian Butterworth. Dyscalculia screener. Nelson Publishing
Company Ltd., 2003.

[Butterworth, 2005] B. Butterworth. Developmental dyscalculia. In J. D. Campell,
editor, The Handbook of Mathematical Cognition, pages 455–469. Taylor&Francis,
2005.

[Campbell et al., 2013] Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P How,
and Lawrence Carin. Dynamic clustering via asymptotics of the dependent

124

References

dirichlet process mixture. In Advances in Neural Information Processing Systems,
pages 449–457, 2013.

[Cattell et al., 1997] R.B. Cattell, R.H. Weiss, and J. Osterland. Grundintelligenztest
Skala 1 (CFT). Hogrefe, Göttingen, 1997.

[Cen et al., 2007] H. Cen, K. R. Koedinger, and B. Junker. Is Over Practice Neces-
sary? - Improving Learning Efficiency with the Cognitive Tutor through Edu-
cational Data Mining. In Proceedings of the International Conference on Artificial
Intelligence in Education, pages 511–518, 2007.

[Cen et al., 2008] H. Cen, K. R. Koedinger, and B. Junker. Comparing Two IRT
Models for Conjunctive Skills. In Proceedings of the International Conference on
Intelligent Tutoring Systems, pages 796–798, 2008.

[Chakrabarti et al., 2006] Deepayan Chakrabarti, Ravi Kumar, and Andrew
Tomkins. Evolutionary clustering. In Proceedings of the ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 554–560. ACM,
2006.

[Chang et al., 2006] Kai-min Chang, Joseph Beck, Jack Mostow, and Albert Cor-
bett. A bayes net toolkit for student modeling in intelligent tutoring systems.
In Intelligent tutoring systems, volume 2006, pages 104–113. Springer, 2006.

[Cheema, 2014] Jehanzeb R Cheema. A review of missing data handling methods
in education research. Review of Educational Research, 84(4):487–508, 2014.

[Chen et al., 2006] Chih-Ming Chen, Chao-Yu Liu, and Mei-Hui Chang. Person-
alized curriculum sequencing utilizing modified item response theory for web-
based instruction. Expert Systems with applications, 30(2):378–396, 2006.

[Chollet, 2015] François Chollet. keras. https://github.com/fchollet/keras,
2015.

[Cisero et al., 1997] C.A. Cisero, J.M. Royer, H.G. Marchant, and S.J. Jackson. Can
the computer-based academic assessment system (CAAS) be used to diag-
nose reading disability in college students? Journal of Educational Psychology,
89(4):599–620, 1997.

[Clement et al., 2015] Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer, and
Manuel Lopes. Multi-Armed Bandits for Intelligent Tutoring Systems. Journal
of Educational Data Mining, 7, 2015.

[Cohen et al., 1982] Peter A Cohen, James A Kulik, and Chen-Lin C Kulik. Educa-
tional outcomes of tutoring: A meta-analysis of findings. American educational
research journal, 19(2):237–248, 1982.

125

https://github.com/fchollet/keras

References

[Cohen Kadosh et al., 2007] R. Cohen Kadosh, K. Cohen Kadosh, T. Schuhmann,
A. Kaas, R. Goebel, A. Henik, and A. T. Sack. Virtual dyscalculia induced by
parietal-lobe TMs impairs automatic magnitude processing. Current Biology,
17:689–693, 2007.

[Conati and Kardan, 2013] Cristina Conati and Samad Kardan. Student model-
ing: Supporting personalized instruction, from problem solving to exploratory
open ended activities. AI Magazine, 34(3):13–26, 2013.

[Conati et al., 2002] Cristina Conati, Abigail Gertner, and Kurt Vanlehn. Using
bayesian networks to manage uncertainty in student modeling. User modeling
and user-adapted interaction, 12(4):371–417, 2002.

[Cooper et al., 2010] David G. Cooper, Kasia Muldner, Ivon Arroyo, Beverly Park
Woolf, and Winslow Burleson. Ranking Feature Sets for Emotion Models Used
in Classroom Based Intelligent Tutoring Systems, pages 135–146. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[Corbett and Anderson, 1994] Albert T. Corbett and John R. Anderson. Knowl-
edge tracing: Modeling the acquisition of procedural knowledge. Journal of
User Modeling and User-Adapted Interaction, 4:253–278, 1994.

[Corbett et al., 1997] Albert T Corbett, Kenneth R Koedinger, and John R Ander-
son. Intelligent tutoring systems. Handbook of human-computer interaction, 5:849–
874, 1997.

[Cortina, 1993] Jose M Cortina. What is coefficient alpha? An examination of
theory and applications. Journal of applied psychology, 78(1):98, 1993.

[Cowley and Charles, 2016] Benjamin Cowley and Darryl Charles. Behavlets: a
method for practical player modelling using psychology-based player traits
and domain specific features. User Modeling and User-Adapted Interaction, 26(2-
3):257–306, 2016.

[Dehaene and Cohen, 1995] S. Dehaene and L. Cohen. Towards an anatomical
and functional model of number processing. Mathematical Cognition, 1:82–120,
1995.

[Démonet et al., 2004] Jean-François Démonet, Margot J Taylor, and Yves Chaix.
Developmental dyslexia. The Lancet, 363(9419):1451–1460, 2004.

[Desmarais and Lemieux, 2013] Michel Desmarais and François Lemieux. Clus-
tering and visualizing study state sequences. In Proceedings of the International
Conference on Educational Data Mining, pages 224–227, 2013.

126

References

[Desoete and Grégoire, 2006] Annemie Desoete and Jacques Grégoire. Numeri-
cal competence in young children and in children with mathematics learning
disabilities. Learn. Individ. Differ., 16(4):351–367, 2006.

[Dhanani et al., 2014] Asif Dhanani, Seung Yeon Lee, Phitchaya Phothilimthana,
and Zachary Pardos. A comparison of error metrics for learning model param-
eters in Bayesian knowledge tracing. Technical report, UCB/EECS-2014-131,
EECS Department, University of California, Berkeley, 2014.

[Esser et al., 2008a] G. Esser, A. Wyschkon, and K. Ballaschk. BUEGA: Basisdiag-
nostik Umschriebener Entwicklungsstörungen im Grundschulalter. Hogrefe, Göttin-
gen, 2008.

[Esser et al., 2008b] Günter Esser, Anne Wyschkon, and Katja Ballaschk. Basisdi-
agnostik umschriebener Entwicklungsstörungen im Grundschulalter. Hogrefe,
Göttingen, 2008.

[Fabius and van Amersfoort, 2015] Otto Fabius and Joost R van Amersfoort. Vari-
ational recurrent auto-encoders. International Conference on Learning Representa-
tions, 2015.

[Fancsali et al., 2013] Stephen Fancsali, Tristan Nixon, and Steven Ritter. Opti-
mal and worst-case performance of mastery learning assessment with Bayesian
knowledge tracing. In Proceedings of the International Conference on Educational
Data Mining, pages 35–42, 2013.

[Felder and Brent, 2005] Richard M Felder and Rebecca Brent. Understanding
student differences. Journal of engineering education, 94(1):57–72, 2005.

[Feng et al., 2014] Bo Feng, Mengyin Fu, Hongbin Ma, Yuanqing Xia, and
Bo Wang. Kalman filter with recursive covariance estimation—sequentially
estimating process noise covariance. IEEE Transactions on Industrial Electronics,
61(11):6253–6263, 2014.

[Fischer and Molenaar, 1995] Gerhard H Fischer and Ivo W Molenaar. Rasch mod-
els: Foundations, recent developments, and applications. Springer Science & Busi-
ness Media, 1995.

[Fleming, 2001] Neil D Fleming. Teaching and learning styles: VARK strategies. IGI
Global, 2001.

[Galaburda et al., 1985] Albert M Galaburda, Gordon F Sherman, Glenn D Rosen,
Francisco Aboitiz, and Norman Geschwind. Developmental dyslexia: four con-
secutive patients with cortical anomalies. Annals of neurology, 18(2):222–233,
1985.

127

References

[Galaburda et al., 2006] Albert M Galaburda, Joseph LoTurco, Franck Ramus,
R Holly Fitch, and Glenn D Rosen. From genes to behavior in developmen-
tal dyslexia. Nature neuroscience, 9(10):1213–1217, 2006.

[Geary et al., 1991] David C. Geary, Sam C Brown, and V. A. Samaranayake. Cog-
nitive addition: A short longitudinal study of strategy choice and speed-of-
processing differences in normal and mathematically disabled children. Devel-
opmental psychology, 27(5):787–797, 1991.

[Gong et al., 2010] Yue Gong, Joseph E Beck, and Neil T Heffernan. Comparing
knowledge tracing and performance factor analysis by using multiple model
fitting procedures. In International Conference on Intelligent Tutoring Systems,
pages 35–44, 2010.

[Gonzalez-Brenes and Huang, 2015] Jose Gonzalez-Brenes and Yun Huang. Your
model is predictive—but is it useful? theoretical and empirical considerations
of a new paradigm for adaptive tutoring evaluation. In Proceedings of the In-
ternational Conference on Educational Data Mining, pages 187–194. University of
Pittsburgh, 2015.

[González-Brenes et al., 2014] J. P. González-Brenes, Yun Huang, and Peter
Brusilovsky. General features in knowledge tracing to model multiple sub-
skills, temporal item response theory, and expert knowledge. In Proceedings of
the International Conference on Educational Data Mining, pages 84–91, 2014.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[Graf and Fife, 2013] E. A. Graf and J. H. Fife. Difficulty Modeling and Automatic
Generation of Quantitative Items: Recent Advances and Possible Next Steps. In
Automatic Item Generation: Theory and Practice, pages 157–179. Routledge, 2013.

[Gross and Vögeli, 2007] Markus Gross and Christian Vögeli. A multimedia
framework for effective language training. Computers & Graphics, 31(5):761–
777, 2007.

[Gu et al., 2014] Junjie Gu, Hang Cai, and Joseph E Beck. Investigate performance
of expected maximization on the knowledge tracing model. In Proceedings of the
International Conference on Intelligent Tutoring Systems, pages 156–161. Springer,
2014.

[Hadwin et al., 2007] Allyson F Hadwin, John C Nesbit, Dianne Jamieson-Noel,
Jillianne Code, and Philip H Winne. Examining trace data to explore self-
regulated learning. Metacognition and Learning, 2(2-3):107–124, 2007.

128

References

[Haffner et al., 2005] J. Haffner, K. Baro, P. Parzer, and F. Resch. Heidelberger
Rechentest: Erfassung mathematischer Basiskomptenzen im Grundschulalter,
2005.

[Hao et al., 2015] Jiangang Hao, Zhan Shu, and Alina Davier. Analyzing Process
Data from Game/Scenario- Based Tasks: An Edit Distance Approach. Journal
of Educational Data Mining, 7(1):33–50, 2015.

[Harris, 1989] Deborah Harris. Comparison of 1-, 2-, and 3-parameter IRT mod-
els. Educational Measurement, 8(1):35–41, 1989.

[Hasselhorn, 2012] Marcus Hasselhorn. Arbeitsgedächtnistestbatterie für Kinder von
5 bis 12 Jahren: AGTB 5-12. Hogrefe, 2012.

[Hattie, 2003] John Hattie. Teachers make a difference, what is the research evi-
dence? In Building Teacher Quality: What does the research tell us ACER Research
Conference, volume 36, pages 27–38, 2003.

[He et al., 2008] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn:
Adaptive synthetic sampling approach for imbalanced learning. In Proceddings
of the IEEE International Joint Conference on Neural Networks, pages 1322–1328,
2008.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on imagenet clas-
sification. In Proceedings of the IEEE international conference on computer vision,
pages 1026–1034, 2015.

[Herold et al., 2013] James Herold, Alex Zundel, and Thomas F Stahovich. Min-
ing meaningful patterns from students’ handwritten coursework. In Proceed-
ings of the International Conference on Educational Data Mining, pages 67–73, 2013.

[Higgins et al., 2016] Irina Higgins, Loic Matthey, Xavier Glorot, Arka Pal, Be-
nigno Uria, Charles Blundell, Shakir Mohamed, and Alexander Lerchner.
Early visual concept learning with unsupervised deep learning. arXiv preprint
arXiv:1606.05579, 2016.

[Hoffmann, 2007] Heiko Hoffmann. Kernel PCA for novelty detection. Pattern
Recognition, 40(3):863–874, 2007.

[Hofmann and Buhmann, 1997] Thomas Hofmann and Joachim M. Buhmann.
Pairwise data clustering by deterministic annealing. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 19(1):1–14, 1997.

[Hurvich and Tsai, 1989] Clifford M Hurvich and Chih-Ling Tsai. Regression and
time series model selection in small samples. Biometrika, pages 297–307, 1989.

129

References

[Imam et al., 2006] Tasadduq Imam, Kai Ting, and Joarder Kamruzzaman. z-svm:
an svm for improved classification of imbalanced data. AI 2006: Advances in
Artificial Intelligence, pages 264–273, 2006.

[Jarušek and Pelánek, 2012] Petr Jarušek and Radek Pelánek. Analysis of a simple
model of problem solving times. In Intelligent Tutoring Systems, pages 379–388.
Springer, 2012.

[Jenkins et al., 2007] Joseph R Jenkins, Roxanne F Hudson, and Evelyn S Johnson.
Screening for at-risk readers in a response to intervention framework. School
Psychology Review, 36(4):582, 2007.

[Jiang et al., 2016] Zhuoxuan Jiang, Peng Li, Yan Zhang, and Xiaoming Li. Gen-
erating Semantic Concept Map for MOOCs. In Proceedings of the International
Conference on Educational Data Mining, pages 595–596, 2016.

[Jing, 2015] Shumin Jing. Automatic Grading of Short Answers for MOOC via
Semi-supervised Document Clustering. In Proceedings of the International Con-
ference on Educational Data Mining, pages 554–555, 2015.

[Johns and Woolf, 2006] Jeff Johns and Beverly Woolf. A Dynamic Mixture Model
to Detect Student Motivation and Proficiency. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 163–168, 2006.

[Käser et al., 2013a] T. Käser, A. G. Busetto, B. Solenthaler, G.-M. Baschera,
J. Kohn, K. Kucian, M. von Aster, and M. Gross. Modelling and Optimizing
Mathematics Learning in Children. International Journal of Artificial Intelligence
in Education, 2013.

[Käser et al., 2013b] T. Käser, A. G. Busetto, B. Solenthaler, J. Kohn, M. von Aster,
and M. Gross. Cluster-based prediction of mathematical learning patterns. In
Proceedings of the International Conference on Artificial Intelligence in Education,
pages 389–399, 2013.

[Käser et al., 2013c] Tanja Käser, Gian-Marco Baschera, Juliane Kohn, Karin Ku-
cian, Verena Richtmann, Ursina Grond, Markus Gross, and Michael von Aster.
Design and evaluation of the computer-based training program calcularis for
enhancing numerical cognition. Frontiers in Developmental Psychology, 4:489,
2013.

[Käser et al., 2016] Tanja Käser, Severin Klingler, and Markus Gross. When to
stop?: Towards universal instructional policies. In Proceedings of the Sixth Inter-
national Conference on Learning Analytics & Knowledge, LAK ’16, pages 289–298,
New York, NY, USA, 2016. ACM.

[Käser, 2014] Tanja Käser. Modeling and Optimizing Computer-Assisted Mathematics
Learning in Children. PhD thesis, Diss., ETH Zürich, Nr. 22145, 2014.

130

References

[Kast et al., 2007] M. Kast, M. Meyer, C. Vögeli, M. Gross, and L. Jäncke.
Computer-based Multisensory Learning in Children with Developmental
Dyslexia. Restorative Neurology and Neuroscience, 25(3-4):355–369, 2007.

[Kast et al., 2011] Monika Kast, Gian-Marco Baschera, Markus Gross, Lutz
Jäncke, and Martin Meyer. Computer-based learning of spelling skills in chil-
dren with and without dyslexia. Annals of Dyslexia, 61(2):177–200, 2011.

[Khajah et al., 2014a] Mohammad Khajah, Rowan Wing, Robert Lindsey, and
Michael Mozer. Integrating latent-factor and knowledge-tracing models to pre-
dict individual differences in learning. In Proceedings of the International Confer-
ence on Educational Data Mining, pages 99–106, 2014.

[Khajah et al., 2014b] Mohammad M Khajah, Yun Huang, José P González-
Brenes, Michael C Mozer, and Peter Brusilovsky. Integrating knowledge tracing
and item response theory: A tale of two frameworks. Proceedings of Workshop
on Personalization Approaches in Learning Environments (PALE 2014) at the 22th
International Conference on User Modeling, Adaptation, and Personalization, pages
7–12, 2014.

[Khajah et al., 2016] Mohammad Khajah, Robert V. Lindsey, and Michael C.
Mozer. How Deep is Knowledge Tracing? In Proceedings of the International
Conference on Educational Data Mining, pages 94–101, 2016.

[King et al., 2007] Wayne King, Sally Giess, and Linda Lombardino. Subtyping
of children with developmental dyslexia via bootstrap aggregated clustering
and the gap statistic: comparison with the double-deficit hypothesis. Int J Lang
Comm Dis, 42(1):77–95, 2007.

[Kingma and Ba, 2015] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. Proceedings of the International Conference on Learning
Representations, 2015.

[Kingma and Welling, 2014] Diederik P Kingma and Max Welling. Auto-
encoding variational bayes. Proceedings of the International Conference on Learn-
ing Representations, 2014.

[Kingma et al., 2014] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. Semi-supervised learning with deep generative
models. In Proceedings of the Conference on Neural Information Processing Systems,
pages 3581–3589, 2014.

[Kinnebrew and Biswas, 2012] John S Kinnebrew and Gautam Biswas. Identify-
ing learning behaviors by contextualizing differential sequence mining with
action features and performance evolution. In Proceedings of the International
Conference on Educational Data Mining, pages 57–64, 2012.

131

References

[Kinnebrew et al., 2013] John S Kinnebrew, Daniel LC Mack, and Gautam Biswas.
Mining temporally-interesting learning behavior patterns. In Proceedings of the
International Conference on Educational Data Mining, pages 252–255, 2013.

[Kirkpatrick, 2009] Mark Kirkpatrick. Patterns of quantitative genetic variation
in multiple dimensions. Genetica, 136(2):271–284, 2009.

[Klingler, 2013] Severin Klingler. A screening tool for children at risk of develop-
mental dyscalculia, 2013. Master thesis, ETH Zurich.

[Köck and Paramythis, 2011] Mirjam Köck and Alexandros Paramythis. Activity
sequence modelling and dynamic clustering for personalized e-learning. Jour-
nal of User Modeling and User-Adapted Interaction, 21(1):51–97, 2011.

[Koedinger et al., 1997] K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A.
Mark. Intelligent tutoring goes to school in the big city. International Journal of
Artificial Intelligence in Education, 8(1):30–43, 1997.

[Koedinger et al., 2013] KennethR. Koedinger, JohnC. Stamper, ElizabethA.
McLaughlin, and Tristan Nixon. Using Data-Driven Discovery of Better Stu-
dent Models to Improve Student Learning. In Proceedings of the International
Conference on Artificial Intelligence in Education, pages 421–430, 2013.

[Kostopoulos et al., 2015] Georgios Kostopoulos, Sotiris Kotsiantis, and Panagio-
tis Pintelas. Predicting student performance in distance higher education us-
ing semi-supervised techniques. In Model and Data Engineering, pages 259–270.
Springer, 2015.

[Krinzinger et al., 2007] Helga Krinzinger, Liane Kaufmann, Ann Dowker,
Gemma Thomas, Martina Graf, Hans-Christoph Nuerk, and Klaus Willmes.
Deutschsprachige Version des Fragebogens für Rechenangst (FRA) für 6-bis 9-
jährige Kinder. Zeitschrift für Kinder-und Jugendpsychiatrie und Psychotherapie,
35(5):341–367, 2007.

[Kucian et al., 2006] K. Kucian, T. Loenneker, T. Dietrich, M. Dosch, E. Martin,
and M. von Aster. Impaired neural networks for approximate calculation in
dyscalculic children: a functional MRI study. Behavioral and Brain Functions,
2(1):31, 2006.

[Kucian et al., 2011] K. Kucian, U. Grond, S. Rotzer, B. Henzi, C. Schönmann,
F. Plangger, M. Gälli, E. Martin, and M. von Aster. Mental Number Line Train-
ing in Children with Developmental Dyscalculia. NeuroImage, 57(3):782–795,
2011.

[Kulik and Fletcher, 2016] James A Kulik and JD Fletcher. Effectiveness of intel-
ligent tutoring systems a meta-analytic review. Review of Educational Research,
86(1):42–78, 2016.

132

References

[Labutov and Lipson, 2016] Igor Labutov and Hod Lipson. Web as a textbook:
Curating Targeted Learning Paths through the Heterogeneous Learning Re-
sources on the Web. In Proceedings of the International Conference on Educational
Data Mining, pages 110–118, 2016.

[Landerl et al., 2004] K. Landerl, A. Bevan, and B. Butterworth. Developmental
dyscalculia and basic numerical capacities: a study of 8-9-year-old students.
Cognition, 93:99–125, 2004.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436–444, 2015.

[Lee and Brunskill, 2012] Jung In Lee and Emma Brunskill. The Impact on Indi-
vidualizing Student Models on Necessary Practice Opportunities. In Proceed-
ings of the International Conference on Educational Data Mining, pages 118–125,
2012.

[Lehmann and Murray, 2005] Sandra Lehmann and Micah M Murray. The role
of multisensory memories in unisensory object discrimination. Cognitive Brain
Research, 24(2):326–334, 2005.

[Lepper and Chabay, 1988] Mark R. Lepper and Ruth W. Chabay. Socializing the
Intelligent Tutor: Bringing Empathy to Computer Tutors, pages 242–257. Springer
US, New York, NY, 1988.

[Lester et al., 2013] James C Lester, Eun Y Ha, Seung Y Lee, Bradford W Mott,
Jonathan P Rowe, and Jennifer L Sabourin. Serious games get smart: Intelligent
game-based learning environments. AI Magazine, 34(4):31–45, 2013.

[Lewis et al., 1994] C. Lewis, G. J. Hitch, and P. Walker. The prevalence of specific
arithmetic difficulties and specific reading difficulties in 9- to 10-year old boys
and girls. Journal of Child Psychology and Psychiatry, 35:283–292, 1994.

[Li and Biswas, 2000] Cen Li and Gautam Biswas. A Bayesian Approach to Tem-
poral Data Clustering using Hidden Markov Models. In Proceedings of the Inter-
national Conference on Machine Learning, pages 543–550, 2000.

[Li and Prakash, 2011] Lei Li and B Aditya Prakash. Time series clustering: Com-
plex is simpler! In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 185–192, 2011.

[Liao et al., 2013] Hank Liao, Erik McDermott, and Andrew Senior. Large scale
deep neural network acoustic modeling with semi-supervised training data for
YouTube video transcription. In Proceedings of the IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), pages 368–373. IEEE, 2013.

133

References

[Lovegrove et al., 1990] William J Lovegrove, Ralph P Garzia, and Steven B
Nicholson. Experimental evidence for a transient system deficit in specific read-
ing disability. Journal of the American Optometric Association, page 137, 1990.

[Ma et al., 2014] Wenting Ma, Olusola O Adesope, John C Nesbit, and Qing Liu.
Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of
Educational Psychology, 106(4):901, 2014.

[Mandel et al., 2014] Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill,
and Zoran Popovic. Offline Policy Evaluation Across Representations with Ap-
plications to Educational Games. In Proceedings of the 2014 international confer-
ence on Autonomous agents and multi-agent systems, pages 1077–1084, 2014.

[Martinez-Maldonado et al., 2013] Roberto Martinez-Maldonado, Kalina Yacef,
and Judy Kay. Data mining in the classroom: Discovering groups’ strategies
at a multi-tabletop environment. In Proceedings of the International Conference on
Educational Data Mining, pages 121–128, 2013.

[Mazzocco and Thompson, 2005] Michele MM Mazzocco and Richard E Thomp-
son. Kindergarten predictors of math learning disability. Learning Disabilities
Research & Practice, 20(3):142–155, 2005.

[Meila, 2005] Marina Meila. Comparing clusterings: an axiomatic view. In Pro-
ceedings of the 22nd international conference on Machine learning, pages 577–584.
ACM, 2005.

[Meyer and Hailey, 2012] JP Meyer and E Hailey. A study of Rasch, partial credit,
and rating scale model parameter recovery in WINSTEPS and jMetrik. Journal
of Applied Measurement, 13(3):248–258, 2012.

[Miller and Soh, 2013] Lee Dee Miller and Leen-Kiat Soh. Meta-Reasoning Al-
gorithm for Improving Analysis of Student Interactions with Learning Objects
using Supervised Learning. In Proceedings of the International Conference on Edu-
cational Data Mining, pages 129–136, 2013.

[Min et al., 2014] Wookhee Min, Bradford W. Mott, Jonathan P. Rowe, and
James C. Lester. Leveraging semi-supervised learning to predict student
problem-solving performance in narrative-centered learning environments. In
Proceedings of the International Conference on Intelligent Tutoring Systems, pages
664–665, 2014.

[Minku and Yao, 2012] Leandro L Minku and Xin Yao. Using unreliable data for
creating more reliable online learners. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2012.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-

134

References

dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[Muldner and Conati, 2007] Kasia Muldner and Cristina Conati. Evaluating a
decision-theoretic approach to tailored example selection. In Proceedings of the
20th international joint conference on Artifical intelligence, pages 483–488, 2007.

[Murray et al., 2004] R. Charles Murray, Kurt Vanlehn, and Jack Mostow. Looking
ahead to select tutorial actions: A decision-theoretic approach. International
Journal of Artificial Intelligence in Education, 14(3-4):235–278, 2004.

[Nelder and Mead, 1965] J. A. Nelder and R. Mead. A Simplex Method for Func-
tion Minimization. Computer Journal, 7:308–313, 1965.

[Nesbit et al., 2007] John C Nesbit, Mingming Zhou, Yabo Xu, and P Winne. Ad-
vancing log analysis of student interactions with cognitive tools. In 12th Bien-
nial Conference of the European Association for Research on Learning and Insruction
(EARLI), 2007.

[Nicolson and Fawcett, 1990] RI Nicolson and AJ Fawcett. Automaticity: A new
framework for dyslexia research? Cognition, 35(2):159–182, 1990.

[Noël and Rousselle, 2011] Marie-Pascale Noël and Laurence Rousselle. Devel-
opmental changes in the profiles of dyscalculia: an explanation based on a dou-
ble exact-and-approximate number representation model. Frontiers in Human
Neuroscience, 5:165, 2011.

[Ostad, 1997] S. A. Ostad. Developmental differences in addition strategies: A
comparison of mathematically disabled and mathematically normal children.
British Journal of Education Psychology, 67:345–357, 1997.

[Ostad, 1999] S. A. Ostad. Developmental progression of subtraction strategies: A
comparison of mathematically normal and mathematically disabled children.
European Journal of Special Needs Education, 14:21–36, 1999.

[Pardo, 2005] Leandro Pardo. Statistical inference based on divergence measures. CRC
Press, 2005.

[Pardos and Heffernan, 2010a] Z. A. Pardos and N. T. Heffernan. Modeling Indi-
vidualization in a Bayesian Networks Implementation of Knowledge Tracing.
In Proceedings of the Conference on User Modelling, Adaptation and Personalization,
pages 255–266, 2010.

[Pardos and Heffernan, 2010b] Z. A. Pardos and N. T. Heffernan. Navigating the
parameter space of Bayesian Knowledge Tracing models: Visualizations of the
convergence of the Expectation Maximization algorithm. In Proceedings of the
International Conference on Educational Data Mining, pages 161–170, 2010.

135

References

[Pardos and Heffernan, 2011] Z. A. Pardos and N. Heffernan. Introducing item
difficulty to the knowledge tracing model. In Proceedings of the Conference on
User Modelling, Adaptation and Personalization, pages 243–254. Springer, 2011.

[Pardos and Yudelson, 2013] Zachary A Pardos and Michael Yudelson. Towards
moment of learning accuracy. In Workshops Proceedings of the International Con-
ference on Artificial Intelligence in Education, page 3, 2013.

[Pardos et al., 2012] Zachary A. Pardos, Shubhendu Trivedi, Neil T. Heffernan,
and Gábor N. Sárközy. Clustered knowledge tracing. In Proceedings of the Inter-
national Conference on Intelligent Tutoring Systems, pages 405–410, 2012.

[Pashler et al., 2009] Harold Pashler, Nicholas Cepeda, Robert V Lindsey, Ed Vul,
and Michael C Mozer. Predicting the optimal spacing of study: A multiscale
context model of memory. In Advances in Neural Information Processing Systems
22, pages 1321–1329. Curran Associates, Inc., 2009.

[Pavlik and Anderson, 2005] Philip I Pavlik and John R Anderson. Practice and
forgetting effects on vocabulary memory: An activation-based model of the
spacing effect. Cognitive Science, 29(4):559–586, 2005.

[Pavlik et al., 2009] Philip I. Pavlik, Hao Cen, and Kenneth R. Koedinger. Perfor-
mance Factors Analysis - A New Alternative to Knowledge Tracing. In Pro-
ceedings of the International Conference on Artificial Intelligence in Education, pages
531–538, 2009.

[Peckham and McCalla, 2012] Terry Peckham and Gord McCalla. Mining Stu-
dent Behavior Patterns in Reading Comprehension Tasks. In Proceedings of the
International Conference on Educational Data Mining, pages 87–94, 2012.

[Pedregosa and others, 2011] F. Pedregosa et al. Scikit-learn: Machine learning in
Python. JMLR, 2011.

[Pelánek, 2014] Radek Pelánek. A brief overview of metrics for evaluation of stu-
dent models. In Approaching Twenty Years of Knowledge Tracing Workshop of the
7th International Conference on Educational Data Mining, 2014.

[Pelleg and Moore, 2000] Dan Pelleg and Andrew Moore. X-means: Extending
K-means with Efficient Estimation of the Number of Clusters. In Proceedings of
the International Conference on Machine Learning, volume 1, pages 727–734, 2000.

[Perera et al., 2009] Dilhan Perera, Judy Kay, Irena Koprinska, Kalina Yacef, and
Osmar R Zaı̈ane. Clustering and sequential pattern mining of online collab-
orative learning data. IEEE Transactions on Knowledge and Data Engineering,
21(6):759–772, 2009.

136

References

[Petermann and Petermann, 2008] Franz Petermann and Ulrike Petermann.
HAWIK-IV. Kindheit und Entwicklung, 17(2):71–75, 2008.

[Piech et al., 2015] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli,
Mehran Sahami, Leonidas J. Guibas, and Jascha Sohl-Dickstein. Deep Knowl-
edge Tracing. In Proceedings of the Conference on Neural Information Processing
Systems, pages 505–513, 2015.

[Rafferty et al., 2011] Anna N. Rafferty, Emma Brunskill, Thomas L. Griffiths, and
Patrick Shafto. Faster Teaching by POMDP Planning. In Proceedings of the Inter-
national Conference on Artificial Intelligence in Education, pages 280–287, 2011.

[Rebolledo-Mendez et al., 2013] Genaro Rebolledo-Mendez, Benedict Du Boulay,
Rosemary Luckin, and Edgard Ivan Benitez-Guerrero. Mining data from in-
teractions with a motivational-aware tutoring system using data visualization.
Journal of Educational Data Mining, 5(1):72–103, 2013.

[Reiter et al., 2000] Ehud Reiter, Robert Dale, and Zhiwei Feng. Building natural
language generation systems. Cambridge University Press, 2000.

[Reshef et al., 2011] David N Reshef, Yakir A Reshef, Hilary K Finucane, Sharon R
Grossman, Gilean McVean, Peter J Turnbaugh, Eric S Lander, Michael Mitzen-
macher, and Pardis C Sabeti. Detecting novel associations in large data sets.
Science, 334(6062):1518–1524, 2011.

[Reye, 2004] J. Reye. Student Modelling Based on Belief Networks. International
Journal of Artificial Intelligence in Education, 14(1):63–96, 2004.

[Rezende et al., 2014] Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Gen-
erative Models. In Proceedings of the International Conference on Machine Learning,
pages 1278–1286, 2014.

[Ritter et al., 2009] Steven Ritter, Thomas K. Harris, Tristan Nixon, Daniel Dicki-
son, R. Charles Murray, and Brendon Towle. Reducing the knowledge tracing
space. In Proceedings of the International Conference on Educational Data Mining,
pages 151–160, 2009.

[Rollinson and Brunskill, 2015] Joseph Rollinson and Emma Brunskill. From Pre-
dictive Models to Instructional Policies. Proceedings of the International Confer-
ence on Educational Data Mining, pages 179–186, 2015.

[Rüsseler et al., 2006] Jascha Rüsseler, Ivonne Gerth, and Thomas F Münte. Im-
plicit learning is intact in adult developmental dyslexic readers: Evidence from
the serial reaction time task and artificial grammar learning. Journal of Clinical
and Experimental Neuropsychology, 28(5):808–827, 2006.

137

References

[Santos and Silva, 2008] FH Santos and PA Silva. Avaliação da discalculia do
desenvolvimento: uma questão sobre o processamento numérico e o cálculo.
Transtornos de Aprendizagem: da Avaliação à reabilitação, pages 125–137, 2008.

[Santos et al., 2012] Flávia Heloı́sa Dos Santos, Paulo Adilson Da Silva, Fabi-
ana Silva Ribeiro, Ana Luiza Ribeiro Pereira Dias, Michele Cândida Frigério,
Georges Dellatolas, and Michael von Aster. Number processing and calcula-
tion in Brazilian children aged 7-12 years. The Spanish journal of psychology,
15(02):513–525, 2012.

[Scheffe, 1999] Henry Scheffe. The analysis of variance, volume 72. John Wiley &
Sons, 1999.

[Schmid et al., 2014] Richard F Schmid, Robert M Bernard, Eugene Borokhovski,
Rana M Tamim, Philip C Abrami, Michael A Surkes, C Anne Wade, and
Jonathan Woods. The effects of technology use in postsecondary education:
A meta-analysis of classroom applications. Computers & Education, 72:271–291,
2014.

[Schölkopf et al., 1997] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert
Müller. Kernel principal component analysis. In Proceedings of the International
Conference on Artificial Neural Networks, pages 583–588, 1997.

[Schulte-Körne et al., 2004] G Schulte-Körne, W Deimel, J Bartling, and H Rem-
schmidt. Neurophysiological correlates of word recognition in dyslexia. Journal
of Neural Transmission, 111(7):971–984, 2004.

[Senesh and Wolf, 2009] M Senesh and A Wolf. Motion estimation using
point cluster method and kalman filter. Journal of biomechanical engineering,
131(5):051008, 2009.

[Shalev and von Aster, 2008] R. Shalev and M. G. von Aster. Identification, classi-
fication, and prevalence of developmental dyscalculia. Encyclopedia of language
and literacy development, 2008.

[Shalev, 2004] R. S. Shalev. Developmental dyscalculia: Review. Journal of Child
Neurology, 19:765–771, 2004.

[Shams and Seitz, 2008] Ladan Shams and Aaron R Seitz. Benefits of multisen-
sory learning. Trends in cognitive sciences, 12(11):411–417, 2008.

[Shaywitz, 1998] Sally E Shaywitz. Dyslexia. New England Journal of Medicine,
338(5):307–312, 1998.

[Shute, 2011] Valerie J Shute. Stealth assessment in computer-based games to sup-
port learning. Computer games and instruction, 55(2):503–524, 2011.

138

References

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

[Solenthaler et al., under review] Barbara Solenthaler, Severin Klingler, Tanja
Käser, and Markus Gross. Under Review: An Architecture for Intelligent Edu-
cational Games. IEEE Computer Graphics and Applications, under review.

[Soller and Lesgold, 2007] Amy Soller and Alan Lesgold. Modeling the process of
collaborative learning. In The role of technology in CSCL, pages 63–86. Springer,
2007.

[Sønderby et al., 2016] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
Søren Kaae Sønderby, and Ole Winther. Ladder variational autoencoders.
In Proceedings of the Conference on Neural Information Processing Systems, pages
3738–3746, 2016.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to pre-
vent neural networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[Stamper and Koedinger, 2011] John C. Stamper and Kenneth R. Koedinger.
Human-machine Student Model Discovery and Improvement Using DataShop.
In Proceedings of the International Conference on Artificial Intelligence in Education,
pages 353–360, 2011.

[Stein, 1994] Lı́lian Milnitsky Stein. TDE: teste de desempenho escolar: manual
para aplicação e interpretação. São Paulo: Casa do Psicólogo, pages 1–17, 1994.

[Tam et al., 2015] Vincent Tam, Edmund Y Lam, ST Fung, WWT Fok, and Al-
lan HK Yuen. Enhancing educational data mining techniques on online ed-
ucational resources with a semi-supervised learning approach. In Proceedings
of the IEEE International Conference on Teaching, Assessment, and Learning for En-
gineering (TALE), pages 203–206, 2015.

[Thomas and Dowker, 2000] G Thomas and A Dowker. Mathematics anxiety and
related factors in young children. In British Psychological Society Developmental
Section Conference, 2000.

[Tinto, 1997] Vincent Tinto. Classrooms as communities: Exploring the educa-
tional character of student persistence. The Journal of higher education, 68(6):599–
623, 1997.

[Trivedi et al., 2011] Shubhendu Trivedi, Zachary A. Pardos, and Neil T. Heffer-
nan. Clustering students to generate an ensemble to improve standard test

139

References

score predictions. In Proceedings of the International Conference on Artificial Intel-
ligence in Education, pages 377–384, 2011.

[Trivedi et al., 2012] Shubhendu Trivedi, Zachary A. Pardos, Gábor N. Sárközy,
and Neil T. Heffernan. Co-clustering by bipartite spectral graph partitioning
for out-of-tutor prediction. In Proceedings of the International Conference on Edu-
cational Data Mining, pages 33–40, 2012.

[Turian et al., 2010] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word rep-
resentations: a simple and general method for semi-supervised learning. In
Proceedings of the 48th annual meeting of the association for computational linguis-
tics, pages 384–394, 2010.

[Van de Sande, 2013] Brett Van de Sande. Properties of the Bayesian knowledge
tracing model. Journal of Educational Data Mining, 5(2):1–10, 2013.

[van den Oord et al., 2016] Aaron van den Oord, Nal Kalchbrenner, Lasse Espe-
holt, Oriol Vinyals, Alex Graves, et al. Conditional Image Generation with
PixelCNN Decoders. In Proceedings of the Conference on Neural Information Pro-
cessing Systems, pages 4790–4798, 2016.

[van der Linden, 2006] Wim J van der Linden. A lognormal model for response
times on test items. Journal of Educational and Behavioral Statistics, 31(2):181–204,
2006.

[Vanlehn et al., 2005] Kurt Vanlehn, Collin Lynch, Kay Schulze, Joel A Shapiro,
Robert Shelby, Linwood Taylor, Don Treacy, Anders Weinstein, and Mary Win-
tersgill. The andes physics tutoring system: Lessons learned. International Jour-
nal of Artificial Intelligence in Education, 15(3):147–204, 2005.

[von Aster and Shalev, 2007a] M. G. von Aster and R. Shalev. Number develop-
ment and developmental dyscalculia. Developmental Medicine and Child Neurol-
ogy, 49:868–873, 2007.

[Von Aster and Shalev, 2007b] Michael G Von Aster and Ruth S Shalev. Number
development and developmental dyscalculia. Developmental Medicine & Child
Neurology, 49(11):868–873, 2007.

[von Aster et al., 2006] Michael von Aster, Monika Weinhold Zulauf, and Ralf
Horn. Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei
Kindern: ZAREKI-R. Pearson, 2006.

[Von Aster et al., 2015] M. Von Aster, L. Rauscher, K. Kucian, T. Käser, U. Mc-
Caskey, and J. Kohn. Calcularis - Evaluation of a computer-based learning
program for enhancing numerical cognition for children with developmental
dyscalculia, 2015. 62nd Annual Meeting of the American Academy of Child
and Adolescent Psychiatry.

140

References

[von Aster, 2000] Michael von Aster. Developmental cognitive neuropsychology
of number processing and calculation: varieties of developmental dyscalculia.
European Child & Adolescent Psychiatry, 9:41–57, 2000.

[Wang and Beck, 2012] Yutao Wang and Joseph E Beck. Using student modeling
to estimate student knowledge retention. International Educational Data Mining
Society, pages 200–203, 2012.

[Wang and Beck, 2013] Y. Wang and J. Beck. Class vs. Student in a Bayesian Net-
work Student Model. In Proceedings of the International Conference on Artificial
Intelligence in Education, pages 151–160, 2013.

[Wang and Heffernan, 2012] Y. Wang and N. T. Heffernan. The student skill
model. In Proceedings of the International Conference on Intelligent Tutoring Sys-
tems, pages 399–404. Springer, 2012.

[Weiss, 2006] R.H. Weiss. Grundintelligenztest Skala 2 (CFT 20-R). Hogrefe, Göttin-
gen, 2006.

[Wilson and De Boeck, 2004] M. Wilson and P. De Boeck. Descriptive and ex-
planatory item response models. In Explanatory item response models: A gen-
eralized linear and nonlinear approach, pages 43–74. Springer, 2004.

[Woolf et al., 2009] Beverly Woolf, Winslow Burleson, Ivon Arroyo, Toby Dragon,
David Cooper, and Rosalind Picard. Affect-aware tutors: recognising and
responding to student affect. International Journal of Learning Technology, 4(3-
4):129–164, 2009.

[Woolf et al., 2013] Beverly Park Woolf, H Chad Lane, Vinay K Chaudhri, and
Janet L Kolodner. AI Grand Challenges for Education. AI Magazine, 34(4):66–
84, 2013.

[Woolger, 2001] Christi Woolger. Wechsler Intelligence Scale for Children-Third Edi-
tion (wisc-iii), pages 219–233. Springer US, Boston, MA, 2001.

[World Health Organization, 1993] World Health Organization. The ICD-10 clas-
sification of mental and behavioural disorders: diagnostic criteria for research, vol-
ume 10. Geneva: World Health Organization, 1993.

[Xu and Mostow, 2011] Yanbo Xu and Jack Mostow. Using logistic regression to
trace multiple subskills in a dynamic Bayes net. In Proceedings of the International
Conference on Educational Data Mining, pages 241–246, 2011.

[Xu and Mostow, 2013] Yanbo Xu and Jack Mostow. Using item response theory
to refine knowledge tracing. In Proceedings of the International Conference on Ed-
ucational Data Mining, pages 356–357, 2013.

141

References

[Xu et al., 2013a] Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view
learning. arXiv preprint arXiv:1304.5634, 2013.

[Xu et al., 2013b] Kevin S Xu, Mark Kliger, and Alfred O Hero. A regularized
graph layout framework for dynamic network visualization. Data Mining and
Knowledge Discovery, pages 1–33, 2013.

[Xu et al., 2014] Kevin S Xu, Mark Kliger, and Alfred O Hero Iii. Adaptive evolu-
tionary clustering. Data Mining and Knowledge Discovery, 28(2):304–336, 2014.

[Yudelson et al., 2013] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon. Indi-
vidualized Bayesian Knowledge Tracing Models. In Proceedings of the Interna-
tional Conference on Artificial Intelligence in Education, pages 171–180, 2013.

[Zhang, 2004] Harry Zhang. The Optimality of Naive Bayes. In Proceedings of the
Seventeenth International Florida Artificial Intelligence Research Society Conference,
pages 562–567, 2004.

[Zhou and Li, 2005] Zhi-Hua Zhou and Ming Li. Tri-training: Exploiting unla-
beled data using three classifiers. IEEE Transactions on knowledge and Data Engi-
neering, 17(11):1529–1541, 2005.

[Zhu, 2006] X. Zhu. Semi-supervised learning literature survey. Technical report,
University of Wisconsin-Madison, 2006.

[Ziegler et al., 2005] Andreas Ziegler, Inke R König, Wolfgang Deimel, Ellen
Plume, Markus M Nöthen, Peter Propping, André Kleensang, Bertram Müller-
Myhsok, Andreas Warnke, Helmut Remschmidt, et al. Developmental
dyslexia–recurrence risk estimates from a german bi-center study using the sin-
gle proband sib pair design. Human heredity, 59(3):136–143, 2005.

[Zimmermann and Fimm, 2009] Peter Zimmermann and Bruno Fimm. Testbat-
terie zur Aufmerksamkeitsprüfung-Version 2.2 (TAP). Psytest, 2009.

142

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 Overview
	1.2 Principal Contributions
	1.3 Thesis outline
	1.4 Publications

	Student model landscape (related work)
	2.1 Cognitive student models
	2.1.1 Hybrid models
	2.1.2 Student model properties

	2.2 Models of student characteristics and traits
	2.2.1 Student trait identification
	2.2.2 Student trait discovery

	Data
	3.1 Orthograph
	3.2 Calcularis

	Performance characteristics of student knowledge models
	4.1 Investigated Models
	4.1.1 Bayesian Knowledge Tracing
	4.1.2 Item Response Theory
	4.1.3 Latent Factor Knowledge Tracing
	4.1.4 Feature Aware Knowledge Tracing

	4.2 Synthetic data generation
	4.3 Experimental Setup
	4.4 Results
	4.4.1 Error Metrics
	4.4.2 Model Comparison
	4.4.3 Parameter Influence

	4.5 Discussion

	Supervised student trait identification
	5.1 Adaptive Classification Algorithm
	5.1.1 Feature extraction
	5.1.2 Feature selection
	5.1.3 Probabilistic classifier
	5.1.4 Feature ordering
	5.1.5 Stopping criterion

	5.2 Experimental Evaluation
	5.2.1 Method
	5.2.2 Content validity
	5.2.3 Criterion-related validity
	5.2.4 Construct validity
	5.2.5 Reliability
	5.2.6 Test duration

	5.3 Generalization Capabilities
	5.3.1 Method
	5.3.2 Feature generalizability
	5.3.3 Performance on classroom data

	5.4 Discussion

	Semi-supervised student trait identification
	6.1 Background
	6.1.1 Auto-encoder
	6.1.2 Variational auto-encoder

	6.2 Method
	6.2.1 Student snapshots
	6.2.2 Simple student auto-encoder (S-SAE)
	6.2.3 CNN student auto-encoder (CNN-SAE)
	6.2.4 Feature selection
	6.2.5 Semi-supervised classification pipeline

	6.3 Results
	6.3.1 Experimental Setup
	6.3.2 Implementation
	6.3.3 Network comparison
	6.3.4 Classification performance
	6.3.5 Comparison to our specialized models
	6.3.6 Robustness on sample size

	6.4 Discussion

	Unsupervised student trait discovery
	7.1 Method
	7.1.1 Action Sequences
	7.1.2 Action Processing
	7.1.3 Similarity Computation
	7.1.4 Clustering
	7.1.5 Model Selection

	7.2 Synthetic experiments
	7.2.1 Experimental setup
	7.2.2 Clustering Quality & Robustness
	7.2.3 Stability
	7.2.4 Interpretability

	7.3 Exploratory data analysis
	7.3.1 Experimental Setup
	7.3.2 Navigation Behavior
	7.3.3 Input & Help-Seeking Behavior

	7.4 Discussion

	Conclusion
	8.1 Limitations & Future work

	Instruments
	References

